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Common Acronyms

AIT assembly, integration, and testing

AM additive manufacturing

AP application protocol

API application programming interface

CAD computer-aided design

CD concurrent design

CDM conceptual data model

CE concurrent engineering

CEF concurrent engineering facility

COTS commercially off the shelf

CPS cyber-physical system

DLR Deutsches Zentrum für Luft- und Raumfahrt

DT digital twin

EDS electronic data sheet

ESA European Space Agency

IoT Internet of Things

IT information technology

JSON JavaScript Object Notation

MBSE model-based systems engineering

NLP natural language processing

NASA National Aeronautics and Space Agency

PDF portable document format

PT physical twin

REST Representational State Transfer

SE software engineering

UML unified modeling language
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1 Introduction & Space 4.0

The space industry is currently undergoing a structural change. One factor is the rising
number of new actors in space. For example, private space flight companies, such as
SpaceX and Blue Origin, are now driving innovation. It is shifting the industry from
very few, expensive mission launches by a small number of space-faring nations to many
companies and universities around the world frequently launching their own satellites
and satellite constellations. For instance, SpaceX is currently in the process of launching
7,500 satellites that will form a mega-constellation to offer high-speed internet around
the world [4]. In order to launch so many satellites, the manufacturing process and its
related factors have to adapt. Therefore, many rely on small, inexpensive satellites with
commercial-off-the-shelf (COTS) components, such as CubeSats [85].
Other driving factors include digitalization and corresponding digital and technical in-
novations, including advancements in artificial intelligence, big data, additive manufac-
turing (AM) (for example, 3D-printing), and intelligent factories [43, 109].
This new paradigm is often referred to as New Space and Space 4.0, following the term
Industry 4.0 that describes the current fourth industrial revolution of manufacturing
started by digitalization [26].

The advantages of implementing Industry 4.0 principles into the manufacturing of the
space industry to fit the New Space concept have already been investigated in literature.
Nardon [85] analyzed the impact of digital technologies on the European space indus-
try in their policy paper. They found that the space industry in the United States is
ahead in adapting to Space 4.0, as there reside the most space start-ups and big digital
companies (Amazon, Apple, Facebook, Google, Microsoft). These do not only provide
the technology that is used in space-related processes, for example, operating systems,
but also started funding their own space projects. The founder of Amazon, Jeff Bezos,
established the aerospace company Blue Origin. Furthermore, the author noted that
software is becoming more important to the space industry. A new business model is to
offer a customized software solution with cheaper, mass-produced hardware: launchers
and satellites. The focus is shifting towards provision of complete services to clients
rather than customized hardware to system designers of space vehicles.

Gaudenzi et al. [43] investigated the potential of Industry 4.0 in the context of manu-
facturing. They identified application scenarios of Industry 4.0 and Internet of Things
(IoT) to the manufacturing, assembly, integration, and testing cycle of satellite produc-
tion. The focus was on cyber-physical systems (CPS) in intelligent factories that get
information from a sensor network for distinct processes. The provided data can be
analyzed with the help of big data analytics and machine learning to enable automatic
task scheduling, performance monitoring, and better production. The authors concluded
that factories that include CPS can be beneficial for the satellite manufacturing.

In their master’s thesis, Klemme [70] identified important technologies from Industry
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4.0 applicable to the space industry using the example of the German satellite manufac-
turer OHB. They found that each aspect of a manufacturing process has different needs
that can be addressed by different Industry 4.0 technologies. For example, endoscopes
and augmented reality can be helpful for satellite integration. Satellite integration is the
process of assembling and connecting the sub-systems together into the satellite unit.
An obstacle for further digitalization is the lack of paperless processes. The author
found that there is a need for company-wide, coherent IT-systems that digitize multiple
processes related to satellite manufacturing.

Braun and Braun [14] also concluded that new technology such as appliances from the
Internet of Things can be advantageous for satellite manufacturing and operation. How-
ever, they pointed out several security issues that arise from implementing IoT technol-
ogy. IP-connected devices could potentially be vulnerable to malicious attacks. Security
flaws in IoT devices on earth can get patched easily with updates. This is not the case
for satellites in operation, as their debugging ports can require physical access. The
authors concluded that these issues need to be addressed before IoT technology should
be implemented in satellites.

As mentioned above, the most important drive of Space 4.0 are small, inexpensive satel-
lites. The whole life-cycle of a spacecraft, including all satellite types, from design to
disposal can be divided into several phases. The European Space Agency (ESA) defines
seven phases in the standard ECSS-M-ST-10C [27]: 0, A, B, C, D, E, F. In the first
phase, 0, the feasibility of the mission is determined. Phase A is the initial design phase,
in which the feasibility of the planned spacecraft needs to be assessed. Phases B and
C aim to refine this first design by defining the spacecraft with all its components in
detail. The fifth phase, D, contains the assembly, integration, and testing (AIT) of the
spacecraft and the corresponding ground segment. Launch and operation are phase E.
Finally, the spacecraft is disposed in phase F. Each of these phases has their unique set
of challenges and opportunities regarding digitalization, which will be discussed in the
following.

In this report, we highlight the current state of research and technology of the digi-
talization in the space industry and its related benefits to the whole life-cycle of space
vehicles. In the following, we focus on ten areas we find have the biggest potential for
further digitalization: concurrent engineering, model-based systems engineering, digi-
tal twins, ontologies, artificial intelligence, big data analytics, electronic data sheets,
augmented and virtual reality, robotics and manufacturing, and standardization.

2 Concurrent Engineering

The first steps in the life-cycle of a future spacecraft are planning and design. For the
initial phases 0 and A (following the ESA standard), it has become common practice to
utilize concurrent engineering (CE). Concurrent engineering is the ”simultaneous design
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of a product and all its related processes in a manufacturing system” [66, p. 4] by (phys-
ically or virtually) co-located experts for each design discipline to be considered. The
goal is to identify problems that would otherwise emerge in later engineering phases at
intersections of the different disciplines as early as possible. Therefore, the number of
design and conception iterations for the product in later engineering phases is decreased,
which reduces costs over the course of the project [36]. It is also associated with de-
creased design and development time and higher customer satisfaction [80].
Concurrent engineering is not a new concept, but the advancements in computer sys-
tems and software over the last decades helped improve and digitize the CE procedure.
Most improvements result from the experts being able to simultaneously use the same
software tools [63]. In this section, we outline the current state of research for concurrent
engineering in the space sector; a non-exhaustive list of concurrent engineering facilities
can be found in Appendix A.1, and a list of CE software in Appendix A.2.

In recent years, the focus of research regarding concurrent engineering for spacecrafts
has been on improving the design of existing CE spaces and software but also adapting
them to more phases of the spacecraft life-cycle. The Concurrent Design Laboratory was
developed as a part of the ESA Lab@TU Darmstadt [53] with focus on design studies for
ground segments and operations of space missions. Until now, CE studies focused mainly
on spacecrafts and often excluded more complex systems, such as ground stations and
operations. In the past, smaller components of a ground station were designed; for ex-
ample, a mobile Telemetry, Tracking, and Command ground segment has been planned
with concurrent engineering [78]. At the moment, there are no standards defined regard-
ing the collaboration of different design experts and CE procedures for ground stations
and operations to the best of our knowledge. Ground-station design is more interdisci-
plinary, as non-space related aspects, such as IT infrastructure, have to be considered.
Thus, Hoffmann et al. [53] adapted the CE procedure including models and software
tools for the concurrent design of ground stations to be used in the Concurrent Design
Laboratory. It was opened in late 2019.

In a similar approach, Tomasicchio et al. [106] described their architecture of a Con-
current & Collaborative Design Facility (C2DF) as a new form of concurrent design
facilities (CDF) covering complete space missions, including modeling single spacecrafts
and constellations as well as ground segments and operations. The described CDF has
been created for the Italian spaceflight service company Telespazio. The common CE
approach was supplemented with collaborative methods, such as augmented reality to
visualize system models. Together with virtual machines providing the same software
for all participants, this allowed for (remote) collaboration. According to the authors, it
is planned to cover studies for phases 0 - B in the facility, with a possible later extension
to phases C–D, when suitable methods have been defined for complete missions.

CE facilities are successful at improving the designs of spacecrafts. However, little re-
search has been done yet on how to improve the design process with new technology.
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Therefore, Chavy-Macdonald and Kneib [20] proposed the concept of CD2F , a concur-
rent design and data facility. This CE lab includes the idea of a design observatory in
which different simple designs can be tested by experts of the CE process. This allows
for ethnographic studies on design processes and, together with sensors such as micro-
phones, enables the collection of empirical data about collaborative design activities.
The data was analyzed after a completed study to gain more insight about the process.
However, the authors noted that the goal is to process the data in real-time to offer
support to the designers by provision of an indicator of the quality of different design
aspects. The proposed CD2F concept has not been realized yet.

Other facilities, for example the Concurrent Engineering Facility (CEF) in Bremen,
Germany by the German Aerospace Center (DLR), have been used to conduct studies
for several years already. Here, the focus is more on gathering insight and lessons learned
from finished studies to further improve the procedure at the facility and study design
[80]. From 2007 to 2017, over 60 CE studies were conducted at the CEF at DLR Bre-
men. In [80], Martelo et al. presented the statistics of the finished studies. The biggest
benefits included decreased development time and engineering changes as well as fewer
defects and an increase in overall quality of the designed product. In most cases, studies
had new participants that never took part in a CE study before. Thus, emphasis should
be on a guided procedure and easy-to-understand software tools. The authors found
that it is also important to have experienced team leader that help prevent potential
miscommunication between experts of different fields.

