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Abstract

Particle accelerators, such as the Large Hadron Collider at CERN, are among the largest
and most complex engineered systems to date. Future generations of particle accelerators
are expected to increase in size, complexity, and cost. Among the many obstacles, this
introduces unprecedented reliability challenges and requires new reliability optimization
approaches.

With the increasing level of digitalization of technical infrastructures, the rate and
granularity of operational data collection is rapidly growing. These data contain valuable
information for system reliability optimization, which can be extracted and processed with
data-science methods and algorithms. However, many existing data-driven reliability opti-
mization methods fail to exploit these data, because they make too simplistic assumptions
of the system behavior, do not consider organizational contexts for cost-effectiveness, and
build on specific monitoring data, which are too expensive to record.

To address these limitations in realistic scenarios, a tailored methodology based on
CRISP-DM (CRoss-Industry Standard Process for Data Mining) is proposed to develop
data-driven reliability optimization methods. For three realistic scenarios, the developed
methods use the available operational data to learn interpretable or explainable failure
models that allow to derive permanent and generally applicable reliability improvements:
Firstly, novel explainable deep learning methods predict future alarms accurately from few
logged alarm examples and support root-cause identification. Secondly, novel parametric
reliability models allow to include expert knowledge for an improved quantification of
failure behavior for a fleet of systems with heterogeneous operating conditions and derive
optimal operational strategies for novel usage scenarios. Thirdly, Bayesian models trained
on data from a range of comparable systems predict field reliability accurately and reveal
non-technical factors’ influence on reliability.

An evaluation of the methods applied to the three scenarios confirms that the tai-
lored CRISP-DM methodology advances the state-of-the-art in data-driven reliability op-
timization to overcome many existing limitations. However, the quality of the collected
operational data remains crucial for the success of such approaches. Hence, adaptations of
routine data collection procedures are suggested to enhance data quality and to increase the
success rate of reliability optimization projects. With the developed methods and findings,
future generations of particle accelerators can be constructed and operated cost-effectively,
ensuring high levels of reliability despite growing system complexity.
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Zusammenfassung

Teilchenbeschleuniger, wie z.B. der Large Hadron Collider am CERN, gehören zu den bisher
größten und komplexesten technischen Systemen. Es wird erwartet, dass zukünftige Gener-
ationen von Teilchenbeschleunigern an Größe, Komplexität und Kosten zunehmen werden.
Unter den vielen Hindernissen führt dies zu noch nie dagewesenen Herausforderungen an
die Zuverlässigkeit und erfordert neue Ansätze zur Zuverlässigkeitsoptimierung.

Mit der zunehmenden Digitalisierung nimmt die Geschwindigkeit und Granularität
der Betriebsdatenerfassung rasch zu. Diese Daten enthalten wertvolle Informationen für
die Optimierung der Systemzuverlässigkeit, die mit datenwissenschaftlichen Methoden ex-
trahiert werden können. Viele existierende datenbasierte Zuverlässigkeitsoptimierungsmeth-
oden nutzen diese Möglichkeit nur unzureichend aus, weil sie zu vereinfachende Annahmen
über das Systemverhalten treffen, organisatorische Kontexte für die Kosteneffizienz nicht
berücksichtigen und auf spezifischen Betriebsdaten aufbauen, deren Erfassung zu teuer ist.

Um diese Einschränkungen in realistischen Szenarien zu überwinden, wird eine maßgeschnei-
derte Methodik vorgeschlagen, die auf CRISP-DM (CRoss-Industry Standard Process for
Data Mining) basiert, um datenbasierte Zuverlässigkeitsoptimierungsmethoden zu entwick-
eln. Für drei realistische Szenarien nutzen die entwickelten Methoden die verfügbaren
Betriebsdaten, um interpretierbare Versagensmodelle zu erlernen, die es erlauben, dauer-
hafte und allgemein anwendbare Zuverlässigkeitsverbesserungen abzuleiten: (1) Neuartige
erklärbare Deep-Learning Methoden sagen zukünftige Alarme aus wenigen protokollierten
Alarmbeispielen genau voraus und unterstützen die Ursachenermittlung. (2) Neuartige
parametrische Zuverlässigkeitsmodelle erlauben die Einbeziehung von Expertenwissen für
eine verbesserte Quantifizierung des Ausfallverhaltens für eine Flotte von Systemen mit het-
erogenen Betriebsbedingungen und die Ableitung optimaler Betriebsstrategien für neuar-
tige Nutzungsszenarien. (3) Bayes’sche Modelle, die mit Daten aus einer Reihe vergleich-
barer Systeme trainiert wurden, sagen die Zuverlässigkeit genau voraus und zeigen den
Einfluss nicht-technischer Faktoren auf die Zuverlässigkeit auf.

Eine Bewertung der angewandten Methoden bestätigt, dass die maßgeschneiderte CRISP-
DM-Methodik viele bestehende Einschränkungen überwindet. Die Qualität der gesam-
melten Betriebsdaten bleibt jedoch entscheidend für den Erfolg solcher Ansätze. Daher
werden Anpassungen der routinemäßigen Datenerfassungsverfahren vorgeschlagen, um die
Datenqualität zu verbessern und die Erfolgsrate von Zuverlässigkeitsoptimierungsprojek-
ten zu erhöhen. Mit den entwickelten Methoden und Erkenntnissen kann kostengünstig ein
hohes Maß an Zuverlässigkeit für zukünftige Teilchenbeschleuniger gewährleistet werden.



x



Contents

Acknowledgements v

Abstract vi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions, Objectives and Contributions . . . . . . . . . . . . . . 6

1.2.1 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 List of Peer-Reviewed Publications and Declaration of Authorship . . . . . 11
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Particle Accelerators 13
2.1 Introduction to Particle Accelerators . . . . . . . . . . . . . . . . . . . . . 13
2.2 CERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 PSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 FCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Existing and Future Reliability Challenges for Particle Accelerators . . . . 17
2.4 Magnet Power Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Backgrounds 21
3.1 Reliability Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Data, Information and Knowledge . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Artificial Intelligence and Machine Learning . . . . . . . . . . . . . . . . . 32

4 Literature Review 41
4.1 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Existing Limitations of Data-Driven Frameworks for Reliability Optimization 42

5 Methodology 47
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Constructive Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Project Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



xii CONTENTS

5.2.2 Project Implementation . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.3 Limitations of the Constructive Methodology . . . . . . . . . . . . . 51
5.2.4 Structure of Constructive Chapters . . . . . . . . . . . . . . . . . . 52

5.3 Evaluative Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Limitations of the Evaluative Methodology . . . . . . . . . . . . . . 53

6 Data-Driven Discovery of Failure Mechanisms 55
6.1 Scenario Description and Problem Definition . . . . . . . . . . . . . . . . . 55
6.2 Related Work and Method Selection . . . . . . . . . . . . . . . . . . . . . 56
6.3 Methodology - Explainable Deep Learning Models for Failure Mechanism

Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.1 Pseudoalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Data Requirements and Availability . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5.1 Synthetic Data Experiments . . . . . . . . . . . . . . . . . . . . . . 68
6.5.2 Particle Accelerator Data Experiments . . . . . . . . . . . . . . . . 72
6.5.3 Further applications . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.6 Chapter Summary, Conclusions and Outlook . . . . . . . . . . . . . . . . . 77

7 Data and Knowledge-Driven Parametric Model-Based Reliability Opti-
mization 79
7.1 Scenario Description and Problem Definition . . . . . . . . . . . . . . . . . 80
7.2 Related Work and Methods Selection . . . . . . . . . . . . . . . . . . . . . 81
7.3 Methodology - Parametric Digital Reliability Twins . . . . . . . . . . . . . 83

7.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.2 Reliability Modeling of Load Sharing in Redundant Systems . . . . 84
7.3.3 Simulation Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.4 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.5 Data Requirements and Availability . . . . . . . . . . . . . . . . . . 91

7.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.1 Further Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.5 Chapter Summary, Conclusions and Outlook . . . . . . . . . . . . . . . . . 97

8 Data-Driven Discovery of Organizational Reliability Aspects 99
8.1 Scenario Description and Problem Definition . . . . . . . . . . . . . . . . . 99
8.2 Related Work and Methods Selection . . . . . . . . . . . . . . . . . . . . . 101
8.3 Methodology - Statistical System Life Cycle Models . . . . . . . . . . . . . 102

8.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.3.3 Model Selection and Validation . . . . . . . . . . . . . . . . . . . . 105

8.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.4.1 Data Requirements and Availability . . . . . . . . . . . . . . . . . . 108
8.4.2 Model Selection and Validation . . . . . . . . . . . . . . . . . . . . 110



Table of Contents xiii

8.4.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.5 Chapter Summary, Conclusions and Outlook . . . . . . . . . . . . . . . . . 119

9 Synthesis: Developing Robust Data-Driven Reliability Optimization Meth-
ods 121
9.1 Critical Assessment of Constructive Chapters . . . . . . . . . . . . . . . . 122

9.1.1 Addressing Practical Limitations . . . . . . . . . . . . . . . . . . . 122
9.1.2 Usefulness of the Tailored CRISP-DM Methodology . . . . . . . . . 125

9.2 Embedding Data-Driven Reliability Optimization Methods in System Life
Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.2.1 Embedding Data-Driven Discovery of Failure Mechanisms . . . . . 128
9.2.2 Embedding Data and Knowledge-Driven Parametric Model-Based

Reliability Optimization . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2.3 Embedding Data-Driven Discovery of Organizational Reliability As-

pects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.2.4 Using the Methods for Cost-Effective Decision Making . . . . . . . 131

9.3 Improving Data Quality through Automatic Reliability Data Collection . . 131
9.3.1 Types of Data Required for Reliability Optimization . . . . . . . . 132
9.3.2 Design for Automatic Reliability Collection . . . . . . . . . . . . . . 133
9.3.3 Organization for Automatic Reliability Data Collection . . . . . . . 134

9.4 A Data-Driven Framework for Cost-Effective Continuous Reliability Opti-
mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10 Conclusions and Future Research Directions 137
10.1 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



xiv Table of Contents



Chapter 1

Introduction

1.1 Motivation

CERN, High Energy Particle Accelerators and Future Challenges Particle ac-
celerators study the fundamental constituents of matter as well as the laws which govern
their interaction. The Large Hadron Collider (LHC) at the European Organization for
Nuclear Research (CERN) has significantly advanced human understanding of matter by
probing it at unprecedented particle collision energies of up to 14 TeV. Most notably, the
Higgs Boson was discovered in 2012. It was the last missing particle of the Standard Model
of particle physics, which describes most of the known universe. Yet, open questions about
the behavior of the unknown universe remain. These include dark matter, the asymmetry
of matter and antimatter, and neutrino masses.[1]

Particle accelerators with even higher collision energies promise to shine a light on these
unresolved mysteries. Few organizations have the capabilities and experience to build such
accelerators. The Future Circular Collider (FCC) study has been initiated to study options
for future accelerators at the high-energy frontier at CERN. A new 80-100 km tunnel is
proposed to house particle accelerators with collision energies of up to 100 TeV.[2, 3]

The operation of the LHC poses many challenges due to its complexity, its highly
specialized sub-systems which are produced in low volumes, as well as the geographical
expand of its infrastructure around the 27 km accelerator tunnel. The stored beam energy
as well as the magnetic energy in the superconducting magnetic circuits posed novel risks
for particle accelerators. New accelerators with circumferences of 100 kms and energies
eight times higher than LHC are expected to set unprecedented requirements for their safe
and reliable operation.

This thesis aims to develop quantitative, data-driven methods to optimize the reliability
of particle accelerators and their sub-systems. A particular focus for the practical validation
of the methods is put on power converters. They process and control the flow of electrical
energy by supplying voltages and currents in a form that is optimally suited for electrical
loads [4]. Particle accelerators consume electrical energy for their operation and contain
various types of electrical loads. Among them, the powering of magnetic circuits and radio-
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frequency systems can represent up to 70-90% of the energy consumption [5]. As power
converters are numerous and essential for operation, they impact the overall reliability of
a particle accelerator significantly. Hence, they are chosen as representative sub-system to
validate the developed methods, which can be applied to other systems as well.

The developed methods should help to improve the reliability of particle accelerator
sub-systems despite their complexity growth at moderate additional investments to meet
performance, reliability, and cost targets that make future particle accelerators projects
feasible.

Reliability People, organizations and society have adopted engineered systems that
function reliably. Systems that fail to function as expected have either not been adopted
or abandoned quickly. Systems we use every day, such as doors, elevators, or cars, often
only receive our attention when they fail to work. We have become used to them because
they carry out their function or purpose as we expect it. Reliability is the ability of a
product or system to perform as intended for a specified time, in its life cycle conditions
[6].

In the widest sense, a system is a group of interacting entities that form a whole. It
is enclosed by a boundary and surrounded by an environment through which it interacts
through inputs and outputs. In engineering settings, a system is an aggregation of elements
organized to fulfill one or several stated purposes [7]. System specifications should include
its intended purposes and the conditions in which it needs to achieve them. A failure
occurs when a system stops achieving its purpose despite being operated according to
its specifications. E.g., a system failing during an earthquake is denoted "reliable" when
its specifications exclude earthquakes as tolerable operating conditions. However, it is
considered "unreliable" when it is supposed to withstand earthquakes.

Unreliability of an engineered system can principally be traced back to human activity.
It may be the designer specifying wrong tolerances, the producer not manufacturing within
correct tolerances, the user not operating in specified environments, or the management
not providing the means and strategies to achieve the targeted reliability. This suggests
that systems that always work as specified (i.e. 100% reliable) can be created in principle.
However, even if all project stakeholders pay care to reliability aspects, systems can fail due
to the practically unforeseeable complexity of failure mechanisms and variation inherent in
natural and human processes. Hence, being able to trace back a failure to a human activity
should not be confused with blaming system unreliability to human error. Instead, systems
should be designed robustly to function reliably despite the possibility of human errors and
unexpected environmental impacts. Then, systems can approach close to 100% reliability
in practice [8].

Failures in systems, such as transportation, can compromise the safety of people. Fail-
ures in production systems, e.g. in the semiconductor industry, can cause multi-million
losses due to the interruption of a global supply chain. These are direct financial conse-
quences of failure. However, failures also cause indirect financial consequences, such as
loss of consumer trust, which leads to reduced revenue in the future. Therefore, many
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successful organizations have identified reliability as a key enabler of long-term success.
Reliability Engineering is the technical discipline which aims to increase the relia-

bility of systems. Its goals in order of priority are

1. to prevent or to reduce the likelihood or frequency of failures,

2. to identify and correct the causes of failures, and

3. to determine ways of coping with failures that do occur.

The order reflects the expected effectiveness in terms of minimizing cost and increasing
reliability [8].

Highly reliable systems are not achieved by reliability engineers but by a concerted
effort of designers, test engineers, manufacturers, suppliers, maintainers, and users. The
role of reliability engineers is to support such efforts by providing effective tools, specialized
training, and data-driven insights.

Economics of Reliability and the System Life Cycle The system life cycle concept
includes all phases of the existence of a system from its first idea to disposal or reuse. In this
thesis, the life cycle is separated in concept, design, production, field use and maintenance,
and end-of-life phases.

It is generally observed that the cost to fix a problem rapidly increases until the pro-
duction phase of the life cycle of a system as more and more project costs are committed.
This is illustrated in Figure 1.1. It shows the cost to fix a problem (y axis) as a function of
the life cycle phase (x axis). The rate of increase of the cost to fix a problem is particularly
high during the design and production phases.

Therefore, it is important to ensure a high system reliability as early as possible in the
life cycle. Failure to do so will result in change requests later in the life cycle with unnec-
essarily high costs and project delays. To ensure reliability early in the life cycle, system
designers need to be able to make correct decisions. Therefore, reliability engineering is
most effective when it makes the necessary knowledge, tools, and data for decision making
available to system stakeholders as early as possible.

A common and established approach to achieve correct decision making in early life
cycle phases is to rely upon the knowledge of experienced project stakeholders. They gather
their expertise in a structured way and used it to improve new systems early in their life
cycle. Such methods include Failure Mode and Effect Analysis (FMEA) [8], Fault Tree
Analysis (FTA) [6], and design review [9]. These methods are based on a manual analysis
of the investigated systems. This manual approach is increasingly difficult for modern
complex, interconnected, and adaptive systems.

Instead of relying on manual analysis, rapid advances in information technology, com-
puter science, and electronics allow to observe the behavior of a system directly. Data-
science algorithms can automatically learn models of system behavior and derive reliability
optimizations. Such improvements can help system stakeholders to follow up on the relia-
bility of complex systems cost-effectively and improve their expertise.
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Figure 1.1: Cost of change in an engineering project throughout a system life cycle. [6]

This thesis presents a range of such methods to model system behavior, derive reliability
improvements, and provide insights to system experts to help them build better systems
in the future. In the following, the technological enablers of such data-driven approaches
and their current limitations with respect to system reliability are discussed.

Digital Transformation Figure 1.2 shows the evolution of computing devices in terms
of volume (red line and axis), price (blue line and axis), and number of installed devices
(green line and axis) over the last decades (x axis). Their volume and price have decreased
by more than ten (!) orders of magnitude since the 1950s and as a result, the number of in-
stalled computing devices has exploded. This has had a massive impact on the way people,
organizations and societies function. The recent hardware, software, and methodological
developments are discussed with respect to their impact on system reliability:

• In terms of hardware, electronics and control systems have become ubiquitous in
modern machinery. More recently, an increased use of sensors makes systems a
valuable source of data. Computing power has evolved with the growth of the data
size it needs to manipulate. In a few decades, systems have changed from simple
mechanical apparatus to internet connected, communicating, adaptive and partially
autonomous entities. This drastic change provides both opportunities and challenges
for system reliability, which are discussed below.
With respect to the opportunities, system behavior and degradation can be mea-
sured at unprecedented granularity through increased sensing capabilities at reduced
cost. Remote diagnostics of machinery is possible due to instant worldwide data
transfer and communication. Advances in robotics promise autonomous or remotely
controlled interventions in hazardous environments.
Despite such improvements, there is a list of potential problems. Increased system
complexity bears more potential failure mechanisms. Equipping systems with sensors
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Figure 1.2: Evolution of computing devices over recent decades in terms of volume, price,
and number of installed devices.

and computing capabilities increases their cost and energy consumption. Develop-
ment and handling of machines that include mechanics, electronics, and software,
demand an extended skill set from project stakeholders. Rapid technological change
requires continuous adaption and investment.

• In terms of software, so-called Industrial Internet of Things (IIoT) platforms provide
integrated frameworks of data collection, storage, visualization and analysis. They
are offered by both commercial providers and as open source implementations [10].
Often, existing organizational platforms can be extended to cater for increased data
collection and storage requirements. For data analysis and visualization, numerous
software packages have been introduced.
Modern data analytics platforms allow monitoring, diagnosing and predicting system
behavior remotely and in real time. As for the introduction of electronics and sensing
hardware, added software systems bear the risk of new system failure modes, increase
system cost, and require project stakeholders to master additional skills.

• In terms of methodological advances, Artificial Intelligence (AI) and Machine Learn-
ing (ML) are increasingly popular. Methods based on deep neural networks have
achieved or surpassed human performance in tasks such as image recognition or lan-
guage translation [11]. Such methods benefit from a complex but versatile internal
model structure and large data sets from which to detect patterns. In reliability en-
gineering, problems are usually characterized by small data sets due to the scarcity
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of failures or anomalous behavior during operation and challenges in data collection.
Furthermore, information is not just available in the form of quantified data but as
expert knowledge, which cannot easily be ’used’ by a neural network. Therefore, the
benefits of neural networks are not always fully exploitable in reliability problems.

Classical ML models include Random Forests [12], Naïve Bayes [13] and Support
Vector Machines (SVMs) [14]. They achieve comparable performance to deep neural
networks for simple modeling tasks with small data sets at a fraction of the com-
putational demand. Often they allow making use of expert knowledge as well as
quantified data. However, deep neural networks generally outperform their modeling
capabilities on large complex data sets.

Bayesian probabilistic methods provide a systematic reasoning framework for limited
data scenarios and quantify confidence in the parameters and predictions they pro-
duce. However, their computational demand can exceed those of non-probabilistic
methods for the same tasks.

1.2 Research Questions, Objectives and Contributions

1.2.1 Current Limitations
With the introduction of these novel technologies, maintenance optimization has become
a research trend within reliability studies. Manyika et al [15] estimated that such an op-
timization has a global economic potential of 1.2 − 3.7 · 109 USD (as of 2015). Research
on monitoring, diagnosing and predicting system health has arguably received a lot of
attention in recent decades. The goal of such research is often to predict failures of sys-
tems precisely in time. In comparison to the traditional approach of running machinery
until breakdown, this promises to avoid unexpected system downtime. In comparison to
rigid time-scheduled preventive maintenance, a reduction of unnecessary interventions is
expected.

Such optimization methods can lead to increased system reliability and decreased cost
despite the required capital investment for sensors, data handling infrastructure and im-
plementation. Therefore, research has focused to monitor and predict system failure using
latest technologies in sensing, data analysis, and ML. However, there are three frequent
limitations of such approaches.1

Firstly, many studies are carried out under laboratory conditions and are validated
on unrepresentative data sets, if at all [16]. Moreover, the algorithmic and mathematical
aspects are overemphasized, whereas, the required data collection and data quality, as well
as the embedding in organizational processes receive less attention [17, 18]. Therefore,
success stories of data-driven reliability improvements in industrial settings remain rare
[19].

1A more detailed treatment of limitations of existing approaches is provided in Section 4.2.
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Secondly, existing approaches often rely on detailed condition monitoring of machinery.
The required sensing equipment may be expensive and can introduce additional failure
modes. Given that the expected benefit is uncertain, many organizations do not want
to invest in additional condition monitoring systems [20, 21]. However, most systems
routinely collect operational data through their control systems, which may indirectly
provide reliability information [22, 23, 24]. Methods suited for such (sub-optimal) data
scenarios are underrepresented in the literature.

Thirdly, studies aim to determine the correct timing of maintenance. However, such
studies can also reveal findings that can be used to improve future systems at early life
cycle stages [21]. Referring to Figure 1.1, the potential cost benefit can be increased by
orders of magnitude when insights lead to improved future system instead of optimized
maintenance of existing systems. In other words, knowing when and how a system will fail
is not very valuable in comparison to knowing how to modify an existing system or design
a future system so that such failures will not happen in the first place. Yet, the focus of
many current methods remains solely on determining when systems are going to fail.

1.2.2 Research Questions

The previously mentioned limitations prevent a wider adoption of data-driven reliability
optimization methods despite their potential to improve the reliability of complex systems
at low cost and workforce investment.

Hence, the umbrella research question (Umbrella RQ) of this thesis asks how the afore-
mentioned limitations can be resolved to develop robust data-driven system reliability
optimization methods from operational data and infer generally applicable strategies for
data-driven reliability optimization. It is addressed by proposing a general methodology
for the development and implementation of reliability optimization methods, which has
the potential to address the mentioned limitations of existing methods.

