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Abstract

Variational Learning for Finite Shifted-Scaled Dirichlet
Mixture Models and Its Applications

Zeinab Arjmandiasl

With the huge amount of data produced every day, the interest in data
mining and machine learning techniques has been growing. Ongoing advance-
ment of technology has made AI systems subject to different issues. Data
clustering is an important aspect of data analysis which is the process of
grouping similar observations in the same subset. Among known clustering
techniques, finite mixture models have led to outstanding results that cre-
ated an inspiration toward further exploration of various mixture models and
applications. The main idea of this clustering technique is to fit a mixture
of components generated from a predetermined probability distribution into
the data through parameter approximation of the components. Therefore,
choosing a proper distribution based on the type of the data is another crucial
step in data analysis. Although the Gaussian distribution has been widely
used with mixture models, the Dirichlet family of distributions have been
known to achieve better results particularly when dealing with proportional
and non-Gaussian data.

Another crucial part in statistical modeling is the learning process. Among
the conventional estimation approaches, Maximum Likelihood (ML) is widely
used due to its simplicity in terms of implementation but it has some draw-
backs, too. Bayesian approach has overcome some of the disadvantages of ML
approach via taking prior knowledge into account. However, it creates new is-
sues such as need for additional estimation methods due to the intractability
of parameters’ marginal probabilities. In this thesis, these limitations are dis-
cussed and addressed via defining a variational learning framework for finite
shifted-scaled Dirichlet mixture model. The motivation behind applying vari-
ational inference is that compared to conventional Bayesian approach, it is
much less computationally costly. Furthermore, in this method, the optimal
number of components is estimated along with the parameter approximation
automatically and simultaneously while convergence is guaranteed. The per-
formance of our model, in terms of accuracy of clustering, is validated on real
world challenging medical applications, including image processing, namely,
Malaria detection, breast cancer diagnosis and cardiovascular disease detec-
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tion as well as text-based spam email detection. Finally, in order to evaluate
the merits of our model effectiveness, it is compared with four others widely
used methods.
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Chapter 1
Introduction

1.1 Introduction and Related Work

Data mining and dealing with large and complex data has become an impor-
tant part of decision-making procedures in various research domains. Clus-
tering as a powerful statistical approach has been effectively and extensively
applied in finding hidden patterns within data [1], [2], [3], [4]. Among all
clustering and unsupervised learning methods, finite mixture models specifi-
cally have shown remarkable success in various applications [5], [6], [7]. The
principle idea of this clustering technique is to fit a mixture of components
derived from a predetermined distribution to the data via parameter estima-
tion of the components [8], [9], [10].

There are two conventional methods to learn finite mixture models, namely,
deterministic and Bayesian approaches. Each of these methods has certain
downsides [8]. For instance, deterministic approaches such as maximum
likelihood estimation (MLE) do not produce decent approximation given
a small dataset, plus overfitting, being sensitive to initialization and con-
verging to local maxima instead of the global one [11], [12], [13]. Bayesian
approaches [14], [15], [16] with the incorporation of prior knowledge can over-
come the aforementioned problems through simulation techniques, but they
have their own drawbacks [17] such as being computationally complex and
time consuming specially for high dimensional data [18], [19], [20].

A proposed alternative to avoid such disadvantages is variational Bayesian
approach. In this framework, parameters are modeled by assuming an ap-
proximation for their true posterior and minimizing the Kullback–Leibler
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(KL) divergence between approximated and true posterior [15], [21]. Varia-
tional learning has shown higher performance while being less computation-
ally expensive in comparison to traditional Bayesian approach [21], [22], [23].
Another advantage of variational framework is its capability of finding the
correct number of clusters automatically along with parameter estimation
process. This is outstanding when we consider the MLE approach alone
fails to find the true number of clusters and it needs a model selection cri-
terion such as minimum message length [24]. Furthermore, the variational
inference approach has proven to be superior to ML in parameter estima-
tion [25], [26], [27], [28], [29] [30].

In mixture models, choosing a proper distribution to represent data is
a pivotal step in order to achieve outstanding results. Gaussian mixture
model (GMM) has been center of interest in most of previous data analysis
researches due to its simplicity of estimation procedures [31], [32]. How-
ever, GMMs are not always the best solution for any type of data specially
for non-Gaussian ones. Recent researches have proven the prominent ca-
pability of other distributions such as Dirichlet distributions over the well-
known GMM in many applications particularly when dealing with propor-
tional data [33], [34], [24]. The aforementioned works which have been done
using maximum likelihood (ML) within Expectation Maximization frame-
work (EM) [35], [36], have shown the flexibility and effectiveness of Dirichlet
distribution family [37], in particular, generalized versions of Dirichlet such as
scaled Dirichlet distribution [38] and shifted-scaled Dirichlet distribution [39].
We propose variational learning of a mixture model based on shifted-scaled
Dirichlet distribution. This distribution is a generalized version of Dirichlet
distribution which has two extra parameters, scale and location to make it
more flexible and capable to spread out. It should be recalled that scaled
Dirichlet distribution has just one more parameter compared to Dirichlet
which provides less flexibility compared to shifted scaled Dirichlet distribu-
tion.
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1.2 Contributions

The main contributions of this thesis are as follows:

� Proposing a variational framework for finite shifted-scaled
Dirichlet mixture models:

Our approach proposes a variational framework for learning shifted-
scaled Dirichlet mixture models, which are developed based on a
more generalized distribution than Dirichlet. Having two extra
parameters, scale and location, makes this distribution more ca-
pable to spread out. This is done through finding a tractable
lower bound on marginal likelihood by replacing the intractable
parameter distribution with an approximated distribution. Our
approach estimates the model parameters and detects the num-
ber of components automatically as part of the variational infer-
ence procedure. Therefore, it is computationally less expensive,
and converges faster compared to conventional methods, in which
the number of clusters is solved using a model selection criterion
which itself requires validation.