Similarly, Knoll et al. [71] reviewed the common practices in different concurrent engi-
neering centers for space products. Two of the biggest ongoing challenges were identified
as team formation and special training of team leaders. Further improvements in all five
cornerstones of CE could be expected: conceptual design, team psychology, conceptual
models, software tools, and procedure and facility [71]. Many studies had at least one
person working remote, but current solutions, such as conference calls, had their draw-
backs. Often mentioned problems were disconnections and unstable internet connections
of the people working remotely. Complete in-person meetings are still perceived as more
productive. One possible future solution was identified as meetings set in augmented or
virtual reality environments (see section 9). However, the issue of unstable internet con-
nections persists. Another point for improvement was new software with real-time syn-
chronization between several users instead of the common version-controlled approach.
Furthermore, the current modeling techniques with formal languages were perceived as
not adequate by the engineers in the early stages of development by participants in a
survey. The authors concluded that more research is needed to find more appropriate
modeling for the conceptual design phase of CE studies.

The growing number of CubeSats missions being designed in CE studies revealed room
for improvements. Jahnke and Martelo [64] proposed possible adaptations to the CE
process for CubeSats. Since there are many COTS parts available for CubeSats, the role
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of some experts shifts from sub-system design to searching the most suitable component.
Here, one experienced designer could take the task of searching for several sub-systems.
This reduced the number of participants. In addition, using COTS parts reduced the
number of design iterations and the product design underwent fewer changes. In ad-
dition, for many CubeSat parts, data sheets were available but needed to be searched
for. Often no 3D model were available. These are needed for visualizing the designed
product. This amplifies the need for an extensive database of COTS components and
subsystems for later reuse. For the CE study itself, the authors concluded that a model-
based approach could be more suited.

CE studies are not exclusive to spacecrafts and their mission. They can also be applied
to design single parts by manufacturers. To generate parts with multiple functionalities
and modern manufacturing techniques, the common CE process needs to be adapted.
Samoil et al. [98] proposed a CE methodology for spacecraft parts. They found that in
this particular case, more preliminary studies at the beginning followed by more detailed
design sessions until the review of the design product are needed. It is planned to test
the proposed procedure at OHB System.

As mentioned above, concurrent engineering is mostly used in the initial phases of the
spacecraft life-cycle. However, work in the later phases could benefit from a similar
collaborative work, as concluded by Jahnke et al. [65]. According to the, the biggest
starting point is the utilization of model-based systems engineering (see section 3). Here,
the data model describing the system and its state is designated to be used during the
whole life-cycle. The authors state that concurrent work with a shared data model are
not used outside CE studies at the moment. However, especially in later stages of phase
B design work, a central model could be helpful in a concurrent setting, according to
the authors. Therefore, a software tool that is also suitable for activities of other phases
and supports the sharing of such a model should be considered to extend CE to phases
B-D.

In a similar approach to make the results of CE studies more accessible in later de-
velopment phases, Fortin et al. [38] defined a data model based on the SAPPhiRE (State-
Action-Parts-physical Phenomenon-Inputs-oRgan-physical Effect) model of causality [19].
It is used to help product designers across all disciplines explore the design space and
find new concepts to apply to their problem [19]. The extended model by Fortin et al.
for space application is supposed to improve the understanding of a spacecraft’s struc-
ture and behavior between different experts and stakeholders. In order to apply this
model for spacecrafts, its concepts were mapped to the data model of the CE software
CEDESK [72]. This allowed for a potential reuse of models and data in future studies.

Another aspect to improve the CE studies is to tailor software tools to the facilities.
ESA [35] has developed their own software tools to be used in their concurrent design
facilities: OCDT and ConCORDE as server-client software. The server side is realized
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as the Open Concurrent Design Tool (OCDT), which utilizes the data model defined
in ECSS-E-TM-10-25A [28]. It offers a REST-API to synchronize and exchange data
model files during a CE study via a database. This has to be implemented in a client.
ESA’s client is realized as ConCORDE, a Microsoft Excel plugin, which can used by all
experts during the study.

The CE software Concurrent Engineering Data Exchange Skoltech (CEDESK) was de-
veloped by Knoll and Golkar [72] for the CE facility of the Skolkovo Institute of Science
and Technology. It is used for conceptual design studies of complete space exploration
missions and satellite constellations. The focus is on a collaborative approach of several
experts to consider the structure of a system and the interaction of individual com-
ponents. The tool is primarily used in the conceptual design phase and focuses on
synchronization of a system model between workstations similar to OCDT. In addition,
role assignments were implemented to allow for collaboration [72].

Ehresmann et al. [24] proposed the use of evolutionary algorithms for the design of afford-
able satellites for constellations. The Evolutionary System Design Converger (ESDC)
automatically optimized the design of a spacecraft with real-world performance data
from the individual parts within a given set of constraints. With the growing number of
COTS components, it can happen that a systems engineer misses an optimal configura-
tion. The evolutionary algorithm starts with a random configuration, which it mutates
until an optimal solution is found that satisfies all constraints. The authors note that
ESDC is planned to be integrated into a satellite constellation design tool.

One aspect that is often not considered during CE studies is the environmental impact
of a spacecraft. Since this is becoming a more pressuring issue, a life-cycle-assessment
(LCA) tool that can be integrated into existing CE software was proposed by Wilson
and Vasile [111]. Its backbone was the Strathclyde Space Systems Database (SSSD),
which can be used to calculate the environmental impact of a space system and its re-
lated processes [110], such as materials and production. The analysis is based on the
ISO standards 14040 [59] and 14044 [60] for life cycle assessments. According to the
authors, this can help alter the optimal design criteria towards more environmentally
friendly processes when already employed in the early design phases.

In summary it can be said that concurrent engineering is a tried and tested method
for the design of satellites for particular space missions. Its benefits have been reported
in literature [80]. However, it is rarely used for other systems of missions, such as ground
stations, or different types of space vehicles. Additionally, the CE methods had to be
adapted for CubeSat-based missions [64]. The studies are highly individual and opera-
tors of facilities adapted to their own tailored set-ups. To this end, many individual CE
software tools have been developed, often to suit the needs of one facility [36, 72]. These
customized procedures require special training of staff and participants and cooperation
between procedures and software is not given. Moreover, the CE procedure in itself is
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rather closed. Efforts have been made to extend CE procedures to later life-cycle stages
and to make the generated data easily accessible outside the CE study [38, 65]. An
aspect that is often omitted in CE set-ups but is becoming more important of late is
the environmental impact of the designed system. Here, CE studies should also include
evaluation methods for sustainability.

3 Model-Based Systems Engineering

Another force that actuates further improvements in the CE process is model-based sys-
tems engineering (MBSE). For this report, we follow the definitions of [40] and [94] that
MBSE ”can be described as the formalized application of modeling principles, methods,
languages, and tools” [94, p. 105] ”to support system requirements [engineering], design,
analysis, verification and validation” [40, p. 5] over the whole life-cycle of a system from
design to disposal. MBSE can be understood as the digital advancement of traditional,
document-based systems engineering.
While concurrent engineering is often applied only in phases 0 and A, MBSE covers the
whole life-cycle. However, both techniques share common principles, and more and more
advancements of MBSE have been incorporated into CE studies [63]. In this section,
we describe current trends in MBSE for the digitalization in the space sector. A list of
MBSE tools and software can be found in Appendix B.1.

In current research, the focus is on model representation, suitable software tools, and
improvements to the MBSE process. An ongoing issue is to improve the digitalization
of documents. While MBSE is characterized by digital representations and processes,
communication between involved parties is mainly still document-based. For example,
reports, data sheets, and contracts are still exchanged as PDF documents making the
integration of data and information into system models cumbersome [34]. Here, stan-
dardized communication methods are needed across the whole industry, which is a chal-
lenging and ongoing task [34]. Thus, Ferguson et al. [34] adapted the MBSE process at
BAE Systems to implement document representation in their MBSE software as a transi-
tional solution. The system model was adapted to additionally contain a representation
for documents and needed attributes to later generate documents again. These docu-
ments are based on the state of the model and can be exchanged in response to other
stakeholders. First, documents, such as requirements, got imported into a database.
Their information was extracted and imported into the model. Information from the
documents could then verified with the model in different life-cycle phases. Together
with other data from the model, documents such as reports could be then generated by
the MBSE software based on a predefined, reusable template [34].

In a similar approach to reduce the number of documents exchanged between actors,
the Common Information Platform (CIP) was developed by RHEA Group [11]. It en-
abled the exchange of models rather than documents between different stakeholders and
made them compatible to different tools via an API. This was achieved by combining dif-

10



ferent models, for example, requirements and physical architecture, into a single model.
This also allowed the model to be verified and tracked through the whole life-cycle [11].
CIP is still in development.

While the engineers designing systems are familiar with modeling languages and MBSE
tools, the ones responsible for the requirements verification, inspection, and testing are
not [77]. Thus, Latserus et al. [77] proposed a methodology to link modeled requirements
with their respective verification procedure supporting engineers without modeling ex-
perience. This allowed for the requirements to be traced through the life-cycle as well
as testing and verification documents to be generated automatically [77].

Models of spacecrafts are subjected to many changes during a design phase. How-
ever, since there is no interconnection between models, changes from one model cannot
automatically be applied to the others if necessary [102]. Thus, Stevens [102] proposed
to implement the concept of a Digital Thread into MBSE for space. A digital thread
is a framework that helps to intertwine separate features of a system by exchanging
information. For MBSE, these separate parts are often individual models from different
life-cycle stages. The proposed framework focused on the conceptual design phase of a
spacecraft. Here, changes in the mission requirements have implications on the design of
sub-systems. To implement the digital thread, Stevens used a shared modeling language.
This resulted in a model of the complete system with requirements and constraints that
could be verified automatically. This model relied on the models of the sub-systems.
The author concluded that it would be possible to extend the digital thread framework
to later life-cycle phases connecting the models with data from a real system or digital
twins (see Section 4).

