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ABSTRACT 

 

In contrast to the concept of objective time being continuous as described in classical 

physics, in psychology and cognitive neuroscience it has been discussed and studied 

since a long time whether subjective time has to be understood as being continuous or 

discrete. It has been demonstrated on the basis of different experimental conditions and 

with different research paradigms that subjective time does not match directly objective 

time. Different mechanisms of temporal processing have been disclosed in studies on 

the question how subjective time relates to objective time. One such mechanism is 

reflected in a low-frequency “time window” of 2 to 3 seconds which has been 

confirmed in many studies; it can be understood as a pre-semantic and automatic 

integration mechanism. One experimental paradigm in such studies is the temporal 

reproduction task. Previous studies mostly focused on how standard durations influence 

cognitive processing; the influence of pause durations for reproduction of temporal 

intervals has been neglected. Some preliminary research suggests, however, that in fact 

pause durations between stimulus presentation and its reproduction may play an 

important role. In the research presented here, the influence of pause duration was 

systematically investigaed with a behavioral paradigm and an EEG study. Experiment 1 

used pause durations from 1 to 16 seconds as independent variable and investigated how 

various pause durations may effect the reproduction of a 2 second standard interval. 

Results showed that when pause durations were below 4 seconds, the reproduced 

durations increased and then levelled off. To further explore whether this effect only 

applied to 2 second standard intervals, a 3 and 4.5 second was added as standard 

stimulus in the second experiment. It was observed that the reproductions for different 

standards showed the same pattern, i.e., a transition zone of reproductions up to 4 

seconds was observed, before a “plateau”  or subjective set point of constant 

reproductions was reached. Experiment 3 employed longer pause durations by 

excluding short pause durations, and in this case no transition zone was observed which 

confirmed the critical role of pause duration for cognitive processing, and substantiates 

the existence of a low frequency time window of  2 to 3 seconds. Different standard and 

reproduced auditory stimuli were applied in experiment 4 to test a potential dependence 

of reproduction on stimulus characteristics; no such effect was observed supporting the 

notion of a generalized temporal reproduction mechanism for a 2 to 3 second time 

window. Experiment 5 using measurements with EEG examined possible neural 
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indicators for the pause duration effect. Precisely timed and intense low-beta activities 

in the EEG across the entire cortical mantle were observed in the reproduction phase 

only up to a 3 second pause duration. This observation suggests the neural entrainment 

of a very low frequency oscillation or temporal integration interval by the onset of the 

standard to be reproduced. Thus, the low-beta activity as a neural marker may indicate 

the representation of a temporal stimulus in working memory. 
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ZUSAMMENFASSUNG 

 

Im  Gegensatz zum Konzept einer objektiven Zeit, die als kontinuierlich in der 

klassischen Physik zu verstehen ist, wird in der Psychologie und den kognitiven 

Neurowissenschaften seit langem diskutiert und auch experimentell untersucht, ob die 

subjektive Zeit als kontinuierlich oder diskret verstanden werden muss. Auf der 

Grundlage verschiedener experimenteller Bedingungen mit unterschiedlichen 

Paradigmen konnte gezeigt werden, dass subjektive Zeit nicht direkt der objektiven Zeit 

entspricht. Verschiedene Mechanismen konnten in Untersuchungen über die Frage 

aufgedeckt werden, wie sich subjektive Zeit auf objektive Zeit bezieht. Ein solcher 

Mechanisms spiegelt sich in einem niederfrequenten “Zeitfenster” von etwa 2 bis 3 

Sekunden wider, und dies wurde in vielen Studien bestätigt; der Mechanismus kann 

verstanden werden als ein präsemantischer und automatischer Integrationsprozeß. Ein 

experimentelles Paradigma für solche Studien ist der zeitliche Reproduktionstest. 

Frühere Studien haben sich darauf konzentriert, wie verschiedene Standarddauern 

kognitive Prozesse beeinflussen; was vernachlässigt wurde, das ist der mögliche Einfluß 

der Dauer einer Pause auf die Reproduktion von zeitlichen Intervallen. Einige 

vorläufige Studien haben gezeigt, dass die Dauer der Pause zwischen Stimulus-

Präsentation und der Reproduktion der Dauer eine wichtige Rolle spielen könnte. In den 

hier dargestellten Untersuchungen wurde der Einfluss der Pausendauer mit einem einem 

Verhaltens-Paradigma und einer EEG-Studie systematisch untersucht. In Experiment 1 

wurden Pausendauern von 1 Sekunde bis 16 Sekunden als unabhängige Variable 

genutzt, und es wurde geprüft, wie möglicherweise verschiedene Pausendauern die 

Reproduktion eines Standardintervalls von 2 Sekunden beeinflussen. Es ergab sich, dass 

dann, wenn die Pausendauern unter 4 Sekunden waren, die Dauer der Reproduktion 

anstieg, und danach konstant blieb. Um zu untersuchen, ob dieser Effekt nur bei der 

Dauer des Stimulus von 2 Sekunden vorkommen würde, wurden in Experiment 2 

Reizdauern auch von 3 und 4.5 Sekunden untersucht. Es zeigt sich das gleiche Muster 

der Reproduktion; es wurde ebenfalls eine Übergangszone für Reproduktionen bis zu 4 

Sekunden Pausendauern beobachtet, bevor ein “Plateau” gleichbleibender 

Reproduktionen erreicht wurde. In Experiment 3 wurde kürzere Pausendauern 

ausgeschlossen und nur längere Pausendauern geprüft, wobei in diesem Fall keine 

Übergangszone beobachtet wurde; dies bestätigt die kritische Bedeutung der 

Pausendauer für kognitive Prozesse, und der Befund unterstützt das Konzept eines 
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niederfrequenten Zeitfensters von 2 bis 3 Sekunden. In Experiment 4 wurden 

verschiedene Stimuli für den Standardreiz und seine Reproduktion verwendet um zu 

prüfen, ob spezifische Reizcharakteristiken für die Reproduktionsweisen entscheidend 

sind; ein solcher Effekt wurde mit diesem Paradigma nicht beobachtet, was das 

generelle Konzept eines Zeitfensters von 2 bis 3 Sekunden stützt. In Experiment 5 

wurde mit Hilfe von EEG-Aufzeichnungen geprüft, ob sich ein neuronaler Indikator für 

den Effekt der unterschiedlichen Pausendauern finden lässt. Es ergab sich, dass eine 

zeitlich präzise und intensive Aktivität von Beta-Wellen im niederen  Frequenzbereich 

(“low beta”) über den ganzen corticalen Mantel zu beobachten war, doch dieses nur bei 

den Reproduktionen von Pausendauern bis zu 3 Sekunden. Diese Beobachtung weist 

darauf hin, dass durch den Reizauftritt eine neuronale Synchronisation eines zeitlichen 

Integrationsprozesses beziehungsweise einer stark niederfrequenten Oszillation 

angestoßen wird, was sich entscheidend auf die Reproduktion auswirkt. Die selektive 

Beta-Aktivität kann möglicherweise somit als ein neuronaler Indikator für die 

Repräsentation von Zeit-Stimuli im Arbeitsgedächtnis angesehen werden.                      
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1. Introduction 

 

Whenever talking about time, people find that time is ubiquitous – from casual chatting 

to large-scale sports matches, from necessary foraging to unique human abilities, like 

enjoying or playing music. Although temporal perception is one of the intrinsic features 

of cognitive functions, and precise temporal information processing is an essential 

prerequisite for perceptual and cognitive activities, there is no clear evidence of how 

temporal information is processed in the human brain: how the brain registers the order 

of events, to specify something that has already happened, what we are doing now, and 

things will or will not occur in the future. 

 

1.1 History: objective time and subjective time 

As an abstract notion, it is difficult to tell what exactly time is, like the famous quotation 

in the eleventh book of the Confessions by Augustinus: ‟Quid est ergo tempus? Si nemo 

ex me quaerat, scio; si quaerenti explicare velim, nescio.” (What, then, is time? If 

nobody asks me, I know, but if I have to explain it to somebody, I don’t know.) 

According to the Cambridge dictionary, time is “.…the part of existence that is 

measured in minutes, days, years, etc., or this process considered as a whole”. 

Physically speaking, time is a dimension to measure the changes in matter and can be 

quantified on a clock, as described by the famous scientist Isaac Newton (1687), 

‟Absolute, true, and mathematical time by itself and by its own nature flows equably 

without relation to anything external.”  

 

The topic of time in psychology was established around 150 years ago (Fechner, 1860), 

and scientists have been working on time estimation or questions concerning temporal 

duration to understand how our brain experiences time since then. If, dating back from 

the 19th century, Karl Ernst von Baer (1861) pointed out that the sense of information 

probably needs different moments (from the external clock) to deal with. This led to the 

concept of the present. The question of ‘what is a moment or how long is a moment’ 

became an exciting topic of discussion and research. The Austrian physicist Ernst Mach 

(1865) employed the technology already available at that time and found that durations 

under 40 milliseconds (ms) were experienced as a ‘time point’ for humans, which 

means that for a duration of less than 40ms, one cannot experience time passing. This 
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was perhaps the first time that someone tried to discriminate different time durations. 

One of the milestones in psychology was the use of the simple choice-reaction time by 

Karl Donders (1969), which has been applied for almost one and a half centuries. This 

method measures how long the nervous system needs to respond to a stimulus and 

allows researchers to investigate some complex and dynamic cognitive processing. 

While the above-mentioned researchers were interested in short-time durations based on 

some tens or hundreds of a millisecond, the German scientist Karl von Vierorth (1868) 

raised the question of how humans behave when reproducing several seconds of 

temporal duration. He found that short intervals were reproduced longer than the 

stimulus and long intervals were reproduced shorter, and this effect has become known 

as the “Vierordt effect”.   

 

In contrast to the continuous passage of time described in physics, psychologically 

perceived time does not conform to real time. From personal experience we know that 

we have entirely different perceptions of time passing in different situations. For 

example, when standing in a checkout line, people always feel bored and impatient that 

a minute feels like half an hour. However, when on an exciting roller coaster, three 

minutes seems like three seconds. Here, one minute or three minutes is real time or 

objective time, while the over-emphasized half an hour or three seconds is subjective 

time reflecting human experience. This leads to the important question: when the same 

objective (physical) time has passed, however, under different situations, how can the 

human brain produce such different subjective times. Psychologists have been puzzling 

over this question for years. 

 

1.2 Methods in time-perception studies 

Studies about temporal perception can be roughly divided into two parts: temporal order 

perception and duration perception; the former refers to the time domain of some tens or 

hundreds of milliseconds, while the studies on duration perception refer to intervals of 

seconds or longer.  

 

1.2.1 Temporal-order perception 

Temporal-order perception is mostly about the simultaneity and succession of events. In 

this kind of task, at least two stimuli are presented in physical order and subjects are 
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asked to report the discontinuity, succession, or the order of the stimuli. If 

distinguishing order the paradigm is refered to as temporal-order judgement (TOJ). 

When investigating the temporal-order threshold (TOT), the duration is measured with 

which subjects differentiate the order of two successive stimuli with usually 75% 

accuracy. The threshold is an essential indicator of temporal-order perception. 

Researchers initially focused on the bottom-up mechanism and investigated the physical 

characteristics of stimuli and biological features like the modalities vision, audition, and 

touch, as well as the TOT across modalities (Fraisse, 1984). More recently, 

psychologists have attempted to discover the effects of emotion and culture on TOT, 

which is a top-down mechanism (Pan & Huang, 2018).  

 

1.2.2 Temporal-duration perception 

Temporal-duration perception is mainly about the human perception of time intervals 

lasting several seconds or longer. Studies have found that factors like the present 

situation, the intensity of the stimulus, or even emotions can affect time perception. 

Four paradigms are generally used in time-perception experiments:  

 

1) Temporal estimation. In this method a stimulus of a pre-defined duration in physical 

time is presented, and the subjects are asked to estimate how long (in physical time) the 

interval lasted. 

2) Temporal comparison. Two durations are presented in sequence, and the subjects are 

requested to tell which one was longer.   

3) Temporal production. The subjects have to produce a duration of a certain length 

defined in physical time like seconds.  

4) Temporal reproduction. The experimenter provides a specified time duration 

(physical time), and the subject has to reproduce this duration without any counting 

strategy.  

