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Outline

1. Rocket engine combustion analysis at DLR

2. Helmholtz Analytics Toolkit (HeAT) for distributed ML

3. Results

a) Spectral Clustering

b) Anomaly Detection
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Rocket engine combustion analysis

• Aim: Cost reduction of rocket engines, be competitive with e.g. Space-X
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Traditional liquid rocket engine:

• 2 pumps transporting fluid fuel and oxidizer at 

very high pressure and flow

• Advantages

• Burning rate can be controlled precisely

• Disadvantages

• Pumps are mechanically very complex

• Expensive
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Rocket engine combustion analysis

• Aim: Cost reduction of rocket engines, be competitive with e.g. Space-X
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Solid propellant rocket engine

• Fuel and oxidizer are mixed in solid form

• Advantage

• Cheap

• Disadvantage

• Burning rate can not be varied during flight

©2011, University of Waikato



Rocket engine combustion analysis

• Aim: Cost reduction of rocket engines, be competitive with e.g. Space-X

> WCCM 2020 > Alexander Rüttgers  •  Local Anomaly Detection > Parallelized Machine LearningDLR.de  •  Chart 5

Hybrid rocket engine

• Pressurized fluid oxidizer

• Solid fuel

• A valve controls, how much oxidizer gets into 

the combustion chamber

• Advantages

• Cheap

• Controllable

©2011, University of Waikato



Experiments on new hybrid rocket fuels at DLR

• DLR investigates new hybrid rocket fuels on a paraffin basis at Institute of Space Propulsion in 

Lampoldshausen.           

• About 300 combustion tests were performed with single-slab paraffin-based fuel with 20° forward facing ramp 

angle + gaseous oxygen.

• Combustion is captured with high-speed video camera with 10 000 frames / second
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Fig. 1: Fuel slap configuration before (top) 

and after (bottom) combustion test.
Fig. 2: Side view of combustion chamber
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Video extract of

test 284

fuel oxidizer mass

flow

CH*-filter duration

Ignition, steady

combustion, 

extinction

pure paraffin 6805 50 g/s, yes, i.e. only

wavelengths emitted

from CH* are filmed

3 s = 30 000 

frames / 8GB raw 

data per test

Test 284
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HeAT

• HeAT = Helmholtz Analytics Toolkit

• Python framework for parallel, distributed data analytics and 

machine learning

• Developed within the Helmholtz Analytics Framework

Project since 2018

• Aim: Bridge data analytics and high-performance computing

• Open Source licensed, MIT

helmholtz-analytics/heat
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https://github.com/helmholtz-analytics/heat


Scope
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Design

Facilitating analysis of

Helmholtz applications

Bringing HPC and Machine

Learning / Data Analytics 

closer together

Ease of use

DLR.de  •  Chart 10

k-means

SVM

mpi4py

Deep

Learning

Distributed Parallelism (MPI)

NumPy-like

interface

Automatic

Differentiation

Tensor Linear

Algebra

GPU support
And more machine

learning algorithms



Data Distribution

Server#1
PyTorch 

Tensor#1

Server#2
PyTorch 

Tensor#2

Server#3
PyTorch 

Tensor#3

HeAT Tensor
Example:

Server#1
[0, 1]

Server#2
[2, 3]

Server#3
[4, 5]

split=1

Server#1 PyTorch Tensor#1

Server#2 PyTorch Tensor#2

Server#3 PyTorch Tensor#3

HeAT Tensor

split=0
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What has been done so far?

• The core technology has been identified

• Implementation of a distributed parallel tensor

core framework

• NumPy-compatible core functionality

• Some linear algebra routines

• Parallel data I/O via HDF 5 and NETCDF

• K-means and spectral clustering algorithms are available
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Dissimilarity measure for image data

• Algorithms often require pairwise dissimilarity of images 

(matrix of size nr_of_images x nr_of_images).

• Standard approaches such as mean squared error (MSE) 

/ discrete L2-norm often differ from human recognition.

• Advanced dissimilarity measures such as structural 

similarity (SSIM) often perform better (considers 

luminance, contrast and structure) but are much more 

expensive.

• Structural similarity (SSIM)/ structural dissimilarity 

(DSSIM) is not a distance metric. 

Example: (b)-(f) with same MSE, SSIM decreases*
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*https://nsf.gov/news/mmg/mmg_disp.jsp?med_id=79419&from=



Pairwise distance matrices for test 284 

Computing time: 3-4 minutes Computing time: 5 days (OpenMP parallel, 56 cores)

one comparison ≈ 0.1 s (scikit-image)

potential 

anomalies

potential 

anomalies

more irregular

matrix structure?

better for anomaly

detection?

more regular

matrix structure?

better for

clustering?
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potential 

clusters



Spectral Clustering of test 284
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• Fig. 1: Results of spectral

clustering with ssim affinity

matrix.

• Using an Euclidean affinity

matrix leads to a separation of

the extinction phase into

various clusters.

• Note that the number of

clusters k is a hyperparameter

of the clustering algorithm.



Anomaly Detection: Local Outlier Factor (LOF)

• Algorithm that bases on local density of data points.

• Shares some concepts with clustering algorithms such as 

DBSCAN and OPTICS.

• Does not show a decision boundary, i.e. cannot directly be used 

on new data (not necessary here).

• Core idea: Compare local density of an object to the local 

densities of its neighbors.

• Ratio „Density of neighbors / local density of an objects”

• ≈ 1.0 means similar density as neighbors

• > 1.0 means lower density than neighbors (outlier candidate) Point density with respect to k=3 

closest neighbors
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• Euclidean distance norm returns larger outlier 

score values (due to irregular matrix?).

• SSIM and Euclidean distance share some 

anomalies but there are differences.
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Peak outliers of Euclidean metric (test 284)

Flame fluctuations in ignition phase at t = 0.1078 s

Droplet detection towards end of combustion at t = 2.2055 s
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Some outliers found in other combustion tests
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Test 291: 

satellite droplet at t = 0.0253 s

Test 296: 

satellite droplet at t = 0.0017 s

Test 296: 

satellite droplet at t = 0.0223 s



Conclusion and outlook

• Clustering and anomaly detection in rocket combustion image data is possible provided that distance 

measure is adequate.

• Further insights are possible if datasets are combined (e.g. anomaly detection in spectral and image data).

• Future work is spent on distance measures that are more adapted to the „interesting anomalies“.

Thank you for your attention!
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