� Demonstrating the application of the proposed statistical mod-
els:

We evaluate the effectiveness of our proposed approach in pa-
rameter estimation and model selection on challenging applica-
tions. The first three applications are based on well-known med-
ical datasets that could play an important role in early or fast
diagnosis of diseases considering massive data gathered in medical
sectors. The forth real application we have tested our model on, is
spam detection application which has attracted lots of attention
in information system security field. Furthermore, we compared
the performance of our model with four other models including
one deterministic model, maximum likelihood learning of Gaus-
sian mixture models, and three variational models, namely, varia-
tional learning of Gaussian mixture models, variational learning of
Dirichlet mixture models and variational learning of scaled Dirich-
let mixture models. The result confirms the outperformance of
variational shifted-scaled Dirichlet mixture models over the oth-
ers in terms of overall accuracy in modeling real world data.

3



1.3 Thesis Overview

This thesis is organized as follows:

� Chapter1 briefly introduces the fundamentals of data clustering using
mixture models as well as mentioning their challenges. It also explains
the motivation for the considered probability distribution and the vari-
ational learning approach.

� Chapter 2 proposes a variational framework for shifted-scaled Dirich-
let mixture models, which could simultaneously estimate the model
parameters and determine the optimal number of components.

� Chapter 3 presents the experimental results of the proposed approach
on three medical real world applications, namely, Malaria detection,
breast cancer diagnosis, and cardiovascular diseases detection as well
as a demanding text application of spam detection.

� Chapter 4 concludes our contribution and points out some limitations
and some remarks for prospective future researches.

4



Chapter 2
Proposed Statistical Framework

2.1 Model Specification

In this chapter, we first present shifted-scaled Dirichlet distribution. After-
ward, the construction of mixture model based on this distribution will be
explained.

2.1.1 Shifted-Scaled Dirichlet Distribution

A generalized version of Dirichlet distribution studied from a probabilistic
point of view is shifted-scaled Dirichlet distribution. This random composi-
tion is derived by applying two operations in the simplex, perturbation and
powering. A vector-space structure is defined by these operations which play
the same role as the sum and product by scalars in real space [40]. This
added set of parameters has been shown to attain many functional probabil-
ity models [41] which can be employed to model compositional multivariate
data.
Let us assume an observation, generated from a shifted scaled Dirichlet dis-
tribution (SSD), which is defined by �X = (X1, . . . , XD) as a random vector
of porportional data where

∑D
d=1 Xd = 1, 0 ≤ Xd ≤ 1. The parameters of

this distribution are �α =
(
α1, . . . , αD

) ∈ R
D
+ , �β =

(
β1, . . . , βD

) ∈ S
D and
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τ ∈ R+. This distribution is expressed as follows:

p( �X | θ) = Γ(α+)∏D
d=1 Γ(αd)

1

τD−1

∏D
d=1 β

−
αd

τ
d X

(
αd

τ
−1)

d⎛
⎝∑D

d=1(
Xd

βd

)

1

τ

⎞
⎠

α+ (2.1)

where Γ(.) denotes the gamma function, �α is the shape parameter which

represents the form of the distribution and α+ =
∑D

d=1 αd. �β is the location
parameter which refers to the data densities location and τ is a real scalar
which tunes the variance of the density plot [39]. These parameters make
our probability distribution remarkably flexible which empowers our model
to fit various kinds of datasets.

2.1.2 Finite Shifted-Scaled Dirichlet Mixture Model

A convex combination of two or more probability distributions is called fi-
nite mixture model. Consider a set of N independent identically distributed
observations described by X =

(
�X1, . . . , �XN

)
in which each sample is a

D-dimensional vector, �Xi = (Xi1, . . . , XiD) assumed to be generated from
Equation (2.2). We assume that this dataset could be explained by a finite
mixture model including M components as follows [42]:

p
(
�Xi | Θ

)
=

M∑
j=1

πjp( �Xi | �θj) (2.2)

where πj is the mixing coefficient of component j satisfying two constraints

0 < πj < 1,
∑M

j=1 πj = 1.

Θ = {π1, . . . , πM , �θ1 , . . . , �θM} denotes the complete set of model parameters

in which �θj = { �αj, �βj, �τj} represents the parameter vector for jth component.
Therefore the likelihood function of SSD mixture model is given by:

p(X | �π, �θ) =
N∏
i=1

{
M∑
j=1

πjp( �Xi | �θj)
}

(2.3)
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For each �Xi, we introduce aM -dimensional random vector �Zi =
(
Zi1, . . . , ZiM

)
where Zij ∈ {0, 1} ,∑M

j=1 Zij = 1. This latent variable is not directly ob-

served in the model, but from which we infer the cluster to which �Xi is
assigned such that Zij = 1 if it belongs to cluster j and 0 otherwise.
Therefore, the conditional probability distribution for the N hidden variables
Z =

(
�Z1, . . . , �ZN

)
given �π is defined as:

p(Z | �π) =
N∏
j=1

M∏
j=1

π
Zij

j (2.4)

Thus, the conditional probability of data set X given the class labels Z
is as follow where �α = (�α1, . . . , �αM), �β = (�β1, . . . , �βM) and �τ = (τ1, . . . , τM):

p
(X | Z, �α, �β, �τ

)
=

N∏
i=1

M∏
j=1

[
p( �Xi | �θj)

]Zij

(2.5)

2.2 Variational Bayesian Learning

One of the crucial stages in fitting a dataset is learning the parameters of
the mixture model that includes both parameter estimation and detection
of number of components (M). In this section, we introduce variational
Bayesian approach for learning of shifted-scaled Dirichlet mixture models
(varSSDMM) which attain both of above-mentioned problems simultane-
ously.

