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We introduce Pantomime, a novel mid-air gesture recognition system exploiting spatio-temporal properties of millimeter-wave

radio frequency (RF) signals. Pantomime is positioned in a unique region of the RF landscape: mid-resolution mid-range

high-frequency sensing, which makes it ideal for motion gesture interaction. We configure a commercial frequency-modulated

continuous-wave radar device to promote spatial information over the temporal resolution by means of sparse 3D point clouds

and contribute a deep learning architecture that directly consumes the point cloud, enabling real-time performance with low

computational demands. Pantomime achieves 95% accuracy and 99% AUC in a challenging set of 21 gestures articulated by 41

participants in two indoor environments, outperforming four state-of-the-art 3D point cloud recognizers. We further analyze

the effect of the environment in 5 different indoor environments, the effect of articulation speed, angle, and the distance of

the person up to 5m. We have publicly made available the collected mmWave gesture dataset consisting of nearly 22,000

gesture instances along with our radar sensor configuration, trained models, and source code for reproducibility. We conclude

that pantomime is resilient to various input conditions and that it may enable novel applications in industrial, vehicular, and

smart home scenarios.
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1 INTRODUCTION

Gesture interaction is an active research topic in Human-Computer Interaction (HCI), with a history dating back

to the 1960s and Sutherland’s Sketchpad [54] or The Ultimate Display [55] projects. Gestures can be categorized

into two broad groups: (1) mid-air or motion gestures, used e.g. in consumer electronics such as gaming consoles,

and (2) stroke gestures, used e.g. in touch-capable devices such as smartphones. In this paper, we focus on mid-air

gesture recognition. Motion gestures do not require a handheld or a dedicated input device (e.g. a stylus) and

allow for natural interaction with less spatial constraints than stroke gestures. Indeed, earlier research in tabletop

interaction design [18] recognized the constraints of 2D interaction spaces. Mid-air interaction exploits whole

body movements through gestures and postures to interact with digital content [20].
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Fig. 1. Some examples of potential application scenarios of our technology. From left to right: swiping screens on a wall

display, operating a cleaning robot, remote-controlling a vehicle, and human-robot collaboration in industry.

Recently, electromagnetic radiation has emerged as a popular medium for mid-air gesture recognition, as

it enables device-free sensing and facilitates a variety of interaction modalities such as WiFi, radar, infra-red

cameras, or RGB-depth sensors. Among these, radar sensing is particularly interesting, as it offers 3D spatial

information, is robust to weather conditions, does not require lighting, and can penetrate non-metallic surfaces.

Further, millimeter waves are non-ionizing and thus not dangerous to the human body [7].

Miniaturized, radar-on-chip millimeter-wave (mmWave) devices such as Google Soli [26], Texas Instruments’

AWR/IWR sensors,
1
and Silicon Radar

2
have democratized radar sensing in several areas of Computer Science,

because now the hardware has become a commodity. As a technology that can be embedded beneath surfaces, a

miniaturized radar sensor can be incorporated into wearables and IoT devices, where space is at a premium [23].

Commercial applications include occupancy sensing
3
, elderly fall detection, and through-wall sensing.

4

At the same time, there is an increased effort in empowering industrial robots to assist humans for human-robot

interaction (HRI) and human-robot collaboration (HRC). Cobots such as ABB’s YuMi [1] or KUKA robots [21]

are ensuring safety and control by bringing in the versatility and adaptation to dynamic working environments.

Traditional enablers of HRI and HRC have been cameras, laser range finders, inertial measurement units or

combinations therein. In this paper, we propose millimeter-wave radar as an emerging, alternative technology.

Since mmWave radars have small form factors due to small wavelengths, they can be mounted on stationary parts

of a cobot body and perform well in challenging industrial environments such as low or direct light, clutter, smoke

or steam. Finally, a mmWave radar can enable a standalone sensing method or complement existing technologies

like the above-mentioned enabler devices. Gesture recognition is useful in these contexts for safety and control,

thoughwe note that such a gesture recognition system is not limited to industrial environments. For example, it can

replace touch displays used in shopping malls and restaurants, to alleviate e.g. cross-contamination in pandemic

situations. Another aspect is the control of appliances using gestures in smart homes, where Pantomime can

enable highly accurate, privacy-preserving gesture recognition that works also in darkness or smoky conditions.

It has been argued that sensing in the radiofrequency (RF) spectrum eschews spatial information for temporal

resolution [61], though this is only the case if Doppler features are used for recognition, which only distinguishes

gesture articulation on the basis of translational motion. In this paper we show that radar signals can easily

leverage spatial information through point clouds (unordered sets of 3D points) further processed from range,

angle, and Doppler information. By configuring a low cost commercial radar for gesture recognition, we show

that point clouds create unique spatio-temporal structures that can be used to recognize complex movements,

including e.g. bimanual and circular gestures. Converting the raw analog to digital conversion (ADC) data from

the antenna arrays into point clouds helps massively to reduce the data size from tens of gigabytes to a few

megabytes, thus, helping fast data transfer, processing and running powerful machine learning algorithms. In

1
http://www.ti.com/sensors/mmwave/overview.html

2
https://siliconradar.com/

3
https://www.xethru.com

4
https://walabot.com
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addition, unlike spectrograms of Doppler signals, point clouds generated from even complex gestures are easily

interpretable because the motions occur in the 3D space.

Motion gesture recognizers require modeling the skeletal body structure [22, 57], which is challenging for

a system like ours because the point cloud provided by the radar signal is sparse due to the wavelength and

hardware limitations. To solve this, researchers have proposed point cloud voxelization [68], but this is memory-

intensive and may preclude real-time interaction. As a solution, we advance a pioneering work that classified

stationary 3D shapes directly on point clouds [40, 41] and introduce Pantomime, our mid-air gesture classifier.

(Pantomime stands for Point cloud-based Activity recognition NeTwOrk using MIlliMEter wave radar.)

Pantomime is designed to recognize sparse gesture motions by means of a hybrid model architecture for

optimized spatio-temporal feature extraction. To improve the recognition results with motion point clouds,

the following technical contributions have been developed and implemented in Pantomime’s neural network

architecture: i) Spatio-temporal feature extraction of point clouds, ii) addressing the sparsity problem, and iii)

reducing model complexity to prevent overfitting when addressing the above two problems. As explained later,

a Pointnet++ and LSTM combination is used for addressing the first problem, whereas, the sparsity problem

is addressed by using the aggregated point cloud of the whole gesture as input to another PointNet++ block.

We address the third problem by sharing weights among the parallel PointNet++ blocks. The combination of

these three solutions culminates in a 4D point cloud classification architecture which defines our main technical

contribution. We further address key issues that are common to indoor environments such as environment

dependence due to static reflections and the effect of articulation speed, angle, and distance to the sensor. To do so,

we use a combination of preprocessing techniques, data augmentation, and adapt different radar configurations at

operational time, to be described later. We also compare the performance of Pantomime against four state-of-the-

art point cloud classifiers, including a motion gesture recognition system from Microsoft Kinect point clouds [19]

and an activity recognition scheme using mmWave point clouds [51]. We show that Pantomime outperforms

current state-of-the-art approaches by a large margin.

Our main contributions can be summarized as follows:

(1) A mid-air gesture recognition system using (a) sparse 3D point clouds computed from radar signals, and

(b) a deep learning architecture that feeds on the point cloud directly.

(2) A user evaluation on a challenging set of 21 gestures, including one-hand, bimanual, linear, and circular

gestures, performed by 45 participants in two indoor environments.

(3) Additional experiments that demonstrate the robustness of our system under various articulation conditions,

including speed, angle, and distance.

(4) A mmWave point cloud gesture dataset along with our radar sensor configuration, trained models, and

source code, to allow others to reproduce and build upon our results [36].

2 RELATED WORK

The RF spectrum spans 30Hz to 300GHz. RF technology is widely used e.g. in military and telecommunication

applications [52], however only recently it has been exploited for gesture interaction. In the following we review

previous work that has tapped into various technologies to recognize motion gestures. Then, we review related

work that specifically focused on radar sensing for gesture recognition.

2.1 Motion Gesture Recognition Technologies

Mid-air and full-body gesture recognition technology includes RGB cameras, depth sensors, WiFi, Leap Motion,

or Google Soli; cf. Table 1. Vision-based systems such as Kinect provide 2D color frames, full-body 3D skeleton,

and 3D point clouds [27]. However, they suffer from occlusion and darkness issues, and (because of the camera)
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often they raise privacy concerns [8]. Extensive surveys on vision-based gesture recognition were published by

Wachs et al. [60] and Rautaray and Agrawal [43].

