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Abstract This paper deals with the problem of
designing a controller for a thrust-propelled vehicle
which steers the vehicle to track a 3D spatial path,
while effective compensation for both time-varying
disturbances and uncertainties is achieved as well. Tak-
ing advantage of extraction algorithm, we separate the
design for the translational and rotational dynamics. A
back-stepping-based controller and a slidingmode con-
troller are, respectively, designed for the translational
and rotational dynamics in succession. The stability of
the control framework is established through Lyapunov
analysis. A numerical simulation is also included in the
paper to render the effectiveness of the proposed con-
trol scheme.
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1 Introduction

Recently, motion control of thrust-propelled vehicles
(TPVs) as an important class of under-actuated vehicles
has attracted too much attention. The under-actuation
of these systems lies in their translational dynamics in
which a propulsive thrust force accelerates the vehi-
cle along one body-fixed axis. A vectored torque input
with independent components is used to modify the
direction of the thrust force. Typical examples of TPVs
are vertical takeoff and landing unmanned aerial vehi-
cles (VTOL-UAVs) [15] and autonomous underwater
vehicles (AUVs) [5].

The motivation of the paper is trajectory track-
ing control of a thrust-propelled vehicle evolving in
SE(3) in which the vehicle tracks a geometric path
parameterized by time. This problem for fully actu-
ated systems is well studied. Yet, despite the tremen-
dous effort [13,17–19,21], trajectory tracking control
for the under-actuated mechanical systems are still an
active topic of research.

Attitude control of rigid bodies, as a part of the
TPV dynamics, has been extensively researched [6,25,
26,29]. However, when the position is involved, the
problem becomes more complicated especially when
asymptotic stability in the presence of disturbances and
uncertainties is to be achieved. Up to now, position con-
trol of this type of systems has been the focus of sev-
eral researches. In [4], exploiting singular perturbation
theory a hierarchical controller for VTOL UAVs was
employed for stabilization of a hovering VTOL. In [1],
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relying on extraction algorithm, a control framework
was proposed to solve global trajectory tracking of a
single VTOL UAV. In [14], a similar control frame-
work was implemented for a class of under-actuated
systems with the difference that instead of using the
orientation of the system as an intermediary control
input to stabilize the position, the angular velocity was
used.

In our study, we aim to include the impact of model
uncertainties and time-varying disturbances, which are
unavoidable in practical applications, in the procedure
design. Despite the practical significance of this issue,
most of the studies devoted to this problem either do not
consider the disturbance impact or the disturbances are
assumed to be fixed in the inertial frame. For instance,
[7,22] investigated merely existence of constant dis-
turbances in the model where a set of estimators are
included to cope with the disturbances; however, in
the presence of time-varying disturbance, these esti-
mators can no longer be implemented. In [20], a con-
troller for position stabilization of a ducted fan aircraft
with a constant crosswind was introduced. Yet global
stability was not ensured and just stabilization around
a desired position was considered. In [10], a hybrid
controller is proposed for trajectory tracking of a class
of under-actuated system which translational dynam-
ics is perturbed by an unknown constant disturbance
that scales a bounded smooth state function. In [3]
using back-stepping method, trajectory tracking and
path following problem for a class of under-actuated
vehicles with modeling parametric uncertainty were
investigated, whereas just convergence of the tracking
error signals to a small neighborhood of the origin was
provided.

It is relevant to mention that the effect of distur-
bances and uncertainties has been coped with for a
variety of nonlinear systems (just to cite a few, see
[8,11,16,27,28,30]). In most of these works either a
non-continuous control input is designed which can-
not be extended directly to this class of under-actuated
systems or only ultimate boundedness of the state tra-
jectories is verified which is not the goal we are aiming
at in this paper. Here, we further pursue a global asymp-
totic trajectory controller while a pair of time-varying
disturbances perturbs the translational and rotational
dynamics and there is no knowledge about the mass
and inertia matrix of the vehicle.

A typical and intuitiveway to dealwith such systems
is to exploit the cascade design whereby the required

thrust direction is extracted.Afterward, the torque input
is designed such that the desired thrust force is pro-
vided for the vehicle. The difficulty which arises in this
method is the constraints immersed through the proce-
dure of extracting the desired thrust force. All extrac-
tion algorithms suffer from singularity. Moreover, the
required extracted thrust must be twice differentiable.
These limitations along with the uncertainties and dis-
turbances make the position control of this type of
vehicles more challenging. Compared to other results
reported in the literature, the prominent feature of our
work is to consider the time-varying disturbances in
the translational dynamics which makes us to put aside
the most familiar and effective controller, i.e., sliding
mode control. For example, in the work of [7,22], a
back-stepping approach and extraction method are uti-
lized for trajectory tracking for a thrust-propelled vehi-
cle with constant disturbances. In both studies, to con-
trol the translational dynamics (which is the most com-
plicated part of the thrust-propelled control), saturated
controllers are designed based on position and velocity
errors of the vehicle. Thereafter in the next step, these
controllers were used in [7] through a back-stepping
procedure and in [22] in the extraction algorithm calcu-
lations, both required the translational controller to be
twice differentiable. However, the zero differentiation
of the disturbance simplifies the design by incorporat-
ing smooth estimators in the translational controllers.
The same argument holds for other researches as well
[4,10,20]. In fact, although diverse methods were used
in the studies (hybrid controller [10], singular pertur-
bation theory [4], back-stepping approach [3,20]), they
have one thing in common: All utilized saturated con-
trollers in the translational control procedure in the
absence of time-varying disturbance. Moreover, the
translational virtual control should be also designed to
be bounded a priori. To this effect, in ourwork the trans-
lational controller is designed in two steps in which a
couple of variable structure controllers play the role of
virtual control.

