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ABSTRACT
Formation control of multiple thrust-propelled vehicles (TPVs) under deterministic and stochastic
switching topologies and communication delay is addressed. Introducing a new version of variable
structure control and based upon slidingmode technique, adaptive control and projection operator,
we effectively handle the impact of uncertainties on the mass and inertia matrix and a set of time-
varyingdisturbances affecting the translational and rotational dynamics. Global stability of thewhole
closed-loop system is guaranteed through Lyapunov stability theory. For the deterministic topol-
ogy, sufficient condition in terms of LMIs is derived to achieve formation in the presence of jointly
connected switching topology. In the case of stochastic topology, based on the concept of super-
martingales, it is shown that if the probability of existing a connected topology is not zero, under
some conditions, formation is almost surely solved in the network. Finally, numerical simulations
verify the effectiveness of the proposed control framework.
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1. Introduction

Under-actuated vehicles, i.e. systems with less number
of control inputs than the number of configuration vari-
ables, include a wide range of mechanical systems that
have diverse applications. The study of these systems is
motivated by the advantages they offer over the fully
actuated counterparts such as lowerweight, less complex-
ity, more efficiency and reliability. Among such systems,
thrust-propelled vehicles (TPVs), as an important class of
under-actuated systems with pivotal importance to vari-
ous applications such as surveillance and reconnaissance
(Kopfstedt, Mukai, Fujita, & Ament, 2008; Pack, DeLima,
Toussaint, & York, 2009), have gained significant atten-
tion in the research community.

In many applications, it is required and advantageous
that multiple of these vehicles collaboratively pursue a
common task. As a specific type of motion coordination,
formation control holds particular promise for applica-
tions in areas such as deep space imaging and explo-
ration, high-resolution seabed inspection, aerial coverage
and reconnaissance, seabed mapping and so on (Das,
Subudhi, & Pati, 2016). Despite the significant progress
in the field of cooperation of fully actuated systems
such as first- and second-order dynamics, general lin-
ear models and nonlinear systems under different con-
ditions such as switching topology and time-delay (see

CONTACT H. Atrianfar atrianfar@aut.ac.ir

for instance Atrianfar & Haeri, 2014; Ge, Park, Hua,
& Guan, 2018; Komareji, Shang, & Bouffanais, 2018;
Li, Hua, Liu, & Guan, 2018; Mateo, Horsevad, Has-
sani, Chamanbaz, & Bouffanais, 2019; Mirzaei, Atri-
anfar, Mehdipour, & Abdollahi, 2016; Rezaei, Kabiri,
& Menhaj, 2018; Shen, Huo, Cao, & Huang, 2019; Shen,
Wang, Xia, Park, & Wang, 2019; Wang, Ru, Xia, Wei,
& Wang, 2019, just to cite a few), there is still much to
be done to adopt strategies for motion control of com-
plex, under-actuated systemswith nonlinear coupling. As
it will be explained throughout the paper, these results
cannot be extended straightforwardly to our case due to
input constraints on the translational input. For instance,
in all of the aforementioned studies, the information of
neighbouring agents was used in the designed control for
each subsystem which renders the controller dependent
on the network topology. As a result, switches between
different topologies lead to discontinuous control input
which is problematic when it comes to approaching the
under-actuated systems.

As another aspect of practicality, designing a control
framework endowed with robustness against inevitable
disturbances as well as uncertainties is very crucial in the
success of challenging missions. This is mainly because
these vehicles usually operate in a medium (air, water,
space) which are susceptible to unwanted external inputs
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such aswind, wave, atmospheric drag, solar radiation and
aerodynamic torques. Moreover, in many modern con-
trol problems, it is not easy to obtain the exact dynamic
model of systems or measure some system parameters
accurately (like inertia matrix and mass due to e.g. fuel
consumption, payload variation, changes in the overall
spacecraft system configuration, the added-inertia and
added-mass effect in underwater applications, etc.). In
spite of the fruitful results in handling various kinds
of disturbances, extending the reported results to these
kinds of under-actuated systems is not a trivial task. The
main challenge is that all of the works that considered
the case of asymptotic tracking or regulation control used
non-continuous controllers such as sliding mode control
which cannot be exploited for control of TPVs (Cai, de
Queiroz, & Dawson, 2006a; Chen, Shi, & Lim, 2015; Zou,
Kumar, & de Ruiter, 2016). It is to be mentioned that
although there are some efforts that introduced differen-
tiable controllers to tackle the time-varying disturbances
such as Xian, Dawson, DeQueiroz, and Chen (2004),
Wen, Zhou, Liu, and Su (2011) and Lu and Xia (2013),
these controllers just ensure ultimate boundedness of the
error. In this paper, we aim at designing a controller
such that asymptotic convergence of the error to zero is
achieved.

Attitude control of such systems, which is fully
actuated, has been extensively researched in both sin-
gle and multi-agent contexts (see for instance Erdong
& Zhaowei, 2009; Li, 2017; Wang, Hua, & Zong, 2019;
Yin, Xia, Deng, & Huo, 2018). However, when the posi-
tion is involved, the problem becomes more challeng-
ing due to the under-actuated nature of the transla-
tional dynamics. As a remedy to this difficulty, several
classes of controllers have been undertaken to control the
position of a single TPV such as back-stepping proce-
dure (Cabecinhas, Cunha, & Silvestre, 2014), extraction
method (Abdessameud & Tayebi, 2013; Kabiri, Atrian-
far, & Menhaj, 2017b; Roberts & Tayebi, 2011; Roza
& Maggiore, 2014), hybrid control theory (Casau, Sanfe-
lice, Cunha, Cabecinhas, & Silvestre, 2015), sliding mode
control (Xu & Özgüner, 2008) and singular perturba-
tion theory (Bertrand, Guénard, Hamel, Piet-Lahanier,
& Eck, 2011).

Some results in motion coordination of such under-
actuated systems can be also found in Abdessameud,
Polushin, and Tayebi (2015), Roza, Maggiore, and Scar-
dovi (2014), Abdessameud andTayebi (2011), Lee (2012),
Børhaug, Pavlov, Panteley, and Pettersen (2011), Kabiri,
Atrianfar, and Menhaj (2018) and Kabiri, Atrianfar,
and Menhaj (2017a). The researches of Abdessameud
and Tayebi (2011), Lee (2012) and Roza et al. (2014),
based on separation method and back-stepping, inves-
tigated the cooperation of multiple TPVs, ignoring the

effect of uncertainties and disturbances, and sharing the
assumption that the communication graph characteris-
ing the interaction among the systems is fixed. In Kabiri
et al. (2018), formation of VTOL aircraft with switch-
ing topology and constant disturbances was addressed.
However, this study was limited to the constant distur-
bances and the effect of uncertainties and delays was
neglected. Besides, the network topologies are required
to contain a spanning tree at each time instant. Involv-
ing the problem of variations of the network topology,
time-varying disturbances and uncertainties for under-
actuated systems are critical, especially in 3-D space. For
example, using relative position in control input results
in a discontinuous controller, which renders the results
reported in Lee (2012) and Kabiri et al. (2017b) non-
extendable to the switching topology case; the approaches
used in Abdessameud and Tayebi (2011), Abdessameud
et al. (2015) and Kabiri et al. (2018) depend on the exact
value of the mass and inertia matrix of the vehicle; the
effect of disturbance in Kabiri et al. (2018) is counter-
acted by exploiting the zero derivatives of disturbances.
In Kabiri et al. (2017a), the problem of stationary for-
mation control for a group of TPVs was proposed in the
presence of a pair of time-varying disturbances.