 

The four different paradigms have different meanings: temporal estimation and 

temporal production need the conventional time unit (physical time) as a reference. In 

contrast, the reproduction and comparison paradigms do not require traditional time 

units, but only use the stimulus as a reference. Since the methods of reproduction and 

comparison are free from the external clock, they are more useful when the research 

interest is about the internal human clock.  
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1.3 Studies about the low-frequency time window 

1.3.1 The low-frequency time window and the subjective present 

Researchers have long questioned whether time durations lasting a few seconds are 

processed with separate mechanisms or not. Some researchers state that durations of a 

few seconds are processed according to the scalar-timing model, in which the timing 

mechanism is linearly uniform (Ulbrich et al., 2007). Others have proposed that 

different durations are processed by different mechanisms, and the demarcation is 

referred to as 1/3s, 1/2s, 1s, 2-3s, or 3-5 seconds (Fraisse, 1984; Lewis & Miall, 2003; 

Michon, 1985; Musterberg, 1889; Pöppel, 1997). Concerning the demarcation of some 

seconds of duration, many researchers focus on the mechanism difference for under 1s 

and over 1s intervals (Cellini et al., 2014; Cordes & Meck, 2014; Grondin, 2010; 

Hayashi et al., 2014). Some scientists believe that intervals shorter than 1s are processed 

automatically with no need to modulate attention. In comparison, intervals longer than 

1s are presumably regulated by higher cognitive functions such as attention and working 

memory. However, few studies have investigated the mechanisms for longer temporal 

durations. In this thesis I mostly focus on the boundary of temporal intervals lasting 

several seconds and several tens of seconds, and I want to understand the mechanisms 

behind the potential boundary. The aim is to disclose brain mechanisms behind long 

temporal durations and provide some theoretical concept.  

 

The theory of duration boundaries beyond 1s has primarily been described by Fraisse 

(1984) and Pöppel (1997). Fraisse stated that people’s perceptions of periods beyond the 

limit of 5s are not copies of reality, but reconstructions of long-term memory or 

‘temporal memory’. Pöppel indicated that the ‘subjective present’, which is ‘the state of 

being conscious’, is restricted by the capacity of time perception.  A sequence  of events 

can only be grasped and unified to a ‘gestalt’ within this limitation. Many observations 

have demonstrated that this ‘subjective present’ lasts around 3s, but individuals differ 

from 2s to 4s; thus, it is conceived of as an operating range.  

 

This low-frequency time window of up to a few seconds has interested psychologists for 

more than 100 years. Experiments concerning this window of presence have been 

performed in different domains, such as short-term memory, temporal reproduction, 

spontaneous speech, and so on. These studies have shown that information from the 
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external environment to the human brain needs to be segregated into many short 

intervals of a few seconds, and it is necessary to assume some automatic temporal-

integration processes to construct a more extended platform for cognitive processing. 

Being an abstract notion, it is essential to indicate the experimental evidence of the 

subjective present.  

 

1.3.2 The temporal-reproduction paradigm 

Temporal reproduction is the most commonly used method during low-frequency, time-

window studies because this paradigm avoids the influence of verbal language, and 

indicates how subjective durations are affected by various factors from the differences 

in reproduced durations.  

 

Fig.1 Reproduction of standard stimuli ranging from 0.5 and 7s, and the ‘indifference point’ was 

around 3-3.5s (Pöppel 1972)  

 

When subjects were asked to reproduce auditory durations lasting from 0.5s to 7s 

(Pöppel 1972), the results showed that when stimuli were shorter than 3s, the 

reproduced durations were overestimated and closer to the actual duration (see Fig.1). In 

contrast, if stimuli were longer than 3s, reproductions were underestimated with higher 

variance. Presumably, short intervals are quickly stored in or extracted from working 

memory, while longer intervals were delimited. Pöppel’s experiment more directly 

described the relationship between standard intervals and reproduced intervals and the 
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range of the indifference point. This well-known phenomenon has been observed in 

many studies.  

 

Szelag and colleagues (2002) employed the reproduction paradigm and tried to 

understand the low-frequency time window from the perspective of cognitive 

development. Sixty children were divided into three age groups (6-7, 9-10, and 13-14 

years old) and participated in both audition and vision experiments. Results revealed 

that all children underestimated the standard interval in the reproduced interval when 

standard intervals were longer than 2.5s. Younger children reproduced longer than older 

ones for standard durations shorter than 2s; for standard durations longer than 2.5s, the 

result was inverse. This may indicate that cognitive abilities develop with age. This 

progress presented different features within/beyond the low-frequency time window, 

which supports the hypothesis that there are different processing mechanisms at 

separate time windows.  

 

Some studies attempted to identify temporal-integration mechanisms by looking deeply 

into the capability of working memory (Ulbrich et al., 2007; Yin et al., 2016). They 

demonstrated that the capability of subjects’ working memory could affect the 

reproduction durations of longer standard intervals, but not those of shorter ones. 

Similar results were found in the pharmacologic domain. A previous study disclosed 

that hallucinogenic psilocybin influences subjective time perception (Fischer et al., 

1966), and one double-blind study investigated how a dose of 4-phosphoryloxy-N, N-

dimethyltryptamine affected subjects’ performances with temporal reproduction tasks 

(Wittmann et al., 2007). Twelve subjects were equally allotted to placebo, medium- 

(115µg/kg), and high-dose (250µg/kg) groups. Results showed that this dose difference 

only influenced the reproduction of standard durations longer than 2.5s, but not that of 

shorter intervals.  
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Fig.2 Mean reproduced durations in each autistic and control child when using group (normal 

children vs. children with autism) as between-subject factor (Szelag et al., 2004).  

 

Aside from studies with healthy people, studies with autistic children also indicated a 

low-frequency time window (Szelag et al., 2004). Children with autism often show a 

variety of cognitive-function deficits in perception, attention, memory, emotion, social 

interaction, language, etc. Seven non-retarded autistic children and seven healthy 

children performed the temporal-reproduction task with both auditory and visual stimuli. 

It appeared that, regardless of the stimulus modality and duration, reproduction 

durations of autistic children were 3s on average (see Fig.2). Healthy children showed a 

similar pattern to that in the above-mentioned literature, which reported a relatively 

accurate response up to 3s and shorter reproductions than the stimulus itself over 3s. 

Another study with patients who had brain injuries in different hemispheres revealed 

that all patients could almost correctly reproduce intervals shorter than 2-3s. For longer 
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intervals, the ability to reproduce the given duration was affected more in patients with 

right hemispheric injuries. These results coincide with the hypothesis that the healthy 

human brain can retain sensory information for up to a few seconds, which suggests a 

temporal-integration mechanism of around 2-3s in both the audition and vision 

modalities. Since the patients with brain injuries did not have attentional problems, this 

supports the existence of different mechanisms for short and long durations, and the 

right hemisphere may play a critical role in the cerebral processing of longer durations.  

 

Fig.3 EEG signals from Cz with different standard durations (solid) and reproduction intervals 

(dotted) (Elbert et al., 1991)  

 

The EEG technology has also been applied in the experiments on the low-frequency 

time window. Elbert and colleagues (1991) used 1s, 2s, 3s, 4s, 6s, and 8s as standard 

stimuli in temporal reproduction tasks. The behavioral results remained the same; 

subjects underestimated durations longer than 3s. They also discovered a negative 

component in the response which appeared both on standard and reproduction durations, 

but disappeared when standard stimuli were longer than 4s. Elbert and colleagues 

considered this negative wave to be a component of the “contingent negative variation”, 

which is generally related to cognitive processing, such as expectancy and movement 

preparation. When standard intervals we are longer than a specific range, more 

cognitive processes, like memory, comparison, and decision, come into play, which may 

explain the appearance of a positive component resulting in a disappearance of the 

negative component.  
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1.3.3  Other experimental paradigms linked to the low-frequency time window 

 Many other studies have discovered evidence for the low-frequency time window in 

addition to temporal-reproduction tasks.  

 

1) Sensorimotor synchronization  

Sensorimotor synchronization is also an essential topic in temporal-perception studies 

(MacDorman, 1962; Najenson et al., 1989; Woodrow, 1932). This paradigm asks 

subjects to perform finger taps following a constant, evenly-spaced tempo, and most 

studies found that subjects unintentionally tapped the button before stimulus onset, 

which is referred to as systematic error. It is generally agree that subjects try to make 

finger taps to synchronize with the auditory stimulus in their mental representation; the 

systematic error may be due to different transfer times of the somatosensory and 

auditory modality. The difficulty of this task becomes more transparent when the inter-

stimulus interval (ISI) of successive stimuli is longer. Wundt (1911) pointed out that the 

successive stimuli could be linked only when inter-stimulus intervals are shorter than 

2.4s. Woodrow (1932) discovered that the synchronization between finger taps and 

auditory stimuli disappeared when ISIs were longer than 3.34 s. MacDorman (1962) 

found that if the ISIs were longer than 2.4s, the preceding response to the stimulus was  

inverse.  

 

If subjects were asked to synchronize their finger taps with auditory stimuli, and the (ISI 

were between 300 and 4800ms (Mates et al., 1994), results showed that when the ISIs 

were around 600-800ms, the response onset preceded stimulus onset. When the ISIs 

were longer than 2400ms, subjects unintentionally began to change their behavioral 

patterns to react to stimuli instead of responding in advance. If a word-memory task was 

applied as a secondary task and a synchronization tapping task was the primary task, 

results showed that when ISIs are shorter than 1.5s, the automatic anticipation was not 

affected by attention. In contrast, during ISIs lasting 1.8s to 3.6s, anticipatory tapping 

was significantly influenced by the attention task. These studies demonstrated that up to 

approximately 2-3s, subjects can initiate an anticipatory response to the stimulus; if, 

however, stimuli are too far apart, it is too hard for them to programme anticipation. 

They prefer to react to the stimulus. This anticipatory strategy is also vital in our daily 

lives, like when driving.  It can be used to better understand goal-directed behavior 

(Tanida & Pöppel, 2006).  
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2) Ambiguous materials 

In perceptual studies, there is a class of stimuli that allows multiple perspectives by 

producing different subjective perceptual experiences and in which the visual figures 

are called ambiguous or reversible figures. For example, the rabbit-duck image (Fig.4) 

can be perceived as either a rabbit or a duck, depending on which background and target 

are chosen. 

 

 

 

Fig.4 The rabbit-duck image, either a rabbit or a duck 

 

Subjects were requested to look at a figure, for example (Fig. 5) the Necker cube, which 

has two possible perspectives, and press a button when they felt the perspective had 

changed (Gomez et al., 1995). It appeared that the most common value for the 

alternation was around 3-4s. When subjects were asked to maintain the same 

perspective as long as possible, the mean duration was 2.93s. This study supports the 

theory that there is an automatic shift in sensory perception, and the alternative content 

takes possession of the conscious mode at around 3s. Studies with an ambiguous-

apparent-motion paradigm (Ilg et al., 2008) also discovered that an increase in stimulus 

frequency decreases the duration of the perceptual content, while the median stable 

perceptual duration is 2.69s. Such perceptual switching not only happens with visual 

stimuli, but also with ambiguous auditory material (Radilova et al., 1990), such as KU-

BA-KU, which could be heard either as KUBA or BAKU. This study was performed 

with 10 subjects, and the average alternation duration was 3.1s(Pöppel, 2009). 
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Fig.5 Necker cube 

 

3) Binocular rivalry  

Binocular rivalry is an interesting phenomenon that presents a different figure to each 

eye. The visual perception alternates between the two eyes so that one sometimes sees 

the left figure and sometimes the right one. The most classical paradigm in binocular 

rivalry is vertical strips for the left eye and horizontal strips for the right eye. The shift 

between two figures generally took approximately 2-3s. A patient with a bilateral injury 

to his occipital lobe still demonstrated binocular rivalry(Pöppel et al., 1978). This 

patient did not, however, experience a fast alternation of figures, but saw, for instance, 

the vertical stripes gradually being replaced by by the horizontal stripes, a process 

which lasted for several seconds.  

 

4) Mismatch negativity 

Around 40 years ago, Näätänen and colleagues (1978) found a new Event-related 

Potential (ERP) component, which is the brain’s automatic response to sudden odd 

stimuli and was called ‘mismatch negativity’ (MMN). Studies about MMN are 

commonly based on the oddball paradigm, in which two kinds of stimuli are presented 

to subjects, one more frequently and the other, rarely. The discrepancy between them is 

reflected in the MMN. As a kind of component that could reflect human pre-attention, 

which represents the brain’s capability of  automatic processing, it has been applied in 

various research topics, like mental disease (Näätänen & Kähkönen, 2009; Takei et al., 

2009). Most MMN studies used as ISI hundreds of milliseconds; only a few employed 

longer time durations. In one study using Magnetoencephalogram (MEG), the 
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researchers employed 1-12s as ISIs and found that when the ISI was 3s, the magnetic 

component corresponding to MMN was greatest (Sams et al., 1993). However, this 

result was not initially widely discussed. It has recently been confirmed by studies based 

on the oddball paradigm in both single-case and group studies (Wang et al., 2015). 