DLR implemented MBSE in their CE procedures with Virtual Satellite, a modeling
software tool with a built-in conceptual data model (CDM) [36]. A CDM is used in
the conceptual design phase and is a language to describe a system and the relations
of its components. The CDM for Virtual Satellite by Fischer et al. [36] was designed
to support engineers during phase A spacecraft design studies at DLR’s CEF. It is not
based on an ECSS data model standard but is built to fit the CEF procedure at DLR
and to be extensible and customizable to other systems or phases [36].

The extension of Virtual Satellite to more spacecraft life-cycle phases is outlined in
[37] by Fischer et al. The system models were stored in a central database to allow
reuse in either a later phase or a new study. The architecture of the underlying CDM
was based on a generic systems engineering language, so it could be adapted and ex-
tended for each phase and specifications of different systems. Thus, there were suitable
models for each phase which could exchange data by being based on the same database
and modeling language. In addition, the authors note that information specific to each
phase also needs to be stored in the database. Engineers should then be able to access
the parts of the models relevant to their field.

11



Conceptual data models can be more meaningful if they also include semantics [54].
Hoppe et al. [54] introduced the use of ontologies (see Section 5) to add semantics to
CDMs. Ontologies facilitate automatic reasoning for inference of knowledge. The au-
thors presented the Digital Space Systems Engineering approach to add knowledge to
space CDMs. The basis was a transformation of the ontology model to Ecore, the Eclipse
Modeling Framework (EMF) data model, and back. This allowed the incorporation and
representation of knowledge in MBSE spacecraft models. The mechanism could be used
to further improve and add functionality to the MBSE procedures according to the au-
thors.

In a further development of semantics for data models, Hoppe et al. [56] described
the Semantic Engineering Modeling Framework (SEMF). It aimed at improving MBSE
by the introduction of reasoning to evaluate the validity of models and discovery of new
information by inferring knowledge from the model. The authors concluded that this
reduced possible inconsistencies. When stored in a database together with inference
logic and access for engineers, ontologies also enable the later reuse of the models and
an easier adaptation to different systems than other modeling languages (typical MBSE
modeling languages are UML and SysML) according to Hoppe et al.

With the increased popularity of small satellites, more so-called mega-constellations
are designed. However, since this is rather a new field, most modeling software tools are
not suited well enough for constellations [69]. Thus, Kharlan [69] proposed a tool for the
early mission analysis that was customized to model and analyze constellations of small
satellites for telecommunication purposes. The tool features one main, logical model of
the overall system accessible by all engineers and a method to store information about
subsystems. More information can also be imported from external sources if real data
is available for parts from manufacturers or past missions. The tool is planned to be
integrated into concurrent environments for constellation design studies.

Model-based systems engineering can be utilized for more aspects of a space mission
than just spacecrafts. LaSorda et al. [76] introduced an MBSE approach for architec-
ture selection of ground-based systems, such as a mission control center, for satellites.
The main concern for these larger segments is uncertainty of different design options.
The goal was to model these as well as possible to enable an automatic and under-
standable evaluation of different design aspects and their respective uncertainty. The
authors could then trace the concerns of stakeholders along the process, which lead to
more informed decisions on all architecture alternatives. They envision to implement
this process in the early stages of system acquisition.

Uncertainty also plays a role in the design of spacecrafts and their components. Of-
ten, problems in the design of the complete system are only seen later when combining
the different sub-system models. The outcomes of the decisions made during the initial
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design are not completely foreseeable and therefore have a high degree of uncertainty[21].
To take uncertainty into account during the design process, Chodas et al. [21] proposed
the Model-based Adaptive Design under Uncertainty (MADU) framework. It adapts the
complete system’s model when the design is changed. If the decision has implications
on other parts of the system, MADU can be used to automatically adapt the concerning
parts using conflict learning. Conflict learning is used to avoid picking solutions from
unsatisfiable regions of the search space [21]. This method also takes uncertainty into
account by solving constraint satisfaction problems. MADU builds the constraints with
information from the system model. For further improvement, the authors want to in-
corporate previous design data for optimization later.

As seen in the examples above, the focus of research for MBSE in the space domain
often focuses on the design stage of spacecrafts, namely satellites. However, it is de-
signed for the whole life-cycle of a product. One important area is the interconnection
and linkage of the different design and system models along the production phase, so
that different actors can benefit without extensive modeling knowledge [77, 102]. As with
concurrent engineering, many companies and research facilities have developed their own
MBSE software tools tailored to their individual needs and procedures. However, one
prominent obstacle is the ongoing use of documents, such as PDFs, that are difficult
to integrate automatically [11, 34]. Interoperability and standardization of electronic
documents and models across different platforms could be beneficial here. Regarding
the underlying CDMs of the MBSE software, the use of semantics and ontologies seem
to be promising [56].

4 Digital Twins

A rather new development that is often closely related to MBSE is the Digital Twin
(DT). There are various definitions of the digital twin in the literature. We use the term
digital twin in accordance with the definition presented at INCOSE 2020 [12] in this
report: A digital twin is the virtual representation of a system or product and utilizes
digital information available to it (such as product specifications) and sensor data pro-
vided by the physical twin (PT). It is used to run simulations and make predictions for
adaptations on and better the understanding of said product or system over its whole
life-cycle. In this section, we illustrate the use of digital twins in the space industry.

Garnier et al. [42] identified three common patterns of digital twins and their respective
use cases for space. The first pattern is called ”Twins acting concurrently” [42, p. 2].
Here, the digital and physical counterparts share the input and output data and can
interact with each other. This pattern has two use cases: avatars and complementary
activities. In the avatar case, the DT acts as a middleman between the user and the
physical counterpart. An example in the space domain is a collaborative robot. In the
case of complementary activities, one twin can support or command the other one. In
the space domain, this can be used to predict failure and anticipate maintenance.
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The second pattern is ”DT to provide feedback” [42, p. 3], where both entities collab-
orate in a form of feedback loop. The actions and output of the PT get analyzed by
the digital counterpart, which then can correct the PT’s behavior if necessary. This
pattern has two variations: the closed and open feedback loop. In the former, there
is no interception, and in the latter, a human or other system can be interposed. In
the space domain, the open loop pattern is used to support decision-making of critical
functions, and the closed loop is considered for in-operation adjustments,for example,
power regulation.
The final pattern is the ”DT to feedforward directives” [42, p. 4] pattern. It is similar
to the second pattern. Here, the digital twin analyses the effect of its directives together
with observations of the behavior from the PT. Here again, the loop can be open or
closed to other entities. Space-related use cases are ground-based planning of spacecraft
operations and virtual operators of unmanned space vehicles.

Fault detection in spacecrafts is often simply threshold-based [113]. The recent ad-
vancements in neural networks and artificial intelligence (AI) offer the possibility for
better and more profound fault analysis. However, since the computing power of space-
crafts is limited, Yue et al. [113] proposed a framework to analyze the sensor data from
rockets with a digital twin for ground station-based fault detection. The ground station
received the sensor data, which was fed directly into the DT model. It was then ana-
lyzed together with other available data (including flight path and geometric data) with
a combination of algorithms, including AI-powered fault prediction, in real-time. A 3D
model was updated to see the rocket’s current state. When a possible fault occurred,
a simulation with the DT was run to verify several recovery strategies. All data was
stored in a database for later reuse; for example, they were used as input to improve the
DT’s AI algorithms for better prediction and detection in the future. At the moment,
the described fault detection is constrained to rockets, but, according to the authors,
could be generalized to include more fault scenarios; for example, power and electrical
of different (un-)manned space vehicles.

In a similar approach but applied on a smaller scale, Burov and Burova [15] devel-
oped a digital twin of a composite over-wrapped pressure vessel (COPV). COPVs can
hold high-pressure fluids and are commonly used in propulsion engines of spacecrafts.
They are lighter than metal containers but more prone to material failures [81]. To pre-
vent these faults and predict when they occur, the DT is used for stress state and failure
analysis via simulations. The goal is to run simulations with the DT for prototyping,
testing, and inspection rather than performing the actual procedures on the physical
counterpart, as the vessel is often difficult to access [15].

The manufacturing of spacecraft parts can also benefit from digital twin technology.
Meng et al. [82] used digital twins to simulate and plan the behavior of intelligent as-
sembly robots for large spacecraft components. The simulation received real data from
the robots, so the DT could then planned the assembly process avoiding collisions. This
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was achieved by a probabilistic road map motion planning algorithm performed on a 3D
virtual model. The robots and the assembly platform had sensors installed to gather
data. This were then sent to the DT which updated the 3D model. The digital twin
simulated possible movements with the model and sent the best configuration to its re-
spective PT [82].

Weber Martins and Anderl [108] also proposed the use of digital twins for robotic as-
sembly. However, they envisioned the assembly of satellites for mega-constellation in
space with the so-called Space Factory 4.0. They applied concepts of Industry 4.0 to an
in-orbit assembly procedure. Digital twins are supposed to represent the current state
of the satellites at all times during assembly, integration, and testing. They assist their
respective PTs by analyzing their telemetry data as well as reacting to disruptions. The
DTs should be able to send commands to their physical counterparts [108].

In summary, digital twin is a new but promising method for the space industry. At
the moment, their use is often limited to one certain problem, such as fault detection
[113]. However, digital twins can be utilized during the whole life-cycle, so there is room
for more complex use cases. Future applications include the use as an interface between
human operator and a partly autonomous robotic assembly platform in orbit.