The main contribution of this paper is asymptotic
tracking control for an under-actuated TPV, accommo-
dating for time-varying translational and rotational dis-
turbances. In addition, Our approach is robust against
inertia matrix uncertainty. To the authors’ best knowl-
edge, this is the first time that the existence of time-
varying disturbances is addressed for asymptotic track-
ing of this class of under-actuated vehicles. The dif-
ficulty lies in the fact that these systems are under-
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Trajectory tracking of a thrust-propelled vehicle with uncertainties

actuated, and hence, using non-differentiable functions
in control input is not allowed. On the other side, the
vast majority of the controllers introduced so far to
counteract the effect of the time-varying disturbances
include the non-smooth control inputs such as sliding
mode control. Having this constraint in mind, we pro-
pose a new variable structure control, which is twice
differentiable, to deal with the translational disturbance
and then can be used throughout the back-stepping
procedure. As another contribution of the paper, the
mass of the vehicle is assumed to be unknown which is
required to be used in the extraction algorithm. Hence
we estimate its value by implementing an adaptive esti-
mator. However, the other problem which arises here
is that our estimation should be always nonzero; other-
wise, singularity would happen in the extraction algo-
rithm. We also deal with this challenge by utilizing a
smooth projection operator. It is to be noted that due to
the under-actuated nature of these systems, in order that
the attitude dynamics reaches the desired performance,
the first and second time derivative of the virtual con-
trol input should be at hand as the components of the
reference signal for rotational dynamics. We also solve
this issue by implementing a robust attitude controller
which not only cope with the effect of disturbances and
uncertainties in inertial matrix but also it is designed in
the presence of some unknown part of the reference sig-
nal. It is worth mentioning that the proposed approach
also allows us to implement the controller in a condi-
tions where the bounds for rotational disturbance and
some part of the reference signal are unknown.

The rest of the paper is organized as follows. In the
next section, preliminaries are given. The procedure
design for the position and attitude control is explained
in Sect. 3. The stability of the proposed control frame-
work is provided in Sect. 4. An illustrative numerical
simulation is given in Sect. 5, and the paper is finally
concluded in Sect. 6.

2 Preliminaries

2.1 System model

The equations characterizing themotion of the TPV are
given by

{
ṗ = v,

v̇ = gẑ − T
m R(Q)T ẑ + b(t),

(1a)

⎧
⎨

⎩
Q̇ = 1

2

(
ηI3 + q×

−qT

)
ω,

J ω̇ = Γ − ω× Jω + d(t),
(1b)

where ẑ = (0, 0, 1)T and m is the total mass of the
TPV and g is the gravitational acceleration. p ∈ R3

and v ∈ R3 are, respectively, the position and the
linear velocity of the center of the mass of the TPV
coordinated in the inertial frame. b(t) and d(t) are the
translational and rotational time-varying disturbances,
respectively. J ∈ R3×3 is the inertia matrix with
respect to the body-fixed frame. The scalar T and vec-
tor Γ ∈ R3 are, respectively, the thrust and torque
input for the vehicle. ω denotes the body-referenced
angular velocity of the vehicle. The unit quaternion
Q = (qT , η)T is the attitude of the vehicle with respect
to the inertial frame which composed of the vector part
q ∈ R3 and the scalar part η and satisfies the con-
straint qT q + η2 = 1 [12,23]. The inverse of unit
quaternion Q is defined as Q−1 = (−qT , η)T with
the quaternion identity given by Q = (0, 0, 0, 1)T .
The unit quaternion multiplication is defined by Q ⊙
Q j = ((qT η j + q jη + q×q j )

T , ηη j − qT q j )
T which

is also a unit quaternion. The rotation matrix R(Q)

which brings the inertial frame into the body frame
is obtained by R(Q) = (η2 − qT q)I3 + 2qqT −
2ηq× where × is a skew symmetric matrix such that
x× = (0,−x3, x2; x3, 0,−x1;−x2, x1, 0), in which
x = [x1, x2, x3]T .

2.2 Objective

Design controllers thrust input T (t) and torque input
Γ (t) for the system given in (1) such that the posi-
tion of the vehicle asymptotically tracks the desired
spatial path pd(t) from any initial conditions on posi-
tion, linear velocity, attitude and angular velocity in
the presence of time-varying disturbances and uncer-
tainties in the mass and inertia matrix, in other words
p(t) → pd(t). To fulfill our goal, we assume that the
position, velocity, attitude and angular velocity of the
vehicle are available to be used in feedback.

Assumption 1 We assume that the mass of the vehicle
has a known lower boundmL and a known upper bound
mU . Hencewithout loss of generality, it is assumed that
1/m = θ0 + θ̄ , where θ0 is ( 1

mL
+ 1

mU
)/2 which is

known, and θ is an unknown constant which has the
property that |θ | ≤ ( 1

mL
− 1

mU
)/2.
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Assumption 2 It is assumed that there exist known
constants um1 andUm such that sup

t>0
||b(t)|| < um1 and

sup
t>0

||v̇d(t)|| + um1 < Um < g where vd is derivative

of the desired path. It is also assumed that v̈d and v
(3)
d

are bounded.

Assumption 3 The inertia matrix J is bounded with
some unknown constant ||J || < J̄ .

Assumption 4 The torque disturbanced(t) is assumed
to be bounded with some unknown upper bound
sup
t>0

||d|| = J̄ d̄ .

3 Control design strategy

Let us define the error variables p̃ = p(t) − pd(t)
and ṽ = v(t) − vd(t). Taking θ = 1/m for notational
convenience,we add and subtract the terms θ̂T R(Q)T ẑ
and θ̂T R(Qd)

T ẑ to the second equation in (1a) which
leads to the following translational error dynamics by

˙̃p = ṽ, (2)
˙̃v = −v̇d(t)+ F + F̃ − θ̃T R(Q)T ẑ + b(t), (3)

with

F = gẑ − θ̂T R(Qd)
T ẑ, (4)

F̃ = θ̂T
(
R(Qd)

T − R(Q)T
)
ẑ, (5)

where θ̃ = θ−θ̂ and θ̂ is the estimation of the parameter
θ , F is the intermediate controller for the translational
dynamics and F̃ is the under-actuation error. Note that
from Assumption 1, θ can be decoupled as a known
part and an unknown part. Therefore, we take θ̂ = θ0+
ˆ̄θ where ˆ̄θ is the estimation of the unknown part and

consequently we have θ̃ = ˜̄θ = θ̄ − ˆ̄θ .
As we can see from (2) to (3), we have the interme-

diate controller F as an input for a fully actuated sys-
tem. When F is designed, the thrust controller T and
the desired attitude can be obtained from the extraction
algorithm described in “Appendix A.” The error of the
under-actuation is remained to be dealt with in design-
ing the torque controller Γ . As we will see through-
out the paper, by making F prior bounded, the under-
actuation is also prior bounded which can be viewed as
a bounded perturbation that will be vanished through a
suitable design of the rotational controller. The block
diagram of such a procedure is shown in Fig. 1.