2.2.1 Parameter Estimation

The joint distribution of all the random variables conditioned on �π is given
by:

p (X ,Θ | �π) = p
(
X | Z, �α, �β, �τ

)
p(Z | �π)p(�α)p(�β)p(�τ) (2.6)

where Θ = {Z, �α, �β, �τ} and the following conjugate priors is chosen for

�α, �β, �τ , respectively:

p(αjd) = G(αjd | ujd, νjd) =
ν
ujd

jd

Γ(ujd)
α
ujd−1
jd e−νjdαjd (2.7)

7



p(βjd) = D(βjd | �hj) =
Γ(
∑D

d=1 hjd)∏D
d=1 Γ(hjd)

D∏
d=1

β
hjd−1
jd (2.8)

p(τj) = G(τj | qj, sj) =
q
sj
j

Γ(qj)
τ
qj−1
j e−sjτj (2.9)

{ujd}, {νjd}, {hjd}, {qjd} and {sjd} are hyper-parameters which all satisfy
the constraint of being greater than zero. G(.) and D(.) denote Gamma and
Dirichlet distributions, respectively. Since the parameters are considered
statistically independent, we can write:

p(�α) =
M∏
j=1

D∏
d=1

p(αjd) (2.10)

p(�β) =
M∏
j=1

D∏
d=1

p(βjd) (2.11)

p(�τ) =
M∏
j=1

p(τj) (2.12)

By substituting equations (2.10), (2.11), (2.12), (2.4) and (2.5) into the
joint distribution defined in equation (2.6), we get:

p(X ,Φ | �π) =
N∏
i=1

M∏
j=1

(πj
Γ(αj+)∏D
d=1 Γ(αjd)

1

τD−1j

∏D
d=1 β

−
αjd

τj
jd x

(
αjd

τj
−1)

id⎛
⎜⎝∑D

d=1(
xid

βjd

)

1

τj

⎞
⎟⎠

αj+
)Zij (2.13)

×
M∏
j=1

D∏
l=1

[
ν
ujd

jd

Γ(ujd)
α
ujd−1
jd e−νjdαjd × Γ(

∑D
d=1 hjd)∏D

d=1 Γ(hjd)

D∏
d=1

β
hjd−1
jd ]

×
M∏
j=1

[
q
sj
j

Γ(qj)
τ
qj−1
j e−sjτj ]

8



A Graphical representation of this model is shown in Figure 2.1 where
random variables are displayed within circles. Plates denote replication and
the number of replications is shown in the lower right corner of it. The arrows
represent the conditional dependencies among variables.

X

ND

NM
Z

M

MD

MD

M

h

u
v

q
s

Figure 2.1: Graphical demonstration of the finite Shifted-Scaled Dirichlet
mixture model

For learning our mixture model parameters and defining the correct num-
ber of components M simultaneously, here we apply variational inference ap-
proach proposed in [27]. In this technique, a tractable lower bound L(Q) on
the marginal likelihood p

(X | �π) is used as below:

ln p
(X | �π) = ln

∫
p
(X ,Θ | �π)dΘ = (2.14)

ln

∫
Q
(
Θ
)p(X ,Θ | �π)

Q
(
Θ
) dΘ ≥

∫
Q
(
Θ
)
ln

(
p
(X ,Θ | �π)
Q
(
Θ
) )

dΘ = L(Q)

where Q
(
Θ
)
is introduced as an approximation for the true posterior p

(
Θ |

X , �π
)
.

From equation (2.14), we find the following equation:

L(Q) = ln p
(X | �π)−KL

(
Q || P) (2.15)

where,

9



KL
(
Q || P) = −

∫
Q
(
Θ
)
ln

(
p
(
Θ | X , �π

)
Q
(
Θ
) )

dΘ (2.16)

By maximizing the lower bound L(Q), the KL divergence reaches its mini-
mum, zero, when Q

(
Θ
)
= p

(
Θ | X , �π

)
. However, it is difficult to directly

compute the true posterior for variational inference. Thus, Q
(
Θ
)
as a re-

stricted family of distributions is taken into account.
We adopt an approximation method called mean-field theory [43], [44] which
factorize Q

(
Θ
)
into tractable distributions of each parameter in the param-

eter space Θ as below:

Q
(
Θ
)
= Q

(Z)
Q
(
�α
)
Q
(
�β
)
Q
(
�τ
)

(2.17)

Lower bound maximization is done through variational optimization of L(Q)
with respect to each of the parameter distributions Qs

(
Θs

)
which results in

the following equation for a particular Qs

(
Θs

)
[27]:

Qs

(
Θs

)
=

exp
〈
ln p

(X ,Θ
)〉

j �=s∫
exp

〈
ln p

(X ,Θ
)〉

j �=s
dΘ

(2.18)

where
〈·〉

j �=s
indicates the expectation of all the distributions Qj

(
Θj

)
exclud-

ing j = s. To apply the variational inference, all the parameter distributions
Qj

(
Θj

)
need to be initialized properly, since for optimal solution estimation

Qs

(
Θs

)
we loop over all the Qj

(
Θj

)
except j = s. Afterward, each parameter

get updated by an improved value which is calculated from equation (2.18)
assuming the recent value of the other parameters altogether. Due to the
convexity of the lower bound corresponding to each of the parameter distri-
butions Qj

(
Θj

)
, convergence is certain [45], [46]. Finally, we get the optimal

variational estimations for each Q in the parameter space Θ as follow (see
Appendix A):

Q
(Z)

=
N∏
i=1

M∏
j=1

r
Zij

ij (2.19)

Q
(
�α
)
=

M∏
j=1

D∏
l=1

G(αjd | u∗jd, ν∗jd
)

(2.20)

10



Q
(
�β
)
=

M∏
j=1

D∏
l=1

D(
βjd | h∗jd

)
(2.21)

Q
(
�τ
)
=

M∏
j=1

D∏
l=1

G(τj | q∗j , s∗j) (2.22)

where,

rij =
ρij∑M
j=1 ρij

(2.23)

ρij = exp

{
ln πj + R̃j − (D − 1) ln τ j (2.24)

+
D∑

d=1

[
− αjd

τ j
ln βjd + (

αjd

τ j
− 1) ln xid

]

− (αj+) ln

(
D∑

d=1

(
xid

βjd

)

1

τ j

)}

R̃j is estimated as follows in which ψ
(
.
)
and ψ′

(
.
)
denotes digamma and

trigamma functions, respectively (see Appendix A):
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R̃j = ln
Γ
(∑D

d=1 αjd

)
∏D

d=1 Γ
(
αjd

) (2.25)