 

5) The IOR effect 

Inhibition of return (IOR) is a lagging response to some object or location previously 

perceived. In visual attention studies, there can be two stimuli; the first cue is presented 

to get attention, then the target appears, and the cue can point to either the right (target) 

side or the false side. If the cue indicates the correct side, the subject’s response to the 

target will be promoting since the cue drew the subject’s attention to the right place. 

However, when the interval between cue and target is longer than 300ms, the subject’s 

response to the cued followed by the target is longer than to the incorrect target (Posner 

& Cohen, 1984). This phenomenon is referred to as IOR. To observe the IOR effect, the 

cue and target should not be separated by more than a few seconds (Pöppel, 2009). A 

study (Bao & Pöppel, 2007) found that the IOR effect was more potent in the peripheral 

visual field than in the  central visual field. When the intervals between cue and target 

were increased, the IOR effect in both the peripheral and primary visual fields faded 

away. It vanished completely when the interval was 3s(Bao et al., 2013). 

 

6) Short-term memory 

In a classic study about short-term retention (Peterson & Peterson, 1959), the 

experimenter presented a consonant syllable and a three-digit number in each trial. 

Subjects were asked to count backward by 3s or 4s from the number with various 

durations (3s, 6s, 9s, 12, 15s, and 18s) and then recall the consonant syllable. The mean 

latency of correct recall was 2.83s, which indicated that a verbal syllable could only be 

stored in memory for a few seconds.  

 

Weber’s Law, one of the most basic psychophysical laws, has also been applied to study 

temporal perception. It demonstrates the difference threshold of sensory perception 

when the original stimulus is changed. This means the ratio of stimulus increment (Δ I) 

to the original stimulus (I) is a constant (K), and this constant is called the Weber 

Fraction. Studies applying duration-discrimination tasks initially employed standard 

durations in a range from 50ms to 3.2s (Getty, 1975). Results revealed that Weber’s 
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Law did not predict the rapid increase in standard deviation for intervals longer than 2s. 

Kristofferson (1976) disclosed that the Weber Fraction for standard intervals lasting 

500ms to 2s was constant. For human beings, the Weber Fraction is 10 percent of the 

standard duration for intervals from 200ms to 2s (Hirsh et al., 1990). Researchers also 

found that when standard durations were longer than 2-3s, the Weber Fraction increased 

significantly as a result of a change in the sensitivity of duration estimations beyond 2s.  

 

7) Segmentation of spontaneous speech 

It is interesting to hear the pauses when people spontaneously speak. A study in 1994 

(Kien & Kemp, 1994) investigated the temporal-segmentation mechanism in speech. 

When 14 Germans and five Koreans were asked to read prose in their native languages, 

results showed the median length of phrases separated by pauses was 3.58s. However, 

compared to Germans, the Korean norm was 0.6s shorter. Another task when the same 

German subjects read Grimm’s’ fairy tale “Sleeping Beauty” and immediately 

afterwards were requested to retell the story, and the median of their speech without a 

break was 2.12s. If these German subjects were asked to describe something interesting, 

such as exciting experience, book, or film, their median phrase length was 2.31s. 

 

8) Duration of verses in poetry  

Turner and Pöppel (1983) suggested a line of poetry to be a form of semantic unit, and 

they discovered that the average duration of  a read line of poetry was around 3s in 

Japanese, Chinese, English, Ancient Greek, Latin, French, and German. However, this 

test was not strictly controlled. Kien and Kemp (1994) asked five German speakers and 

five  Korean speakers to read poems in their native languages. Results showed that the 

median duration of each read line of German poems was 1.7s and of Korean lyrics, 

2.24s, which coincided with the low-frequency time window, but was restricted by the 

length of the lines. A more recent study attempted to compensate for various line 

lengths and requested subjects to listen, but not read (Zhao et al., 2018). Fifteen  

traditional Chinese poetic sentences were recorded with different durations lasting for 

1.5, 2, 3, and 4s. Thirteen Chinese and 13 German participants were asked to listen to 

the sentences and make aesthetic choices on a 9-point Likert scale. The results revealed 

that the aesthetic ratings of both groups were highest for 2-3s.  
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9) Intentional acts  

Human daily behavior can be organized into many short-term movements, and a study 

showed that a frame-content model could define the hierarchical levels. The lowest 

level, which can be called intentional behavioral acts, contained goal-directed 

movements, such as when a mother pats her child. Schleidt and colleagues(1987) 

conducted a data-collection study on these intentional acts. They collected behavioral 

data from four different cultures, Europeans, Trobriand Islanders, Yanomami Indians, 

and Kalahari Bushmen, and analyzed their everyday behavior which was not influenced 

by the surrounding environments and repeated at least three times in a sequence. Results 

for all these cultures showed the modal durations of behavioral acts were 2s and 3s, 

which suggested a cross-cultural, temporal-segmentation mechanism of short-term 

behavior. 

 

10) Accentuation of successive stimuli 

Wundt (1911)  found that the integration of successive stimuli had a limit of 

approximately 2.5s. In this metronome study, he stated that when the inter-stimulus 

intervals of successive auditory stimuli were under 2.5s, subjects could easily link these 

clicks. However, if the intervals between stimuli were too long (over 3s), subjects could 

not unite these two clicks because they were in two different temporal windows. 

 

11) Fore-period studies 

If there is a warning signal before the target, the duration between the two stimuli is 

referred to as the ‘foreperiod’. Since the foreperiod has a strong effect on a subject’s 

response, such as improving the  response speed to the target stimulus, these patterns 

have been included in the investigation of cognitive temporal characters. Although 

patterns of the foreperiod have not been directly linked to the low-frequency time 

window, some studies also referred to it (Elbert et al., 1991). A study found that a 

subject’s response to a target stimulus was shorter when the foreperiod between the 

target stimulus and the warning stimulus was stable, corresponding to the response time 

under various foreperiod durations. When the foreperiod was stable, which meant the 

interval between the warning stimulus and the target stimulus is steady, and subject can 

make a prediction and allot his/her attention to it. The response to the target stimulus 

can be faster than the various foreperiods. Researchers have found that this conclusion 

only applied when the foreperiod was shorter than 3s. When it was longer, there was a 
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longer response time to the stable foreperiod and a quicker response time to various 

foreperiods, thus mading them similar (Niemi, 1979). In other words, when a waiting 

time is longer than 3s, the fixed foreperiod cannot facilitate the subject’s response. This 

suggests that a subject cannot predict a time point beyond 3s; the subject cannot 

integrate these two stimuli and the waiting time in between into a unit.  

 

EEG studies also obtained similar results. The ERP component Contingent Negative 

Variation (CNV) is one of the important EEG indicators, and this slow, single-phase 

wave appears around 1s after the warning stimulus. Studies found that when the 

foreperiod ranged from 1s to 3s, the warning-stimulus-evoked CNV had a larger 

amplitude; when the foreperiod was longer than 3s, the waveform of CNV had a second 

peak (Loveless & Sanford, 1974). Although there is no recognized explanation for this 

component, it is generally thought to refer to cognitive activities, such as anticipation, 

attention, and movement preparation (Rockstroh, 1989). The fact that the amplitude of 

the CNV was larger when the foreperiod was shorter than 3s suggests that the neurons 

related to temporal processing were more active.  
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2.  Question 

 

The theory of the low-frequency time window as a part of the mundane scale is essential 

for the understanding of temporal information processing, in which the temporal-

reproduction task plays an important role. Most studies employing the temporal-

reproduction task have been based on research by Pöppel (1972), and they only 

employed the indifference point as the definition for the low-frequency time window. 

However, this method hypothesized that the form of the standard duration and the 

reproduction duration should be the same processing construct. Previous studies using 

EEG or Magnetoencephalography (MEG) technology demonstrated that the processing 

of these two intervals occurs in different brain regions. The quantitative equality was 

not very accurate; i.e., one could not use the number to make a comparison. The 

relationship between standard and reproduced durations is not very clear.  

 

Excecpt for the numeric comparison and the comparison of neural indicators, additional 

studies attempted to design the experiment based on the idea of double separation. A 

particular variable was manipulated to change the subject’s reproductions and then 

compare whether the response durations (RDs) have different alternation patterns under 

short or long durations. Many research fields, such as developmental psychology, 

pathology, and pharmacology, have applied this concept. 

 

A new perspective for temporal reproduction studies is to examine the pause between 

the standard stimulus and the reproduced duration. Sensorimotor- synchronization and 

fore period research have investigated these patterns in the inter-stimulus interval. Pause 

durations (PDs) could possibly reveal some features of the low-frequency time window. 

Previous studies with temporal-reproduction tasks commonly adopted fixed PDs, and 

aside from some MEG or EEG studies, used PDs longer than 5s. Most behavioral 

studies applied durations between 1s and 3s, which suggest the relationship between the 

PD and the low-frequency time window.  

 

Researchers have recently employed time-frequency analysis and investigated the 

electrical brain activity during the inter-stimulus interval with the temporal-comparison 

task. Arresting alpha oscillation was revealed. Since the alpha oscillation is stronger 



 

21 
 

during short standard durations, researchers interpreted that it represents the standard 

duration in working memory. Although this oscillation index was derived from waiting 

duration, these researches focused primarily on the difference under various standard-

duration conditions. The alpha wave from the PD was only used as an indicator to 

explore how standard durations regulated this oscillation index(Chen et al., 2015; Yu et 

al., 2017). 

  

Another more direct approach is to investigate how various pause durations (PDs) 

affects reproduced durations. The study of difference under different PDs can be traced 

back to 1868, when Vierordt recorded the results of two temporal-reproduction 

experiments on himself. In the first experiment, there were three button-pressing 

intervals: the interval between the first two pressings was the standard duration, and the 

interval between the second and the third pressing was a reproduction, i.e., the 

reproduction was right after the standard period. In the second experiment, there were 

four button-pressing intervals in which the interval between the first two was still the 

standard duration, and the duration between the last two was the reproduced duration, 

while the pause between the standard and reproduced durations was the subjectively 

chosen comfortable duration. Lejeune and Wearden (2009) interpreted that these results 

demonstrated that, compared to the first experiment, which was with no PD (Fig.6), the 

second experiment that had a PD made the reproduction longer (Fig.7), and the 

indifference point (the beginning of the underestimation of the reproduced duration 

compared to the standard duration) occurred later.  

 

Fig. 6 the first experiment without pause duration. The y-axis is the percentage difference 

between reproduction and standard duration(Lejeune & Wearden, 2009). 
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Fig. 7  the second experiment with pause duration(Lejeune & Wearden, 2009) 

 

It is still unclear whether the PD affects reproduction or how possible the mechanism 

really is. One possibility is that an effect occurs only with or without a pause. Another 

possibility is that the length of the interruption can affect the reproduction, but only to a 

limited extent. Since previous studies did not employ short PDs, this question remains 

unsolved. 

  

Pöppel’s single study (1973) supports the second possibility. One subject was asked to 

reproduce the 2s duration, and the reproduction onset appeared randomly after a PD in a 

range from 0.5s to 50s. It revealed that the subject’s reproduced length increased with 

the increase in the PD and gradually came to a plateau. This increase only occurred in 

the range of around 2s. Pöppel considered that this result was related to the low-

frequency time window and involved two aspects: firstly, the effect of the PD matched 

the low-frequency time window; secondly, with the increase in the PD, the reproduced 

period gradually tended toward a stable value in the range of 2s to 3s. Pöppel referred to 

this value as a subjective set-point and observed that it was also close to the range of the 

low-frequency time window (Fig.8). He concluded that spontaneous oscillations occur 

during temporal- information processing.  
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Fig. 8 Reproduced durations of a single subject with pause durations logarithmically from 0.5s 

to 100s (Pöppel,1973) 

 

At that time there were few studies using the temporal- reproduction task, and 

explanations of the results were obscure. I interpret Pöppel’s theory as follows. Most 

studies used the fixed PD of around 2-3s, and although they often referred to one 

another, this relatively uniform selection tendency suggests that this temporality has a 

specific particularity. It can not only prevent the two stimuli from being too close and 

losing their independence and identity, but also prevent them from being too far apart. 

