
1

Daniel Schwencke, German Aerospace Center (DLR), Institute of Transportation Systems,
Braunschweig, Germany

Test Case Generation for a Level Crossing Controller

Author

Daniel Schwencke graduated in Computer Science and received his PhD from the Technical

University of Braunschweig. In 2011 he joined the DLR Institute of Transportation Systems as

researcher, working in the field of railway safety, including system development and authorization

processes as well as human reliability. Since 2015 he is part of the verification and validation

department, conducting research on model based testing of signaling systems and test automation.

He is involved in the European X2Rail-2 project.

German Aerospace Center
(DLR), Institute of
Transportation Systems,
Lilienthalplatz 7, 38108
Braunschweig, Germany

+49 531 295 3416

daniel.schwencke@dlr.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/404065916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1. Introduction

Formal methods (FM) can be used for the precise specification, property-ensuring development

and exhaustive property verification of systems. Thus they are especially suited for highly

safety or mission critical applications. Railway signaling systems clearly belong to these

applications, and there are indeed several industrial projects where FM have been successfully

applied; especially to core interlocking and communication-based train control (CBTC)

systems. But despite their potential, FM are not very wide-spread in the sector. Several studies

[1, 2, 3] regarding their diffusion have been conducted. The main determinants for adoption

that emerge from those studies are

• the maturity of available tools,

• the learnability of the tools (learning curve),

• the perceived benefits-of-use and perceived ease-of-use by engineers and

professionals, and

• the compatibility with already existing tools or toolchains.

Also, the choice of a method and tool among the many different FM available can require

high expertise. According to some of the studies, the cost of the potential tools to be used

appears to not be an essential determinant.

Work Package 5 of the X2Rail-2 project seeks to foster the use of FM in railway signaling by

providing an introduction and overview of formal methods [4] and demonstrating their use and

benefit. For the latter, four different formal and one classical development methods are

applied by different project partners to a level crossing (LX) controller specified by the

Swedish railway infrastructure manager Trafikverket. This includes

• the refinement-based B method,

• model-based design with SCADE,

• configuration-based development with Prover iLock, and

• contract-based programming in SPARK

for formal development as well as the ladder logic-based Westrace system for the classical

development. For all of these developments, the safety properties from the LX specification

are planned to be formally verified afterwards using the High Level Language (HLL). Since

that means proving them exhaustively, they are of less interest for testing.

However, there are further non-safety functional requirements in the specification which

remain for testing. The extended abstract at hand reports on an automatic test case

generation (TCG) approach of a test suite testing these requirements. In fact, this approach is

based on formal methods as well, since the test case generator applies symbolic execution

and theorem solving techniques: given a behavioral model of the system under test (SUT),

the former method finds feasible paths through the model, while the latter completes the test

case by determining suitable test data. This way, the test design task is partly automated,

ensures a structural coverage of the model and the modeling process usually leads to a high

test suite quality. The different LX controller implementations are tested as black box

systems, each one with the same generated test cases. In order to simplify the integration of

the different implementations with the test environment, a common test interface has been

drawn up.

3

2. Overview of the Approach

2.1 Tooling

For the work presented here, the “Automatic Test Generation” (ATG) Add-On [5] of the

UML/SysML tool Rational Rhapsody of IBM is used for the TCG. This, in turn, is based on the

“TestConductor” Add-On [5]. Altogether Rhapsody and the two add-ons form a tightly

integrated environment, which covers the whole model-based testing process starting from

model creation (Rational Rhapsody), covering TCG (ATG Add-On) and stretching to test

execution (TestConductor Add-On). All of this is proprietary, commercial software. Rhapsody

version 8.4 is used, running on a Windows 10 PC.