+
D∑

d=1

αjd

[
ψ

(
D∑

d=1

αjd

)
− ψ

(
αjd

)]

×
[〈

lnαjd

〉− lnαjd

]

+
1

2

D∑
d=1

α2
jd

[
ψ′
(

D∑
d=1

αjd

)
− ψ′

(
αjd

)]

×
〈(

lnαjd − lnαjd

)2〉

+
1

2

D∑
a=1

D∑
b=1,a �=b

αja αjb

{
ψ′
(

D∑
d=1

αjd

)

×
(〈

lnαja

〉− lnαja

)
×
(〈

lnαjb

〉− lnαjb

)}

The hyperparameters u∗jd, ν
∗
jd, h

∗
jd, q

∗
j and s∗j are approximated as below (see

Appendix A):

u∗jd = ujd + ϕjd ν∗jd = νjd + ϑjd (2.26)

ϕjd =
N∑
i=1

〈
Zij

〉
αjd

[
ψ

(
D∑

d=1

αjd

)
− ψ

(
αjd

)
+

D∑
d �=s

ψ′
(

D∑
d=1

αjd

)
(2.27)

× αjs

(〈
lnαjs

〉− lnαjs

)]

ϑjd =
N∑
i=1

〈
Zij

〉[ 1

τj
ln

βjs

xis

+ ln

( D∑
d=1

(
xid

βjd

)

1

τj
)]

(2.28)

h∗jd = hjd + κjd (2.29)
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κjd =
N∑
i=1

〈Zij〉
[

¯−αjs

τ̄j
+

ᾱjs

τ̄j
× (

xis

β̄js

)

1

τ̄j × 1

∑D
d=1(

xid

β̄jd

)

1

τ̄j

]
(2.30)

q∗j = qj + δj s∗j = sj − �j (2.31)

δj =
N∑
i=1

Zij

[
1−D +

(αj+)

τj

∑D
d=1(

xid

βjd

)

1

τj ln (
xid

βjd

)

∑D
d=1(

xid

βjd

)

1

τj

]
(2.32)

�j =
N∑
i=1

Zij

[
D∑

d=1

αjd

τj2
ln (

xid

βjd

)

]
(2.33)

where the expected values in the preceding equations are as follow:〈
Zij

〉
= rij (2.34)

αjd =
〈
αjd

〉
=

u∗jd
ν∗jd

,
〈
lnαjd

〉
= ψ

(
u∗jd

)− ln ν∗jd (2.35)

〈(
lnαjd − lnαjd

)2〉
=
[
ψ
(
u∗jd

)− ln u∗jd
]2

+ ψ′
(
u∗jd

)
(2.36)

βjd =
〈
βjd

〉
=

h∗jd∑D
d=1 h

∗
jd

(2.37)

τj =
〈
τj
〉
=

q∗j
s∗j

(2.38)
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2.2.2 Determination of the Number of Components

As mentioned before, �π is considered as a parameter in variational learning.
Thus, it is estimated via maximization of lower bond L(Q). The equation is
obtained via setting the derivative of the lower bound with respect to �π to
zero:

πj =
1

N

N∑
i=1

rij (2.39)

In our experiments, the number of components has been initialized with large
value such as 10 and with equal value of mixing coefficients. As the lower
bound L(Q) is maximized in order to obtain the variational optimization

of Q
(Z)

, Q
(
�α
)
, Q

(
�β
)
and Q

(
�τ
)
, the mixing coefficient �π gets estimated as

well. Therefore, the components which have trivial contribution to describe
the data would have a close-to-zero mixing coefficients. Using automatic
relevance determination [47], these components would be omitted from the
model.
The steps of the variational algorithm for our model are described as follow:
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Algorithm 1 Variational learning algorithm of SSD

1. Initialize number of components M .

2. Initialize the hyper-parameters {ujd}, {νjd}, {hjd}, {qjd} and {sjd}.

3. Initialize rij using K-Means algorithm.

4. repeat

5. E-step of variational: update Q
(Z)

, Q
(
�α
)
, Q

(
�β
)
and Q

(
�τ
)
.

6. M-step of variational: Maximize L(Q) with respect to recent value of
�π (2.39).

7. until Convergence criterion is reached.

8. Determine the number of components M by omitting those with trivial
mixing coefficients (smaller than 10−5).

9. Re-estimate new values of the parameters (Z), (�α), (�β), (�τ) and (�π).
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Chapter 3
Experimental Result

3.1 Introduction

In this chapter, we evaluate the performance of our proposed model using
three medical datasets, namely, Malaria, breast cancer and heart diseases
as well as a challenging text dataset namely spam detection. The accuracy
of the model mainly relies on the initialization of the hyperparameters in-
cluding {ujd}, {νjd}, {hjd}, {qjd} and {sjd}. Thus, detecting a good set of
initialized hyperparameters is an important step to obtain the optimal num-
ber of clusters and enhance the convergence rate. Besides, feature extraction
and feature selection techniques are inevitable part of data pre-processing
approach when dealing with image and text applications. Furthermore, scal-
ing and normalization are crucial step and needs to be always considered
for total performance improvement. To enhance the outperformance of our
model, we compare it with four other models, namely, variational learning of
scaled Dirichlet mixture model (varSDMM), variational learning of Dirichlet
mixture model (varDMM), variational learning of Gaussian mixture model
(varGMM) and maximum likelihood learning of Gaussian mixture model
(GMM).