When the PD varies to some extent, these two stimuli are perceived not as one unit, but 

as two independent stimuli, resulting in the change in reproduction. 

 

The subjective point can refer to the previously-mentioned study on autistic children by 

Szelag and colleagues (2004). That study discovered that the autistic children 

reproduced intervals independent of the length of the standard durations, and the 

average reproduction duration was around 3s. Szelag and colleagues thought this might 

relate to the low-frequency time window. Since autistic children lack temporal cognitive 

functions, the expression of spontaneous oscillations is more robust, explaining their 

reproduced durations of approximately 3s. One can inquire whether the plateau value of 

an increase in the PD in healthy subjects results from the shift toward spontaneous 
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oscillations.  However, if the PD only affects short durations of a few seconds, it is too 

short for that subject to lose the representation of the standard stimulus. This subjective 

set-point requires further investigation.  

 

I wish to perform further experiments to explore earlier results. I would first like to 

confirm the effect of the PD on reproduction. Pöppel’s study has some limitations: 1) 

There was only one subject, and the result could be too individual. 2) Although it 

contained 80 trials, these trials were not repeated. 3) The conclusion of the experiment 

was inferred, but not statistically tested. I therefore employed a group study and used 2s 

as a standard duration to investigate how reproduction was affected by various PDs 

under a strictly controlled experimental environment.  
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3. Behavioral Studies 

3.1  Experiment 1 

3.1.1 Participants  

Twelve volunteer students (aged 18 to 25), including two males and ten females, 

participated in this experiment. They had no history of mental or neurological disease. 

All of them were right-handed and had normal hearing.  

 

3.1.2 Design and Apparatus 

Before the final experiment, the subjects finished a practice session that contained ten 

trials, including each PD twice. Standard stimuli were 2s, and PDs were 1, 2, 4, 8, and 

16s. In the final experiment, each PD appeared 20 times, and a total of 100 trials were 

randomly distributed into four sessions. Intervals between sessions lasted 3 minutes. 

 

The experimental program was based on Matlab and Psychtoolbox. The computer used 

for the experiment was a Dell T3610 with a sound adapter Blaster Audigy 5; the ASIO 

interface was used to improve the timing accuracy of auditory stimuli. Subjects used in-

ear headphones, and the volume was in a stable, comfortable range. The space button 

was used for a response with the right hand.  

Figure 9: Procedure of Experiment 1 

 

3.1.3 Procedure 

Subjects were asked to sit in front of the screen and put their heads on the chin strap; the 

response button was placed at a comfortable distance on the right in front of them. At 

the beginning of each trial, a small cross (0.8°) appeared on the screen for 3 to 4s. The 
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300Hz standard auditory stimulus lasted for 2s followed by varied PDs. Then the same 

auditory stimulus automatically reappeared. The subject was to press the button to stop 

the second stimulus and try to make it last the same amount of time as the previous 

standard one. The cross remained for another 2s after the subject’s response and then 

disappeared until the onset of the next trial. The task procedure is shown in Fig.9. 

Subjects were informed that they should only concentrate on time, and any kind of 

calculation method was forbidden. Previous research showed that this is the best and 

easiest method to avoid counting (Rattat & Droit-Volet, 2012). 

 

3.1.4 Result  

A scatter graph of subjects’ responses showed that the subjects sometimes pressed the 

button either immediately or never, which meant they misunderstood the task. These 

trials were excluded from the dataset. Responses over 2 SDs were also excluded. The 

whole dataset included 95.39% of the trials. The averaged reproduction durations is 

showed in Fig.10. 

 

One-way ANOVA of the five PDs was performed; the main PD effect proved 

significant (p < 0.001, F (4,68) = 10.439). Further analysis showed that the reproduced 

durations (RD) of PD =1s were significantly shorter than others (p < 0.01). 

 

Fig. 10 Averaged reproduced durations of 2s standard durations after different PDs 
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3.1.5 Discussion 

Experiment 1 was a repeated experiment based on Pöppel’s 1973 study, but included 

several subjects. The two main results of the previous- single-case study are given 

below. 

 

1) Reproduction durations increased with the PDs within a specific range, and the PDs 

had no influence on reproduction within this range. 

 

2) Reproduction durations gradually tended toward a stable value, which was slightly 

longer than the standard duration (2s). 

 

Although the results of Experiment 1 were not all the same as in the previous study, 

reproduction durations in Experiment 1 increased, but only significantly with PD = 1 

and others, which differed from the one until PD=2 in Pöppel’s 1973 experiment. This 

could be the result of the difference between a single-case study and a group study.  

 

Results of Experiment 1 showed that when PDs were shorter than 4s, the reproduction 

durations increased with the PD, but when PDs were longer than 4s, the reproduction 

durations levelled off. Pöppel’s study was limited in scope without producing an 

absolute value. However, combining his and my results indicates that the increase in 

reproduction intervals with PD may relate to the low-frequency time window. As for the 

plateau, Pöppel proposed a subjective point under the effect of the default timing system. 

We could clarify this phenomenon with the current single-standard-interval research. 

Further studies focusing on how and in which direction reproductions change under 

various standard durations should be performed. 

 

3.2 Experiment 2 

3.2.1 Participants  

Twelve students from the Peking University (aged 18-25; 2 males) participated in this 

experiment. They had no history of mental or neurological disease and were right-

handed with normal hearing.  
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3.2.2 Design and Apparatus 

Experiment 2 employed three standard stimuli (2s, 3s, and 4.5s), and subjects were 

asked to come on three different days on which only one standard duration was tested. 

The sequence of three standard durations was randomized among all subjects. 

PDs for each standard stimulus varied logarithmically from 1s to 32s, and each appeared 

18 times. A total of 108 trials were randomly distributed into 6 sessions. Before each 

final experiment, a practice session was performed which contained each PD twice. The 

standard duration was the one that had been tested on that day. 

 

3.2.3 Procedure 

Subjects were asked to come on three different days to measure different standard 

durations and the sequence was counter balanced in subjects. On each day, the process 

of Experiment 2 was almost the same as in Experiment 1; the only difference was that a 

PD = 32s was added for each standard stimulus. 

  

Fig.11 Mean reproduction durations for three standard durations after different PDs 

 

 

3.2.4 Results  

Abnormal responses (reproduction durations shorter than 0.5s and longer than 8s) were 

excluded. Repeated ANOVA was employed with SPSS 22.0. 
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A two-way ANOVA was performed with 3 standard durations × 6 PDs. The main effect 

of the standard duration (SD) was significant (p< 0.001, F (2,26) = 280.376), and the 

main effect of the PD was significant (p < 0.001, F (5,65) = 15.119). The interaction 

between SDs and PDs was also significant (p < 0.01, F (10,130) = 4.54).  

 

Further analysis of the simple-effect test showed that for SD = 2s, the RD of PD = 1s 

was shorter than PD = 2s, 4s, 8s, and 16s. The RD of PD = 2s was marginally shorter 

than PD = 4s (p = 0.073), while the RD of PD = 4s, 8s, 16s, and 32s had no significant 

difference. 

   

For SD = 3s, the RD of PD = 1s was significantly shorter than PD = 2s, 4s, 8s, and 16s 

and marginally longer than PD = 32s (p = 0.058), and the RD of PD = 2s was markedly 

shorter than PD = 4s, 8s, and 16s, while there was no significant difference among the 

RDs of PD = 4s, 8s, 16s, and 32s. 

 

As for SD = 4.5, the RD of PD = 1s and PD = 2s were significantly shorter than PD = 4s, 

8s, and 16s, while PD = 1s, and PD = 2s showed no significance, not among the RDs of 

PD = 4s, 8s, 16s, and 32s. 

 

Fig. 12 the ratio of reproduction against standard durations after different PDs 

 



 

30 
 

I also did repeated ANOVA for the ratio of the RD and the SD with 3 SDs × 6 PDs. 

Results showed that the main effect of the SD was significant (p < 0.01, F (2, 26) = 

7.954). The main impact of the PD was significant (p < 0.001, F (5, 65) = 13.944), 

whereas the interaction between the SD and the PD was not significant.  

 

A post-hoc analysis of the SD found that SD = 2s was significantly larger than SD = 

4.5s (p < 0.01). A post-hoc analysis of the PD found that the ratio of the PD=1s to SD 

was significantly smaller other than that of PD = 2s, 4s, 8s, and 16s and marginally 

shorter than PD = 32 (p = 0.051). The proportion of PD = 2s was markedly lower than 

PD = 4s, 8s, and 16s. The ratio of PD = 4s, 8s, 16s, and 32s to SD showed no significant 

differences.  

 

3.2.5 Discussion 

Experiment 2 focused on whether different standard durations influence the transition 

zone or the plateau.  I added 3s and 4.5s as standard stimuli along with longer PDs of 

32s, which were used to investigate how this affected reproduction durations.  

 

This experiment revealed that there was an increase in reproduction durations with PDs 

below 4s for all three different standard intervals with a tendency to flatten off beyond 

4s. This observation contradicted our expectations. On the basis of Pöppel’s (1973) 

study, I hypothesized that, when standard intervals were longer than 3s, the 

reproduction durations would gradually tend toward the subjective set-point, which is 

decided by the low-frequency time window. I expected the reproduction durations to 

decrease with the increase in the PDs and tend toward some specified value for longer 

standards. However, the results showed that when the standard intervals were 3s and 

4.5s, although there was a change in reproduction durations which tended to be stable, 

the PDs showed an increase instead of a decrease. This indicated that the variation in the 

reproduction durations with the PDs did not correspond with the low-frequency time 

window under the default timing system, but resulted from some other mechanisms.  

 

Although the variety in reproduction durations was not what I had expected, their 

temporal features with PDs were further revealed. The previous study had employed 

only 2s as a standard duration; the correlation of this paradigm with the low-frequency 

time window was not well explored. In Experiment 2, the effect of the PD within 4s 
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occurred not only with the 2s standard intervals, but also with the longer standard 

durations of 3s and 4.5s; thus, this phenomenon was not limited to a 2s range. The 

analysis based on the ratio of PD to SD also showed that the change in reproduction 

durations following different standard durations had the same temporal character.  

 

In these experiments, the shortest PDs were below 4s (beginning at 1s), which are 

located within a time window of a few seconds; if giving subjects some PDs that were 

longer than 4s, the reproduction durations might still increase and be followed by a 

plateau. An experiment with PDs beginning at 5s was performed to find out whether 

this effect was based on the low-frequency time window or only shorter ones.  

 

3.3 Experiment 3 

3.3.1 Participants  

Twelve university students aged 19 to 25, including seven males, were recruited for this 

study. They had no history of mental disorder and had normal hearing.  

 

3.3.2 Design and Apparatus 

The experimental design was the same as for Experiment 2, but the PDs were changed 

to 5s, 6s, 8s, 16s, 20s, and 36s.      

 

3.3.3 Procedure 

The experimental procedure was the same as in Experiment 2. 

 

3.3.4 Results  

Data screening was performed first. Data outside of 2 standard deviations were 

excluded under each condition, and the mean data was analysed with Repeated ANOVA 

(3SDs × 6 PDs).  
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Fig.13 Mean reproduced durations of standard durations after long PDs 

 

 

Fig.14 Ratio of reproductions against standard durations after long PDs 

 

Both the main SD effect (p < 0.001, F (2,22) = 382.334) and the main PD effect were 

significant (p < 0.001, F (5,55) = 6.965), and there was no interaction. 

 

A post-hoc analysis of the SD showed that the RD of the 2s SD was significantly 

shorter than the 3s SD and the 4.5s SD. The RD of the 3s SD was markedly shorter than 

that of the 4.5s SD. A post-hoc analysis of the RD showed that the RD of the 5sPD was 

significantly shorter than that of the 6s, 8s, 12s, and 20s PDs.  
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The RDs from each condition subdivided by SDs were converted to a ratio and entered 

into repeated ANOVA. The ratio of the RD to the SD was also calculated in a two-way 

ANOVA, and both the SD (p < 0.05, F (2,22) = 5.606) and the PD (p < 0.01, F (5,55) = 

7.339) were significant. A post-hoc analysis of the SD showed that the ratio of the 2s 

SD was significantly larger than that of 4.5s SD. A post-hoc analysis of the PD showed 

that the ratio of the 5s PD was significantly shorter than that of the 6s, 8s, 12s, and 20s 

PDs. 

