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Abstract
Big data are potentially useful for environmental management planning and actions that can be directed toward pollu-
tion control. China is using big data approaches to help reduce its current levels of pollution. However, also needed are 
better environmental indicators, measurement technologies, data management and reporting, and adaptive manage-
ment and enforcement. Based on continental-extent monitoring and assessment programs in Europe and the USA, we 
recommend three major programmatic changes for China. (1) Establish long-term systemic environmental and human 
health objectives and indicators. (2) Adopt national standard methods for survey designs, sampling and analytical pro-
tocols, statistical analyses, and collaborative sampling programs. (3) Provide a transparent process for reporting and 
correcting data errors.
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1 Introduction

Recently, China has made considerable progress towards 
ecological and environmental protection through use of 
big data sets and analytics, which are increasingly being 
used by China’s Ministry of Ecology and Environment 
(MEE). The MEE is currently gathering ecological and envi-
ronmental information into one map via a virtual set of 
map overlays [54]. Key aims include centralizing data man-
agement, promoting system integration, maximizing data 
transparency, and improving standards and data security. 
Most USA federal agencies responsible for environmen-
tal protection are also using big data sets and analytics in 
their work (e.g., [29, 89]).

There are 5 key challenges to China’s big data initia-
tive: indicators, monitoring and assessment, data quality, 
data transparency, and rigorous adaptive management. 
If China can meet those challenges, it can fill substantial 

ecological research and management gaps by markedly 
increasing the extent and rigor of ecological information 
and pollution mitigation that is currently lacking in Asia 
[18]. Therefore, our goal in this paper is to provide specific 
examples of interdisciplinary and transdisciplinary big 
data programs that have been successfully implemented 
elsewhere.

1.1  Quantitative indicators

A suite of relevant, quantitative and cost-effective indi-
cators is needed for tracking progress toward meeting 
clearly stated goals and objectives (Fig. 1; [34]). As shown 
in the figure, indicators begin with objectives or goals. For 
example, the goal of the USA Clean Air Act is to enhance 
“the quality of the Nation’s air resources so as to promote 
the public health and welfare” [72]. The objective of the 
USA Clean Water Act is to restore “the chemical, physical, 
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and biological integrity of the nation’s waters” [73]. Subse-
quently, the U.S. Environmental Protection Agency (USEPA) 
developed a hierarchy of administrative and environmen-
tal indicators represented by six levels (Fig. 2; [74]). Levels 1 
and 2 are administrative measures to be linked to improve-
ments in Level 5 and 6 indicators that are related to human 
and ecological health.

For example, USEPA’s Level 5 and 6 indicators for sur-
face waters include water quality, physical habitat struc-
ture, human health and biological assemblage indicators 

(Table 1). All those indicators were developed and tested 
in regional pilot studies before being implemented nation-
wide. Before being deemed acceptable, each biotic indi-
cator was evaluated for its range of variation, sensitivity 
to anthropogenic disturbance, sampling error or repro-
ducibility, redundancy with other candidate indicators 
and then adjusted for natural variability if needed [35, 45, 
51, 53, 61, 71, 93]. The choices of water quality indicators 
were based on sampling ease and cost, shipping restric-
tions, widespread use by state and federal water quality 

Fig. 1  Although implementing a big data program is a goal for China, additional improvements are needed to ensure that the public is 
clearly informed and that environmental monitoring and enforcement are rigorously implemented, as indicated in the critical steps above

Fig. 2  Administrative and environmental indicators: levels one through six
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agencies, and responsiveness to a wide range of anthro-
pogenic stressors and pressures [27, 34, 93]. Physical habi-
tat condition indicators were selected based on sampling 
ease, equipment cost and responsiveness to a wide range 
of anthropogenic stressors and pressures [5, 34, 41–43, 63]. 
Selection of human health indicators were based largely 
on their frequency of occurrence and known toxicities [58, 
59]. These fish consumption indicators are used by USEPA 
to evaluate and reduce exposure to harmful water pollut-
ants (e.g., [69, 91]). All the indicators listed in Table 1 are 
sampled by field crews using standard methods [34, 57, 
76, 78, 79] at approximately 1000 sites every 5 years. Those 
assemblage sampling methods are based on rigorous 
sampling effort studies (e.g., [6, 33, 48, 62]). The sites are 
selected by use of a dispersed probability design to ensure 
statistical representativeness, minimize site proximity and 
ensure rigorous status and trend assessments [56, 70].