The proposed methodology is tested by executing it for the three representative reliabil-
ity optimization use cases at CERN and evaluating whether it facilitates the development
of data-driven methods that reach the state of the art performance or go beyond. Each
scenario is characterized by different optimization objectives, availability of data, and a pri-
ori expert knowledge. Hence, they provide strong evidence towards the Umbrella RQ but
also give rise to three scenario-specific research questions, RQ1-3, which are independently
addressed in the respective scenario Chapters 6-8. In this regard, the following research
questions are addressed:

Umbrella RQ: How to develop robust data-driven system reliability optimiza-
tion methods from operational data and infer generally applicable strategies
for data-driven reliability optimization?

• RQ1: How to detect and analyze predictive failure patterns from system alarm and
operational environment logging data of technical infrastructures?
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• RQ2: How to optimize the life cycle cost of existing and future systems by combining
expert knowledge on failure mechanisms and fault logs of a fleet of systems?

• RQ3: How to assess the most relevant factors influencing field reliability of systems
based on field data and engineering documentation for groups of comparable systems?

In the following, research gap, objective and contribution are outlined for each of the
research questions.

RQ1

Research Gap and Objective Systems and infrastructures are becoming more com-
plex and connected. System experts are faced with the challenge of analyzing and under-
standing interdependent failure mechanisms. Explainable ML [25, 26] might provide a
solution as it scales to problems of high complexity. Existing research has studied many
situations using different approaches, algorithms, problem complexities, application fields.
A framework for complex infrastructures, applicable to heterogeneous raw time series data,
with good predictive performance and providing predictions with explanations is still miss-
ing in the particle accelerator domain.

The objective is to develop and test a fault prediction and analysis framework for
particle accelerator infrastructures applicable to high-dimensional raw time series data.

Research Contribution Explainable deep learning based on raw sensor data is used
to detect predictive failure patterns in systems of systems with human interaction. A proof
of concept application to a particle accelerator infrastructure is provided.

Certain failures can be predicted in advance from as few as 5 training examples embed-
ded in complex data. Non-trivial failure mechanisms (e.g. boolean logic between precursor
events) can be reconstructed using the explanation mechanisms.

RQ2

Research Gap and Objective Information on system degradation behavior is often
available both in collected data and expert knowledge. This requires a flexible modeling
approach that can include both forms of information. Such approaches have been suggested
for various application scenarios in the past. A solution for non-constant hazard rates,
handling the effect of load histories, multiple failure modes, and propagation of parametric
uncertainty has not been reported so far. However, such an approach is necessary to model
the degradation of power converters realistically.

The objective is to present such a modeling framework and test it on a power converter
use case. Life cycle costs should be evaluated and operational optimization, as well as
future design improvements, derived.
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Research Contribution A hierarchical model is proposed to quantify the depen-
dency between load, stress and degradation. It can be applied to situations with and
without condition, load, or environment monitoring and allows for the integration of ex-
pert knowledge. The models can be interpreted by experts and are applicable to new
operating conditions and systems sharing similar components. For commonly encountered
situations of limited data and knowledge, uncertainty can be quantified and propagated.
In combination with a Monte Carlo simulation engine and a cost model, life cycle costs
can be quantified.

Applying the framework to a power converter for which failure times, load, environment
temperature, and expert knowledge on the failure mechanisms are known, a load and
environment dependent failure behavior quantification is obtained. In combination with
the simulation engine and a cost model, the load sharing strategy for redundant power
converters with lowest life cycle costs can be determined. For repairable systems with
wear-out characteristics and high downtime costs, imbalanced load sharing tends to have
lower life cycle cost than balanced load sharing.

RQ3

Research Gap and Objective An accurate prediction of the field reliability of a
system is desirable as it would allow to determine optimal design alternatives, required
amount of spares, or expected warranty costs. The field reliability of a system is influenced
by activities during all stages of a system life cycle. To predict it accurately, all processes
and interactions would have to be known and quantified. Since this is impracticable,
common reliability prediction methods focus on certain stages or aspects of a system life
cycle. Their field reliability predictions can deviate by orders of magnitude despite requiring
significant modeling efforts and often they do not quantify predictive accuracy. Accurate,
uncertainty-quantifying methods that allow to integrate knowledge from different stages of
a system life cycle are missing.

The objective is to develop and test a probabilistic framework to predict system field
reliability more accurately based on system life cycle knowledge.

Research Contribution A new approach is taken in this work by posing field re-
liability prediction as inverse problem: Based on observed field reliability and life cycle
descriptors of past and existing systems, statistical models of field reliability are learned.
Thereby, information from all system life cycle stages can be included, uncertainty can be
quantified, and it can be applied at any stage of a system life cycle. Applying the method
to power converters, yields predictive models of field reliability with state-of-the art accu-
racy at a greatly reduced data collection and modeling effort. Using transparent Bayesian
methods, the predictive uncertainty can be quantified and the importance of influencing
factors can be inferred. For a use case of power converters, the most important factor
was the produced number of power converters per type, which indicates that non-technical
aspects may have a very strong impact on field reliability. Moreover, the descriptor is
available very early in the life cycle, allowing accurate predictions early in the life cycle.
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Umbrella RQ - Research Contribution

The studied scenarios cover a wide range of realistic situations in terms of data and knowl-
edge availability, as well as choice of algorithms and methods. In Chapter 9 it is shown that
for these scenarios, most practical limitations can be resolved using the tailored CRISP-
DM methodology to develop data-driven reliability optimization methods that advance the
state-of-the-art in the respective scenarios.

Across scenarios, it is noticed that considerable efforts have to be invested on data
collection and preparation to reach acceptable levels of data quality for modeling and
analysis. Time spent on data preparation could be reduced when a Design for Reliability
Data Collection is implemented from the beginning of a system life cycle. Then, contin-
uous data-driven reliability improvement can be used effectively to augment established
reliability methods. To achieve this goal, following approaches can be recommended:

1. Design for Reliability Data Collection (Chapter 9): Systems and Processes need to
be designed with data collection for reliability analysis and corresponding decision
making in mind. A detailed listing of relevant data and recommendations to facilitate
their collection are provided in Section 9.3. These data should be available to project
stakeholders throughout the system life cycle.

2. Automatic data-driven failure pattern identification (Scenario 1 - Chapter 6): A
data-driven approach to obtain predictive models of system failures and supporting
information on failure mechanisms from logging data. The predictive models can
help to prevent unforeseen failures and the failure mechanism information narrows
the focus of in depth failure analysis for complex systems.

3. Degradation quantification and generalization (Scenario 2 - Chapter 7): A systematic
approach to combine failure mechanism information, failure data, and expert knowl-
edge into a transparent quantification of system degradation. It can be generalized
to systems with different operating conditions and reused for future generations of
systems.

4. Reliability prediction and effectiveness evaluation (Scenario 3 - Chapter 8): The
recorded field reliability of a system can be correlated with major events during its
system life cycle. For a set of comparable systems, multivariate statistical models
can be obtained. They allow to estimate future systems’ field reliability at early life
cycle stages and provide insight on the most impacting factors on reliability during
system life cycles for early strategic decision making.

These methods help to meet increasing reliability demands despite a complexity growth
of modern systems in a cost-effective manner.
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1.3 List of Peer-Reviewed Publications and Declara-
tion of Authorship

Several peer-reviewed studies have been published during the preparation of this thesis.
Their contribution to this thesis and the roles of the co-authors of the publications are
clarified below.

Dr. Todd has been involved in all published studies except the very first one. He
was the supervisor at CERN, the research institute where the experimental studies were
carried out. He provided a compelling research environment for the author of this thesis
by facilitating the interaction with stakeholders from CERN, pointing out valuable data
sources as well as relevant ongoing reliability projects, helping out with organizational and
technical matters, and providing feedback on the research projects and the written reports.

1. Felsberger, L., & Koutsourelakis, P. S. (2018). Physics-constrained, data-driven dis-
covery of coarse-grained dynamics. Communications in Computational Physics, 25,
1259-1301.
The methods of Chapter 7 and 8 partially reuse the Bayesian modeling approach for
uncertainty quantification and propagation of the publication. Both authors have
been involved in developing the presented method, discussing intermediate and final
results, preparing illustrations for the thesis, and reviewing the publication draft.
The numerical experiments were carried out by the author of this thesis.

2. Felsberger L., Kranzlmüller D., & Todd B. (2018) Field-Reliability Predictions Based
on Statistical System Lifecycle Models. Lecture Notes in Computer Science, 11015,
98-117.
Chapter 8 re-uses the structure, results and illustrations of the publication. The
author of this thesis conceived the original research contributions, performed all
implementations and evaluations, wrote the initial draft of the manuscript, and did
most of the subsequent corrections.

3. Felsberger, L., Todd, B., & Kranzlmüller, D. (2019). Cost and Availability Improve-
ments for Fault-Tolerant Systems Through Optimal Load-Sharing Policies. Procedia
Computer Science, 151, 592-599.
Chapter 7 re-uses the structure, results and illustrations of the publication. The
author of this thesis conceived the original research contributions, performed all
implementations and evaluations, wrote the initial draft of the manuscript, and did
most of the subsequent corrections.

4. Felsberger, L., Todd, B. & Kranzlmüller, D., (2019), November. Power Converter
Maintenance Optimization Using a Model-Based Digital Reliability Twin Paradigm.
In 2019 4th International Conference on System Reliability and Safety (ICSRS) (pp.
213-217). IEEE.
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Chapter 7 re-uses some results and illustrations of the publication. The author of
this thesis conceived the original research contributions, performed all implementa-
tions and evaluations, wrote the initial draft of the manuscript, and did most of the
subsequent corrections.

5. Felsberger L., Apollonio, A., Cartier-Michaud, T., Müller, A., Todd B., & Kran-
zlmüller, D. (2020) Explainable Deep Learning for Fault Prognostics in Complex
Systems: A Particle Accelerator Use-Case. Lecture Notes in Computer Science,
12279, 139-158.
Chapter 6 re-uses the structure, results and illustrations of the publication. The
author of this thesis conceived the original research contributions and wrote the initial
draft of the manuscript, and did most of the subsequent corrections. Implementations
and evaluations were carried out by both T. Cartier-Michaud and the author of this
thesis. A. Apollonio and A. Müller were involved in discussing results and reviewing
drafts of the manuscript.

6. Felsberger, L., Todd, B., & Kranzlmüller, D. (2020). A Cost and Availability Com-
parison of Redundancy and Preventive Maintenance Strategies for Highly-Available
Systems. To be submitted at ICSRS2021.
Chapter 7 provides some results and illustrations of the publication. The author of
this thesis conceived the original research contributions, performed all implementa-
tions and evaluations, wrote the initial draft of the manuscript, and did most of the
subsequent corrections.

1.4 Structure of the Thesis
The remainder of this thesis is structured as follows. Chapter 2 gives an introduction
to particle accelerators and their reliability challenges. Chapter 3 provides the necessary
reliability engineering and ML backgrounds. Chapter 4 discusses existing research rele-
vant to all research questions. Chapter 5 outlines the methodology used in this thesis.
Scenario-specific research questions 1 to 3 are addressed in Chapters 6 to 8, respectively.
An evaluation of the implemented methods and the general framework to address the Um-
brella RQ is outlined in Chapter 9. Finally, conclusions and future research directions are
presented in Chapter 10.

Chapter Learning Summary

Existing data driven methods often fail to address challenges arising in realistic
reliability optimization settings and lead to few success stories. This thesis develops
a methodology to resolve many limitations and executes it on three realistic use
cases.



Chapter 2

Particle Accelerators

The goal of this chapter is to give the reader a better understanding of the domain in
which the use cases of this thesis are situated. This should help to understand the value
of particular findings of this thesis and to assess whether they could be valid for other
domains that the reader is familiar with.

This chapter contains:

• An introduction to particle accelerators.

• An introduction to CERN and its Large Hadron Collider (LHC), Proton Synchrotron
Booster (PSB), and Future Circular Collider (FCC) study.

• A discussion of existing and future reliability challenges for particle accelerators.

• A discussion of magnet power converters, which constitute a significant fraction of
power converters in a particle accelerator. They are a representative example of
power converters, which are the subject of experimental validations of this thesis.

2.1 Introduction to Particle Accelerators
Particle Accelerators use electromagnetic fields to drive charged particles to very high and
very precise speeds and energies. The particles are confined in so-called particle beams
with a controlled energy, phase, chromaticity, among other characteristics. These beams
are required for various applications, e.g. particle physics research to study the funda-
mental constituents of matter, radiotherapy for cancer treatment, and ion implantation for
semiconductor device fabrication.

Particle physics research aims to describe interactions of subatomic particles. It uses
particle accelerators as experimental tools to provide empirical evidence for or against
postulated models of particle interaction.

A common type of experiment is to collide particles with each other or against fixed
targets. At sufficiently high energies, new particles are created during such collisions.
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Analysis of the resulting particles allows scientists to understand the constituents of the
subatomic world and the laws that govern them.

Over time, the postulated models required experimental evidence at increasingly higher
interaction energies. Hence, in particle physics research there is a constant push for building
particle accelerators that allow higher collision energies.

The main constituents of particle accelerators are the electrostatic or -dynamic accel-
erator system, the particle beam focusing and bending magnets, the beam measurement
systems, and the particle collision targets or points as well as their detectors. Experi-
ments in this thesis focus on power converters for particle accelerator operation, but can
be generalized to other systems. [27]

2.2 CERN
CERN was founded in 1954 with the goal of establishing a leading fundamental physics
research institution in Europe. It is devoted to pure science and aims to makes its findings
accessible to everyone. Currently, 23 member states are funding CERN. It provides particle
accelerators as well as supporting infrastructure for fundamental particle physics research.
Its main particle physics achievements include the discovery of a range of constituents of
the standard model of particle physics, culminating in the discovery of the Higgs boson in
2012 [1]. These achievements were made possible by operating a range of experiments and
particle accelerators. As a side effect of building and operating such complex infrastructure,
several technological innovations have been pioneered at CERN and made available to the
public; most notably the world wide web.

2.2.1 LHC
The LHC is the worlds largest and most powerful particle accelerator. It is also considered
to be among the most sophisticated and complex scientific instruments built to date. The
project began 25 years before its operation started and it is expected to stay in service for
20 years. The word hadron describes composites of quarks, such as protons or neutrons. In
its tunnel with 27 km circumference, the LHC houses approximately 1232 superconducting
Nb-Ti magnetss. They are constantly cooled to 1.9 K by superfluid helium. The energy
consumption of the LHC and its injectors, described below, during operation amounts to
200 MW. [28, 1]

The LHC has four particle collision points at which particle detectors are located to
measure the resulting secondary particles created in collisions. The ATLAS (A Toroidal
LHC ApparatuS) and CMS (Compact Muon Solenoid) experiment were built to study
the Higgs Boson and supersymmetry. ALICE (A Large Ion Collider Experiment) studies
collisions of heavy ions, which produce conditions similar to the first time instants of our
universe. LHCb (LHC beauty) investigates the matter-antimatter imbalance. [28]

The LHC requires injection of particles at an energy of 450 GeV. To reach this energy,
particles go through a chain of smaller particle accelerators (injectors) with increasing
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Figure 2.1: Schematic overview of the CERN accelerator complex. [29]

size and energy. Protons are accelerated by LINAC4, PS-BOOSTER (PSB), PS, and
SPS before entering the LHC. Ions pass through LINAC3, LEIR, PS and SPS. This is
illustrated in Figure 2.1. The solid lines in different colors depict the different particle
accelerators and the arrows the direction in which the particles move. The yellow dots
mark the four particle collision points of the LHC, as previously described. One can see
that a vast network of particle accelerators is operational at CERN. The oldest accelerator
(the Proton Synchrotron - PS) dates back to 1959 and has been continuously maintained
and upgraded. For the operation of the LHC, all injectors need to be working at the same
time in a coordinated manner, which poses significant reliability challenges.
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Figure 2.2: Simplified illustration of the four superimposed rings of the PSB and its beam
transfer lines. [32]

2.2.2 PSB
The PSB is discussed in more detail as an example of a particle accelerator because it
serves as use case in Chapter 6. The PSB accelerates protons which it receives from
the LINAC4 at 160 MeV to an energy of 1.4 GeV. It is composed of four superimposed
rings with a radius of 25 meters each [30]. These rings and the beam transfer lines are
schematically illustrated in Figure 2.2. It shows a fraction of the full circumference of the
four superimposed rings. The incoming beam from the LINAC (entering from lower left
corner in Figure 2.2) is split by a series of pulsed magnets into separate beams for each
of the four rings. After acceleration in the PSB, the four beams are merged again before
being ejected to the PS (leaving towards lower right corner in Figure 2.2). [31]

The layout of the PSB is shown in Figure 2.3. It shows the circular particle accelerator
with its 16 sections. Each section is equipped with two dipole magnets to bend the beam
and a triplet composed of three quadrupole magnets to focus the beam [33].

The PSB produces different kinds of beams for a variety of experiments carried out at
CERN. A beam is ’produced’ within a cycle 1.2 seconds. A change of beam parameters
and destinations can be executed between any two beam cycles. This makes the PSB a
versatile particle accelerator. [31]

2.2.3 FCC
In 2012, the LHC has helped the discovery of the Higgs Boson [34]: the last missing
particle of the standard model that describes the behavior of most of the matter of the
known universe. Nevertheless, open questions on dark matter, the imbalance of matter
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Figure 2.3: Layout of the PSB and its beam transfer lines. [33]

and antimatter, and neutrino masses remain. Pushing the energy and precision frontier
by building larger and more powerful accelerators is expected to shine light on these phe-
nomena. Following the 2013 update of the European Strategy for Particle Physics [2], the
Future Circular Collider (FCC) study was launched at CERN to study options of proton
and electron colliders at unprecedented energy levels as well as the required accelerator
technology advancements.

Among the study’s main results is the proposition of a 100km tunnel to house an
electron collider (FCC-ee) which is later replaced by a hadron machine (FCC-hh) reaching
collision energies of 100 TeV. The recent 2020 update of the European Strategy for Particle
Physics [3] supports further in-depth financial and technical feasibility studies for an FCC.

2.3 Existing and Future Reliability Challenges for Par-
ticle Accelerators

To carry out scientific measurements effectively, it is important that particle accelerators
deliver the desired beam collisions whenever required. Thus, the particle accelerator and
its many sub-systems must be reliable. Considering that particle accelerators often use
many complex sub-systems, which can be at technological frontiers and are produced in
small quantities, achieving high reliability can be challenging.



18 2. Particle Accelerators

Standard components of suppliers are often not qualified for use in particle accelerators
as suppliers have optimized their products for use in the main markets, such as consumer
electronics with much shorter life time requirements. Another limitation is that systems
in particle accelerators are often exposed to radiation. Specialized equipment for such
environments is costly and standard systems require specialized qualification campaigns
for usage in radiation environments [35].

The life cycle of a particle accelerator can span several decades. Within such long
periods, technologies evolve and specific expertise needs to be passed along generations
of engineers. The sheer size of machines, such as the LHC, cause maintenance challenge
due to the long distances to intervention sites. These factors pose further challenges in
achieving high reliability.

However, there are also factors that facilitate reliability projects for particle accelerators.
Many of their sub-systems are developed, built, operated, and maintained in-house. This
renders reliability efforts which aim at the whole system life cycle easier in comparison to
industries where systems are handed over to costumers after production and follow up on
reliability is more difficult. Additionally, particle accelerator systems are often operated in
environments with controlled temperature and humidity.

With the push to higher collision energies, future particle accelerators are expected to
increase in size, energy, and complexity by an order of magnitude in comparison to the
LHC. This generally translates to much stricter reliability requirements for each of the
sub-systems of a future particle accelerator to maintain LHC availability levels. At the
same time, the existing reliability challenges will be exacerbated by the increased size,
complexity, levels of radiation, and further specialization of employed technologies.

If existing strategies to achieve reliable systems are maintained, the reliability goals of
future particle accelerators will not be met. Hence, new methods for reliability improve-
ment have to be investigated.

In a range of potential strategies to overcome these challenges, data-driven methods
promise to improve the reliability of systems despite increases of complexity at moderate
investment costs. This thesis develops quantitative reliability optimization methods to
improve the reliability of particle accelerator systems by deriving reliability improvements
from the operational history of existing systems. The main subject of study are magnet
power converters, which are introduced in the following. The developed methods can be
generalized to other kinds of systems.

2.4 Magnet Power Converters
Magnet power converters supply a specific voltage and current waveform to magnets. The
controlled current in the magnets produce magnetic fields that precisely bend particle
beams through the Lorentz force. A schematic overview of a power converter is given in
Figure 2.4. It consists of a power part, a measurement part and a control part.

The power part receives electric power from an electric supply network and provides the
power to the magnetic circuit. The input can be alternating or direct current. The output
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Figure 2.4: Schematic overview of a power converter.

can take any desired waveform depending on the type of power converter. The power
is transformed in power electronics drive stages. The key types include power diodes,
Bipolar Junction Transistor (BJT), Metal–Oxide–Semiconductor Field-Effect Transistors
(MOSFET), Insulated-Gate Bipolar Transistors (IGBT), and thyristors. Heat dissipation
from power electronics can require active air or water cooling systems.

The measurement part senses the actual voltage and current supplied to the magnet
circuit. The control part (Function Generation Controller in Figure 2.4) receives the desired
output waveform from a centralized control system and regulates the power part to obtain
it at the output. It requires electronics hardware and software to translate the input signals
from the control system into the desired output waveform of the power converter.

External interlock signals for machine protection and safety purposes allow shutting
down the power converter operation in a safe manner. Additional magnet protection sys-
tems ensure that the energy stored in the magnetic circuit cannot cause damage. The
power converter parts can be combined in dedicated racks. Configurations with line re-
placeable units (LRU) allow to carry out repairs by replacing faulty units. Thereby, repair
times are reduced.

The control part collects monitoring and diagnostics data for the power converter. The
following data are commonly collected:

• Desired and actual voltage and current.

• Warnings, which indicate an error but do not lead to shut down of the converter.

• Faults, which indicate an error and lead to immediate shut down of the converter.

• Depending on the converter type additional monitoring signals, such as the temper-
ature, radiation levels, or current to ground, are collected.

Such operational data is used for the data-driven reliability studies presented in this thesis.
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Chapter Learning Summary

The next generation of particle accelerators is expected to be more complex than
existing infrastructures. Reliability approaches used for existing accelerators will not
lead to a satisfying operational reliability of such future infrastructures.



Chapter 3

Backgrounds

3.1 Reliability Engineering

Reliability engineering is an engineering discipline for applying scientific know-how to a
system (component, product, plant, or process) in order to ensure that it performs its
intended function, without failure, for the required time duration in a specified environment
[36]. A system S is defined as an aggregation of entities with a defined purpose. It has
a range of inputs I and outputs O through which it serves its intended purpose and it is
separated from its environment E through a boundary.

A system has a failure F when it fails to serve its purpose despite its environment and
inputs being within specifications. The failure can be characterized by a range of properties,
which are presented in Table 3.1. The first column shows the different terms to describe
a failure. The second column defines the terms of the first column. The second to fifth
columns show four different failure examples with their corresponding failure description.

Generally, operating systems leads to loads, which depend on system input, output and
environment. The loads cause internal stresses, which can lead to failures through specific
mechanisms.

In the broken phone screen example in Table 3.1, a very high load leads to overstress
and immediate failure. In this case, the load history of the screen is not relevant as the
failure would both occur in a new or old glass under the applied force. Contrary, in the
worn car tyre example, the history of loads reduces the tyre profile through a so-called
degradation or wear-out process. It is important to point out that the degradation-type of
failure can be forecasted easier due to its gradual development in time.