In this paper, the problem of formation control for a
group of TPVs is solved where a hierarchical controller
is adopted for each TPV in a team in such a way that all
TPVs in a group attain a pre-specified formation glob-
ally with respect to the initial conditions, while all their
linear velocities converge to a reference velocity signal.
Themass and inertia matrix of each TPV are also consid-
ered to be unknown. The condition on network topology
has been also made weaker, i.e. the network topology is
required to be jointly connected.

Furthermore, due to the stochastic nature of commu-
nication channels and existing packet losses, we consider
the topology that switches in a stochastic manner. Some
studies have been focused on control of multi-agent sys-
tems with first-, second- and high-order dynamics under
stochastic interconnections (Chen, Xie, & Yu, 2012; Liu,
Lu, & Chen, 2011; Zhao, Park, & Zhang, 2014), but to
the authors’ best knowledge, it was not investigated for a
team TPVs with nonlinear under-actuated dynamics so
far. Hence, due to the drawbacks of existing researches, it
is necessary to propose a systematic framework to design
formation strategies for a group of TPVs with uncertain
nonlinear under-actuated dynamics under determinis-
tic and stochastic switching topologies, time delays and
unknown time-varying disturbances. Compared with
the relevant studies, Abdessameud and Tayebi (2011),
Abdessameud et al. (2015), Lee (2012) and Kabiri
et al. (2018), the proposed framework in this paper is
robust against general uncertainties in the mass and
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inertia matrix of the systems, and a pair of unknown
time-varying disturbances. In comparison with Kabiri
et al. (2018), the condition which is considered here
over network topology is more relaxed. Furthermore,
the effect of delay, uncertainties and time-varying distur-
bances is included. It is relevant tomention that although
just the effects of switching topology and constant delays
are discussed in the manuscript, several cooperation
problems, which have not been solved for this class of
under-actuated systems, can be easily extended to our
case. For example, the reported results in Yang, Bertozzi,
and Wang (2008) can be easily extended to consen-
sus of TPVs with nonuniform time-varying delays. The
remainder of the paper is organised as follows. In the fol-
lowing section, preliminaries are given. The formulation
of the problem is provided in Section 3. The procedure
design for the position and attitude control is introduced
in Section 4. The stability of the proposed control frame-
work under both deterministic and stochastic switching
topology is analysed in Section 5. Two illustrative simu-
lation examples for both scenarios are given in Section 6
and the paper is finally concluded in Section 7.

2. Preliminaries

2.1. Notation

Throughout this paper, the subscript i in xi denotes to x
of the ith vehicle and superscript (i) in x(i) denotes the
ith component of vector x. The symbol sign(.) stands for
signum function and for vector x we define sign(x) =
(sign(x(1)), sign(x(2)), sign(x(3)))T. The Euclidean norm
of a vector is denoted by ‖.‖ and |.| denotes the abso-
lute value of a scalar. The identity matrix of order 3 is
denoted by I3 ∈ R3×3 and × is an operator such that
x× = (0,−x3, x2; x3, 0,−x1;−x2, x1, 0). ‘a.s.’ stands for
almost surely and E[.] and Pr[.] denote the expected
value and probability of a stochastic variable, respec-
tively. Let us define a smooth saturation function χ(x) =
(�(x(1)), �(x(2)), �(x(3))) → R3 with � : R → R and
properties: (i) d�(x)/x is bounded for all x, (ii) |�(x)| <

M, for all x, (iii) �(0) = 0 and x�(x) > 0.

2.2. Interconnection communication topology

To represent the interconnection topology, we make a
use of undirected graph G(V , E ,A) with a node set
V = {1, . . . , n}, edge set E ∈ {V × V} andweighted adja-
cency matrix A = [aij] ∈ Rn×n which is defined such
that aii = 0 and aij > 0 if (i, j) ∈ E . For the undi-
rected graph, we assume aij = aji for all i ∈ V . To
describe the time-varying topologies, we use a piecewise
right-continuous switching function σ(t)(inshortσ) :

[0,∞] → P = {1, 2, . . . ,N}, where N is the total num-
ber of all possible communication graphs. Gσ(t) denotes
the communication graph at time t. A path is a sequence
of adjacent edges of the form (vi1 , vi2), (vi2 , vi3), . . . ,
(vij−1 , vij) where ij ∈ V . An undirected graph is called
connected if every two distinct nodes are connected
by a path. The union of a collection of graphs G1, . . . ,
Gm with the node set V is a graph denoted by G1−m
with the same node set whose edge set is the union of
edge sets of all graphs. A switching topology is said to
be jointly connected if there exists an infinite sequence
of nonempty, bounded and contiguous time intervals
[tr, tr+1], r = 0, 1, . . ., with t0 = 0 and tr+1 − tr ≤ T1 for
some constant T1 > 0 such that the union of undirected
graphs across each time interval is connected.We assume
that a complete graph is a graph in which each pair of
graph vertices is connected by an edge. It is also assumed
that there is a sequence of non-overlapping subinter-
vals [tr0 , tr1 , . . . , [trj , trj+1), . . . , [trmr−1 , trmr ) where tr =
tr0 , tr+1 = trmr and trj+1 − trj ≥ T2, 0 ≤ j < mr − 1 for
some integer mr and given constant T2. The commu-
nication topology is supposed to be fixed on each time
subinterval and switches at trj .

3. Systemmodel and problem formulation

For attitude and position representation, two coordinate
systems for each TPV are considered. The inertial frame
which is attached to the earth centre and the body frame
which is fixed to each TPV body defined to be at the
centre of the gravity of the vehicle. Considering n as
the number of vehicles, the equations characterising the
motion of the ith TPV are given by

ṗi = vi,

v̇i = gẑ − Ti
mi

R(qqqi)Tẑ + wi(t), (1a)

q̇qqi = 1
2

(
ηiI3 + q×

i
−qTi

)
ωi,

Jiω̇i = �i − ω×
i Jiωi + di(t), (1b)

where pi ∈ R3 and vi ∈ R3 are, respectively, the position
and the linear velocity of the centre of the mass of the ith
TPV coordinated in the inertial frame, ẑ = (0, 0, 1)T, g
is the gravitational acceleration, mi is the unknown total
mass of the ith TPV, wi(t) and di(t) are, respectively, the
translational and rotational lumped disturbances of vehi-
cle i resulting from external disturbance, aerodynamic
uncertainties and unmodelled dynamics, Ji ∈ R3×3 is the
ith TPV positive definite inertia matrix with respect to
its body-fixed frame (which is supposed to be unknown),
the scalar Ti and �i ∈ R3 are, respectively, the thrust and
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torque input for the ith vehicle, ωi denotes the body-
referenced angular velocity of the ith vehicle. The unit
quaternion qqqi = (qTi , ηi)