 

3.3.5 Discussion 

In this experiment, although the reproductions of the 5s PD were shorter than those of 

others, there was no other difference among various PDs, which ruled out diverse PDs 

affecting reproductions. These results indicated that the PD influenced the reproduction 

durations of different standard intervals, but this effect appeared only within 4s, which 

could relate to the low-frequency time window. Since previous studies mostly paid 

attention to the different cognitive-processing mechanisms with various standard 

durations, this result provides a new aspect to the low-frequency time window.  

 

The mechanism behind this phenomenon is still unclear. I initially hypothesized that 

subjects would not be able to maintain the time duration due to an uncertain PD, and the 

representation of the time interval in the working memory would gradually decline, 

resulting in the tendency of reproduction to be 2-3s. The autistic children with 

information processing problems maintained reproduced intervals that averaged 3s. The 

results of long standard durations showed that this hypothesis was not sufficient to 

explain this phenomenon.  

 

The mean reproduced interval of a 5s PD differed from that of 6s, 8s, 12s, and 20s PDs, 

but not for the average intervals and ratio of the 36s PD to SD indicating that there 

could be a slow increase beyond 3s. The results of other studies on temporal durations 

may derive from different mechanisms in the low-frequency time window, and long 

durations attained more attention and memory processing.  

 

To link the effect of PDs within 4s to the low-frequency time window, the relationship 

between this effect and sensory effects should be clarified since the low-frequency 

mechanism is based on the ‘pre-semantic’ domain. In these experiments, the same 
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auditory stimulus for the standard and the reproduction may have confused some 

subjects. On the one hand, subjects may have used the sensory effect of the same 

auditory stimuli as a strategy. On the other hand, studies have revealed that stimuli 

without temporal aspects can also affect time perception, especially when the same 

stimulus is repeated (Matthews, 2011). Therefore, it is crucial to clarify whether our 

conclusions resulted from neural activities in the sensory domain due to the use of the 

same two stimuli. To investigate the possible influence of the same standard and 

reproduced stimulus, Experiment 4 employed two different stimuli. I removed PD = 32s 

and then added PD = 3s to further specify the temporal character of the PD effect.   

 

3.4 Experiment 4 

3.4.1 Participants  

Eighteen university students participated in this experiment (aged 18 to 25), including 

six males and 12 females. They had no history of mental disorder and normal hearing. 

 

3.4.2 Design and Apparatus 

The design of Experiment 4 was similar to that of Experiment 2. Compared with 

Experiment 2, the auditory-reproduction stimulus was changed to 400Hz, and PDs were 

altered to 1s, 2s, 3s, 4s, 8s, and 16s. For each standard stimulus, each PD appeared twice 

in the practice session and 18 times in the final experiment, making a total of 12 

practice trials. The final experiment contained 108 trials distributed into 6 sessions. As 

in the previous experiment, subjects needed to come on three different days and perform 

different standard stimulus durations.  

 

3.4.3 Procedure 

Experiment 4 was almost the same as Experiment 1, but in Experiment 4, subjects were 

asked to come on three different days for different standard durations, and the sequence 

was counter-balanced in subjects. 
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3.4.4 Results  

I also employed two-way ANOVA for this experiment, and results showed that the main 

effect of the SD (p < 0.001, F (2,34) = 272.838) and the PD (p < 0.001, F (5,85) = 

39.566) were both significant. The interaction between the SD and the PD was also 

significant (p < 0.001, F (10,170) = 5.745).  

 

 

 

Fig. 15 Mean reproduced durations after different PDs with different auditory frequencies for 

standard stimulus and reproduced stimulus 

 

Further simple-effect tests were performed to check the effect of the PDs. The results 

showed that for SD=2s, the RD of the PD = 1 was still significantly shorter than others, 

and the RD of the 2s PD was significantly shorter than the 4s and 8s PDs, while there 

was no marked difference among the RDs of the 3s, 4s, 8s, and 16s PDs.  

 

When SD = 3, the RD of the PD = 1s was significantly shorter than others. The RD of 

the PD = 2s was significantly shorter than PD = 3s, 4s, 8s, and 16s, and RD 3s, 4s, 8s, 

and 16s. PD =3s, 4s, 8s and 16s showed no marked difference. As for SD = 4.5s, the RD 

of PD = 1 was significantly shorter than others. The RD of the 2s PD was significantly 

shorter than the 3s, 4s, 8s, and 16s PDs, but no significant difference among the 3s, 4s, 

8s, and 16s PDs were found.  
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Fig. 16 the ratio of reproductions against standard durations after various PDs with different 

auditory frequencies for standard stimulus and reproduced stimulus 

  

The two-way ANOVA was used to calculate the RD/SD ratio. Both the SD (p < 0.001, 

F (2,34) = 13.961) and the RD (p < 0.001, F (5,85) = 39.013) showed a difference in the 

interaction between the SD and the PD, but was not significant. Therefore, we 

performed post-hoc analyses. The post-hoc analysis of the SD confirmed that the ratio 

of RD/SD = 2 was significantly larger than RD/SD = 3s and RD/SD = 4.5s. The post-

hoc analysis of the PD confirmed than the ratio of RD/PD= 1 was significantly smaller 

than others. The ratio of RD/PD = 2 was significantly lower than that of RD/PD = 3, 4, 

8, and 16. The ratio of RD/PD =3 was substantially lower than RD/PD = 8. The ratio of 

RD/PD =4, 8, and 16 showed no significant difference. 

 

3.4.5 Discussion 

Using different auditory frequencies for stimuli did not change the main conclusion: 

reproductions were regulated by various PDs for these three standard durations. The 

transition zone was clearly independent of the auditory features. I added PD = 3s to 

clarify the PD effect. Results showed that the reproductions of PD = 3s and PD = 4s had 

no difference under all standard durations, while a significant difference appeared below 

PD = 3s. This indicated that the PD effect was below 3s, which was consistent with the 

theory of the low-frequency time window. Moreover, when the RD/PD ratio = 3 was 

significantly shorter than RD/PD = 8, this indicated that different processing 
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mechanisms between short and long temporal windows can exist. When the standard 

and the reproduced stimuli were the same, subjects could refer to sensory information to 

make the correction. Therefore, experiment 2 did not have this difference in ratio.  

 

Evidence of the relationship between the PD effect and the low- frequency time window 

had already been obtained in behavioral experiments. I intended to further explore this 

phenomenon or neural markers based on EEG technology. 

 

There have been only few EEG studies employing the temporal-reproduction task and 

no reviews on the early components of the Event-Related Potential (ERP) and its 

parameters (latency, amplitude, etc.). The main reason may be that with this task, each 

trial lasts too long, and it is difficult to obtain enough trials for statistics. These studies 

usually employed ERP components that only contained phase-locked and time-locked 

information. There was no study focusing on non-phase-locked neural oscillations. 

Studies with the temporal estimation task found that the amplitude of alpha oscillations 

was regulated by the standard duration, which may relate to the representation of 

standard durations in working memory. Thus, an EEG study employing the temporal-

reproduction task was performed to get additional information and neural markers. Only 

the 2s standard duration was used to obtain enough trials. 
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4. The EEG Study 

4.1 Brain oscillations 

Brain oscillations generally contain five components: delta (δ), theta (θ), alpha (α), beta 

(β) and gamma (γ) waves. Studies on these oscillations are based on the hypothesis that 

all different frequencies are correlated to specific perceptual processing.  

 

The Delta wave (1-3 Hz) is a low-frequency wave with around 10-30uV and frequently 

occurs in the cerebral cortex during deep sleep (Iber et al., 2007), in babies and patients 

with severe organic encephalopathies, such as schizophrenia (Alfimova & Uvarova, 

2007), and epilepsy (Walter, 1936). 

 

The Theta wave (4-7 Hz) often occurs during meditation, hypnotic states, or sleep in 

adults (Aftanas & Golocheikine, 2001). As a behavior-specific wave, it is related to 

many cognitive functions, such as working memory (Jensen & Tesche, 2002), episodic 

memory (Nyhus & Curran, 2010), spatial coding (Welday et al., 2011), and emotions 

(Knyazev et al., 2009).  

 

The Alpha wave (8-12Hz) is the relaxion state of our brain.  It is most evident when 

eyes are closed and one is mentally relaxed. It is diminished or interrupted when 

attention is concentrated, especially during visual and mental tasks (Magosso et al., 

2019). Alpha waves have a high preference for the right hemisphere (Moore Jr & 

Haynes, 1980) and are associated with many tasks, especially working memory (Jokisch 

& Jensen, 2007; Sauseng et al., 2005) and attention (Magosso et al., 2019). Changes in 

alpha waves are also related to age (Spector et al., 1971).  

 

The Beta wave (15-30Hz) appears throughout the brain, but mainly around the frontal 

and temporal regions. Beta waves can be further divided into low beta (12-20Hz) and 

high beta (20-30Hz). Beta waves are associated with certain functions, such as motor 

anticipation (Joundi et al., 2012), inhibition of movement (Bartolo & Merchant, 2015), 

and preservation of the current status (Bartolo et al., 2014).  

 

The Gamma wave (30-100Hz) is the highest oscillation observed in the human brain. 

Due to its synchronization across multiple brain regions, many studies on brain-network 
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activities focus on it (Buzsaki, 2006). It is also supposed to correlate with many mental 

diseases, like Alzheimer's disease (Van Deursen et al., 2008) and epilepsy (Hughes, 

2008). 

 

4.2 Time-frequency analysis 

The EEG is the most commonly used technique to capture dynamic cognitive processes 

due to its high temporal resolution, as most cognitive processes occur in a tiny range of 

tens to hundreds of milliseconds. The event-related potential (ERP) is the fastest and 

easiest way to test a difference between two conditions. It depends on the lock 

relationship between evoked potentials and superposition. However, the EEG contains 

information from multidimensional space. If one only examines the ERP, which 

includes time and amplitude, one may miss some important information. The time-

frequency analysis is one method that could provide information from time and 

frequency domains and is therefore increasingly being used to analyze EEG data. 

 

4.2.1 Fourier transform 

The Fourier transform was proposed by Jean Baptiste Joseph Fourier (1768-1830), who 

pointed out that an appropriate set of sinusoids can produce a continuous periodic signal.  

The continuous Fournier transform expresses the square-integrable function as an 

integral or series of complex exponentials. It is defined as:  

 

. 

Here f(t) is the original function, F(w) is the image function of the Fourier transform, 

and f(t) and F(w) together are called a transform pair. However, a computer cannot 

process a continuous signal; only the discrete Fourier transform can be performed on a 

computer. We usually reduce continuous signals into discrete ones and treat finite- 

length data as infinite-length data (other data points are set as zero) and then apply the 

Discrete Fourier transform (DFT), which is a sequence of N complex numbers discrete 

in both time and frequency. The DFT domain can be described as follows: 
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. 

The Fourier transform provides an essential basis for the transformation between the 

time and the frequency domains. However, if given a time duration, this method can 

only extract the frequency information, but not how the frequency information is 

distributed within the time domain. The Fourier transform has a pronounced effect on 

stationary signals, but it is not accurate for non-stationary signals. For example, in a 

piece of music, the Fourier transform can tell us which frequencies are included in this 

music, but it cannot tell us at what time this frequency is present. Most signals in nature 

are non-stationary, so it is not sufficient to obtain available information only with the 

Fourier transform.  To solve this problem, we apply the short-time Fourier transform. 

Signals are divided into as many sections as the signals in each section are 

approximately stable, and then the Fourier transform is performed. In this way, 

localized time and frequency information can be obtained relatively precisely. 

 

The short-time Fourier transform increases the accuracy of time and frequency 

information acquisition. However, this kind of processing is also flawed since the time 

window in this method is fixed. The resolution of time and frequency restrict each other; 

high temporal resolution reduces frequency resolution, and high frequency resolution 

restricts temporal resolution. If one chooses a narrow time window, it produces high 

temporal resolution and low frequency resolution and vice versa. If it is possible to 

employ a relatively wide time window for low-frequency information and a relatively 

narrow time window for high frequency information, such an adaptive window can 

provide complete information for non-stationary signals. This is how Wavelet analysis 

is designed. 

 

4.2.2 Wavelet analysis 

To achieve self-adaptation in both the frequency and time domains, wavelet analysis 

replaces the infinite trigonometric basis used in the Fourier transform with the decaying 

orthogonal wavelet basis of finite length, thus making time positioning possible.  

 

Wavelet analysis is defined as follows: 
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The mother wave (wavelet basis) a is the scale variable, and τ is the shift variable. The 

scale variable is used to control the mother wave's amplitude, and the shift parameter 

can control the movement of the mother wave. Due to multiple mother waves, the types 

of wavelet are diverse, such as continuous wavelet, discrete wavelet, and wavelet packet. 