The first two failure examples are hardware faults with mechanical loads and stresses.
Hardware failures can also be driven by electrical, thermal, chemical, and other physical
stresses. The third and fourth example are software failures. The failure property con-
cepts were developed for the physical nature of hardware faults. Hence, they apply less
intuitively to software failures, which are of discrete and non-physical nature. In the third
example, an overstress concept still applies as the server demand exceeds its capacity. This
is comparable to the mechanical force exceeding the strength of the phone screen glass in
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the first example, albeit in a reversible manner. In the fourth example, the concept of
stress does not apply as the failure is due to a configurational incompatibility.

Quantitative Reliability Concepts The previous Section summarized the most im-
portant qualitative features of failures. To quantify and communicate the reliability of
systems, several mathematical concepts based on continuous probability functions have
been introduced.1

The probability that a system S is functional at time t is given by its reliability function
R(t) ∈ [0, 1]. Likewise, the probability of having failed up to time t is given by the
cumulative probability of failure (cdf),

F (t) = 1−R(t). (3.1)

For a fleet (also called population) of n identical systems, the cumulative probability of
failure can be approximated by the ratio of failed systems, F (t) ≈ F̂ (t) = nf (t)/n, with
nf (t) being the number of failed systems at time t.

If a system or component has multiple failure mechanisms, they can be aggregated to
calculate the combined failure behavior. For independently competing failure mechanisms
(i.e. one failure does not trigger another failure), the cumulative probability of failure
(cdf) of a system with M different failure mechanisms, each described by separate cdfs
Fj(t), j = 1, ...,M , is given by [37]

¯F (t) =
M∏
j=1

Fj(t). (3.2)

The probability that a system fails within a time increment [t, t + dt] is given by its
failure probability density (pdf) f(t)dt, which is the time derivative of the cumulative
probability of failure,

F (t) =
∫ t

−∞
f(t)dt. (3.3)

The failure probability density can be approximated by generating a normalized histogram
of the time-to-failure T of each system in a fleet.

The hazard rate h(t) describes the rate of failures per time per functional systems,

h(t) = f(t)
R(t) . (3.4)

It allows to distinguish three different failure behaviors: A decreasing, constant or increas-
ing hazard rate. Decreasing hazard rates may occur when manufacturing errors lead to
failures at the beginning of system use. This is called infant mortality. Systems with in-
fant mortality can be screened before they are put into operation. This, so-called, burn-in
removes systems from the population that would fail early. Some system exhibit constant

1The explanations below follow the contents of standard reliability textbooks [8, 6].
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failure rates, especially due to failures of non-physical nature - e.g. improper use. Most
systems will degrade and wear-out after some usage time, which leads to an increasing
hazard rate.

The first moment of the failure probability density function (pdf),

E[T ] = µ =
∫ +∞

−∞
tf(t)dt, (3.5)

is the Mean Time To Failure (MTTF) [8]. Naturally, the expressiveness of the mean is
limited for systems with non-constant failure behavior over time. It is possible to use higher
moments of the pdf to describe the behavior more accurately, or resort to parametric
on non-parametric models to quantify system reliability, which are covered later in this
Section.

The evolution of input, output and environment properties, as well as loads and stresses
of systems over time can be expressed as (vector-)valued functions, I(t), O(t), E(t), L(t)
and ξ(t), respectively.

Repairable Systems The introduced quantitative reliability concepts apply to non-
repairable systems. For repairable systems, the methods have to be extended to model
consecutive failures in time and the repair and maintenance activities.

The MTBF is the Mean Time Between Failures [8]. It can be calculated by averaging the
times a system works between consecutive failures. It can include maintenance activities,
which reduce the effective number of failures. Therefore, it shall not be confused with the
MTTF. The average duration of repair is expressed as Mean Time To Repair (MTTR) [8].
The system availability is given by,

A = time functional

time functional + time nonfunctional
= uptime

uptime+ downtime
. (3.6)

It asymptotically converges to

A∞ = MTBF/(MTBF +MTTR). (3.7)

Note that operational interruptions due to planned scheduled maintenance do not count
as downtime. Downtime occurs when the system is not functional despite being expected
to function.

Quantitative Reliability Modeling Reliability modeling allows to predict the system
behavior as a function of any relevant factors during a system life cycle. Relevant factors
usually include the operating conditions, manufacturing techniques, design choices, and
component supplier selection of a system but may also consider less tangible factors such
as the logistics and storage history of systems, the experience of maintenance teams, etc.
For the sake of brevity, all potentially relevant factors during a system life cycle can be
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denoted as X and the reliability metrics describing system behavior as Y. Then, the
problem of reliability modeling can be expressed as,

Y ≈ Φ(X), (3.8)
with Φ(·) being the reliability model, often using a probabilistic formulation. The more
accurate and the earlier in a system life cycle a the reliability model is available, the
greater its potential value for driving correct decisions and cost savings, according to Fig-
ure 1.1. Finding accurate reliability models and using them for deriving general permanent
reliability improvements within organizational contexts is the focus of this thesis. There
are different strategies to obtain such models. A distinction is commonly made between
data-driven, knowledge- (also model- or physics-) driven and hybrid approaches.

In a data-driven approach, the reliability model Φ(·) is automatically inferred from
observed data (X and Y) using statistical and ML methods. This will be discussed in
detail in a separate Section on ML techniques (see Section 3.3). For example, the profile
depth of a car tyre can be measured at different mileages. Then, X̂ would be the recorded
mileage, Ŷ would be the corresponding profile depth, and the reliability model Ŷ ≈ Φ(X̂)
can be obtained by regression. The obtained model can predict profile wear based on
mileage. However, the model implicitly assumes a certain type of tyre, car and usage
profile. I.e. it cannot be used to predict tyre wear for another kind of tyre, car or usage
condition. It is only valid under the conditions in which the training data was generated.
This is one of the major limitations of data-driven methods.

In the knowledge-driven approach, the reliability model Φ(·) is built from first princi-
ples, based on the a priori knowledge about the system and the problem domain. For the
car tyre example, a model of tyre wear can be derived with physical knowledge. It could
be based on the mechanical properties of the rubber a, the weight (distribution) of the car
b, the usage conditions c, and the strength of the car’s engine d. The model could take the
form Y ≈ Φ(X; a, b, c, d). The set a, b, c, d = θ are called parameters of the model. They
can be either be known from physics and domain knowledge or derived in experiments.
Such a model can be used for different tyres, cars, and usage conditions as they are explic-
itly modeled. Hence, in principle it can be considered superior to the data-driven model
of tyre wear. However, in many realistic settings, knowledge-driven models are either not
available or inaccurate.

In practice, modeling methods contain both data and knowledge-driven components
and can be considered hybrids. The parameter values and the model structure can be
known in advance or need to be determined from measurement data. Depending on the
ratio of data and knowledge-driven components in a model, they are classified respectively.
The modeling approaches in Chapter 6 and 8 are mostly data-driven, whereas the method
in Chapter 7 is a hybrid method.

A particularly useful and popular function for modeling reliability problems is the
two-parameter Weibull distribution [38]. It models the reliability of a system with two
parameters,

R(t) = exp
−( t

η

)β . (3.9)
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Its first parameter, η, characterizes the lifetime t at which 63.2% of the population of sys-
tems has failed. It is called characteristic lifetime or scale parameter. Its second parameter,
β, allows to model an increasing, constant, or decreasing hazard rate when setting β > 1,
β = 1, or β < 1, respectively.

Due to its simplicity, it can be useful to quickly identify whether a population of
systems exhibits unusual hazard rates. However, it cannot model arbitrary fault time
distributions due to its limited set of parameters. Generally, it is advisable to visualize the
failure characteristics of data sets before assuming that they follow any specific parametric
model.

Maintenance Strategies and Fault Tolerant Systems Maintenance is defined as any
activity intended to retain or restore a system in or to a specified state in which the system
can perform its required purpose [39]. This includes tests, measurements, replacements,
adjustments, and repairs. It aims to maintain or increase the reliability of a system during
its operational lifetime.

The historically most common approach to maintenance is to run a system until it fails
and return it to a functional state thereafter. This is called reactive maintenance. Since
systems may have very high downtime costs, preventive maintenance techniques have been
developed to avoid failures. E.g., drive belts could be regularly replaced to avoid failures.
Nevertheless, for certain systems in non-critical applications, reactive maintenance can be
the most cost-effective strategy. A trivial example is a living room light bulb for which a
regular replacement before a failure occurs would only increase the operational cost and
bear almost no practical advantage.

In the common time or cycle-based preventive maintenance method, maintenance is
carried out according to a fixed schedule. For example, the oil in a combustion engine
is replaced after a fixed mileage and some airplane checks are performed after a certain
amount of hours in flight. Such a maintenance strategy can increase the system lifetime and
prevent unplanned breakdown. However, maintenance plans are often very conservative
and result in unnecessarily frequent interventions.

It is important to know the hazard rate of the system for which maintenance is carried
out. For systems with decreasing hazard rates, preventive maintenance can lead to more
frequent faults because the new replacing systems exhibit a higher failure rate than the
replaced ones. When hazard rates are constant, preventive replacements do not change the
frequency of faults, but increase the cost.

To address these limitations, condition-based maintenance has been introduced. The
idea is to measure or infer the health of a system and perform planned maintenance shortly
before the system is about to fail. It promises to increase the reliability of systems in
comparison to reactive maintenance by repairing or replacing systems before they fail. In
comparison to preventive maintenance, it promises to decrease the maintenance costs as
unnecessary actions are not carried out.

Although superior in theory, the main drawback of this method is that it requires the
condition of a system to be measurable and failures predictable at a cost lower than the
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promised savings in comparison to reactive and preventive maintenance. This is the case
for systems such as car tyres, for which the profile depth can be easily measured at a
cost much lower than the tyre. However, for low cost electronic components, the cost of
measuring their condition may exceed their value by far.

Condition monitoring may still be justifiable if the failure of such low cost components
causes a high financial loss. However, a better strategy might be to employ some form of
redundancy, which ensures a functional system despite failures of some of its components.
This concept is called fault tolerance and it relies on four principles [40]: Redundancy,
Fault Isolation, Fault Detection And Notification, and On-Line or Scheduled Repair. Re-
dundancy means that the functionality of a system is distributed over several sub-systems.
Then, the overall system can carry out its function despite failure of one or several sub-
systems. Fault isolation requires that a failure in one sub-system cannot propagate to other
sub-systems, causing a chain of failures. Protective devices, local separation, and variation
of sub-systems can ensure this. Fault detection and notification implies that faults do not
remain undetected when a sub-system fails and that a repair team gets notified. Finally,
after the repair team gets informed, it has to carry out the repair of the failed sub-system
either during operation or in a scheduled maintenance stop.

This approach allows to achieve close to 100% availability. Nevertheless, in practice
such fault tolerant systems usually have design trade-offs which renders them vulnerable to
certain attacks or simultaneous failures of several sub-systems. However, the probability of
occurrence of such events can be reduced to a minimum for real systems. E.g., flight control
computers (See e.g. [41, 42]) conform to these principles and achieve quasi-continuous
availability in operation. A closer look at the robustness of biological systems reveal similar
principles at even higher levels of sophistication [43].

Cost models Cost models have been developed to quantify and compare the operational
cost of different maintenance and operational strategies. This thesis uses an adaptation
of the models proposed by Vachtsevanos et al [44] for electronic and electrical hardware
systems, which are the primary subject of investigations. It is composed of the cost of the
equipment (design, development, material, and production costs) ceq, the cost of repair
and maintenance activities Cr, and the cost due to downtime Cd. Adding these costs, the
overall life cycle cost can be expressed as,

C = Ceq + Cr + Cd, (3.10)

in a general form. Assuming an average cost per repair of internal failures cr and an average
cost per unplanned downtime event cd, the cost can be expressed as

C = neqceq + nrcr + ndcd, (3.11)

with nr being the number of repairs, nd being the number of downtime events during the
system lifetime, and neq the equipment cost factor to consider redundant configurations or
additional costs for condition monitoring. The formula can be generalized to account for
different failure modes and corresponding repair actions.
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The expression can be exemplified by comparing the cost of reactive, preventive, condition-
based maintenance, and fault tolerance solutions for a hypothetical power converter ex-
ample. In corrective maintenance, a system is run until it fails. Hence, the number of
downtime occurrences equals the number of repairs, nr,corr = nd,corr. For preventive main-
tenance, the system will be repaired before it fails. However, sometimes the system may fail
during operation, 0 ≤ nd,prev ≤ nd,corr. Still, the number of repairs will be larger than the
number of downtime occurrences, nr,prev > nd,prev. For condition-based maintenance, the
situation is similar to preventive maintenance. However, due to condition inspection, the
timing of maintenance is expected to be more precise. Hence, less downtime occurrences
and less repairs can be expected. The condition monitoring requires additional equipment
investment for sensors or routine inspections (here the inspection costs are seen as part of
equipment costs). For fault tolerance, downtime occurrences can practically be eliminated.
Load sharing on several redundant systems can lead to longer lifetimes due to lower stress
levels. However, the required redundancy leads to additional equipment cost.

Figures 3.1a and 3.1b show the life cycle cost for different maintenance strategies for two
hypothetical power converters with low (ceq,a = 100) and high (ceq,b = 10000) equipment
cost, respectively. The y axis shows the life cycle cost for the four different operational
strategies; corrective, preventive, condition-based maintenance, and fault-tolerance, de-
noted on the x axis. The color code marks the cost contribution due to equipment costs
(blue), repair cost (orange), and downtime cost (grey). In both cases the cost of repair cr
is 100, the cost of a downtime occurrence cd is 1000, and the cost of condition monitoring
is 100. However, depending on the equipment cost, the relative cost of the different oper-
ational strategies varies greatly. Hence, choosing the correct operational strategy depends
on various cost factors as well as the failure behavior of the considered system.

Table 3.2 lists the assumed numbers of repairs, downtime occurrences, and the equip-
ment cost (including condition monitoring and redundancy) in each row for the four dif-
ferent operational strategies in each column. The equipment cost is the only factor that
changes between the two scenarios. For low equipment costs, redundancy is the most
cost-effective solution. For high equipment costs, condition-based maintenance is more
cost-effective in this hypothetical example. Similar relations are observed in realistic set-
tings [24, 45] and in the investigated scenario in Chapter 7.

Reliability Simulation The operation of a system can be simulated to evaluate different
operational and maintenance strategies and their associated costs. This requires a relia-
bility model (equation 3.8), an operational cost model (equation 3.11), and a simulation
engine. Due to the probabilistic nature of failures and the statistical concepts describing
them, Monte Carlo simulations [46, 47] are often employed as simulation methods. The
principle is to carry out multiple simulations with parameters drawn from their probability
distribution. The results of all simulations are collected and their statistics calculated.

Thereby, different parameters and scenarios can be studied over the expected life cycle
of a system. Based on the results, the set of parameters with the best outcome in terms
of life cycle cost or reliability can be recommended to decision makers. Further details of
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Figure 3.1: Life cycle cost for different maintenance strategies for a hypothetical example
with (a) low equipment cost and (b) high equipment cost. For low equipment cost, fault
tolerance is the most cost-effective solution. For high equipment cost, condition-based
maintenance is the most cost-effective solution.
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Table 3.2: Example of cost parameters for different maintenance strategies for two power
converters (a and b) with different equipment costs.

Corrective Preventive Condition-Based Fault Tolerant
nr 10 16 14 8
nd 10 5 2 1
Ceq,a 100 100 200 220
Ceq,b 10000 10000 10100 22000
Ca 11100 6700 3600 2020
Cb 21000 16600 13500 23800

such a simulation approach are provided in Chapter 7.

Established Reliability Methods during System Life Cycles The system life cycle
has been introduced in Chapter 1, consisting of concept, design, production, field use, and
end-of-life. Throughout the life cycle, engineering decisions are made and project costs are
committed. The later an error, requiring a change of the system, is detected, the higher
its cost. Hence, reliability issues have to be avoided by ensuring that correct decisions are
made throughout.

Ideally, reliability methods guide engineering decisions from the very beginning of a
system life cycle. At the same time, in early life cycle stages, limited knowledge about the
system characteristics and usage are available. Successful reliability methods effectively
manage this conflict by providing systematic ways to make the required knowledge for
engineering decision support available early in a life cycle. In the following, a selection of
such methods, based on the author’s experience, common practice at CERN, and literature
[6, 8, 48], is presented. It is pointed out that depending on established procedures, the
optimal choice of reliability methods and used definitions may vary.

During the concept phase, the system specifications, (intended and unintended) usage,
reliability requirements, as well as how to measure them, are defined. Alternative system
concepts can be compared based on high-level reliability modeling and prediction. When
predecessors are available, their strengths and weaknesses are assessed. Good practice is
reused for the new system, whereas weak aspects are eliminated or improved.

During the design phase, more detailed information about the system emerges. Failure-
Modes-and-Effect-Analysis (FMEA) [8] is carried out to identify and prioritize potential
weaknesses of a system and mitigation measures based on pooling expert knowledge and
experience. Based on the FMEA output, fault tolerance schemes, reliability testing, or spe-
cific maintenance strategies are further investigated for their suitability to mitigate certain
identified risks. Furthermore, groups of experts carry out in-depth design reviews. Towards
the end of the design phase, prototypes and their associated data recording mechanisms are
available. They allow functional and stress tests, such as Accelerated Life Testing (ALT)
[49]. Weaknesses are identified and resolved before a system enters mass production.
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During the production phase, various quality methods ensure conformance to produc-
tion specifications. Functional (reception) tests can assure correct handling during all
phases of production and assembly.

During field use, operation is monitored and failures are reported. Operational faults
need to be analyzed by project stakeholders and mitigation measures identified. Repair
and maintenance is carried out in either a reactive, preventive or condition-based manner.
Depending on the behavior of the system, maintenance and operation strategies can be
adapted.

During end-of-life, reusable parts of the system are identified. Strengths and weaknesses
of the system are analyzed and communicated to future systems’ project teams with the
goal of achieving a continuous improvement of reliability and preventing repeated mistakes.
As usually a range of comparable systems are managed at different life cycle stages at the
same time, insights obtained from one system can be utilized in other systems. Hence,
communication of reliability insights to other project teams is advisable at all life cycle
stages.

3.2 Data, Information and Knowledge
The terms data, information and knowledge are used extensively throughout this thesis.
To avoid confusion, the definition by Liew [50] is followed:

• "Data are recorded (captured and stored) symbols and signal readings. Symbols in-
clude words (text and/or verbal), numbers, diagrams, and images (still &/or video),
which are the building blocks of communication. Signals include sensor and/or sen-
sory readings of light, sound, smell, taste, and touch. As symbols, ‘Data’ is the
storage of intrinsic meaning, a mere representation. The main purpose of data is to
record activities or situations, to attempt to capture the true picture or real event.
Therefore, all data are historical, unless used for illustration purposes, such as fore-
casting.

• Information is a message that contains relevant meaning, implication, or input for
decision and/or action. Information comes from both current (communication) and
historical (processed data or ‘reconstructed picture’) sources. In essence, the purpose
of information is to aid in making decisions and/or solving problems or realizing an
opportunity.

• Knowledge is the (1) cognition or recognition (know-what), (2) capacity to act (know-
how), and (3) understanding (know-why) that resides or is contained within the mind
or in the brain. The purpose of knowledge is to better our lives. In the context of
business, the purpose of knowledge is to create or increase value for the enterprise
and all its stakeholders. In short, the ultimate purpose of knowledge is for value
creation."
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Liew explains further that the source of data and information lies in activities and situa-
tions. In the case of reliability studies, activities could be repairing a system and situations
could be the condition leading to a fault of a system. These activities can be captured and
stored in some database, which leads to data, and/or a human being can absorb and un-
derstand the activities and situations, recognize relationships and derive desirable actions,
which leads to knowledge.

In this thesis, methods are developed to effectively combine specialized data (of engi-
neered systems as recorded in databases) with specialized knowledge (as internalized by
system experts) to extract information and new knowledge to improve the reliability of
systems cost-effectively.

3.3 Artificial Intelligence and Machine Learning
In a previous paragraph on reliability modeling, the data-driven approach was introduced.
It is based on inferring the relationship between relevant factors during a system life cycle
X and reliability metrics Y from observed data using ML. ML is a sub field of AI. AI
is any kind of intelligence demonstrated by machines. ML is the ability of algorithms to
improve from experience, commonly encoded in data.

Supervised Machine Learning When the data is available in two sets, e.g. system
monitoring data X and reliability metrics Y, and the goal is to learn a relation Y ≈
Ŷ = Φ(X) between the input data X and the target or output data Y, the task is called
supervised learning. When the target data is discrete, the problem is called classification
and when the target data is continuous, the problem is referred to as regression. The
following paragraphs give a practical introduction to the most relevant aspects of applying
ML. Readers are forwarded to the literature for a more detailed treatment. E.g. the books
by Hastie et al [51] and Geron et al [52] are a good starting point and form the basis for
the following paragraphs.

Regression Contrary to the knowledge-driven approach, where a model Y ≈ Ŷ = Φ(X)
is derived from first principles, in the data-driven approach, it is learned from a train-
ing data set Ytrain,Xtrain = (y1, ..., yN)train, (x1, ..., xN)train, with N being the number of
samples in the data set.

This is exemplified on a hypothetical data set of car tyre profile wear. Figure 3.2
shows the training data set. The blue dots depict the measured profile depth (y axis) as a
function of the mileage (x axis). The only feature of the data set is the mileage measured in
kilometers and its target variable is the measured profile depth, which should be modeled.
In the language of statistics, the mileage would be the independent variable and the profile
depth the dependent one.

The data was obtained by performing profile depth measurements for several cars on
an irregular basis. It is known that the data is collected for a single type of tyre. Only
the front right wheel was measured. The car types are not known. There are only a few
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Figure 3.2: Raw collected data of tyre wear.
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Figure 3.3: Linear fit to raw data.

data points, which is common for reliability problems. Although many ML techniques
have been developed for applications with large data sets, several methods perform well
on small data sets as well. In the following, a simple example of such a ML technique is
introduced and the common steps in a ML project are carried out.

One of the simplest models to express the observed relation is a linear model, Ŷ =
θ0 · X0 + θ1 · X1 = XT · θ. Its parameters θ = (θ0, θ1) are obtained by minimizing the
squared error, SE(θ) = ∑N

i=1(yi−xTi ·θ)2 = ∑N
i=1(yi− ŷi)2. The solid blue line in Figure 3.3

shows the best fit to the data obtained by the described linear regression principle.

Data Cleaning and Validation Notably, the function misses the evolution of the data.
This is due to the many profile depth values that are zero. Apparently, some tyres are
still used despite not having any profile left. However, this is not the process that should
be modeled. Therefore, the data points with a profile depth of zero are removed from the
data set.

Such preliminary visualizations and tests are referred to as data cleaning and validation.
It is one of the first and most important steps in a machine learning project as ML models
can only be as accurate and valid as the data that describes the process of interest.
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Figure 3.4: Linear fit after cleaning data. Fit to data before cleaning captured wrong
trend.