5 Ontologies

As mentioned in a previous chapter, ontologies can improve the MBSE procedure for
spacecrafts. In philosophy, ontology is the the study of being. In computer and infor-
mation science, an ontology is the formal, explicit representation of concepts of one or
multiple domains. For the common understanding and sharing of knowledge, an on-
tology represents the concepts as relationships between objects. These are defined in a
representational vocabulary. Ontologies model existing things and their relations so that
new knowledge can be inferred [46, 49, 100]. In this section, we highlight the current
research regarding ontologies in the space sector. A list of general and space-related
ontologies can be found in Appendix C.

As mentioned in Section 3, ontologies can be used to add semantics to conceptual data
models. Hoppe et al. [54] added knowledge to MBSE CDMs by transforming ontolo-
gies to the Eclipse Modelling Framework data model, Ecore. In a further development,
the authors [57] evaluated the use of ontologies as the single modeling tool without the
mapping to a different language. They found that ontologies are well suited to enrich
MBSE as so-called knowledge-based systems engineering. Other modeling languages
(UML, SysML) would not expressive enough to include semantics in contrast to ontolo-
gies defined with the Web Ontology Language (OWL). OWL also allows for adjustment
and extension of the data model during run time, which is infeasible with other lan-
guages [57]. Furthermore, engineers can profit from reasoners, which infer knowledge
from ontologies with rules. The rules can be formulated with the help of the engineers’
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past experiences and previous designs from an MBSE database. The authors found that
inferred knowledge helped to easily access otherwise unknown or implicit facts and find
inconsistencies in the overall design. Since the transformation can only be as expressive
as the target language, the authors conclude that a transformation from ontologies to
other data model languages should not be in the focus of research any more. Thus, they
proposed the use of ontologies for knowledge-based systems engineering in the space
domain; an approach they named semantic space systems engineering [57, p. 3].

In an effort to advance semantic space systems engineering, Hoppe et al. [55] extended
their semantic CDM framework to more concepts with OWL profiles. The goal was to
connect the models’ components to different stages of the system life-cycle. Thus, the
view on the model is changed based on the current design stage (for example, initial de-
sign, detailed design). This also implies that certain aspects can be abstracted in some
stages, forcing the engineer to change the stage of the model to adjust the design of a
certain part. With the help of an ontology reasoner, switching the stage leads to checking
for consistency and correctness of the changes providing instant feedback. Hoppe et al.
found that this can prevent over- or under-engineering at the preliminary design stages.
The authors call this approach guided systems engineering as a part of knowledge-based
SE. They conclude that the stage-based abstraction and automatic inference can increase
the data quality of the system model and reduce the time to complete a design.

Similarly, Hennig et al. [52] developed ontologies to improve the MBSE approach for
space system design. In accordance with [54], they found that ontologies are the best
way to integrate semantics into conceptual data models, and that system engineers can
benefit from the automatic reasoning for better design quality. They transformed a
CDM to OWL and added formalized knowledge from available documents of previous
missions. This was compiled into a knowledge base. A knowledge base holds structured
data (knowledge) from an ontology and a corresponding inference engine. They designed
two ontologies: an MBSE ontology representing a CDM, and one describing a satellite
system. The MBSE ontology is based on the data model specified in ECSS-E-TM-10-
23A [31]. Both proposed ontologies were published: [50] [51]. It was found that while
MBSE can greatly benefit from ontologies, it cannot be completely replaced by them
because a knowledge base is not capable of replacing an MBSE systems database as
certain functionality. Thus, Hennig et al. see ontologies as a valuable enhancement to
MBSE and its system database. This contradicts the findings from [54] in parts.

Berquand and Riccardi [10] proposed a method to automatically convert system data
models to knowledge graphs. Knowledge graphs contain connected instances of an on-
tology. They also allow for inference of knowledge. All models compliant to ECSS-E-
TM-10-25A [28] can be migrated, according to the authors. The 10-25 UML model was
first transformed to fit the knowledge graph scheme. To populate the graph, the sys-
tem models were exported as a JSON (JavaScript Object Notation) file, which was then
mapped to the graph scheme and added. Additionally, the authors trained a document-
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based embedding to calculate the similarity of mission requirements. Together with a
reasoner, this embedding helps to gain more knowledge of the graph’s contents. This
approach is aimed at assisting system designers of spacecrafts in early design stages.

As a first step to build an extensive space mission design ontology, Berquand et al. [7]
proposed an approach to semi-automatically generate an ontology based on unstructured
data. Their data corpus included different types of documents related to space systems
engineering: feasibility reports, space mission design books, and related Wikipedia en-
tries. From these documents, frequent entities and synonyms were extracted with the
help of a natural language processing (NLP) pipeline. Similar entries were merged to
identify different concepts. Before they could be added to the ontology, they needed to
be reviewed by human experts. This approach is related to the ongoing development
of the Digital Engineering Assistant (DEA) at the University of Strathclyde. DEA is
planned to be an intelligent virtual assistant to engineers in the conceptual design phase
of a concurrent engineering study. The ontology is supposed to bridge the gap between
the intelligent system and the knowledge of engineers [84].

Arista et al. [1] proposed the use of ontologies for the design and planning of assem-
bly lines in the aerospace industry. The ontologies were part of a framework to model
products, processes, and resources related to the assembly. Its aim was to support the
design and management of an assembly line in the conceptual phase of a spacecraft, as
the assembly needs to be considered as early as possible to avoid later problems and
shortcomings. In future research, the actual ontologies have to be realized.

With the help of ontologies, Zhao et al. [115] developed an automatic conceptual design
tool for spacecrafts. They built a knowledge base of the design of complete spacecrafts.
As a basis, an ontology describes the whole design process for a spacecraft and the rela-
tionship between single activities. The design is represented in a conceptual map. New
knowledge is added if the quality is evaluated as high enough. A reasoner was used
to infer production rules from domain knowledge. For each sub-system of a spacecraft,
a knowledge model can be built, which is then used to automatically generate a valid
concept design. This procedure was demonstrated by designing a power sub-system with
an ontology. In the evaluation, the authors found that the rendered design was valid and
that this automated procedure can save time and work of engineers. In future work, this
can be extended to combine all designed sub-systems into one automatically designed
spacecraft.

All in all, ontologies are powerful tools for modeling concepts and are often used as
conceptual data models for MBSE. However, there is no clear consensus if they only en-
rich or replace MBSE methods [52, 54]. Other important application scenarios include
the design of spacecrafts. Here, the provided inference of knowledge and rules defined
for reasoners allow for an automatic design procedure. However, this has only been
applied on a sub-system level [115]. An important issue is the lack of ontologies for the
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space domain [7]. The generation of meaningful ontologies is a tedious procedure that
requires verification by experts. Efforts have been made to automatically compile an
space mission design ontology, however this also needed expert reviews [7].

6 Artificial Intelligence

One of the most prominent driving factors of digitalization is artificial intelligence. The
fields of artificial intelligence and machine learning use learning algorithms to automate
different tasks. The more data becomes available, the better AI algorithms can train
and improve. Typical AI tasks include object recognition, information extraction, clas-
sification, prediction, and optimization [44]. In this section, we highlight some of the
trends regarding applications and digitalization in the space industry. In Appendix D,
a list of related AI tools is given.

In current research, a variety of application areas for AI in the space domain are found.
For example, optimization of spacecraft designs is an area that can benefit from ad-
vancements in machine learning. Krijen and Guo [73] evaluated the use of reinforcement
learning (RL) to generate CubeSat designs out of a catalog of COTS parts automati-
cally. Reinforcement learning is often selected for optimization tasks where the output
cannot be foreseen, as the problem is rather complex [73]. This is the case for the design
of a complete satellite: with the increasing amount of suitable components becoming
available, the design space is also growing. Thus, it is becoming infeasible for a systems
engineer to find the optimal configuration for the given requirements. The optimization
is based on the formulated requirements of the satellite and its sub-systems. In a case
study, it was found that RL is promising for the automated design of a CubeSat for an
earth observation mission. However, the chosen approach had some limitations, as the
design tool was unable to generalize over previously unseen data (requirements, com-
ponents). The authors therefore recommended a different approach and to extend the
database of COTS components to further improve the design tool.

In a similar approach, Norheim [86] developed a component selection algorithm for the
conceptual design of satellites with mixed-integer nonlinear programming. They also
applied their optimization algorithm on CubeSat designs of earth observation missions
with all available COTS components. They generalized the requirements, constraints,
and properties of the individual parts as a nonlinear problem. This was then given to
a solver. They found that their approach can find an optimal solution within about
100 million possible configurations in a few minutes, in a worst-case scenario. This
outperformed any manual component selection by far. Thus, it could be beneficial for
engineers, who want to test several options in the early design stages in a short period
of time [86].

Engineers in the conceptual design phase can benefit from access to knowledge from
previous missions. To make this information reusable, Berquand et al. [6] automatically
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classified space mission requirements with topic modeling. Topic modeling is an unsu-
pervised machine learning method to learn and extract topics from texts. They trained
a Latent Dirichlet Allocation (LDA) model on Wikipedia entries related to space mis-
sion design. LDA is a probability-based topic modeling method. It is based on the
assumption that similar texts have a similar distribution of topics. In the evaluation,
the authors found that the performance in a classification task depended on the queried
category, which indicates a bias in the training data. The lack of a curated, free data
corpus on space mission design was identified as one of the main hindrances to further
improve the LDA model. This tool is also part of the Digital Engineering Assistant
developed at the University at Strathclyde [6].

Tipaldi et al. [105] proposed a framework to utilize AI for the analysis of spacecraft
flight data. The goal was to augment current health monitoring and diagnostics tools
during operation. The framework includes three main tasks: root cause analysis of
anomalies, behavior prediction of the spacecraft, and simulation models. However, using
domain knowledge about spacecrafts for the root cause analysis is an ongoing challenging
task [105]. The authors concluded that while their framework is applicable to PROBA
(Project for On-Board Autonomy) satellites in a case study, more work is needed for the
root cause analysis and simulation models to achieve better results.