T is the attitude of the ith vehicle
with respect to the inertial frame, which is composed of
the vector part qi ∈ R3 and the scalar part ηi, and satisfies
the constraint qTi qi + η2i = 1 (Diebel, 2006). The inverse
of unit quaternion qqqi is defined as qqq−1

i = (−qTi , ηi)
T

with the quaternion identity given by qqqI = (0, 0, 0, 1)T.
The unit quaternion multiplication is defined by qqqi �
qqqj = ((qTi ηj + qTj ηi + q×

i qj)
T, ηiηj − qTi qj)

T which is also
a unit quaternion. The rotationmatrixR(qqqi)which brings
the inertial frame into the body frame is obtained by
R(qqqi) = (η2i − qTi qi)I3 + 2qiqTi − 2ηiq×

i .
Our objective is to design a distributed controller in

such a way that all TPVs in a group reach and main-
tain a desired formation pattern prescribed by the offset
vectors while each vehicle tracks a reference velocity sig-
nal available to all vehicles. In other words vi(t) → vd(t)
and pi − pj → δij, where δij = δi − δj and δi is the off-
set vector corresponding to the ith TPV whereby the
position of the vehicle i with respect to the centre of
the formation is determined. We assume that each vehi-
cle can merely communicate with its neighbour(s) with
a constant time-delay. Moreover, the objective is to be
realised under two unknown time-varying disturbances
and without any knowledge about the mass and inertia
matrix. We show that under some condition on time-
delay if the communication topology is jointly connected
across contiguous time intervals of arbitrary but finite
length then formation can be acquired. Note that the
condition that is imposed on the network topology is
regarded as a weak condition that allows for the isolation
of some or even all vehicles in the group at somemoment.
In the rest, we make the following assumptions.

Assumption 3.1: We assume that the mass of each vehicle
has a known lower bound mLi and a known upper bound
mUi . Hence without loss of generality, it is assumed that
1/m = ϕ0i + ϕ̄i, where ϕ0i is (1/mLi + 1/mUi)/2 which
is known, and ϕ̄i is an unknown constant which has the
property that |ϕ̄i| ≤ (1/mLi − 1/mUi)/2.

By Assumption 3.1, we decompose the mass of the
vehicle into two parts: the known part and the unknown
part. The unknown part is bounded by a symmetric
bound. As it is explained later, this symmetric property
allows us to use the projection operator which keeps
the estimation within a-priori bound and hence we will
assure that our estimation is always positive (ϕ̂ = 1/
m̂ > 0).

Assumption 3.2: It is assumed that the reference veloc-
ity signal and its first-, second- and third-order time

derivatives are bounded. It is also assumed that there
exist constants w̄i and v̄d such that supt>0 ‖wi‖ < w̄i,
supt>0 ‖v̇d(t)‖ < v̄d, w̄i + v̄d < g.

Assumption3.3: Normof the inertiamatrix Ji is bounded
by an unknown constant ‖Ji‖ < J̄i.We also assume that the
torque disturbance di(t) is bounded and it has an unknown
upper bound by supt>0 ‖di‖ = d̄i.

4. Control design strategy

For simplicity of presentation, we takeϕi = 1/mi. Let add
and subtract the terms ϕ̂iTiR(qqqi)Tẑ and ϕ̂iTiR(qqqdi)

Tẑ to
the second equation in (1a). Then we can put the lin-
ear acceleration equation in the following advantageous
form:

v̇i = Fi + F̃i − ϕ̃iTiR(qqqi)Tẑ + wi(t), (2)

Fi = gẑ − ϕ̂iTiR(qqqdi)
Tẑ, (3)

F̃i = ϕ̂iTi
(
R(qqqdi)

T − R(qqqi)T
)
ẑ, (4)

where ϕ̂i = ϕ0i + ˆ̄ϕi is the estimation of ϕi in which ϕ0i
is known and ˆ̄ϕi is the estimation of ϕ̄i, ϕ̃i = ϕi − ϕ̂i =
ϕ̄i − ˆ̄ϕi. The variable Fi is the virtual controller for the
translational dynamics, and F̃i is the under-actuation
error.

At this stage, the term F̃i can be seen as a perturba-
tion which will be driven to zero by a suitable design
of attitude controller. The desired orientation qqqdi is then
extracted from Fi to be tracked.

For any Fi satisfying Fi 	= gẑ, the input thrust Ti
and the desired attitude can be acquired by the fol-
lowing equations which are taken from Abdessameud
and Tayebi (2013)

T = m̂‖F − gẑ‖ = 1
ϕ̂

‖F − gẑ‖, (5)

ηd =
√
1
2

+ g − F(3)

2‖F − gẑ‖ ,

qd = 1
2‖F − gẑ‖ηd

⎛
⎝ F(2)

−F(1)

0

⎞
⎠ . (6)

This is called the extractionmethod. The desired angular
velocity ωdi and its derivative ω̇di can be obtained by the
following expressions:

ωd = 
(F)Ḟ, (7)

ω̇d = 
̇(F, Ḟ)Ḟ + 
(F)F̈, (8)
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Figure 1. Overall control architecture for the ith agent.

with


(F) = 1
�21�2

⎛
⎜⎝ −F(1)F(2) −F(2)2 + �1�2 −F(2)�2

F(1)2 − �1�2 F(1)F(2) −F(1)�2
F(2)�1 −F(1)�1 0

⎞
⎟⎠ ,

where �1 = ‖F − gẑ‖, �2 = �1 + (g − F(3)) and 
̇(F, Ḟ)

is the time derivative of 
(F) and the subscript i is
omitted for notational simplicity.

It is to be mentioned that the extraction algorithm is
not unique and several strategies can be found in the lit-
erature (see for instance Roberts & Tayebi, 2011; Roza
& Maggiore, 2014).

In the second step, the torque input is designed such
that the extracted attitude qqqdi is tracked by the rota-
tional dynamics and consequently perturbation term F̃i
is pushed to zero. In fact, Fi can be viewed as the control
input for the fully actuated system which can be fulfilled
through proper design of attitude dynamics. Figure 1
depicts the overall structure of the control design for each
aircraft .

4.1. Position control

In this section, the virtual control input is designed. Since
qqqdi , as a function of the translational controller Fi, should
be tracked by the rotational dynamics, some require-
ments on Fi in the design process should be considered.
(1) To satisfy the feasibility of the extraction algorithm,
it is required that the condition |F(j)

i | < g holds for
j = 1, . . . , 3. (2) It should be at least twice differentiable
such that ωdi and ω̇di exist and its time derivative should
be known such that ωdi is available to be used in the tra-
jectory tracking control design for rotational dynamics.
The difficulty with this approach is the above-mentioned
constraints on Fi. For example, a typical approach in

motion coordination is to use relative positions and linear
velocities in the control input which leads to a non-
continuous controller in the case of switching topology.
Hence because of the requirement (2), in designing vir-
tual input Fi, we are not allowed to use the relative
position of the agents either in Fi or its time derivative.
Moreover, we need the time derivative of the input to
be used in attitude control. Thus using the typical con-
trol scheme for fully actuated systems necessitates that
each agent has access to the acceleration information of
its neighbours which is not practical.