Regression Metrics The red solid line in Figure 3.4 shows the best linear fit to the
data after cleaning it by removing data points with a profile depth of zero. Based on visual
inspection, the trend is better captured using the cleaned data set only. To quantify the
error between the model and the data, error metrics are used, such as the squared error
(as used for regression above),

SE =
N∑
i=1

(yi − ŷi)2, (3.12)

the mean-squared-error,

MSE = 1
N

N∑
i=1

(yi − ŷi)2, (3.13)

or the mean-absolute-error
MAE = 1

N

N∑
i=1
|yi − ŷi|. (3.14)

For the model fits in Figure 3.3, an MSE of 0.267 is obtained on the training data set for
the linear model before cleaning. After cleaning the MSE drops to 0.038, as is also visually
evident in Figure 3.4, which shows the fit after cleaning the data. This confirms that the
fit has improved after cleaning the data.

Overfitting The error obtained on the training data is not a good indicator for the
quality of a model. If a high order polynomial model is fitted to the training data, it
achieves an MSE of 0.006, which is better than the linear model.

Looking at the fit in Figure 3.5, it is obvious that it does not accurately capture the
relation between mileage and profile degradation. The polynomial fit oscillates strongly
between the data points. This process is called overfitting. The opposite extreme would be
to choose a constant function, e.g. the mean, Ŷ = 1/N ∑N

i=1 yi, and is called underfitting.
For such a simple example with only one feature it is easy to pick the right complexity

of a function by visualizing the fitted curves. However, for high-dimensional problems, it
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Figure 3.5: High order polynomial function achieves lower MSE than linear fit. However,
it does not capture the trend correctly: Overfitting

is not possible to judge based on visual inspection. A general approach to select the most
appropriate model for a data set is presented in the following.

Model Comparison and Performance Estimation To estimate the performance of
a model, the available data is split in several sets. Even before the data is explored and
inspected, a test set is separated and not used until the final evaluations of the model.2 Only
when no information about the test set is available during model development, an unbiased
estimate of model performance can be obtained. All the data exploration, cleaning, and
model development is carried out with the remaining data set. Since often several different
models (linear model, polynomial model of third order, and polynomial model of n-th
order) are trained, they need to be compared. Therefore, the remaining data set is further
split in training sets and evaluation sets.

A popular choice for small data sets is K-fold cross-validation. It splits the data set
into K equally sized parts or folds. Then each of the K folds is used for model evaluation
and the remaining K-1 set for training. Thereby, mean and variance of K validation errors
can be obtained, which allows a comparison of different models.

For data without sequential order or time dependence, the data can be shuffled before
being split in different sets. If the data is sequential or time-dependent, the order of the
data should be maintained for unbiased performance estimates of the trained models. E.g.,
when the data are time series of the extend of a glacier from 1980 to 2010, the test set
should be the time series after a specific year and the training and validation sets should be
the time series before that specific year. Shuffling the data before splitting would introduce
a bias.

Bias More data, Ynew,Xnew, has been collected for the car tyre example. It is plotted
together with the formerly used training data in Figure 3.6. Apparently, the new data shows

2The previously carried out steps should have only been carried out after a test set has been separated.
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Figure 3.6: Evaluation of linear fit on cleaned data on newly arrived test data. Apparently,
data collection for initial data was biased.

a different relation between mileage and profile wear in comparison to the previously used
old data.

Further investigations reveal that the old data has been collected from the countryside
with particularly little traffic and no highways, whereas, the new data has been collected
in a metropolitan area. It seems that the linear model obtained on the data from the
countryside has a very limited validity outside the countryside.

This is an example of data collection bias. It reflects that data-driven models are limited
by the quality of the data they are trained on. It can be addressed by careful attention
during data collection and precise documentation of the limits of data-driven models. The
topic is further discussed by Baer [53].

Explainable AI Besides predicting target variables, ML models can also be used to
gain insight into problems. Formally, Explainable AI aims to make predictions by AI
solutions be understood by human experts [25]. For the car tyre example, a more detailed
understanding of profile degradation and its influencing factors is required.

Based on a limited a priori physical understanding, it is decided to additionally collect
the strength of the vehicle, as well as the drivers’ behavior using acceleration monitors
fitted to the cars. Hence, the data has now three features and one target variable: the
engine strength, the driver behavior (average acceleration normalized to one), the mileage,
and the measured profile depth. The data was collected for 20 drivers. Their profile depth
and mileage were measured 15 times for each driver. This results in a data set of dimension
(20, 15, 4).

To obtain an unbiased estimate of the model performance, a test set of five drivers
is separated from the collected data. All the following steps are only carried out on the
remaining data set. Figure 3.7 shows the input and output data after data items with a
profile depth of zero were removed as for the previous example. On the diagonal, histograms
of each feature are plotted. On the off diagonal plots, each variable is plotted as functions
of each other variable. There is a clear correlation between mileage and profile depth. For
other variables, no clear dependence is visible.
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Figure 3.7: Scatter plot of new extended multivariate data set, containing engine strength,
driver behavior, driven mileage, and tyre profile depth as variables. Histograms of each
variable the diagonal. Scatter plots of all combinations of any two variables on off-diagonals.
Clear dependence only visible for profile depth as function of mileage driven.
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Figure 3.8: Feature weights (θ1) of the linear multivariate model fitted to training data.
Learning a model based on all features improves the predictive performance of the model.
Hence, all features are considered relevant. The mileage is the most important feature.

A first attempt to quantify the dependence is to fit a multivariate linear model, Ŷ =
θ0 +XT θ1 to the data and inspect its parameters θ1, which reveal the relative importance
of the features. When trained on the data set, the multivariate model has an MSE of 0.09
on the test data set. The univariate model, which only considers the mileage as feature,
achieves an MSE of 0.27. Hence, the model improves when using the additional features.

The relative importance of each feature, θ1, is plotted in Figure 3.8. The importance
(feature weight) is plotted on the y axis and the features on the x axis. The mileage remains
the most important feature, but the driving behavior and engine strength are relevant too.
However, based on the feature weights it cannot be concluded that driving behavior and
engine strength are among the causal factors of tyre wear. This can only be judged by
having a physical understanding of the processes leading to tyre degradation. Still, the
outcome of the explainable model can guide the search for the causal physical processes.

This trivial example shall demonstrate the idea of explainable AI. In realistic settings,
problems may have thousands of features and ML models are nonlinear and have thou-
sands of parameters. In such a so-called black box scenario, it is much more difficult to
interpret predictions of the model. The usefulness of explanations can be assessed within
the organizational context that they are used in. They are useful if they help stakeholders
in effective and timely decision making. Holzinger et al [54] proposed a system causability
scale to evaluate the usefulness of explanation methods in use. Samek et al give a gen-
eral overview of the recent state of the art in explainable AI [55]. An application of such
methods is presented in Chapters 6 and 8.

Classification The car tyre problem can be reformulated by defining a profile depth of
0.5 mm as the lower limit for an acceptable tyre. This transforms the binary variable
from being continuous to being discrete. Instead of the profile depth, a model can predict
whether the car tyre is acceptable or not. This is a (binary) classification problem. The
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Figure 3.9: Reformulation of problem as classification problem by defining a threshold for
acceptable car tyre profile depth. A classifier aims to find a separation boundary between
class ’acceptable’ (orange dots) and ’not acceptable’ (blue crosses).

transformed data of the car tyre example is plotted in Figure 3.9 in the plane spanned by
the mileage and driving behavior features. The orange dots mark the acceptable profile
depths and the blue crosses not acceptable profile depths. There is no clear separation
boundary visible between the two classes, which makes it difficult to obtain an ’accurate’
classifier based on the mileage and driving behavior features.

Classification Metrics Classification problems require different metrics than regression
problems. A frequently used metric is the accuracy. It is the fraction of correct predictions
among all predictions made by a model,

accuracy = number of correct predictions

total number of predictions
. (3.15)

However, the car tyre data set can be used to show a major drawback of the accuracy metric.
A trivial model that always predicts the tyre to be acceptable, achieves an accuracy of 0.94
for the data collected. This appears to be very good, but is clearly the wrong model. The
reason for the high accuracy is that the ’acceptable’ class is far more frequent in the data
set than the ’not-acceptable’ class. Such a situation is called imbalanced data set.

The so-called confusion matrix is a more robust way to measure classification perfor-
mance. It counts the number of true positive (TP, not acceptable tyre classified as not
acceptable), true negatives (TN, acceptable tyre classified as acceptable), false positives
(not acceptable tyre classified as acceptable), and false negatives (not acceptable tyre clas-
sified as acceptable) classifications in a matrix.3 The trivial model, which would classify
all tyres as acceptable, would achieve 0 TPs, 136 TNs, 8 FPs, and 0 FNs. Despite not
having classified any worn tyre correctly, this yields a high accuracy.

Precision, recall, and F1 score are better suited metrics for imbalanced problems. Pre-

3Note that here positive corresponds to the ’not acceptable’ class, which might seem counter-intuitive.
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cision is defined as the ratio of TPs over all positively classified items,

precision = TP

TP + FP
. (3.16)

Recall is the fraction of TPs selected from all actually positive items,

recall = TP

TP + FN
. (3.17)

The harmonic mean of precision and recall is the F1 score,

F1 = 2 · precision · recall
precision+ recall

. (3.18)

The trivial classifier would achieve a precision, recall and F1 of 0.

Imbalanced Learning In reliability problems, it is common to have imbalanced data
sets, e.g. less examples of failed than functioning systems. It is often more important not to
classify an erroneous system as functioning (FN) than vice versa (FP). In such cases, class
weights can be assigned to reflect that importance. Alternatively, so-called re-sampling
strategies can be employed. Thereby, either the more frequent class can be reduced (down-
sampled) or the less frequent class can be expanded (up-sampled) until the desired class
balance is obtained. In the simplest case, random removal or duplication of data items is
employed. More complex sampling strategies, such as SMOTE [56], synthetically gener-
ate data items which are similar to existing data items by using certain generation rules.
For data accessible to human intuition, such as images or sound, it can easily be judged
whether such rules are appropriate. E.g., for an image of a dog, a slight rotation or stretch-
ing of the dog does not turn it into a cat. However, for more complex data, such as system
monitoring data, it cannot be judged upfront whether certain transformations of the data
change its information content. Therefore, advanced sampling strategies need to be em-
ployed with caution in complex data scenarios. An overview of strategies for imbalanced
data sets is provided by He et al [57] and an example of a sampling strategy for complex
system monitoring data is provided in Chapter 6.

Learning Summary

Reliability Engineering is the technical discipline which aims to improve the relia-
bility of systems. Recent developments in data science have the potential to lead to
methods for the cost-effective reliability optimization of systems.



Chapter 4

Literature Review

To gain an understanding of the state-of-the-art in the domain of data-driven reliabil-
ity optimization, a literature review is carried out. This chapter addresses the relevant
literature shared by all research questions introduced in Chapter 1. Literature uniquely
related to each of the three scenario-specific research questions are presented separately in
Chapters 6-8, respectively.

An overview of the relevant research areas is given in Section 4.1. This includes the
area of analytics, reliability optimization, and prognostics. The section concludes with
a definition of data-driven reliability optimization and discusses its relation to the other
relevant research areas mentioned.

In Section 4.2, current limitations of data-driven reliability optimization are discussed
with a focus on the development, implementation, and adoption of such methods in orga-
nizational contexts.

4.1 Literature Overview
Data-driven reliability optimization as technical term is not frequently used in the reliabil-
ity studies literature. Therefore, this section provides an overview of related research areas
as well as a definition and demarcation of data-driven reliability optimization to other rele-
vant research areas, such as prognostics in reliability engineering and the multidisciplinary
analytics field.

Analytics Nelson [58] defines analytics as ’a comprehensive, data-driven strategy for
problem solving’. Its precise definition is under debate [59]. Generally, it can be viewed as
the connecting tissue between data and decision making and is a sub-field of the vaguely
defined data sciences.

The topic is divided in descriptive, predictive and prescriptive analytics, which aim
to describe, predict or provide ways to change the outcome of a process, respectively.
Analytics builds upon use of mathematics, statistics, data, and expert knowledge to create
any form of benefit.
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Reliability Optimization Reliability optimization aims to optimize an objective func-
tion given decision variables and constraints. The objective function usually represents
reliability or cost. The decision variables can be tuned to maximize the objective function.
Examples include system configuration, component choice, and redundancy allocation. The
constraints represent boundary conditions, such as physical, cost, or reliability constraints.
[60]

Reliability optimization has been established in the mid of the twentieth century. It
has evolved from static and exact to dynamic and approximate solutions for optimization
problems to better reflect practical needs. Future challenges involve the integration of con-
tinuous streams of data in modern interconnected systems, the ability to adapt to changing
systems and environments, and the accounting for uncertainties in the optimization pro-
cess. [60, 61]

Prognostics Prognostics in engineering sciences is defined in ISO13381-1 as ’an estima-
tion of time to failure and risk for one or more existing and future failure modes’ [62]. As
such, it allows to perform predictive maintenance which leads to reduced operational costs
of systems.

Defining Data-Driven Reliability Optimization Data-driven reliability optimiza-
tion is the application of predictive and prescriptive analytics to reliability studies. Its
goal is to increase the reliability of systems and decrease their life cycle costs. It shares
the goals of reliability optimization and tackles its aforementioned open challenges with
modern analytics approaches.

(Data-driven) Prognostics can be classified as data-driven reliability optimization with
a narrower objective of forecasting the precise end of life of certain systems and provide
strategies to deal with it. As explained in Chapter 1, the biggest potential for reliability
improvement and life cycle cost savings is at the beginning of a system life cycle. However,
prognostics acts at the end of the life cycle, which limits its potential benefits.

Data-driven reliability optimization aims to enable problem solving and decision making
at all stages of the system life cycle, particularly at early stages when the potential benefits
are largest.

Quantitative data-driven reliability optimization uses quantitative methods to achieve
these goals. It is the primary topic of this thesis.

4.2 Existing Limitations of Data-Driven Frameworks
for Reliability Optimization

In this section, current limitations of data-driven reliability optimization are discussed
with a focus on the development, implementation, and adoption of such methods in or-
ganizational contexts. A large fraction of available literature on data-driven reliability
optimization is focused on the sub-fields of prognostics and predictive maintenance. Since
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the general approach of prognostics overlaps with that of data-driven reliability studies,
except for having narrower objectives, it is possible to generalize limitations from prog-
nostics and predictive maintenance literature. Hence, the limitations outlined below are
based on a meta-review of survey and review articles in the fields of prognostics and gen-
eral reliability engineering. These limitations are the inability of current methods to deal
with the complexity and uncertainty of realistic settings, that infrastructures cannot meet
the minimal requirements current methods pose, that organizations can not meet minimal
requirements of current methods, and that the focus of current methods on predicting
remaining useful life is too narrow.

Complexity and Uncertainty in Realistic Reliability Problems Zio [63] states
system modeling and representation, model quantification, and uncertainty-quantification
of model and system behavior as the main challenges of reliability engineering. Increasing
functional requirements of modern systems often lead to systems at the frontier of tech-
nology and complexity. Failures can always occur as emergent behavior when multiple
such complex systems interact in dynamic environments. Good model representations and
quantification for such failure behavior are almost impossible to provide. Reliability op-
timization techniques have to continually evolve to match the complexity requirements of
modern interconnected systems [60].

Data-driven reliability optimization methods struggle to keep up with the pace of tech-
nological developments. Existing studies are mostly carried out on a component level, often
considering only single failure modes. However, in reality systems are composed of many
components and are affected by multiple, often overlapping failure modes and mechanisms
[17, 64, 65]. Many studies do not account for the dependence of failure mechanisms on mul-
tiple factors [66]. Dynamic environments and unforeseen inputs can often not be robustly
handled by data-driven methods [19]. Degradation does not only happen during operation
of systems. Systems are exposed to stresses during transport, storage and installation,
which can remain unobserved by monitoring systems.

The lack of suitability of developed methods for realistic problem settings is exemplified
in an informal study by Hodkiewicz et al [16]. Of all 64 published papers in IEEE Trans-
actions on Reliability in 2013 which proposed reliability models, they found that only in 7
papers it was attempted to validate the developed methodologies with field data including
any description of the data collection.

Uncertainty in reliability problems arises from several sources. The limited knowledge
of the future usage of systems poses an irreducible uncertainty. Reducible uncertainties
arise due to the limited available data of system degradation which is expensive to gen-
erate, the limited understanding of failure mechanisms, and the limited availability of
accurate modeling options [64]. Therefore, an uncertainty-quantification and propagation
throughout all steps in reliability modeling is essential. Some methods are suited for han-
dling of uncertainty whereas others, such as neural networks, are less suited [67, 17]. The
limitations of existing data-driven methods make industrial success stories rare [19, 17].
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Infrastructures cannot Meet Minimal Requirements of Methods Proposed in
Literature Methods proposed in the literature frequently require a well-functioning mon-
itoring of equipment and existing data sets of run to failure data. However, many organi-
zations cannot meet these requirements [17]. Especially the required sensors and associ-
ated data acquisition systems for monitoring are expensive to install in existing and new
machinery. Moreover, dedicated sensing equipment may be unreliable itself, can require
maintenance, and needs regular calibration. Given that the expected benefits of such in-
vestments are not certain, many organizations do not install dedicated sensor systems for
reliability purposes [20, 21].

However, most machinery already log operational data through their control systems.
This data may provide condition monitoring and reliability information at no additional
cost. Some successes using such data have already been reported [23].

Organizations can not Meet Minimal Requirements of Methods Proposed in
Literature Organizations face severe challenges when choosing and implementing data-
driven reliability optimization methods. Existing studies have identified several reasons.
Sikorska et al [17] and An et al [68] criticize that existing review papers focus on math-
ematical aspects of different methods instead of the value of the methods for reliability
optimization in the respective domain context. Furthermore, Sikorska et al suggests that
approaches proposed in the scientific literature are not developed by problem solvers but
by mathematicians with the desire to fit models to problems [17]. Elattar et al [69] and
Nguyen et al [65] point out that there is a lack of standardized approaches which would
help practitioners navigate the vast choice of options.

Tiddens et al [22] showed that practitioners choose the methods for reliability optimiza-
tion based on the experience of project stakeholders or other companies and availability of
ready-to-use implementations instead of systematically choosing an appropriate approach
from the beginning. This often leads to an expensive trial and error approach. Further-
more, objectives and needs of implementing data-driven methods are not defined upfront.

Another frequently encountered challenge is the provision of data, which can meet
the requirements of the developed methods and subsequently support effective decision
making. Hodkiewicz et al [16] points out that only a fraction of organizations can provide
the data for basic decision making. They propose a universal metric to measure data
fitness for purpose and organizational incentives to improve data quality [70, 71]. Tiddens
et al observed that the quality of data within an organization improves with experience in
dealing with data-driven methods [22].

Other problems in data collection are the lack of standardized ways for data collection
[20, 68] and the lack of knowledge of failure modes which should define the relevant data
to collect. Besides the inability of organizations to collect meaningful data, the general
scarcity of useful data leads to few scientific methods being evaluated on data sets from
the field [16]. An et al encourages the sharing of data sets [68] as the existing benchmark
data sets are limited in their usefulness, as is also pointed out by Eker et al [72].
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Narrow Focus on Predicting Remaining Useful Life Data-driven prognostics, focus
on the accurate prediction of the remaining useful life of components. As pointed out by
Sun et al [21], prognostics can provide many additional benefits across the system life cycle.
Especially when it can be used to improve the next generation of systems at early life cycle
stages, the expected cost benefit is largest.

Such opportunities are partially identified by research in reliability optimization. How-
ever, latest developments in dynamic data availability, algorithmic capabilities and prac-
titioners needs have only been partially exploited towards the goal of cost-effective data-
driven reliability optimization [60, 61].

Chapter Learning Summary

Existing challenges for data-driven reliability optimization methods include that
methods are not fit for the complexity realistic settings, require data that can hardly
be provided, and are not sufficiently considering organizational objectives and con-
texts.
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Chapter 5

Methodology

5.1 Overview
The goal of this thesis is to resolve existing practical limitations of data-driven reliability
optimization methods in organizational contexts to unlock their potential for cost-effective
reliability improvement. The general approach to achieve this goal involves three steps:

1. The first step is to identify the state-of-the-art and its limitations. This is covered
in Chapter 4.

2. The second step aims to improve upon the state-of-the-art. This is done by under-
standing the limitations of existing methods and proposing a general methodology for
the development and implementation of data-driven reliability optimization methods
that address these limitations. This general methodology is introduced in Section 5.2.
The methodology is then used to develop reliability optimization methods for three
realistic scenarios in Chapters 6-8. These three scenarios correspond to the three
research questions introduced in Chapter 1.

3. The third step aims to (1) verify that existing practical limitations have been ad-
dressed for the three realistic scenarios and that the proposed general methodology
is useful, (2) identify missing links to use the developed methods from Chapters 6-8
for cost-effective reliability optimization in organizational contexts, and (3) derive a
generalized framework by combining previous findings, which addresses the Umbrella
RQ introduced in Chapter 1. The methodology for these three sub-steps is described
in Section 5.3 and executed in Chapter 9.

5.2 Constructive Methodology
The success of an analytics project can be facilitated by following established implemen-
tation guidelines. CRISP-DM is the Cross-Industry Standard Process for Data Mining
[73]. It is the most widely used guideline for data mining projects across application fields
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[74, 58]. It separates the overall project into six phases - Business Understanding, Data
Understanding, Data Preparation, Modeling, Evaluation, and Deployment. Steps can be
repeated, the order does not have to be followed strictly, and the implementations can be
updated continuously.

The CRISP-DM methodology provides guidelines that are expected to address most
of the mentioned difficulties of data-driven reliability optimization projects. Hence, it is
chosen for the development and implementation of methods in this thesis. However, it
is slightly modified to address the mentioned difficulties better. The modifications are
described below.

Based on the findings of the literature review in Section 4.2, it is concluded that many
data-driven projects in reliability studies fail due to insufficient amount and quality of
data, unclear objectives, and inappropriately selected methods. Insufficient data cannot
be quickly fixed, as reliability data collection is usually a costly and lengthy process.
Therefore, an iterative implementation process would come to a halt after it has been
discovered that sufficient data does not exist and cannot be obtained under the project
effort and time constraints.

To avoid such unplanned project failures, utmost importance is paid to initial phases
of the CRISP-DM methodology of Business and Data Understanding. Moreover, a third
phase of Model Understanding is added in projects of this thesis. It ensures that the right
modeling approach is chosen with respect to the required decision objectives and available
data.

These three initial phases verify the feasibility of a data-driven reliability optimization
project in a structured manner, before any implementations take place. The project im-
plementation, consisting of Data Preparation, Modeling, Evaluation and Implementation
phases, is only executed after the feasibility of the project and its requirements have been
established.

Figures 5.1a and 5.1b show the original and the slightly modified methodology with
all its phases, respectively. In Figure 5.1b , the separation between project assessment
and project implementation is more emphasized to reflect that project implementation is
only executed after project feasibility has been properly assessed. Moreover, the Model
Understanding phase is added.

Each of the phases is described in more detail below. They are guided by the CRISP-DM
recommendations but slightly adapted for data-driven reliability optimization projects.

5.2.1 Project Assessment
Project Assessment ensures that a data-driven reliability optimization project can be car-
ried out before any implementations begin. It is structured as follows.

