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a b s t r a c t 

In this paper, we provide a comprehensive assessment of the consensus of high-order 

nonlinear multi-agent systems with input saturation and time-varying disturbance un- 

der switching topologies. The control directions and model parameters of agents are sup- 

posed to be unknown. Our approach is based on transforming the problem of consensus 

for a network that consists of high-order nonlinear agents to that of perturbed first-order 

multi-agent systems. The unknown part of dynamics is cancelled using radial basis neural 

networks. Nussbaum gains and auxiliary systems are respectively employed to overcome 

the unknown input direction and the saturation. Adaptive sliding mode control is used 

to compensate for the time-varying disturbance and the imperfect approximation of the 

developed neural network as well. Through Lyapunov analysis, it is shown that the over- 

all closed-loop system maintains asymptotic stability. Finally, our approach is applied to a 

group of multiple single-link flexible joint manipulators to highlight better its merit. 
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1. Introduction 

Advances in networked cyber-physical systems and embedded systems technology have created an increasing interest

among the control community to study multi-agent systems (MASs). The control techniques developed so far for MASs en-

able us to apply resilient, cheap, and flexible methodologies to diverse cooperative tasks in many domains including main-

tenance, surveillance, reconnaissance, search and rescue mission, cooperative construction, and manipulation [6,18,28,31,47] .

Consensus is a fundamental cooperative task in MASs where all the agents in a team are supposed to agree on a certain

value of interest while each agent updates its states merely on the basis of its own states and the local information from

its neighbors. Consensus has applications in a variety of domains, including cooperation of network sensors [35] , decision

making [26] , motion coordination of unmanned aerial vehicles (UAVs) [23,40] and autonomous underwater vehicles (AUVs)

[2] , attitude synchronization in spacecraft [48] , flocking control [33] , and load sharing in microgrids [12] . 

Early studies of consensus mainly focused on the cooperation of agents with first- and second-order dynamics

[20,27,29,34] . In [34] , the problem of average consensus for first-order integrators under switching topologies and identi-

cal time delays was fully developed. The authors in [20] fully discussed the consensus problem of second-order system
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models under jointly-connected switching topologies based on a space decomposition technique. In [29] , necessary and suf-

ficient conditions were derived to guarantee consensus in a network of second-order systems over directed topology with a

uniform constant delay. 

However, first- and second-order kinematics fail to model many practical systems described by high-order differential

equations. Hence, several studies concentrated on the consensus problem for linear high-order dynamics [4,11,39,41] . Tech-

niques such as feedback linearization can be used to convert nonlinear systems to linear ones. The perfect cancellation of

the nonlinearities requires having an exact model for the system which is not feasible in reality. Therefore, applying the

results of linear MASs to unknown nonlinear MASs is not straightforward. However, despite its great importance, there are

rather few studies dedicated to the consensus of high-order nonlinear systems [19,21,37,38,45,46] . For example, the au-

thors in [37] developed a consensus framework for a network consisting of uncertain high-order nonlinear systems under

jointly-connected switching topologies. The work of [21] , investigates consensus problem for high-order stochastic nonlin-

ear systems under fixed topology. In [19] , the leader-following consensus for nonlinear homogenous MASs with network

induced delays is studied. 

Cooperative control of high-order nonlinear MASs can be even more challenging in the presence of input saturation. This

practical concern results from the physical constraints of actuators. This issue has been studied in [7,36,43,44] . The study

of [36] was dedicated to the semi-global bipartite consensus of general linear MASs with switching topologies. In [43] ,

leader-following output consensus of linear discrete-time MASs subject to actuator saturation and external disturbances was

examined. A leader-follower framework for consensus of a group of linear MASs with input saturation was established in

[44] . 

All the aforementioned studies shared the assumption that the control directions are known. Nevertheless, in some prac-

tical situations, the controlling effect is not accessible. This issue is already addressed for a single system by using the

Nussbaum-type function initially introduced in [32] . Tackling this issue for control of MASs is challenging due to the fact

that each agent Nussbaum gain parameter may move in a different direction which impedes using the usual method of con-

tradiction in the establishment of the stability of the overall system [13] . Recently some studies have appeared to overcome

this challenge. The authors in [3] investigated adaptive consensus problem of first-order and second-order linearly parame-

terized systems where the control directions are assumed to have known lower and upper bounds. The problem of adaptive

output regulation in the presence of unknown identical control direction was addressed in [13,30] in which the need for

prior knowledge of the lower and upper bounds was removed. Researchers in [3,13,30] investigated the special case where

all the control directions of the subsystems are identical. Although this condition was relaxed in [1] , it still relies on knowing

some of the control directions. 

The above-mentioned facts motivated us to address the problem of consensus for high-order unknown nonlinear systems

with input saturation, time-varying disturbance, and unknown control direction under switching interaction topologies. We 

develop an approach that converts the problem into the consensus of first-order MASs with bounded perturbation terms and

then employs a properly developed stabilizing controller. Radial basis function neural networks are used to approximate the

unknown nonlinear part of the system dynamics, while their update rules are derived based on the Lyapunov analysis.