Table 1. Popular systems for gesture recognition. IR: infrared, RSS: received signal strength, CSI: channel state information

Technology Spectrum Data Type Size Resolution Range Privacy Occlusion Darkness

RGB camera [33, 38] visible light images small high >10m % % %

MS Kinect [19, 35] visible light, IR point cloud large high 5m % % !

Leap motion [16, 29] IR point cloud small high 1m ! % !

Google Soli [26, 61] 60GHz range, angle, Doppler small medium 30 cm ! ! !

Aryokee [25, 67] 5.46GHz range, angle, Doppler large low 9–12m ! ! !

WiFi [28, 39] 2.4/5 GHz RSS, CSI, Doppler medium low 10m ! ! !

Pantomime (ours) 77GHz point cloud small medium 5m ! ! !

As can be observed in Table 1, Pantomime is positioned in a unique region of the RF technology landscape as a

miniaturized medium-resolution medium-range high-frequency RF sensing approach, which is privacy-aware

and robust to occlusion, weather conditions, and visibility issues. High operating RF frequencies allow for smaller

radar sensors, so that they can be placed everywhere. Unlike Soli, which operates in short ranges, Pantomime is

ideal for sensing full-body motion gestures. The chirps used in the Soli sensor are shorter, causing a higher velocity

resolution in short ranges than Pantomime, while Pantomime sacrifices velocity resolution to leverage spatial

resolution in order to detect full-body movements in mid ranges. Further, we argue that a medium-resolution

device provides the right balance for device performance: If the carrier frequency is too low, it is not possible to

recognize fine-grained gestures. But if it is too high, the signal attenuation increases and occlusion problems may

arise.

2.2 Gesture Recognition from RF Sensing

RF gesture recognition systems can be categorized by the operating frequency into sub-6GHz and millimeter

waves. Sub-6 GHz gesture recognition either leverages commodity narrowband devices with low-granular received

signal strength [2], multi-carrier channel state information [24, 28, 58, 59], Doppler [39], or measure time-delay

of individual multipath components via e.g. frequency modulated continuous wave (FMCW) radar [25, 67].

Below 6GHz, gesture recognition is limited as the wavelengths are larger than 5 cm and this region has a small

bandwidth. Additionally, these wavelengths mandate large apertures for antenna arrays; for example, the 12 × 12

antenna array in [25] required a 30×30 cm
2
RF front-end. In contrast, mmWave sensing features high bandwidths

(4–7GHz), antenna apertures of few centimeters, high directivity, and unique scattering properties.

Sensing solutions for mmWave radars in general are either model-driven [26, 62] or data-driven [5, 31, 49,

51, 61, 68]. Model-driven approaches are limited to few gestures in downstream tasks (e.g. classification or

tracking) while data-driven solutions allow recognition of larger gesture sets. Data-driven approaches in general

combine convolutional neural networks (CNN) and long short term memory (LSTM) modules to process Doppler,

range-Doppler, and/or angle-Doppler features [5, 49, 61]. Unfortunately, the interpretability of these features is

limited and, consequently, distinguishing simultaneous movement of different body parts becomes difficult.

2.3 Radar Sensing in HCI

The potential of radar sensing in HCI has been demonstrated in detecting subtle, nonrigid motion gestures [26, 61],

mostly articulated with hand and fingers: e.g. rubbing, pinching, or swiping. The Magic Carpet [37] was among the

first systems using radar sensing to detect body motion, though it required excessive space and a complex setup.
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Recent research focused on radar sensing for augmented reality [11] and interaction with everyday objects [56].

Other applications include music [6, 48], activity recognition [4], or through-wall tracking [3, 66]. In the health

domain, radar enables non-invasive monitoring of glucose levels [34, 50], sleep monitoring [42], and emotion

tracking [65]. Finally, a radar sensor can distinguish various materials when placed on top of it [30, 63].

2.4 Gesture Recognition with Point Clouds

Apoint cloud is a sequence of frames, each comprising an unordered set of points in a 3D space. Gesture recognition

from point clouds has been used for hand pose estimation [13] and hand motion recognition [19, 35]. Hand

pose estimation requires only spatial information, whereas motion gesture recognition demands spatio-temporal

information. As hinted previously, recent approaches are based on CNNs [14, 15, 51, 68]. Since conventional CNNs

cannot handle 3D spatial coordinates, either multi-view CNNs are used to project the point cloud onto multiple

planes [14, 53] or a 3D CNN is applied on a voxelized point cloud [35, 51, 68]. Drawbacks of these methods

include information loss due to projection or voxelization, and cubical growth of computational complexity and

memory, resulting in inefficient computations of sparse 3D convolutions.

To address these issues, PointNet [40] and PointNet++ [41] classify and segment stationary 3D shapes directly
from point clouds. We advance this work to sense mid-air gestures of point clouds from commercial mmWave

radars. In a similar attempt, Min et al. [32] translated RGB-depth information from a Kinect sensor into point

clouds and used PointNet++ to classify hand gestures. Unfortunately, their architecture is not described in

sufficient detail for us to reproduce and there is no software implementation publicly available.

3 SPATIO-TEMPORAL PROPERTIES OF RADAR SIGNALS

A radar sensor sends an electromagnetic wave with a transmitting antenna (Tx) which is reflected, scattered, and

absorbed by objects in the environment, and then detected with a receiving antenna (Rx). In this paper, we work

with the IWR1443 sensor from Texas Instruments, an FMCW–MIMO radar sensor that operates in the 77GHz RF

band. FMCW is used for range estimation and MIMO computes both elevation and azimuth angles, yielding 3D

motion coordinates that can be converted into a point cloud for every frame (see Section A.1 for the detailed

point cloud extraction process). Our mmWave point clouds exhibit unique spatio-temporal characteristics for

mid-air gesture interaction. In this section, we discuss these properties to motivate the design of Pantomime.

high
intensity

medium
intensity

low
intensity

x

y

(a) Two-hand lateral-to-front

x

y

z

(b) Push-down

x

y

(c) Two-hand circle

x

y

z

(d) Circle clockwise

Fig. 2. Different views of four gestures from our dataset.

3.1 Spatial Properties

Figure 2 shows point cloud examples computed for gestures that are articulated in different planes; e.g., gestures

(a) and (c) are conducted in the XY-plane, whereas (b) and (d) are conducted in the XZ-plane. The figure also

shows the intensity of each point; i.e., the amount of energy reflected at each point. As can be observed, intensity
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is high (blue) for points related to torso reflections, while it is low (red) for points related to the arms and hands.

Further, the point cloud related to the torso is denser than for the arms, because the torso is a stationary object and

has a larger radar cross-section, while arms are in motion and have a smaller radar cross-section. Consequently,

point density and point intensity are not uniform within the point cloud. We also observe some noise in the point

cloud, caused by reflections from nearby objects. Fortunately, reflections from a human subject have a higher

density, due to the smaller distance to the radar sensor, and so are easier to detect.

As evidenced in Figure 2, gestures performed in the XY-plane are captured with high granularity. This behavior

is attributed to the following reasons. First, the point cloud is extracted after a series of range-based fast fourier

transform (FFT), Doppler-based FFT, constant false alarm rate (CFAR), and angle-based FFT operations (see

Section A.1). The CFAR algorithm [44] relies on range and Doppler signal, so that the detected cloud points are

sensitive to the motion of the detected object. In addition, the radar device has different antenna resolutions.

For example, motion in the X axis is resolved by the horizontal antenna array (Section A.1), which has 8 virtual

elements providing a resolution of 14.3◦, while the two virtual antennas in Z axis provide a resolution of only 57
◦
.

Due to these reasons, the granularity in the XY-plane is higher compared to other planes. In the XZ-plane, linear

motion can be captured with high resolution, whereas circular motion has lower granularity; c.f. Figure 2(b) vs.

Figure 2(d).

Another interesting spatial characteristic of the captured point cloud is that it is denser when the gesture is

performed closer to the radar sensor. This is explained by the fact that the radar cross-section is smaller when the

user is located farther away from the sensor; therefore cloud points corresponding to arms and hands become

sparser in that case. There is also an effect attributed to the angular resolution of the radar sensor. For example,

the distance between two points captured at a resolution of θ degrees is proportional to Rθ , which depends on

the range R of the radar sensor. This property increases the density of the point cloud by a scaling factor R which

depends on the distance to the detected object. We will show in a later experiment that the operational distance

at which gestures can be articulated is a critical design parameter.