Before going through the rest of the paper, we state
the following lemma which will be invoked later.

Lemma 1 Consider the adaptation law

˙̂
θ = γθ proj

(
Υ, θ̂

)

= γθ

(
Υ − ϖ1ϖ2

2(ε2 + 2εB)n+1B2 θ̂

)
, γθ > 0 (6)

with

ϖ1 =
{
(θ̂T θ̂ − B2)2 θ̂T θ̂ > B2

0 otherwise
, (7)

ϖ2 = θ̂TΥ + ((θ̂TΥ )2 + δ̄2)
1
2 , (8)

where ε and δ̄ are arbitrary positive constants, θ̂ is
the estimation of θ , θ̃ = θ − θ̂ , B > 0 is the bound
on the estimation and Υ (t) is a known, continuously
differentiable variable. Then the following properties
hold

p1) ||θ̂ || ≤ B + ε, ∀t > 0,
p2) θ̃T proj

(
Υ, θ̂

)
≥ θ̃TΥ ,

p3) ||proj
(
Υ, θ̂

)
|| ≤ ||Υ || [1+ ((B + ε) /B)]2 +

(
(B + ε) /

(
2B2)) δ̄,

p4) proj
(
Υ, θ̂

)
∈ Cn.

The proof is given in [9].

3.1 Designing the intermediate input F

As it is explained in “Appendix A,” the feasibility
of extraction of the thrust T and desired attitude Qd
requires that F ̸= gẑ. To satisfy this condition, we put
the limitation on F as |Fi | < g for i = 1, . . . 3, where
|Fi | denotes absolute value of the i th component of vec-
tor F . To that goal, we introduce the following structure
for F by

F(t) = f (u), (9)

u̇ = h(u)−1w, (10)

where f (u) = Um tanh
(

u
Um

)
is a saturation func-

tion by the saturation level Um in which tanh(x) =
(tanh(x1), tanh(x2), tanh(x3))T and

h(u) = diag
(

∂ tanh(u1)
∂(u1)

,
∂ tanh(u2)

∂(u2)
,
∂ tanh(u2)

∂(u2)

)
.

(11)

Note that all entries of h(u) are always greater than
zero, and then, h(u) is always invertible. We can
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Virtual
Control

Extraction
Mechanism

Translational
Dynamics

Rotational
Dynamics

Attitude
Controller

Mass
Estimation

Trajectory
Generation

F

p, vT

m̂

Qd,ωd

Γ

Q,ω

Q

pd, vd, v̇d, v̈d

System Model

Fig. 1 Block diagram of hierarchical control structure

observe form (9) that the intermediate controller F is
bounded by Um . Hence taking Um < g ensures the
feasibility of the extraction algorithm. Another reason
for introducing the above structure for F is to have a
completely known expression for Ḟ . ωd is required to
be available for rotational control and it is a function
of Ḟ . It should also be pointed out that our approach
does not need to a known ω̇d which implies F̈ is not
required to be known.

It is worth mentioning that similar structures can be
found in [30] and [27].

Let define the following variable error as

s1 = ṽ + k1 p̃, (12)

where s1 = (s11, s12, s13)T .
Consider the positive definite function V1T as

V1T =
3∑

i=1

ln (cosh (s1i ))+
1
2λ1

κ2
1 , (13)

where λ1 > 0 and κ1 is the variable which is designed
later. Differentiating (13) along (2), (3) gives

V̇1T = tanh(s1)T (−v̇d + k1ṽ + f (u)

+F̃ − ˜̄θT R(Q)T ẑ + b
)
+ 1

λ1
κ1κ̇1. (14)

Consider the virtual control fd and the adjustment law
for κ1 as

fd = −k2 tanh(s1) − Φ1 + v̇d − k1ṽ, (15)

Φ1 =
um1 tanh(s1)√

|| tanh(s1)||2 + (κ1σ1)2
, (16)

κ̇1 = −λ1
um1|| tanh(s1)||σ1√

|| tanh(s1)||2 + (κ1σ1)2
, κ1(0) > 0,

(17)

where k2 > 0, λ1 > 0 and σ1 > 0 and um1 > 0.
Note that after the system position converges to the

desired trajectory, we should have F = fd and s1 →
0. Hence fd = −Φ1 − v̇d < um1 + ||v̇d ||. On the
other hand, each component of F should be smaller
than g, so fd should also satisfy this condition after the
convergence of trajectories. Hence we should take Um
such that um1 + ||v̇d || ≤ Um < g.

After substituting (15)–(17) in (14) and upon use of

|| tanh(s1)||2√
|| tanh(s1)||2 + (κσ1)2

= || tanh(s1)||
(
|| tanh(s1)|| + κ1σ1 − κ1σ1√

|| tanh(s1)||2 + (κ1σ1)2

)

≥ || tanh(s1)||
(

1 − κ1σ1√
|| tanh(s1)||2 + (κ1σ1)2

)

,

(18)

and exploiting 2ab < δa2 + 1
δ b

2 along with

F̃ ≤ 2
√
2θ̂T ||q̃|| = 2

√
2||F − gẑ||||q̃||, (19)

0 <
∂ tanh(x)

∂x
≤ 1, (20)

we get
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V̇1T ≤ −(k2 − δ1 − δ2)|| tanh(s1)||2
−(um1 − ||b||)|| tanh(s1)||
+ 1
4δ2

||s2||2 +
2
δ1
||F − gẑ||2||q̃||2

+ tanh(s1)T
(
− ˜̄θT R(Q)T ẑ

)
, (21)

where s2 = f (u) − fd and δ1 and δ2 are arbitrary
positive scalars. Now we define the positive definite
function V2T as