Since there are these heterogeneous mother waves and when different mother waves are 

used, one can get different results. Therefore, it is crucial to choose an appropriate 

mother wave. The selection of a mother wave now poses a practical problem, and in the 

process of actual data analysis, the selection is made according to the characteristics, 

symmetry, and regularity of goal signals. Researchers always choose the most familiar 

mother wave to obtain a more accurate result when dealing with EEG signals, as 

practiced in previous studies. The complex Morlet, which is created by windowing a 

sine wave by a Gaussian, is a frequently used mother wave in EEG data processing. It is 

well suited to locate frequency information in the time domain (Cohen, 2014). 

 

 

4.3 Methods 

4.3.1 Participants  

Eighteen healthy university students (18~25 years old, eight males) with no history of 

mental disease participated in this experiment. 

 

4.3.2 Design  

Six different pause durations were used: 1s, 2s, 3s, 4s, 8s, and 16s. Each pause duration 

appeared 40 times to obtain enough EEG signals. A total of 240 trials were divided into 

10 sessions in the final experiment. There was a no feedback practice before the 

experiment, which included 18 trials.   

 

 

4.3.3 Procedure  

The experimental procedure was the same as in Experiment 1. 
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4.3.4 EEG acquisition and pre-analysis 

The EEG signal was recorded using the extended international 10-20 system, and 64 

scalp-channels (see Fig.17) were used (Brain Products GmbH, Herrsching, Germany). 

The electrode of FCZ was used as a reference. Horizontal electro-oculogram(HEOG) 

was recorded by an electrode placed beside the left eye, while the electrode under the 

right eye was for Vertical electro-oculogram (VEOG). The resistance of all channels 

was under 5 kΩ. The online filter was 0.01-100 HZ, the sample rate was 1000Hz, and 

the 50Hz notch filter was applied. 

 

Data pre-analyzed was performed in Matlab with EEGLAB (MathWorks, Natick, MA, 

USA). Data was first re-referenced by bilateral mastoid and then filtered with a 0.05-

100Hz band-pass filter. Electro-Oculogram (EOG), Electromyography (EMG) and other 

noise signals were excluded with independent component analysis (ICA) based on 

EEGLAB. Continuous EEG was afterwards segmented into intervals containing 1s 

before standard-stimulus onset and 4s after reproduction-stimulus onset. 

 

Fig. 17 the distribution of 61channels 

4.3.5 Data analysis 

The event-related potential (ERP), also known as the endogenous evoked potential, is 

commonly applied in EEG studies because it indicates the fixed time signals resulting 
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from intrinsic or extrinsic events. Although these forms of brain waves are relatively 

weak, generally 0.1-20μV, which may be buried in the spontaneous brain potential, they 

can be extracted by multi-trial superposition. The ERP has high temporal resolution and 

could reflect human physical and mental brain activity. Therefore, it is commonly used 

in studies targeting brain processes lasting from stimulus onset to response. 

 

Since most ERP components appear at hundreds of milliseconds, I focused on the 

durations within 500ms after the reproduction stimulus onset for each pause-duration 

condition, and 200ms before the standard stimulus onset served as baseline. ERPs of 

reproduced stimuli were obtained from superpositions over trials for each pause-

duration condition. The amplitude and latency of the N1 component was measured 

during 80ms-160ms after the reproduced-stimulus onset, and P2 was measured during 

150-250ms. Channels in the central region were the most interesting in both N1and P2 

components, so I chose three areas for statistical analysis: the central area (C1/2, FC1/2, 

CP1/2, CPz and Cz), the central left area ( C3/5, FC3/5, CP3/5), and the central right 

area (C4/6, FC4/6, CP4/6). Data from each area were averaged among channels. 

Amplitudes and latencies were analyzed with 6 (PDs) ×3 (areas) repeated analysis of 

variance (ANOVA) based on IBM SPSS 24.0. 

  

Complex Morlet wavelets ranging in frequency from 2 Hz to 60 Hz in 10 steps were 

employed to get time-frequency information for each pause duration. Each trial 

consisted of 1s before the standard stimulus until 3s after the reproduction onset. 500 

~200 ms before standard stimulus onset was used as the baseline. Frequencies of theta 

waves (4-7Hz), low alpha waves (8-10Hz), high alpha waves (11-13Hz), low beta 

waves (14-20Hz), high beta waves (20-30Hz), and gamma waves (30-50Hz) were 

studied for reproduction durations.  

 

4.4 Results 

4.4.1 Behavioral results 

 The data beyond ±2SD were first excluded from the database for each subject, and 

repeated ANOVA was then applied to the reproduction duration after various pause 

durations. The analysis was performed with SPSS 22.0, the Greenhouse Geisser method 

was used for correction of variables that did not meet the spherical test, and posthoc 
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comparisons were based on the Least Significance Difference (LSD) method. Averaged 

reproduction durations are shown in Fig. 18. 

 

Results showed that the main effect of PD was significant (p < 0.001, F (5,85) = 

26.241), and the pairwise comparisons showed that the reproduced duration of PD = 1 

was significantly shorter than that of others (p < 0.01) . Reproduction of PD = 2 was 

significantly shorter than that of PD = 3 and PD = 4 (p < 0.05) and marginally shorter 

than PD = 8 ((p = 0.056). There was no difference among PD = 3, PD = 4, PD = 8, and 

PD = 16. The mean reproduced durations after different pause durations are displayed 

on the graph below (Fig. 19). 

 

 

Fig.18 Averaged reproductions of a 2s standard stimulus after various pause durations 
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4.4.2 ERP results 

  

Fig.19 The ERP components during reproduction durations in the central area 

 

N1 component  

The amplitude of the N1 component after different PD conditions showed a significant 

difference (p < 0.01, F (5,85) = 4.861), while the area and interaction between pause 

duration and area did not differ. Further analysis indicated that the reproduced interval 

of PD = 1 was shorter than that of PD = 2, PD = 8, and PD = 16; the reproduction of PD 

= 2 was longer than that of PD = 3, the reproductions of PD = 3 and PD = 4 were 

shorter than those of PD = 8 and PD = 16, while those of PD = 8 and PD = 16 did not 

differ.  

PD (p < 0.01, F (5,85) = 5.212) and area (p <0.01, F F (2,34) = 4.661) were both 

significantly different for N1 latency, and the interaction was also significant (p < 0.05, 

F (10,170) = 2.764). A post-hoc analysis showed that when PD = 1, the N1 latency of 

the central area was significantly shorter than that of the central right (p < 0.05) and the 

central left (p = 0.003) areas, and when PD = 3, the N1 latency of the central area was 

significantly shorter than that of the central left area (p < 0.01).  
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Fig. 20 N1 amplitudes after different PDs at three areas (central area, central left area, and 

central right area) 

 

For the central area, the N1 latency of PD = 1 was significantly shorter than that of PD 

= 4, 8, and 16; the latency of PD = 2 was significantly shorter than PD = 16; the latency 

of PD = 3 was significantly shorter than that of PD = 2, 4, 8, and 16, while no 

differences among PD = 4, PD = 8, and PD = 16 were noted. 

 

Fig. 21 N1 latencies after different PDs at three areas (central area, central left area, and central 

right area) 
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P2 Component 

The main effect of area and the interaction between PD and area were shown on both P2 

amplitudes, while PD alone showed no main effect. Further analysis showed that for all 

pause durations, the central area had higher P2 amplitudes than the central left and the 

central right areas (p < 0.01), while no difference in the PDs between the central left and 

central right areas was noted.  

 

Fig. 22 P2 amplitudes during reproductions after various PDs in three areas (central, central left, 

and central right areas) 

 

As for the central area, the P2 amplitude of PD = 1 was significantly lower than PD = 3 

(p < 0.05), and PD = 16 was significantly higher than PD = 1 (p < 0.05), PD = 2 (p < 

0.05) and PD = 8 (p < 0.05). For the central left area, PD = 4 had a higher P2 amplitude 

than PD = 1 (p < 0.05) and PD = 2 (p < 0.05). There was no significant difference 

among PDs in the central right area.  

 

The main effect of the PD showed significant differences in latency. While no other 

differences. The P2 latency of PD = 1 was significantly earlier than PD = 8 (p < 0.05) 

and PD = 16 (p < 0.01). 
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4.4.3 Time-frequency analysis results 

The oscillation distribution during both pause durations and reproduced durations were 

of particular interest. 

 

Pause duration 

  

Fig.23 Spectral power of pause durations in the posterior central area 

 

 Since the time windows of different conditions differed, it was difficult to do the 

statistical analysis for pause durations. Therefore, I performed an exploratory statistical 

test. I chose the alpha and low beta oscillations as our target frequencies and 3 areas (the 

frontal central area, the central area, and the posterior central area) as our target regions. 

Since pause-duration conditions have different time lengths, I averaged the power of the 

alpha and low-beta oscillation for each second independently, and repeated ANOVA 

was performed on each second in a degressing way, which means for the first- second 

comparison, I employed 3 (areas) × 6 (PDs) while for the second comparison I 

employed 3 (areas) × 5 (PDs), and so on.  
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Statistical analysis showed that there were no significant difference among all 

conditions for the power of alpha oscillation for each interval of one second. However, 

the low beta oscillation displayed a different phenomenon.  

 

In the first second, the main effect of the area was significant for low beta power ( p < 

0.05, F(2,34) = 4.735).  Further analysis was employed, but I could not find any 

difference with the Bonferroni method. Therefore, I chose the more sensitive LSD 

method. Further analysis found the low beta power in the fontal central area (0.376 dB) 

was larger than that in the central area (0.129 dB) and posterior central area (0.112 dB), 

while there was no difference between the latter two areas.  

 

For the second interval of one second, the main effect of area was also significant (p < 

0.05, F (2, 34) = 3.756). The sample analysis with the LSD method showed the same 

pattern as that in the first second. The low beta power in the central area (-0.044 dB) 

and posterior central area(-0.072 dB) was lower than that in the frontal central area(-

0.11 dB), and no difference between the former two areas. 
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Reproduction  

 

The spectral power map of reproduction at POz is shown as an example in Figure 24. In 

the reproduction period, we focused on the low beta wave. We chose three areas 

(posterior left area, posterior central area, and posterior right area) as our regions of 

interest (ROIs) (Fig.25), and our interested time duration was between 900ms and 

1100ms in reproduction duration. All of these choices were based on the data. 

 

Fig. 24 Spectral power of reproduced durations after various PDs at the POZ channel 

 

 

We averaged the low beta (13-20Hz) power in each area and searched the highest value 

during 900-1100ms in the reproduced period (Fig.26). Repeated ANOVA was done 

with 3 (area) ×6 (PD). It showed that the main effect of area (p < 0.05, F (2,34) = 5.153) 

and PD ( p < 0.01, F(5,85) = 4.328) were both significant, but no interaction was 

observed between them. Sample analysis with the LSD method disclosed that the peak 

low beta power in the posterior right area was larger than that in the posterior left area 

and posterior central area. Furthermore, the peak value of PD=1 and PD=16 was lower 

than for the other PDs.  
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Fig. 25  The channels in ROI regions. The posterior left area contained CP3/5, P3/5/7 and 

PO3/5 (the blue channels), the posterior central area included CP1/2,CPz, P1/2, Pz and POz (the 

red channels), and posterior right area had CP4/6, P4/6/8, and PO4/6 (the yellow channels) 

  

  

Fig. 26 The peak value of low beta power during 900-1100ms in ROIs 

 

We also did a Person correlation between the peak low beta value in each area with the 

reproduction durations. It showed a positive correlation (p < 0.05, R = 0.232) between 
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peak low beta power and posterior central area (Fig.27a), and also a positive correlation 

(p < 0.01, R = 0.327) between the highest low beta power and posterior right area 

(Fig.27b).  

 

 

Fig.27 Correlation between the low beta peak power and reproduction durations.  

a) the correlation between low beta power at posterior right area with reproduction for all PDs.  

b) the correlation between low beta power at posterior central area with reproduced intervals for 

all PDs. 

 

 

 

4.5 Discussion 

In the EEG experiment, I used 1s, 2s, 3s, 4s, 8s, and 16s as pause durations to further 

investigate the relationship between the pause-duration effect and the low-frequency 

time window. The 32s PD was not included here because it would have taken too long. 

Subjects needed to perform the experiments with the leads on their scalps for the whole 

time, and if the experiment had taken too long, it would have been difficult for 

participants to pay enough attention to the task.  