3.2 Temporal Properties

The number of 3D cloud points is different at every frame. This makes gesture recognition a challenging task, as

it must analyze the evolution of the point cloud over time. By way of example, Figure 3 shows a 2 s long gesture

(two-hand lateral-to-front), where each snapshot in the figure contains points collected over 250ms.

(a) (b) (c) (d)

x
y

z

Fig. 3. Progression of ‘two-hand lateral-to-front’ gesture over four consecutive time frames (a, b, c, d) overlaid with the

computed point cloud from the radar.

As can be observed in the figure, the user has both hands placed along the X axis before starting the motion (a),
and in the final state (d), arms converge to the Y axis. We can see that the two resting stages (a, d) have a smaller

number of points and are concentrated in a smaller region compared to the motion stage (b, c). Additionally, the
points detected from the two hands are not equal nor symmetric. It can also be observed that the arm motion

constitutes a spatio-temporal structure due to the relative position of the torso and arms that relates to the

preceding and subsequent snapshots. The relative positions of the point cloud allows us to detect gestures in
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opposite directions, yet with similar structure (cf. ‘push-down’ and ‘lift-up’ or ‘push’ and ‘pull’ gestures in

Figure 7).

From these observations we can see that, even though a skeletal structure of the body is not apparent, the

combination of the torso and arm movements reveal unique spatial structures in the point cloud and this can

be exploited for motion gesture recognition. These geometrical challenges are addressed by PointNet++, our

underlying spatial recognizer, which we adapt as explained in the next section. However, another important

aspect of point cloud data is the variability in gesture execution between subjects, either in terms of e.g. speed

and angular position. Therefore, we need to make our recognizer resilient to variations in gesture articulation.

4 SYSTEM ARCHITECTURE

The architecture of Pantomime consists of two main blocks: Preprocessing and Classification. The preprocessing
block produces a clean sparse point cloud at every frame and the classification block extracts spatio-temporal

features to characterize each gesture. In the following, we describe each of these blocks in detail.

4.1 Point Cloud Preprocessing

As shown in Figure 4, the preprocessing block consists of four stages: outlier removal, rotation and translation,

frame divider, and resampling.

Point cloud

Frame
divider

Outlier
removal

Re-
sampling

mt
mt+1

mt+n

mt+2Rotation &
translation

Fig. 4. Point cloud preprocessing block.

4.1.1 Outlier Removal. As hinted previously, the point cloud contains noise because of scatterings and reflections
from the environment. This happens often in cluttered environments. Fortunately, this noise is sparse and can be

removed using the following procedure.

The point cloud is received at a fixed frame rate but the number of points in each frame can vary due to the

CFAR operation, see Section A.1 for more details. We first wait until all frames corresponding to a single gesture

are collected over time, and then aggregate all the frames to construct the point cloud of the gesture; see Figure 2

for some examples. When the whole point cloud is available, it is easy to separate the outliers based on point

density. For this, we apply the DBSCAN algorithm [12] with ϵ = 1, which is the maximum distance between

two points that can be considered as neighbors, and set the minimum number of points in a cluster to 3. We

fine-tuned these parameters using grid search. The output of the DBSCAN algorithm produces a major cluster

around 0.5m diameter, representing the points reflected from the user’s body and few small clusters representing

the environmental noise. We keep the points in the major cluster and consider all other clusters as outliers.

4.1.2 Rotation and Translation. Once the major cluster is identified, we measure the cluster centroid’s angle

with respect to the boresight angle (i.e., in relation to the centre-line of the antenna) and estimate its distance

with respect to a reference distance. In our experiments the reference distance is set to 1.5m. If the centroid

deviates from the reference angle and reference distance, the detected object is rotated and translated by the

deviated amount. This is done to normalize the position and to reduce the effect of the position on the recognition

accuracy.
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4.1.3 Frame Divider. The aggregated point cloud is rearranged into ordered frames, based on the time at which

each point was received. To reduce the time complexity of our model and to study the effect of the number of

frames on the recognition accuracy, we decrease the original number of frames received from the radar device;

e.g. for a 2 s gesture we reduce the number of frames from 100 to 2, 4, or 8 but retain all the points in those frames.

To do so, we apply time decay on the points such that we rearrange the first set of k/f points in the first frame,

where k is the total number of points in a gesture and f is the desired number of frames; second set of k/f points

as the second frame, and so on. Although this procedure fixes the number of frames, we still have gestures with

different number of points per frame. However, the PointNet++ architecture (see ‘Framewise Spatial Feature

Extraction’ section) dictates a fixed number of points in each frame for all the gestures, so we apply a resampling

algorithm, as explained next.

4.1.4 Resampling. We resample the number of points in a frame to achieve a fixed number of points in each frame

while preserving the shape and the density of the point cloud. Following Cohen et al. [9], we use Agglomerative

Hierarchical Clustering (AHC) for upsampling and the K-means algorithm for downsampling. In each step of the

AHC algorithm, the centroid of each cluster is added to the point cloud as a new point, which prevents producing

singleton clusters. We run AHC iteratively until reaching our predefined fixed number of points in a frame. For

downsampling, we use K-means with K equal to the fixed number of points per frame and select the centroids of

the clusters as the points in the point cloud.

4.2 Point Cloud Classification

We propose a hybrid architecture combining the PointNet++ architecture followed by LSTM modules for frame-

wise spatio-temporal feature extraction, as shown in Figure 5. We follow this approach because, on the one

hand, in highly sparse point clouds, applying PointNet++ on each frame may not capture the spatial features

efficiently because fine-grained local features (e.g. skeletal structure of the hand) are not well preserved between

consecutive frames. On the other hand, applying PointNet++ on the aggregated point cloud will preserve spatial

features but the directionality of certain gestures (e.g. clockwise circling and anti-clockwise circling) would be

lost because temporal features are not captured.

PointNet++

PointNet++

PointNet++

PointNet++

LSTM LSTM

LSTMLSTM

LSTM LSTM
Fully

connected
Dropout Fully

connected

Batch
norm.

Fully
connected

Class
scores

Point cloud 
in n frames Spatial features

Temporal features

h2
t-1h1

t-1

h2
th1

t

h2
t+1h1

t+1

h2
t+n-1h1

t+n-1

h2
t+nh1

t+n
h1

t+n

mt

mt+1

mt+n

Aggregated 
frames

h2
t+n

(b) Proposed model

Sampling 
& grouping

Fully
connected

PointNet
Sampling 

& grouping PointNet

Set abstraction 
layer 2

(a) PointNet++

in

out

Set abstraction 
layer 1

h1
t

h1
t+1

Shared 
weights

Fig. 5. Sparse point cloud classification architecture.
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4.2.1 Framewise Spatial Feature Extraction. PointNet++ is a neural network architecture mimicking the function-

ality of classic 2D CNNs to extract hierarchical spatial features from 3D point clouds [41]. Local features are first

extracted to capture important structures in small regions, and the local features are further grouped into larger

units to extract higher level features. The same steps are repeated until the features of the whole point set are

computed.

To capture features of the point cloud iteratively, PointNet++ uses multiple set abstraction levels to mimic the

multiple convolution levels in CNNs. A single-set abstraction level consists of three important layers: Sampling
layer, Grouping layer and PointNet layer. The Sampling layer outputs a set of points from the input points that

define the centroids of local regions. The Grouping layer then builds sets of local regions by selecting “neighboring”

points of the selected centroids. Finally, the PointNet layer encodes the local region patterns into feature vectors.

Mathematically, the last set abstraction level maps a given unordered point set {z1, z2 . . . zN } with zi ∈ R
n
to

a sparser subset with higher dimension {y1,y2 . . .yM } with yi ∈ R
m
, wherem > n and M < N . The mapping

function q(·) can be written as

q(zi ) = yi =

(
FC1 ◦ max

zj ∈S (pi ), j=1, ...,N
◦FC2 ◦ д

)
(zpi , zj ) (1)

where the ◦ operator denotes a function composition; i.e. given two functions a(·) and b(·), (a ◦ b)(·) = a(b(·)).
In Equation 1, FC1 and FC2 are fully-connected layers, and д is a grouping layer that finds all the points within

a radius from the centroids zpi in the point set zi to construct local regions based on the spatial neighborhoods

S(pi ). The centroids are selected using the farthest-point sampling algorithm [10].

Accordingly, we feed the n frames from the preprocessing stage to n parallel PointNet++ layers, as shown

in Figure 5(b), to extract spatial features from the frames which are then transferred to two LSTM layers to extract

temporal features. Further, to reduce the size of the temporal feature vector and obtain fine-grained features,

we add two fully-connected layers with a dropout layer (0.5 drop rate) after the LSTM layers, for regularization

purposes.