In order to deal with the unknown control direction, the Nussbaum-type function is utilized. An auxiliary system is also

implemented for each agent to compensate for the input saturation while the effect of the time-varying disturbance and

the approximation error of the neural network is counteracted by an adaptive sliding mode control scheme. 

Compared to the most relevant study [37] , our approach takes into account the effects of both unknown control direc-

tion and input saturation. Besides, in the work of [37] , the control parameters were determined in such a way that a linear

matrix inequality (LMI), which is dependent on the number of agents, should hold. Hence, growing the number of agents

in the network would increase the computational burden. To the best of our knowledge, no studies have yet considered the

problem at hand in the presence of the all aforementioned practical issues. For example, in [21,37,38,45] , the unknown con-

trol direction was not addressed. Existing approaches that cope with this difficulty [1,3,13,30] , not only neglected the effects

of actuator saturation and switching topologies but also required the input directions to satisfy some limiting conditions. As

a case in point, in [3] , it was supposed that the upper and lower bounds of control effects are known. In [3,13,30] , it was

assumed that all control directions have an identical sign and in [1] some part of the control coefficients was considered

to be known. In Table 1 , the differences of our method with those presented in other relevant studies are highlighted. The

contributions of this paper can be summarized as follows: 

• Consensus for a class of general complex high-order nonlinear MASs with unknown nonlinearity and disturbance is

studied. 

• The consensus is achieved asymptotically in the presence of jointly connected topology for undirected graphs and uni-

formly jointly quasi-strongly connected and balanced topology for directed graphs. 

• The impact of the actuator saturation in MASs is effectively handled. 

• The proposed approach is capable of completely tackling unknown control effects where it allows control effects to have

non-identical signs and the need for the knowledge of the boundaries of the control coefficients is removed. 

The rest of the paper is organized as follows. In Section 2 , required concepts from graph theory and notations are pre-

sented. The problem is formulated in Section 3 . In Section 4 , the control design and main results are presented. Simulations

are given in Section 5 and finally, the paper is concluded in Section 6 . 
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2. Preliminaries 

In this section, we introduce the notations and the graph theory terminology which will be used throughout the paper. 

2.1. Notations 

Throughout this paper, symbols R and R 

+ denote the set of reals and positive reals, respectively. sgn(.) expresses the

sign function. 1 N is a column vector of N elements all equal to one. 0 N denotes a column vector of N with zero entries. L ∞
presents the space of bounded signals. x ( t ) ∈ L 1 means that 

∫ ∞ 

0 | x (t) | d t < ∞ . 

2.2. Graph theory 

The interaction among N agents is represented by an undirected or directed graph G ( V, E, A ) with a node set V =
{ 1 , . . . , n } , edge set E ∈ {V × V} , and adjacency matrix A = [ a i j ] ∈ R 

n ×n . The adjacency matrix is defined such that the diago-

nal entries are equal to zero ( a ii = 0 ) and the off-diagonal entries are a ij > 0 if (i, j) ∈ E and a i j = 0 , otherwise. For undirected

graphs, we also have a ij = a ji . The set of neighbors of node v i is N i = { v j ∈ V| (v j , v i ) ∈ E} . The Laplacian matrix L = 

[
l i j 

]
is

defined as 

l i j = 

{∑ N 
j =1 , j � = i a i j i = j 

−a i j i � = j 
. (1)

The in-degree and out-degree of node v i are defined as d in 

(v i ) = 

∑ N 
j=1 a i j and d out (v i ) = 

∑ N 
j=1 a ji , respectively. A graph

is balanced if and only if d in 

(v i ) = d out (v i ) , ∀ v i ∈ V . It is clear that an undirected graph is balanced. (1 / 
√ 

N ) 1 N and w 

T 
1

( (1 / 
√ 

N ) 1 N w 

T 
1 

= 1 ) are the right and left eigenvectors associated with the zero eigenvalue of L , respectively. w 

T 
1 

is (1 / 
√ 

N ) 1 T N
if the digraph D is balanced. A class of piecewise right-continuous switching function σ (t) ( in short σ ) : [0 , ∞ ] → P =
{ 1 , 2 , . . . , n v } is used to describe the switching topologies where n v is the total number of all possible communication graphs.

We use G 

σ ( t ) to denote the communication graph at time t . An undirected graph is said to be connected if every two distinct

nodes can be connected by a path where a path is a sequence of adjacent edges of the form (v i 1 , v i 2 ) , (v i 2 , v i 3 ) , . . . , (v i j−1 
, v i j )

in which i j ∈ V . A directed graph is said to contain a directed spanning tree if it has at least one node from which there exist

directed paths to all other nodes. The union of a collection of graphs G 1 , . . . , G m 

with the node set V is a graph denoted by

G 1 −m 

with the same node set whose edge set is the union of the edge sets of all graphs. A collection of switching undirected

or directed graphs is called jointly connected or uniformly jointly quasi-strongly connected [5] if, respectively, the union of

the graphs is connected or has a directed spanning tree. We assume that there exists an infinite sequence of nonempty,

bounded and contiguous time intervals [ t r , t r+1 ] , r = 0 , 1 , . . . . with t 0 = 0 and t r+1 − t r ≤ T 1 for some constant T 1 > 0 such

that the collection of switching graphs across each time interval is jointly connected or uniformly jointly quasi-strongly

connected. It is also assumed that there is a sequence of non-overlapping subintervals [ t r 0 , t r 1 ) , . . . , [ t r j , t r j+1 
) , . . . , [ t r m −1 

, t r m r )
r 
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where t r = t r 0 , t r+1 = t r m r and t r j+1 
− t r j ≥ T 2 , 0 ≤ j < m r − 1 for some integer m r and given constant T 2 . The communication

topology is supposed to be fixed on each time subinterval and switches at t r j . 