Assess Objectives and Decision Variables - Business Understanding The first
step is to identify the objective and the means, i.e. the decision variables, by which it can
be achieved. E.g., the objective could be to improve reliability through choosing a reliable
microcontroller and the decision variables three different suppliers of microcontrollers. The
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(a)

(b)

Figure 5.1: (a) The original CRISP-DM methodology. [73] (b) Adapted CRISP-DM model.
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identification of objectives and decision variables has to be carried out together with all
relevant stakeholders. This avoids misunderstandings and ensures that all decision variables
are covered. The objective should be converted into a measurable quantity, such as cost,
reliability or a combination thereof. The method to estimate the degree of achievement of
the objective should also be agreed on.

Assess Analysis and Modeling Methods to Support Objectives - Model Under-
standing The appropriate methods to achieve the defined objective need to be selected.
Matching the desired optimization objective with the method output narrows down the
choice of potential methods. Then, a literature review helps to select the best method
among the remaining pool of methods.

E.g., to choose between different suppliers for a microcontroller, one could compare their
specification sheets, evaluate the past experience with the different suppliers, or perform
a reliability test. For the microcontroller example, a literature review could reveal that
the specification provided by the suppliers and evaluating past supplier experience are
insufficient or misleading. Hence, reliability testing has to be carried out.

When no suitable method for the considered objective is available, existing methods
can often be modified to address the considered objective. A literature review can help
identify potential modifications and methods.

Assess Data Availability and Quality - Data Understanding The pre-selected
methodologies require inputs in form of data and knowledge. At this stage, it is assessed
whether the required data and knowledge is either already available or can be collected.

Based on recommendation from Hodkiewicz et al [16], data availability and quality is
assessed with an hierarchical framework. For each method the minimum and optimal data
and knowledge requirements are known. Then the actual data and knowledge availability
is compared against its requirements. If the actual data fulfills the minimum requirements
of a method, the approach can be implemented. If not, it has to be decided if it is possible
to collect the missing data and knowledge or to exclude the method from the pool.

E.g., for the microcontroller supplier selection example, the necessary data from a
quantitative reliability test needs to be obtained by setting up and running the reliability
test. Depending on the project budget this may be feasible or not.

Feasibility Check The coherence of objectives, means, methods, and available data and
knowledge are confirmed before implementing and executing the data-driven optimization
method. Sufficient software, hardware, and time resources for implementing the modeling
strategies need to be available.

5.2.2 Project Implementation
The steps of the project implementation are described in detail in the methods Chapters 6-
8. Here an overview is given.
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Data Preparation The missing data and knowledge is collected by

• running experiments,

• interviewing system experts, and

• literature research.

Readily available data is cleaned, validated with system experts to ensure data quality
meets its requirements, and stored in an accessible format.

Modeling The modeling implementation approach strongly depends on the chosen mod-
eling strategies and is described in detail in later Sections. It is beneficial to employ several
methods in parallel and compare their outputs. Whenever a novel method is implemented,
all functionalities are first verified on a known test problem. When the novel method passes
this test successfully, it is applied to the actual problem.

Evaluation Conformance to requirements and organizational objectives need to be en-
sured. Validation ensures that the implementation and its outcomes serve the organiza-
tional needs. This is carried out in the evaluation phase.

Deployment and Decision Making Successful implementation of the optimization
method allows to determine the decision parameters which lead to the best outcome.
Project stakeholders are informed about the recommended decisions and its justification.

Follow-Up and Iterative Improvement To validate that the suggested decisions are
actually leading to the desired outcome in the long term requires follow-up after implemen-
tation. Feedback from follow-up can be used to further improve the developed methodol-
ogy. Moreover, data-driven projects often produce additional insights which trigger new
projects. Therefore, the developed frameworks should not be treated as static solutions but
continuously evolved and adapted. Successful implementations can often be reused for re-
lated projects due to the modular structure of data-driven frameworks. This is represented
by the outer circle in Figure 5.1b.

5.2.3 Limitations of the Constructive Methodology
The research for this thesis has been carried out over three consecutive years. It was
originally framed as initial exploratory research into data-driven reliability optimization
methods applied to power converters at CERN. A list of limitations results thereof.

Long term validation of reliability optimization often needs follow up which surpasses a
three year period. Therefore, whenever possible, the methods were constructed as if they
were implemented a years ago. Using data up to a years ago, the method was developed,
and using data from a years ago until the actual date of the research being carried out,
the method was validated. The specific choice of a depends on the project horizons.
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As a result, additional data collection was often limited because it would have concerned
historic systems and problems for which data could often not be generated at a later point
in time. A positive side effect is that thereby the used data is representative for the quality
and amount of pre-existing data sets in organizations.

The methods in this thesis are novel and developed in a field of research which struggles
to showcase implementation success stories (as outlined in Section 4.2). Therefore, the final
implementation of decisions derived by the methods in this thesis could only be partially
carried out or not at all. However, by means of simulation, verification and validation it
was possible to answer the arising ’what if’ questions.

5.2.4 Structure of Constructive Chapters
The constructive Chapters 6-8 have a uniform Section structure as given below. They
were carried out using the proposed modified CRISP-DM method. However, for the ease
of reading, the order of presentation does not strictly follow the order of how the steps
were carried out in practice.

1. Scenario Description and Problem Definition/Objectives Understanding: An intro-
duction outlines the overall scenario setting, its relevance, and the need for the spe-
cific reliability optimization problem. It ends with a short scenario description and
the required outcomes of a data-driven reliability improvement project for informed
decision making.

2. Related Work and Methods Selection/Model Understanding: A literature review
addresses related projects and the modeling approaches therein. Based on the findings
the best-suited method and modeling strategy is determined.

3. Methodology/Modeling: The proposed methodology is described in detail.

4. (Optional) Modeling Verification: Whenever newly developed methods have been
developed, they are verified on test problems.

5. Data Requirements and Availability/Data Understanding and Feasibility Check: The
availability of data and knowledge is assessed. It is ensured that the data require-
ments are fulfilled. This Section represents the Data Understanding phase and the
final feasibility check before implementation. Note that for the sake of presentation
it is not always reported before the implementation steps are described.

6. Numerical Experiments/Data Preparation, Model Implementation, and Results Eval-
uation: The proposed methodology is implemented and applied to the considered reli-
ability optimization scenario. Results are presented and their implications discussed.
Based on the results, optimal decision making is proposed.

7. (Optional) Discussion: Lessons learned from the data-driven reliability optimization
project are stated.
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8. A summary, conclusion and research outlook closes each chapter.

5.3 Evaluative Methodology

Based on the constructive methodology, three representative use cases of data-driven reli-
ability optimization are addressed. They reflect actual conditions of field data availability
in organizations and are implemented using the latest analytics and modeling tools. The
evaluative methodology combines the findings of the constructive chapters to answer the
Umbrella RQ. It is composed of the following steps:

1. A critical assessment of the previous three constructive chapters to verify that the tai-
lored CRISP-DM methodology helps to overcome practical limitations of data-driven
reliability optimization methods. It consists of two parts: An evaluation whether the
practical limitations have been addressed successfully in each of the constructive
methods of Chapters 6-8 and study of the usefulness and potential improvements of
the tailored CRISP-DM methodology.

2. An identification of missing steps to use the developed methods from Chapters 6-8
for cost-effective reliability optimization in organizational contexts. Specifically, the
optimal timing of each constructive method within a system life cycle is discussed
to maximize their effectiveness and suggestions are made for the effective collection
and provision of high-quality reliability data.

3. Finally, all the previous findings are combined to provide a cost-effective data-driven
reliability optimization framework for complex engineered systems, which addresses
the Umbrella RQ.

5.3.1 Limitations of the Evaluative Methodology

Single best practices cannot exist due to the variety of organizational settings and reliability
challenges. Therefore, the validity of generalizations of the findings is the main concern.

The methods have been validated across different scenarios and techniques in a par-
ticle accelerator domain. Moreover, they are based on methods that have been applied
in various other domains. Hence, most of the findings should apply to a wide range of
data-driven reliability optimization problems in the particle accelerator domain and likely
in other related domains as well. Nevertheless, it is always recommended to check the
compatibility of assumptions when reapplying the findings in new organizational contexts
and application domains.
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Chapter Learning Summary

Reliability optimization methods are implemented for three use cases using a general
methodology which promises to resolve existing limitations. The methodology as-
sesses project feasibility before implementation by cross-checking project objectives
with available methods and data.



Chapter 6

Data-Driven Discovery of Failure
Mechanisms

This scenario concerns a situation in which expert knowledge on the failure behavior of the
studied system is limited. E.g., this may occur when the system is new and experts have
not accumulated sufficient operational knowledge yet, when the system is very complex
and some of its interactions cannot be foreseen despite best efforts, or when separate
groups of specialists manage each of its separate sub-systems and interactions between the
sub-systems are not sufficiently investigated.

In all such scenarios, the relevant failure mechanisms are mainly encoded in the oper-
ational data logged by the system. It may appear in the form of fault, alarm, and error
codes as well as monitoring signals, such as temperatures, pressures, positions, operational
settings, and configurations. Complex systems log many such variables at high sampling
rates to capture the dynamics of the monitored systems. The volume of the data stream
makes manual analysis challenging for human operators. An automated data analysis tool
to predict faults and identify the relevant mechanisms would help system operators and
experts to solve arising reliability issues faster.

This chapter presents such a method and, thereby, addresses RQ1. It is based on the
latest techniques in the fields of explainable AI and deep learning. The method learns
the system behavior from logged operational time series data. It can predict and explain
system faults by highlighting the monitoring signals, which contribute the most to the
failure. System experts can then react faster to arising reliability problems as they can
focus their attention on the few relevant sub-systems.

This chapter and the methods and findings therein are based on previous publications
[75, 76].

6.1 Scenario Description and Problem Definition
Despite the increasing complexity of technical systems, demands on their reliability are
continuously rising. Reliability methods have to evolve with technological developments
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to meet such demands. Whilst errors in simple systems could be analyzed manually by
experts, increasingly complex and interconnected systems render a manual analysis im-
possible. This stems from to the overwhelming amount of potentially relevant failure
mechanisms and precursors that a human expert cannot take into account simultaneously.

Modern particle accelerators are an example of such complex systems. Their failures
and anomalies cannot be fully captured by analytical models for several reasons:

• Accelerators are composed of highly specialized equipment which is built in low vol-
umes and for which reliability models are rarely available.

• They can be composed of many thousands of such sub-systems, each recording large
amounts of heterogeneous data.

• The operational configurations and modes normally change over time, which impacts
the accelerators’ reliability and operational margins (e.g. the operational margins
may greatly vary when protons or ions are accelerated).

• Additionally, constant maintenance, upgrades, tuning of settings, etc. renders a
modern particle accelerator a constantly evolving system.

Considering all these factors, traditional analytical modeling approaches are often inade-
quate and not practicable.

However, operational data, e.g. fault, alarm, and error codes, as well as monitoring
signals, such as temperatures, pressures, positions, operational settings, and configurations,
are usually abundant. They are logged at a rate and dimension that human operators
cannot analyze in a timely manner. An automated data analysis, which helps operators
in decoding the relevant failures and mechanisms from the abundant data, is required in
such a setting. Such automated methods must handle heterogeneous data formats, be
applicable to raw logging data, generalize from a few logged faults, and scale to hundreds
of input signals. Such a data-driven prognostics and diagnostics framework is useful if it
provides advance prediction of faults and the most relevant factors that cause them. With
this information, system operators can mitigate or remove failure conditions and increase
the system availability.

The predictive performance of such a framework can be assessed with standard clas-
sification metrics, such as the F1 score as introduced in Section 3.3. As predictions are
generally more useful the earlier they are available, the lead-time of the prediction is rel-
evant too. The quality of the relevant failure precursors and mechanism explanations can
be assessed in surveys with system operators and experts in realistic usage settings, as e.g.
proposed by Holzinger et al [54].

6.2 Related Work and Method Selection
Fault prediction methods based on monitoring data have been studied in the fields of
system health management [77], prognostics and diagnostics [78, 79, 80], and predictive
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maintenance [81]. They are usually classified as model-driven, when analytical models of
the system and expert knowledge is employed, or data-driven, when data is used to identify
the system behavior. As model-driven approaches are infeasible in the considered scenario,
only data-driven methods are discussed further.

Overview of Existing Methods

Data-driven methods are usually separated by their modeling approach in classical ML
(e.g. k-nearest neighbor, SVM, decision tree), deep learning (e.g. deep convolutional neural
networks, deep belief networks, recurrent neural networks) and probabilistic reasoning (e.g.
Gaussian Processes, Hidden Markov models, Bayesian Graphical Networks) techniques.

Alternative classifications are based on the application field (e.g. mechanical, electrical,
software), the system complexity (e.g. component, assembly, system, system of systems),
the model learning approach (un-supervised, semi-supervised, supervised), and the avail-
ability and kind of data (binary, discrete, numeric, text, univariate, multivariate). The
interpretability and explainability of methods is usually not a classification criterion and
there are few works treating such aspects explicitly. However, as e.g. highlighted by Abdul
et al [82], this is an important aspect of predictive methods in general and specifically for
the concerned scenario. In the following Sections, existing relevant work is grouped by the
choice of modeling approach and explainability is discussed for each work. These groups
are SVM, Granger Causality, Association Rule Mining, Probabilistic Reasoning, and Deep
Learning-based methods.

SVM For classical ML approaches SVMs are commonly used. Fulp et al [83] and Zhu
et al [84] used SVMs to predict hard drive failures based on hand-crafted features of the
system health. Leahy et al [23] used manually generated features based on data from
Supervisory Control and Data Acquisition (SCADA) systems to predict failures of wind
turbines. Fronza et al [85] tackled a systems of systems problem in which failures in
large software systems were predicted. Although SVMs would allow interpretation of the
learned models to gain further understanding of the failure mechanisms, it is not closer
investigated in any of the works mentioned. Partially this is explained by the fact that
the failure mechanisms are already understood when the methods are applied. Hence,
the methods aim to predict the precise timing of a known failure mechanism instead of
discovering the mechanisms at work.

Granger Causality Qui et al [86] developed a method based on L1 regularized Granger
causality to identify root causes of anomalies in industrial processes. Their method is
interpretable, scalable, and robust to meet industrial requirements. However, it is not
used to predict faults in advance.

Association Rule Mining Vilalta et al [87] and Serio et al [88] employ association
rule mining to infer failure mechanisms in complex infrastructures from logged data. The
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extracted rules are easy to interpret for machine experts. Vilalta et al identify anomalies
in computer networks. The common class imbalance is solved by solely using the minority
class data (i.e. failure data). Good accuracy, but also limits of practical applications, are
reported. Serio et al carried out the only related work in the particle accelerator domain.
Expert verified fault association rules between sub-systems were extracted and reported.
However, time dependence between events is not considered and failure predictions are not
carried out.

Probabilistic Reasoning Methods Within the class of probabilistic reasoning tech-
niques, Mori et al [89] performed a root cause diagnosis for industrial processes using a
Bayesian graphical model. Interpretable and accurate results were reported. Liu et al [90]
mix probabilistic modeling and deep learning by combining ideas of state space modeling
with Restricted Boltzmann Machines or Deep Neural Networks. Their scalable approach
identifies root causes of anomalies in industrial processes with high accuracy.

Deep Learning Methods Saeki et al [91] use deep learning methods to classify anoma-
lies of wind turbine generators from spectral data. In a test environment, their visual
explanation technique highlighted the same failure precursors as a group of human ex-
perts. However, the authors note that the used data was not representative for realistic
industrial scenarios. Amarsinghe et al [92] used a deep neural network to identify Denial
of Service attacks on computing networks. The method highlights the most relevant in-
puts for its classification decisions with Layer-wise Relevance Propagation (LRP), which
has been previously been introduced by Bach et al [93]. High classification accuracies and
intuitive explanations were reported. The method uses hand-crafted features based on the
raw data. Bach-Andersen et al [94] detect early fault precursors for wind turbine ball bear-
ings based on raw spectral data. Among a comparison between logistic regression, fully
connected neural networks, and deep convolutional neural networks, the latter performed
best. Insights into the failure behavior are obtained by applying a visualization method
to higher level layers of the deep network. Accurate results, robustness to class imbalance,
and scaling to high dimensions is reported.

Discussion and Method Selection

Based on the previous research, a combination of deep learning and LRP appears to be
promising for fault prediction and explanation in particle accelerators. They offer superior
performance, scale well, and are able to handle raw data. The study of Bach-Andersen
et al represents a good starting point. However, it uses a data structure, which is not
representative for the particle accelerator domain and it has been used in a different field
of application. Additionally, the LRP method has been more widely applied and tested
[95, 96] than the visualization technique used in Bach-Andersen et al or other explanation
techniques, such as class activation maps [97] or LIME [98].

In terms of modeling approaches, deep convolutional networks appear promising based
on the literature. A recent and extensive review of deep learning models for (multivariate)
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Figure 6.1: Upper Row: ML algorithms are able to identify animal species based on
labeled images. Explanation techniques help to understand which pixels contribute the
most to assign a certain species to an input image. [93] Lower Row: Logged time series
are accumulated during the operation of a particle accelerator. A sliding window approach
extracts a data set consisting of inputs characterising the relative past behavior of the
system and outputs indicating if a specific alarm or fault occurs in the relative future,
which is shown in the left cell (Data). This generates a supervised training data set
without manual labeling effort. Based on this data set, a model can be learned to predict
certain system alarms and faults, which is shown in the middle cell (Data Driven Model
Prediction). LRP can then be used to highlight the most relevant input signals in the past
that precede a fault in the future, which is shown in the lower right cell (Explanation). It
highlights that only two alarms (darker blue) are relevant for the fault. [75]

time series classification by Fawaz et al [99] confirms that deep convolutional architec-
tures outperform other methods across a variety of applications settings at a reasonable
computational burden. Wang et al [100] reported similar results for univariate time series
earlier.

Hence, deep convolutional neural networks are chosen as primary modeling method of
failure phenomena in particle accelerators. For explanations of relevant failure precursors
LRP is selected.

Deep neural networks are general approximators [101]. Hence, they are in principle
capable of handling the variety of data sources without manual feature extraction and
accurately modeling failure phenomena in particle accelerators. In this work, the convolu-
tional networks are compared against classical ML approaches which serve as benchmark
solutions.
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Proposed Approach

The proposed approach is illustrated in Figure 6.1. Logged time series are accumulated
during the operation of a particle accelerator. These consist of fault, alarm or anomaly
signals, and monitoring signals. A sliding window approach extracts a data set consisting
of inputs characterising the (relative) past behavior of the system and outputs indicating if
a specific alarm or fault occurs in the (relative) future, which is shown in the lower left cell
of the figure. This generates a supervised training data set without manual labeling effort.
Based on this data set, a model can be learned to predict certain system alarms and faults,
which is shown in the lower mid cell of the figure. LRP can then be used to highlight the
most relevant input signals in the past that precede a fault in the future, which is shown
in the lower right cell of the figure. It highlights that only two alarms (darker blue) are
relevant for the fault. With this information, system experts can focus their attention and
find solutions to arising reliability problems faster. The effective use of such a method can
help to increase the availability of complex systems.

For example, certain magnet power converters steer particle beams based on feed-back
from beam position monitors. Faulty beam position monitors could lead to noisy beam
position measurements which could trigger a preventive shut down of a power converter.
This can lead to the interruption of operations of a whole particle accelerator.

A predictive method could forecast such a preventive shut down. However, without
additional information about the forecast, system experts have to manually search for the
potential root cause. Considering the sheer amount of possibly relevant signals, they might
not identify the mechanism before the preventive shut down happens. However, LRP could
highlight a faulty beam position monitor as the most relevant precursor, because its noisy
measurement disturbs the current regulation loop of the power converter. Based on this
automatically generated hint, experts can simply replace the faulty beam position monitor
and avoid an unplanned interruption of operations.

6.3 Methodology - Explainable Deep Learning Mod-
els for Failure Mechanism Discovery

Definitions and Overview

An infrastructure composed of multiple sub-systems is studied. Its behavior is monitored
over time in a range of N observables, including event and alarm logs, continuous and
discrete monitoring signals, and operational commands and settings. This forms a multi-
variate time series, S = {Si,t : i ∈ [1 : N ] and t ∈ N}. The range of alarms, faults and
anomalies, which should be predicted are contained within this range of observable signals.

A relation between (relative) past and future behavior of the infrastructure can be
approximated by an autoregressive model. It can only be approximated, since alarms and
failures may appear without any advance indicators (precursors). Even in situations with
precursors, they might not be captured by the monitoring systems. In a time discrete
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Figure 6.2: Time discrete model formulation. The x-axis represents discrete time and
the y-axis monitoring signals of the investigated infrastructure. Crosses mark events that
could be faults, alarms, changes in monitoring values, etc. Events of the signal SN represent
infrastructure faults that the model Φ(·) predicts. [75]

formulation, the approximate autoregressive model takes following form,

SFN,[t+tpδt : t+(tp+no)δt] ≈ Φ(SP[1:N ],[t−niδt : t])

with

• SFN,[t+tpδt : t+(tp+no)δt] = 1, if a failure occurs between time t+ tpδt and time t+ (tp +
no)δt, and zero otherwise,

• SP[1:N ],[t−niδt : t] being finite histories of observed signals covering the time steps t−niδt
to t and being considered as possible precursors,

• δt being the discretization time,

• tp the prediction- or lead-time,

• no the number of time steps chosen to capture the future failure behavior,

• ni the number of discrete time steps chosen to capture the history of the observed
signals and

• Φ an autoregressive model.

The model and its variables are illustrated in Figure 6.2. The x axis shows the discretized
time and the y axis the various monitored signals.
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In all cases, except very simple systems, the autoregressive model Φ(·) cannot be ob-
tained from first principles. Hence, the model is learned from observed historic data S, ac-
cumulated during operations of the infrastructure. This is done in a supervised learning set-
ting by providing pairs of input data, SP[1:N ],[t−niδt : t], and output data, SFN,[t+tpδt : t+(tp+no)δt].
Different learning algorithms can be applied to the supervised training data set.

A trained model can predict the future system behavior if new observed input data
is provided. However, it would predict the occurrence of a failure without the required
information to prevent that failure. This required additional information is provided in
the form of a relevance measure, ρ(SP ) ∈ R(ni,N). It indicates the relevance of each input
signal at each discrete time step. If a failure is predicted, the input signals contributing
the most to the prediction of a failure will be assigned the highest relevance values. This
allows system operators and experts to focus their attention and remove failure conditions
before they lead to faults.

It has to be pointed out that the framework does not identify causal relations but only
temporal precedence of correlated precursors of failures [102]. However, such information
helps experts to establish causal models. Such findings can be integrated in model-driven
system characterizations, such as presented in Chapter 7.

The methods can be used both in on- and offline analysis. As online tool, it acquires
data from the infrastructure in real time as input and provides predictions and explanations
of imminent failures continuously. System operators can then use this information to carry
out planned maintenance before the failures happen in an uncontrolled way. This requires
a lead-time, tp > 0, to give system experts sufficient time to react.

As offline tool, complex failure mechanisms that already occurred can be explained
using the input activation function. System experts can then modify the infrastructure so
that the failure mechanism cannot occur again. As offline tool, no lead-time for predictions
is required.