 

I first analyzed the behavioral data, whose results were similar to previous ones. As 

expected, the reproduced durations increased when pause durations were shorter than 3s, 

and then levelled off. This confirmed the results of the previous behavioral studies. 
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I then checked the ERP components during the first 500ms of the reproduced durations 

because most ERP components were within these durations. CNV components were not 

included later in the analysis since previous studies had found that the CNV amplitude 

changed only when the standard stimuli differed (Elbert et al., 1991). I only employed 

one standard interval in this EEG study, so it was not relevant to analyze the CNV 

component. Not many researchers talked about the early components during the 

reproduction period. One study employing a temporal-reproduction task explored the 

difference between children with attentional deficit hyperactivity disorder (ADHD) and 

the control group in early ERP components (González-Garrido et al., 2008), and results 

showed the ADHD group had a larger P2 amplitude than the control group. Another 

study in which subjects were asked to distribute attention to either temporal information 

or tone (Chen et al., 2007) found that the N1 component did not differ among the 

different conditions. At the same time, the P2 amplitude was lower when participants 

only paid attention to the temporal information. 

 

Since I explored how pause durations affect the reproduction phase, I focused on the 

very early N1 and P2 components. For the N1 component, I found that the N1 

amplitude of PD = 8 and PD = 16 was significantly greater than that of PD = 1 and PD 

= 3, perhaps because N1 was enhanced when more attention was being paid. Longer 

durations always need more memory and attention processing, while shorter durations 

can be mentally united. The finding that the N1 amplitude of PD = 2 was significantly 

greater than that of PD = 1 and PD = 3 was an interesting exception. I predicted that the 

EEG response to shorter durations could be correlated with the behavioral responses, 

but this turned out to be wrong. This could have resulted from the same length of the 

standard stimulus and pause duration, and repeated durations may enhance the results. 

Previous studies showed that the amplitude of N1 was refractory with repeated stimuli 

(Hsu et al., 2016), but this effect faded away when stimulus-onset asynchronies (SOA) 

increased. Moreover, in those studies, this effect appeared with the two consecutive 

stimuli, while I compared the N1 amplitudes of the second stimuli in different 

conditions. This may explain why I obtained enhanced N1 amplitudes on repeated 

durations. I found that N1 had the shortest latency when PD = 3, while for longer 

durations, like PD = 8 and PD = 16, N1 latencies were much longer than shorter 

durations of PD = 1 and PD = 3. The exceptional PD = 2 was also evident. The decrease 



 

54 
 

in the N1 latency with PD = 1 and PD = 3 may relate to a more complete integration 

mechanism since the low-frequency, integrated temporal window was around 3s. 

 

P2 component amplitudes in the central area tended to increase with pause durations, 

but not significantly. This result coincided with previous studies. Gibbons and 

colleagues (Gibbons et al., 2003) asked subjects to discriminate the temporal duration or 

tone for the same auditory stimuli, and results found that the P2 amplitude of these two 

tasks differed significantly. Chen and colleagues (Chen et al., 2007) conducted a study 

in which subjects were requested to pay attention to either temporal duration or tone, 

and they found that the P2 amplitudes were significantly different when subjects 

concentrated only on time or only on the tone. These studies indicated that the P2 phase 

might be an integral part of temporal information processing. MMN evoked by duration 

differences can also constitute corroborative evidence. Kujala and colleagues (2007) 

used 120ms as a standard stimulus and 20ms as an oddball stimulus and found that the 

evoked MMN appeared right around 190 ms, which corresponded to the P2 component. 

I also found that the P2 amplitude of PD = 8 was an exception. The previous behavioral 

studies also found that the reproduced durations of PD = 8 can sometimes be an 

exception, which suggested that there can be more involvement of attention and 

memory processes during this long pause duration. To sum up, whether this P2 

component is a neural indicator of the low-frequency time window requires further 

research.  

 

Compared with EEG signals in the time domain, which indirectly reflected the pause- 

duration effect, time-frequency analysis results can directly examine changes in brain 

activity during the pause-duration and reproduction phase. I observed the changes by 

applying continuous wavelet analyses. I compared them second by second for pause 

durations, especially for the shorter durations, and statistics showed that the only low 

beta frequency showed a difference between the areas. However, with this kind of 

comparison, it was hard to tell whether the low beta oscillation played a role or not. 

 

About the reproduced durations, I observed statistical difference of low beta power only 

during 900-1100ms in reproduction. Although the statistical significance was only for 

PD=1 and PD=16, if one looked at the change pattern, it is obvious that there were an 

increase of low beta power when pause durations were shorter than 3s,  
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which showed that low beta oscillation may play an essential role in the temporal-

integration mechanism of the low-frequency time window. If beta oscillation would not 

be related to the temporal integration mechanism, then there would not be a correlation 

between low beta power and reproduced durations. 

 

In the low-frequency time-window theory, the time-window mechanism is assumed to 

work in the form of oscillations, and the oscillation form of the EEG signal meets that 

criterion. The concept that the brain constructs time perception in the form of 

oscillations gradually has become mainstream. In this experiment, the low beta 

oscillation only showed for short durations, and this characteristic feature seems to be in 

the range of the low-frequency tine window. The question arises whether the beta 

oscillation can be used as a neural indicator for the low-frequency time window. Here I 

would like to cite related studies on beta oscillation for further discussion. 

 

Previous studies have pointed out that beta oscillation (13-30Hz) is related to 

maintaining the current state and expectation of incoming activities.  Baumgarten and 

colleagues (2015) explored whether human sensory perception is continuous or discrete. 

They performed a tactile study with MEG and asked subjects to report whether they felt 

one or two electrical pulses. The results showed that the alpha and low beta bands (8-

20Hz) can represent the discrete perceptual model in the somatosensory domain. This 

study suggested that beta oscillation is strongly linked to the discrete perception theory. 

Ghaderi and his colleagues (2018) conducted 15-minute  studies which contained one 

exploratory experiment and one confirmatory experiment. Their results showed that the 

subjects who overestimated duration evoked low beta power, and the results of graph 

theoretical analysis showed beta activity among subjects who over- or under estimated 

time were significantly different. 

 

Studies have also proved that beta oscillation in the basal ganglia is associated with 

Monkeys' internal timing (Bartolo et al., 2014). Bartolo taught monkeys to do a 

synchronization-continuation task (SCT) and a serial reaction–time task (RTT) and 

found that beta power was greater for longer durations, suggesting that beta oscillation 

is linked to subjective time perception (Bartolo & Merchant, 2015). If beta oscillations 

are only linked to motor behavior, there should not be any relationship between beta 

power and behavioral action. Kononowicz and van Rijn (2015) conducted a time-
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production task and requested participants to produce an interval of 2.5s with feedback 

which was either too long or too short. They found that trial-to-trial beta power 

positively correlated with the length of time production, and beta power at the onset of 

temporal production can be used to estimate the length of this produced window. The 

most significant difference among short, correct, and long production durations was 

around 0.9-1.1s, which closely resembled my results for PD = 1 and PD = 3. As for PD 

= 2, intense beta activity was observed 500ms earlier (0.4~0.6s after reproduction onset). 

This phenomenon can result from the same length of the standard stimulus and pause 

duration. 

 

Combining the results of our experiment with previous studies, one can state that low 

beta oscillation is linked with the internal time estimation of standard intervals, and it 

also reflects the regulation of the low-frequency time window.  

 

To further interpret these results in connection with the low-frequency time-window, it 

is necessary to consider the stability and assessability of the previous stimulus for a 

certain period and to ensure its assessability of the new stimulus after a certain period 

and the form of new mental representation. I found that an increase in the pause 

duration leads to a gradual decrease in possible assessability of the standard stimulus. 

This results in a variation of assessability of the reproduction duration, and apparently 

beta oscillations are evoked. When the pause duration exceeds a certain range, the 

earlier representation of a previous stimulus changes from 'now' to 'past', the perception 

of the standard stimulus fades away, and a new perceptual cycle emerges. Subjects then 

rely mainly on the second representation, which is in storage (a cycle). The pause-

duration effect does not make a difference anymore and does not induce beta oscillation. 

 

To explain the increase of low beta activity only within the 3s pause duration, I suspect 

that when pause durations are longer, the beta-rebound effect is fading away. One study 

(Fujioka et al., 2012) used regular intervals (390, 585, and 780ms) and random intervals 

(varying from 390ms to 780ms) for auditory stimuli. Results showed that the decreases 

in beta oscillations after stimulus onset were the same for all conditions, while the 

increase in beta activity remained the same in stable conditions. Fujioka and colleagues 

suggested the changes in beta oscillations represent the internalization of predictable 

intervals. They used only short intervals, while our stimulus and pause durations were 
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much longer. I speculate that in our experiment, the initiation of the reproduction 

stimulus first suppresses the beta activity, this suppression fades away, and then beta 

activity rebounds. When the pause duration are longer than 3s, which cannot be 

explained by the low frequency time integration mechanism, the rebound of beta 

activity disappears. 

 

Since this experiment only used one standard stimulus, whether the above results and 

interpretations can be extended to other intervals needs to be further tested.  This beta-

rebound effect would have to be confirmed with more different standard durations. 

Aside from the ERP and oscillation that I chose, future studies should employ more 

techniques, like MEG, to explore the functional brain network for different pause 

durations.  
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5. General Discussion 

 

Studies with various paradigms and different domains have indicated a low-frequency 

time window of around 2~3s, indicating its importance in cognitive processing (Pöppel, 

1997). The temporal-reproduction task provided experimental evidence for the low-

frequency time window. Based on Weber's law, Pöppel (1972) employed the temporal- 

reproduction task and found that the subjects underestimated long intervals and 

correctly reproduced or overestimated short intervals. The demarcation point was 

around 3s. Many investigations subsequently confirmed this classical behavioral study. 

Additional evidence resulted from following studies in fields such as EEG, cognitive 

development, working memory, and pharmacology (Elbert et al., 1991; Szelag et al., 

2004; Ulbrich et al., 2007; Wittmann et al., 2007). 

 

However, some questions have no specific explanation; for instance, most temporal- 

reproduction studies concentrated on standard durations and overlooked the waiting 

period. Considering other paradigms, such as sensorimotor synchronization, mismatch 

negativity, and fore-period, which focused on the inter-stimulus interval, it is essential 

to investigate whether the pause duration influences the temporal-reproduction task. I 

can then better understand a detailed cognitive mechanism under the temporal-

reproduction task, which provides a new perspective on the low-frequency time window. 

 

5.1 The influence of pause duration on reproduction 

Few studies have been conducted on the effect of pause durations on temporal 

reproduction, and existing studies have reached no clear conclusions. Vierordt (1868) 

used himself as a subject and found that reproduced durations after a waiting period 

were longer than immediately reproduced durations. Some studies compared the 

temporal-reproduction results with different pause durations (Guay, 1982a, 1982b), but 

they were not identical. It may be the result of inappropriate pause lengths, since the 

influence of pause durations may only appear within a small range. This explanation 

was supported by a single-case study by Pöppel (1973), in which 2s was used as a 

standard stimulus and resulted in the increase in temporal  reproduction with pause 

durations within 2s and then came to a plateau. 
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Since our experimental design and method were not rigorous enough, I first completed 

another experiment to confirm the results of experiment 1. This experiment still 

employed the temporal-reproduction task and used 2s as a standard stimulus. To control 

the experimental length and ensure that enough trials would be conducted, I chose 1s, 2s, 

4s, 8s, and 16s as pause durations. The results showed that pause durations do influence 

the subject's reproduction of standard durations, but only within a certain range. This 

confirmed Pöppel's (1973) conclusion and coincided with the previous study. 

 

Pöppel (1973) stated that the effect of pause durations was within around 2s, and our 

results verified this. However, in experiment 2, all three standard durations (2s, 3s, and 

4.5s) showed that the reproductions of PD = 2 and PD = 4 differed significantly, which 

indicates that the effect of pause durations might be longer than 2s. The question 

remained whether this pause-duration effect appears with shorter waiting durations or 

only within a few seconds. Experiment 3 was performed to confirm this effect's range, 

and I used 5s, 6s, 8s, 12s, 20s, and 36s as pause durations. The reproductions of PD = 5 

were slightly different from others, but no more, which indicated that the mechanism of 

the pause-duration effect was not based on shorter durations in the experiments, but was 

within a range of a few seconds. To further specify this effect, I added 4s as a pause 

duration in experiment 4 and found that the reproduced duration of PD = 2 was different 

from that of PD = 3, while no difference was found between that of PD = 3 and PD = 4. 