3. Problem statement 

Consider a team of N high-order nonlinear agents which the dynamics of the i th one is as follows: 

x (n ) 
i 

= f i (X i ) + b i u i + d i (t) (2) 

where X i = [ x i , ˙ x i , . . . , x 
(n −1) 
i 

] T ∈ R 

n , u i ∈ R are system states and the control input, respectively. x (h ) 
i 

∈ R is the h th-order

state of the i th agent and x i denotes the position. f i (X i ) ∈ R is an unknown nonlinear function. b i is an unknown nonzero

constant gain with an unknown sign. d i ( t ) is an external bounded disturbance. In the sequel, we make the following as-

sumptions: 

Assumption 1. u i is gained by passing the designed input v i through a non-symmetric saturation constraint defined as 

u i = 

⎧ ⎨ 

⎩ 

u max i if v i > u max i 
v i if u min i 

≤ v i ≤ u max i 
u min i 

if v i < u min i 

(3) 

where u max i and u min i 
are known bounds of saturation nonlinearity. 

Assumption 2. | d i | ≤ D i where D i is an unknown constant. 

In order to tackle the unknown control direction, the Nussbaum-type function technique is exploited in this paper. N m 

(ξ )

is a Nussbaum function satisfies the two-sided properties [22] 

lim 

θ→±∞ 

sup 

1 

θ

∫ θ

0 

N m 

(ξ ) d ξ = ∞ 

lim 

θ→±∞ 

inf 
1 

θ

∫ θ

0 

N m 

(ξ ) d ξ = −∞ . 

(4) 

In our framework, we utilize N m 

(ξ ) = ξ 2 cos 
(
(π/ 2) ξ

)
as an example of an even Nussbaum-type function. 

In this paper, we aim at designing a protocol for a group of agents with dynamics given in (2) such that all agents reach

consensus on the position while the higher-order states converge to zero. 

Lemma 1. Let us consider the first-order integral MAS. The dynamics of each agent is 

˙ z i = −
∑ 

j∈N i (G σ (t) ) 

a i j (t)(z i − z j ) + w i 

where z i ∈ R is the state of the ith agent and w i ∈ R is continuous function on [0, ∞ ) except for at most a set with measure zero.

For ∀ z i (0) and ∀ w i satisfying w i ∈ L 1 , then z i ∈ L ∞ 

and lim t→∞ 

(
z i (t) − z j (t) 

)
= 0 if G 

σ ( t ) is jointly connected or uniformly jointly

quasi-strongly connected for respectively the undirected or directed graphs [5 , 43] . 

4. Consensus for high-order nonlinear MASs 

Consensus for high-order nonlinear MASs is discussed in this section and the main result is presented in the form of a

theorem. 

Let us define the variable s i for the i th agent as: 

s i = 

1 

γn 

(
x (n −1) 

i 
+ γ2 x 

(n −2) 
i 

+ . . . + γn −1 ̇ x i + γn x i 
)

(5) 

where the polynomial s n −1 + γ2 s 
(n −2) + . . . + γn −1 s + γn has roots in the open-left half plane. 

To deal with the effect of the saturation constraint, the auxiliary system is defined as: 

˙ τi = −βτi + 

k i (t) 

γn 
sgn (e i ) | 	u i | (6) 

where β ∈ R 

+ , e i = ˜ s i − z i , with ˜ s i = s i − τi , and 	u i = u i − v i , i.e., 

	u i = 

⎧ ⎨ 

⎩ 

u max i − v i if v i > u max i 
0 if u min i 

≤ v i ≤ u max i 
u min i 

− v i if v i < u min i 

, (7) 

˙ k i = αi 1 | e i 	u i | (8) 
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where αi 1 ∈ R 

+ and an auxiliary state z i is defined as 

˙ z i = −
∑ 

j∈N i (G σ (t) ) 

a i j (t)( ̃  s i − ˜ s j ) (9)

with the initial condition z i (0) = x i (0) . Based on universal approximation theorem [14,24] , any continuous function can be

estimated with arbitrarily small error. Having this property in mind and exploiting the fact that f i (X i ) + �i is continuous,

we can say 

f i (X i ) + �i = W 

T 
i ψ i (i ) + εi (i ) (10)

where �i = 

∑ n −1 
i =1 γi +1 x 

(n −i ) 
i 

+ βγn τi , i = [ X 

T 
i 

, �i ] 
T , ε i is a bounded approximation error, i.e., | ε i | ≤ ε i where ε i is an un-

known constant, W i is the bounded ideal weight vector with l i neurons, and ψ i = [ ψ i 1 , . . . , ψ il i 
] T is defined by 