With new optimization in hardware and frameworks, the execution of AI algorithms
could be no longer restricted to stationary, powerful computers. Manning et al. [79] pro-
posed to run software with the machine learning framework Tensorflow Lite on hardware
used for SmallSats. They queried a convolutional neural network for image classification
on existing flight hardware. Their findings indicate that machine learning can be used
directly on board a spacecraft in future missions. The application scenarios include pro-
cessing of acquired data before its sent to ground stations, optimizing communication,
and mechanisms for autonomous operation.

Guariniello et al. [47] proposed the use of AI algorithms for the automatic extrac-
tion of space mission-related data to support the decision making in early conceptual
modeling of spacecrafts. The tool first mined relevant data and documents, from which
it extracted information. The information was stored in a space architecture database.
The algorithm was then trained to find useful input for analysis tools. In a case study,
their approach was evaluated on a design of a habitat module. The tool was used to
gather all relevant data for an analysis in an analytic work bench tool. To further im-
prove the trained model and expand their features, the authors proposed to extend the
architecture database with more data verified by experts.

Pate [89] envisioned a complete concurrent engineering platform that is based on AI
algorithms. The goal was to support engineers in a concurrent design study of a com-
plex system with an intelligent tool. The service should run in the cloud and implement
concepts from MBSE and IoT supported digital twins. The cloud-based approach was
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chosen to support multiple users from different locations at once. The IoT technology
is supposed to enrich a possible digital twin of a system with better visualization and
understanding. For the concurrent engineering process, the platform should support the
design conceptualization, feasibility studies, and generation of an optimal system design
with AI-based tools. In a case study, a re-entry vehicle was designed to evaluate the
workflow of the platform. The approach is not implemented yet.

The idea of an intelligent assistant for concurrent engineering studies, the Design Engi-
neering Assistant (DEA), at the University of Strathclyde was first proposed by Murdaca
et al. [84] and its architecture has been refined since: [8] [9]. DEA is based on several
machine learning techniques to support engineers in the design phase of spacecrafts. It
has two intended use cases: a knowledge base that can be queried by an engineer to ac-
cess knowledge and an active AI-based assistant that monitors the current design process
and automatically prompts engineers with discovered inconsistencies. The queries will
be answered in natural language text by the system for a better understanding. Addi-
tionally, it is emphasized that AI should not be used to completely replace the engineer,
but to support them in an unobtrusive manner. The DEA architecture is divided into
two parts, smart-squid and smart-dog [9] [84]. Smart-dog holds the knowledge graph
and its inference engine as well as related NLP functionality to add knowledge, while
smart-squid includes the front-end and UI with which the engineers and experts interact.
The system should also able to learn during run time. After a CE study has concluded,
its final report should be added to the knowledge base to further improve its mission
design knowledge. Human experts should also be allowed to provide feedback to the
system in a feedback loop. As of now, the overall system of DEA is still being planned,
but smaller parts have been published: [6, 7, 10].

The idea of an intelligent assistant for the design phase of spacecrafts was also adopted
at Cornell University. They developed the concept of Daphne, an intelligent assistant
for the design of earth observation satellites. Daphne was first introduced in [3] and
later refined in [58] [107]. The main goal is to reduce the mental load of engineers ex-
ploring the design space of distributed space missions for earth observation. Here, the
design of several satellites in a constellation produce a large, high-dimensional design
space, and it can become overwhelming to explore all possibilities. Thus, Daphne is
designed to support engineers in the conceptual design phase. The back-end is called
Daphne Brain, which sends the users’ requests to different roles. Roles encapsulate dif-
ferent functionality of Daphne. For example, the critic role analyses a given design and
suggests improvements, whereas the historian rule returns information from previous
missions [58]. Queries can be sent in natural language and are then classified with a
convolutional neural network before they are passed to the corresponding role. In a
user study, the authors found that Daphne can improve the design quality. Engineers
preferred an intelligent system as a team mate that gave feedback from time to time
rather than a stand-alone tool. Daphne currently has a web user interface. The source
code for Daphne has been published and a demo is available online (see Appendix D.1).
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In summary, artificial intelligence can be applied to a variety of procedures in the space
industry. Again, major applications are the automatic component selection and opti-
mization of satellite designs [73, 86]. Moreover, the possibility of running AI algorithms
directly on board a satellite is being considered [105]. However, the most promising use
case in the long run is the concept of an intelligent assistant. Two assistants are being
developed at the moment: DEA and Daphne [8] [58]. However, both are restrained
on helping engineers during the conceptual design phase of satellites. In the future,
such intelligent agents could become more universal and be applied to more phases of
missions.

7 (Big) Data Analytics

The term Big Data describes ”large-volume, complex, growing data sets with multiple,
autonomous sources” [112, p. 97]. These data sets can be data from a variety of IoT
sensors or content published on the internet, for example. To gain knowledge from these
huge amounts of data, new and effective processing methods are needed, so-called Big
Data analytics. Many sectors can benefit by gaining new insights and knowledge from
these huge data sets that would otherwise be hard to discover. We describe the current
use of Big Data in the space sector related to digitalization in this section.

In the space industry, Big Data is often related to big data sets of satellite data, for
example, operational and experimental sensor data. In their thesis, Keppel and Bretag-
nolle [68] reviewed the possibilities for Big Data to improve the operation management
of satellites. Operation management is the ”planning, controlling[,] and directing of ac-
tivities within a business to satisfy customer needs”[68, p. 5]. They found that Big Data
has been extensively researched for benefits on earth; for example, earth observation for
defense, climate change, and agriculture. However, there is a lack of research for Big
Data in space applications. Possible scenarios include health monitoring, failure pre-
diction as well as space debris localization and collision evasion. All these applications
can help to improve the longevity of satellites and increase profit of companies offering
services based on satellite data.

Qiao et al. [93] used data analysis in the form of principal component analysis and
clustering for the trade-space analysis of CubeSat designs. The trade-space comprises
all viable combinations of design choices, that is part selections. As mentioned before,
this space can become very large and difficult to find the optimal solution for an engineer.
The authors chose principal component analysis (PCA) to reduce the dimensionality of
the individual objects in the trade-space. Then, k-medoids clustering was applied to
show similar design choices. The result were visualized in a scatter plot and the user
could select their group of interest. The visualization was then reduced to only the
selected points and further details were provided to support the decision between all
options. In a case study, it was found that spacecraft designers found this tool helpful,
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as they were less overwhelmed during decision-making on components.

In order to analyze the data gathered during testing of a spacecraft, Sun et al. [103]
developed a Big Data processing framework. The raw experiment data was stored in
a Hadoop cluster. Hadoop is a framework for distributed data storage and processing.
The data was then processed in parallel. Analysis results, statistics, and other informa-
tion was is exported to a database. Users coukd then access these via a web service.
For further improvement, the authors suggested that more nodes can be added to the
cluster to reduce the processing time and handle bigger data sets.

A Big Data processing framework for experiment data from spacecraft testing was also
proposed by Zhang et al. [114]. However, they envisioned the test data to act as a base-
line for health monitoring and failure prediction. First, the data was preprocessed and
cleaned before storage. During the analysis, intermediate results were saved to reduce
the execution time. Afterwards, the results got processed and were visualized in real-
time in a user interface. The system calculated the system health and fault prognostics.
In case of a detected anomaly, a notification was sent. The authors plan to connect the
framework to other analysis tools in the future.

Schwenk and Herschmann [99] developed a framework for on-board data analysis for
satellites. The framework should also be able to analyze the gathered data during op-
eration and offer a system to query the data in near real-time. At the moment, it can
take days until all raw data of a satellite is available on the ground, as the data cannot
be sent consistently to ground stations [99] . Thus, they proposed the on-board data
analysis and real-time information system (ODARIS) framework. It should be able to
analyze data on board. The results should be accessible on request within minutes, and
the system should instantly send notifications in case an alarm event was detected. The
ODARIS system is still in planning and has not been launched yet.

In summary it can be said that huge amounts of data accumulate over most phases
of the space vehicle life-cycle. Thus, methods have been developed to efficiently analyze
them [103, 114]. While Big Data is used successfully for benefits on earth in many areas,
such as agriculture, climate research, and defense, less is known about its benefits in
space and for mission optimization [68].

8 Machine-Readable Documents & Electronic Data Sheets

Despite the growing expansion of digitalization in the space industry, there are still
several areas that are very document-based; for example, contracts, reports, and data
sheets of components are mostly exchanged as documents between the involved parties
[34, 90]. Unstructured documents, such as PDF files, are not machine-understandable,
and the relevant data needs to be extracted and made available in the corresponding
software tools. This can be done by hand, which can be very error-prone, or by au-
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tomatic extraction, which requires a standardized representation of the documents and
certain knowledge about the vocabulary of the extracted data. For example, parameters
might be called by synonyms (mass, weight). Thus, a digital standard for data trans-
mission and processing is needed, that is electronic data sheets (EDS). In this section,
we describe the current state of research regarding the digitalization of documents and
development of electronic data sheets. A list of EDS-related tools can be found in Ap-
pendix E.

To enable a digital and direct exchange of product data from manufacturer to client,
Peters et al. [90] proposed a prototype to supply the MBSE tool Virtual Satellite with
product information of CubeSat COTS components. This is often provided as PDF
documents, or bullet points and continuous text on websites in a non-machine-readable
form. In addition, there is no standard vocabulary to describe the information and often
the manufacturers use different terms than the data model of MBSE tools (e.g., mass
& weight), or the same term describes a different parameter. Their prototype mined
data sheets from CubeSat parts manufacturers. The product information was stored
in a database that was connected to Virtual Satellite via a plug-in. The entries were
mapped to the corresponding entities of the Virtual Satellite data model. The authors
concluded that a standardized format to exchange product data is needed and that it
should also describe the semantics of the entities for easier mapping between terms.