V2T = sT2 s2 +
1
2λ2

κ2
2 , (22)

where λ2 > 0 and κ2 is defined later. The derivative of
(22) is obtained by

V̇2T = sT2

(
∂ f
∂u

u̇ − ḟd

)
+ 1

λ2
κ2κ̇2

= sT2
(
w + k2h(s1)ṡ1 + Φ̇1 − v̈d + k1ṡ1 − k21 ṽ

)

+ 1
λ2

κ2κ̇2, (23)

where h(.) is defined in (11) and Φ̇1 is calculated by

Φ̇1 = ϕ1ṡ1 + ϕ2 (24)

with

ϕ1 = um1

(
h(s1)√

|| tanh(s1)||2 + (κ1σ1)2

+ h(s1) tanh(s1) tanh(s1)T
(
|| tanh(s1)||2 + (κ1σ1)2

)3/2

)

, (25)

ϕ2 = um12κ1κ̇1σ1 tanh(s1)
(
|| tanh(s1)||2 + (κ1σ1)2

)3/2 . (26)

Substituting (24)–(25) in (27) leads to

V̇2T = sT2 (w + (k2h(s1)+ ϕ1 + k1 I3)ṡ1

+ϕ2 − v̈d − k21 ṽ
)
+ 1

λ2
κ2κ̇2, (27)

which can be rewritten in the form

V̇2T ≤ sT2
[
w − k2(k2h(s1)+ ϕ1 + k1 I3) tanh(s1)

+(k2h(s1)+ϕ1+k1 I3)s2+(k2h(s1)+ ϕ1 + k1 I3)F̃

−(k2h(s1)+ ϕ1 + k1 I3)
( ˜̄θT R(Q)T ẑ + ||b||

)

−(k2h(s1)+ ϕ1 + k1 I3)Φ1 + ϕ2 − v̈d − k21 ṽ
]

+ 1
λ2

κ2κ̇2. (28)

It is noted that from (25) to (26), ϕ1 and ϕ2 are bounded
if κ1 is always greater than zero which will be proved

later in the paper. Therefore, let us assume ||ϕ1||2 ≤ ϕ̄1,
||ϕ2||2 ≤ ϕ̄2 in which ϕ̄1 and ϕ̄2 are unknown constants
and ||.||2 denotes the euclidean norm. Taking w as

w = −k3s2 − Φ2 + v̈d + k21 ṽ, (29)

with Φ2 and adjustment law for κ2 given by

Φ2 = um2s2√
||s2||2 + (κ2σ2)2

, (30)

κ̇2 = −λ2um2||s2||
σ2√

||s2||2 + (κ2σ2)2
, κ2(0) > 0,

(31)

where λ2 and σ2 are strictly positive and um2 is to be
determined later, and using the following inequality

||s2||2√
||s2||2+(κ2σ2)2

≥ ||s2||
(

1− κ2σ2√
||s2||2+(κ2σ2)2

)

,

(32)

we can have

V̇2T ≤ −k3||s2||2 +
√
3k2(k2 + ϕ̄1 + k1)|| tanh(s2)||

+2
√
2(k2 + ϕ̄1 + k1)||F − gẑ||||q̃||

+(k2 + ϕ̄1 + k1)|| tanh(s2)||||s2||
+(k2 + ϕ̄1 + k1)||b|||| tanh(s2)|| − um2||s2||
+(k2h(s1)+ ϕ1 + k1)um1 − (k2h(s1)

+ϕ1 + k1) ˜̄θT R(Q)T ẑ. (33)

Putting (14) and (33) together, we can write

V̇1T + V̇2T ≤ −(k2 − δ1 − δ2)|| tanh(s1)||2
−(um1 − ||b||)|| tanh(s1)|| − k3||s2||2

+µ1||s2|| +
2
δ1
||F − gẑ||2||q̃||2

−um2||s2|| − k2h(s1) ˜̄θT R(Q)T ẑ, (34)

where µ1 is an unknown constant such that

(k2 + ϕ̄1 + k1)
(√

3k2 +
√
3(1+ um1)+

||b|| +
√
3+ ϕ̄2 + 2

√
12g + | ˜̄θ |T

)
≤ µ1, (35)

and ||F − gẑ||||q̃|| ≤
√
6g was used. It should be

noticed, in view of (63), the boundedness of the last
term in the left-hand side of (35) can be ensured if θ̄

and T are bounded. As we show later, it will ensure a
priori boundedness of θ̄ by using the projection oper-
ator. The input thrust T is also a priori bounded since
it comprises of a priori bounded terms θ̂ and F [see
(63)].
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Now we introduce the following positive definite
function

VT = V1T + V2T + 1
2λθ̄

˜̄θ2 + 1
2λµ1

µ̃2
1, (36)

where λθ̄ , λµ1 > 0, ˜̄θ = θ̄ − ˆ̄θ and µ̃1 = µ1−µ̂1,µ1 is
defined in (35) and V1T and V2T are given, respectively,
in (13) and (22). Taking um2 = µ̂1 + ϵ with ϵ > 0 and

˙̂µ1 = λµ1 ||s2||, (37)

with adaptation law

˙̄̂
θ = λθ proj (Υ, ˆ̄θ) Υ = −T tanh(s1)T R(Q)T ẑ.

(38)

Viewing (34) and using property (2) of the projection
operator given in Lemma 1, the derivative of (36) is
obtained by

V̇T ≤ −(k2 − δ1 − δ2)|| tanh(s1)||2
−(um1 − ||b||)|| tanh(s1)||
−(k3 − δ2)||s2||2 − ϵ||s2|| + µ2||q̃||2, (39)

where

2
δ1
||F − gẑ||2 ≤ 12g2

δ1
= µ2 (40)

was used. Note that all terms in (39) are non-positive
except the last one. Since the positive definite function
in (36) is to be involved as a part of the Lyapunov
function for thewhole system, this term is handled later
by the rotational dynamics design.

Remark 1 The projection operator in (38) is used
to keep our estimation within a priori bounded set
by property (1) of the projection operator given in
Lemma 1. Since from Assumption 1 we know that
|θ̄ | ≤

(
1
mL

− 1
mU

)
/2, we can choose the parameter B

of the projection operator as B =
(

1
mL

− 1
mU

)
/2 − ε

where B and ε are defined in Lemma 1. By this selec-

tion, one can guarantee that the estimations ˆ̄θ , θ̂ are
always bounded a priori and θ̂ never touches zero.
This avoids the possible singularity in extraction algo-
rithm (63).