ML Pipeline

In the following, the procedure to derive the autoregressive model Φ(·) from observed data
is detailed. It consists of data collection, model selection and evaluation, subsampling
strategies, input data filtering and normalization, training of models through learning
algorithms, and the explanation of their predictions. The procedure is summarized in a
pseudoalgorithm at the end of this section.

Data Collection Observable signals S from the investigated infrastructure are stored in
a data-set D in time series format. The specific signals are selected so that the relevant
failure precursors and faults or alarms are contained in the data. Often this will be based
on expert recommendation. Further details of the data collection are provided in the use
case Section 6.5.

Model Selection and Evaluation The formulation of the autoregressive model includes
a range of parameters, e.g. [δT, ni, no, tp] (some will be introduced later in this Section).
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These need to be optimized for the specific prediction task. This is carried out through an
exhaustive grid search within a K-fold validation strategy [103]. Contrary to the widely
used cross-validation, the temporal order of the folds is never mixed. Instead, the training
set is continuously expanded and the validation set shrunken.

Formally, the full data set, D, is split in a training set, Dtrain up to time tsplit, and a
final test set, Dtest after time tsplit. K further folds are obtained by splitting the training set
into sub-training sets and validation sets at subsequent split times tsub−split,k, k = 1, ..., K.

Subsampling In most cases, failures and alarms occur rarely in infrastructures. Hence,
the output data SFN contains few failure examples (class ’1’) and many examples without
failures (class ’0’). This so-called class imbalance depends on the number of faults in the
data as well as the model formulation parameters, such as the discretization time δt or the
number of time steps that capture failures no. For the considered use case, an imbalance
of up to 1 : 104 is observed. Such strong imbalances lead to difficulties when using the
training algorithms. Hence, the classes need to be more balanced.

To achieve that, several sampling methods are applied. Random subsampling of the
majority class (’0’) is applied until a pre-set target ratio, p0,targ = freq(cl0)/freq(cl1), is
obtained.

Data items ncov time steps before and after each class ’1’ example are added as it
increases the ’contrast’ in the vicinity of class ’1’ occurrences. This leads to improved
classification performance and can be considered as an upsampling strategy.

A choice of the output window length, no > 1, leads to no times oversampling of class ’1’
items. This can result in an improved classification performance at the cost of a decreased
certainty of the timing of predicted faults [76].

Input Filtering and Normalization Input signals, which do not contain statistically
significant information, are automatically removed. This includes input signals with less
than αmin values non-equal to zero and signals with a variance smaller or equal to σmin.
αmin = 4 is chosen as it represents the minimal number of data items from which any of
the algorithms could discriminate a pattern[76]. σmin=0, is selected to remove constant
signals. All inputs are normalized to the range [0, 1].

Model Learning Algorithms Below, the different algorithms to learn the autoregres-
sive model Φ(·) from observed data in a supervised fashion are discussed. The problem is
a binary classification as the output variables can be either ’0’ or ’1’. Both deep learning
and classical ML algorithms are used and compared.

Recent studies of deep learning for multivariate time series classification [99, 100] found
that deep fully convolutional networks reach state of the art performance while being easier
to train than recurrent neural networks. They are chosen as main modeling strategy and
are compared against SVM, Random-Forest, and k-Nearest-Neighbor classifiers, which are
chosen due to their past successes and wide usage. Each of the used algorithms is explained
in more detail below:
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• FCN: The architecture was proposed by Wang et al [100]. It is made of three blocks
with three layers in each: a convolutional layer, a batch normalization layer [104], and
a ReLU activation layer. A Global Average Pooling layer (GAP) averages the output
of the last block over the whole time dimension. The GAP layer is connected to a
softmax classifier. Each convolutional layer has a stride of one with zero padding for
conservation of the input data shape. Each of the three convolutional layers contains
128, 256, and 128 filters with a length of 8, 5, and 3, respectively. In comparison to
the implementation by Fawaz et al [99], the number of training epochs is set to 2000.
The optimization is stopped earlier when the validation loss is not decreasing by
more than 0.001 within 200 epochs. The loss function is defined as categorical cross
entropy. The model achieved the highest accuracy across 13 different multivariate
time series classification tasks in the study by Fawaz et al [99]. Hence, it was chosen
as the main architecture.

• FCN2drop: Dropout regularization is recommended in situations with few training
data to avoid overfitting. It is expected to lead to a performance gain for the con-
sidered scenario with very few class ’1’ data. The FCN architecture is taken with
dropout applied to the second convolution layer and the GAP layer. The dropout
probability is set to pdrop = 0.5.

• FCN3drop: The FCN architecture is taken with dropout applied to the second and
third convolution layer and the GAP layer. The dropout probability is set to pdrop =
0.7.

• tCNN: Zhao et al [105] proposed a network consisting of two convolutional layers
with 6 and 12 filters each. A fully-connected layer with sigmoid activation function
connects to it. The mean-squared error is used as loss function instead of cross-
entropy. The same early stopping criterion as for FCN is added to the implementation
of Fawaz et al [99].

• SVM: As reference classifier, a support vector machine with linear kernel functions
is used. The default implementation from the sklearn package [106] showed best
performance across tasks and is used.

• RF: The random forest classifier is a meta classifier composed of multiple decision
trees. The default sklearn implementation [106] is used. The parameter for the
considered number of features for optimal splitting is changed to the square root of
numbers of features.

• kNN: The k-Nearest-Neighbor classifier is used with default parameters from the
sklearn package [106] except for selecting n = 7 neighbors.

Parameters for the classical methods (SVM, RF, kNN) were selected based on recommen-
dations from the scikit-learn user guide [106] and a set of preliminary tests with data
similar to those from the use case. Classical methods require one dimensional input data.
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This is achieved by flattening the 2D input data during training and predictions. Some
spatial correlation information is lost during the flattening. The deep architectures do not
suffer from that as they can directly use the 2D data.

The performance of the classifiers is measured in terms of accuracy and F1 scores on the
validation and test sets. The accuracy is reported together with the fraction of the majority
class in the test data. This allows to assess if the classifier performs better than a trivial
predictor that always predicts the majority class. The F1 score is a suitable performance
metric for the class imbalance situation. Results are usually reported with the prediction
lead-time tp as the time between fault prediction and actual fault influences the usefulness
of the prediction.

Explaining Predictions

The method quantifies the relevance of each input at each time step, ρ(SP ) ∈ R(ni,N),
towards the classification output. This helps system experts identify the relevant failure
precursors. The input relevance is plotted in color maps. Darker colors signify higher
relevance.

LRP provides relevance measures for deep neural networks by propagating the classi-
fication output backwards through the layers of a neural network. Neurons, which con-
tribute more to a subsequent layer, pass back more relevance. This techniques achieves
best-in-class explanations [96]. A publicly available toolbox is used for implementation
[107]. Different rules can be chosen. In preliminary tests, comparing Gradient x Input[95],
LRP-0, and LRP-ε rules [93], LRP-0 demonstrated minimally better filtering of irrelevant
failure precursors.

For the SVM classifier the input relevance can be accessed through the input feature
weight vector [106]. For kNN and RF the input relevance was not evaluated as they were
only used as classification benchmarks.

The quality and usefulness of an explanation largely depends on the embedding of
the method in actual usage settings. The overall explanation process can be assessed by
evaluating user experience, e.g., as proposed by Holzinger et al [54].

Since the presented method is a proof of concept at the time of writing, such an assess-
ment cannot be fully carried out. Instead, a simplified evaluation based on three criteria
(derived from [54]) is used. The criteria are the completeness of the provided explanation
factors, the ease of understanding, and the degree of causality within the studied processes
that can be derived from the explanation [75]. They will be discussed for each of the ex-
periments in Section 6.5. The timeliness of an explanation would be an interesting factor
as well. However, without an actual online usage setting it cannot be estimated reliably.

6.3.1 Pseudoalgorithm
The overall ML approach is summarized in by pseudoalgorithms below:

Pseudoalgorithm illustrating the overall process:

1. D load monitoring time-series data
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2. Split data D in training Dtrain and testing set Dtest

3. (Model selection:)
For: varying parameters
[p0,targ, ncov, δT, ni, no, tp, tsub−split] Do:

(a) Perform sub-algorithm (see below) ← [Dtrain, p0,targ, ncov, δT, ni, no, tp, tsub−split]
(b) Store obtained performance metrics Ptrain and input activation ρ(SP )train

on hold-out sets

4. (Model testing:)
For: best performing model
[p0,targ, ncov, δT, ni, no, tp, tsplit]optimal Do:

(a) Perform sub-algorithm ← [D, p0,targ, ncov, δT, ni, no, tp, tsplit]optimal
(b) Store obtained performance metrics Ptest and input activations ρ(SP )test

on test set

5. Evaluate consistency between [Ptrain, ρ(SP )train] and [Ptest, ρ(SP )test] for optimal
parameters

Sub-algorithm:
1. Get parameters ← [D, p0,targ, ncov, δT, ni, no, tp, tsub−split]

2. Transform time series data to pairs of input data SP[1:N ],[t−niδt : t] and output
data SFN,[t+tpδt : t+(tp+no)δt].

3. Split data in sub-training set(s), Dsub−train, and sub-testing set(s), Dsub−test
at defined splitting time(s) tsub−split.

4. Perform sub-sampling on training set.

5. Perform input filtering and normalization

6. For: all target signals and classifiers Do:

(a) Train predictive model Φ(·) on Dsub−train
(b) Evaluate performance metrics Psub−test and input activation ρ(SP )sub−test

on filtered and normalized sub-testing set

7. Collect and report performance metrics and input activation.

6.4 Data Requirements and Availability
The data requirements of the proposed method and the actual availability of data are as-
sessed. Since the method is developed for a scenario with limited a priori expert knowledge
on the system behavior, the data requirements focus on the available logged time series.
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Data Requirements The data can be distinguished in input data - time series charac-
terising the ’past’ machine behavior - and output data - ’future’ events within the logging
time series that should be predicted. There are no particular data format requirements
for the input data as long as it can be encoded numerically. However, to achieve a good
predictive performance, the input data should contain the relevant precursors for the future
event to be predicted. The input data may also include past observations of the output
data (i.e. if you want to predict future occurrences of alarm x, past occurrences of x may
be used as input).

The requirements for the output data are that the time series are discrete. In most
cases, failures are discrete binary events and automatically satisfy this condition. For the
method to show good performance there should be at least four examples of fault or alarm
occurrences in the data. This represents the absolute minimum for which the framework is
able to detect patterns [76]. However, in that case the validation process relies on human
judgement of the provided predictions and explanations. To carry out proper validation
techniques, such as cross-validation, faults or alarms should occur more than ten times in
the data. Generally, the more alarms are present in the data the more reliable the method
works. When a specific alarm or fault signal represents a single failure mechanism, the
interpretation of failure explanations is simplified. However, the method does also work
when different failure mechanisms are grouped into a single alarm signal.

Modifications of the studied infrastructure may introduce or remove certain failure
modes. If a method is trained on data lacking a failure mode, which is later introduced, it
will likely not be able to adapt its predictions. This is addressed by the chosen validation
process to include the effects of infrastructure modifications for unbiased performance
estimates. Hence, changes in the infrastructure that may lead to predictive performance
degradation are discovered before the method is deployed to an operational setting.

Data Availability The actual data availability is assessed for the so-called Proton Syn-
chrotron Booster (PSB) at CERN as introduced in Section 2.2.2. The method is later
applied to this use case. The Monitoring and condition data, operational configurations
and settings, and failure and alarm data are continuously logged since 2014. Data between
January 2015 and December 2017 is selected for testing the method. It contained sufficient
alarm data and the infrastructure did not substantially change within that time period.

For the input data, alarms, interlock, and beam destination signals are used. The
choice was based on expert recommendation. They are expected to most likely contain
failure precursors. However, the data logging systems were not designed for prognostic
purposes [108]. Hence, it can only be guaranteed that the input data satisfies the minimal
requirements. Whether failure precursors are actually present in the input data can be
assessed with the explanation output provided by the proposed method.

For the output data, two power converter failure modes are considered: malfunction of
a power converter controller and failure of a current measurement device. Both occurred
more than ten times in the considered time frame. It is not known whether one or multiple
failure mechanisms lead to each of the failure modes. Again, it can only be guaranteed
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that the output data satisfies the minimal requirements.

Discussion Overall, the framework has very low minimal requirements for the data.
If the data satisfies recommended requirements (precursors, number of fault occurrences,
separate mechanisms), results are expected to be better and easier to interpret. Still,
for data with minimal requirements the method should provide useful results. For the
considered use case, the data availability and quality is acceptable but not optimal. The
resulting performance of the method for this case is discussed in detail in Section 6.5.

6.5 Numerical Experiments
The proposed approach is first validated on synthetically generated data and then tested
on PSB particle accelerator data. Publicly available implementations are provided1.

6.5.1 Synthetic Data Experiments
To validate the approach it is applied to synthetically generated data. Using synthetic
data allows to assess if the framework predicts and identifies the manually created failure
mechanisms correctly.

Noise Robustness The first experiment tests from how many input signals the correct
failure precursors can be isolated whilst fewer than ten failure examples are present. For
this test, a infrastructure is simulated by nrand systems randomly firing alarms and one
system Sp that produces two subsequent failure precursors which are followed by a critical
failure of the infrastructure SFs . The pattern and its timing parameters are shown in
Figure 6.3. The time evolves in the horizontal direction and the different signals are listed
vertically. The Sp signal contains deterministic precursors. Two following signals cause
a fault signal SFs . A range of randomly activated noise signals, SR1 , SR2 , ..., represent
non-relevant parts of the infrastructure.

The problem parameters are a time tbr ∼ N (µ = 14.61 d, σ = 14.61 d) between ran-
domly firing precursors, SRl , l = 1, 2, ..., nrand, a time tbp ∼ N (µ = 1 d, σ = 1 d/24) be-
tween deterministic precursors Sp, a time tpe ∼ N (µ = 10 d/24, σ = 1 d/24) between deter-
ministic precursors Sp and infrastructure failures SFs , and a time tep ∼ N (µ = 36.525 d, σ =
36.525 d) between infrastructure failure SFs and deterministic precursors Sp with d being
a day of 24 hours.[75] The data covers a time range of 2.7 years. nrand = [20, 21, ..., 29]
randomly firing systems are added.

The method is applied with following parameters: Sampling times δt = [2 h, 3 h] (h for
hours), input range ni = 40, lead-time tp = 0, output range no = [1, 2, 3, 4], sub-sampling
target ratio p0,targ = 0.8, and class ’1’ neighborhood coverage ncov = 2. The data is split at
a time tsplit so that 80 percent of the data-set are used for training and model-selection and

1https://github.com/lfelsber/alarmsMining

https://github.com/lfelsber/alarmsMining
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Figure 6.3: Parameters of synthetic pattern. The Sp signal contains deterministic precur-
sors. Two following signals cause a fault signal SFs . A range of randomly activated noise
signals, SR1 , SR2 , ..., represent non-relevant parts of the infrastructure. [75]

20 percent for final testing. A 7-fold validation is used for model selection. Sub-splitting
times tsub−split are chosen to have [50, 55, 60, 65, 70, 75, 80] percent of training data and
[50, 45, 40, 35, 30, 25, 20] percent for validation. Only 7 (13) critical failures were present in
the training data of the validation folds (the whole data-set) on average. This represents
a realistic number of observed failures in historic data.

The results for δt = 3h and no = 2 are presented as with these hyper-parameters good
results across classifiers are obtained. The F1 score and accuracy are plotted as a function of
the number of randomly firing signals, nrand, in Figures 6.4a and 6.4b. For higher numbers
of random signals the classification performance is decreasing for all classifiers. The FCN-
based networks perform better overall. For up to fifty random signals, the patterns can be
predicted from only seven faults in the training data with an acceptable performance for
the FCN-based architectures.

Recovering Fault Tree Structure The second experiment tests whether faults due to
interactions of multiple sub-systems may be predicted and explained. For this experiment,
data from two interacting sub-systems, SP1 and SP2 , and four additional non-interacting
sub-systems, SR1−4 , are generated. An infrastructure fault, SFb , happens when simultaneous
failures of the two interacting sub-systems fulfill a Boolean AND, OR, or XOR condition.
The parameters of the timing and delays of the signals are shown in Figure 6.5.

The data was generated with parameters tbr ∼ N (µ = 23 min, σ = 24 min) and
tpe = 71 min, tep = 120 min. The framework is applied with following parameters:
sampling time δt = 12 min (min for minutes), input range ni = 5, lead-time tp = 5,
output range no = 1, sub-sampling target ratio p0,targ = 0.8, and class ’1’ neighborhood
coverage ncov = 2. The data set is split in equally sized training and testing sets. No K-
fold validation is performed, as no hyperparameters need to be selected in this case. Less
than 20 critical failures are contained in the input data. Deep networks and traditional
methods consistently reach F1 > 0.97. The explanation results for the FCN2drop network
are discussed in the following.

The input activations for the AND, OR, and XOR scenario are illustrated in Figure 6.6.
The three lines represent three randomly selected system snapshots shortly before a critical
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(a) (b)

Figure 6.4: Dependency of the predictive performance on the number of randomly firing
signals. The line depicts the mean and the error bar plus and minus one standard deviation
calculated over the 7 validation sets. Solid lines represent deep models, which perform on
average better than the classical models (dashed). (a) The F1 score. Note that the predic-
tors level out at 0.0 for large nrand, which is the binary F1 score when always predicting
the majority class (’0’). (b) The accuracy. The predictors level out at 0.82 for large nrand,
which is the accuracy when always predicting the majority class (’0’). [75]

Figure 6.5: Parameters of synthetic pattern. An infrastructure fault, SFb , happens when
simultaneous failures of the two interacting sub-systems, SP1 and SP2 , fulfill a Boolean
AND, OR, or XOR condition. Four additional non-interacting sub-systems, SR1−4 , ran-
domly trigger alarms that do not lead to a fault. [75]
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Figure 6.6: Illustration of AND, OR and XOR fault logic extraction. Left columns show
three randomly selected input windows before failure occurrence. Right columns show the
relevant precursors obtained with the FCN2drop network (darker colors indicate higher rel-
evance). Comparing the relevant precursors (right columns), allows to distinguish different
Boolean rules and recover the fault logic of the system. [75]
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error occurred. Left columns are the unfiltered input data and right columns show the
relevant inputs after applying the LRP method. For all scenarios the relevant precursors,
SP1 and SP2 , are correctly highlighted by the LRP method. By comparison of the different
snapshots, the Boolean logic can be inferred successfully. However, this requires several
fault behaviors to be available at the same time.

The results confirm that different types of system interaction can be inferred from the
explanation output (left columns). The raw inputs (right columns) would not provide
sufficient information to do so. With respect to the proposed three criteria assessment,
the explanation can be considered complete if several fault behaviors are observed. For
two interacting systems, the interaction mechanism is easy to understand. The degree of
causality that can be derived from the explanation cannot be assessed for this synthetic
example.

Further synthetic data experiments with the proposed method have been carried out
in [76]. Among the main findings are that an increase of no by one or two may improve
accuracy when the delay between precursors and faults exhibits high variance, that the
input relevance generally highlights precursors with lower timing variance stronger than
such with higher variance, and that patterns can be identified from only four examples in
extreme cases.

6.5.2 Particle Accelerator Data Experiments

In the following experiments, the method is applied to monitoring data sets (henceforth
called ’real data’) from the PSB accelerator at CERN as described in the data availability
Section 6.4. It is assessed whether the method can predict faults in advance from the
monitored data and is able to extract relevant precursors, which explain the predicted
failure mechanisms.

As mentioned, the data set was not recorded for such data analysis purposes. It mostly
served diagnostic purposes. Moreover, the infrastructures are continuously worked on.

The following data are taken for the analysis:

• Data of the LASER alarm database [109] contains logged alarms. They have a list
of attributes including system name, fault code, and priority. For the chosen data,
the priority take values 2 and 3. Priority 2 alarms are warnings, whereas priority 3
alarms are faults leading to the shutdown of the affected system. An alarm begins
with a rising flag and ends with a falling flag. Only rising flags were used in the
analysis. Data from a group of eight power converters are chosen. For the input data
representation, all fault codes of a system were grouped. This results in eight input
signals. The choice of target data is closer described in subsequent Sections.

• 27 Interlock signals were added based on expert recommendation. They record in-
ternal and external disturbances, which can lead to an interruption of accelerator
operation.
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Table 6.1: Performance metrics for mixing synthetic and real data experiments. fracmaj
stands for the fraction of the majority class and is shown as reference for the accuracy of
a trivial predictor always predicting the majority class. v and σv stand for the mean and
standard deviation over the 7 validation folds, respectively, and t for results on the test
set. [75]

• The beam destination variable provides information on operational settings of the
accelerator. The eight beam destinations are one-hot-encoded and used as additional
input data.

Overall, the data consists of 8 LASER alarm signals, 27 interlock signals, and 8 beam
destination signals. Time intervals in which the PSB is not operational are omitted, as the
data is not representing operational conditions.

Mixing Synthetic and Real Data In a preliminary step, it is tested if synthetic pat-
terns can be isolated from the real world data. In that sense, the noise robustness experi-
ment is repeated with the noise channels being replaced by the real world data described
above.

The following framework parameters are used: sampling times δt = [2 h, 3 h] (h for
hours), input range ni = 40, lead-time tp = 0, output range of no = [1, 2, 3, 4], sub-
sampling target ratio p0,targ = 0.8, and class ’1’ neighborhood coverage ncov = 2. The
model validation strategy is the same as for the noise robustness experiment.

Parameters δt = 3 h and no = 3 achieved high F1 scores and accuracy and are shown
in Table 6.1. The columns indicate the different models that were trained. fracmaj stands
for the fraction of the majority class and is shown as reference for the accuracy of a trivial
predictor always predicting the majority class. v and σv stand for the mean and standard
deviation over the 7 validation folds, respectively, and t for results on the test set. The
lines show the F1 (denoted F1_cl1) and the accuracy (denoted acc).

Only 7 faults are present in the training data. Despite that, the FCN network achieves
an F1 score close to 1. This indicates that a well defined failure pattern in real data could
be detected by the FCN network from less than ten training examples.

The input activation plots for the FCN network and the SVM are presented in Fig-
ure 6.7a. Both methods correctly identify the synthetic precursors from the 45 signals. In
terms of the three assessment criteria of the quality of explanations, they can be considered
complete and easy to understand. The causality cannot be assessed for the synthetic case.

Real Data As final test, the method is applied to the real data set. It is tested whether
it can predict and explain two types of power converter alarms with priority 3: fault code
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(a)

(b)

Figure 6.7: (a) Upper: Input window for a single fault prediction example. Red ellipse
highlights the correct precursors. Lower left: Correctly identified relevant failure precursors
by FCN network. Lower right: Correctly identified failure precursors by SVM network.
(darker colors in the heatmap signify higher relevance). (b) Input relevance for real data
input window with δt = 30min, ni = 32, tp = 0, no = 4 and SF0 . The SVM assign relevance
to more signals than the FCN. System experts could identify that certain combinations of
external interlock signals and operational modes lead to infrastructure failures. [75]
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Table 6.2: Performance metrics for real data experiments. fracmaj stands for the fraction
of the majority class and is shown as reference for the accuracy of a trivial predictor always
predicting the majority class. v and σv stand for the mean and standard deviation over
the 7 validation folds, respectively, and t for results on the test set. [75]

SF4 (malfunction of a power converter controller) and SF7 (failure of a current measurement
device).

