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a b s t r a c t

This paper deals with the joint estimation of the pair dynamical carrier phase/Doppler

shift and the time-delay in a digital receiver. We consider a Binary Offset Carrier

shaping function as used in satellite positioning, which is a time-limited pulse with a

large excess bandwidth, and a Data Aided synchronization scenario, where we have a

constant time-delay and a Brownian phase evolution with a linear drift. The proposed

study is relative to the use of an oversampled signal model after matched filtering,

leading to a colored reception noise and a non-stationary power signal. The contribu-

tion of this paper is twofold. First, we derive the Hybrid Cramér–Rao Bound for the joint

phase/Doppler estimation problem. Then, we propose a method for the joint time-

delay/carrier synchronization, which couples an Extended Kalman Filter and an

Expectation-Maximization type algorithm. Our numerical results show the potential

gain of using the oversampled signal for carrier synchronization, obtaining better

performances than using a classical synchronizer, and good time-delay estimation.
1. Introduction

Synchronization is a fundamental part of Global Navi-
gation Satellite Systems (GNSS). In the synchronization
step, we estimate some parameters, such as carrier
frequency, carrier phase and time-delay, between each
visible satellite and the receiver to estimate the corre-
sponding pseudorange. The synchronizer is coupled with
a triangulation algorithm to obtain the receiver’s position.
In this paper, we focus our attention on the joint carrier
phase/frequency offset and time-delay estimation pro-
blem in a GNSS-type receiver [2], where we consider a
Binary Offset Carrier (BOC) shaping function (as used in
1].
new civil GNSS Galileo and the modernized GPS) [3]
within a Data-Aided (DA) synchronization scenario.

Many estimation methods for joint carrier and time-
delay synchronization have been proposed over the past
decades. The time-delay, phase and frequency offset estima-
tion problem is usually solved using Maximum Likelihood
(ML) methods.

Historically, the delay and the frequency shift were
assumed to be deterministic. In this context, assuming
a known transmitted sequence, the optimal way to esti-
mate these two parameters is to search for the maximum
of the ambiguity function (delay/Doppler correlation
method) [4,5].

For time-varying parameters, the previous method is
still useful to provide an initialization to some tracking
procedure and the synchronization is then performed as a
two-step procedure: coarse and fine estimation, referring
to acquisition and tracking, respectively. The acquisition
system provides a first estimate of the time-delay and the
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Doppler shift and the tracking stage performs a local
search for a fine estimation [6]. The tracking is usually
based on Phase Locked Loops (PLL)/Delay Locked Loops
(DLL) architectures [7,8]. These methods perform cor-
rectly with slowly varying phase errors.

For carrier synchronization, an alternative to the clas-
sical synchronization methods [8,9] is to reformulate the
problem with a dynamic state-space model and to apply
Bayesian estimation methods. Several contributions show
the use of Kalman-type solutions [10] for carrier synchro-
nization [11–14]. For the joint time-delay and carrier
estimation, a solution to solve the ML problem within
the state-space formulation is to use a recursive Expecta-
tion-Maximization (EM) type algorithm [15]. Recently
this approach has been applied to several problems such
as channel estimation in OFDM systems [16,17], speech
recognition [18] and several parameter estimation and
learning problems [19–21].

When having an estimation problem, we need lower
bounds on the estimation performance to be used as a
benchmark. The family of Cramér–Rao Bounds (CRBs) has
been shown to give accurate estimation lower bounds in
many scenarios [22]. For time-varying parameter estima-
tion, an analytical expression of a general online recursive
Bayesian CRB (BCRB) is given by Tichavský et al. [23] and
the general formulation for the Hybrid CRB (HCRB), which
applies when having both random and deterministic
parameters, is derived by Bay et al. [24].

In the literature, most of the lower bounds and the
corresponding algorithms assume a white observation
noise and a stationary signal.

This contribution, extends and completes the work
presented in [25]. We assume a time-varying phase offset
modeled as a Brownian motion with a Doppler shift [26]
and a constant time-delay over the observation window.
We consider an oversampled (regarding the symbol time
interval) signal model after receiver matched filtering,
this implies dealing with a colored reception noise and
taking into account the non-stationarity of the digital
signal power (cyclostationarity when transmitting a ran-
dom sequence).

Although this scenario is standard in satellite radio-
localization based on a Binary Offset Carrier (BOC) time-
limited shaping pulse modulation, there is no theoretical
study concerning the performance of the oversampled
dynamical phase and frequency offset estimation, and
joint time-delay and carrier estimation. In [25], we pre-
sented the derivation of a Bayesian CRB for the dynamical
phase offset and the EKF that approaches this bound, both
presented in a scenario similar to the one treated in
this paper.

First, we derive a closed-form expression of the online
HCRB for the dynamical phase and frequency offset
estimation in the Data Aided (DA) scenario, assuming a
Brownian phase evolution with a linear drift (Doppler
shift). Secondly, we investigate the use of an EKF based
algorithm which can approach this bound (more sophis-
ticated methods such as particle filters or sigma-point
Kalman filters are not necessary in this context [25]). We
have thus to jointly estimate the colored noise, the
dynamical phase and the frequency offset. And finally,
we propose an iterative block method to jointly estimate
the carrier phase and the time-delay, coupling an EKF-
based algorithm and an EM-type solution.

The study allows to measure the potential gain for
carrier synchronization provided by the use of the frac-
tionally spaced processing after matched filtering, instead
of the symbol time-spaced signal and the good perfor-
mance obtained with the complete solution.

This paper is organized as follows. Section 2 sets the
signal model. Section 3, sets the estimation problem.
Section 4, first recalls the HCRB expressions and derives
the HCRB for this estimation problem, and then presents
the EKF and derives the expressions of the filter in the
oversampled phase and frequency offset estimation sce-
nario. Section 5 presents the proposed method for joint
time-delay and carrier synchronization. Finally, in Section
6, the numerical results are presented and interpreted.
The conclusion is given in Section 7.