3.2 Malaria Detection

Malaria is a fatal disease in countries with tropical climates. It is caused
by a parasite which is transmitted to humans through the bite of an in-
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fected mosquito. Based on the latest report released by WHO, in 2018,
405000 Malaria deaths has been registered among 228 million cases world-
wide [48]. An accurate diagnosis is crucial in order to prevent from death
and prevalence. Parasitological and clinical microscopy as a commonly used
mean involves visual analysis of blood smears in order to detect the parasite
in the blood as well as identifying the type, number and life cycle of the
parasitemia. However, microscopy examination could be overwhelming and
costly and very much relies on the qualification of the specialist and load of
samples. The need for sample analysis automation has become undeniable
considering the recent report published by WHO that 207 million suspected
patients were tested via either an RDT or microscopy in 2018 [48]. We ob-
tained a dataset from NIH containing slide images of blood smear released
by the Malaria screener research activity [49]. The dataset has 27,558 images
of blood cells with equal instances of infected and normal ones. Some sam-
ples of this dataset are shown in Figure 3.1 containing infected and normal
blood smear instances. Acquiring a precise representation of the features of
a dataset is an essential pre-processing task. In other words, an efficient de-
scriptor containing most of the important features is needed. For this dataset
we used Bag of visual words (BOVW) and SIFT [50] since it has well per-
formed in various classification problems [45], [38], [51]. From the confusion
matrix in Figure 3.2, we can see that 100% of the infected cells and 77.5%
of the non-infected ones have been accurately detected which we can com-
pare with other algorithms’ confusion matrices shown in Figure 3.3. Finally,
we compared the result of our model with four other models summarized in
Table 3.1 denoting the outstanding accuracy of varSSDMM (88.7%). These
results endorse the variational learning method on shifted-scaled Dirichlet as
an effective approach.
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Figure 3.1: Malaria dataset

Figure 3.2: Malaria confusion matrix

Table 3.1: Model performance accuracy in malaria dataset

Algorithm varSSDMM varSDMM varDMM varGMM GMM

Accuracy(%) 88.7 87.5 86.8 70.6 70.0
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(a) varSDMM (b) varDMM

(c) varGMM (d) GMM

Figure 3.3: Malaria confusion matrices for other algorithms
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3.3 Breast Cancer Diagnosis

Breast cancer is the most prevalent type of cancers in women and the second
common cancer worldwide, according to WCRF [52]. Early diagnosis and
treatment play key roles to improve the survival rate of cancerous patients.
Most of the breast cancer detections are done via screening imaging like
sonography, mammography or MRI. Once a lump is detected, it is sampled for
further analysis. Then a pathologist examines the tissue sample for detection
of being benign or malignant. Among different ways of sampling, the fine
needle aspiration (FNA) [53] is one of the standard and suitable means for
medical diagnostic and decision-making processes. We evaluate our model
over a publicly available breast cancer dataset named Wisconsin [54]. This
dataset contains 699 samples with nine features that are computed from
the images of breast lumps obtained via fine needle aspirate. In Figure 3.4,
The attributes are graded from 1 to ten with 1 being the closest to benign
and 10 the most anaplastic and malignant [55]. The mean and standard
deviation of each attribute is detailed as well. It is noteworthy to mention
that no single feature alone is enough to differentiate among benign and
malignant instances and we employ all of them. There are (458) Benign and
(241) Malignant cases in the set. The confusion matrix presented in Figure
3.5 clearly shows that the majority of the instances are correctly categorized,
compare to other algorithms’ confusion matrices shown in Figure 3.6. Lastly,
the final result in Table 3.2 shows a significant improvement in clustering the
benign and malignant samples using varSSDMM (93.4% accuracy) compared
to the rest of algorithms. This result is achieved given that min-max scaling
and normalization is applied on the dataset in order to improve the final
result.
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Figure 3.4: Attributes of Wisconsin Dataset

Figure 3.5: Wisconsin confusion matrix

Table 3.2: Model performance accuracy in Wisconsin dataset

Algorithm varSSDMM varSDMM varDMM varGMM GMM

Accuracy(%) 93.4 92.7 90.1 82.7 81.6
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(a) varSDMM (b) varDMM

(c) varGMM (d) GMM

Figure 3.6: Wisconsin confusion matrices for other algorithms
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3.4 Cardiovascular Diseases (CVDs) Detec-

tion

Cardiovascular diseases (CVDs) as a wide assortment of disorders influenc-
ing the heart and veins, is perceived as the first reason for worldwide death.
This leading explanation of mortality has ended the lives of 17.9 million in-
dividuals each year [56]. It is overwhelmingly costly to diagnose and control
these illnesses due to the need for long-term treatment and pricey equipment.
Thus, CVDs carries loads of expenses imposed to medicinal services and con-
sequently government. However, considering the related risk factors of heart
diseases such as obesity, tobacco use, low physical movement and diet, pre-
vention could always be an essential approach. These days, complex data
such as clinical history, biomarkers, pictures, signals and text are the source
of analysis for doctors which could be a complicated task. Therefore, such
diagnosis system could be error-prone, inaccurate and could put the patient
in danger. In this situations, automation in clinical inference could be help-
ful [57]. In this part of our experiment, we evaluated our proposed model over
a real and publicly available dataset [58] to predict heart disease existence
based on specific characteristics of a person. There are 303 samples with
76 attributes being measured in this dataset, but all released experiments
have utilized a subset of 14 features including age, sex, chest pain location,
resting blood pressure, serum cholesterol level, fasting blood sugar, resting
electrocardiographic results (normal, ST-T wave abnormality or left ventric-
ular hypertrophy), maximum heart rate achieved, exercise induced angina,
ST depression peak, the slope of the peak exercise ST segment (upsloping,
flat or downsloping), number of major vessels coloured by fluoroscopy and
type of defect (normal, fixed or reversible). The confusion matrix in Figure
3.7 confirms that most of the instances have been well classified, especially
92% of the heart disease presences has been detected which we can compare
it with other algorithms’ confusion matrices in Figure 3.8. The outcome of
our assessment is demonstrated in Table 3.3 denoting the outperformance
of varSSDMM with 82% overall accuracy. It is noteworthy to mention that
reprocessing techniques such as min-max scaling and normalization has been
performed on the dataset before applying our model.
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(a) varSDMM (b) varDMM

(c) varGMM (d) GMM

Figure 3.8: Heart disease confusion matrices for other algorithms

Figure 3.7: Heart disease confusion matrix
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Table 3.3: Model performance accuracy in heart dataset