Regarding the above constraints, we define the error
variable zi = pi − θi − αi − ξi, where θi, αi and ξi are the
auxiliary variables to be properly designed. In view of (2),
we can have

z̈i = Fi + F̃i − ϕ̃iTiR(qqqi)Tẑ + wi(t) − θ̈i − α̈i − ξ̈i. (9)

Now we define

Fi = v̇d − kθ̇i
χ(θ̇i) − kθiχ(θi) + u1i , (10)

θ̈i = −kθ̇i
χ(θ̇i) − kθiχ(θi) + kα̇i α̇i + kαiαi, (11)

α̈i = −kα̇i α̇i − kαiαi + k1
(
ξ̇i − vd

)
(12)

+
∑

j∈Ni(t)

aσ(t)
ij ξij − u2i , (13)

ξ̈i = v̇d − k1
(
ξ̇i − vd

)−
∑

j∈Ni(t)

aσ(t)
ij ξij, (14)

where (11)–(14) are the auxiliary systems with arbitrarily
initial conditions, ξij = ξi(t − τ) − ξj(t − τ) − δij, δij =
δi − δj in which τ denotes the constant time delay, δi is
the desired position of the vehicle i from the centre of the
formation, aij is the entry of the adjacency matrix, and
Ni(t) is the neighbour set of the ith TPV at time t and kθ̇i

,
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kθi , kα̇i , kα̇i , k1 are strictly positive scalar gains, u1i and u2i
are to be designed.

Assumption 4.1: Assume that for each subinterval
[trj , trj+1 ], there exist a constant γ and Qi

σ ∈ Rdiσ ×diσ ,
i = 1, . . . , lσ such that H̄i

σ� i
σ (Qi

σ , τ , γ )H̄i
σ < 0, where lσ

is the number of connected components in each subinterval
and Qσ

i ∈ Rd
i
δ×diδ for i = 1, . . . , lσ is a matrix that satis-

fies the conditions 0 ≤ Qσ
i = QσT

i , Rank(Qσ
i ) = diδ − 1

and Qσ
i 1 = 0. The matrix H̄i

σ = diag(Ū2diσ , Ūdiσ , I2diσ ) in
which Ūn is the first n−1 columns of Un and Un is the n ×
n orthogonal matrix such that UT

n CnUn = diag(nIn −
1, 0) with Cn = nIn − 11T and the last column of Un is
1/

√
n. The equation for matrix� i

σ (Qi
σ , τ , γ ) is defined in

Equation (10) in Lin and Jia (2010). For detailed informa-
tion, the readers are referred to Lin and Jia (2010).

With the above structure, (9) can be written as

z̈i = u1i + u2i + F̃i − ϕ̃iTiR(qqqi)Tẑ + wi(t). (15)

In the proposed structure, ξi and ξ̇i play the role of respec-
tively the positions and velocities of virtual agents cor-
responding to each TPV which are expected to reach a
predefined formation and simultaneously track a refer-
ence velocity signal. In this framework, the only signal
that is needed to be transmitted between vehicles is ξi −
δi. The idea is to design u1i and u2i such that zi, żi → 0
and then by pushing the auxiliary variables θi, θ̇i, αi, α̇i
to zero, we can easily drive the position and velocity of
each vehicle to those of its corresponding virtual vehi-
cle. It is to be noticed that in the design of u1i and u2i
some considerations must also be kept in mind. Since
u1i is involved in Fi, it must meet the requirements men-
tioned for Fi. The variable u2i should be designed in such
a way that as zi and żi go to zero, it also converges to
zero so that the convergence of αi and α̇i can be real-
isable. Toward this end, borrowed from back-stepping
technique and variable structure control, we design u1i ,
u2i and the adaptive law for estimation of ϕ̂i = ϕ0i + ˆ̄ϕi.
Taking ei = żi + c1izi with c1i > 0, we define

˙̄̂
ϕi = λϕiproj(�i, ˆ̄ϕi), �i = −eTi TiR(qqqi)Tẑ, λϕi > 0,

(16)

u1i = −umizi√
‖zi‖2 + (κiσi)2

,

u2i = −c1i żi − c2i ei, σi, c2i , umi > 0, (17)

where the variable κi(t) is adjusted by

κ̇i = −λκi

κi
umi‖ei‖

(
1 + ‖zi‖√

‖zi‖2 + (κiσi)2

)
, λκi > 0.

(18)

The symbol proj(�, ˆ̄ϕ) in (16) is the projection operator
and is defined by Cai, de Queiroz, and Dawson (2006b)

proj
(
�, ˆ̄ϕ

)
= � − �1�2

2(ε2 + 2εB)n+1B2
ˆ̄ϕ,

with �2 = ˆ̄ϕ� + (( ˆ̄ϕ�)2 + δ̄2)1/2 and

�1 =
{

( ˆ̄ϕ2 − B2)2 ˆ̄ϕ2 > B2,
0 otherwise,

where ε and δ̄ are arbitrary positive constants, ˆ̄ϕ is the
estimation of ϕ̄, ϕ̃ = ϕ − ϕ̂, and B>0 is the bound on
the estimation. It can be easily shown by the discussion
in Cai et al. (2006b) that by design of the adaptive law as

˙̄̂
ϕ = γϕproj

(
�, ˆ̄ϕ

)
= γϕ

(
� − �1�2

2(ε2 + 2εB)n+1B2
ˆ̄ϕ
)
,

the following properties hold: (p1) | ˆ̄ϕ| ≤ B + ε, ∀ t >

0; (p2) ϕ̃proj(�, ˆ̄ϕ) ≥ ϕ̃T�; (p3) proj(�, ˆ̄ϕ) ∈ Cn, where
the subscript i was omitted for clarity of presentation.

Remark 4.1: The projection operator in (16) is used to
keep our estimation within a-priori bounded set by the
property (p1). Since from Assumption 3.1, we know that
|ϕ̄i| ≤ (1/mLi − 1/mUi)/2, we can choose the param-
eter Bi of the projection operator as Bi < (1/mLi −
1/mUi)/2 − ε, where B and ε are defined earlier. By this
selection, one can guarantee that the estimations ˆ̄ϕi, ϕ̂i are
always bounded a priori and ϕ̂i never touches zero. This
avoids the possible singularity in the extraction algorithm
(i.e. ϕ̂i 	= 0).

It is to be noted that from the property of satura-
tion function and (17), each component of Fi is bounded
in advance by |F(j)

i | < (kθi + kθ̇i
)M + umi + v̄d; hence

viewing Assumption 3.2, by proper selection of the gains
the feasibility condition of the extraction algorithm,
defined in requirement 1, can be met. Moreover, bound-
edness of Fi results in a bounded F̃i which benefits us
in handling the perturbation term in the overall Lya-
punov function. From (4), the extraction equations and
utilising the inequality ‖(R(qqqdi) − R(qqqi))Tẑ‖ < 2

√
2‖q̃i‖

(inequality (33) inAbdessameud&Tayebi,2009), we have

‖F̃i‖ = ‖Fi − gẑ‖‖ (R(qqqdi) − R(qqqi)
)T ẑ‖ ≤ 2ϒi‖q̃i‖,

(19)
with

ϒi = √
2
(
g + √

3M
(
kθi + kθ̇i

)+ √
3umi + v̄d

)
. (20)

Let us define a positive definite function for the ith TPV

V1i = 1
2
eTi ei +

κ2
i

2λκi

+ 1
2λϕi

ϕ̃2
i . (21)
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Taking the time derivative of V1i along (15), we get

V̇1i = −c2i‖ei‖2 + eTi F̃i + eTi u1i + eTi w(t) + κiκ̇i/λκi .
(22)

Upon usingAssumption 3.2, the property (p2) of the pro-
jection operator and along with the following inequality:

eTi zi√
‖zi‖2 + (κiσi)2

≥ ‖ei‖
(
1 −

(
1 + ‖zi‖√

‖zi‖2 + (κiσi)2

))
,

we get

V̇1i ≤ − (c2i − εi
) ‖ei‖2 − ‖ei‖

(
umi − w̄i

)+ ϒ2
i

εi
‖q̃i‖2,
(23)

for some positive scalar εi, where (19), and 2ab < εa2 +
b2/ε were used.