USEPA’s Level 5 and 6 air quality indicators include sev-
eral of those monitored in China (Table 2), plus many addi-
tional toxic metals and organics as well as an air quality 
index based on 7 widespread contaminants (ground-level 
 O3, 2.5 µ and 10 µ particulates, Pb, CO,  SOx,  NOx). Those 
indicators were selected because of their known correla-
tions with the incidence of respiratory, cardiac and cancer-
ous diseases [88]. They are monitored at approximately 
3900 stations. Ambient air quality monitoring for toxic and 
non-toxic, or criteria, pollutants is primarily the responsi-
bility of State agencies in the USA. EPA’s Reports on the 
Environment (ROEs) are updated online reports available 
to the public [80], which include human exposure, health, 
and other indicators linked with ambient air indicators to 
reduce exposure to harmful air pollutants.

USEPA’s water monitoring and regulation programs 
have two key limitations. Results have indicated that key 
anthropogenic pressures are largely related to minimally 

regulated diffuse pollution [18, 40, 46] compared with 
point source pollution, which has been widely curtailed. 
That pollution originates from agriculture [9, 30, 44, 75], 
livestock grazing [1, 19], mining [11, 37, 95], flow regime 
alteration [36, 60] and non-native invasive species [36, 49]. 
Furthermore, such pressures are frequently co-occurring 
both in the USA [4, 7] and Europe [66].

Table 1  Physical, chemical, 
and biological indicators of 
the USEPA national rivers 
and streams assessment, 
and the percent of waters 
in good and poor condition 
nationally. China lacks national 
monitoring of any of the listed 
indicators—except for total P & 
total N (from USEPA [86])

Class Indicators

Biotic condition Fish assemblage multimetric index 26% good; 37% poor
Macroinvertebrate assemblage multimetric index 30% 

good; 44% poor
Water quality Total phosphorus 18% good; 58% poor

Total nitrogen 32% good; 43% poor
Salinity 86% good; 4% poor
Acid neutralizing capacity 98% good; 1% poor

Physical habitat structure Excess fine sediments 52% good; 22% poor
Fish habitat condition 64% good; 14% poor
Riparian vegetation cover 58% good; 24% poor
Anthropogenic riparian disturbance 29% good; 23% poor

Human health River fish tissue Hg 24% poor
Urban river fish tissue PFOs 3% poor
Urban river fish tissue PCBs 40% poor

Table 2  Key air pollutants monitored nationally and by  source in 
China and the USA [38, 84, 85, 87]. Criteria successes are based on 
90th percentiles of USA averages for ambient concentrations

China USA

Total  SO2 emissions Total anthropogenic  SO2 emissions
Met criteria since 2002

Total  NO2 emissions Total  NO2 emissions
Met criteria since 2006

Total  NOx emissions Total anthropogenic  NOx emissions
Met criteria since 1980

Total  O3 emissions Total anthropogenic  O3 emissions
Met criteria since 2013

Total CO emissions Total anthropogenic CO emissions
Met criteria since 1992

Total PM2.5 emissions Total anthropogenic PM2.5 emissions
Met criteria since 2010

Total PM10 emissions Total anthropogenic PM10 emissions
Met criteria since 1991

– Total anthropogenic As emissions
– Total anthropogenic Cd emissions
– Total anthropogenic Cr emissions
– Total anthropogenic Hg emissions

Met criteria since 2015
– Total anthropogenic Pb emissions

Met criteria since 2006
– Total air toxic (187 pollutants) emissions
– Air Quality Index
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Regarding USA air pollution monitoring and regulation, 
there are 5 shortcomings. A growing concern is USEPA’s 
failure to maintain its automated air monitoring stations 
[52]. Also, criteria air pollutants are sampled non-randomly 
near suspected sources, the data sources and modeling 
methods vary, and they are presented at such a granular 
level as to hinder statistically rigorous national statements.

The European Union (EU) approved its Water Frame-
work Directive in 2000, with a goal of good water quality 
by protecting all types of water bodies, restoring ecosys-
tems, reducing pollution, and guaranteeing sustainable 
water usage [16]. Good ecosystem condition is defined 
by use of fish, macroinvertebrate, algae, and macrophyte 
assemblage indicators (e.g., [25]) together with hydromor-
phology and water quality indicators. The EU 2013 Clean 
Air Protection Programme is focused on reducing air pol-
lution, especially in cities [15], setting stricter national 
emission ceilings for six major pollutants, and reducing 
pollution from medium-sized pollution generators. Cur-
rent ambient air criteria cover 12 major pollutants with 
monitoring periods from 1 h to 1 year.

The Chinese objectives neglect information about the 
extent to which pollution damages the environment or 
human health. China measures administrative and envi-
ronmental indicators involving Level 1–4 indicators such 
as the percentages of surface waters and airsheds meet-
ing, or not meeting, acceptable ranges of key chemical 
constituents. Although increases in asthma and other 
chronic respiratory diseases and premature mortality 
occur throughout China from ambient air pollution [17, 
24], Level 5 and 6 indicators are missing for quantitatively 
measuring the effects of air and water quality on human 
health and biota.