Satsearch.co is a website that lets users search for suitable satellite components and
related services. In [74], they described their efforts to digitize PDF data sheets and
transform them into electronic data sheets. The information was gathered in a knowl-
edge base and is accessible via an API. They used JSON as the format for their EDS
to provide machine-readable information. The transformation has been done previously
by hand but was planned to be automated with additional software. The data from
satsearch’s EDS is currently available as extensions for valispace and CDP4 to automat-
ically integrate information about satellite parts into the design [74].

Murdaca et al. [83] used a knowledge-based approach to automatically extract rele-
vant information from satellite part data sheets. Relevant information is considered to
be a parameter with the value and a possible measurement unit (e.g., mass 1kg). They
designed a domain ontology to capture all important concepts and knowledge about
satellite parts from the data sheets. This was used for ontology population to extract
the parameters. The approach also identified and extracted synonyms and patterns. In
a case study, they extracted information from data sheets of reaction wheels provided
by Satsearch. As the baseline, the corresponding EDS from the Satsearch API were
chosen. Eight attributes were selected that should be extracted. Satsearch also built
an ontology from their data, which was combined with additional concepts to act as a
terminological ontology. This ontology was used to compare the extracted data with the
data provided in the EDS. In the evaluation, it was found that a formal ontology is the
most important part of the process, as the data is unstructured and not standardized
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regarding format and vocabulary. A more accurate extraction is only possible when
the documents become more standardized and an extensive ontology is used. Other
external factors that complicated the correct extraction included conversion errors and
typographical mistakes in the data sheets. The knowledge-based information extraction
procedure is part of the smart-dog component of DEA.

In a similar approach, Opasjumruskit et al. [87] also used ontologies to extract informa-
tion from satellite part data sheets. They developed a tool called ConTrOn (continuously
trained ontology) that extracts information and extends the underlying ontology from
the documents. This ontology was initially developed by domain experts together with
the authors. In the first step of the pipeline, all texts got extracted from the data sheets.
These were then analyzed to identify topics. A synset from WordNet was chosen to rep-
resent the concept of the topic. Next, the ontology got extended with knowledge from
Wikidata of the derived concepts. In the final step, the parameter-value-unit tuples were
extracted with the help of the ontology by highlighting them in the PDF file.
The user interface for ConTrOn, DSAT (data sheets annotation tool), was described
in [88]. It enabled engineers to review and export the information found by ConTrOn.
Found key-value-unit-tuples were highlighted in the PDF. Users could then correct er-
rors and add new data that was missed. The data was then exported for further use and
was automatically added to a database.

ESA [92] is working on the standardization of electronic data sheets with Spacecraft
Onboard Interface Services (SOIS) EDS and Space Avionics Open Interface Architec-
ture (SAVOIR) EDS. SOIS EDS was only intended for data handling and spacecraft
communication. SAVOIR EDS is aimed at standardizing the knowledge about multiple
domains (communications, electrical, thermal, and mechanical) related to spacecrafts to
be adapted across the aerospace industry. The SOIS EDS standard is defined and pub-
lished in CCSDS 876.0 – ”Spacecraft Onboard Interface Services – XML Specification for
Electronic Data Sheets”. ESA is planning to release or rework further standardization
documents: CCSDS 867.1 – ”Specification for Dictionary of Terms for Electronic Data
Sheets for Onboard Components” and 870.1 – ”Electronic Data Sheets and Common
Dictionary of Terms – Overview and Rationale”.

In an effort to digitize the document exchange between supplier and customer, Gar-
cia et al. [41] proposed a tool to access digital engineering data. In a pre-study, they
determined which type of documents are candidates for digitalization. They found that
not every document is suited to be digitized and transformed into models in the near
future, for example, design descriptions and justifications. Based on the results, they
built a prototype to access digital engineering data (such as requirements, documenta-
tion, models). The data was stored in a graph database, which is based on a domain
ontology. It used NLP to suggest similar, but not linked, requirements and PDF doc-
umentation augmentation to link directly to a requirement mentioned in a document.
The authors plan to develop the prototype further in future projects at Thales Alenia
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Space.

In summary, the persistent issue of non-machine-understandable documents is a ma-
jor obstacle for the digitalization of the space industry. Here, the most prominent effort
is the standardization of electronic data sheets [92]. However, the complete adaptation
across the industry will be a lengthy process. Many transitional solutions have been
proposed in the mean time. Within this field, one trend is the automatic extraction of
technical data of satellite components to aid the design process [74, 83, 87, 90].

9 Augmented & Virtual Reality

An important driving factor from Industry 4.0 that is also adapted to the space sector
in different life-cycle phases is augmented & virtual reality (AR, VR). In augmented
reality, additional virtual information is laid over the environment on AR glasses (AR
head-mounted displays) or the display of a mobile device. In virtual reality, an immer-
sive 3D virtual world can be explored with special VR headsets; the real environment
is not visible any more. In this section, we describe the current research regarding the
application of AR and VR in the space industry.

In the space domain, AR and VR are often used for new visualization of space vehi-
cle designs and analysis of different procedures. Cipriano et al. [22] surveyed different
possible applications and advantages for AR in the early stages of CE studies. They
identified four possibilities. The first concerns the orbits of the to be designed satel-
lites. AR could be used to better visualize the planned altitude and orbit as well as
related simulations and analysis results. The second application is an AR interface for
software tools to show the 3D system models from the corresponding computer-aided
design (CAD) software. It could also be possible to assemble the model in AR. The
third application scenario extends the previous one, as the authors envision the use of
AR for MBSE. AR could be used to visualize the progress of the design, link and map
requirements, and edit collaboratively the models in the AR environment. The final use
case is a tool to help manage CE and CD sessions. Possible features include visualization
of team member domains, links between experts, and demonstration to replace classical
slide-based presentations. The authors plan to test a prototype of one of the four sce-
narios in the near future.

In [5], Baranowski et al. proposed the use of AR head-mounted displays and a 3D
user interface for spacecraft design and verification. The goal was to provide a tool
with which the design can be visualized and manipulated in 3D. In the evaluation, the
authors built an AR prototype integration for Virtual Satellite with Microsoft HoloLens.
They compared the task performance of users with the 3D HoloLens interface against
the standard UI of Virtual Satellite. Baranowski et al. found that an AR interface can
be a good extension of the desktop-based visualization, but more intuitive manipulation
metaphors than hand gestures are needed.
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Similarly, Bahnmüller et al. [2] developed a controller-based AR tool for the early
design phases of space vehicles. The controller was used to translate and rotate objects
in six degrees of freedom. It has a button to signal hold or release of an object. The
controller’s orientation was tracked via infrared relative to a head-mounted AR display.
In a user study, the authors evaluated the task performance of users with the controller-
based input versus hand gestures. It was found that the controller method had more
precise object placement and that it took less time to complete the design of a satellite.

A VR-based framework for aerospace design called AeroVR was proposed by Tadeja
et al. [104]. It should help engineers get an overview of the system design and compare
the geometry and performance parameters. To get a meaningful 3D visualization, the
design space had to be reduced in dimensionality. This was achieved with subspace-based
dimension reduction. The AeroVR environment could visualize the part that was cur-
rently designed within the system in 3D and a 3D scatter plot of the part’s performance
parameters. The authors evaluated AeroVR in a user study with the goal to design a
compressor blade for engines. Participants interacted with the visualizations with an
Xbox game controller. The interface was verified for usability and expressiveness. In the
near future, the prototype is planned to be extended to a complete 3D turbo-machine
model and include a knowledge-base of domain expert knowledge to help with the design
procedure.

Zimmermann et al. [116] conceptualized the use of AR and VR for change impact
analysis to improve the design review process. They used heat maps to visualize the im-
pact of the changes during analysis. The graphics can be viewed and edited by several
users simultaneously. To make the review understandable to different stakeholders, a fil-
tering mechanism was developed to present consistent information for each review step.
The authors concluded that the AR and VR could improve the fast decision making and
exploration of design alternatives. Overall, less design iterations would be needed.

In [39], Freitas and Sousa described the application of AR to satellite AIT procedures
for the project AR2Telecom at Lusospace. They defined workflows, to which additional
information and 3D models were linked. These were than displayed on a head-mounted
AR display. It was found that AIT engineers were more informed and more aware of
the relevant data and actions. Overall, the AR technology increased the productivity
by guiding through the procedures and providing additional information. The authors
estimated that the costs for AIT could be reduced by 50%.

In conclusion, virtual and augmented reality technologies are flagship innovations of
Industry 4.0 and can also be used within the Space 4.0 paradigm. Many possible appli-
cations have already been identified, predominantly for better visualization of designs
and analysis results [2, 39, 116]. However, many of these ideas are still elementary and
not completely implemented yet. Preliminary studies have been performed as a proof of
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concept [2, 116]. Both AR and VR are known to cause several discomforts, also known
as cybersickness [101]. This has yet to be discussed for the applications in the space
domain.

10 Robotics & Manufacturing

The driving factors of Industry 4.0 include improved manufacturing processes, such as
additive manufacturing, and intelligent factories. These advancements can also be ap-
plied to the space industry for the manufacturing of space vehicles and their components
[43]. In this chapter, we highlight the current trends of robotics and manufacturing re-
lated to digitalization in the space industry.