Algorithm varSSDMM varSDMM varDMM varGMM GMM

Accuracy(%) 82.2 80.1 77.5 71.9 71.3

3.5 Spam Detection

The forth real application we have tested our model on, is a text applica-
tion. One of the serious research fields in information system security is
spam detection. The concept of spam or unsolicited message is extended
from product or website advertisements, money-making scams, pornography
to chain letters. The most widely recognized form of spam is email spam
which creates major problems such as lost productivity, financial damage
and fraud. According to some references around 80% of emails are spam
which brought about overwhelming financial losses of 50 billion dollars in
2005 [59]. Among all of the methodologies developed to stop spam, filtering
is a significant and mainstream one. Applying machine learning and pattern
recognition methods have significantly improved spam filtering compare to
other user-defined rules [60], [61]. For our experiment, we obtained a chal-
lenging spam dataset from UCI machine learning repository, provided by
Hewlett-Packard Labs [62]. The dataset has 4601 instances with 57 continu-
ous input attributes plus the target column which denotes whether the e-mail
was categorised spam (1) or not (0). Among all the instances, 39.4% of them
(1813) are spam and 60.6% (2788) are non-spam. These attributes are ob-
tained through a commonly used method called Bag of Words (BoW) [63]
which is one of the effective data representation techniques in natural lan-
guage processing. Majority of the attributes indicate the frequency of a
particular word or character appearance in the email. In other words, each
email is represented by its words ignoring grammar. 48 attributes contain
the percentage of the respective word and 6 attributes include the percentage
of the respective characters in the e-mail. The rest of them are the average
length of continuous sequences of capital letters, the length of the longest
continuous sequence of capital letters and the total number of capital letters
in the e-mail. We carried out some pre-processing steps on the dataset before
applying our model in order to enhance the final result. These steps include
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employing feature selection techniques which reduced the number of features
to 45. Afterwards, min-max scaling and normalization is performed to fur-
ther enhance our accuracy. In Figure 3.9, the outcome of our performance,
represented in the confusion matrix, denoting better classification of most of
the emails compare to other algorithms’ confusion matrices in Figure 3.10.
The summary of our model accuracy compared to four other algorithms rep-
resented in Table 3.4 that with 88.3% accuracy confirms the advantage of
the model.

Figure 3.9: spam detection confusion matrix

Table 3.4: Model performance accuracy in spam detection dataset

Algorithm varSSDMM varSDMM varDMM varGMM GMM

Accuracy(%) 88.3 79.5 77.2 75.0 74.7

Thus, we have evaluated our model on four different sizes of datasets
and compared the results with three other variational models (varSDMM,
varDMM, varGMM) as well as a deterministic model (GMM) to prove the
potency and robustness of this model.
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(a) varSDMM (b) varDMM

(c) varGMM (d) GMM

Figure 3.10: spam detection confusion matrices for other algorithms
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Chapter 4
Conclusion

The motivation behind this thesis was presenting the potential of clustering
data using finite mixture models along with variational inference approach
to further empowering the inference process. The significance of choosing a
proper statistical model in order to describe data, was addressed. Although
Gaussian mixture models are commonly used, they fail to model the data
properly when dealing with non-Gaussian data like proportional ones. We
suggested shifted-scaled Dirichlet mixture model, a generalized version of
Dirichlet distribution family, as an excellent option for modeling asymmetric
and proportional data such as normalized count vectors extracted from text
and images. Also, we discussed the limitations of conventional estimation
approaches such as Maximum Likelihood (ML) and Bayesian approach and
what makes the variational Bayesian learning approach premier in data anal-
ysis tasks. Furthermore, we proposed a variational framework to learn the
finite shifted-scaled Dirichlet mixture model. Using this model, parameters
estimation was precisely accomplished avoiding the heavy cost of computa-
tion associated with conventional Bayesian strategies. Besides, the number
of clusters was simultaneously detected as part of lower-bound maximization
procedure. The experimental results have shown the validity of the proposed
model, in terms of parameter approximation and detecting the true num-
ber of clusters, via several real world applications. The performance of our
model in terms of accuracy is compared with four other algorithms, namely,
variational learning of scaled Dirichlet mixture model (varSDMM), varia-
tional learning of Dirichlet mixture model (varDMM), variational learning
of Gaussian mixture model (varGMM) and maximum likelihood learning of

28



Gaussian mixture model (GMM). Our model has proven to be more effective
than other models in medical real applications including Malaria detection,
breast cancer diagnosis and cardiovascular diseases as well as a challenging
text application like spam detection. The proposed approach can be applied
likewise to numerous different applications which contain proportional, asym-
metric or scattered data such as text mining and natural language processing.
In spite of the above mentioned advantages, we need to consider the limi-
tations of the proposed model as well. Apart from complicated calculation
of variational solution, it is very dependent to the initialization of hyper-
parameters and poor initialization values might considerably slow down the
convergence speed. Therefore, we need to run the optimization several times
with different initializations in order to detect a good maximum. Moreover,
the proportional requirement of data in our model, makes it not applica-
ble for some applications despite applying pre-processing techniques such as
normalization. A future work could be devoted to make the approach less
sensitive to the initialization of the hyperparameters via assuming a new level
of prior distributions for the hyperparamters. Further enhancement of the
model could include adding feature selection, upgrading to infinite model or
developing online learning framework.

29



Appendix A
Proof of Equations (2.17), (2.18),
(2.19) and (2.20)

In this section, we present the proof for (2.19), (2.20), (2.21) and (2.22):
According to (2.18), we can rewrite the general expression of the variational
solution Qs

(
Θs

)
as below:

lnQs

(
Θs

)
=
〈
ln p

(X ,Θ
)〉

j �=s
+ const (A.1)

In which those terms that are independent of the respective parameter in
Qs

(
Θs

)
, are assimilated into the constant. Utilizing the equation (A.1) along

with the logarithm of the joint distribution in (2.13), p(X ,Φ | �π), we calcu-
lated variational solutions for each parameter as follow:
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A.1 Proof of (2.19) : Variational Solution to

Q
(Z)

lnQ(Zij) = Zij

{
ln πj +Rj − (D − 1) ln τ j (A.2)

+
D∑

d=1

[
− αjd

τ j
ln βjd + (

αjd

τ j
− 1) ln xid

]