3.2 Attitude control

3.2.1 Attitude error dynamics and kinematics

The attitude error dynamics is obtained by

˙̃q = 1
2

(
η̃I3 + q̃×)

ω̃, ˙̃η = −1
2
q̃T ω̃, (41)

J ˙̃ω = −ω× Jω + J
(
ω̃×R(Q̃)ωd − R(Q̃)ω̇d

)

+Γ + d(t), (42)

in which Q̃ = (q̃T , η̃)T is the discrepancy between
the vehicle’s attitude and the desired one and obtained
by Q̃ = Q−1

d ⊙ Q and ω̃ is the angular velocity error
obtained by ω̃ = ω − R(Q̃)ωd .

3.2.2 Designing torque input

We make the following coordinate transformation

Ω = ω̃ + c1q̃. (43)

In order to design the torque input, we introduce the
torque input Γ as

Γ = −c2Ω − kq q̃ − ν, (44)

with

ν =
{

Ω
||Ω||

(
ϑ̂1 + ϑ̂2||ω̃||

)
||Ω|| ̸= 0

0 ||Ω|| = 0,
(45)

where ϑ̂1 and ϑ̂2 is obtained by the following adaptive
laws

˙̂
ϑ1 = λϑ1 ||Ω||, (46)
˙̂
ϑ2 = λϑ2 ||ω̃||||Ω||, (47)

and c1, c2, λϑ1 , λϑ2 , kq are strictly positive and ωd
and ω̇d are obtained from F designed in (4) and its first
and second time derivatives by the extraction algorithm
given in “Appendix A.”

Now based on the boundedness of ωd and ω̇d which
is discussed in “Appendix B” and Assumption 4, we
make a reasonable assumption that there exist unknown
constants ϑ1 and ϑ2 such that

J̄
(
c1||ωd || + ||ωd ||2 + d̄ + ||ω̇d ||

)
≤ ϑ1, (48)

J̄
(
c1 + 2||ωd || +

c1
2

)
≤ ϑ2, (49)

which is used in the sequel.
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Define the positive definite Lyapunov function as

VR = ΩT JΩ + 2kq (1 − η)+ 1
2λϑ1

ϑ̃2
1 + 1

2λϑ2

ϑ̃2
2 .

(50)

where ϑ̃1, ϑ̃2 are error estimation defined as ϑ̃1 = ϑ1−
ϑ̂1, ϑ̃2 = ϑ2 − ϑ̂2.

Calculating the derivative of (50) leads to

V̇R = −ΩT
(
−Ω − c1q̃ + R(Q̃)ωd

)×

J
(
ω̃ + R(Q̃)ωd

)

+ΩT J
(
ω̃×R(Q̃)ωd − R(Q̃)ω̇d

)
+ ΩTΓ

+c1
2

ΩT J
(
q̃× + η̃

)
ω̃ − c1kq ||q̃||2 + ΩT d(t)

− ϑ̃1||Ω|| − ϑ̃2||Ω||||ω̃||,
which follows with

V̇R ≤ ||Ω||||J || ((c1 + ||ωd ||) (||ω̃|| + ||ωd ||)
+||ωd ||||ω̃|| + ||ω̇d || +

c1
2
||ω̃||

)

+||Ω|| J̄ d̄ − c1kq ||q̃||2 + ΩTΓ − ϑ̃1||Ω||
−ϑ̃2||Ω||||ω̃||, (51)

where the property of operator ×, Ω×Ω = 03×1, was
used. Substituting (48), (49) in the above inequality,
one can get

V̇R ≤ −c2||Ω||2 − c1kq ||q̃||2. (52)

The Lyapunov function introduced here along with the
one in the previous section is used to analyze the stabil-
ity of the overall system explained in the next section.

4 Stability analysis

Theorem 1 Consider the TPV vehicle with the model
given in (1) and the intermediate control input F given
in (4), the extraction algorithm given in “Appendix
A” and Assumptions 2–4. By the intermediate con-
trol given in (9)–(10) and (29), the adaptation law
given in (38) for estimating θ̄ and the torque input Γ

given in (44) with (45)–(47) and gains and parame-
ters satisfying k2 > δ1 + δ2, k3 > δ2, um1 > ||b||,
um1 + ||v̇d || ≤ Um < g and c1kq > µ2, the vehicle
position asymptotically converges to the desired spatial
path pd(t) from any arbitrary initial conditions.

Proof Since the intermediate controller F is chosen
such that |Fi | < g, extraction of the thrust and desired

attitude described in (63), (64) is always possible. Let
introduce the followingLyapunov function for the com-
plete system

V = VT + VR, (53)

with VT and VR , respectively, given in (36) and (50).
The derivative of (53) is obtained by

V̇ ≤ −(k2 − δ1)|| tanh(s1)||2
−(um1 − ||b||)|| tanh(s1)||
−(k3 − δ2)||s2||2 − ϵ||s2||
− c2||Ω||2 −

(
c1kq − µ2

)
||q̃||2, (54)

which is negative semi-definite, if the gains are chosen
as stated in Theorem 1. In consequence, boundedness
of s1, s2, ˜̄θ , κ1, κ2, µ̃1,Ω , ϑ̃1, ϑ̃2 is concluded. Invoking
Barbalat’s lemma [24], the convergence of s1, s2, and
Ω to zero is concluded which follows with p̃ → 0,
ṽ → 0, q̃ → 0. ⊓,

As it canbeobserved fromEqs. (16)–(30), approach-
ing κ1 and κ2 to zero can cause singularities. In the rest,
we derive conditions to avoid such singularities. From
(54), we can say
∫ ∞

0
|| tanh(s1)||dτ ≤ 1

(um1 − ||b||) (V (0) − V (∞)) ,

(55)∫ ∞

0
||s2||dτ ≤ 1

ϵ
(V (0) − V (∞)) . (56)

As (V (0) − V (∞)) is bounded, there exist γ1 and γ2
such that∫ ∞

0
|| tanh(s1)||dτ ≤ γ1, (57)

∫ ∞

0
||s2||dτ ≤ γ2. (58)

Regarding (17) and (31), we can have

κ1κ̇1 ≥ −λ1um1|| tanh(s1)||, (59)

κ2κ̇2 ≥ −λ2um2||s2||, (60)

integrating each side of the above inequalities gives

κ2
1 (t) ≥ κ2

1 (0) − 2λ1um1

∫ t

0
|| tanh(s1)||dτ ≥ κ2

1 (0)

−2λ1um1γ1.