Notations: The (k,l)th entry of a matrix A is denoted
½A�k,l. Ex denotes the expectation over x. rh and Dh

w

represent the first and second-order partial derivatives
operator, i.e., rh ¼ @=@y1 � � � @=@yK

� �T
and Dh

w ¼rwr
T
h .

2. Signal model

We propose the signal model for the transmission of a
known sequence famgm2Z over an Additive White Gaussian
Noise (AWGN) channel affected by a dynamical carrier
phase offset yðtÞ (including the Doppler shift) and a time-
delay tðtÞ. For an exhaustive derivation see [25].

2.1. Oversampled signal model

2.1.1. Discrete-time general formulation

The received complex baseband signal after matched
filtering is

yðtÞ ¼ Tc

X
m

ampðt�mTc�tðtÞÞeiyðtÞ þnðtÞ

" #
npnð�tÞ, ð1Þ

where Tc ,pðtÞ and n(t) stands for the symbol period,
shaping pulse and circular complex Gaussian noise with
a known two-sided power spectral density (psd) N0.

We assume a shaping pulse p(t) with support in ½0,Tc�,
a constant time-delay within the observation window
tðtÞ ¼ t and a slowly varying phase evolution during a
period Tc, which is a usual assumption in satellite com-
munications because the phase variation (due to oscilla-
tors phase noise, Doppler shifts, etc.) within one symbol
period is small. In this case, the received signal can be
written as [25]

yðtÞ ¼
X

m

amgðt�mT�tÞeiyðtÞ þbðtÞ, ð2Þ

where b(t) stands for the filtered colored noise, and
gðtÞ ¼ pðtÞnpnð�tÞ. If we consider a full digital synchroni-
zation architecture where the received signal is fraction-
ally spaced at fixed instants tk ¼ kT=S, where S is an
integer oversampling factor, we can write the received
oversampled signal as

yk ¼ AkðtÞeiykþb0k, ð3Þ



where k refers to tk instants, so yk ¼ yðtkÞ, yk ¼ yðtkÞ and
b0k ¼ bðtkÞ, and

AkðtÞ ¼
X

m

amg k
T

S
�t�mT

� �
: ð4Þ

Note that the noise b0k is colored with variance s2
n,

where s2
n ¼N0 � gð0Þ=Tc is the variance of the AWGN n(t)

measured in the noise equivalent bandwidth of the
receiver filter pnð�tÞ. We can define the symbol index
p¼ bk=Sc, or equivalently, k¼ pSþs with s the sub-symbol
index (i.e., the position inside the symbol interval)
and s¼ 0, . . . ,S�1. fAkðtÞgk2Z is a non-stationary power
sequence for S41, even if famgm2Z is a stationary power
symbol sequence (a2

m ¼ 1).

2.1.2. Discrete-time re-formulation for the noise

The T=S-spaced sequence of noise, fb0kgk2Z, is defined in
the previous section from an analog noise n(t). Our
motivation now is to replace this time series by another
fbkgk2Z with the same statistical properties, but which can
be obtained entirely by a discrete-time formulation. This
will be useful for the final state-space model formulation.
As we did in [25], we can write that the noise samples b0k
have the same statistical properties than samples bk,
which are obtained by a T=S-spaced filtering of the time
series nk:

bk ¼
XS�1

j ¼ 0

Pjnk�j�1, ð5Þ

where Pj are the coefficients of the filter which depend
on the shaping pulse p(t).

2.2. Parameter evolution model

We consider a constant time-delay t in the observation
window. Concerning the carrier phase, in practice, we
have a frequency shift between transmitter’s and recei-
ver’s carrier oscillator and a Doppler shift due to the
relative motion between the satellite and the receiver, so
the phase offset is linear with time. We also must
consider jitters introduced by oscillators imperfections
which can be modeled as a random phase. To take it into
account we suppose a Brownian phase offset evolution
with a linear drift [26]:

yk ¼ yk�1þdkþwk, ð6Þ

dk ¼ dk�1, ð7Þ

where kZ2, wk is an i.i.d. zero-mean Gaussian noise
sequences with known variance s2

w=S and dk is the
unknown constant drift. Here s2

w stands for the variance
growth of the phase noise in one symbol interval. We note
that the variance of the Gaussian noise is directly related
with the rapidity of evolution of the parameter. We note
R the N�N covariance matrix of the phase offset evolu-
tion, h¼ ½y1 � � � yN�

T .

2.3. State-space model

When using an optimal filtering approach a state-
space model formulation is needed. As we want to take
into account that the observation noise on the output of
the matched filter can be colored, we must include it into
the state evolution.

The state to be considered includes the phase offset,
the drift and the colored noise:

xk ¼ ½yk dk bk nk � � � nk�Sþ1�
T , ð8Þ

where ½nk nk�1 � � � nk�Sþ1�
T is a sliding vector over an

i.i.d noise sequence nk.
We define the state evolution matrix as

MK ¼

1 1 0 0 � � � 0

0 1 0 0 � � � 0

0 0 0 P0 PS�1

0 0 0 0 0 � � � 0

^ ^ ^ 1

&

0 0 0 � � � 0 1 0

2666666666664

3777777777775
ð9Þ

and the state noise as wk ¼ ½wk 0 0 nk 0 � � � 0�T . From
this we have that the state evolution and the observation
equation of the state-space model are

xk ¼MK xk�1þwk, ð10Þ

yk ¼ AkðtÞexpðiykÞþbk: ð11Þ

We note that the state equation is linear and the observa-
tion equation depends non-linearly on the state. With this
formulation we have no observation noise because we
have included it in the state.

3. Estimation problem

In this section, we state the estimation problem and
we introduce the proposed solution that we will develop
in the following sections.