Additive manufacturing techniques promise to reduce cost and weight of a manufac-
tured product by combining different components into one with multiple functionalities,
so-called part consolidation and function coupling [13]. Spacecraft parts are often highly
individual and manufactured with product modularization: one component only has one
function [13]. To find a trade-off between these two opposites, Borgue et al. [13] de-
signed a methodology to weigh between integrality by part consolidation and modularity
for space vehicle parts for additive manufacturing. As input, it took information about
available parts, such as data sheets and CAD models, and output a modular design ar-
chitecture optimized for AM. The calculations took into account adaptability, interface
costs, and weight reduction. In a case study, the authors applied their methodology to
redesign a satellite antenna. They found that the new design has a higher value and
that design decisions were perceived as precise and informed by domain experts.

The advancements of Space 4.0 facilitate a pivotal new sector: in-obit and in-space
manufacturing and assembly. Driven by the visionary goals of newer scientific missions
with larger telescopes and lunar and Martian habitats, it becomes vital to build larger
constructs in space to reduce the costs and weight of launchers. Fuel is directly related to
the weight of the cargo [97]. Roa et al. [96] reviewed technologies for in-orbit assembly
by robots. The largest remaining challenges are the absence of gravity and its implica-
tions on the assembly procedure and platform robots are attached to. In addition, in an
analysis of possible application scenarios, the authors identified needed functionalities
of future assembly in space. The assembly platform should be modular to support a
variety of operations on a range of different structures. The robot should be capable of
executing several operations autonomously to rely less on remote human operators on
earth. Furthermore, there is a need for a standard interface for docking and berthing as
well as data and power connections. While additive manufacturing can be beneficial in
this area, the authors emphasized that for the near future, robotic assembly of structures
will still be relevant. However, there are still on-going challenges, such as the effects of
zero gravity, that need to be further researched.

To launch satellites more frequently, automatic integration and assembly can also be
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performed in orbit. This was the goal of the project Space Factory 4.0 by Weber Mar-
tins et al. [109]. It implemented concepts from Industry 4.0 for the New Space sector.
The goal was to develop procedures and technologies for an in-orbit platform with robotic
assembly of satellites for more rapid production and testing. To achieve a higher produc-
tion frequency, the designs of the satellites have to be highly modular and be assembled
by a robot. Digital Twins should be used to facilitate testing and automatic documenta-
tion. Since reliability of the autonomous assembly platform could be an issue, a second
approach was developed within the project: a bilateral controller for the assembly robot
with a human-machine interface. The developed concepts could be applied to an in-orbit
space factory in the future.

The exploration of exoplanets require large, space-bound telescopes. In order to assem-
ble them in space, Roa et al. [95] proposed the use of an autonomous robotic platform,
PULSAR (Prototype of an Ultra Large Structure Assembly Robot). PULSAR is related
to the Horizon 2020 program by the European Commission. The goal was to provide an
experimental verification of the concept, that can then be further developed into an au-
tonomous in-space assembly platform for large structures and telescopes. PULSAR was
planned to have three different demonstration prototypes. The first is a mobile robotic
manipulator that should perform autonomous assembly and optical verification thereof.
The second is an underwater platform to test the assembly process in low gravity. The
final prototype is be a simulation that comprises a full mission. Final demonstrations
have yet to be performed.

The examples described above show that new trends of Industry 4.0 are also imple-
mented in the space industry for manufacturing. Additive manufacturing and intelli-
gent, autonomous assembly robots and complete factories are in the forefront [109]. One
emerging trend is the concept of autonomous in-orbit assembly platforms. It is envi-
sioned to build complete satellites, telescopes, and later even larger structures in space.
First concepts have been demonstrated, but the launch and operation of such platforms
is rather in the distant future [109].

11 Standardization

Together with new technology and methods, the need for standardization emerges. In
this chapter, we focus on standardization efforts in the space domain outside of indus-
try committees. A non-exhaustive list of space industry-related standards and industry
consortia can be found in Appendix F.

The rising complexity of CubeSat systems increases the design cycle time. Expertise
about the interconnection of different components is needed, shifting the focus from the
payload design. This can diminish the experience of students in educational projects
[45]. Thus, Gregory et al. [45] defined a standardized MBSE template for PSAT1U
CubeSats. The template is based on the CubeSat System Reference Model by INCOSE
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[67] (see Appendix F.2). A baseline model describes the CubeSat completely except the
payload and mission information. In this way, mission-specific models can be easily de-
signed without any work on subsystems. To further support student engineers, changes
to the system are propagated automatically through the model. A library of system
components is available to promote the understanding of the design space. While this
template was designed for educational purposes, the authors concluded that it could be
beneficial for experts in different engineering disciplines without knowledge in systems
engineering to design CubeSats more easily.

Lanza et al. [75] proposed extensions to the ISO 10303 [61] AP209 standard in an ap-
proach to unify several data types that accumulate during AIT procedures. ISO 10303
is also called the Standard for the Exchange of Product model data (STEP) standard
and AP209 focuses on simulation and CAD data. During AIT, huge amounts of data
arise from many different platforms and tools and in a variety of formats. To pool the
data in one platform for more efficient AIT, the authors want to map specifications and
convert all data into one standard format based on ISO 10303. Thus, they extended the
norm to fit all AIT data. The converting functionality and the complete platform are
planned to be realized in the near future.

Little research has been done yet on the environmental impacts of space missions. Har-
ris and Landis [48] reviewed current life cycle assessment standards and described their
application in the space industry. The use of LCA for space applications is very lim-
ited. Analysis should not only include the impacts on earth but also in space. Here, the
main concern is debris. In a case study, LCA was applied to a potential space elevator
design. The results indicated that it is a sustainable and economically viable possibility
for orbital transport and that LCA can be successfully applied in the space domain.
The authors concluded that sustainability engineering and assessment should be more
prioritized in the space industry.

In summary, it can be stated that the emergence of new technologies, such as Cube-
Sats, is always accompanied by need for industry-wide standardization. Efforts have
been made to develop an MBSE template for CubeSats and to facilitate uniform data
exchange [45, 75]. Additionally, standards are needed for life cycle assessment, as the
environmental impact has not been considered much yet for space missions [48].
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A Concurrent Engineering

A.1 Concurrent Engineering Facilities

A non-exhaustive list of concurrent engineering facilities, shortened and reorganized as
a table from [80]:

Organization Facility name Location

Airbus Defence & Space
Space Code Friedrichshafen, Germany
Space Code Toulouse, France

CAST Shenzhou Institute CDF Beijing, China

DLR CEF Bremen, Germany

ESA CDF Noordwijk, The Netherlands

JAXA Emergence Studio Tsukuba, Japan

Massachusetts Institute of Technology DE-ICE Cambridge, US

NASA, i.a.

COMPASS Brook Park, US
PDC Pasadena, US
HEDS-DIE Houston, US
EDS Hampton, US

Skoltech CEDL Moscow, Russia

Thales-Alenia Space
CDF Cannes, France
ISDEC Rome, Italy
COSE Torino, Italy

University of Strathclyde CDF Glasgow, UK
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A.2 Concurrent Engineering Tools & Software

A list of available free and commercial CE software:

Virtual
Satellite
CEF

CEDESK IRAS
DCEP

OCDT CDP4

Developer DLR Skoltech University
of
Stuttgart

ESA RHEA
Group

Status available,
open-
source

available,
open-
source

in devel-
opment

available,
ESA com-
munity

available,
commer-
cial

Link a b c d e

ECSS compatible X × ? X X

Role assignments X X ? role-
based
permis-
sions

X

Life-cycle phase focus conceptual
design

conceptual
design

conceptual
design

conceptual
design

conceptual
design

Modeling focus behavior
& geome-
try

behavior ? behavior behavior

Version control X X ? X X

3rd party tools × limited ? X X

MBSE compatible X X ? X X

ahttps://github.com/virtualsatellite/VirtualSatellite4-CEF, accessed 17.02.2021
bhttps://github.com/cedesk/data-exchange, accessed 17.02.2021
chttps://www.dlr.de/bt/en/desktopdefault.aspx/tabid-12817/22396_read-51559/#/gallery/

33638, accessed 17.02.2021
dhttps://ocdt.esa.int/, accessed 17.02.2021
ehttps://products.rheagroup.com/cdp4, accessed 17.02.2021
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B Model-Based Systems Engineering

B.1 MBSE Tools & Software related to the Space Industry

A list of available free and commercial MBSE software by actors in the space industry:

Virtual
Satellite

VSD RangeDB valispace

Developer DLR ESA Airbus valispace

Status available,
open-source

available,
ESA commu-
nity

not available commercial,
charged

Link a b [25] c

ECSS data structure × X Xextended ×

Lifecycle Phase Focus conceptual
design

whole life-
cycle

whole life-
cycle

whole life-
cycle

Modeling Focus behavior &
geometry

system level
design

spacecraft
reference
database

documents,
engineering
data

CE support X × × X

ahttps://github.com/virtualsatellite/VirtualSatellite4-Core, accessed 17.02.2021
bhttps://www.vsd-project.org/, accessed 17.02.2021
chttps://www.valispace.com/, accessed 17.02.2021
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B.2 General MBSE Tools & Software

An overview of more general MBSE software that could also be used in the space domain:

Developer Status Link Focus Note

3DExperience Daussault
Systèmes

commer-
cial,
charged

a Platform
solution

offers
market-
place

T-Flex Top Sys-
tems

commer-
cial,
charged

b whole
suit, e.g.
Flex
CAD
avail.