ψ i j (i ) = exp 

(
− ( i − ̄i j ) 

T ( i − ̄i j ) 

ν2 
i j 

)

for j = 1 , . . . , l i in which ̄i j and ν ij denote the center of the receptive field and the width of the Gaussian function, respec-

tively. Since the ideal weights are unknown, we can approximate f i (X i ) + �i by 

ˆ f i (X i ) + 

ˆ �i = 

ˆ W 

T 
i ψ i (i ) . (11)

Exploiting the above structure, our problem is converted to the consensus of a network of first-order systems (9) with a

bounded perturbation and the stabilization problem of e i . The idea behind such a structure is to first the error variable e i
for each agent is driven to zero. To this end, we use the auxiliary system (6) to counteract the saturation effect, and neural

network to approximate the unknown part of each agent dynamics. The Nussbaum gain parameter is also exploited to

handle the unknown sign of the control direction. To deal with the time-varying disturbance and the approximation error

of the developed neural network, we use adaptive sliding mode control. Since we have no knowledge about the bounds

on the disturbance and approximation error, we make use of adaptive gains to estimate these bounds. After the variable

e i goes to zero, we can show that the state of the auxiliary system τ i is driven to zero for each agent while consensus

on a common value for the variables z i is achieved, i.e., z i → 

∑ N 
i =1 z i (0) /N. This implies that ˜ s i = s i and hence s i → z i →∑ N 

i =1 z i (0) /N. Afterward, we prove that choosing the initial conditions as z i (0) = x i (0) for the auxiliary system (9) , one can

have x i → 

∑ N 
i x i (0) /N. Now we put our main result in the following theorem. 

Theorem 1. Consider the MAS that is defined by (2) . Provided that time-varying topology for graph G 

σ ( t ) is jointly connected or

uniformly jointly quasi-strongly connected for the undirected or balanced directed graphs, respectively, the agents reach average

consensus under the following protocol: 

v i = N m 

(ξi ) 
(

ˆ W i (t) T ψ i (i ) + � i 

)
(12)

where 

˙ ξi = 

1 

γn 

(
ˆ W i (t) T ψ i (i ) + � i 

)
e i , (13)

˙ ˆ W i = P i ψ i (i ) e i , (14)

� i = κi (t) sgn (e i ) + γn 

∑ 

j∈N i (G σ (t) ) 

a i j (t)( ̃  s i − ˜ s j ) , (15)

in which the adaptive gain matrix P i is symmetric positive definite and 

˙ κi = αi 2 | e i | . (16)

where αi 2 ∈ R 

+ . 

Proof. The first time derivative of (5) is obtained by 

˙ s i = 

1 

γn 

(
x (n ) 

i 
+ γ2 x 

(n −1) 
i 

+ . . . + γn −1 ̈x i + γn ̇ x i 
)

which by using (2) and u i = v i + 	u i , it can be written by 

˙ s i = 

1 

γn 

(
f i (X i ) + 

n −1 ∑ 

i =1 

γi +1 x 
(n −i ) 
i 

+ b i 	u i + d i 

)
+ 

b i 
γn 

v i . (17)
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By substituting v i from (12) into (17) , one can get 

˙ s i = 

1 

γn 

(
f i (X i ) + 

n −1 ∑ 

i =1 

γi +1 x 
(n −i ) 
i 

+ b i 	u i + d i 

)
+ 

b i N m 

(ξi ) 

γn 

(
ˆ W i (t) T ψ i (X i ) + � i 

)
. (18) 

By taking derivative of e i = s i − τi − z i and using (6), (9) , and (18) , one can obtain 

˙ e i = 

1 

γn 

(
f i (X i ) + 

n −1 ∑ 

i =1 

γi +1 x 
(n −i ) 
i 

+ βγn τi + b i 	u i + d i 

)
+ 

b i N m 

(ξi ) 

γn 

(
ˆ W i (t) T ψ i (X i ) + � i 

)

− k i 
γn 

sgn (e i ) | 	u i | + 

∑ 

j∈N i (G σ (t) ) 

a i j (t)( ̃  s i − ˜ s j ) . 

(19) 

By substituting (10) into (19) , one can get 

˙ e i = 

1 

γn 

(
W 

T 
i ψ i (i ) + b i 	u i + d i + εi 

)

+ 

b i N m 

(ξi ) 

γn 

(
ˆ W i (t) T ψ i (X i ) + � i 

)

− k i 
γn 

sgn (e i ) | 	u i | + 

∑ 

j∈N i (G σ (t) ) 

a i j (t)( ̃  s i − ˜ s j ) . 

(20) 

Now, let us consider the positive definite function as V i = V i 1 + V i 2 with 

V i 1 = 

1 

2 

e 2 i , 

V i 2 = 

1 

2 γn 

(
˜ W 

T 
i P −1 

i 
˜ W i + 

1 

αi 1 

˜ k 2 i + 

1 

αi 2 

˜ κ2 
i 

)
, 

(21) 

where ˜ W i (t) = 

ˆ W i (t) − W i , ̃
 k i (t) = k i (t) − | b i | , and ˜ κi (t) = κi (t) − (D i + ε i + βγn ) . The reason for considering V i 2 as a part of

the overall Lyapunov function is to derive the adaptive laws for neural network weights and estimators k i and κ i . Since the

bounds on the signals | b i | and D i + ε i + βγn are not known, the adaptive gains k i and κ i are respectively implemented to

estimate these bounds. 