4.2. Attitude control

Taking the attitude error and angular velocity error,
respectively, by q̃qqi = qqq−1

di � qqqi and ω̃i = ωi − R(q̃qqi)ωdi ,
the attitude error dynamics can be written as

˙̃qi = 1
2
(
η̃iI3 + q̃×

i
)
ω̃i, ˙̃ηi = − 1

2 q̃
T
i ω̃i, (24)

Ji ˙̃ωi = −ω×
i Jiωi + Ji

(
ω̃×
i R(q̃qqi)ωdi − R(q̃qqi)ω̇di

)
+ �i + di(t). (25)

Consider the following transformation for the ith TPV

�i = ω̃i + c3i q̃i, c3i > 0. (26)

We design the torque controller for each vehicle by

�i = −c4i�i − kqiq̃i − νi, c4i , kqi > 0, (27)

νi =
⎧⎨
⎩
(
μ̂1i + μ̂2i‖ω̃i‖

) �i

‖�i‖ ‖�i‖ 	= 0,

0 ‖�i‖ = 0,
(28)

˙̂μ1i = kμ1i‖�i‖, kμ1i , μ̂1i(0) > 0, (29)

˙̂μ2i = kμ2i‖ω̃i‖‖�i‖, kμ2i , μ̂2i(0) > 0, (30)

where μ̂1i and μ̂2i are, respectively, the estimation of the
unknown constants μ1i and μ2i defined as follows:

J̄i

(
c3i‖ωdi‖ + ‖ωdi‖2 + d̄i

J̄i
+ ‖ω̇di‖

)
≤ μ1i , (31)

J̄i
(
c3i + 2‖ωdi‖ + c3i

2

)
≤ μ2i . (32)

Note that taking (31)–(32) is sensible if ωdi and ω̇di
are bounded which can be proven similar to Kabiri

et al. (2017a). Now consider the following positive def-
inite function as

V2i = 1
2
�T

i Ji�i + 2kqi (1 − η̃i) + 1
2kμ2i

μ̃2
1i +

1
2kμ1i

μ̃2
2i ,

(33)
with μ̃1i = μ1i − μ̂1i , μ̃2i = μ2i − μ̂2i . Usingωi = ω̃i +
R(q̃qqi)ωdi = −�i − c3i q̃i + R(q̃qqi)ωdi , the derivative of (33)
along (24)–(25) is obtained by

V̇2i = −�T
i
(−�i − c3i q̃i + R(q̃qqi)ωdi

)×
× Ji

(
ω̃i + R(q̃qqi)ωdi

)
+ �T

i Ji
(
ω̃i

×R(q̃qqi)ωdi − R(q̃qqi)ω̇di
)

+ c3i
2

�T
i J
(
q̃i× + η̃i

)
ω̃i + �T

i �i + �T
i di(t)

+ kqiq̃Ti ω̃i − μ̃1i‖�i‖ − μ̃2i‖�i‖‖ω̃i‖. (34)

Upon exploiting the cross-product property that �T�×
= 0, along with ‖qqq‖ < 1, the fact the rotation matrix R(.)
does not change the norm of a vector, and using �i given
by (27), one could get

V̇2i ≤ ‖�i‖
(
μ1i + μ2i‖ω̃i‖

)− c3ikqi‖q̃i‖2 − c4i�
T
i �i

− ‖�i‖
(
μ̂1i + μ̂2i‖ω̃i‖

)− μ̃1i‖�i‖
− μ̃2i‖�i‖ ‖ω̃i‖,

which leads to

V̇2i ≤ −c4i‖�i‖2 − c3ikqi‖q̃i‖2. (35)

The positive definite function proposed here is used in
stability analysis of the overall closed-loop system given
in the next section.

5. Stability analysis

5.1. Stability analysis in deterministic networks

Let summarise our main result in the following theorem.

Theorem 5.1: Consider formation of a network of multi-
ple TPVs under jointly connected switching topology with
time-delay which satisfies the condition given in Assump-
tion 4.1. Let the model of each TPV given by (1) and the
desired velocity vd(t) satisfies Assumptions 3.2–3.3 and
gains are chosen such that

M
(
kθi + kθ̇i

)+ umi + v̄d < g, umi > w̄i,

c2i > εi, c3ikqi >
ϒ2
i

εi
, (36)

withϒi given in (20) and εi is some arbitrary positive con-
stant. Let the thrust input Ti be given by (5) along with
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(16), the intermediate control input Fi (10), and Equa-
tions (11)–(14), (17)–(18). Consider the torque input �i
be given in (27) with (28)–(30). Then the formation prob-
lem is globally asymptotically solved, i.e. for each i, j ∈
[1, . . . , n], we have vi → vd(t) and pi − pj − δij → 0.

Proof: The condition (36) guarantees that the extraction
of the desired attitude is always possible. Let introduce
the following Lyapunov function for the complete system
as V = ∑n

i=1 Vi, with Vi = (V1i + V2i) and V1i and V2i
are given, respectively, in (21) and (33). Differentiating V
along (9), (24) and (25) leads to

V̇ ≤
n∑

i=1

[
− (

c2i − εi
) ‖ei‖2 − ‖ei‖

(
umi − w̄i

)

−
(
c3ikqi −

ϒ2
i

εi

)
‖q̃2i ‖ − c4i‖�i‖2

]
, (37)

which is negative semi-definite, if condition (36) is sat-
isfied. Hence, we can conclude that signals ei, κi, ϕ̃i, μ̃1i ,
μ̃2i and �i are bounded for i = 1, . . . , n. Invoking Bar-
balat’s Lemma (Slotine et al., 1991), convergence of ei, q̃i
and �i to zero is concluded which is followed by q̃i → 0
and ω̃i → 0. From boundedness and convergence of ei
to zero, we can prove that zi, żi are also bounded and
converge to zero. Now we show that both (ξ̇i − vd) and
(ξi − ξj − δij) are bounded and converge to zero. Mak-
ing the transformation xi = ξi −

∫ t
0 vd(τ ) dτ − δi and

υi = ξ̇i − vd(t), (14) can be rewritten as

ẋi = υi, (38)

υ̇i = −k1υi −
∑
j∈Ni

aσ
ij (xi(t − τ) − xj(t − τ)), (39)

which is the same as the model (1) with consensus
protocol (2) in Lin and Jia (2010). Therefore applying
Theorem 1 in Lin and Jia (2010), it is proved that if
the condition given in Assumption 4.1 is met, xi and
υi are bounded and the average consensus is achieved
for (38)–(39), and finally, we have υi → 0, xi → xj for
i, j = 1, . . . , n which is followed by ξ̇ → vd(t) and ξi −
ξj → δij for i, j = 1, . . . , n. From this and boundedness
of zi and żi which results in bounded u2i that converges
to zero, we can easily see by Lemma 1 in Abdessameud
and Tayebi (2011) that αi and α̇i are bounded and con-
verge to zero (u2i is a vanishing perturbation for (13)).
The same fact also applies to prove that θi and θ̇i are
bounded and converge to zero. Finally, regarding zi =
pi − θi − αi − ξi, we obtain vi → vd(t) and pi − pj −
δij → 0. �

As it can be observed from (5) and (17), the proposed
structure suffers from potential converging of κi to zero.