1.2  Monitoring and assessment

China has implemented a network of ambient air quality 
monitors providing data that MEE and the provincial and 
local environmental protection bureaus (EPBs) can use to 
assess progress toward meeting established goals. How-
ever, many cases of monitoring system and data manipu-
lation by local government officials have been reported, 
and several key air pollutants are still not monitored ([22, 
98], Table 2).

Unlike water body monitoring in China, the USEPA 
implemented a National Aquatic Resources Survey (NARS) 
in 2000 based on a probabilistic design, standard sampling 
methods and indicators, and collaborative sampling by 
the states and government contractors. NARS provides 
statistically valid assessment of the ecological status and 
the relative importance of various stressors to all USA sur-
face waters [77, 81–83, 86]. China has no similar national 
program.

Key results from the USEPA’s NARS indicate that 3–40% 
of the sampled population of rivers contain fish tissue 
levels of mercury, polychlorinated biphenyls or perfluo-
rooctanesulfunic acid that warrant fish consumption warn-
ings (Table 1, [86]). Regarding physical habitat structure, 
14–24% of surface waters are in poor condition for fish 
habitat condition, excess fine sediments, riparian distur-
bance or riparian vegetation condition. Nutrient levels 
indicate that 43–58% of stream length is in poor condition. 
Based on the assemblage condition of fish and macroin-
vertebrates 37% and 44% of stream and river length is in 
poor condition (Table 1; [86]).

EPA’s Report on the Environment [85] indicated that 
each of the criteria air pollutants has decreased over time 
and have met national standards for 5–20 years (Table 2). 
Although the National Air Toxics Assessment (NATA) 
reports are only published about every 4 years, there is 
a source of consistent and comparable data regarding air 
toxics that is part of the annual Toxics Release Inventory, 
a self-reporting system of the most significant industrial 
sources of pollution. A similar exposure modeling routine 
as used in NATA, called Risk Screening Environmental Indi-
cators (RSEI), is employed to estimate ambient concentra-
tions of air toxics with the goal of establishing the relative 
human health risks throughout the USA. RSEI uses a big 
data analytics application, called Qlik Sense, to display 
national data with the ability to sift the results down to a 
single facility among the over 20,000 facilities in the data-
base [87]. The RSEI national relative risk trend decreased 
since 2007 and has remained relatively stable since 2016. 
However, the RSEI model results indicate continued risks to 
economically disadvantaged populations [10, 97], which 
also indicates the value of publicly available pollution data.

The EU member states use ad hoc approaches to select 
sites, but many states employ standard field methods and 
data analyses and measure multiple assemblages at least 
annually at each site. Those differences in methods and 
data interpretation complicate some EU-wide assessments 
[26] because observed differences in assemblages are con-
founded by differences in field sampling and data pro-
cessing protocols. But see [64, 65] for examples obtained 
from standard sampling methods. Schinegger et al. [66] 
reported that 73% of 3105 study sites were impaired; 43% 
of all sites were impaired by multiple stressors.

Citizen-science and consumer-based environmental 
monitoring equipment has made it easier for citizens to 
participate in data collection and scientific research [12]. 
Such citizens have measured water quality, assessed physi-
cal habitat conditions, and evaluated fish and macroinver-
tebrate status through use of standard protocols (e.g., [20, 
55]. Citizen scientists are typically more invested in envi-
ronmental improvement and protection than the average 
citizen [20, 21].
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It would be cost-effective for China to adopt national 
standard methods for survey designs, sampling and ana-
lytical protocols, statistical analyses, collaborative sam-
pling by provincial governments and academics, open 
data reporting, and peer-review publications. Doing so 
could engage an enormous number of scientific collab-
orators as well as markedly increase database sizes and 
quality, thereby improving data quality and usefulness. 
For example, in Oregon (USA), water body monitoring 
and assessment data from eight different institutions 
were easily synthesized because all used a standard survey 
design, standard methods, and the same environmental 
and biological indicators [55]. Multiple Brazilian univer-
sities employed the same NARS survey design, standard 
sampling methods, and indicators for regionally assess-
ing Atlantic Forest [39] Cerrado [8, 68] and Amazônia [3, 
47] streams. Jimenez-Valencia et al. [39] determined that 
62% of basin stream length was in poor condition based 
on macroinvertebrate assemblage condition,the risk of 
poor condition was four-fold greater in catchments with 
degraded forest. Silva et al. [67] estimated that 27% of the 
stream length in four hydrologic units had poor macroin-
vertebrate condition. Those poor conditions were twice 
as likely at high levels of turbidity and fine sediments [68]. 
Leitão et al. [47] reported that local and catchment defor-
estation decreased instream large wood, which decreased 
fish species richness and functional originality. Such 
assessments would have been inconceivable by single 
institutions working alone and using differing protocols.