− (αj+) ln

(
D∑

d=1

(
xid

βjd

)

1

τ j

)}
+ const

where Rj =

〈
ln

Γ
(∑D

d=1 αjd

)
∏D

d=1 Γ
(
αjd

) 〉
αj1,...,αjD

, αjd =
〈
αjd

〉
=

u∗
jd

ν∗jd
,

However, Rj is analytically intractable and we are not able to directly perform
variational infernce. Thus, we need to approximate a lower bound for it that
give us a closed-form expression. Obtaining a tractable approximation with
applying second order Taylor series expansion in variational inference, has
been effectively done in [64], [65]. Moreover, we can find the same function
Rj approximated using second order Taylor series in [45] that we will utilize it
here. The approximation of Rj around the expected values of �αj, represented
by

(
αj1, . . . , αjD

)
is defined as R̃j and denoted in (2.25). Now the equation

in A.2 turns into a tractable expression after substituting Rj by R̃j and we
can obviously notice that the optimal solution estimation to Z takes the
logarithmic form of 2.4 excluding the normalization constant. Therefore, we
can rewrite lnQ

(Z)
as follow:

lnQ
(Z)

=
N∑
i=1

M∑
j=1

Zij ln ρij + const (A.3)
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ln ρij = ln πj + R̃j − (D − 1) ln τ j (A.4)

+
D∑

d=1

[
− αjd

τ j
ln βjd + (

αjd

τ j
− 1) ln xid

]

− (αj+) ln

(
D∑

d=1

(
xid

βjd

)

1

τ j

)

By taking the exponential of both sides in (A.3), we get:

Q
(Z) ∝ N∏

i=1

M∏
j=1

ρ
Zij

ij (A.5)

after applying normalization on the previous distribution, we obtain:

Q
(Z)

=
N∏
i=1

M∏
j=1

r
Zij

ij , rij =
ρij∑M
j=1 ρij

(A.6)

note that the {rij} are non-negative and sum to one. Thus, the standard
solution for Q(Z) can be derived as:〈

Zij

〉
= rij (A.7)

where {rij} are equivalent to responsibilities in the conventional EM algo-
rithms.

A.2 Proof of (2.20) : Variational Solution to

Q
(
�α
)

Since the parameters are considered statistically independent and there are
M clusters in the mixture model, Q(�α) can be factorized as follow:

Q(�α) =
M∏
j=1

D∏
d=1

Q(αjd) (A.8)
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The logarithm of the optimized factor with respect to specific parameter αjs

is calculated as follow:

lnQ(αjs) =
N∑
i=1

rijJ (αjs)− αjs

τj
ln βjs

N∑
i=1

rij +
αjs

τj

N∑
i=1

rij ln xis (A.9)

− αjs

N∑
i=1

rij ln

( D∑
d=1

(
xid

βjd

)

1

τj
)
+ (ujs − 1) lnαjs − νjsαjs + const

where J (αjs) =

〈
ln

Γ(αs +
∑D

d �=s αjd)

Γ(αs)
∏D

d �=s Γ(αjd)

〉
Θ �=αjs

is described as a function of

ααjs
, which unfortunately doesn’t have a closed-form solution. Therefore,

same as Rj in the section A, we need to approximate J (αjs) by finding a
lower bound via Taylor series expansion about αjs (the expected value of
αjs). The same function has been approximated in [45] (Appendix B) and
we shall use the final result here:

J (αjs) ≥ αjs lnαjs

{
Ψ

( D∑
d=1

αjd

)
−Ψ(αjs) +

D∑
d �=s

αjd (A.10)

×Ψ′
( D∑

d=1

αjd

)
(〈lnαjd〉 − lnαjd)

}
+ const

after substituting this lower bound back into A.9, we get a new optimal
solution to αjs as follow:

lnQ(αjs) =
N∑
i=1

rijαjs lnαjs

[
Ψ

( D∑
d=1

αjd

)
−Ψ(αjs) (A.11)

+
D∑
d �=s

Ψ′
( D∑

d=1

αjd

)
αjd(〈lnαjd〉 − lnαjd)

]

− αjs

τj
ln βjs

N∑
i=1

rij +
αjs

τj

N∑
i=1

rij ln xis

− αjs

N∑
i=1

rij ln

( D∑
d=1

(
xid

βjd

)

1

τj
)
+ (ujs − 1) lnαjs − νjsαjs

= lnαjs(ujs + ϕjs − 1)− αjs(νjs + ϑjs) + const
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where

ϕjd =
N∑
i=1

rijαjd

[
ψ

(
D∑

d=1

αjd

)
− ψ

(
αjd

)
+

D∑
d �=s

ψ′
(

D∑
d=1

αjd

)
(A.12)

× αjs

(〈
lnαjs

〉− lnαjs

)]

ϑjd =
N∑
i=1

rij

[
1

τj
ln

βjs

xis

+ ln

( D∑
d=1

(
xid

βjd

)

1

τj
)]

(A.13)

we can notice that (A.11) has gotten a logarithmic form of a Gamma function.
if we take the exponential of both sides, we get:

Q(αjs) ∝ α
ujs+ϕjs−1
js e−αjs(νjs+ϑjs) (A.14)

Thus, we can derive the optimal solution to the hyperparamters ujs and νjs
as:

u∗js = ujs + ϕjs, ν∗js = νjs + ϑjs. (A.15)

A.3 Proof of (2.21) : Variational Solution to

Q
(
�β
)

Considering the assumption of parameter independence, for M cluster in the
mixture model, Q(�β) can be factorized as follow:

Q(�β) =
M∏
j=1

D∏
d=1

Q(βjd) (A.16)

The logarithm of the optimized factor with respect to specific parameter βjs

is calculated as follow:

lnQ(βjs) = −αjs

τj
ln βjs

N∑
i=1

Zij − (αj+)
N∑
i=1

ZijF(βjs) (A.17)

+ (hjs − 1) ln βjs + const
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where

F(βjs) =

〈
ln (

D∑
d=1

(
xid

βjd

)

1

τj )