Sampling times δt = [10 min, 30 min, 2 h] (h for hours, min for minutes), input ranges
ni = [16, 32, 64], lead-times tp = [0, 1], output ranges of no = [1, 2, 4, 16], a sub-sampling
target ratio p0,targ = 0.8, and a class ’1’ neighborhood coverage ncov = 2 are used as
parameters. The model validation method of the previous experiment is kept.

Table 6.2 shows the results obtained with parameters δt = 30 min, ni = [16, 32],
tp = [0, 1], and no = 4 as these led to good results. The FCN-based networks achieve an
F1 score close to 1 both for an offline use without lead-time of predictions (tp = 0) and for
an online use with lead-time (tp = 1 = 30 min). These results were obtained from as few
as 17 fault examples on average in the training data for validation and testing. Applying
dropout does not have a strong impact on performance. The results of the tCNN network
strongly depends on the problem parameterization. Its F1 score ranges from 0 to 1. The
performance metrics of the classical ML methods are significantly outperformed by the
FCN-based architectures.

For the two targeted failure modes, the method shows a satisfactory predictive perfor-
mance. However, tests on other failure modes, which are not presented here, showed that
often no predictive patterns can be identified. The promising results from synthetic tests
indicate that this is most likely due to an absence of well defined failure precursors in the
selected and available input data. This is not surprising as the data logging system was
not designed for prognostics applications and many faults occur without precursors.

An example of an input relevance plot for a fault is shown in Figure 6.7b. In compar-
ison to the synthetic experiments, the fault mechanism is not known a priori. The input
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Table 6.3: Performance metrics on the PEMS dataset. fracmaj stands for the fraction of
the majority class and is shown as reference for the accuracy of a trivial predictor always
predicting the majority class. v and σv stand for the mean and standard deviation over the
7 validation folds, respectively, and t for results on the test set. Results for δt = 10 min
are omitted for brevity.

relevance highlights several signals at the same time. When discussing the results with
system experts, it was noticed that interpretation of input activation plots is increasingly
difficult when several signals are highlighted. Nevertheless, with the help of the input ac-
tivation plot and consulting additional logbooks and databases, the range of likely failure
mechanisms could be greatly reduced.

With respect to the three explanation quality criteria, the following is observed: The
explanation was incomplete for this case as additional information sources needed to be
consulted. However, with the provided input activation plots the consultation of other
sources is more focused. The ease of understanding of the explanations decreases with the
number of highlighted precursors. The explanations help to shrink the pool of postulated
causal chains, but some uncertainty remains. Overall, system experts expressed that the
input activation provides useful information and that it can be a promising approach for
the operation of future particle accelerators.

6.5.3 Further applications
The presented method can be used for any discrete event prognosis and explanation in
any domain. To exemplify that, the framework is used to predict and explain traffic jams
in the San Francisco bay area. Data on highway occupation data was collected by the
California Department of Transportation with 963 sensors storing car traffic occupation
measurements, Oh ∈ [0, 1], in ten minute intervals [110].

A highway occupation Oh > 0.5 is defined as traffic jam (represented by class ’1’) to
obtain a binary target variable. Based on traffic data from October 3, 2008 to March
3, 2009 models are trained. Of the 963 sensors, for which more than 300 but less than
5000 class ’1’ occurrences were measured (to select sensors for which traffic jams are rare
events), three were randomly chosen as target data. As input data, the 50 most correlated
sensors for each target sensor were chosen. The weekday was hot encoded as additional
input as traffic dynamics may change depending on the weekday. The target sensor was
removed from the input, as the goal is to explain traffic jams based on the past traffic in
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other locations.
The framework is applied to the data with sampling times δt = [10 min, 30 min], an

input range ni = 10, lead-times tp = [0, 1, 2, 4, 8], an output range of no = [1, 2, 3], a
sub-sampling target ratio p0,targ = 0.5, and a class ’1’ neighborhood coverage ncov = 2.
The same model validation strategy is chosen as for the synthetic data experiment. All
classifiers were trained and evaluated.

In Table 6.3, the results are shown for traffic sensor 401390 which is located on the
Grove Snaffer Fwy in Oakland (coordinates 37.827454, -122.267769). Note that traffic jams
are predicted with F1 scores close to 1 up to four hours in advance. In this experiment
with continuous, numeric data, the RF, FCN and FCN2drop classifiers show the best
performance. The successful application of our modelling approach to an application from
a completely different domain gives confidence in the general validity of the results obtained
in previous experiments and underlines the universality of the employed methods.

6.6 Chapter Summary, Conclusions and Outlook
A framework to identify and predict failure mechanisms for situations with limited a pri-
ori knowledge on the system behavior is presented. It can handle data sets encountered
in realistic settings, such as in particle accelerators, containing multivariate signals, raw
data of heterogeneous types, and few observed failures. It uses deep convolutional neural
networks to extract predictive failure patterns from historic monitoring data. This allows
prediction of faults in real time.

To help system experts and operators interpret the predictions, the most relevant failure
precursors are highlighted by Layer wise Relevance Propagation (LRP). Thereby, reaction
times to arising problems can be shortened and recurring failure conditions can be removed.
This has the potential to improve the availability of future particle accelerators.

The method is validated on synthetic data. It can correctly identify predictive patterns
from as few as seven examples for up to 50 input signals. The type of interactions between
multiple systems that lead to failures can be reconstructed with the explanations provided
by the method.

For data from the PSB accelerator at CERN, the framework predicts power converter
faults with F1 scores close to 1. It can do so at a bare minimum of data preprocessing,
from fewer than 20 failure examples, and without manual labeling effort of the data. The
failure explanations help system experts to narrow the pool of potential failure causes and
speed up troubleshooting. The results are encouraging because the historical data of the
use case was not collected for predictive purposes. Modern systems collect increasingly
more monitoring signals containing failure precursors. This facilitates the application of
the introduced method further.

The following research could increase the effectiveness of the proposed approach further:

• Few shot and transfer learning approaches might learn predictive failure patterns
from even fewer failure examples.
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• Complex infrastructures are evolving systems. Re-learning schemes allow to update
predictive models continuously. This renders the approach fit for the long term usage
of such a method in evolving infrastructures.

• Using logarithmic time scales on the input data could capture failures happening
over particularly long time scales, such as wear-out phenomena.

The method is generally useful to predict and explain discrete events in time series. For
applications outside the particle accelerator domain, it only needs adaption of the input-
and output data provision and the grid of optimization parameters. Potential examples
include identifying root causes of stock market crashes, climate phenomena, or transmis-
sion of diseases. Within the field of reliability studies, the method has demonstrated to be
useful for the operation of complex particle accelerators and, hence, can be a promising
tool for other complex systems.

Chapter Learning Summary

Explainable Deep Learning can help improve the operations of particle accelerators.
This requires that fault data as well as data that might contain fault precursors are
logged during operation. Data logging objectives should be expanded from explaining
faults that occurred to hinting at faults that will occur.



Chapter 7

Data and Knowledge-Driven
Parametric Model-Based Reliability
Optimization

In the previous chapter the modeling was mainly data-driven as expert and knowledge-
based models of the studied system were hardly available. Contrary to the previous chapter,
below a scenario is studied in which a priori knowledge on the failure behavior of a system
is already available. Such knowledge could be the output of classical reliability analysis
carried out by system experts.

In such scenarios information is available in both quantitative (e.g. fault time distribu-
tion) and qualitative (expert knowledge on causes of faults) form. This requires flexible,
data-effective modeling strategies capable of exploiting all available knowledge. Purely
data-driven methods, such as in the previous chapter, are ineffective in encoding quali-
tative expert knowledge as their model structure is not flexible enough and their model
parameters do not directly translate into a physical meaning. A parametric modeling strat-
egy can include both quantitative and qualitative knowledge effectively and transparently.
Hence, they are better suited for such scenarios.

Below, such a parametric reliability modeling strategy including a simulation concept is
presented, which addresses RQ2. Each of its modules is based on well established reliability
concepts which allows translation to and from expert knowledge. This also has the benefit
to assess whether such models can predict system behavior under novel operating conditions
and even for re-designed systems. In combination with the simulation engine, optimal
designs, operational strategies, and maintenance schedules with minimal life cycle cost,
can be determined.

The methods, findings and some of the illustrations of this chapter have been published
previously in [111, 112].
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Figure 7.1: Functional diagram of the redundant switch mode power converter with two
identical units. [112]

7.1 Scenario Description and Problem Definition
This scenario is concerned with the optimization of a redundant AC-DC power converter
operation. It powers machine protection systems at CERN. Hence, it has stringent relia-
bility requirements. A fault tolerant solution was implemented. It consists of two identical
units which are operated in a 1-out-of-2 (1 oo 2) parallel redundancy as illustrated in
Figure 7.1. It shows the 230V AC (alternating current) input on the left, which powers
each of the redundant units which transform the voltage and current to 5V DC (direct
current) output. The output is then combined as illustrated in the right of Figure 7.1.
The redundant configuration implies that if one of the converters fails, the operation can
be continued by the second converter alone. Once one of the converters fails, the faulty
unit can be replaced during scheduled breaks of LHC operation. Thereby, continuous
availability is aspired.

In fact, close to 400 of the considered redundant powering solutions have demonstrated
continuous availability over more than ten years in practice. However, during operations
in 2018, an increase of failures in the redundant units was observed. This led to two expert
groups independently carrying out Weibull reliability analysis (see [113, 114]) based on the
recorded data of the complete fleet of power converters. The objective was to determine if
the whole fleet of systems requires replacement within the coming years of operation.

During the investigations, additional relevant questions arose, which could not be an-
swered by the Weibull analysis. These are:

• How does the load need to be distributed between the 1 oo 2 redundant units to
achieve the lowest probability of unavailability and lowest life cycle cost based on the
data recorded?

• How can an optimal load sharing strategy be derived for any k oo n redundant system
under a certain operating condition based on its recorded data?

• How can the operation of a redesigned future system under a certain operating con-
dition be optimized based on recorded data of its predecessor?
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Figure 7.2: Overview of the approach. Data from a system operating at different conditions
is combined to form a digital reliability twin, which can be used to optimize existing and
future systems under different operating conditions. [112]

In this chapter, a generic approach is developed to address these questions based on the
data availability for the power converter example. The approach to address these questions
is illustrated in Figure 7.2: A transparent reliability model (Digital Reliability Twin in the
center of Figure 7.2) is learned with data and knowledge from existing systems in different
operating conditions (on the left in Figure 7.2). Then, the model can be used to optimize
new operational scenarios of existing and future systems (on the right in Figure 7.2).

The metric for these optimizations is the life cycle cost Equation 3.11. The equipment
cost is the cost of the (redundant) power converter, the repair cost is the cost of replacing
one of the redundant units, and the downtime cost is the cost due to interruption of the
operation of the powered system. As for all reliability optimization techniques, the earlier
available in the system life cycle and the more precise the results are, the bigger is their
potential value for decision making. Moreover, due to the scarcity of operational failures,
the method has to be suitable for small data regimes. Hence, the developed approach
should be data-effective and able to handle uncertainties due to limited data.

7.2 Related Work and Methods Selection
This section discusses the relevant work for the considered approach. These are the digital
twin framework and degradation models of load-sharing systems.

Digital Twins The desired objective requires an approach, which integrates data col-
lection, data analysis, modeling, simulation, and cost assessment. A framework, which
combines all these steps is the digital twin.

The term digital twin has been coined by Glaessgen et al [115]. They describe it as
’an integrated multi-physics, multi-scale, probabilistic simulation of a complex product
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and uses the best available physical models, sensor updates, etc., to mirror the life of its
corresponding twin...’. With respect to reliability, they note that ’the digital twin will
increase the reliability of the [system] because of its ability to continuously monitor and
mitigate degradation and anomalous event’. This means that they perceive a prognostics
solution to increase the system reliability using the digital twin approach.

The limitations of existing prognostics solutions have been discussed in Chapter 4.
These include lack of appropriate data and models to predict system behavior accurately.
As the digital twin would rely on such models to increase system reliability, it suffers from
the same limitations.

Documented implementations of the digital twin paradigm for reliability purposes are
scarce. Tuegel et al [116] and Cerrone et al [117] show how existing methods can be ex-
tended with ideas of the digital twin in the aeronautics industry. Reifsnider et al [118] pro-
pose a digital twin-based method for composite materials. Gabor et al [119] and Alaswad
et al [120] discuss implementation options and potential advantages of digital twins.

Despite the practical implementation challenges of the digital twin, its integrated data
collection, modeling and simulation concept is appealing. It aims at coherence between the
data collection, usage and the desired decision objectives - similar to the project assessment
stage (see Section 5.2) used for implementations of methods in this thesis.

To overcome the disparity between the proposed high fidelity modeling and high reso-
lution sensor updates and the actual availability of reliability models and data in various
fields of industries, a more conservative modeling approach can be a first useful step. Meth-
ods based on accelerated testing, such as pioneered by Nelson [121, 122, 123], are more
appropriate for the data availability considered in this and many other realistic scenarios.
They can be combined with a simulation engine and a cost model to achieve cost-effective
reliability optimization.

Load Sharing Degradation Analysis and Modeling In the following, relevant exist-
ing work in terms of reliability analysis and modeling of load-sharing systems are discussed
as it forms the core of a digital twin approach for the considered scenario.

The main challenge in modeling the load sharing of redundant systems is that the loads
and stresses within the redundant units are interdependent. A failure in one of the units
influences the loads of all other units. Hence, even for applications with constant loads,
the load profiles within redundant units are dynamic. Several methods have been proposed
to model such dependencies and are discussed below.

Early modeling approaches were limited to exponential failure rates (constant hazard
rate) and 1 oo 2 systems, due to a lack of detailed reliability models and insufficient
computational performance [124]. Such modeling is too inaccurate to be useful in realistic
settings. In such models, the failure probability of the system does only depend on its age
and instantaneous load. However, empirical studies showed that the entire load history is
relevant for determining the instantaneous failure rate [125, 126, 123].

Over time, more accurate modeling approaches based on the Weibull failure distribution
(non-constant failure rates) and the cumulative exposure model [121] were developed [127]
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for 1 oo 2 systems. Such approaches consider the load history.
More recently, efficient computational procedures to extend such modeling to large k

oo n systems have been produced [128]. Multiple failure modes within redundant units
were modeled by Huang et al [129]. Modeling approaches which allow the incorporation
of qualitative knowledge about the failure mechanism have been proposed by Yang et al
[130]. Some methods even consider specific behaviors of redundant units, such as delays
due to rebooting [131].

Despite the many variations of reliability modeling of load sharing systems, no approach
for a combination of non-constant hazard rates, handling the effect of load histories on mul-
tiple failure modes, non-balanced load sharing, and propagation of parametric uncertainty
has been reported so far. However, these are requirements to model the considered power
converters scenario realistically.

Since most presented approaches are based on methods of accelerated life testing [121,
123], the existing modeling approaches can be extended to arrive at the desired modeling.
Combined with a simulation approach and the cost model, as suggested by the digital twin
approach, the objectives outlined in the previous section can be addressed. The details
will be explained in the next Section.

7.3 Methodology - Parametric Digital Reliability Twins

7.3.1 Overview

The overview of the proposed methodology is given in Figure 7.2. A quantification of
system reliability, here called Digital Reliability Twin (in the center of the figure), is learned
from existing system under different operating conditions (in the left of the figure) using
methods from Accelerated Life Testing (ALT). The models can be continuously updated,
once new data is generated during operations. The model can be used to optimize the
operation of existing and future systems in new operating conditions (in the right of the
figure).

The execution of the approach is based on four steps. These are data collection, digital
twin synthesis, simulation, and evaluation and decision making. These steps will be carried
out for a use case in Section 7.4.

Below, the elements of the Digital Reliability Twin are introduced. Firstly, the quan-
titative model behind the Digital Reliability Twin and the required reliability modeling
backgrounds and definitions are presented. After that, a Monte Carlo engine to simulate
the system over its life cycle is discussed. Then, the cost model for life cycle cost evaluation
and decision making is introduced. Finally, the data collection requirements and actual
data availability and quality is assessed.
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Figure 7.3: Redundant system illustration.

7.3.2 Reliability Modeling of Load Sharing in Redundant Sys-
tems

The quantitative model of the Digital Reliability Twin and the required reliability modeling
backgrounds and definitions are presented as follows:

1. The relevant definitions for redundant systems are introduced.

2. The modeling of multiple failure modes by Weibull distributions is discussed.

3. The acceleration factor modeling is outlined to describe the effect of system loads on
stresses or failure drivers.

4. The cumulative exposure model is introduced to describe degradation under variable
stresses.

5. The load sharing of multiple redundant units is discussed.

6. All the previous modeling steps are combined into a hierarchical load sharing model.

7. The hierarchical load sharing model is validated on a benchmark problem from the
literature.

8. A summary of the modeling approach is provided.

Definitions Figure 7.3 illustrates a redundant system S. It is composed of an Input
Distributor (ID), Output Collector (OC), and n redundant identical units, U1, .., Un. A
system boundary (dashed line) separates it from an operational environment E. The
operating conditions are referred to as the collection of environment, input and output,
C = [E, I,O]. The system is considered available, if it delivers the specified output O
whilst the environment and the input are within specifications. It is faulty if it fails to do
so.
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Multiple Failure Modes in Redundant Units A failure in a k oo n redundant system
occurs when more than k−n units are simultaneously in a failed state, the input distributor
is faulty, or the output collector has a failure. In the considered scenarios, the input
distributor an the output collector are extremely simple and robust designs. Hence, they
are assumed to have no failures.

The reliability of a single Unit Ui at a time t is described by its reliability function,
R̄i(t). Its probability of being faulty at time t is given by F̄i(t) = 1 − R̄i(t). Different
failure mechanisms j may lead to the failure of a unit. They are modeled as competing
risks [37], F̄i(t) = 1−∏M

j=1(1− Fj).
The failure probability due to a single failure mechanism can be modeled by several

statistical models [8, 6]. The two parameter Weibull distribution is chosen as it is fre-
quently used in reliability studies and commonly known by system experts. It is given
by, Fj(t; ηj, βj) = 1 − e(−t/ηj)βj , t > 0. ηj is the characteristic lifetime (with the property
Fj(t = ηj) ≈ 0.63212) and βj is the shape parameter that indicates a decreasing (βj < 1),
constant (βj = 1), or increasing (βj > 1) failure rate with time for a failure mechanism j.

Acceleration Factor Modeling A failure mechanism is activated by a failure driver,
ξj. For example, increasing temperature leads to a faster evaporation of the electrolyte
in capacitors. This degrades its capacity. For this example, the failure driver is the
temperature and the failure mode is capacity degradation. The stress ξj results from
system operating conditions, C. Their relation can be expressed by empiric or analytic
models, ξj = Γj(C; Λ), with parameters Λ. For the capacitor case, such a model would
express the capacitor temperature as a function of the operating current, which causes heat
dissipation.

Acceleration factor modeling allows to quantify the relationship between the failure
driver and the time to failure. With a two-parameter Weibull distribution, the acceleration
factor is expressed as, AFj(ξj, ξj,ref ; Θ) = ηj,ref/ηj. ηj,ref is the characteristic lifetime
at a reference operating condition1, ξj,ref = Γj(Cref ). Parameters Θ define the kind of
acceleration model. The acceleration factor model is often expressed by exponential- or
power-laws, e.g. AFj(ξj, ξj,ref ; Θ) = (ξj/ξj,ref )Θ. [49, 112]

Cumulative Exposure Model To consider the degradation of the redundant units due
to their non-stationary load history, the cumulative exposure model is used [121]. It is
based on acceleration factor modeling by summing the load history dependent acceleration
factor over time: AF (ξstress(t), ξref ) . Thereby, an effective system age τ is obtained,

τ(t) =
∫ t

t′=0
AF (ξstress(t′), ξref ) dt′. (7.1)

A system with a failure probability characterized by a two parameter Weibull distribution
under reference conditions, tfail,ref ∼ Weibull(ηref , βref ), will fail once the effective system

1Note that we assume uniform acceleration, i.e. βj,ref = βj . The methodology can be extended to
non-uniform acceleration. However, a changing βj indicates a changing failure mode and should be divided
in separate failure modes.
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Figure 7.4: Illustration of the proposed hierarchical load-sharing modeling strategy.

age exceeds the the reference failure time drawn from the Weibull distribution, τ(T ) >
tfail,ref . Thereby, the effect of arbitrary load histories can be assessed when the system
failure probability under a reference operating condition, as well as its acceleration factor
model, are known.

Load Sharing Modeling So far, a relationship between the failure probability of the
redundant units and its operating conditions has been established. The missing piece
is the relation between the system load L̃ and its influence on the operating conditions.
Specifically, the load on each of the redundant units, Li, has to be determined as a function
of the system load and the available redundant units. This is modeled by so-called load
sharing policies, Li = LSPi(L̃), which distribute the system load among the functional
redundant units. A very common load sharing strategy is balanced load sharing, which is
also used for the power converter example. Two other sharing strategies are studied: Hot-
Spare operation, in which some of the units are in stand-by mode without any load, and
imbalanced load sharing, in which the load is distributed unequally among the functional
units.

For the considered 1 oo 2 scenario, LSP1:1 stands for balanced load sharing with half
of the load on each unit, LSP1:0 for hot spare operation with the whole load on one unit,
and LSP1:2 with one third of the load in one unit and two thirds of the load on the other
unit.

Hierarchical Load Sharing Model A combination of all the introduced concepts in a
hierarchical way leads to a modeling approach to support the decision objectives for the
considered scenario. Figure 7.4 shows the resulting hierarchical modeling approach. The
system load L̃ is the relevant operating condition at the highest modeling level. A load
sharing policy LSP distributes the system load among the redundant units. A parametric
model Γ determines the stress ξ for failure mode j on unit i as a function of the unit load
Li. The stress ξi,j determines the acceleration of the degradation through the acceleration
factor AFi,j. Finally, the failure time of the unit is determined through the cumulative
exposure model and its Weibull failure probability at reference load. Combining all ex-
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Figure 7.5: Application of the proposed load-sharing and the cumulative exposure model
[121] to a 1 oo 2 redundant device: (a) Simulation parameters over time. (b) Illustration
of the failure probabilities for unit two over time. The blue dashed line corresponds to the
simulated failure probability for the described scenario. The green and red line depicts
the failure probability for half or full system load, respectively. Note the increasing failure
rate at tc = 0.7. The time difference between the green and red line can be evaluated
analytically as ts = tc(1− 1/AF (L̃0.5, (L̃/2)0.5) [132]. [111]

pressions, the failure probability for a unit can be expressed as

F̃ (t,C; ηj,ref , βj,Λ,Θ) =

1−
M∏
j=1

1− exp
(
−
∫ t

0 AFj(Γj(C(t′); Λ), ξj,ref ; Θ)dt′
ηj,ref

)βj . (7.2)

Model Validation The validity of the model is assessed by reproducing the results of
variable load failure behavior as reported by Pozsgai et al [132]. It concerns a 1 oo 2
redundant system with a single failure mode, tfail,ref ∼ Weibull(ηref = 1, βref = 1.5), a
power-law acceleration factor, AF (ξstress, ξref ) = (ξstress/ξref )1.6, a nonlinear load-stressor
relationship, ξi,stress = L0.5

i , and a balanced load-sharing policy, L1 = L2 = L̃/2. The
operation of unit 2 is simulated from time t = 0 to t = 4. At time tc = 0.7, unit 1 is shut
down. Hence, for t > tc unit 2 supports the full load. The resulting load, acceleration
factor, and stress profile (y axis) for unit 2 are shown as a function of time (x axis) in
Figure 7.5a. The discontinuity of the profiles occurs at tc = 0.7, when unit 1 is shut down.