In general, the objective is to jointly estimate the
constant time-delay t and the states (including the carrier
phase h, which has a dynamical evolution, and the
constant linear drift d, which is hidden in the phase
evolution) using the received signal y. We use the state-
space model proposed in Section 2 (Eqs. (10) and (11))
and we consider that the transmitted symbol sequence is
known at the receiver (DA synchronization scenario).

In a positioning context, we are interested in the time-
delay t to obtain the pseudorange estimation between
each visible satellite and the receiver. In this case, we
have to estimate the carrier phase and Doppler shift to
obtain a correct estimation of the time-delay. If the
received signal is not perturbed by a carrier phase error
and a Doppler shift, the time-delay estimation problem
can be solved with a simple correlation method. So what
complicates the problem is the presence of these
parameters.

If t is known, the states can be inferred using a Kalman
filter. Due to the presence of unobserved data (carrier
phase and Doppler shift), the ML method to obtain a time-
delay estimate cannot be used because the computation
of the likelihood function in a closed-form and its max-
imization w.r.t. t seems to be an intractable problem.
To solve this problem we have to resort to iterative



methods and the natural solution is to use an EM-type
solution.

In the following, we first propose a method for phase
and frequency shift estimation considering a known
delay, and then we use this solution to propose a method
for the joint carrier and time-delay estimation.
4. Carrier phase and frequency shift estimation

We consider in this section that we have a good time-
delay synchronization (known time-delay), and we focus
our attention on the joint carrier phase and frequency
shift estimation. First, we compute the HCRB to be used as
a benchmark on the estimation error, and then we
propose a solution based on a Kalman-type algorithm.
4.1. Hybrid Cramér–Rao bound

When dealing with an estimation problem we aim to
know the ultimate accuracy that can be achieved by the
estimator. The Cramér–Rao Bounds (CRB) provide a lower
bound on the Mean Square Error (MSE) achievable by any
unbiased estimator. Depending on the nature of the
parameters to be estimated we use different bounds of
the CRB family. If the vector of parameters is assumed to
be deterministic we use the standard CRB and if the
vector of parameters is random and an a priori informa-
tion is available we use the so-called Bayesian CRB [27].
When dealing with both random and deterministic para-
meters an Hybrid CRB (HCRB) is used [24]. The CRB suited
to our problem is the HCRB as we want to estimate the
phase offset evolution vector h which is a random vector
with an a priori probability density function (pdf) pðhÞ and
the linear drift d which is a deterministic parameter.

In the online synchronization mode, at time k the
receiver updates the observation vector y¼ ½y1 � � � yk�1�

T

including the new observation yk to obtain the updated
vector y¼ ½y1 � � � yk�

T in order to estimate yk. In this
section we recall the expression of the Hybrid CRB and
we present the closed-form expression of the HCRB for an
oversampled dynamical phase and frequency offset esti-
mation problem in a Data Aided scenario.
4.1.1. HCRB: background

We have a set of measurements y and we want
to estimate an N-dimensional vector of parameters
l¼ ðlT

r l
T
dÞ

T . We consider the case where the random
(lr) and the deterministic (ld) parts of the vector of
parameters can be statistically dependent. We note ln

d

the true value of ld. The joint probability density of the
pair ðy,lÞ is py,lðy,lÞ and the a priori pdf of the random
part of l is pðlrjl

n

dÞapðlrÞ. If l̂ðyÞ is our estimate of l, the
HCRB satisfies the following inequality on the MSE:

Ey,ljln

d
f½l̂ðyÞ�l�½l̂ðyÞ�l�T jln

dgZH�1
ðln

dÞ, ð12Þ

where Hðln

dÞ is the so-called Hybrid Information Matrix
(HIM) defined as [24]

Hðln

dÞ ¼ Ey,lr jl
n

d
½�Dl

llogpðy,lrjldÞjl
n

d�: ð13Þ
Expanding the log-likelihood the HIM can be rewritten as

Hðln

dÞ ¼ Elr jl
n

d
½Fðlr ,l

n

dÞ�þElr jl
n

d
½�Dl

llogpðlr jldÞjl
n

d�,

where Fðlr ,ln

dÞ is the Fisher Information Matrix (FIM)
defined as

Fðlr ,ln

dÞ ¼ Eyjlr ,ln

d
½�Dl

llogpðyjlr ,ldÞjl
n

d�: ð14Þ

We can see that Hðln

dÞ ¼HD
ðln

dÞþHP
ðln

dÞ, where the first
term represents the average information about l brought
by the observations y and the second term represents
the information available from the prior knowledge on l,
i.e., pðlr jldÞ.

The N�N HCRB matrix can be written as

HCRB¼ fHðln

dÞg
�1 ¼ fHD

ðln

dÞþHP
ðln

dÞg
�1, ð15Þ

where the kth element of the diagonal, ½HCRB�k,k repre-
sents the lower bound on the estimation of ½l�k from the
observations block y¼ ½y1 � � � yN �.

4.1.2. HCRB: application to dynamical phase and frequency

offset estimation

In this paragraph, a closed-form expression for the
HCRB for an online fractionally spaced phase offset and
linear drift estimation problem is presented. In the fol-
lowing we drop the dependence of the different matrices
on ln

d ¼ dn for easier notation. As we consider a constant
drift, for the derivation of the HCRB, we note dk ¼ d.

We use the model presented in Section 2 (Eqs. (6)
and (11)):

yk ¼ yk�1þdþwk,

yk ¼ AkðtÞexpðiykÞþbk,

where, as stated before, bk is a non-white noise with
covariance matrix C. The index k refers to tk instants and
AkðtÞ are the coefficients specified in Eq. (4) with t̂ ¼ t, so
we can write that AkðtÞ ¼ Ak.