Reasons for the choice of Rhapsody ATG included its high flexibility (e.g. broad support of

SysML elements and code constructs) and the integrated tool chain from model creation to

test execution. Different tools for system model based TCG like Conformiq Designer or RT-

Tester MBT exist, having different strengths like more options to influence the TCG algorithm

or supposedly better performance. Also, different FM and semi-FM tools like ProB or Simulink

come with TCG capabilities, but usually bound to a special modelling language (as opposed

to the wide-spread multi-purpose UML/SysML languages).

2.2 Process

In Figure 1 the steps of the test generation (left-hand side) and test execution (right-hand

side) are shown. The tools used for the single steps are given in the white boxes attached to

each step. While many steps are largely automated, the main manual effort lies in the “TCG

Model Creation”, and – in our case, due to testing of several external SUT – also in the

“Implementation Integration”. The most important steps are described in the next section

below.

Figure 1: Test generation and execution process with Rhapsody and Add-Ons

3. Application to the LX Controller

3.1 Application Example: The Alex Level Crossing

As an application example for the formal methods mentioned in the introduction and for the

TCG an LX controller was chosen by the work package participants. The specification by

4

Trafikverket of the system called “Alex” is relatively recent and the system is supposed to

replace several types of existing LX in Sweden in the future. For the work packages’

purposes, the scope was limited to the variant controlled by an interlocking (no autonomous

LX / no private road barriers), which reduced the 375 requirements to 133 requirements in

scope. The functions in scope include the interfaces to interlocking, a local control box and

speed sensors as well as the control of road-facing lights, barriers, sound, obstacle detection

and track-facing signals. Many of these features are configurable in the number and variant of

the controlled objects as well as in some delays. An average LX configuration amounts to a

system complexity of about 40 Boolean inputs and 50 Boolean outputs.

3.2 TCG Model Creation

At first sight, the creation of the executable SysML system model for the TCG is similar to

model-based system development. External interface, the system environment, its structure

and its behavior (mainly as SysML statecharts) need to be modeled, as well as requirements

that should be traceable and configurations that should be supported. However, a test model

should abstract from the real system behavior, e. g. by means of aggregation or omission (in

order to reduce the number and length of the generated test cases). On the other hand it is

also legitimate to explicitly model behavioral variants that are implicit in an implementation (in

order to force generation of corresponding test cases). The statechart modeling the behavior

for control of the track-side LX components (signal and distant signal) is shown in Figure 2.

Figure 2: Behavior of trackside LX components control as SysML statechart. Requirements on distant signal
control are linked to transitions according to the LX specification (which seems to require that distant signal

control depends on detected rather than commanded main signal aspect).

stm [Block] TWS [statechart_3]

Operating

PassageAllowed

Reactions

commandProceed();

commandStop();

WaitingForCFWS

toCFWS[params->warningSignaling]

PassageNotAllowed

NotificationPending

toIXLAllowPassage[!
params->allowPassage]

toIXLAllowPassage[!params->allowPassage]

NotificationDone

/itsCentralUnit->toAllowPassage
CeasedForSomeTrack();

toIXLAllowPassage[par
ams->allowPassage]

[!
itsCentralUnit->isC
FWSPresent()]

[itsCentralUnit->is
CFWSPresent()]

The CFWS will never cease
before PassageAllowed
does (see CentralUnit state
chart), so the opposite
transition does not exist.

PassageAllowedStatus

DSProceedDSStopOrHasNoDS

toProceedDetectedForAllTFSOfTrack
[HasDistantSignals]/setDSProceed();

toStopDetectedForSomeTFSOfTrack/
setDSStop();

ControlDistantSignal

PassageAllowedStatus

ControlDistantSignal

DS_Stop
«Requirement»«satisfy»

DS_Pass
«Requirement»

«satisfy»

5

3.3 Test Case Generation

In the “TCG Architecture Generation” step, which is a prerequisite for the TCG step, the SUT

part of the model is fixed. Based on this, one defines the sub-interfaces of the SUT that

should be used for stimulation (input interface) and recorded (input and output interface) by

the generator. Also, one can choose whether Rhapsody ATG will try to reach structural

coverage of the model (states, transitions, and operations), coverage of the generated C++

code (modified condition/decision coverage), or both. The current coverage of the different

elements is displayed by ATG during generation, see Figure 3. The resulting test cases can

be displayed as sequence diagrams in Rhapsody. They can be edited and completed by

further generated or manually designed test cases. An example of a resulting test case is

shown in Figure 4.