Weight sharing. To reduce the model’s complexity in terms of trainable parameters and to prevent overfitting,

our model shares all weights among parallel PointNet++ blocks. Each PointNet++ block has 1.47M trainable

parameters, so for example eight parallel PointNet++ blocks would comprise 11.76M parameters. By sharing

these weights among parallel blocks, we decrease the trainable parameters to 1.47M. Note that each of these

PointNet++ blocks is responsible for calculating the spatial representation of the input frame, without considering

the temporal properties. These blocks therefore calculate the same set of fine-grained features but with different

values for each input frame.

4.2.2 Temporal Feature Extraction. Having extracted the spatial features of the point cloud with PointNet++ at

every frame, we feed those features to two stacked LSTM layers to extract temporal features. We experimented

with higher numbers of LSTM layers but without substantial improvement (see Table 2). We have the following

equations for an LSTM unit:

ft = σд(Wf xt +Uf h
p
t−1 + bf ) (2)

it = σд(Wixt +Uih
p
t−1 + bi ) (3)

ot = σд(Woxt +Uoh
p
t−1 + bo) (4)

ct = ft ⊙ ct−1 + it ⊙ σc (Wcxt +Uch
p
t−1 + bc ) (5)

h
p
t = ot ⊙ σh(ct ) (6)
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where ⊙ is the hadarmard product, xt is the input at time step t , hp ∈ {h1,h2} is a hidden state, h
p
t−1 is the hidden

state from the previous time step,W andU are weight matrices, b is the model bias, σ is the sigmoid activation

function, and f , i , o, c are forget, input/update, output, and control gates, respectively.

The output of temporal feature extraction can be defined as follows:

Lk = (LSTM1 ◦ LSTM2 ◦ FC3 ◦ q ◦ q) (zi ) (7)

where k ∈ {1, 2, . . . ,K} denotes the frame index in a sequence of K frames, LSTMr (·) = h
p
t (·,h

p
t−1) is an LSTM

layer and r ∈ {1, 2} denotes the layer number, and FC3 is another fully-connected layer.

4.2.3 Aggregated Feature Extraction and Classification. As we collect two sets of features from a hybrid model;

the first set is the output of spatio-temporal features from n frames and the second set is the spatial features of

the aggregated point cloud. We concatenate these two feature vectors to form a consolidated feature vector of

size 512, before applying a batch normalization layer to equalize two different sets of feature vectors, since the

features come from two different sources and have two different scaling factors. Finally, we use a fully connected

layer with no activation function to calculate the class score vector of size C , where C denotes the number of

gesture classes in our dataset. The recognized gesture class is computed via argmax operation.

Mathematically, the model can be represented as follows:

Output = (FC4 ◦ Norm ◦ Lk=K ∪ α ◦ q ◦ q) (zi ) (8)

where zi is the aggregated point cloud, Norm(·) is the batch normalization layer, and FC4 is a fully-connected

layer.

4.3 Improving the Recognition Performance

We train our classifier with different persons articulating the gestures at a fixed distance of 1.5m and at the

boresight angle (i.e., directly in front of the radar) as explained later in Section 5. Then, to improve the generaliz-

ability of Pantomime, we apply on-the-fly data augmentation during training. This is done by (1) translating the

recorded point cloud up to 10 cm, (2) scaling the point cloud by a factor of 0.8–1.25, (3) applying jitter (random

translation) using a Gaussian distribution N(0, 0.01) and (4) applying clipping of 0.03 m. Further, to improve the

robustness of our model, we consider the effect of different environments, distances, and angles, as explained in

the following sections.

4.3.1 Different Environments. First of all, as already mentioned in Section 4.1.1, we remove the reflection noise

of the environment during the preprocessing stage via outlier detection. Then, during the radar operational stage,

we reduce the impact of far and nearby objects as follows. On the one hand, to reduce the impact from reflection

noise coming from static objects that are far away from the sensor, the maximum range of the radar is fixed to

the distance of the user by adjusting the analog to digital converter sampling rate (Equation 11). On the other

hand, to reduce the impact from reflection noise coming from nearby objects, we remove the first half of the

range bins in the point cloud estimation step.

4.3.2 Different Articulation Angles, Speeds, and Distances. As mentioned in Section 4.1.2, we translate and rotate

the point cloud to the reference articulation condition (1.5 m, 0
◦
). Regarding different speeds, since the system

does not generate points for the static parts of the body, the frame divider block shown in Section 4.1.3 reduces the

effect of speed in the preprocessed point cloud. However, different distances have more impact on the point cloud

distribution than the angles or speeds, even after preprocessing. Thus, to make the model resilient to different

distances, we apply the following computations at the radar operational stage. When the human subject enters

the area of interest, the radar detects the subject’s range and adjusts the chirp configuration (see Section A.2) to

optimize a high range and velocity resolution at that range. Consequently, we use 4 chirp configurations for 4
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distance ranges: 0–2m, 2–3m, 3–4m, and 4–5m. As the point cloud changes with increasing distances, we train

the model from 1.5m distance and incorporate later a smaller set of training gestures articulated at 3, 4 and 5m.

5 EVALUATION SETUP

In this section we describe our device configuration, the experimental environments, gesture sets, participants,

and model fine-tuning. In the next section we report the recognition performance of Pantomime in various input

conditions.

5.1 Device Configuration

Our radar device (IWR1443) uses a built-in Cortex-R4F microcontroller (clocked at 200MHz) and the universal

asynchronous receiver-transmitter protocol for data transfer. The device is resource-constrained, both in terms

of computation and throughput. Therefore, it requires a proper configuration of the chirp and frame properties
(see Section A.1). We configure those parameters in order to achieve a frame rate of 30 fps, a range resolution of

0.047m, a velocity resolution of 0.87m/s, and a maximum velocity of 6.9m/s up to a maximum range of 5m. The

starting frequency is 77GHz and our selected range resolution dictates a bandwidth of 3.19GHz. Note that the
number of cloud points detected in each frame is not constant, even when using a fixed frame rate, mainly due to

the CFAR operation. The transmit power of the radar is 12 dBm and the receiver gain is set at 48 dB.

5.2 Experimental Environments

We chose five indoor environments (Open, Office, Restaurant, Factory and Through-wall) as shown in

Figure 6 to evaluate the performance of Pantomime. Open is an environment of 91m
2
with no furniture around

the radar sensor. We use it for single and multiple people experiments. Office is a cluttered environment of

18m
2
with nearby objects. Restaurant is a 23.36m2

cluttered environment. Both Restaurant and Factory

environments are multipath-heavy, representing thus more challenges for gesture recognition and fitting the

chosen applications. On the one hand, the restaurant consists of typical clutter such as tables, chairs, sofas, and

walls within a 3m radius from the radar sensor. On the other hand, the factory environment consists of two

robots (a cobot and a robot within a 2m distance from each other), tables, chairs, and 3D printing machinery

within a 3m radius from the radar. The radar is mounted on the stationary parts of a YuMi cobot and the user

performs gestures within a 2m distance from the radar. In Through-wall, the radar penetrates a typical indoor

wall that partitions a room and a corridor (≈ 10 cm thick single wall consisting of two decoupled and insulated

plaster partitions). Each plaster partition was ≈ 4mm thick.

5.3 Gesture Sets

We collected data for 21 types of mid-air gestures, as shown in Figure 7. As we have designed a mid-range gesture

recognition system, the gestures require movements of body parts with relatively large radar cross-section to

enable detection up to 5m of distance. We divide the gestures in two sets (Easy and Complex) based on their

execution difficulty. The first 9 gestures (a–i) belong to the Easy set and comprise single-hand gestures that

are easy to perform and remember. The remaining 12 gestures (j–u) belong to the Complex set and comprise

bimanual, linear, and circular gestures. Finally, we also consider all gestures from both sets in a later experiment,

which we will refer to as the All set. We conduct experiments on each set and environment separately, in order

to challenge the performance of our recognizer.
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(a) Open environment (b) Office environment (c) Restaurant environment

(d) Factory environment (e) Through-wall environment (f) Open environment with multiple people

Fig. 6. Our indoor environments. In all conditions, the experimenter could see the point cloud of the articulated gestures in

real-time in a nearby monitor (left) or a nearby laptop (right).

5.4 Participants and Procedure

We recruited 45 participants (13 female) aged 18–55, weight 50–110 kg, and height 1.55–2m for data collection for

training, validation and test sets. They were unpaid volunteers recruited via mailing lists, external advertisements,

news boards, and flyers distributed among several of our university’s departments.