Comparing this state-space model to the general
model presented on the last paragraph, and supposing
that we have N available measurements, we identify
lr ¼ h¼ ½y1 � � � yN�

T and ld ¼ d. From this the HIM can be
rewritten into a (Nþ1)� (Nþ1) block matrix as [24]

H¼
H11 h12

h21 H22

 !
, ð16Þ

where

H11 ¼ Ey,hjdn ½�Dh
hlogpðyjh,dÞjdn

�þEhjdn ½�Dh
hlogpðhjdn

Þ�,

h12 ¼ hT
21 ¼ Ey,hjdn ½�Dd

hlogpðyjh,dÞjdn
�þEhjdn ½�Dd

hlogpðhjdn
Þ�,

H22 ¼ Ey,hjdn ½�Dd
dlogpðyjh,dÞjdn

�þEhjdn ½�Dd
dlogpðhjdn

Þ�:

So to compute the HIM we need the likelihood function
and the a priori pdf. From the model we can write the log-
likelihood as

logpðyjh,dn
Þ ¼ log

1

pN jdetðCÞj
�½y�m�HC�1

½y�m�; ð17Þ

where y is the N-dimensional received signal array and m
is the mean vector of y, where the kth component is



½m�k ¼ Akeiyk . The a priori pdf is

logpðhjdn
Þ ¼ logpðy1ÞþðN�1Þlog

1ffiffiffiffiffiffi
2p
p

sw

� �
�
XN

k ¼ 2

ðyk�yk�1�d
n
Þ
2

2s2
w

: ð18Þ

Expression of H11: we can write that

H11 ¼HD
11þHP

11, ð19Þ

where

HD
11 ¼ Ey,hjdn ½�Dh

hlogpðyjh,dÞjdn
�,

HP
11 ¼ Ehjdn ½�Dh

hlogpðhjdn
Þ�:

The first term can be computed from Eq. (17). We note
LðhÞ ¼ logpðyjh,dÞ. The first derivative of LðhÞ with
respect to the lth phase parameter is

@LðhÞ
@yl

¼
@

@yl
f�½y�m�HC�1

½y�m�g

¼
@mH

@yl
C�1
½y�m�þ½y�m�HC�1 @m

@yl

� �
¼ 2R

@mH

@yl
C�1
½y�m�

� �
: ð20Þ

If we compute now the derivative with respect to the
kth phase parameter we have that

@2LðhÞ
@yk@yl

¼ 2R
@2mH

@yk @yl
C�1
½y�m��

@mH

@yl
C�1 @m

@yk

� �
: ð21Þ

The (k,l)th element of the matrix HD
11 is

½HD
11�k,l ¼ Ehjdn Eyjh,dn �

@2LðhÞ
@yk@yl

� �� �
¼ Ehjdn 2R

@mH

@yl
C�1 @m

@yk

� �� �
:

We note that

@mH

@yl
¼ ½0, . . . ,0,�iAn

l e�iyl ,0, . . . ,0�, ð22Þ

@m

@yk
¼ ½0, . . . ,0,iAkeiyk ,0, . . . ,0�T , ð23Þ

with the non-null values on the lth and kth position,
respectively, and so the coefficients can be written as

½HD
11�k,l ¼ Ehjdn f2RfAn

l Ak � ½C
�1
�k,le

jðyk�ylÞgg

¼ 2RfAn

l Ak � ½C
�1
�k,lEhjdn fejðyk�ylÞgg:

We can write that

Ehfe
iðyk�ylÞg ¼ Ehfe

iðuT
kl
hÞg ¼fðuklÞ, ð24Þ

where uT
kl ¼ ½0, . . . ,0,ðþ1Þ,0, . . . ,0,ð�1Þ,0, . . . ,0�, þ1 in

the kth position and �1 in the lth position of the array,
fð�Þ is the characteristic function of a Gaussian random
variable h:

fðuklÞ ¼ expf�1
2uT

klR
�1uklg

¼ expf�1
2ð½R

�1
�k,kþ½R

�1
�l,l�2½R�1

�k,lÞg, ð25Þ
with R the covariance matrix of the phase evolution h.
Finally

½HD
11�k,l ¼ 2RfAn

l Ak½C
�1
�k,le

Cg, ð26Þ

where

C¼ f�1
2ð½R

�1
�k,kþ½R

�1
�l,l�2½R�1

�k,lÞg: ð27Þ

We note that the elements ½R�1
�k,k are proportional to

S=s2
w, so for small values of s2

w (s2
wo0:1) we have that

eC � 0 except when k¼ l where eC ¼ 1. As an example
representing the worst of the cases, when we set S¼1,
s2

w ¼ 0:1, k¼1 and l¼N, eC ¼ 4:54� 10�5.
As we assume that the phase variation is small over
the symbol interval (hypothesis done in Section 2), we
can consider that HD is a diagonal matrix with

½HD
11�k,k ¼ 2jAkj

2½C�1
�k,k: ð28Þ

In the following we compute the second term of Eq. (19).
From the state evolution equation (6) and assuming that
the initial phase y1 does not depend on d, we have that

pðhjdn
Þ ¼ pðy1ÞPN

k ¼ 2pðykjyk�1,dn
Þ ð29Þ

and due to this expansion we can rewrite the expression
as

Dh
h ln pðh,dn

Þ ¼Dh
h ln pðy1Þþ

XN

k ¼ 1

Dh
h ln pðykjyk�1,dn

Þ: ð30Þ

The first term in Eq. (30) is a matrix with only one non-
zero element, namely, the entry (1,1) which is equal to

½Dh
h ln pðy1Þ�1,1 ¼

@2ln pðy1Þ

@y2
1

: ð31Þ

The other terms are matrices with only four non-zero
elements, namely, the entries (k�1,k�1), (k�1,k),
(k,k�1) and (k,k). Due to the Gaussian nature of the
noise, one finds

½Dh
h ln pðykjyk�1,dn

Þ�k,k ¼
�S

s2
w

, ð32Þ

½Dh
h ln pðykjyk�1,dn

Þ�k,k�1 ¼
S

s2
w

: ð33Þ

The values for (k�1,k�1) and (k�1,k) are, respec-
tively, the same that for (k,k) and (k�1,k). Assuming
that Ey1