By using (13) and taking the time derivative of V i 1 along (20) , one can conclude that 

˙ V i 1 = 

1 

γn 

(
W 

T 
i ψ i (i ) + γn 

∑ 

j∈N i (G σ (t) ) 

a i j (t)( ̃  s i − ˜ s j ) 
)

e i 

+ b i N m 

(ξi ) ˙ ξi −
k i 
γn 

| e i 	u i | + 

b i 
γn 

e i 	u i + 

d i + εi 

γn 
e i . 

(22) 

By subtracting and adding ˙ ξi to the right-hand side of (22) and using (13) and (15) , it can be concluded that 

˙ V i 1 = 

1 

γn 

(
W 

T 
i ψ i (i ) + γn 

∑ 

j∈N i (G σ (t) ) 

a i j (t)( ̃  s i − ˜ s j ) 
)

e i 

+ 

˙ ξi −
1 

γn 

(
ˆ W i (t) T ψ i (i ) + κi (t) sgn (e i ) 

+ γn 

∑ 

j∈N i (G σ (t) ) 

a i j (t)( ̃  s i − ˜ s j ) 
)

e i + b i N m 

(ξi ) ˙ ξi 

− k i 
γn 

| e i 	u i | + 

b i 
γn 

e i 	u i + 

d i + εi 

γn 
e i 

= − 1 

γn 

˜ W 

T 
i ψ i (i ) e i + 

(
b i N m 

(ξi ) + 1 

)
˙ ξi 

− k i 
γn 

| e i 	u i | + 

b i 
γn 

e i 	u i −
κi 

γn 
| e i | + 

d i + εi 

γn 
e i . 

By exploiting e i 	u i ≤ | e i 	u i |, e i ≤ | e i |, | d i | ≤ D i , | ε i | ≤ εi , ˜ k i = k i − | b i | , and κi = κi − (D i + ε i + βγn ) , we have 

˙ V i 1 ≤ − 1 

γn 

˜ W 

T 
i ψ i (i ) e i + 

(
b i N m 

(ξi ) + 1 

)
˙ ξi 

−
˜ k i 
γn 

| e i 	u i | − ˜ κi 

γn 
| e i | − β| e i | . 
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Now we can obtain the time derivative of V i as 

˙ V i ≤
1 

γn 

˜ W 

T 
i P −1 

i 

(
˙ ˜ W i − P i ψ i (i ) e i 

)

+ 

(
b i N m 

(ξi ) + 1 

)
˙ ξi + 

˜ k i 
γn αi 1 

( ˙ ˜ k i − αi 1 | e i 	u i | 
)

+ 

˜ κi 

γn αi 2 

(
˙ ˜ κi − αi 2 | e i | 

)
− β| e i | . 

(23)

Because W i , θ i , | b i |, and D i + ε i + βγn are constant, we have ˙ ˜ W i = 

˙ ˆ W i , 
˙ ˜ θi = 

˙ ˆ θi , 
˙ ˜ k = 

˙ k i , ˙ ˜ κ = ˙ κi , and hence, substituting (8), (14) ,

and (16) into (23) yields 

˙ V i ≤ −β| e i | + 

(
b i N m 

(ξi ) + 1 

)
˙ ξi . (24)

Hence, from (24) , it follows that: 

˙ V i ≤
(
b i N m 

(ξi ) + 1 

)
˙ ξi . (25)

By taking the time integral of both sides of (25) , one can get 

0 ≤ V i (t) ≤ V i (0) + 

∫ t 

0 

b i N m 

(
ξi (τ ) 

)
˙ ξi (τ ) d τ + ξi (t) 

where ξi (0) = 0 . Since 

∫ t 

0 

N m 

(
ξi (τ ) 

)
˙ ξi (τ ) d τ = 

∫ ξi (t) 

0 

N m 

(ξi ) d ξi , 

we have 

0 ≤ V i (t) ≤ V i (0) + 

∫ ξi (t) 

0 

b i N m 

(ξi ) d ξi + ξi (t) (26)

or equivalently 

−ξi (t) − V i (0) ≤
∫ ξi (t) 

0 

b i N m 

(ξi ) d ξi . (27)

According to (4) , N m 

(ξi ) has the following properties: 

lim 

ξi (t) →±∞ 

sup 

1 

ξi (t) 

∫ ξi (t) 

0 

b i N m 

(ξi ) d ξi = ∞ (28)

and 

lim 

ξi (t) →±∞ 

inf 
1 

ξi (t) 

∫ ξi (t) 

0 

b i N m 

(ξi ) d ξi = −∞ . (29)

By the method of contradiction, it can be proved that ξ i ( t ) ∈ L ∞ 

. Suppose that ξ i ( t ) becomes unbounded, then there are two

cases. 