Before starting with the data collection, the experimenter demonstrated how each gesture should be performed

through a video. Then, while the participants performed each gesture, the experimenter verified that it was

articulated successfully by visualizing the point cloud in a nearby monitor or laptop (see Figure 6. In case of a

wrongly executed gesture, the participant was asked to repeat it again.

Our final dataset comprises 22291 articulation samples in total. Users articulated the gestures in 1–3 s on

average, so that our dataset accounts for 18.5 h of recording time. After performing all trial executions of each

gesture class, participants could have a rest (if desired) before advancing to the next gesture.

5.5 Evaluation Metrics

We evaluate the performance of Pantomime using recognition accuracy (Acc.) and the area under the ROC curve

(AUC), which quantifies the discriminatory power of the classifier. We also report the confusion matrix to analyze

performance further and inspect conflicting gestures. By way of comparison, a random classifier would achieve

1/21 = 4.76% classification accuracy and 50% AUC on the All gesture set. Our model was trained on a single

Tesla V100 GPU in about 5 h.
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Fig. 7. Gesture set used in our experiments. Easy set: (a) ‘lateral raise’, (b) ‘push-down’, (c) ‘lift’, (d) ‘pull’, (e) ‘push’, (f) ‘lateral-

to-front’, (g) ‘swipe right’, (h) ‘swipe left’, (i) ‘throw’. Complex set: (j) ‘arms swing’, (k) ‘two-hand throw’, (l) ‘two-hand push’,

(m) ‘two-hand pull’, (n) ‘two-hand lateral-raise’, (o) ‘left-arm circle’, (p) ‘right-arm circle’, (q) ‘two-hand outward circles’,

(r) ‘two-hand inward circles’ (s) ‘two-hand lateral-to-front’, (t) ‘circle clockwise’, (u) ‘circle counter-clockwise’.

5.6 Model Fine-tuning

Pantomime has three main components that should be optimized: the number of parallel input frames, the number

of set abstraction levels in PointNet++, and the number of LSTM layers. To decide the best model architecture,

we begin with 2 parallel frames, 2 set abstraction layers, and 2 stacked LSTMs. Then we increase each parameter

while keeping the others constant, until the overall accuracy starts to decrease for gestures in the All group. We

empirically set the number of points in each frame to 64.

We split all the recorded 7251 gestures fromOpen (2631 samples) +Office (4620 samples) into train/validation/test

partitions using a user-dependent 60:20:20 ratio, i.e. 60% and 20% of the data (data from 33 users) is used for

training and validation and the remaining 20% of the data (data from 8 users unseen by the training and validation

sets) is used for testing. As shown in Table 2, the combination that achieves the highest accuracy (95%) on the

validation set is 8 parallel frames as input, 2 set abstraction levels in PointNet++, and 2 stacked LSTM layers.

After tuning the model hyperparameters, we used the whole training and validation sets for training the final

model, and evaluate it on the held-out test set.

During the training phase, we augment the point cloud on the fly using three geometric transformations as

mentioned in Section 4.3. The effect of different augmentation schemes is shown in Table 3. As observed, when

both training and test data are not augmented, the model achieves a 93.89 % accuracy. The model performs worst

when tested on augmented data without training on the augmented, which is a mere 31.2% accuracy. This justifies

the selection of data augmentation which helps to generalize for deviations that occur in practical situations such
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Table 2. Parameter Optimization of Pantomime.

No. of frames 2 4 8 10 8 8 8 8

No. of set abstraction layers 2 2 2 2 1 3 2 2

No. of LSTM layers 2 2 2 2 2 2 1 3

Accuracy (%) 93 94 95 93 94 94 93 94

as translation or disorientation of the participant from the reference point and for different body sizes of the

participants. The highest accuracy is achieved when only the training set is augmented, where the accuracy is

almost 1.1% higher than the model without any augmentation. This shows that data augmentation makes the

model invariant to various geometric transformations during experiments, a desirable property when handling

point clouds for gesture recognition.

To evaluate the effect of outlier removal, we considered three scenarios. In the first scenario, we train the model

on the training set that has outliers (w/ outlier) and evaluate it using the test set that has outliers and achieved an

accuracy of 88.74%. Next, we use the pre-trained model on the data after applying outlier removal (w/o outlier) to

evaluate the test set with outliers, and achieved an accuracy of 59.2%. Finally, we compare these accuracies with

the case where outliers are removed in both training and test sets, which is 95%, a 7% improvement from the first

scenario.

Table 3. Effect of data augmentation.

Data augmentation

Training set % % ! !

Test set % ! ! %

Acc. (%) 93.89 31.20 94.4 95.01

Table 4. Effect of outlier removal.

Train w/ outlier w/o outlier w/o outlier

Test w/ outlier w/ outlier w/o outlier

Acc. (%) 88.74 59.20 95.01

6 RESULTS

We evaluate the performance of Pantomime on our three gesture sets (Easy, Complex, and All) with increasing

articulation difficulty. We train and test our model on the same data splits as used in the previous fine-tuning

experiments (33 train users, 8 test users) to avoid any data leakage. Note that this procedure is more realistic and

challenging than shuffling all the data and creating the train/test partitions later [17].

6.1 Overall Performance

Figure 8 shows the confusion matrices for our three gesture sets. As can be observed, Pantomime is remarkably

accurate. Regarding the Easy gesture set, it achieves 96.6% accuracy. According to the confusion matrix in

Figure 8(a), for 8 out of 9 gestures, it achieves an accuracy over 92%. The few gestures having conflicts with other

gestures have unsurprising traits, e.g. (b) ‘push-down’, (c) ‘lift’, and (i) ‘throwing’ are performed in the YZ-plane;

in (a) ‘lateral raise’ and (g) ‘swipe right’ the point cloud moves from left to right; and both (d) ‘pull’ and (e) ‘push’

operate along the Y axis but in opposite directions.

Regarding the Complex gesture set, Pantomime achieves 95.1% accuracy, which is, surprisingly for us, just

1.5% lower than the performance observed in the Easy gestures. According to the confusion matrix in Figure 8(b),

for 9 out of 12 gestures Pantomime achieves an accuracy over 93%. Again, the conflicting gestures have common
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Predicted Label

a b c d e f g h i

a 100 0 0 0 0 0 0 0 0

b 0 100 0 0 0 0 0 0 0

c 0 3.8 86 0 0 0 0 0 10

d 0 0 0 963.8 0 0 0 0

e 0 0 0 0 100 0 0 0 0

f 0 0 0 0 0 100 0 0 0

g 2.6 0 1.3 0 1.3 0 95 0 0

h 0 0 0 0 0 0 0 100 0

T
r
u
e
L
a
b
e
l

i 0 4 4 0 0 0 0 0 92

(a) Easy gestures set

Predicted Label

j k l m n o p q r s t u

j 100 0 0 0 0 0 0 0 0 0 0 0

k 0 100 0 0 0 0 0 0 0 0 0 0

l 0 0 100 0 0 0 0 0 0 0 0 0

m 0 5 11 84 0 0 0 0 0 0 0 0

n 0 0 0 0 100 0 0 0 0 0 0 0

o 0 0 0 0 0 100 0 0 0 0 0 0

p 1.1 0 0 0 0 0 971.11.1 0 0 0

q 0 2.2 3.31.1 0 0 0 885.6 0 0 0

r 0 0 0 0 0 0 0 6.7 93 0 0 0

s 0 0 0 0 0 0 0 0 0 100 0 0

t 0 0 0 0 5.7 0 0 0 0 0 94 0

T
r
u
e
L
a
b
e
l

u 0 0 0 0 11 0 0 0 0 0 2.886

(b) Complex gestures set

Predicted Label

a b c d e f g h i j k l m n o p q r s t u

a 93 0 0 0 0 0 0 0 0 0 0 0 0 6.7 0 0 0 0 0 0 0

b 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 89 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0

d 0 0 0 953.8 0 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0 0

e 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g 6.5 0 0 0 1.3 0 90 0 1.3 0 0 0 0 1.3 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 98 0 0 2.5 0 0 0 0 0 0 0 0 0 0

i 0 1.36.7 0 0 0 0 0 88 0 4 0 0 0 0 0 0 0 0 0 0

j 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

k 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

l 0 0 0 0 1.2 0 0 0 0 0 1.2 98 0 0 0 0 0 0 0 0 0

m 0 0 0 0 0 0 0 0 0 0 2.5 5 92 0 0 0 0 0 0 0 0

n 3.8 0 0 0 0 0 0 0 0 0 0 0 0 96 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

p 0 0 0 0 1.1 0 0 0 0 0 0 1.1 0 0 0 97 0 1.1 0 0 0

q 0 0 0 0 0 0 0 0 0 0 5.64.4 0 0 0 0 864.4 0 0 0

r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.694 0 0 0

s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

t 5.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 94 0

T
r
u
e
L
a
b
e
l

u 13 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86

(c) All gestures set

Fig. 8. Confusion matrices. Each cell denotes classification accuracy, in percentage.

characteristics; e.g. (k) ‘two-hand throw’, (l) ‘two-hand push’ and (m) ‘two-hand pull‘ are similar types of gestures

where the arms move either away from the body (k and l) or towards the body (m); Similarly, (q) ‘two-hand inward

circles’ and (r) ‘two-hand outward circles’ are virtually the same gesture but operating on opposite directions;

and (t) ‘circle clockwise’, (u) ‘circle counter-clockwise’ and (n) ‘two-hand lateral raise’ are circular gestures that

operate in the XZ-plane.