½Dh
h ln pðy1Þ� ¼ 0 that corresponds to the case of

non-informative prior about y1, we obtain that

HP
11 ¼ Ehjdn ½�Dh

h log pðhjdn
Þ�

¼
1

s2
w=S

1 �1 0 � � � 0

�1 2 �1 & ^

0 & & & 0

^ �1 2 �1

0 � � � 0 �1 1

0BBBBBB@

1CCCCCCA: ð34Þ

Expression of h12: the log-likelihood (Eq. (17)) does
not depend on d so the first term of h12 is null, so

h12 ¼ Ehjdn ½�Dd
h log pðhjdn

Þ�:



From the state model we have that

h12 ¼
S

s2
w

01�N�2 �
S

s2
w

	 
T

:

Expression of H22: as the log-likelihood does not
depend on d and using Eq. (18) we have that

H22 ¼ Ehjdn ½�Dd
dlogpðhjdn

Þ�

¼ Ehjdn �
@2

@d2
logpðhjdn

Þ

	 

¼

SðN�1Þ

s2
w

:

Remarks: As we analyze the estimation problem in a
DA scenario the bound depends on the transmitted

sequence a. In this paper, we suppose the transmission
of a known sequence to analyze the performance of
the proposed algorithm and the bound. We note that
the HCRB is computed for a specific known sequence. The
bound depends on the sequence, the oversampling factor
S and the position s inside the symbol interval of the
current transmitted symbol (index M):

HCRByða,S,sÞ ¼ ½H�1
ðaÞ�N,N , ð35Þ

HCRBdða,S,sÞ ¼ ½H�1
ðaÞ�Nþ1,Nþ1, ð36Þ

with N¼ ðM�1ÞnSþ1þs.

4.2. Extended Kalman filter for carrier phase and frequency

shift estimation

In the sequel, we recall the notation and the basics of the
Kalman filter and we derive the EKF [28] for the over-
sampled carrier phase and frequency offset estimation.

4.2.1. Kalman background

We consider that we have a system described by the
following state-space equations pair

xkþ1 ¼ fkðxkÞþwk,

yk ¼ gkðxkÞþvk, ð37Þ

where xk is the state vector, wk is a zero-mean white noise
with covariance matrix Q k, yk is the observation vector at
time k which is a partial and noisy observation of the state xk

and vk is the observation noise with covariance matrix Rk.
Noises wk and vk are supposed to be uncorrelated. The
functions fkð�Þ and gkð�Þ can be non-linear in a general case.

We note bxkjm, the estimation of xk from the observa-
tions up to time m, ~xkjm ¼ xk�bxkjm, the estimation error
and Pkjm ¼ Eð ~xkjm ~x

T
kjmÞ, the covariance matrix of the esti-

mation error. For Gaussian, linear state models, the KF
gives the best Mean Square Error (MSE) estimation of the
state xk from observations up to time k. For non-linear
problems, the EKF gives a sub-optimal estimator bxkjk in a
recursive way: the main idea is to linearize the state-
space equations at each iteration in order to transform the
filtering problem into a usual Kalman one.

4.2.2. EKF: the algorithm

To derive the EKF, we need to compute @fkðxkÞ=@xk and
@gkðxkÞ=@xk.
In the state-space model for oversampled phase esti-
mation presented in Section 2 (Eqs. (10) and (11)), the
state equation is linear, hence @fkðxkÞ=@xk ¼MK . The state
noise covariance Q is independent from k and has only
two non-zero elements: ½Q �1,1 ¼ s2

w=S and ½Q �3,3 ¼ s2
n.

Because we introduced the colored noise bk into the state,
there is no observation noise and the covariance matrix R
is null. The observation equation is non-linear versus the
state, we have to apply a linearization:

g¼
@gkðbxkjk�1Þ

@xk
¼ ½iAkðtÞeibykjk�1 0 1 0 � � � 0�T : ð38Þ

Finally, the EKF expressions for the oversampled algo-
rithm are

Pkjk�1 ¼MK Pk�1jk�1MH
K þQ ,bxkjk�1 ¼MKbxk�1jk�1,

Kk ¼ Pkjk�1gHfgPkjk�1gHg�1,

Pkjk ¼ ½I�Kkg�Pkjk�1,

bxkjk ¼ bxkjk�1þKk½yk�AkðtÞeibykjk�1�bbkjk�1�,

8>>>>>>>><>>>>>>>>:
ð39Þ

where I is the identity matrix with appropriate dimension.

5. Joint time-delay and carrier synchronization method

In this section, we propose an iterative block method
for joint time-delay and carrier synchronization. The
method is inspired by the EM algorithm [15], which is
an iterative method to find the ML estimate of given
desired parameter in the presence of unobserved data or
nuisance parameters. The idea behind the algorithm is to
augment the observed data with latent data, which can be
either missing data or parameter values.

Our method is then based on an iterative optimization
of a cost function to find the time-delay (desired para-
meter in the EM formulation), coupled with the Kalman-
type solution proposed in Section 4 for the estimation of
the carrier phase and the Doppler shift (nuisance para-
meters in the EM solution).