TeamWork Cloud NoMagic commer-
cial,
charged

c repository
for col-
labo-
rative
develop-
ment

storage
for
Cameo
&Mag-
icDraw
models

Capella Eclipse free,
open
source

d MBSE
tool

Add-ons
available

CAMEO Systems Modeler NoMagic commer-
cial,
charged

e MBSE
platform

Papyrus Eclipse free,
open
source

f Modeling
Environ-
ment

JVM re-
quired

Enterprise Architect SPARX
Systems

commer-
cial,
charged

g System
architec-
ture

Behavioral
code edi-
tor

ahttps://www.3ds.com/de/3dexperience, accessed 17.02.2021
bhttps://tflex.com/, accessed 17.02.2021
chttps://www.nomagic.com/products/teamwork-cloud, accessed 17.02.2021
dhttps://www.eclipse.org/capella/, accessed 17.02.2021
ehttps://www.nomagic.com/products/cameo-systems-modeler, accessed 17.02.2021
fhttps://www.eclipse.org/papyrus/, accessed 17.02.2021
ghttps://sparxsystems.com/products/ea/15/index.html, accessed 17.02.2021
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C Ontologies

C.1 General Ontologies

This is a list of websites that provide either their own ontology or list others:

� W3C
https://www.w3.org/wiki/Lists_of_ontologies

A list of general ontologies and links to other lists.

� Protege
https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

A list of ontologies in the OWL format.

� DBpedia Ontology
https://wiki.dbpedia.org/services-resources/ontology

This ontology contains all information that appears in info-boxes on Wikipedia. It
has around 4,233,000 instances.

C.2 Space Industry-Related Ontologies

A list of space industry-related ontologies:

� IMCE Ontologies for Model-based Systems Engineering
https://github.com/JPL-IMCE/gov.nasa.jpl.imce.ontologies.public

This repository contains the Integrated Model-Centric Engineering (IMCE) on-
tologies for MBSE by NASA’ Jet Propulsion Lab.

� Model-Based Space Engineering Ontology 1.1 [51]
https://zenodo.org/record/57955

This ontology describes the design of a space system for MBSE. It can be used to
specify the system’s architecture, requirements, design, and functional verification.

� The Orbital Space Domain Knowledge Modelling Project - Ontologies for Astro-
nautics by Robert J. Rovetto
https://rrovetto.github.io/Orbital-Space-Ontology-Project/

This is a collection of ontologies under development by Robert Rovetto related to
the astronautical domain.

� ConTrOn Spacecraft parts ontology [23]
https://zenodo.org/record/3862854

This repository holds the spacecraft pats ontology that was developed for ConTrOn
[87].

� MagSat Dataset [50]
https://zenodo.org/record/50671

This data set contains the design of a spacecraft that was specified with the Model-
Based Space Engineering Ontology.
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C.3 Ontology-Related Tools

A short list of ontology tools:

� Space Lexicon Generator
https://github.com/strath-ace/smart-nlp/tree/master/SpaceLexiconGenerator

Here, the code described in [7] is stored. It can be used to semi-automatically gen-
erate a domain-specific lexicon for ontologies from texts.

� Migration of Engineering Models to Knowledge Graphs
https://github.com/strath-ace/smart-nlp/tree/master/EngineeringModelsMigration

This repository holds the code used in [10]. It contains a pipeline that converts
engineering models compliant to ECSS-E-TM-10-25A into a knowledge graph.

� Protégé
https://protege.stanford.edu/

Protégé ia a free, open-source ontology editor.

D Artificial Intelligence

D.1 AI Tools

A short list of intelligent tools within the space domain:

� Topic Modeling for Space Mission Requirement Categorisation
https://github.com/strath-ace/smart-nlp/tree/master/TopicModeling

Code for [6] that identifies and extracts topics from documents.

� Resources of the intelligent assistant Daphne [3]:

– Online Demo
https://www.selva-research.com/daphne/

– Code
https://github.com/seakers/daphne_brain

� Evolutionary System Design Converger
https://github.com/aerospaceresearch/ESDC

Evolutionary algorithm to optimize the design of a satellite as described in [24].
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E Machine-Readable Documents & Electronic Data Sheets

E.1 Tools for EDS

Here, useful tools for electronic data sheets are listed:

� satsearch
https://satsearch.co

Satsearch is a website that digitizes data sheets of satellite parts into electronic
data sheets and connects potential buyers with suppliers.

� satsearch API
https://api.satsearch.co/

The API to get details of a product available on satsearch.co.

� Data Sheets Annotation Tool
https://gitlab.com/kobkaew/dsat-client

The Implementation of the DSAT tool as described in [88].

� CCSDS EDS reference tooling by ESA
https://essr.esa.int/project/ccsds-eds-reference-tooling

This is a tool published by ESA to work with electronic data sheet as defined in
their CCSDS standards.

F Standardization

F.1 Consortia & Organizations

A list of (space-related) standardization organizations and consortia:

� ISO
https://www.iso.org

The International Standardization Organization (ISO) develops, publishes, and
sells access to standards and norms.

� CCSDS
https://public.ccsds.org

The Consultative Committee for Space Data Systems (CCSDS) is an international
forum of space agencies. They develop and publish standard for space data and
information systems.

� ECSS
https://ecss.nl

The European Cooperation for Space Standardization (ECSS) was established by
ESA in an effort to standardize European spaceflight. The ECSS publishes stan-
dards, handbooks, and a space glossary.
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� SAVOIR
https://savoir.estec.esa.int

The Space Avionics Open Interface Architecture (SAVOIR) is an initiative by
ESA to standardize spacecraft aviation systems. SAVOIR works together with
other standardization organizations, such as ECSS and CCSDS.

� INCOSE Space Systems
https://www.incose.org

INCOSE Space Systems is a working group of the International Council on Systems
Engineering (INCOSE). INCOSE develops principles and guidelines of systems
engineering. The Space Systems groups aims to expand the advantages of systems
engineering to the space sector.

� MB4SE
https://mb4se.esa.int/MB4SE_Home.html

Model Based 4(for) System Engineering is an initiative by ESA to promote MBSE
and its benefits in the European space sector.

� OSMoSE
https://mb4se.esa.int/OSMOSE_Main.html

The Overall Semantic Modelling for System Engineering (OSMoSE) is an initia-
tive by ESA in order to improve and standardize the knowledge and information
exchange during the systems engineering process of spacecrafts. OSMoSE devel-
ops the Space Systems Ontology, which covers the system aspects over the whole
life-cycle of a spacecraft.

F.2 Standards

A (non-exhaustive) list of space industry-related standards:

� CCSDS

– CCSDS-311.0-M-1 [16] – Reference Architecture for Space Data Systems, rec-
ommended practice
It can be used for the description of data system architectures and high-level
designs within the space domain.

– CCSDS 876.0-B-1 [18] –XML Specification for Electronic Data Sheets, rec-
ommended standard
This standard defines XML specification for SOIS electronic data sheets for
onboard devices. The XML file is available on the CCSDS SANA registry1

– CCSDS 876.1-R-2 [17] – Specification for Dictionary of Terms for Electronic
Data sheets, draft recommended practice
This describes the dictionary of terms for EDS of SOIS-compliant services.

1https://sanaregistry.org/r/sois, accessed 06.01.2021
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� ECSS

– ECSS-E-ST-10C [32] Space engineering - System engineering general require-
ments
The document describes all key elements of project planning and implemen-
tation to identify top-level requirements and products.

– ECSS-E-ST-40-07 [33] Space engineering – Simulation modelling platform
standard
This is a standard based on ECSS-E-ST-40 for the engineering of simulation
software.

– ECSS-E-TM-10-20A [29] Space engineering - product data exchange
This defines the methods and protocols for the exchange of machine-interpretable
product data of space projects.

– ECSS-E-TM-10-21 [30] System modelling and simulation
This document describes how to use system simulation to support system
engineering tasks.

– ECSS-E-TM-10-23 [31] Space Systems Data Repository
This specifies the semantics of the data needed during engineering processes
as specified in ECSS standards. Thus, it enables the concept of a space system
data repository to gather all engineering data produced during the life-cycle
of a space system.

– ECSS-E-TM-10-25A [28] Engineering design model data exchange – CDF
The standard offers recommendations for model-based data exchange for the
early design phases.

– ECSS-M-ST-10C Rev.1 [27] Space project management - Project planning
and implementation
This document describes the system engineering implementation requirements
for space systems and space product development. It also defines the life-cycle
stages of a space product.

� ISO

– ISO 10303 [91]
Standard for the exchange of product model data (STEP), which is organized
in several application protocols. For example AP203 [62]: Configuration Con-
trolled Design and AP 209 [61]: Managed model-based 3D engineering are
used in the aerospace sector.

� INCOSE Space Systems

– CubeSat System Reference Model (CSRM) [67]
Reference model for CubeSats for the design, verification, and validation of
designs based on MBSE principles.
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K. Kumar. Artificial intelligence for early design of space missions in support
of concurrent engineering sessions. In 8th International Systems & Concurrent
Engineering for Space Applications Conference, 2018.

[85] Laurence Nardon. New Space: The Impact of the Digital Rev-
olution on Space Actors and Policies in Europe. Notes de l’Ifri,
Ifri. https://www.ifri.org/sites/default/files/atoms/files/nardon_new_
space_digital_revolution_2017.pdf, 2017. Accessed: 07.01.2021.

[86] Johannes Norheim. Satellite Component Selection with Mixed Integer Nonlinear
Programming. In 2020 IEEE Aerospace Conference, pages 1–9. IEEE, 2020.

[87] Kobkaew Opasjumruskit, Diana Peters, and Sirko Schindler. Contron: Continu-
ously trained ontology based on technical data sheets and wikidata. arXiv preprint
arXiv:1906.06752, 2019.

[88] Kobkaew Opasjumruskit, Diana Peters, and Sirko Schindler. DSAT: Ontology-
based Information Extraction on Technical Data Sheets. In ISWC 2020, November
2020.

[89] Sweety Pate. AI-Powered & Cloud Based Concurrent Systems Engineering Plat-
form. SECESA, 2020.

[90] Diana Peters, Philipp M. Fischer, Philipp M. Schäfer, Kobkaew Opasjumruskit,
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