Taking the similar procedure as in Kabiri et al. (2017a), it
can be shown that one can keep κi away from zero by the
following bound:

κi(t) ≥
√

κ2
i (0) − 4umiλκiρi. (40)

Hence, the potential singularity can be avoided by proper
selection of initial values κi(0) and the gains λκi .

Remark 5.1: It is to be noted that the proposed con-
trol scheme can be applied for trajectory tracking of the
desired path pd(t) for a single TPVwith disturbances and
uncertainties provided that supt>0(‖p̈d(t)‖ + ‖w(t)‖) <

g. In that case, the need for the system in (14) is obviated
and the terms with z(t) and ż(t) in u1 and u2 should be
substituted with respectively (z(t) − pd(t)) and (ż(t) −
ṗ(t)).

Remark 5.2: The proposed control scheme employ-
ing the virtual agents completely separates the design
into two parts: coordination design and tracking design.
Hence, other investigations on cooperation of second-
order systems of the form ξ̈ = ui can be directly adopted
to our case provided that the designed ui is globally
bounded and converges to zero, for example, our result
can be easily extended to switching topology informa-
tion exchange and non-uniform time-varying delays case
using the results in Yang et al. (2008).

Remark 5.3: The proposed control can be used for coop-
erative control for other types of under-actuated systems
with little adaptation such as UGVs in Almayyahi, Wang,
Hussein, and Birch (2017) and the under-actuated air-
craft in Olfati-Saber (2002). Moreover, our structure can
be beneficial whenever the robust cooperative differen-
tiable controller is in demand.

5.2. Stability analysis in stochastic networks

In this section, due to the stochastic nature of commu-
nication channels and existing packet losses, we consider
the topology that switch in a stochastic manner. In each
switching period, the existence of a link between two
agents in the communication topology of the network is
probabilistic. This kind of topology can be modelled by a
random graph in which the existence of the edge between
the ith and jth nodes is a stochastic variable with prob-
ability pij = pji ∈ [0, 1]. In other words, the probability
matrix P for the stochastic network topology represents
the probability of existence a link between agents. For
instance, by P12 = 0.3, we mean that at each switching
cycle, the agents 1 and 2 would be connected with the
probability of 0.3. Suppose that the sample space of all
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possible random graphs on n nodes associated with the
edge probability matrix P = [pij] is defined by G(n, P).
Therefore, it can be obtained that a random graph is,
in general, a switching graph. In this case, the switching
function is a stochastic process and is shown by ϑ(t) :
[0,∞] →

{
1, 2, . . . , 2

( n
2
)
/2
}
. In this condition, the adja-

cency matrix associated with the MAS communication
topology is considered as Aϑ(t)(t) : [aϑ(t)

ij ], where

aϑ(t)
ij =

{
aij with probability pij,
0 with probability 1 − pij.

Hence, similar to the deterministic switching topology,
there exists a sequence of non-overlapping bounded
subintervals [trj , trj+1 ] on which the communication
topology is fixed and it switches at trj . We define
π = Pr{G ∈ G(n,P)} as the probability of existing at
least one connected graph in G(n,P).

Before presentation of the main results on reaching
formation in a network of TPVs under stochastic topol-
ogy, let us introduce some preliminaries in stochastic
process which our subsequent results are based on. Let
(�,F ,μ) be a probability space, where � is the space
of events, F is the Borel-algebra of � and μ is a prob-
ability measure defined on � (Williams, 1991). A col-
lection {Ft}t�0 of sub σ -algebras is called filtration if,
for every s � t, we have Fs ⊆ Ft . The stochastic process
X = {X(t), t ≥ 0} is called adapted to the filtrationFt if,
for every t, X(t) is measurable with respect to Ft .

Definition 5.1 (Williams, 1991): A stochastic process X
is a martingale relative to ({Ft}t�0,μ), if the following
conditions hold:

(i) X(t) is {Ft}t�0-adapted,
(ii) E[|X(t)|] < ∞ for all t>0,
(iii) E[X(t)|Fs] � X(s), t > s.

Definition 5.2 (Tempo, Calafiore, & Dabbene, 2012):
(Almost sure convergence or convergence with proba-
bility 1) A sequence of random variables X(t) is said to
converge almost surely or with probability 1 (denoted by
a.s. or w.p. 1) to X∞ if

Pr[ lim
t→∞X(t) = X∞] = 1.

In other words, almost sure convergence forces the
random variables X(t) not to converge on a set of zero
measure. Now, we are in the position to state the super-
martingales convergence theorem as follows:

Theorem 5.2 (Mahmoud, Jiang, & Zhang, 2003): Sup-
pose that {X(t), t � 0} is a nonnegative super-martingale
with respect to ({Ft}t�0,μ). Then there exists a random
variable X∞,measurable with respect to F∞, such that

lim
t→∞X(t) a.s.−→ X∞.

Now, we investigate the consensus for second-order
MASs under time-delayed stochastic communications.
Consider a network of second-order agents described by

ẋi(t) = vi(t),

v̇i(t) = ui(t), i = 1, 2, . . . , n, (41)

with the following consensus protocol under time-delay
τ and a stochastic topology Gϑ(t) ∈ G(n,P)

ui = −k1vi(t) −
∑

j∈Ni(t)

aϑ(t)
ij (xi(t − τ) − xj(t − τ)).

(42)

Definition 5.3: The network of agents (41) is said to
asymptotically achieve almost sure second-order consen-
sus, i.e. x(t) a.s.−→ span{1} and v(t) a.s.−→ 0 if

Pr[ lim
t→∞X(t) ∈ span{1} & lim

t→∞V(t) = 0] = 1,

where x(t) = [xT1 , x
T
2 , . . . , x

T
n ]T, v(t) = [vT1 , v

T
2 , . . . , v

T
n ]T

and Pr indicates probability. This means that the
events other than reaching consensus in the network,
on both position and velocity variables, have zero
probabilities.

Assumption 5.1: Assume that network topology is a ran-
dom graph with π = Pr[G ∈ G(n,P)isconnected] = 1.
In other words, there exists a connected graph G inG(n,P)

with non-zero probability.

Lemma 5.1: Suppose that the stochastic topology satisfies
Assumption 5.1 and time-delay satisfies the condition given
in Assumption 4.1. Then, the consensus protocol (42) guar-
antees the asymptotic almost sure second-order consensus
in the stochastic multi-agent system (41).