5.1. The proposed method

The main goal is to write a function that only depends
on the time-delay, LðtÞ, that we will optimize iteratively.
The starting point is the joint pdf:

pðy,h; tÞ ¼ pðyjh; tÞpðh; tÞ: ð40Þ

From the state-space model, the a priori density pðhÞ is

pðhÞ ¼ pðy1Þ
YN

k ¼ 2

pðykjyk�1Þ, ð41Þ

where pðykjyk�1Þ are Gaussian densities with mean yk�1

and variance s2
w, so we can write

pðhÞ ¼
1ffiffiffiffiffiffi

2p
p

sw

� �N�1

exp �
1

2s2
w

XN

k ¼ 2

ðyk�yk�1Þ
2

( )
: ð42Þ

In a DA context, the likelihood function w.r.t. t is

pðyja,h; tÞ ¼N ðy;mðh,tÞ,CÞ,



Fig. 1. Block scheme of the joint estimation method.
where mðh,tÞ is the mean vector with ½mðh,tÞ�k ¼ AkðtÞeiyk

and C is the covariance matrix of the observation noise.
The product of these densities is

pðyjh; tÞpðhÞ ¼ 1ffiffiffiffiffiffi
2p
p

sw

� �N�1 1

pNjdetðCÞj

�exp �½y�mðh,tÞ�HC�1
½y�mðh,tÞ�� 1

2s2
w

XN

k ¼ 2

ðyk�yk�1Þ
2

( )
ð43Þ

and so

ln pðy,h; tÞ ¼ Cðs2
w,CÞ�½y�mðh,tÞ�HC�1

½y�mðh,tÞ�

�
1

2s2
w

XN

k ¼ 2

ðyk�yk�1Þ
2: ð44Þ

We assume that at the jth iteration of the method, the
time-delay estimated at the previous step t̂ðj�1Þ is avail-
able. As we want to obtain a function that only depends
on t, and optimize it with respect to this parameter, all
the terms in the log-density that do not depend on the
time-delay can be omitted. So we consider the function

F ðh,tÞ ¼�½y�mðh,tÞ�HC�1
½y�mðh,tÞ�

¼ �yHC�1yþyHC�1mðh,tÞ
þmðh,tÞHC�1y�mðh,tÞHC�1mðh,tÞ: ð45Þ

At the jth iteration, we obtain a function that only
depends on the time-delay t by taking the (conditional)
expectation of F ðh,tÞ with respect to the carrier phase h

(given the knowledge of y,a,t̂ðj�1Þ),

LðjÞðtÞ ¼ E
hjy,a,t̂ ðj�1Þ ½F ðh,tÞ�

¼�yHC�1yþyHC�1E
hjy,a,t̂ ðj�1Þ ½mðh,tÞ�

þE
hjy,a,t̂ ðj�1Þ ½mðh,tÞH�C�1y

�E
hjy,a,t̂ ðj�1Þ ½mðh,tÞHC�1mðh,tÞ�, ð46Þ

where the terms E
hjy,a,t̂ ðj�1Þ ½mðh,tÞ� and E

hjy,a,t̂ ðj�1Þ ½mðh,tÞH

C�1mðh,tÞ� only depend on the carrier phase. If we
consider that we have an estimate of these two terms,
we can estimate the time-delay at the current iteration
from the previous time-delay estimate t̂ðj�1Þ, by maximiz-
ing the cost function LðjÞðtÞ w.r.t. t

t̂ðjÞ ¼ arg max
t
LðtÞðjÞ: ð47Þ

The method iterates the optimization until the conver-
gence of the sequence ð. . . ,t̂ðjÞ,t̂ðjþ1Þ, . . .Þ.

Using the characteristic function of a Gaussian density,
we can write that

½Ehjy,a,tðj�1Þ ½mðh,tÞ��k ¼ AkðtÞEhjy,a,t̂ ðj�1Þ ½eiyk � ¼ AkðtÞeibyk e
�ð1=2Þs2

ŷk

where the estimate of the mean byðjÞk and the variance s2
ŷk

ðjÞ

can be obtained from a Kalman-type solution as pre-
sented in Section 4. The remaining term can be written as

Ehjy,a,tðj�1Þ

1

s2
n

mðh,tÞHmðh,tÞ
	 


¼
1

s2
n

X
k

jAkðtÞj2:

So the cost function to be maximized is

LðjÞðtÞ ¼ � yHy�yHdiagðdðtÞÞtðbhðjÞÞ:�
�tHðbhðjÞÞdiagðdðsÞnÞyþ
X

k

jAkðtÞj2
)

LðjÞðtÞ ¼ �Jy�diagðdðtÞÞtðbhðjÞÞJ2, ð48Þ

where ½dðtÞ�k ¼ AkðtÞ and ½tðbhÞ�k ¼ ðeiby ðjÞk e
�ð1=2Þs2ðjÞ

ŷk Þ. Finally, the
proposed method is based on the following optimization:

t̂ðjÞ ¼ arg max
t

2RðyHdiagðdðtÞÞtðbhðjÞÞÞ�X
k

jAkðtÞj2
( )

: ð49Þ

The iterative block method is sketched in Algorithm 1 and a
scheme is given in Fig. 1.
Algorithm 1. Joint time-delay, carrier phase and Doppler
shift estimation method.
Require: Block of N observations yp:pþN�1, process and measurement

noise statistics.
1:
 initialization

2:
 for i¼1 to convergence of the algorithm do

3:
 for j¼p to pþN-1 do

4:
 Estimation of yj and d using the Extended Kalman filter in

Eq. (39).
5:
 end for

6:
 Time-delay estimation t̂ ðiÞ from Eq. (49).
7:
 end for
To summarize: we have an iterative approximation of
the ML solution for the estimation of the time-delay t
(block method) where we embed a Kalman-type solution
to obtain the carrier phase and Doppler shift estimates
(operating sample-wise).

This method resembles a classic DA ML method for the
estimation of the time-delay after previous estimation
and compensation of the carrier phase and Doppler shift.
Indeed the cost function in (48) can be regarded as kind of
distance between the observations and the expected
noiseless signal after a carrier phase correction.

The advantage of our method is that it works itera-
tively to estimate the carrier phase/Doppler shift and the
time-delay. Each operation can then be used to enhance
the estimation performance of the other one giving rise to
an iterative technique. Actually this intuitive idea is the
basis of all the turbo methods for joint parameters
estimation. The EM-type formulation used here is a way
to arrive to the iterative technique more rigorously [16].



5.2. Computational complexity

The purpose of this section is to determine the imple-
mentation complexity in terms of the number of multi-
plications needed for our algorithm. The iterative method
proposed is composed of two stages: carrier phase and
Doppler shift estimation using an extended Kalman filter
and time-delay estimation with the maximization of a
cost function.