1. If ξ i ( t ) → ∞ , then by utilizing (27) , one can get 

lim 

ξi (t) →∞ 

−ξi (t) + V i (0) 

ξi (t) 
≤ 1 

ξi (t) 

∫ ξi (t) 

0 

b i N m 

(ξi ) d ξi 

and it can be obtained that 

−1 ≤ lim 

ξi (t) →∞ 

1 

ξi (t) 

∫ ξi (t) 

0 

b i N m 

(ξi ) d ξi . (30)

Easily observed that (30) contradicts with (29) . 

2. If ξi (t) → −∞ , then by using (27) , one can obtain 

lim 

ξi (t) →−∞ 

−ξi (t) + V i (0) 

ξi (t) 
≥ 1 

ξi (t) 

∫ ξi (t) 

0 

b i N m 

(ξi ) d ξi 

and it can be concluded that 

−1 ≥ lim 

ξi (t) →−∞ 

1 

ξi (t) 

∫ ξi (t) 

0 

b i N m 

(ξi ) d ξi . (31)
Again (31) contradicts with (28) . 
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Therefore, ξ i ( t ) is bounded, and 

∫ ξi (t) 

0 
b i N m 

(ξi ) d ξi is also bounded. By exploiting (26) , V i is bounded. According to V i =
V i 1 + V i 2 , where V i 1 and V i 2 defined in (21) , one can conclude that e i , ˜ W i , ˆ W i , ̃

 k i , k i , ̃  κi , and κ i are bounded. 

From (24) , one can get 

˙ V i ≤ −β| e i | + 

(
b i N m 

(ξi ) + 1 

)
˙ ξi . (32) 

Then, the time integration of (32) over [0, ∞ ) becomes 

∫ ∞ 

0 

| e i | ≤ 1 

β

(
V i (0) − V i (∞ ) + 

∫ ξi (∞ ) 

0 

b i N m 

(ξi ) d ξi + ξi (∞ ) 

)
. (33) 

Since the right side of (33) is bounded, we can conclude that e i ∈ L 1 . 

From (9) and e i = ˜ s i − z i , one can get 

˙ z i = −
∑ 

j∈N i (G σ (t) ) 

a i j (t)(z i − z j ) + w i (34) 

where 

w i = −
∑ 

j∈N i (G σ (t) ) 

a i j (t)(e i − e j ) . (35) 

Since e i ∈ L 1 for i = 1 , . . . , N, the equation (35) implies that w i ∈ L 1 . According to Lemma 1 , one can conclude that z i is

bounded and lim t→∞ 

(
z i (t) − z j (t) 

)
= 0 . Based on the facts that z i ∈ L ∞ 

, e i ∈ L ∞ 

, and e i = ˜ s i − z i , the boundedness of ˜ s i

can be concluded. According to ˜ s i ∈ L ∞ 

for i = 1 , . . . , N, ˆ W i , κi , ξi ∈ L ∞ 

, 0 < ψ ij ( i ) ≤ 1, and (12) , it can be said that v i is

bounded. Since v i ∈ L ∞ 

and (7) , 	u i is bounded. Based on ˜ s i ∈ L ∞ 

for i = 1 , . . . , N, 	u i , ξi , ˆ W i , κi , e i , k i ∈ L ∞ 

, | d i | ≤ D i , | ε i | ≤ εi ,

0 < ψ ij ( i ) ≤ 1, and (20) , one can conclude that ˙ e i is bounded. Barbalat’s lemma can also be applied in this case because e i 
and ˙ e i are bounded and e i ∈ L 1 . Therefore, one can conclude that 

lim 

t→∞ 

e i (t) = 0 . 

To proof the boundedness of τ i , let us rewrite (6) as 

˙ τi = −βτi + h i (36) 

where h i = (k i /γn ) sgn (e i ) | 	u i | . Since k i , 	u i ∈ L ∞ 

, h i is bounded. Hence, (36) can be regarded as a linear systems

with bounded input h i . It is obvious that τ i ∈ L ∞ 

since input h i is bounded. Based on lim t→∞ 

e i (t) = 0 and h i =
(k i /γn ) sgn (e i ) | 	u i | , one can conclude that lim t→∞ 

h i (t) = 0 , which results in lim t→∞ 

τi (t) = 0 . Based on lim t→∞ 

τi (t) = 0 ,

lim t→∞ 

e i (t) = 0 , and e i = s i − τi − z i , one can get 

lim 

t→∞ 

s i (t) = lim 

t→∞ 

z i (t) . 

Now, (34) can be described for the whole MAS as: 

˙ z = −L G σ (t) z − L G σ (t) e (37) 

where z = [ z 1 , z 2 , . . . , z N ] 
T and e = [ e 1 , e 2 , . . . , e N ] 

T . Since G 

σ ( t ) is balanced at any time instant, one have 1 T N L G σ (t) = 0 T N . Based

on this and by multiplying both sides of (37) by 1 T N , one can conclude that 1 T N ̇ z = 0 T N . Then, taking integration yields 1 T N z(t) =
1 T N z(0) . Since lim t→∞ 

s i (t) = lim t→∞ 

z i (t ) , lim t→∞ 

z 1 (t ) = z 2 (t) = . . . = z N (t) , and z i (0) = x i (0) , one can conclude that 

lim 

t→∞ 

s i (t) = lim 

t→∞ 

z i (t) = 

1 

N 

N ∑ 

i =1 

x i (0) . 