Proof: Using a variable transformation v̄i = 2vi/k1 + xi
and by considering η = [xT1 , v̄

T
1 , x

T
2 , v̄

T
2 , . . . , x

T
n , v̄Tn ], the

closed-loop dynamics of the whole MAS (41) under con-
trol strategy (42) can be restated as

η̇(t) = (In ⊗ A)η(t) − (Lϑ(t) ⊗ B)η(t − τ) (43)
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with

A =

⎡
⎢⎣−k1

2
I3

k1
2
I3

k1
2
I3 −k1

2
I3,

⎤
⎥⎦ , B =

⎡
⎣ 03 03

2
k1
I3 03

⎤
⎦ .

It can be easily verified thatα = (1/2n)
∑n

i=1 v̄(t) + xi(t)
is an invariant quantity under above dynamics. There-
fore, by defining disagreement vector as δ(t) = η(t) −
α1, (43) can be restated as follows:

δ̇(t) = (In ⊗ A)δ(t) − (
Lϑ(t) ⊗ B

)
δ(t − τ). (44)

From the definition of α and δ, it can be easily seen
that 1Tδ = 0. Define a Lyapunov–Krasovskii function
Ṽ(t) for system (44) as what is defined in (14) of Lin
and Jia (2010). Suppose that the communication topol-
ogy Gϑ(t) has lϑ(t) ≥ 1 connected subgraphs at time t
and the number of agents in each subgraph is defined by
di

ϑ(t), i = 1, 2, . . . , lϑ(t). Pursuing the same line of proof
of Theorem 1 in Lin and Jia (2010), under the condition
of Assumption 4.1, we obtain that the derivative of Ṽ(t)
satisfies

˙̃V(t) ≤ λmax

lϑ(t)∑
i=1

‖δiϑ(t) − ϕi
t1‖2 ≤ 0, (45)

where δiϑ(t), i = 1, . . . , lϑ , is the disagreement vector cor-
responding to the ith connected component of Gϑ(t).
λmax is a negative value calculated based on the sequence
of switching topology and ϕi

t = 1Tδiϕ(t)/2d
i
ϑ(t) is an

invariant quantity of network between two consequent
switches of the topology. By some calculations, one can
get

(
δiϑ(t) − ϕi

t1
)T (

δiϑ(t) − ϕi
t1
)

= δi
T

ϑ(t)δ
i
ϑ(t) −

(
1Tδiϑ(t)

)2
2diϑ(t)

= 1
2diϑ(t)

δi
T

ϑ(t)

(
2diϑ(t)I2di

ϑ(t)
− 11T

)
δiϑ(t).

Since the system (44) satisfies the conditions of the
extended invariance principle for non-autonomous sys-
tems, Theorem 2.11 of Barkana (2014), it can be obtained
from (45) that

lim
t→∞

lϑ(t)∑
i=1

1
2diϑ(t)

δi
T

ϑ(t)

(
2diϑ(t)I2di

ϑ(t)
− 11T

)
δiϑ(t) = 0.

(46)
Since Ṽ(t) is a stochastic variable at time t, (46) yields that
the evolution of the quantity E[ ˙̃V(t) | δ(t)] according to

the trajectories of the stochastic dynamical system (44)
converges to zero too, i.e.

lim
t→∞

lϑ(t)∑
i=1

1
2diϑ(t)

δi
T

ϑ(t)E
[
2diϑ(t)I2di

ϑ(t)
− 11T

]
δiϑ(t) = 0.

(47)
Now, by defining

L̂i
ϑ(t) = 2diϑ(t)I2diϑ(t)

− 11T, i = 1, 2, . . . , lϑ(t),

L̂i
ϑ(t) can be considered as the Laplacian of a com-

plete subgraph on 2diϑ(t) nodes. Define the collec-
tive disagreement vector of the network as δ(t) =
[δ1

T

ϑ(t), δ
2T
ϑ(t), . . . , δ

lT
ϑ(t)
ϑ(t)]

T, Equation (47) can be restated as

lim
t→∞ δT(t)E[L̂θ(t)]δ(t) = 0, (48)

where L̂ϑ(t) = diag(L1
ϑ(t), . . . ,L

lϑ(t)
ϑ(t)). L̂ϑ(t) is associated

with a graph Ĝϑ(t) that consists of lϑ(t) ≥ 1 disjoint com-
plete subgraphs eachwith 2diϑ(t), i = 1, 2, . . . , lϑ(t) nodes.
Note that lϑ(t) and diϑ(t) are characteristics of Gϑ(t).
Hence, we can say that, inspired by the main network
topology, Ĝϑ(t) is constructed and the number of dis-
joint subgraphs of Ĝϑ(t) is the same as Gϑ(t). Now, we
will show that if π = Pr[G ∈ G(N,P)isconnected] = 1,
the only solution of (48) is δ(t) = 0. Note that

E[L̂ϑ(t)] =
2
(n
2 /2

)∑
i=1

piL̂i,

where L̂i represents the Laplacian corresponding to
graph Ĝϑ(t), ϑ(t) ∈ {1, 2, . . . , 2

( n
2 /2

)
} and pi is the

probability of occurrence of Ĝϑ(t). Since for all i ∈
{1, 2, . . . , 2

( n
2 /2

)
}, the Laplacian L̂i is positive semi-

definite and pi > 0, one must have for all L̂i, i ∈
{1, 2, . . . , 2

( n
2 /2

)
}:

lim
t→∞ δT(t)L̂iδ(t) = 0. (49)

Given the non-zero probability of existing a connected
graph G in G(n,P), it can be obtained that the prob-
ability of existence of a complete graph on 2n nodes
in the set of possible L̂i is non-zero too. Therefore,
based on Theorem 1 of Olfati-Saber and Murray (2004),
Equation (49) for such a complete graph yields that δ(t) ∈
span{1}. On the other hand, we have 1Tδ(t) = 0 and as a
result, the only solution of (48) is δ(t) = 0. By consider-
ing all the above-mentioned arguments, if π = Pr[G ∈
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Figure 2. Eight network topologies for the deterministic switching topology case.

G(N,P)isconnected] = 1, for any ε > 0, we have

lim
t→∞Pr[‖δ(t)‖ � ε] = 0. (50)

By considering ˙̃V(t) � 0 from (45), one can conclude
that Ṽ(t) satisfies the conditions (ii) and (iii) of super-
martingales given in Definition 5.1. Let the filtration Ft
be defined as follows:

Ft = {δ(s), 0 � s � t}.
Hence Ṽ(t) satisfies all the conditions of supermartin-
gales given in Definition 5.1, and therefore, Theorem 5.2
guarantees that

lim
t→∞ Ṽ(t) a.s.−→ Ṽ∞.

Moreover, it can be easily verified from (50) that Ṽ∞ = 0
and finally, we obtain that

lim
t→∞ δ(t) a.s.−→ 0

and consequently η(t) almost surely converges to
α = (1/2n)

∑2n
i=1 v̄i(0) + xi(0). Therefore, from the

definition of η(t) one can observe that xi(t)
a.s.−→ α and

vi(t)
a.s.−→ 0. Thus almost sure second-order consensus is

achieved in the MAS and the proof is completed. �

Next we show that by invoking Lemma 5.1 and under
some LMI conditions, second-order consensus can be
achieved almost surely in the system (41)–(42).