Concerning the first stage, the complexity of the time

update step of the Kalman filter (state prediction and
covariance of the prediction error) is ðn2

xþ2n3
x Þ and the

complexity of the measurement update step (Kalman gain,
state update and covariance of the measurement update
error) is ð2nxþ5n2

x Þ, where nx ¼ dimðxkÞ is the state
dimension (nx¼4, 5 and 7 for S¼1,2 and 4, respectively,
see Eq. (8)). So the Kalman stage complexity is OðNn3

x Þ,
where N is the block size. The computational complexity
of the optimization stage (Eq. (49)) is (3N), therefore, the
Fig. 2. BOC shaping function PðtÞ and its autocorrelation g(t).

Fig. 3. HCRB and RMSE obtained with the EKF, for the carrier phase estimation

S¼1, 2 and 4, and a fixed low SNR¼�20 dB. We consider two scenarios: pe

t̂�t¼ Tc=8.
bottleneck of the algorithm is the first stage and the
overall computational complexity of our algorithm is at
each iteration of the EM algorithm OðNn3

x Þ.
6. Computer simulations

In this section we show the behavior of the proposed
method by considering different scenarios. To assess the
method’s performance we assume the transmission over
an AWGN channel of a M-sequence of length 511 bits
generated using a Linear Feedback Shift Register (LFSR)
with characteristic polynomial [1021]8 (octal representa-
tion). We consider three oversampling factors (S¼1,2
and 4) and a BOC shaping pulse (see Fig. 2). We fix the
drift to d¼ 0:2.

First we present the performance obtained with the
Extended Kalman Filter for joint carrier phase and fre-
quency shift estimation considering two scenarios:
�

, ver

rfec
perfect time-delay synchronization,

�
 estimated time-delay.
In this case, we plot the Root Mean Square Error (RMSE),
obtained over 250 independent Monte Carlo runs, versus
the Signal to Noise Ratio (SNR). The SNR corresponds to
the Carrier to Noise Ratio (C=N) at the input of the
receiver. In our case, as shaping pulse and symbols ak

are normalized (i.e., s2
a ¼ 1; gð0Þ ¼ 1) this ratio is simply

C=N¼ 1=s2
n. The performances obtained are compared

with the HCRB. We compute the bound and the RMSE
for the T-spaced symbol reference points for S¼1,2,4 (see
[25] for the comparison of the estimation using T-spaced
sus the phase noise variance for three different oversampling factors

t time-delay synchronization and an error on the delay estimation



symbol reference points and T-spaced symbol mid-points
and more scenarios). We note that we compared our
method with the standard carrier synchronization Fitz’s
method [9] but this completely fails in our scenarios,
which is clear because this method assumes a determi-
nistic phase distortion.

In Fig. 3 we analyze the HCRB and the EKF behavior for
a fixed SNR versus phase noise variance. We present a
scenario with a really low SNR (as used in satellite based
poisioning), SNR¼�20 dB. We can see that using 1 point
Fig. 4. HCRB and RMSE obtained with the EKF, for the carrier phase estimation,

a fixed phase noise variance s2
w ¼ 0:001. We consider three scenarios: perfect t

and an error t̂�t¼ Tc=4.

Fig. 5. HCRB and RMSE obtained with the EKF, for the estimation of the Doppler

4, and a fixed phase noise variance s2
w ¼ 0:001. We consider three scenarios

t̂�t¼ Tc=8 and an error t̂�t¼ Tc=4.
per symbol (S¼1) the performances on the estimation are
far from the theoretical bound. This is because the CRB
does not give a good lower bound in the large error
regions. In counterpart, with S¼2 and 4 we can measure
the gain given by the oversampling and the good perfor-
mance of the algorithm. The gain obtained with the
oversampling is greater at small s2

w. We also plot on the
same figure the performances obtained with an error on
the time-delay estimation (t̂�t¼ Tc=8), We can see that
the performances are worse than those obtained with
versus the SNR for three different oversampling factors S¼1, 2 and 4, and

ime-delay synchronization, an error on the delay estimation t̂�t¼ Tc=8

shift, versus the SNR for three different oversampling factors S¼1, 2 and

: perfect time-delay synchronization, an error on the delay estimation



a perfect time-delay synchronization but still acceptable
with S¼2 and S¼4.

Fig. 4 superimposes, versus the SNR, the online HCRB
and the RMSE obtained with the EKF. We have a phase
with a moderate variation, s2

w ¼ 0:001 rad2. We assume
three different scenarios: a perfect time-delay synchroni-
zation, an error on the delay estimation of t̂�t¼ Tc=8 and
a greater error t̂�t¼ Tc=4. We do not plot the case S¼4
because the results are the same as for S¼2. Let us
consider the perfect synchronization case: for S¼1 the
performance of the EKF fits the HCRB except for really low
SNR where the performance is degraded (and the CRB is
not a good benchmark in large error regions). For S¼2 the
EKF performance is slightly looser than the bound. The
gain increases with the oversampling factor S and the
interest of oversampling becomes clear at low SNR, what
is the usual case in satellite based poisioning. The gain
due to oversampling decreases as the SNR increases.
The performance gain between oversampling factors
Fig. 6. SNR¼0 dB, t¼ Tc=8 and tinit ¼ 3Tc=8. (a) Values of the function to be o

s2
w ¼ 0:1. (b) Convergence of the algorithm for three phase noise variances: s2

w

S decreases proportionally to the phase noise variance
s2

w. For the estimated (error) time-delay scenarios we note
that the performances obtained are a little bit worse than
with the perfect synchronization but are still acceptable.