1.3  Data quality

Problems exist in China with data availability, interruptions 
in time series, inconsistencies between different sources 
reporting similar energy and air quality statistics, and a 
lack of data transparency [31, 38]. China’s pollution emis-
sions data have not been standardized, leading to uncer-
tainty in results and preventing EPBs from fully assessing 
actual discharge conditions [90]. In comparison, EPA and 
EU data quality from monitoring and assessment pro-
grams allow continental-extent assessments and scien-
tific interpretations of key causal factors for all USA (e.g., 
[77, 81–83, 86]) and many EU [23, 65] surface waters. EU 
indicators differ somewhat among nations, but they have 
been intercalibrated for making Europe-wide assessments 
[23, 65]. Both standard methods and a rigorous statisti-
cal probability design allow inference to all conterminous 
USA surface waters with known confidence intervals [77, 
81–83, 86].

We offer five recommendations for improving China’s 
data quality based on USEPA [84]. (1) All data must con-
tain metadata for interpreting and reproducing results to 
ensure that all potential users can analyze the data. (2) A 

single centralized data exchange should be implemented, 
in which the different participants maintain their own 
databases but seamlessly exchange a common set of nec-
essary data for tracking national, provincial, and local envi-
ronmental progress. (3) Require that enterprises, MEE, and 
EPBs electronically report quantitative pollution discharge 
data to the central data exchange. (4) Implement effective 
supervision and auditing through periodic, unscheduled 
inspections of enterprises, MEE, and EPBs to verify their 
reporting to correct data errors immediately. (5) Impose 
stiff penalties and public notice for individuals and enti-
ties that deliberately or accidentally falsify data and hold 
governmental officials accountable for any environmental 
data fraud cases under their jurisdiction.

1.4  Data transparency

The transparency of China’s environmental data remains 
problematic [14]. Data are scattered across various plat-
forms and agency websites. The disclosure of information 
from EIAs is insufficient to support meaningful and robust 
public engagement. Conversely, in the USA, the NARS data 
are available for non-federal users to download, analyze, 
interpret, and publish as they wish, which greatly ampli-
fies the usefulness and applications of the data (e.g., [9, 
13, 28]). EPA electronic reporting and disclosure of large 
databases includes water pollution discharge monitoring 
reports and industry self-reported toxics release invento-
ries. USEPA’s [75] information quality guidelines provide a 
process for the public to access and officially report errors 
they find in the data from almost 22,000 facilities and to 
have them corrected.

1.5  Adaptive management

We believe that a key towards continued improvement 
requires government employees to view themselves as 
ecosystem (nature) trustees always keeping in mind the 
goals and objectives of the empowering legislation [94]. 
Citizens should be viewed as the trust beneficiaries, nature 
should be viewed as quantifiably valued assets of the trust, 
and government decision-making should be based on the 
fiduciary responsibility of the trustee. Polluters should be 
viewed as nature and human despoilers, their payments to 
government employees should be viewed as illegal bribes, 
and government employees who fail to meet their fiduci-
ary responsibilities should be treated as criminal offenders 
[92, 94].

Resource management should be based on a rigor-
ous adaptive management paradigm [50, 96]. Rigorous 
adaptive management and plans are based on: (1) speci-
fying clear sets of general goals and explicit objectives; 
(2) explicitly stating actions that will and will not be taken 
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when pre-identified trigger points occur; (3) explicitly 
identifying what is and is not known about the prob-
lems and their resolution; (4) clearly explaining expected 
conditions; (5) designing and implementing monitoring 
programs for learning about the above uncertainties; and 
(5) using the monitoring information to revise predictive 
models and management actions.

2  Conclusions

Common concerns to pollution control globally include 
government inaction, resistance of industries and citi-
zens toward environmental protection, false arguments 
of jobs versus the environment and human health, exter-
nalities and lag effects, and resistance toward long-term 
and large-extent strategic thinking. But those also are 
the drivers for better analysis of big data. China can draw 
on international and historical experience in tackling its 
environmental challenges and improving its big data. 
The implementation of such an initiative goes beyond 
the technology itself. It requires the efforts of the entire 
society, the resolve of political leaders, and an institutional 
framework to fully understand the indicators developed 
from the data and how the country will most effectively 
use the data. The successes or failures that China exhib-
its in resolving its air and water pollution problems will 
serve as explicit indicators of its ability to solve environ-
mental problems affecting human health and quality of 
life nationally and globally.
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