By taking the Laplace transform of (5) and after some mathematical manipulations, one can obtain 

X i (s ) = 

1 

s n −1 + γ2 s n −2 + . . . + γn 
×

(
γn S i ( s ) + 

n −1 ∑ 

k =1 

s n −1 −k x (k −1) 
i 

( 0) + 

n −1 ∑ 

h =2 

n −h ∑ 

k =1 

γh s 
n −h −k x (k −1) 

i 
( 0) 

)
(38) 

where X i ( s ) and S i ( s ) denote Laplace transform of x i ( t ) and s i ( t ), respectively. By using (38) , lim t→∞ 

s i (t) = (1 /N) 
∑ N 

i =1 x i (0) ,

the final value theorem, i.e., lim t→∞ 

x i (t) = lim s → 0 sX i (s ) and lim s → 0 sS i (s ) = lim t→∞ 

s i (t) , and the fact that the polynomial

s n −1 + γ2 s 
n −2 + . . . + γn has roots in the open-left half plane, one can conclude that 

lim 

t→∞ 

x i (t) = 

1 

N 

N ∑ 

i =1 

x i (0) 

and therefore, lim t→∞ 

x (k ) 
i 

(t) = 0 , k ∈ { 1 , . . . , n − 1 } , and the proof is completed. �

Remark 1. Exploiting the auxiliary systems (6) along with introducing variables s i , e i , and z i , in the proposed control

scheme, the group consensus of the high-order nonlinear MAS with unknown nonlinearities, disturbances and unknown
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Table 2 

Initial states of the agents . 

Agent φ i 1 , φ i 2 , φ i 3 , φ i 4 Agent φ i 1 , φ i 2 , φ i 3 , φ i 4 

1 1, 0.5, 1, 0.8 4 0, 0.2, 0.5, 0.2 

2 0.5, 0.5, 0.2, 0.1 5 0.2, 5, 0.2, 0, -0.5, 1 

3 1, 0, 2, 0.5 6 -0.5, 0.8, 0.5, -0.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

control direction is decoupled to the two tasks: consensus of the first-order MASs (9) and the stabilization control of the

unknown nonlinear system with input saturation and external disturbance for e i with the dynamics obtained in (19) . As it

is discussed in [1,3,13,30] , extending conventional Nussbaum gain technique to the cooperative task is quite involved. Hav-

ing introduced the proposed structure, we facilitate extending the Nussbaum-type function for an individual system to the

cooperative case and also relax all the limiting conditions. Our method just requires the control effects to have non-zero

values. 

Remark 2. In the proposed framework, each agent is supposed to transmit the signal ˜ s i to its neighbors. This signal can be

calculated online on each agent. 

Remark 3. It is noteworthy that an important issue, which is very important and crucial especially in MASs is event-

triggered control. In this approach, the sensors and controllers are updated when a specific event happens. This frame-

work comes up with several advantages such as reducing the communication bandwidth and the control effort. Because,

in practice, the control systems and embedded sensors are resource constrained, the event triggered control holds promis-

ing potential in practical implementation of distributed control systems and hence, worth to be taken into account in this

context. The readers are referred to [8–10,15–17] for more information. 

Remark 4. The final value of the agreement is dependent on the initial conditions of the auxiliary systems (9) , i.e.,

x i → 

∑ N 
i =1 z i (0) /N. Therefore, the average consensus is accomplished by letting z i (0) = x i (0) . In the directed case, the graph

should be uniformly jointly quasi-strongly connected and balanced in order to average consensus is achieved. If the network

topology is only uniformly jointly quasi-strongly connected and not balanced, then the consensus is still acquired but the

final value of the agreement is not the average of the initial conditions. 

5. Simulation results 

Cooperation of the manipulators plays a key role in the assembly automation and production processes with high flex-

ibility. One of the typical task in force control is the grasping task via robot manipulators in which all manipulators are

required to reach a common configuration. To study the effectiveness of the presented control, we conduct numerical simu-

lations for consensus of multiple single-link flexible joint manipulators. This is done by applying both our method and that

of [37] . Consider a group of six single-link flexible joint manipulators with DC motor actuators which the dynamics of the

i th one is governed by the following equations [37] 

Motor 

{
˙ φ1 i = φ2 i 

˙ φ2 i = g i (φ1 i , φ2 i , φ3 i ) + ρi u i + d i 
Fig. 1. Four communication topologies of the six agents. 
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Fig. 2. Trajectories of the six joints angular rotations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Joint 