κ2
2 (t) ≥ κ2

2 (0) − 2λ2um2

∫ t

0
||s2||dτ ≥ κ2

2 (0)

−2λ2ϵγ 2
2 ,
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Fig. 2 3D plot of the TPV
vehicle trajectory in
comparison with the desired
trajectory

where we have used the fact that m2 ≥ ϵ + kµ1γ2,
which can be inferred from (37) and (58). Hence

κ1(t) ≥
√

κ2
1 (0) − 2um1λ1γ1, (61)

κ2(t) ≥
√

κ2
2 (0) − 2um2λ2ϵγ

2
2 . (62)

Therefore, κ1 and κ2 are always greater than zero and
can be kept far from zero by the bounds, respectively,
given in (61) and (62) which are determined by proper
selection of initial values κ1(0) and κ2(0) alongwith the
gains λ1 and λ2. Although finding these proper values
seems not to be straightforward, it is observed that by
choosing λ1 and λ2 small enough, κ1 and κ2 never cross
zero.

Remark 1 In order to tackle the existence of uncer-
tainty in the mass, we implement the adaptive law (38)
to estimate θ = 1/m. However, in our approach, a
prefect estimation is not needed , i.e., convergence of
estimation error θ̃ to zero is not mandatory. In fact, θ̂

converges to the boundary of its actual value θ and the
small imperfection of the estimation is compensated
for along with the disturbance b(t). Furthermore, if we
have a rather precise knowledge about the value of θ ,
we can simplify the proposed controller by omitting
the adaptive estimation. In this case, the conjecture of
θ is used instead of the estimation θ̂ .

5 Simulation results

To test the validity of the proposed controller, we
consider a TPV with m = 0.1 kg, g = 9.8m/s2,

0 10 20 30 40 50

−6

−4

−2

0

2

4

6

Time(s)

T
ra

ck
in

g 
er

ro
r(

m
)

p̃x
p̃y
p̃z

Fig. 3 Tracking error p̃ = p − pd = ( p̃x , p̃y, p̃z)T

J = diag(0.25, 0.15, 0.3)kgm2. The desired path to
be tracked is (2 sin(t/π), 2 cos(t/π), 0.1t) and trans-
lational disturbance and torque disturbance are chosen,
respectively, as

b(t) = (0.2 sin(0.2t), 0.1 cos(0.1t), 0.15 cos(0.01t))T

(m/s2),

d(t) = (0.1 sin(0.5t), 0.1 cos(t),−0.15 cos(0.25t))T

(N.m).

The initial position and velocity are selected ran-
domly in [−10, 10] and [−2, 2], respectively. ω(0) =
(0.1, 0.2, .03)rad/s and Q(0) is chosen in random.
Other initial values are selected as ˆ̄θ(0) = −1, θ0 = 10,
κ1(0) = 1, κ2(0) = 2, µ̂1(0) = 5, µ̂2(0) = 5,
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Fig. 4 Response of κi (t)
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Fig. 7 Estimation of θ = 1/m
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Fig. 8 Thrust input and toque input

ϑ̂1(0) = 0.1, ϑ̂2(0) = 0.1. The gains are chosen to
be uM = 9.5, λ1 = 0.1, λ2 = 0.01, σ1 = σ2 = 0.01,
λθ = 2, k1 = 4, k2 = 1, k3 = 8, c1 = 1, c2 = 1,
kq = 5, λµ1 = 1, ϵ = 5, λϑ1 = 0.01 and λϑ2 = 0.1.
The parameters of the projection operator are chosen
as n = 1, δ̄ = 1, ε = 0.1, B = 4.

The simulation is performed over [0, 100 s] and the
results are shown in Figs. 2, 3, 4, 5, 6, 7, and 8. In Fig. 2,
the three-dimensional plot of the vehicle trajectory ver-
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sus the desired trajectory is depicted. Aswe can see, the
vehicle starts from random initial conditions and then
after a while it tracks the desired path which is shown
by star marker. The discrepancy between system tra-
jectory and the desired trajectory is shown in Fig. 3.
Figure 4 shows the evolution of κ1(t) and κ2(t). In
Fig. 3, we can observe more exactly that it takes about
16 seconds that the position of the vehicle converges
to the desired position and we can see from Fig. 4 that
system becomes stable after almost 20 seconds. The
estimations of µ1, ϑ1 and ϑ2 are shown in Fig. 5, the
norm of attitude error is depicted in Fig. 6 and the esti-
mation of θ = 1/m is depicted in Fig. 7. Finally the
thrust input and toque input are shown in Fig. 8.

6 Conclusion

Robust trajectory tracking control for a thrust-propelled
vehicle in the presence of uncertainties in the mass
and inertia matrix as well as a pair of disturbances
was investigated. A hierarchical two-stage controller
was developed in such a way that the vehicle tracks a
predefined spatial path. With the aid of back-stepping
technique, variable structure approach, adaptive con-
trol approaches and sliding mode control, the adverse
effect of disturbances and uncertainties was compen-
sated for. Stability of the whole closed loop system
was also proved by Lyapunov function technique, and
finally, the efficiency of the proposed controller was
tested by a numerical simulation.

Appendix

A Extraction algorithm

Here we introduce the extraction algorithm for obtain-
ing Qd and T form the intermediate control F =
(F1, F2, F3)T given in (4).

T = 1

θ̂
||F − gẑ||, (63)

ηd=
√
1
2
+ g−F3
2||F−gẑ|| , qd=

1
2||F−gẑ||ηd

⎛

⎝
F2

−F1
0

⎞

⎠ .