〉
(A.18)

We can notice that F(βjs) is analytically intractable and need to be approx-
imated (see Appendix B). The lower bound is approximated about βjs, as
follow:

F(βjs) ≥ (
xis

βjs

)

1

τ j − ln βjs

τ j
∑D

d=1(
xid

βjd

)

1

τ j

(A.19)

By replacing this lower bound back into A.17, we have the following equation:

ln (βjs) = −αjs

τj
ln βjs

N∑
i=1

rij − (αj+)
N∑
i=1

rij (A.20)

×
[
(
xis

βjs

)

1

τ j − ln βjs

τ j
∑D

d=1(
xid

βjd

)

1

τ j

]
+ (hjs − 1) ln βjs + const

= (hjs + κjs − 1) ln βjs + const

where

κjs =
N∑
i=1

rij

[
¯−αjs

τ̄j
+

ᾱjs

τ̄j
(
xis

β̄js

)

1

τ̄j 1

∑D
d=1(

xid

β̄jd

)

1

τ̄j

]
(A.21)

We can notice that (A.20) has gotten a logarithmic form of a Beta distribu-
tion. By taking the exponential of both sides, we get:

Q(βjs) ∝ β
hjs+κjs−1
js (A.22)

Therefore, we can extract the optimal solution to the hyperparamter hjs as:

h∗js = hjs + κjs (A.23)
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A.4 Proof of (2.22) : Variational Solution to

Q
(
�τ
)

For M cluster in the mixture model, we can factorize Q(�τ) as follow:

Q(�τ) =
M∏
j=1

Q(τj) (A.24)

By taking logarithm of the optimized factor with respect to specific parameter
τj, we get:

lnQ(τj) = (1−D) ln τj

N∑
i=1

rij +
N∑
i=1

rij

D∑
d=1

αjd

τj
(ln xid − ln βjd) (A.25)

− (αj+)
N∑
i=1

rijG(τj) + (qj − 1) ln τj − sjτj + const

where

G(τj) =
〈
ln (

D∑
d=1

(
xid

βjd

)

1

τj )

〉
(A.26)

Which is a function of τj, again analytically intractable and need to be ap-
proximated (see Appendix B). We obtain the approximated lower bound,
about τ j, as follow:

G(τj) ≥ − ln τj
τ j

∑D
d=1(

xid

βjd

)

1

τ j ln (
xid

βjd

)

∑D
d=1(

xid

βjd

)

1

τ j

+ const (A.27)
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By substituting this lower bound back into A.25, we have the following equa-
tion:

lnQ(τj) = (1−D) ln τj

N∑
i=1

rij +
N∑
i=1

rij

D∑
d=1

αjd

τj
(A.28)

× (ln xid − ln βjd) +
ln τj
τ j

(αj+)
N∑
i=1

rij

×

∑D
d=1(

xid

βjd

)

1

τ j ln (
xid

βjd

)

∑D
d=1(

xid

βjd

)

1

τ j

+ (qj − 1) ln τj − sjτj + const

= ln τj(qj + δj − 1)− τj(sj − �j)

where

δj =
N∑
i=1

rij

[
1−D +

(αj+)

τj

∑D
d=1(

xid

βjd

)

1

τj ln (
xid

βjd

)

∑D
d=1(

xid

βjd

)

1

τj

]
(A.29)

�j =
N∑
i=1

rij

[
D∑

d=1

αjd

τj2
ln (

xid

βjd

)

]
(A.30)

We can see that (A.28) has gotten a logarithmic form of a Gamma function.
By taking the exponential of both sides, we get:

Q(τj) ∝ τ
qj+δj−1
j e−τj(sj−	j) (A.31)

So, we can obtain the optimal solution to the hyperparamters qj and sj as:

q∗j = qj + δj, s∗j = sj − �j. (A.32)
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Appendix B
Proof of Equations (1.59) and (1.67)

B.1 Proof of (1.59) : Lower Bond of F(βjs)

Let us define the function F(βjs) as:

F(βjs) = ln

(
(
xis

βjs

)

1

τj +
D∑
d �=s

(
xid

βjd

)

1

τj
)

(B.1)

Since F(βjs) is a convex function with respect to ln βjs, we can calculate its
lower bound using first-order Taylor expansion of F(βjs) for ln βjs at ln βjs,0
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as bellow:

F(βjs) ≥ F(βjs,0) +
∂F(βjs)

∂ ln βjs

|βjs=βjs,0
(ln βjs − ln βjs,0) (B.2)

= ln ((
xis

βjs,0

)

1

τj +
D∑
d �=s

(
xid

βjd,0

)

1

τj )

+ βjs,0
1

(
xis

βjs,0

)

1

τj +
∑D

d �=s(
xid

βjd,0

)

1

τj

(
−1

τj
X

1

τj
is β

−1

τj
−1

js,0 )(ln βjs − ln βjs,0)

= (
xis

βjs,0

)

1

τj −1

τj
∑D

d=1(
xid

βjd

)

1

τj

× ln βjs

B.2 Proof of (1.67) : Lower Bond of G(τj)
Let us define the function G(τj) as:

G(τj) =
〈
ln (

D∑
d=1

(
xid

βjd

)

1

τj )

〉
(B.3)

Due to the convexity feature of function G(τj) relative to ln τj, its lower
bound can be calculated using first-order Taylor expansion of G(τj) for ln τj
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at ln τj,0 as follows:

G(τj) ≥ G(τj,0) + ∂G(τj)
∂ ln τj

|τj=τj,0(ln τj − ln τj,0) (B.4)

= ln (
D∑

d=1

(
xid

βjd

)

1

τj,0 ) + τj,0
1

∑D
d=1(

xid

βjd

)

1

τj,0

× −1

τ 2j,0

D∑
d=1

(
xid

βjd

)

1

τj,0 ln (
xid

βjd

)(ln τj − ln τj,0)

=
− ln τj
τj,0

∑D
d=1(

xid

βjd

)

1

τj,0 ln (
xid

βjd

)

∑D
d=1(

xid

βjd

)

1

τj,0

+ const
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