Finally, Pantomime achieves 95% accuracy for the All gesture set, which is just 0.1% lower than the accuracy

achieved on the Complex set, indicating the robustness of Pantomime for increased gesture complexity and

number of gestures. The confusion matrix in Figure 8(c) is consistent with the confusion matrices of the Easy and

Complex sets, where few similar types of gestures conflict with each other. One characteristic that is unique to

the All gesture set is that the conflicting gestures (a, c, i, k, l and n) operate along the Z axis. We suspect that this

is caused by the low resolution in Z axis of the radar, due to having two antennas for elevation angle resolution.

6.2 Comparison with the Related State-of-the-art Classifiers

We compare the performance of Pantomime on Easy, Complex, and All gesture sets against four state-of-the-art

point cloud classifiers: two static point cloud classifiers: PointNet [40] and PointNet++[41], and three dynamic
point cloud classifiers: Owoyemi and Hashimoto [35] (O&H), a standard PointNet++ and LSTM architecture [47]

and RadHAR [51]. The main difference of PointNet and PointNet++ is that the former does not capture the local

structure in point clouds and, consequently, it does not contain set abstraction layers. To ensure a fair comparison

with PointNet and PointNet++, we aggregate all frames corresponding to the gesture and feed the aggregated

point cloud to them. In this way, the two neural networks operate on the 3D shapes of the whole gestures.

O&H is a hand motion gesture recognition system that transforms the point cloud acquired from Microsoft

Kinect into a dense occupancy grid by voxelizing the points. Motion dynamics are captured by constructing a 4D

tensor with different time instances of the occupancy grid as the 4
th

dimension. The tensor is used as the input to

a 3D CNN which learns the spatio-temporal features in the data without explicit modeling of gesture dynamics.

The O&H architecture comprises 4 convolution layers and 2 fully connected layers followed by an output layer.
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Table 5. Comparison with the state of the art. Both Accuracy and AUC are reported in percentages. The best results are

denoted in bold typeface.

Easy Complex All

Model Acc. AUC Acc. AUC Acc. AUC

PointNet 79.7 98.4 82.5 98.7 81.6 99.4

PointNet++ 79.7 98.1 84.9 99.0 83.6 99.4

O&H 77.7 96.0 83.2 98.1 79.1 97.9

Std. Arch. 83.3 98.5 88.4 99.5 86.3 99.4

RadHAR 91.6 98.9 94.3 99.6 89.9 99.5

Pantomime (ours) 96.6 99.8 95.1 99.8 95.0 99.9

To increase the amount of training data, O&H uses data augmentation, so that we augmented accordingly our

dataset with 0, 10, and 20 cm jitter and report the best results, which occurred when using 10 cm jitter.

The standard PointNet++ and LSTM architecture (Std. Arch.) uses parallel PointNet++ blocks for spatial feature

extraction (without the aggregated frames) and each PointNet++ block is connected to two parallel LSTM layers.

RadHAR is a whole body activity recognition system that voxelizes the input point cloud from a mmWave

radar sensor but uses a time distributed CNN and Bi-directional LSTM to capture spatio-temporal features. The

architecture consists of 3 time-distributed CNNs (convolution layer + convolution layer + maxpooling layer)

followed by the Bi-LSTM layer and an output layer. Even though RadHAR does not include data augmentation as

part of its architecture, we perform this to be consistent with the other models. Accordingly, we perform data

augmentation similar to O&H, as RadHAR is also a voxelization-based approach, and report the best results,

which occurred with 10 cm jitter.

Table 5 shows the accuracy and AUC values for the three datasets for the 6 models. Importantly, Pantomime

achieves the best performance, exceeding the accuracy of the next best classifier by 5.6%, 0.85%, and 5.7% for Easy,

Complex and All gestures, respectively. It is interesting to note that the results of Pantomime are consistent

throughout the three gesture sets with just 1.5% difference between the best and the worst results, whereas the

accuracy differences of other classifiers fluctuate between 3.5% and 7% (worst and best results, respectively).

Interestingly, although our model has slightly higher accuracy for Easy than Complex gestures, this is not the

case for the other models, which performed better on the Complex gestures (but not better than Pantomime in

any case). This suggests that even though we selected the Easy gestures to be easy for humans to perform, it

does not necessarily imply that those gestures are easy for the classifiers to recognize. In the remainder of this

section we evaluate the performance of Pantomime using the All gesture set.

6.3 Effect of the Environment

Generally, in RF sensing systems the environment plays an important role on the accuracy due to noise caused by

multipath effects. Table 6 evaluates the effect of the training and testing environment on the set of All gestures.

As shown in the table, we use 7 different scenarios of Open and Office data for training and testing. In the first

scenario, we train only using the Office data and test on the Open data: in this case, we split the Office dataset

in 80% for training and 20% for validation. The validation set consists of unseen users (not in the training set)

and the test set is from the Open dataset, which is a completely different data set. In the second column of the

table we repeat this experiment but swap both environments. For training with Open+Office data, we use a

60:20:20 user-dependent ratio such that 60% is training data, 20% is validation data and the remaining 20% is used
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for testing. Again, the test set consists of data from 8 unseen users in the training and validation sets. The same

reasoning applies to the remaining columns of the table.

As expected, training on both environments achieves the highest accuracy irrespective of the testing en-

vironment. This indicates that training on both environments leads to better model generalization. Similarly,

irrespective of the training environment, testing on Open achieves a higher accuracy than Office since Open has

the least effect from environment noise. On average, training and testing on two different environments achieves

an accuracy of 90.74%, which represents a 4.24% reduction compared to the average accuracy of training in both

environments.

The table further illustrates the results of Restaurant (1680 samples from 4 participants) and Factory (1680

samples from 4 participants). For these two datasets, we use a pre-trained model trained on the data from

Open+Office. Pantomime achieves 81% accuracy and 98.84% AUC on Restaurant, and 89% accuracy and 99.79%

AUC on Factory. Understandably, performance is lower in these environments than in Open and Office, which

we attribute to the fact that both environments are multipath-heavy and the model was not trained on either of

these environments. Yet, accuracy in both environments is above 80%.

Table 6. Effect of environment on recognition performance.

Train Office Open Open+Office Open+Office Open+Office Open+Office Open+Office

Test Open Office Open Office Open+Office Restaurant Factory

Acc. (%) 93.96 87.51 96.12 93.40 95.01 81.13 89.11

AUC (%) 99.87 99.35 99.94 99.86 99.91 98.84 99.79

6.4 Effect of Multiple People and Occlusion

To study the effect of multiple people, the OPEN environment was used with 4 people within a 2m radius

including the person performing the gestures. Each participant performed 5 trials of each of the 21 gestures. Two

people were sitting while working with their laptops and one person was walking around. Three of them were

staying in less than 1m distance from each other, in the field of view of the radar sensor, however not blocking

the person conducting the gestures. In the multiple-people setting, we used additional processing to remove the

effects in the point cloud from the reflections of additional participants. More specifically, we used a 1 × 1 × 2m
3

bounding box to isolate the person conducting the gesture from the rest of the participants. Then, we used the

model trained on Open+Office datasets and applied on the data collected from multiple people. Pantomime

achieved an average accuracy of 93.33% and an average AUC of 99.95%.

For Through-wall, we obtained measurements from 4 participants, located within 2m to the radar, and

each participant performed 10 trials of each gesture. We used the same model trained on Open+Office, and

Pantomime achieved an accuracy of 64.43% and an AUC of 97.24%. We would like to highlight that especially

in the through-wall setting we were able to capture the point clouds of all gestures, even the motion patterns

were similar to other environments, though with a sparser point cloud. The key difference compared to other

environments, which caused the degradation in the classification accuracy, was that the static points of the point

cloud that are usually associated with the participant’s body are coming off the wall in the Through-wall case.