(64)

As it is clear from (64), this extraction is well defined
if

F ̸= gẑ. (65)

The desired angular velocity ωd and its derivative ω̇d
can also be obtained by the following expressions

ωd = Ξ(F)Ḟ, (66)

ω̇d = Ξ̇(F, Ḟ)Ḟ + Ξ(F)F̈, (67)

with

Ξ(F) = 1

ℓ21ℓ2

⎛

⎜⎝
−F1F2 −F22 + ℓ1ℓ2 −F2ℓ2

F12 − ℓ1ℓ2 F1F2 −F1ℓ2
F2ℓ1 −F1ℓ1 0

⎞

⎟⎠ ,

(68)

where ℓ1 = ||F − gẑ||, ℓ2 = ℓ1 + (g − µ3) and
Ξ̇(F, Ḟ) is the time derivative of Ξ(F) and the sub-
script i is omitted for notational simplicity. The proof
can be found in [2].

B Analysis of boundedness of ωd and ω̇d

From (66) to (67), boundedness of ωd and ω̇d can
be guaranteed if F , Ḟ , F̈ are bounded. Regarding the
structure of F defined in (9)–(10), it is obvious that F
is bounded and Ḟ and F̈ are bounded if, respectively,
w and its derivative are bounded. From (29), we have

w = −k3s2 − Φ2 + v̈d + k21 ṽ,

and boundedness of w can be easily concluded by
Assumption 2 and boundedness of s2 and ṽ which are
provided by the discussion in Sect. 4. The derivative of
w is obtained by

ẇ = −k3ṡ2 − Φ̇2 + v
(3)
d + k21 ˙̃v.

Viewing (3) and Assumption 2, the last two terms in
the above equation are bounded based on boundedness
of s1, F , F̃ , ˜̄θ which is concluded from the discussion
in Sect. 4. Based on (9)–(10) and (15), we have

ṡ2 = ḟ (u) − ḟd = w + k2 tanh(s1)+ Φ1 − v̇d + k1ṽ,

which is also bounded. It now just remains to prove that
Φ̇2 is bounded. From (30), we can obtain

Φ̇2 = um2
ṡT2

(
||s2||2+(κ2σ2)

2)−sT2
(
sT2 ṡ2+κ2κ̇2σ2

)

(
||s2||2+(κ2σ2)2

)3/2 ,

(69)

which is also bounded since ṡ2, s2, κ2 are bounded, κ̇2
is bounded from (31), and the fact that κ2 is kept away
from zero by suitable selection of the gain λ2 and the
initial value κ2(0) as explained in Sect. 4.

123

Author's personal copy



M. Kabiri et al.

References

1. Abdessameud, A., Tayebi, A.: Global trajectory track-
ing control of vtol-uavs without linear velocity measure-
ments. Automatica 46(6), 1053–1059 (2010). doi:10.1016/
j.automatica.2010.03.010

2. Abdessameud, A., Tayebi, A.: Motion Coordination for
VTOL Unmanned Aerial Vehicles. Advances in Industrial
Control. Springer London, London (2013). doi:10.1007/
978-1-4471-5094-7

3. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-
following of underactuated autonomous vehicles with para-
metric modeling uncertainty. IEEE Trans. Autom. Control
52(8), 1362–1379 (2007). doi:10.1109/TAC.2007.902731

4. Bertrand, S., Guénard,N., Hamel, T., Piet-Lahanier, H., Eck,
L.: A hierarchical controller for miniature VTOL UAVs:
design and stability analysis using singular perturbation the-
ory. Control Eng. Pract. 19(10), 1099–1108 (2011). doi:10.
1016/j.conengprac.2011.05.008

5. Børhaug, E., Pavlov, A., Panteley, E., Pettersen, K.Y.:
Straight line path following for formations of underactuated
marine surface vessels. IEEE Trans. Control Syst. Technol.
19(3), 493–506 (2011). doi:10.1109/TCST.2010.2050889

6. Boskovic, J.D., Li, S.M., Mehra, R.K.: Robust tracking con-
trol design for spacecraft under control input saturation. J.
Guid. Control Dyn. 27(4), 627–633 (2004). doi:10.2514/1.
1059

7. Cabecinhas, D., Cunha, R., Silvestre, C.: A nonlin-
ear quadrotor trajectory tracking controller with distur-
bance rejection. In: 2014 American Control Conference,
vol. 26, pp. 560–565. IEEE (2014). doi:10.1109/ACC.2014.
6858615

8. Cai, Z., de Queiroz, M.S., Dawson, D.M.: Robust adap-
tive asymptotic tracking of nonlinear systems with additive
disturbance. IEEE Trans. Autom. Control 51(3), 524–529
(2006). doi:10.1109/TAC.2005.864204

9. Cai, Z., de Queiroz, M.S., Dawson, D.M.: A sufficiently
smooth projection operator. IEEE Trans. Autom. Control
51(1), 135–139 (2006). doi:10.1109/TAC.2005.861704

10. Casau, P., Sanfelice, R.G., Cunha, R., Cabecinhas, D., Sil-
vestre, C.: Robust global trajectory tracking for a class
of underactuated vehicles. Automatica 58, 90–98 (2015).
doi:10.1016/j.automatica.2015.05.011

11. Chen, M., Shi, P., Lim, C.C.: Robust constrained control
for mimo nonlinear systems based on disturbance observer.
IEEE Trans. Autom. Control 60(12), 3281–3286 (2015).
doi:10.1109/TAC.2015.2450891

12. Diebel, J.: Representing attitude: Euler angles, unit quater-
nions, and rotation vectors. Matrix 58, 1–35 (2006). doi:10.
1093/jxb/erm298

13. Hua, M., Hamel, T., Morin, P.: A control approach for
thrust-propelled underactuated vehicles and its application
to vtol drones. IEEE Trans. (2009). doi:10.1109/TAC.2009.
2024569

14. Hua, M.D., Morin, P., Samson, C.: Balanced-force-control
of underactuated thrust-propelled vehicles. In: 2007 46th
IEEE Conference Decision Control pp. 6435–6441 (2007).
doi:10.1109/CDC.2007.4434268

15. Kabiri, M., Atrianfar, H., Menhaj, M.B.: Formation con-
trol of vtol uav vehicles under switching-directed interaction
topologies with disturbance rejection. Int. J. Control 1–12
(2016). doi:10.1080/00207179.2016.1266518.

16. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid
spacecraft with finite-time convergence.Automatica 49(12),
3591–3599 (2013). doi:10.1016/j.automatica.2013.09.001

17. Madani, T., Benallegue, A.: Backstepping control with
exact 2-sliding mode estimation for a quadrotor unmanned
aerial vehicle. In: IEEE International Conference Intelli-
gent Robots and Systems, pp. 141–146 (2007). doi:10.1109/
IROS.2007.4399009

18. Olfati-Saber, R.: Nonlinear control of underactuated
mechanical systems with application to robotics and
aerospace vehicles (2001)

19. Panagou, D., Kyriakopoulos, K.J.: Viability control for a
class of underactuated systems. Automatica 49(1), 17–29
(2013). doi:10.1016/j.automatica.2012.09.002

20. Pflimlin, J.M., Soueres, P., Hamel, T.: Position control of a
ducted fan VTOL UAV in crosswind. Int. J. Control 80(5),
666–683 (2007). doi:10.1080/00207170601045034

21. Reyhanoglu,M., vander Schaft,A.,Mcclamroch,N.H.,Kol-
manovsky, I.: Dynamics and control of a class of underactu-
ated mechanical systems. IEEE Trans. Autom. Contr. 44(9),
1663–1671 (1999). doi:10.1109/9.788533

22. Roberts, A., Tayebi, A.: Adaptive position tracking of vtol
uavs. IEEE Trans. Robot. 27(1), 129–142 (2011). doi:10.
1109/TRO.2010.2092870

23. Shuster, M.D.: A survey of attitude representations (1993).
doi:10.2514/6.2012-4422

24. Slotine, J.J.E., Li,W., et al.: Applied Nonlinear Control, vol.
199. prentice-Hall Englewood Cliffs, NJ (1991)

25. Song, Y., Cai, W.: Quaternion observer-based model-
independent attitude tracking control of spacecraft. J. Guid.
Control. Dyn. 32(5), 1476–1482 (2009). doi:10.2514/1.
43029

26. Wang, Z., Wu, Z.: Nonlinear attitude control scheme with
disturbance observer for flexible spacecrafts. Nonlinear
Dyn. 81(1–2), 257–264 (2015)

27. Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of
uncertain nonlinear systems in the presence of input satura-
tion and external disturbance. IEEE Trans. Autom. Control
56(7), 1672–1678 (2011). doi:10.1109/TAC.2011.2122730

28. Xian, B., Dawson, D.M., DeQueiroz, M.S., Chen, J.: A con-
tinuous asymptotic tracking control strategy for uncertain
nonlinear systems. IEEE Trans. Autom. Control 49(7), 1206
(2004). doi:10.1109/TAC.2004.831148

29. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for
attitude stabilization with actuator saturation. IEEE Trans.
Ind. Electron. 58(10), 4898–4907 (2011). doi:10.1109/TIE.
2011.2107719

30. Zou, A.M., Kumar, K.D., de Ruiter, A.H.J.: Robust attitude
tracking control of spacecraft under control input magnitude
and rate saturations. Int. J. Robust Nonlinear Control 26(4),
799–815 (2016). doi:10.1002/rnc.3338

123

Author's personal copy

http://dx.doi.org/10.1016/j.automatica.2010.03.010
http://dx.doi.org/10.1016/j.automatica.2010.03.010
http://dx.doi.org/10.1007/978-1-4471-5094-7
http://dx.doi.org/10.1007/978-1-4471-5094-7
http://dx.doi.org/10.1109/TAC.2007.902731
http://dx.doi.org/10.1016/j.conengprac.2011.05.008
http://dx.doi.org/10.1016/j.conengprac.2011.05.008
http://dx.doi.org/10.1109/TCST.2010.2050889
http://dx.doi.org/10.2514/1.1059
http://dx.doi.org/10.2514/1.1059
http://dx.doi.org/10.1109/ACC.2014.6858615
http://dx.doi.org/10.1109/ACC.2014.6858615
http://dx.doi.org/10.1109/TAC.2005.864204
http://dx.doi.org/10.1109/TAC.2005.861704
http://dx.doi.org/10.1016/j.automatica.2015.05.011
http://dx.doi.org/10.1109/TAC.2015.2450891
http://dx.doi.org/10.1093/jxb/erm298
http://dx.doi.org/10.1093/jxb/erm298
http://dx.doi.org/10.1109/TAC.2009.2024569
http://dx.doi.org/10.1109/TAC.2009.2024569
http://dx.doi.org/10.1109/CDC.2007.4434268
http://dx.doi.org/10.1080/00207179.2016.1266518
http://dx.doi.org/10.1016/j.automatica.2013.09.001
http://dx.doi.org/10.1109/IROS.2007.4399009
http://dx.doi.org/10.1109/IROS.2007.4399009
http://dx.doi.org/10.1016/j.automatica.2012.09.002
http://dx.doi.org/10.1080/00207170601045034
http://dx.doi.org/10.1109/9.788533
http://dx.doi.org/10.1109/TRO.2010.2092870
http://dx.doi.org/10.1109/TRO.2010.2092870
http://dx.doi.org/10.2514/6.2012-4422
http://dx.doi.org/10.2514/1.43029
http://dx.doi.org/10.2514/1.43029
http://dx.doi.org/10.1109/TAC.2011.2122730
http://dx.doi.org/10.1109/TAC.2004.831148
http://dx.doi.org/10.1109/TIE.2011.2107719
http://dx.doi.org/10.1109/TIE.2011.2107719
http://dx.doi.org/10.1002/rnc.3338

	Trajectory tracking of a class of under-actuated thrust-propelled vehicle with uncertainties and unknown disturbances
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System model
	2.2 Objective

	3 Control design strategy
	3.1 Designing the intermediate input F
	3.2 Attitude control
	3.2.1 Attitude error dynamics and kinematics
	3.2.2 Designing torque input


	4 Stability analysis
	5 Simulation results
	6 Conclusion
	Appendix
	A Extraction algorithm
	B Analysis of boundedness of ωd and d
	References