Figure 3: Status window shown by ATG during TCG (taken from [6], p. 52)

6

Figure 4: Test case generated by ATG as SysML sequence diagram. The SUT (LX controller) lifeline is colored
in red and receives inputs from and sends outputs to adjacent systems (interlocking, different instances of road-

and track-facing lights, distant signal).

3.4 Implementation Integration

Rhapsody TestConductor provides convenient means to execute the test cases generated by

ATG on a Rhapsody model. In our case, we use TestConductor to execute the generated test

cases on the different external software implementations. To this end, a test interface suitable

for all implementations under test has been defined in discussion with the developers

involved. Several issues needed to be solved:

1. The general mismatch between the relay-based LX interface and the message-based

test environment was resolved by means of an implementation wrapper common for all

implementations.

2. Some implementers work with real-time execution frameworks, while others prefer to

work with an execution-independent fixed cycle time. This was resolved by

transmission of the “implementation time” to the test environment each cycle, by

adapting the test environment to use that “external clock”, and by keeping the TCG

model independent of the Windows system clock.

«ATGSDInfo»
sd [Package] NewConfiguration0 [ATG_TestCase.19]

TCon_Alex:TCon
_Alex

«Lifeline»

>> 100 ms>> 100 ms

TCon_Alex.
itsTC_at_IXLPt_o
f_Alex:TC_at_IX

LPt_of_Alex

TCon_Alex.
itsAlex:Alex

«Lifeline»

evIXLOpenClose(open = 0)

evIXLAllowPassage(idTWS = 2, allowPassage = 1)

TCon_Alex.
itsTC_at_AWSHW
t_of_Alex[0]:TC_
at_AWSHWPt_of

_Alex

evAWSHWLights(yellow1 = 1, yellow2 = 1)

evAWSHWLightsDetected(id = 1, yellow1 = 1, yellow2 = 1)

TC_at_TFSHWPt
_of_Alex[2]:TC_
at_TFSHWPt_of_

Alex

evTFSHWLights(red = 0, white = 1)

evTFSHWLightsDetected(id = 3, red = 0, white = 1)

TC_at_TFSHWPt
_of_Alex[3]:TC_
at_TFSHWPt_of_

Alex

evTFSHWLights(red = 0, white = 1)

evTFSHWLightsDetected(id = 4, red = 0, white = 1)

TC_at_DSPt_of_
Alex[1]:TC_at_D

SPt_of_Alex

evDSLXSignalAspect(pass = 1)

7

3. Different programming languages are used by the test environment (C++) and the

implementations (generated C code, Ada code, Westrace simulator executable). This

was resolved by compiling the implementations into libraries linked by the test

environment, or by using another (C++) wrapper in the Westrace case that was

compiled together with the test environment.

4. While controlling single cycles of LX implementations from the test environment would

be possible for the formal developments, this is not possible for the Westrace

simulator. Thus, shared memories for the input and output data for the

implementations were set up together with mutual exclusive access from the test

environment and the implementation side.

5. The test interface needs to be able to cope with different system configurations that

affect the interface (the number of Boolean in- and outputs to transmit). Here, the

interface was laid out to cover an agreed fixed maximum number of configured objects

such as signals or barriers.

Altogether those issues and the underlying technical details required quite some discussions,

clear conceptual work and more effort than expected initially. Nevertheless, it also saves from

some effort since the test execution framework of TestConductor can directly be used (simple

automated test execution) and only one test interface needs to be defined, maintained and

considered during test execution / failure analysis. The test interface did not require any

additional behavior of the implementations apart from reading inputs and writing outputs each

cycle, including a few test control in-/outputs consumed/generated on the control cycle level.