I therefore conclude that the effect is around 2-3s, while there remain individual 

differences and inconsistencies among trials. 

 

5.2 The mechanism of the PD effect and low-frequency time window 

The range of the pause-duration effect was around 2-4s. This, however, was not 

sufficient to prove that this effect represented the low-frequency time window, 

especially when various standard durations were used. To further indicate that this 

effect was not peculiar to a standard duration of a 2s, I employed 2s, 3s, and 4.5s as 

standard durations and obtained the same result. The pause-duration effect was within 

4s for these different intervals. A further experiment was performed to confirm that this 

effect was based on the 4s window, but not shorter on durations in the task. 4s plus the 

conditions applied in experiment 2 were used in experiment 3. The reproduced 

durations of other pause durations showed no differences except for PD = 5, proving 

that the pause-duration effect lay within 4s. The difference of PD = 5 can be explained 
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that the sudden appearance of a long waiting period triggered attention. I also computed 

the ratio of reproduction duration to standard duration to measure the indicator of 

reproduction. Results revealed that the main effect of pause duration was significant, 

while there was no interaction effect. This suggested that the pattern of reproduction-

duration changes under various standard intervals shared the same paradigm. 

 

 The auditory stimuli of the standard stimulus and the reproduced stimulus were the 

same in experiments 1 and 2. Although this is common in temporal-reproduction 

experiments (Szelag et al., 2002), researchers have employed different tones as the 

standard stimulus and the reproduced stimulus in recent studies (Wittmann et al., 2010; 

Yin et al., 2016). Two factors could influence the reproduction results (Matthews, 2011). 

One is that subjects may complete the experiment utilizing a consistent feeling of two 

stimuli; the other is non-temporal information, such as the sensory and perceptual 

properties of the stimuli, which may affect the subject's perception. Since it is possible 

that the subject’s strategy or neural activities at the sensory level might have been 

affected when the same stimuli were used for both the standard and the reproduction 

durations in experiments 1 and 2, I performed experiment 4. 

 

In experiment 4, I employed different frequencies of auditory stimuli for the standard 

and the reproduced intervals, and the longer PD = 32s was changed to PD = 3s to 

expand the effect range of pause durations. Results indicated that the reproduction 

durations increased with the pause duration, whose effect range was around 3s. 

Although frequency is only one of the auditory properties, experiment 3 indicated that 

this phenomenon was not only based on the same perceptual and sensory properties for 

standard and reproduced stimuli. I found that the reproduction durations for PD = 3 and 

PD = 8 for standard duration 4.5s differed, which contrasted with the previous study. 

This difference may derive from higher cognitive processing, such as attention. When 

the waiting time was too long, the subject’s attention was lower, resulting in a slower 

response or a slower internal clock. When the reproduction stimulus differs from the 

standard stimulus, it is hard for a subject to correct this temporal impression through 

sensory information, resulting in an increase in the reproduced interval. 

 

After completing all four experiments, I concluded that the PD effect was based on one 

processing window regardless of the length of the standard duration and auditory 
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frequency. In combination with sensorimotor synchronization, fore-period, MMN, etc. , 

I believe this effect can be explained by a low-frequency time window. As a pre-

semantic, automatic temporal- integration mechanism, it provides a logistic platform, 

which can both maintain the identity of mental representation and  accept a new 

psychologic representation (Pöppel & Bao, 2014). When the standard stimulus and 

reproduction stimulus were very similar, the mental representation of the first stimulus 

was still integrated and active. With an increase in the pause duration, the mental 

representation of the first stimulus gradually transforms from working memory into a 

new format (some kind of reference memory) separate from the second stimulus. 

Therefore, the subject's response schema converts from the automatic and united 

matching strategy to re-extract the first stimulus representation, and it becomes two 

independent processes. It requires more time to complete the process of extracting the 

memory from the reference system, which can explain why the increment of the 

reproduction duration was proportional to the standard intervals. 

 

With the increase in the pause duration, the reproduced duration increased and was 

proportional to the standard stimulus.  The subjective point itself (Pöppel, 1973) may 

have had no quantitative correlation with the low-frequency time window (Szelag et al., 

2002), and it represented a certain stable storage in working memory, while the low-

frequency time window was mainly reflected in the range of the pause-duration effect. 

 

5.3 The comparison of my study with the conventional pause-duration task 

To avoid the subject's intentional repetition, I randomized the pause-duration conditions 

within each standard duration, and the results were consistent with previous studies 

using similar paradigms (Vierordt, 1868). Considering that the previous behavioral 

studies employed only pause durations below 2-3 seconds, it was hardly possible for the 

subject to use the repetition method. 

 

The exploration and definition of the low-frequency time window with the temporal- 

reproduction task were mainly based on Vierordt's law and Pöppel’s study. They stated 

that the standard durations that could be precisely reproduced or slightly overestimated 

were the 'short time duration' in the low-frequency time window, and the uncertain 

description could possibly be explained by individual differences or,  by the pause-

duration effect (Vierordt, 1868). In studies with pause durations longer than 1s, subjects 
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frequently overestimated or tended to overestimate the short intervals (Elbert et al., 

1991; Wittmann et al., 2007; Yin et al., 2016), while in studies with pause durations of 

1s, subjects tended to reproduce the short intervals more accurately (Ulbrich et al., 2007; 

Wittmann et al., 2007). My results may also apply to the interpretation of fixed-pause-

duration studies. Future studies could also consider controlling the pause duration 

within groups and comparing the pause-duration effects on the reproduced intervals.  

 

Based on the previous discussion, one can compare the ratio of standard duration and 

reproduction to define the length of the low-frequency time window. Although this 

phenomenon is closely related to the low-frequency time window, the modality, pause 

duration, and age (Szelag et al., 2002; Vierordt, 1868) will influence the length of the 

reproduced interval. This indifference point with this method is appropriate for the 

standard of the 3s time-window. 

 

5.4 The neural mechanism of the low-frequency time window  

Many studies employed different paradigms to explore the processing window in the 

temporal-integration mechanism. However, except for studies related to MMN (Wang et 

al., 2015), which is a commonly used ERP component, most researchers focused on the 

behavioral indicator.  There are not many studies on the neural mechanism of the 

temporal-reproduction task. Only Elbert revealed the continuous negative component 

(CNV) in the encoding and reproduction phases and found that the CNV in the 

temporal-reproduction phase was regulated by the standard duration (Elbert et al., 1991). 

 

I chose 2s as a standard duration in experiment 5 to further clarify the pause-duration 

effect and look for the neural indicator corresponding to the low-frequency time 

window. I also checked the early ERP components and the low beta activity during the 

reproduction duration. The CNV component was not included in this analysis because 

the previous study had demonstrated that the CNV difference mostly results from 

different standard stimuli, while I only applied one standard stimulus. 

 

N1 is a very early component after the onset of auditory stimuli, and results showed that 

N1 amplitudes were higher after longer pause durations and that the N1 latency was 

shortest after PD = 3. Since previous studies showed that the N1 amplitude was higher 

when the attention level was higher (Hsu et al., 2016), one may infer that longer 
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durations require more memory and attention processing, which leads to a higher N1. 

The decrease in the  N1 latency after PD = 1 and PD = 3 also implicate the low-

frequency time window. I presume that the N1 component can be an index of the low-

frequency time window. However, both the amplitude and latency of N1 after PD = 2 

were exceptions. Combined with other parameters, like P2 and oscillation, I presume 

that the exceptions can result from the same standard and pause intervals. 

 

The P2 component amplitudes tended to increase with longer pause durations, but 

statistics did not show significance. Previous studies (Chen et al., 2007; González-

Garrido et al., 2008) found that the P2 amplitude can be quite different when dealing 

with temporal information and others such as tones. I only examined temporal 

differences, resulting in the lack of difference in P2 in this experiment. 

 

The results of the time-frequency analysis match the behavioral result; there was an 

increasing low-beta power (13-20 Hz) for the reproduction after pause durations up to 

3s, but not for longer durations. This result was similar to that of previous studies. Many 

studies found that beta oscillation can play an important role in internal temporal 

information processing (Bartolo & Merchant, 2015; Baumgarten et al., 2015; Ghaderi et 

al., 2018), and it can be a bridge for temporal anticipation and motor actions. The 2.5 

temporal-reproduction task (Kononowicz & van Rijn, 2015) found that beta power can 

be quite different for shorter, correct, and longer produced durations; the greatest 

difference appeared around 0.9-1.1s. Results indicated that the beta power could provide 

an index for time estimation. Our experiment also found vigorous low beta activities 

around 1s after reproduction onset for PD = 1 and PD = 3, while that of PD = 2 was 

around 0.5 seconds. If one neglects the difference of time, this strong low beta activity 

only appears for pause durations below 3s, corresponding to the low-frequency time 

window. In correlation with previous studies that confirmed that the beta wave was 

related to discrete perceptual cycles and internal timing processing, I agree that beta 

oscillation plays a the role as a neural marker for the low-frequency time window. As 

for the different appearance time of beta activity for PD = 1, 3 and PD = 2, in 

correspondence with the idea of beta suppression after auditory stimulus onset and then 

rebound, I deduced that when the standard stimulus and the pause duration are of the 

same length, the beta rebound after suppression will occur sooner because of the stable 

time length. 
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I also believe that the observed beta oscillation did not represent the time duration, but 

reflected the existence of the temporal perceptual unit. When pause durations are shorter 

than 3s, our brain can deal with the information in working memory by the same unit. 

However, when pause durations are too long, our brain does not extract the information 

from the working memory unit, but needs to refer to other memory systems. This 

interrupts the perceptual cycle, so the brain cannot refer to the previous perception, and 

no beta oscillation can be elicited. This new unit stabilized the reproduced durations to a 

plateau. However, whether the different onset of beta oscillation was from the same 

length of the former two durations still needs to be further confirmed with more 

standard stimuli. 
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6. Summary and Future Prospects 

 

As a classic temporal-perception paradigm, the temporal-reproduction task is commonly 

used to explore the low-frequency time window. However, researchers mainly focused 

on the quantitative relationship between standard and reproduced durations or whether 

the standard interval can regulate some variables. The pause duration between the 

standard and reproduction stimuli was neglected. In experiment one, I used 2s as a 

standard stimulus and explored the effect of pause durations on reproductions, which 

clarified how pause durations affect reproduced intervals. Since it was difficult to 

interpret the significance of our preliminary results, I added 3s and 4.5s as standard 

stimuli. Results showed that the patterns of reproduced intervals after different standard 

stimuli were the same, which indicated that the pause-duration effect was independent 

of standard stimuli. Experiment 3 was performed to confirm that this pause-duration 

effect is based on the low-frequency time window, but not on the shorter waiting period 

in the task. To explore whether this result represents one temporal-integration 

mechanism or is based on sensory information, I included different auditory frequencies 

for standard and reproduced stimuli in experiment 4 and obtained similar results as 

previously. Experiment 5 I used EEG technology and the wavelet-analysis method to 

discover the neural indicator for this mechanism. Results indicated that beta oscillation 

may be an indicator of the low-frequency time window. 

 

The new approach in these studies included an improvement of the paradigm. I used 

varied pause durations to investigate the pause-duration effect and its range. I also chose 

a specific perspective to examine the low-frequency time window. Finally, I employed 

an advanced EEG analysis and explored the reproduction and the neural activity during 

pause durations. 

 

I must mention some shortcomings in this study.  Most studies used the relatively 

continuous and broad scope of standard stimuli for the choice of standard stimuli. For 

the convenience of statistical testing, I only used some discrete standard stimuli with a 

relatively narrow range, and the experimental results could have been affected by the 

expectations and attentional status of the subjects. Due to the different study aims, the 

stimulus levels of experiments 1, 2, and 3 differed. Although the main study results 

were not influenced, the different stimuli distribution could have affected the response 
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states and participants’ results to the same standard stimulus. In experiment 3, the 

standard and reproduced stimulus volume parameters were not corrected according to 

the equal loudness curve. In experiment 4, I did not use a permutation test or any other 

form of confirmation. 

 

In future studies, one could add more interesting aspects to the experimental paradigm. 

For example, one could use continuous pause durations to explore the transition 

threshold or let the subject freely choose the pause duration and investigate his/her time-

range preference. According to the physical characteristics of the stimulus, further 

studies could employ a visual stimulus to verify the transition zone. One could also 

acquire more EEG data and investigate the functional brain connectivity during the 

temporal-processing period. 
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