Fig. 5 superimposes, versus the SNR, the RMSE obtained
with the EKF and the online HCRB for the Doppler shift
estimation. We consider a phase noise variance s2

w ¼ 0:001,
three oversampling factors S¼1,2,4 and a fixed block size
N¼511 (we note that the performance on the estimation of
the drift depends on the block size N because the parameter
to be estimated has a constant value). We note that the
performances increase when increasing S and the conver-
gence to the lower bound depends on the error on the time-
delay estimation and the oversampling factor. But in all the
cases we obtain a good estimation of the Doppler shift.

After the analysis of the carrier phase and Doppler shift
estimation we consider the joint time-delay and carrier
synchronization estimation problem (the main concern of
the paper).
ptimized LðtÞ in different iterations for a fast varying phase evolution,

¼ 0:001, s2
w ¼ 0:01 and s2

w ¼ 0:1.



The convergence and performance of the algorithm
mainly depend on the process and measurement noises
affecting the system and on the estimation of the carrier
phase provided by the first stage. We first consider the
joint estimation in a scenario with a SNR¼0 dB where the
algorithm almost always converges to the true value
(see the table at the end of the section). In Fig. 6(a), we
plot the function to be optimized LðtÞ for different
Fig. 7. e-pdf and Gaussian fitted distribution (dotted line) for the

Fig. 8. e-pdf and Gaussian fitted distribution (dotted line) for the
iterations of a single realization of the algorithm (with a
really fast varying phase offset with variance s2

w ¼ 0:1)
and in Fig. 6(b) we show the convergence of the algorithm
for different carrier phase evolutions (s2

w ¼ 0:001,0:01 and
0.1). In both cases the true time-delay is t¼ Tc=8 and the
algorithm is initialized at tinit ¼ 3Tc=8.

We note that the speed of convergence depends on the
phase and observation noises, and that stronger the noises
time-delay estimation error. SNR¼�10 dB and s2
w ¼ 0:001.

time-delay estimation error. SNR¼�20 dB and s2
w ¼ 0:001.



lower the speed of convergence. Indirectly we can see that
the good performance of the algorithm directly depends
on the carrier estimation stage performance. We also note
that in this scenario (where the measurement noise is not
really strong) we obtain a good time-delay estimation
with few iteration, so the performances obtained with
the proposed method are encouraging. But we have to
analyze the behavior of the algorithm for lower values of
SNR (down to �20 dB) and the error associated on the
estimation procedure.

On the following we plot the empirical probability
density function (e-pdf) of the error on the time-delay
estimation for different scenarios, which is computed over
1000 independent Monte Carlo runs. As a reference we fit
a Gaussian distribution to the same sample data sets. In
Fig. 7, we plot the e-pdf and the fitted Gaussian distribu-
tion for a phase evolution with s2

w ¼ 0:001 and a
SNR¼�10 dB. In Fig. 8, we consider the same scenario
but with a really low SNR¼�20 dB. In both cases we use a
block size N¼511, the true time-delay is t¼ Tc=4 and the
algorithm is initialized at tinit ¼ Tc=2.

We can see that the Gaussian distribution fits correctly
with the e-pdf of the time-delay estimation error. In the
following table we show the empirical mean and standard
deviation computed from the error sample set considering
different signal to noise ratios and block sizes:
SNR (dB)
 Mean
 Std. dev.
 N
�20
 Tc=4
 0:1Tc
 511
�10
 Tc=4
 0:033Tc
 511
0
 Tc=4
 0:01Tc
 511
10
 Tc=4
 2� 10�3Tc

511
0
 Tc=4
 0:0134Tc
 300
0
 Tc=4
 0:0167Tc
 200
0
 Tc=4
 0:0227Tc
 100
0
 Tc=4
 0:0309Tc
 50
We note that the mean is always equal to the true time-
delay but the standard deviation is three times greater in
the case SNR¼�20 dB compared with the SNR¼�10 dB
case. Even in these conditions (really low SNR scenarios)
the performances obtained are still acceptable. The error
on the other two cases, SNR¼0 and 10 dB, are really weak
and the algorithm converges to the true value almost
always. We also give the sample mean and standard
deviation with different block sizes (for SNR¼0 dB). We
can see that smaller the block size greater the variance of
the estimation error.

7. Conclusion

In usual transmission systems, the roll-off is between
0% and 100%, however, in the context of satellite position-
ing systems, like GPS and GALILEO, time-limited shaping
pulse are used and the Nyquist–Shannon sampling theo-
rem does not apply. These special conditions let us hope a
significant receiver synchronization performance improve-
ment when the received signal is oversampled (using more
than one sample per symbol).

In this paper, we study the gain due to an oversam-
pling of the received signal for the problem of dynamical
carrier phase tracking, and we propose a method for joint
carrier and time-delay synchronization. Assuming that
the data are known at the receiver, we derive the Hybrid
Cramér–Rao Bound for carrier estimation, and we couple
a Kalman-based DA algorithm and an EM-type method for
joint carrier and time-delay estimation in such an over-
sampled scenario.

This study shows several improvements when a frac-
tionally spaced method for phase and frequency offset
estimation is used. The estimation MSE decreases as the
oversampling factor S increases and the interest of over-
sampling is more important at low SNR. For S¼1 or 2
samples per symbol, the results obtained with the EKF are
close to the theoretical bound for slow and moderate
phase evolutions. For S¼4, the HCRB is lower than for
S¼2 but the EKF performance does not show the same
improvement. We also note the limitations of the algo-
rithm when having an extremely rapidly varying phase
evolution with respect to the symbol interval.

We have shown the good performance of the iterative
block method proposed for joint time-delay and carrier
estimation for high and moderate SNR, and an acceptable
estimation performance in low SNR scenarios. This
method is based on a two-step iterative method, includ-
ing the oversampled carrier synchronization solution
based on the EKF. The convergence of the method directly
depends on the phase and Doppler distortion, and on the
estimation of the carrier phase provided by the EKF stage.
For a slowly varying carrier phase the algorithm conver-
gence is really fast, and as the phase offset gets stronger
the algorithm needs more iterations to converge to the
good time-delay value.
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