{
˙ φ3 i = φ4 i 

˙ φ4 i = 19 . 5 ( φ1 i − φ3 i ) − 3 . 33 sin ( φ3 i ) 

where φ1 i and φ2 i denote, respectively, the angular rotation and angular velocity of the manipulator motor, φ3 i and φ4 i de-

note the angular rotation and angular velocity of the manipulator joint, respectively, u i is the control input, g i (φ1 i , φ2 i , φ3 i ) =
48 . 6 ( φ3 i − φ1 i ) − 1 . 25 φ2 i , and ρi = 21 . 6 . In the process of control design, in [37] , ρ i is supposed to be an unknown posi-

tive constant while in our method it is assumed that ρ i is an unknown constant. As another difference, in [37] , g i ( φ1 i , φ2 i ,

φ3 i ) is described by a known nonlinear regressor vector multiplied by an unknown constant parameter vector. However, in

our framework, this nonlinear function is considered to be completely unknown. d i is chosen to be 0.1 i sin ( t ). Considering

x i = φ3 i , one can have 

x i = φ3 i 

˙ x i = φ4 i 

ẍ i = 19 . 5 φ1 i − 19 . 5 φ3 i − 3 . 33 sin (φ3 i ) 
... 
x i = 19 . 5 φ2 i − 19 . 5 φ4 i − 3 . 33 φ4 i cos (φ3 i ) . 

Now the equation of each manipulator can be transformed to the following fourth-order dynamics 

x (4) 
i 

= f i (X i ) + b i u i + 19 . 5 d i 

with b i = 19 . 5 ρi , X i = [ x i , ˙ x i , ̈x i , 
... 
x i ] 

T . In [37] , f i (X i ) is described by a known nonlinear regressor vector 

ϕ 

T 
i = 

[
˙ x i ẍ i 

... 
x i sin (x i ) ˙ x 2 

i 
sin (x i ) ˙ x i cos (x i ) ẍ i cos (x i ) 

]
multiplied by an unknown constant parameter vector ψ i ∈ R 

7 as f i (X i ) = ϕ 

T 
i 
ψ i . However, in our framework, f i (X i ) is com-

pletely unknown function as: 

f i (X i ) = 19 . 5 g i − 19 . 5 ̈x i + 3 . 33 ̇

 x 2 i sin (x i ) − 3 . 33 ̈x i cos (x i ) . 

The interaction topology of the manipulators via which the agents exchange their information is jointly connected. The

network topology switches between the four graphs shown in Fig. 1 . σ (t) = fix 
(
mod (2 t, 4) + 1 

)
. The initial conditions,

( φi 1 (0), φi 2 (0), φi 3 (0), φi 4 (0)), are given in Table 2 . The controller parameters of the proposed control scheme are selected

as ε = 0 . 02 , s 3 + γ2 s 
2 + γ3 s + γ4 = (s + 3) 3 , β = 5 , P i = 100 I, αi 1 = αi 2 = 1 , κi (0) = k i (0) = 10 , and 

ˆ W i j (0) ∈ [ −50 0 , 50 0] , i =
1 , . . . , 6 , j = 1 , . . . , 25 . The input saturation limit is [ −10 , 12] , i.e., −10 ≤ u i (t) ≤ 12 . The RBFNN contains 25 nodes with cen-

ters evenly spaced in [ −2 , 2] × [ −0 . 5 , 0 . 5] × [ −2 , 2] × [ −0 . 5 , 0 . 5] × [ −25 , 25] , and widths 0.5. One approach to reduce chat-

tering is to use a continuous approximation of the sgn( x ) function [25] . We approximate the sgn(.) function by the sat(.)

function described as 

sat 

(
x 

ε

)
= 

{
sgn (x ) | x | ≥ ε

x 
ε | x | < ε

. 
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Fig. 3. Trajectories of the six motors angular rotations. 

Fig. 4. Trajectories of the six joints angular velocities. 

 

 

 

 

 

To conduct simulations for the approach of [37] , the control parameters are selected the same as those in the numerical

example of that paper. 

The trajectories of the joints angular rotations are shown in Fig. 2 , which clearly visualizes the process of group consen-

sus. The trajectories of the motors angular rotations are shown in Fig. 3 . As we can see from Figs. 2 and 3 the responses of

our approach are much faster than that of [37] . The convergence of angular velocities of the joints and the motors to zero

are presented in Figs. 4 and 5 , respectively. As it is obvious from Fig. 6 , in our framework compared to [37] , the cooperative

goal is achieved with much less control effort which highlights the practical importance of the presented control scheme. 
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Fig. 5. Trajectories of the six motors angular velocities. 

Fig. 6. Control input signals. 

 

 

 

 

 

 

 

 

6. Conclusion 

In this paper, we studied the consensus problem of unknown high-order nonlinear MASs with input saturation, unknown

control direction, time-varying disturbance, and switching topologies. The problem was first decoupled to the consensus of

a group of first-order MASs and the stabilization control. Furthermore, respectively, the Nussbaum-type function method,

auxiliary systems, and radial basis function neural networks were used to deal with unknown control directions, input sat-

uration, and the unknown nonlinearities existed in the agent dynamics. The approximation error of the developed neural

network along with the disturbance was counteracted using an adaptive sliding mode control scheme. The asymptotic stabil-

ity of the overall system was established using Lyapunov function theory. Comparative simulations were also performed for

a group of single-link flexible joint manipulators. As our future research, we plan to extend the design to the event-triggered

control problem. 
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