4. Discussion of the Approach

Currently, first test cases have been generated and executed on an implementation,

confirming that our approach is feasible. Yet, no comprehensive test results are available.

However, having run through the complete process depicted in Figure 1, we can already report

on several topics that seem crucial to us:

System abstraction (TCG model creation step). Since the model for TCG is a system model

and is moreover required to be executable, this may push the modeler towards modeling an

implementation. This can easily lead to spending time on modeling behavior not needed for

testing or to unacceptably long test generation time. It can also lead to particular

interpretations of the specification, which may result in unjustified failing tests. It seems

advisable to start with clear test goals and system scope, check requirements thoroughly and

either make them precise or indicate intentionally left room for interpretation, simplify the

external system interfaces as much as possible, and then fix a set of environment

assumptions. After that, abstractions of the system behavior can be made and modeled,

which sometimes is non-trivial due to interdependencies. Here it is helpful to think in terms of

system functions rather than in architectural structures. One rather simple behavioral

abstraction made in the LX example was to consider only “normal” behavior as a first step;

failure scenarios may be added later.

Managing model configurations and variants (TCG model creation). We decided to create

a “150% model” (i.e. there is one model which contains the behavior for all the configurations

and variants), which can be arbitrarily configured and where the environment model can be

varied through variant points. This leads to less redundancy and better maintainability than

individual models, but also leads to a more cluttered model and usually to less than 100%

structural coverage by the tests generated for a particular configuration.

8

Model validation (TCG model simulation). It is important that the TCG model is validated.

Rhapsody offers interactive simulation of a model, which is a nice visual tool to check

particular model behavior. Also, the modeling process itself often guides the modeler to think

about possible issues, and several later steps (Rhapsody’s model consistency check,

compilation of the generated code, test case inspection) may uncover problems in the model.

However, a more direct validation of the model against the requirements has not been

performed in our case; at least attaching the tested requirements to model elements made

the modeler think about the realization of those requirements in the model.

Scalability (test case generation). It is well-known that many formal methods have high

algorithmic complexity. This also applies to TCG with ATG: the time needed to generate a

test suite that fully covers the model quickly rises with growing model size. One important

factor is the complexity of the model’s input interface. Here the relay-based LX interface has

proven advantageous, since it consists of a series of wires that can be modeled by simple

Boolean values. So far, the generation time has not exceeded a couple of minutes, so that it

is estimated to stay within reasonable range also for the future completed model. Note that in

ATG the interface can be further restricted by choosing messages and parameter values in a

flexible manner for each TCG run, and by modeling environment restrictions in the test

components connected to the input interface. A second factor is the complexity of the

behavioral model itself; in particular deep nesting may increase generation time. The TCG

output complexity (number and size of test cases) seems unproblematic (so far around 20

test cases with an average of less than 10 steps). Test cases that are prefix of another one

are automatically removed. Other redundancies may occur, but seem rather insignificant.

Managing implementation variants, versions and configurations (implementation

integration to failure analysis). In the given project context, the five different implementations

were prepared in four different configurations, amounting to 20 systems under test. In order to

be able to adapt test cases individually if necessary, and not to mix test results, it was

decided to create 20 separate test architectures for them (which is an automated process in

Rhapsody). The test suite for the corresponding configuration needs to be copied into the

architecture. Each architecture comes with a code generation component where the library

containing the implementation/configuration combination of interest can be selected. Also

variants of modeled variation points can be chosen here, a possible mechanism to choose

the right variant of the (configuration dependent) implementation wrapper. If, in addition, one

considers that several versions of the 20 SUT may be released over time, and different test

suites may be generated for them, it becomes apparent that thorough planning of the project

structure in Rhapsody is of utmost importance for efficient test execution. Regarding the

different test suites for different configurations and resulting from different environment

models, a similar planning is necessary for the test generation.