6.5 Effect of the Articulation Angle

RF gesture recognition systems in the literature are usually evaluated with respect to their boresight angle (i.e.

0
◦
, in front of the radar) since this achieves best recognition performance. We consider angles between −45◦ to

+45◦ in increments of 15
◦
with regard to the boresight angle. We selected this set of angles because the field of
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view of the radar ranges between −55◦ and +55◦ azimuth angles. Therefore, within ±45◦ angles it is possible to

capture the whole body of the participants within the field of view of the radar. Under this scenario, we collected

2940 gestures (420 samples for each angle) from 8 participants that were used as test data. The results are shown

in Figure 9.

As can be observed, the results indicate excellent recognition performance (> 89%) when the user is located

within the range of ±15◦. Then, recognition accuracy drops to 84% for angles comprised between −30◦ to +30◦

and there is a decrease of about 20 % at ±45◦. This degradation is mostly caused by self-shadowing of one of the

participant’s arm, due to the orientation of the body, as it was parallel to the radar at all times. So, for extreme

angular values the radar simply cannot fully sense the participant’s moving arms.

Another important observation is that accuracy in positive angles is slightly lower than the accuracy recorded

in negative angles. Since our single-handed gestures are predominantly right-handed, we conjecture that this

differences may be a combination of a calibration error of the radar and the right hand of the participants reaching

beyond the +55◦ field of view while performing gestures.
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Fig. 9. Performance analysis as a function of the angle between the person and the radar. (a) Participant’s position (1–2 m)

and orientation (parallel to the wall)., (b) Accuracy vs angle. (c) AUC vs angle.. Note: ‘rotate’ denotes the participant’s point

cloud is rotated to 0
◦
angle and ‘w/o rotate’ denotes no rotation of the point cloud.

6.6 Effect of the Articulation Speed

To evaluate the effect of various velocities on the gesture recognition performance, we recorded the set of All

gestures in slow,medium, and fast speed from two participants at 0
◦
at a 1.5m distance. Participants were allowed

to perform the gestures according to their perceived pace rather than setting a strict timing on the three different

speeds. Under this scenario, we collected 1260 instances of gestures (420 for each speed) that were used as test

data. The results are shown in Table ??.

The results show that accuracy is consistently high for medium (94.0%) or fast (92.14%) articulation speed,

whereas accuracy decreased by 9% for slow gestures. We note that this drop is attributed to the fact that the CFAR

algorithm [44] is sensitive to the speed of the gesture, which produces sparser point clouds at lower articulation

speeds.

6.7 Effect of the Articulation Distance

To analyze the impact of the distance of the participant conducting the gesture, we collected further measurements

for 3, 4, and 5m distances at 0
◦
. Since articulation distance is a critical operational parameter, we recorded 1890

instances (630 gestures for each distance) from six participants. Out of these, 1260 gestures (210 instances for each

distance) from four participants were used for model training and the remaining gestures from two participants

were used for model testing. Note that, unlike in the previous speed and angle related experiments, here we train
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Table 7. Effect of articulation speed on recognition performance.

Slow Medium Fast

Acc. (%) 85.00 94.05 92.14

AUC (%) 99.33 99.90 99.68

a new model using the gestures from 1.5m and the newly collected gestures for other three distances. As the

gesture samples from 1.5m had 8519 instances, data augmentation is performed on the newly collected data to

increase the sample size to 5040 gestures and thus ensure balanced splits of the data. Data augmentation was

performed according to the approach mentioned in Section 4.3. The results are shown in Table 8.

We compare the results trained from all the distances (denoted as ‘All’ columns in the table) against training

only from 1.5m distance data, which is the original Pantomime model that outperformed the state-of-the-art

classifiers in Section 6.1. We can see that training with samples from all distances is highly beneficial and achieves

almost twice the accuracy than when testing our original model (trained only at 1.5m). The best performance

is achieved when gestures are performed at 3m, corresponding to an accuracy of about 90% which is just a

6% decrease from the accuracy achieved in the original case. As expected, accuracy decreases with increasing

distance, with the lowest accuracy of 66.2% achieved at a distance of 5m. Several factors contribute to this

performance degradation, such as changes in chirp configuration affecting the point cloud distribution, increasing

sparsity of the point cloud, and smaller body parts being detected because of a smaller radar cross-section, which

together degrade the spatial structure of the gesture.

Table 8. Effect of distance on recognition performance. Note: The ‘All’ columns denote training with gestures performed at

1.5, 3, 4 and 5 m.

Test distance (m) 1.5 3 4 5

Train distance (m) 1.5 1.5 All 1.5 All 1.5 All

Acc. (%) 95 47.6 89.1 40 78.1 30 66.2

AUC (%) 99.9 95.4 99.6 91.8 98.8 87.8 96.2

In addition to the above results, we note that we also trained three separate models for each of the 3, 4,

and 5m distances (with augmented data for each specific distance). However, the performance of the distance-

specific models achieved lower accuracy compared to the model trained on all distances. The main reason is

that, although we augmented data for each of these models, the number of training samples we had for each

distance was not enough. Given the number of hyperparameters, the distance-specific models overfitted the

training data. Nevertheless, when we train a model for all distances, despite differences in their data distribution,

their similarities commit to each other’s performance, so that the model trained on all distances eventually

outperformed the distance-specific models by a large margin.

6.8 Challenging Articulation Combinations

So far we have evaluated three key impact factors of gesture articulation, in terms of angle, speed, and distance,

however they have been investigated individually. Since practical usage scenarios usually contain combinations

of these factors, we present some results under challenging circumstances with different combinations of these

three factors. Such combinations were decided at random. The results are reported in Table 9.
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Table 9. Random articulation combinations in terms of speed, angle, and distance.

Distance Angle Speed Accuracy (%) AUC (%)

3m 0 fast 87.61 99.53

3m 15 fast 64.29 95.95

5m 0 normal 62.86 96.37

4m -30 slow 46.98 91.46

3m 30 fast 45.24 90.48

2m 45 fast 42.86 89.35

3m -45 fast 36.19 89.51

3m -45 normal 31.43 83.41

3m -45 slow 23.81 71.06

2m 45 normal 21.43 73.87

It is important to note that Pantomime was trained for 0
◦
angle and ‘normal’ speed; see Section 6.5 and

Section 6.6. However, for the 1.5, 3, 4 and 5 m distances, we used the same models trained in Section 6.7 where the

1.5 m distance gestures were infused with data from 2, 3, 4 and 5 m gesture samples. Therefore, it was expected

that Pantomime would not achieve as high performance as in the designed operational conditions, i.e. when

gestures are performed in front of the sensor and at a normal articulation speed. We can see that, all other factors

being equal, large variations in the articulation angle contribute more to degrading recognition performance.

Nevertheless,s Pantomime still achieves a good performance for completely unseen test cases, highlighting thus

the versatility of our system to handle out-of-domain cases. (We expand a bit more on this out-of-domain notion

by investigating unseen gesture classes in the next section.) Ultimately, these experiments should be seen as

challenging examples of Pantomime’s performance under more extreme operational conditions, for which it was

not designed.

6.9 Effect of Unseen Gestures

We have conducted additional experiments to show how Pantomime can handle unseen (aka out-of-domain)

gestures. We have redesigned our system’s pipeline as shown in Section A.3, to perform zero-shot learning based

on the latent space of motion gestures.

Figure 10 shows the accuracy of Pantomime (overall accuracy of seen and unseen gestures) as well as the

accuracy of the unseen gesture classes as the number of unseen gesture classes increase. It can be noted that

both accuracies decrease with increasing number of unseen gesture classes. After adding 4 classes, the unseen

gesture class accuracy drops below 50% and the overall system accuracy is around 75%, which could be seen

as the “breaking point” of Pantomime; i.e. the system could handle up to three different unseen gestures with

competitive accuracy. By way of example, a random classifier would be right in 1/(21+4) = 4% of all cases. Hence,

the achieved 75% accuracy is still a remarkably good result. We further note that gesture accuracy and system

accuracy are dependent on the selected threshold, Thr . In the current implementation, we selected Thr based on

EER, as explained in Section A.3. Then, by adjusting this threshold based on the requirements of the gesture

designer, a trade-off between the system and the unseen gesture class accuracy can be reached.

7 DISCUSSION

In this section, we provide a high-level discussion of our results, highlight the main limitations of Pantomime,

and propose new ideas for future work.
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Fig. 10. The accuracy of recognizing an unseen gesture and the overall system accuracy with increasing number of unseen

gesture classes.