Theorem 5.3: Consider the formation of a network of
multiple TPVs under a stochastic topology satisfying

Figure 3. The network topologies for the stochastic switching
topology case.

Table 1. Simulation parameters.

wi(t) = (sin(0.1t),−1.5 sin(0.1t), 0.7 cos(0.2t))T (m/s2)
di(t) = (2 sin(t), 3 cos(.2t), sin(0.3t))T (N.m)
k1 = 10, ϕ0i = 10, Bi = 5, ε = 0.5, δ̄ = 0.01

ˆ̄ϕ1(0) = −2, ˆ̄ϕ2(0) = −1, ˆ̄ϕ3(0) = 1, ˆ̄ϕ4(0) = 2
qqqi(0) = [0, 0, 0, 1]T,ωi(0) = [0, 0, 0]T

kθi = 3, kθ̇i = 2, kαi = 5, kα̇i = 2, c1i = 4, c2i = 1
umi = 3, λκi = 0.001, δi = 0.001, λϕi = 4, kμ2i

= 0.01

kμ1i
= 0.1, c3i = 10, c4i = 15, kqi = 20

θi = θ̇i = αi = α̇i = ξi = ξ̇i = 0 for i = 1, . . . , 4

κ1(0) = 2, κ2(0) = 2.5, κ1(0) = 3, κ4(0) = 3.5
μ̂11 (0) = 4, μ̂12 (0) = 1, μ̂13 (0) = 3, μ̂14 (0) = 2
μ̂21 (0) = 0.4, μ̂22 (0) = 0.2, μ̂23 (0) = 0.3, μ̂24 (0) = 0.1

Assumption 5.1 and time delay which satisfies the LMI
conditions given in Assumption 4.1. Let the model of
each TPV given by (1) and the desired velocity vd(t)



12 M. KABIRI ET AL.

satisfies Assumptions 3.2–3.3 and gains are chosen such
as Theorem 5.1. Consider the thrust input Ti defined as
(5) together with (16), the intermediate control input Fi
(10), as well as Equations (11)–(14) and (17)–(18). Let the
torque input �i be given in (27) with (28)–(30). Then the
formation problem is globally asymptotically almost surely
solved, i.e. for each i, j ∈ [1, . . . , n], we have vi(t)

a.s.−→
vd(t) and pi − pj − δij

a.s.−→ 0.

Proof: The sketch of the proof is similar to Theorem 5.1,
except Equations (38)–(39) which are changed to the
same form as (41)–(42), due to the stochastic topology of
theMAS. Therefore, according to Lemma 5.1, it is proved
that if the LMI conditions given in Assumption 4.1 are
satisfied and there exists a connected graph G in G(n,P)

with non-zero probability, almost sure second-order con-
sensus is achieved for (41)–(42), and finally pursuing the
same lines of proof as in Theorem 5.1, we have vi(t)

a.s.−→
vd(t) and pi − pj − δij

a.s.−→ 0. �

6. Simulation results

Numerical simulations are given under both deter-
ministic and stochastic switching topologies to test
the proposed scheme. For both cases, we consider all
TPVs have the identical mass and inertia matrix as
m = 0.1 kg and J = diag(0.3, 0.4, 0.25) kg.m2. We also
choose g = 9.8m/s2. For the deterministic case, we

consider six TPVs to construct a six-sided polygon for-
mation while tracking the reference velocity vd(t) =
(cos(t/5π), sin(t/5π), 3 e−0.3t)T. For this purpose, the
offsets are selected to be δi = 2(cos((i − 1)π/3), sin((i −
1)π/3), 0) for i = 1, . . . , 6. For the stochastic switch-
ing topologies, we simulated four agents to reach a
rectangular formation defined by offsets δ1 = (2, 0, 0)T,
δ2 = (0, 2, 0)T, δ3 = (0,−2, 0)T and δ4 = (−2, 0, 0)T

while tracking the reference velocity vd(t) = (cos(t/5π),
sin(t/5π), 0.1)T. The interaction topology between
agents is assumed to switch every 0.02 s. For the deter-
ministic case, in each switching period, one of the eight
graphs shown in Figure 2 is selected randomly. The prob-
ability matrix for the stochastic network is supposed
to be

P =

⎛
⎜⎜⎝

0 0.3 0 0.4
0.3 0 0.5 1
0 0.5 0 0
0.4 1 0 0

⎞
⎟⎟⎠ ,

where each entry of the matrix represents the proba-
bility of existence a link between two agents. The Net-
work topology for the stochastic case is also shown in
Figure 3.

The communication delay is assumed to be τ = 0.1 s
and tanh(.) is selected as the smooth saturation function
�(.) with M=1. The initial positions and linear veloc-
ities for each TPV are selected randomly in [−5, 5] ×
[−5, 5] × [−5, 5]. Other gains, parameters and initial

Figure 4. Formation of TPVs for the deterministic switching topology case.
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Figure 5. Formation errors for the deterministic switching topology case pij = pi − pj − δij = (p(1)
ij , p(2)

ij , p(3)
ij )T.

Figure 6. Linear velocity errors for the deterministic switching topology case ṽi = (ṽ(1)
i , ṽ(2)

i , ṽ(3)
i )T.
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Figure 7. Formation of TPVs for the stochastic switching topology case.

Figure 8. Formation errors for the stochastic switching topology case pij = pi − pj − δij = (p(1)
ij , p(2)

ij , p(3)
ij )T.

values for both scenarios, i.e. stochastic and deterministic
network topologies, are given in Table 1.

The results for the deterministic switching topology
are shown in Figures 4–6. In Figure 4, 3D plot of the

motion of the six TPVs is shown in which all vehicles
reach the desired geometric polygon shape from an arbi-
trary initial condition, meanwhile, they track the velocity
signal. The errors of formation are depicted in Figure 5.
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Figure 9. Linear velocity errors for the stochastic switching topology case ṽi = (ṽ(1)
i , ṽ(2)

i , ṽ(3)
i )T.

The tracking errors of the reference velocity signal are
presented in Figure 6. The corresponding results for the
stochastic switching topology are also illustrated in Fig-
ures 7–9 showing that the formation is achieved almost
surely in the presence of stochastic topology, time delays,
time-varying disturbances and model uncertainties.

7. Conclusion

Formation control of a team of multiple TPVs under
deterministic and stochastic switching interaction topol-
ogy and communication delay with robustness against
a pair of disturbances and uncertainties has been inves-
tigated. A hierarchical control strategy, which separates
the design for the translational and rotational dynamics,
has been developed in two stages to tackle the under-
actuation of such systems. The stability of the overall
system has been analysed through Lyapunov technique.
For the deterministic topology, sufficient condition in
terms of LMIs is derived to achieve formation in the
presence of jointly connected switching topology. In the
case of the stochastic topology, based on the concept of
super-martingales, it is shown that if the probability of
existing a connected topology is not zero, under some
conditions, formation is almost surely solved in the net-
work. Numerical simulations have been included to show
the practical efficiency of the presented controller. It is
worth mentioning that this paper does not consider the
potential collision of agents and this needs to be further
researched.
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