5. Conclusion

The work on TCG from an LX controller model within the X2Rail-2 WP5 indicates that such

an approach can be successfully applied to mid-sized signaling systems. Rhapsody and its

testing add-ons provide an integrated, flexible and largely automated framework to create a

system model, generate tests from it and execute them. The model-based process followed

seems to supports a good quality of the central model, although in our case no extensive

validation against the system requirements was performed.

The effort and costs to set up and apply such a process for the first time may be high; training

9

and tool support will be necessary. Also finding the right abstraction level for a system model

can be challenging, and it still might be necessary to add some test cases by hand. However,

there are convincing benefits:

• Creating a system model often uncovers problems in the system requirements

specification early which can save from costly iterations in development, and human

error during test design is reduced.

• Since the generated test cases cover the elements of the model they are generated

from (which are typically more fine-grained than requirements), they have the potential

to detect more errors than those manually designed (covering the mere requirements).

• To have the main portion of functional test cases ready in a model will pay off

whenever changes need to be made to the test suite – no matter if during initial

development, maintenance or while creating new product version. The central place to

implement those changes is the model – and an automatic regeneration of the test

cases will consistently apply the change to the suite.

• A cross-platform and implementation-approach-independent test suite with a standard

interface allows for reuse (possibly including its further development in future projects).

In the remainder of the project, our claim that the TCG scales well for the LX application

needs to be confirmed as soon as the model is completed. It will be interesting to see how

many errors will be detected during the execution of the generated test cases on the different

implementations, and how model-based testing and formal verification complement each

other. Further research will be necessary to try out the limits of the ATG test case generator

to compare with manually created test suites and to generate further kinds of tests, e.g. for

failure scenarios.

References

[1] S. Bacherini, A. Fantechi, M. Tempestini, and N. Zingoni, “A Story About Formal

Methods Adoption by a Railway Signaling Manufacturer,” in Lecture Notes in Computer

Science, vol. 4085, 2006, pp. 179–189. https://doi.org/10.1007/11813040_13

[2] D. Basile et al., “On the Industrial Uptake of Formal Methods in the Railway Domain,” in

Lecture Notes in Computer Science, vol. 11023, 2018, pp. 20–29.

https://doi.org/10.1007/978-3-319-98938-9_2

[3] M. H. ter Beek et al., “Adopting Formal Methods in an Industrial Setting: The Railways

Case,” in Lecture Notes in Computer Science, vol. 11800, 2019, pp. 762–772.

https://doi.org/10.1007/978-3-030-30942-8_46

[4] Formal Methods (Taxonomy and Survey), Proposed Methods and Applications. Public

Deliverable 5.1 of X2Rail-2, revision 1.5 from 16/05/2018, available at

https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2

[5] TestConductor and ATG Web documentation on the IBM website,

https://www.ibm.com/support/knowledgecenter/en/SSB2MU_8.4.0/com.btc.tcatg.user.doc/top

ics/com.btc.tcatg.user.doc.html, accessed on 13/11/2019 3:50 pm.

[6] IBM® Rational® Rhapsody® Automatic Test Generation Add On User Guide, Release

3.6.2

https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
https://www.ibm.com/support/knowledgecenter/en/SSB2MU_8.4.0/com.btc.tcatg.user.doc/topics/com.btc.tcatg.user.doc.html
https://www.ibm.com/support/knowledgecenter/en/SSB2MU_8.4.0/com.btc.tcatg.user.doc/topics/com.btc.tcatg.user.doc.html

	1. Introduction
	2. Overview of the Approach
	2.1 Tooling
	2.2 Process

	3. Application to the LX Controller
	3.1 Application Example: The Alex Level Crossing
	3.2 TCG Model Creation
	3.3 Test Case Generation
	3.4 Implementation Integration

	4. Discussion of the Approach
	5. Conclusion
	References