7.1 Real-time Recognition

Pantomime is capable of recognizing gestures in real-time. We have tested it under two different settings on a

single Tesla V100 GPU with 16GB of memory. Pantomime is able to recognize 16 and 10 gestures per second on

average using a batch size of 16 and 1 gestures, respectively. (The latter illustrates the case where a single user

executes a single gesture in real-time). Note that we consider here the case where a pretrained model performs

both the preprocessing and classification of incoming raw point clouds.

7.2 Provision of the Radar Configuration

In Appendix A, we discuss how to setup the IWR1443 hardware for the generation of dynamic 3D point clouds

for motion gesture recognition. By doing this, we were able to achieve full control over the radar signal and can

optimize computational resources. For convenience, we provide our radar configuration files at [36].

7.3 Delimiter Gesture for Getting Pantomime’s Attention

In practice, users generally do not inform the system when they start the gestures. This applies to any gesture-

driven application, as noted by Ruiz & Li [46]. Even in voice-activated systems like ‘Google Assistant’, the system

has to receive an activation command such as ‘OK Google’ from the user in order to obtain the attention of the

system. Only then, the system records and interprets a user’s utterance and executes the intended command.

We propose the same approach for Pantomime where the person who wants to interact with the system uses a

delimiter gesture to obtain its attention. Since Pantomime can detect a bounding box to single out the interacting

user (if there are more people in the sensor’s coverage area), it can follow that user and execute their commands for

a fixed duration. We note that other gesture recognition systems have followed this approach, such as WiSee [39].

7.4 Limitations and Future Work

We have identified three key areas when it comes to improving our model’s performance. In the following we

highlight them and propose ways to mitigate their influence.

Sensor granularity. As mentioned in Section 6.1, Pantomime has lower accuracy on gestures performed along

the Z axis due to the low elevation angle resolution. This could be solved by placing two radars: one resolving

gestures in the azimuthal angle and the other resolving elevational angle. Another related issue is that gestures

should not be performed at slow speed, since the resulting point clouds would be very sparse and therefore they

would be much more difficult to recognize. However, users are known to operate at their own speed-accuracy

tradeoff [64] so they are expected to articulate gestures at medium speed in practice.
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Point intensity. While Pantomime currently achieves a recognition accuracy over 95% on average (see Table 5),

we plan to include point intensity to improve performance further. The IWR1443 sensor provides intensity values

for each point in the point cloud, however if we incorporate this information as an additional spatial feature (i.e.,

considering each point as {x,y,z,intensity} vector) then recognition accuracy does not improve. Therefore, we

should explore other ways of incorporating this information effectively.

Temporal resolution. Using a higher number of frames improves temporal resolution and potentially also

recognition accuracy, but it requires more processing power, both during training and at inference time. This is

mainly why Pantomime is optimized to classify sparse point clouds with a limited number of frames. For future

work, we plan to handle more frames more efficiently.

8 CONCLUSION

We have introduced Pantomime, a novel mid-air gesture recognition system exploiting spatio-temporal properties

of mmWave RF signals via 3D sparse point motion clouds. Pantomime is positioned in a unique region of the RF

landscape: mid-resolution mid-range high-frequency sensing, which makes it ideal for motion gesture interaction.

In designing Pantomime, we followed a holistic approach, starting from selecting a miniaturized mmWave radar,

optimizing it for high spatio-temporal resolution for complex motion gestures, and finally introducing a novel

deep learning architecture to classify a challenging set of 21 gestures. We tested the robustness of Pantomime in

three orthogonal motion directions with remarkable average performance (over 95% accuracy and 99% AUC on

average), different environments, speeds, angles and distances. Ultimately, this work opens the door to using

commercial radar devices for gesture interaction. Our models and dataset are publicly available at [36].
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A RADAR OVERVIEW AND CONFIGURATION

A.1 Signal processing

As shown in Figure 11(a), the IWR1443 sensor has three Tx antennas, separated by one wavelength (λ), and
four Rx antennas, each λ/2 apart. This configuration yields 12 virtual antennas [45]. During each time slot, the

corresponding antenna sends a chirp signal, which is a frequency ramp for the FMCW operation; cf. Figure 11(b).

3 TX 
antennas

4 RX 
antennas

12 virtual 
antennas

(a) Virtual antenna array configuration.

frame 1

f 
(H

z)

t (s)
frame 2

TX1 TX2 TX31st block of chirp
signals

nth block of chirp
signals

(b) Chirp signal transmission. A block of chirps completes one trans-

mission loop of the three Tx antennas.

Fig. 11. Basic configurations of the radar sensor.

Figure 12 illustrates the signal processing pipeline of the radar sensor, starting with analog-to-digital conversion

(ADC) and ending with the computed point cloud:

(1) Range-FFT : The radar sends a chirp signal and the mixing operation between the transmitted and received

chirps produces an intermediate frequency signal. The range of the detected object is linearly proportional

to the frequency of such signal, which is computed using the Fast-Fourier Transform (FFT) operation.

ADC
data in

Point 
cloud

Range FFT
(1D)

Doppler FFT
(2D) CFAR

Angle FFT
(3D)

Fig. 12. Radar signal processing of the IWR1443 sensor.

(2) Doppler-FFT : At least two time-separated chirps are used to estimate the radial velocity of an object. The

phase difference of two chirps at the range-FFT peak is proportional to the radial velocity of the detected

object. An FFT operation on the signal range (i.e., a 2D-FFT or a Doppler-FFT) produces a peak at the

velocity of the object.

(3) CFAR: The summation of the Doppler-FFT matrices creates a pre-detection matrix for each virtual antenna.

The constant false alarm rate detection (CFAR) algorithm [44] identifies peaks in the pre-detection matrix

that correspond to the detected objects.

(4) Angle-FFT : For each object, an FFT of the angle is performed on the corresponding CFAR peaks across

multiple Doppler-FFTs. Velocity-induced phase changes are Doppler-corrected before computing the

angle-FFT.

A.2 Radar Configuration

We configure the radar’s chirp and frame parameters to achieve a fixed frame rate of 30 fps, high range and

velocity resolutions, a maximum velocity of 7 m/s and a maximum range of 5m. A chirp is essentially a linear

frequency ramp defined by: starting frequency, slope, and duration. A frame comprises of a sequence of chirps

and is determined by the frame periodicity T , the number of chirps in a frame (Nc ) and the frame duty cycle.

Figure 11(b) shows the relationship between chirps and frames.
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We configure the chirp duration (Tc ) based on the maximum velocity as follows:

vmax =
λ

4T
(9)

where λ is the wavelength of the radar signal and T = Tidle +Tc . The predefined velocity resolution dictates the

number of chirps in a frame according to

vres =
λ

2NcTc
. (10)

The maximum range is related to the chirp slope (s) by

Rmax =

(
0.9r

2

)
c

s
(11)

where r is the sampling rate in the analog-to-digital conversion and c is the speed of light. Finally, the range

resolution (Rres) is determines

Rres =
c

2B
(12)

where B = r
sNs

is the bandwidth (B) of the signal and Ns is the number of samples per chirp.

As evidenced from the equations above, parameters such asTc , Nc , s , r and Ns are inter-related and thus require

several iterations with trial and error to configure them properly in order to achieve the required performance in

vmax , vr es , Rmax and Rr es .

A.3 Unseen Gestures Work Flow

Figure 13 shows how Pantomime’s class scores are used to determine if a gesture is known to the system or not.

First, we compute the class scores (sc , the output of the last layer of Pantomime without applying the argmax

operation). If the maximum class score is less than a threshold (Thr ), we assume the gesture belongs to an unseen

class. If the maximum class score is higher than Thr , we use the label with the highest class score (after the

argmax operation) as the predicted label which is the prediction of Pantomime. If the maximum class score is

lower than Thr , we extract the output of the last latent feature vector of Pantomime (with dimension 256) and

perform dimensionality reduction to 3 dimensions using the TSNE algorithm. We then use k-means clustering to

cluster the unseen gestures. We experiment with an increasing number of unseen gestures, up to 11 different

gestures classes. We set the number of clusters to be equal to the number of unseen classes in each case (1..12).

Selecting the threshold. The threshold, Thr , we used is the Equal Error Rate (EER) of the seen gestures from

Open+Office. We determine Thr in which the false acceptance rate (the ratio of the total number of maximum

class scores above Thr with correct prediction to the total number of maximum class scores above Thr with
incorrect prediction) is equal to the false rejection rate (the ratio of the total number of maximum class scores with

correct prediction below the threshold to the total number of maximum class scores with incorrect prediction

below the threshold). In our experiments the EER is equal to 7.89, for which the false rejection and false acceptance

rates are 20%.
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Fig. 13. The decision making process to determine if a gesture is known to the system.
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