The simulation is carried out by drawing reference failure times, tfail,ref ∼ Weibull(ηref =
1, βref = 1.5), from the Weibull distribution above. The unit operates until the effective
age τ exceeds the drawn reference failure time, τ(t) > tfail,ref . The effective age is cal-
culated by the cumulative exposure model under the given load. By recording the time t
for repeated experiments, the cumulative failure probability F2(t) under the variable load
can be determined. The resulting cumulative fault distribution under the variable load
(dashed line) is shown in Figure 7.5b together with the cumulative failure probabilities
when assuming the two constant load settings (red and green lines). The first constant
load setting assumes a shared load up to tc = 0.7. Thereafter, the second load setting
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assumes that all the load is on a single unit. The cumulative fault distribution under the
variable load follows the failure probability of the shared load setting up to tc = 0.7 and
continues along the failure probability of the single unit setting thereafter. The results are
identical to those of Pozsgai et al [132], which validates the chosen modeling approach.

Model Summary Despite its overall complexity, the hierarchical model is composed of
simple layers of widely used functions in reliability studies. This has the advantage that
system experts are more likely to be familiar with it and their knowledge can be translated
into parameter values. When their knowledge is not sufficient, parameters can be obtained
by consulting scientific literature in which these functions are often used. Finally, the
parameters can also be obtained from system failure data through parameter estimation
techniques.

For the common situation of partial knowledge of parameter values, it is even possible
to mix expert knowledge, related scientific work, and operational data. E.g., in a Bayesian
parameter inference scheme, prior distributions on parameter values can be determined
with experts and posterior estimates obtained from the available data. This ensures that
all available data is used effectively.

Since the operating conditions are explicitly modeled, it is possible to study the system
behavior for new operating conditions as long as the acceleration factor and load to stress
relationship is valid. Thereby, the operation of the system can be optimized for new
operational environments.

As the fault mechanisms are modeled separately, it can be assessed how redesigns of
the system affect reliability. Failure modes can be removed or modified individually if a
redesign affects them. This allows to optimize the operation of redesigns of existing systems
to a certain extent. Moreover, the model addresses the requirements of a combination of
non-constant hazard rates, handling the effect of load histories on multiple failure modes,
and non-balanced load sharing. The propagation of distribution parameter uncertainty is
covered by using an appropriate simulation strategy, which is explained in the following
section.

7.3.3 Simulation Engine
The presented hierarchical model allows to determine the failure time of a redundant unit
as a function of the system load history. To determine the optimal operational policy of
the system, a simulation engine needs to be added. It consists of the following elements:

• Core Model: It simulates the operation of a single system S stochastically for a life-
time, which includes faults, repairs and the load sharing strategy. The corresponding
state diagram for a redundant system, such as the power converter, is shown in Fig-
ure 7.6. It contains two system states, ’Operation’ and ’Down’, which indicate if
the overall system is available or not. The simulation starts by drawing lifetimes ti,j
from the Weibull distributions for each unit i and each failure mechanism j. Whilst
in ’Operation’, the simulated time t is evolving and damage is accumulated through
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Figure 7.6: Illustration of the core level simulation approach: Simulation parameters are
defined as inputs for the simulation; Simulation variables are written during run-time of
the simulation; (Middle): State diagram of the proposed simulation strategy and the state
transition conditions. [111]

the system loads as specified in the hierarchical model. Once a unit p fails due to a
mechanism q, a repair is initiated. It is finished after a repair time tr,q, which is drawn
from a repair time distribution Tr,q. During the repair, the load on the remaining
functional units is distributed according to the specific load sharing policy LSP . If
n − k − 1 (i.e. a critical amount of) additional units fail before unit p is repaired,
the system stops ’Operation’ and goes into the ’Down’ mode. This initiates a critical
repair with a duration tr,c ∼ Tr,c. Once the critical repair is finished, the system
returns to the ’Operation’ state. The simulation terminates when the simulated time
exceeds the operational lifetime of the system, t > TOL. After the simulation has
finished, all faults and fault times, repairs, and downtime events are reported.

• Core Initializer: The presented hierarchical model is stochastic. That means that
a single evaluation of the model would be a sample of a random variable. To get
a more complete characterization of the model behavior, many evaluations need to
be obtained to observe the distribution of the random variable. The Core Initializer
executes many such evaluations of the core model with the same initialization param-
eters. The results of all simulations can be expressed as distributions and statistics
thereof (e.g. the mean and variance). The required number of evaluations for such
a Monte Carlo-based simulation can be estimated by monitoring the convergence of
statistics of the reported distributions.

• UQ Initializer: The modeling and simulation parameters are often uncertain due to
limited data and knowledge. To perform an end-to-end uncertainty-quantification,
the Core Initializer is executed multiple times with model and simulation parame-
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ters drawn from their respective distributions. As before, the number of necessary
executions can be determined by monitoring the statistics of the results.

• Dependency Initializer: The last layer allows to study the influence of different opera-
tional parameter combinations to assess the influence of different operational strate-
gies. E.g. different load sharing policies, different loads, or different maintenance
strategies can be compared.

The overall simulation approach, consisting of the four layers described above, is illustrated
in Figure 7.7. The outer layers pass parameters P to the inner layers, whereas the inner
layers report simulation results R to the outer layers.

7.3.4 Cost Model
Based on the simulation results (or their statistics), the life cycle cost can be evaluated
using equation 7.3,

C = neqceq + nrcr + ndcd, (7.3)

with nr being the number of repairs, nd being the number of downtime events during
the system lifetime, and neq the equipment cost factor to consider additional costs due to
redundancy. For the specific optimization objective, the equipment cost ceq is not relevant
as it does not change depending on the chosen load sharing policy. Hence, it will be omitted
here. The number of repairs and downtime events are provided by the simulation. The
repair and downtime cost need to be determined for the considered use case. This will be
discussed in the following section.
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7.3.5 Data Requirements and Availability
The data assessment is carried out by first stating the data requirements for the proposed
modeling approach. Then the requirements are cross-checked with the actually available
data.

Data Requirements The envisaged modeling consists of three elements:

1. the hierarchical system failure behavior quantification,

2. the simulation over a system life cycle, and

3. the life cycle cost equation.

The hierarchical model itself is composed of a load sharing policy LSP , a relationship Γ
between unit load Li and failure mechanism stress ξi,j with parameters Λ, an acceleration
factor model AF relating between a reference stress ξref and the actual stress, and a
two parameter Weibull distribution characterizing the unit failure probability over time at
reference stress for each failure mode j.2

The simulation model requires a parameterized hierarchical model and a system oper-
ation parameters. These are the operational lifetime TOL, repair time (distributions) Tr,
critical repair time (distributions) Tr,c, the system load L̃(t), other operating conditions
C(t) (temperature, humidity, etc.), and the configuration of the redundant system (k oo
n).

Finally, the cost model is based on knowledge of the (average) repair and downtime
cost. The cost of the equipment is not relevant in the considered optimization setting.

Data Availability Based on the outlined data requirements, the feasibility of the pro-
posed modeling approach will be evaluated by assessing the actual data availability and
quality.

The parameters of the hierarchical model are taken from expert reliability analysis on
operational data from more than ten years, totaling 58 Mu-h (Mega unit-hours). The data
has been recorded by a system expert who has been in charge for the whole operational
period. The data is well documented and consistent [113]. Two independently carried
out investigations on the data identified the same Weibull parametrization of the failure
behavior [114]. The acceleration model parameters and the load-stress relationship model
were developed in additional studies [133, 114] which were presented to expert panels.
Therefore, the data availability and quality can be considered sufficient. The only limitation
is that it was noted that due to the limited data availability, the parameter estimates are
rather uncertain. However, no systematic uncertainty-quantification was performed so far.
To address this issue, an ad-hoc sensitivity analysis is performed by assuming that the

2When limited knowledge about the specific load-stress relationship is available, it can be skipped by
setting Γ = Li.
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Figure 7.8: Experimentally determined relationship between temperature and load on unit
ξj(Li) = T (I). [112]

parameters follow normal distributions with a mean given by the expert-estimated values
and a variance of 10% of their mean.

Many of the required simulation parameters are provided in the expert reliability anal-
ysis [114, 113]. Only the repair time distributions needed to be gathered separately. This
could be done by interviewing the responsible expert for the repair of the system. The
repair costs were taken from the expert analysis.

It was noticed that the data collection is simplified by the availability and project
participation of the system designer and system maintainer. Moreover, during system
design a structured data collection procedure was implemented already. It facilitates the
coherent collection of data.

Overall, the available data satisfies the requirements for method implementation. Nev-
ertheless, the results are interpreted with caution, as the uncertainty of the parameters is
not estimated systematically. In the following Section, the implementation of the proposed
approach and its results for the considered redundant power converter are presented.

7.4 Numerical Experiments
In this Section, the implementation of the described methods and its results for the use
case are presented.

The redundant powering solution is composed of two identical 1 oo 2 redundant switch
mode power converters as shown in Figure 7.1. The converters have been operated at the
LHC for more than 10 years during which 59 faults have been recorded. For each fault, fail-
ure times ti,j, modes j, and operating conditions C are known [113]. The n = (290, 45, 58)
systems have been operated at constant loads of L̃ = (0.4, 0.9, 1.2)A, respectively. The
input voltage is 230 V AC and the output voltage is 5 V DC.

The reliability investigations [113, 114, 133] identified three failure modes and their
associated Weibull distributions and acceleration factor model. These are summarized in
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Table 7.1: Failure mode parameters: The parameters for the acceleration factors for failure
mode 1 and 2 were obtained from operational failure data at different constant loads
[133, 114]. The acceleration factor for capacitor wear-out was taken from literature [135,
136, 137], whereas, the function relating the temperature for capacitor wear with the
current of the unit was obtained experimentally [114] as shown in Figure 7.8.

j Description ξj Γj AFj ηj,ref [d] βj,ref ξj,ref

1 Fuse wear[134] I[A] Punit/U
(
I/Iref

)1.0
19219 1.16 1.2A

2 Not investigated I[A] Punit/U
(
I/Iref

)0.6
76768 0.9 1.2A

3 Capacitor wear[135] T [K] T = 55
(
1− e−0.7I

)
+ 298 exp

(
0.94
kb

(
1

Tref
− 1
T

))
4200 8.3 330K

Table 7.1. Each line corresponds to a failure mode and shows its parameters and charac-
teristics in terms of failure mode number j, stress ξj, load to stress relation Γj, acceleration
function AFj, characteristic lifetime ηj,ref in days [d], beta factor βj,ref , and reference stress
ξj,ref . The first failure mode is fuse wear, likely due to repetitive heating and cooling of
the AC input [134]. A power law acceleration depending on the electrical current ampli-
tude is identified empirically. The second failure mode is less frequent. Hence, its specific
mechanism was not identified but only quantified. It is characterized by current amplitude
dependent power law acceleration. Both failure modes show a relatively constant hazard
rate (β ≈ 1). The third failure mode shows a strong wear-out behavior (β > 1) and was
investigated closer [114]. It was revealed that a transient voltage suppressor is heating a
nearby electrolytic capacitor. The resulting accelerated electrolyte evaporation leads to
capacitance degradation. This triggers the failures. The heating was empirically charac-
terized as shown in Figure 7.8 [114]. It shows the temperature of the affected capacitor C8
(y axis) as a function of the unit current (x axis). The blue dots are the experimentally
measured temperatures. The dashed line is an exponential function which fits the data
trend accurately. The temperature dependent acceleration model for this specific type of
electrolytic capacitor was derived by Parler et al [135].

The chosen simulation parameters are discussed in the following. The operational
lifetime is set to TOL = 5000 d (d for days) which corresponds to a lifetime of close to 14
years. The repair after a unit has failed is carried out by a replacement of the unit. The
replacement itself is very quick. However, the repair team needs to wait to be granted
access to the LHC for non-critical repairs. This can take several days. Based on an expert
interview, the repair time distribution is best modeled by a rectified Gaussian distribution,
tr,j = tr ∼ NR(µ = 5 d, σ = 1.5 d). The average cost of a repair is cr = 150 CHF [113].
When both redundant units fail simultaneously, the LHC stops and a critical repair can be
carried out immediately. It is modeled by a delta distribution, tr,c ∼ Tr,c = δ(3.5 h) (h for
hours). The cost of the repair of both units is 300 CHF . Much higher is the cost due to
the associated downtime event, which was estimated to be cd = 100000 CHF on average.

As mentioned before, the systems are operated at three load levels, L̃ = (0.4, 0.9, 1.2)A.
In the simulation the load level will be varied from L̃ = 0.4A to 3.7A. Three different load
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sharing policies are studied: balanced load sharing LSP1:1, hot-spare operation LSP1:0,
and imbalanced load sharing LSP1:2. Depending on the parameter combination, up to
107 evaluations of the Core Model have been executed to obtain stable estimates of the
number of repairs and downtime statistics. Hundred evaluations were carried out on the
Core Initializer Level for robust estimates of the uncertainty bounds.

Results The simulated life cycle cost (y axis) as a function of the load sharing policy
(balanced load sharing LSP1:1 in red, hot-spare operation LSP1:0 in green, and imbalanced
load sharing LSP1:2 in blue) and the system output current (x axis) is shown in Figure 7.9a.
The dashed line represents the mean. The shaded area shows the 95% highest probability
density interval. The expected mean of the number of repairs and the number of downtime
events recorded during the simulation are shown in Figure 7.9b with dash-dotted and
solid lines, respectively. Again, the shaded area shows the 95% highest probability density
interval. The cost is a linear combination of the the number of repairs and downtime
occurrences. Due to the cost discrepancy of a factor of thousand between the repair and
the downtime costs, the number of downtime events dominates the overall cost.

Evidently, the system behavior changes with output load. For low currents (I < 1 A),
the cost is similar for all load sharing policies. For intermediate currents (1 A < I < 2.5 A),
balanced load sharing has the lowest cost and hot spare operation results in the highest
cost. For high currents (2.7 A < I), balanced load sharing has the highest cost and
imbalanced operation results in the lowest cost. Currents, 2.5 A < I < 2.7 A, are in a
transition period for which the cost of balance load sharing rapidly increases relative to
the other load sharing policies.

Figure 7.9c gives further insight in the frequency of the different failure modes in the
imbalanced load sharing scenario. The expected number of failures for each failure mode
and unit (y axis) is plotted as a function of the system output current (x axis). Failure
modes 1 to 3 are represented by different colors. Generally, the first unit (solid lines), which
carries two thirds of the load, has a higher number of failures than the second unit (dashed
lines), which only carries one third of the load. Failure modes one and two increase steadily
with the output load. Failure mode three is negligible for low currents but dominant for
high currents.

Discussion The system shows non-trivial failure behavior. Depending on the output
load, different load sharing policies are cheaper in terms of life cycle cost. Balanced load
sharing leads to lowest costs in low and intermediate current scenarios, whereas for higher
currents it results in the highest costs. To explain the behavior it helps to remember that
the third failure mode (capacitor wear) has a very strong wear-out behavior while the first
two failure modes are constant (random) in time. The third failure mode is dominant
for high currents. Hence, with higher currents, the units develop a stronger wear-out
characteristic. This means that if the load is shared equally among the units, there is a
higher chance of simultaneous wear-out and failure, which leads to a downtime event. If
the load is not shared equally (or not at all), simultaneous wear-out is much less likely.
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Figure 7.9: Final simulation results; Lines represent the expected means and shaded areas
the 95% highest probability density intervals: (a) The system cost C in CHF for different
load-sharing policies at different system loads (currents). (b) The total number of repairs
nr, and the number of losses of system output nd for different load-sharing policies at
different system loads (currents). (c) The expected number of failures per failure mode for
the LSP1:2 load-sharing scenario; ’fmx uy’ stands for failure mode x on unit y.
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That is the explanation for the higher number of downtime events for the balanced load
sharing strategy for increased system loads. Such a behavior could only be identified due
to the detailed modeling of the failure modes, their mechanisms, and the dynamic load
sharing. In a purely data-driven analysis without separation of failure mechanisms, such
insights would have been overlooked easily.

The width of the 95% intervals is determined by the parameter uncertainty and the
stochastic nature of the problem. The contribution of the stochasticity could be reduced
by increasing the number of system evaluations. Due to the low probability of simultane-
ous failures in the two units for low output loads the statistics of the results are uncertain
despite up to 107 Monte Carlo evaluations. The contribution of the uncertain input param-
eters is due to ad-hoc assumption of their uncertainty based on expert judgement. Hence,
the actual uncertainty bounds might differ.

Decision Recommendation The original decision objective was to determine the op-
timal load sharing policy for the power converter system. Based on the simulation results,
it is concluded that the optimal load sharing strongly depends on the output load. For the
three operational currents, I = (0.4, 0.9, 2.4)A, balanced load sharing seems to result in the
lowest cost. However, for high currents it might develop into a costly solution. Imbalanced
load sharing seems to offer a low cost for all currents. Hence, considering the parametric
uncertainty and the limited data, the safest strategy is imbalanced load sharing.

7.4.1 Further Applications
As initially suggested in Figure 7.2, the parameterized model of a single unit can be used
to optimize operations of the existing system under new operating conditions or even for
redesigned systems. In the example above, the objective was to optimize operations of
the existing system. In a follow-up work [112], the same model has been used to optimize
the operation of a future system. The use of a single power converter unit in a non-
redundant manner was studied for a less critical application with lower downtime cost. The
objective was to determine the optimal maintenance strategy. The conclusion was that for
low currents, reactive maintenance leads to lower life cycle costs. For higher currents, a
preventive maintenance is advisable. The optimal timing of preventive replacements could
also be determined for different output loads.

Re-designs of the units could be assessed as well. E.g., it could be decided to use
different fuses. Then, the models for the second and third failure mode could be recycled.
Potential new failure modes due to the different fuse would have to be identified separately.

If the whole system failure behavior was encoded in a neural network instead of the
proposed hierarchical model, it would be very complex, if not impossible, to assess which
parameters of the models can be reused if the associated system is re-designed. Further-
more, the parametric hierarchical model allows to derive more generally applicable insights
into system degradation. An example is that it could be identified that the optimal load
sharing for redundant units depends on their hazard rate characteristics. This illustrates
the advantage of a transparent parametric modeling approach.
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7.5 Chapter Summary, Conclusions and Outlook
A parametric modeling approach for reliability optimization projects with mixed availabil-
ity of qualitative and quantitative data has been presented. At its core is a hierarchical
model composed of relatively simple and commonly used reliability models, such as the
Weibull and acceleration factor model. This modeling approach allows to infer model pa-
rameters in a combined manner from expert knowledge, scientific literature, and directly
from data. The hierarchical model is combined with a simulation engine and a life cycle
cost model. It allows to study the system behavior under previously unseen operating
conditions and assessment of the reliability of future redesigns of the system.

The proposed method has been applied to a redundant powering solution to determine
the load distribution among the redundant units with the lowest life cycle cost. The results
show that the optimal load sharing solution depends on the output load, which influences
the hazard rate characteristics. Balanced load sharing has low costs for low output load.
For high output currents, balanced load sharing leads to the highest costs as the units
have a higher risk of simultaneous failure. This may result in high downtime costs. The
imbalanced load sharing results in low costs for all operating loads. Hence, based on the
limited certainty of available data and knowledge, it is recommended as the safest load
sharing policy.

The parametric hierarchical modeling strategy demonstrated to be useful in settings of
mixed qualitative and quantitative information. The same system degradation model can
be used to optimize systems and system derivations under current and future operating
conditions. Such optimizations would be less effectively carried out with purely data-driven
modeling strategies.

Chapter Learning Summary

Expert knowledge and fault data can be combined to improve reliability models.
Such models can be used to improve system operation for new operating conditions
and redesigned systems.
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Chapter 8

Data-Driven Discovery of
Organizational Reliability Aspects

The previous two chapters concerned scenarios with a focus on technical aspects of reliabil-
ity. Chapter 6 aims at discovering fault mechanisms and using them to predict imminent
failures. Chapter 7 provided a systematic way to combine expert knowledge and data to
develop quantification of failure behavior under different operational settings. Both chap-
ters use information of the system when in an operational state, encoded either in data,
documentation, or expert knowledge. To improve the reliability of the systems, suitable
technical modifications, e.g. optimal component choice or design, can be derived from the
results of applying the methods.

However, the reliability of a system is also affected by aspects such as project manage-
ment, outsourcing of fabrication, or level of experience of the involved project stakeholders.
The methods in the previous chapters do not provide information on the relevance of such
aspects for system reliability.

This chapter introduces a method to address such aspects to address RQ3. Based on
the field reliability of systems and relevant information of their life cycle, a multivariate
parametric model is derived and subsequently trained. It can be used to predict the
reliability of future fielded systems and extract the most relevant factors influencing it.
This information allows effective organizational decision making early in a system life
cycle, which maximizes cost-effective reliability improvement.

This Chapter and the methods and results therein are based on previously published
work [138].

8.1 Scenario Description and Problem Definition
It is desirable to be able to predict the reliability of a system in advance to check whether
they are expected to fulfill the specified reliability requirements, compare design alterna-
tives, determine the required amount of spares, or calculate expected warranty cost.

The reliability of a system in the field is influenced during all phases of its life cycle.
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All technical, human, and organizational processes may have a positive or negative impact
on the system reliability. E.g., particle accelerators can take decades from the first idea
to their operation. They will be conceived, designed, built, tested, commissioned and
operated by generations of engineers with diverse backgrounds. The tasks of each of them
may influence the achieved performance of the accelerator during operation.

Modeling of all these processes is impractical. Instead, common reliability prediction
methods restrict the modeling to limited aspects of a system (e.g. design, component
choice) or phases during the life cycle (e.g. manufacturing, testing). A summary of existing
methods is provided in Section 8.2. Since these methods only model certain aspects, their
reliability predictions may be misleading, if the modeled aspects do not contain other
relevant aspects within a system life cycle. Moreover, they cannot provide a systematic
way to quantify the uncertainty of their predictions since potentially important life cycle
aspects are not considered.

To overcome this limitation, a statistical model of field reliability is learned for the
whole system life cycle based on data from existing comparable systems as illustrated in
Figure 8.1. So-called quantitative reliability indicators are collected for a group of existing
systems (grey box). When their field reliability is known (green box), multivariate regres-
sion can be used to establish a relation (orange box) between the quantitative reliability
indicators and the achieved field reliability. Such a model allows to predict the field relia-
bility of new systems and to identify the relevant factors during a system life cycle. Using
appropriate regression methods, the uncertainty of predictions and influencing factors can
be quantified.

To measure the predictive performance of the methods common regression metrics
can be used. They can be compared against the error of traditional reliability prediction
methods. Few studies have systematically evaluated the discrepancy between predicted
and actual reliability of systems. Jones et al [139] conclude that reliability predictions can
deviate by orders of magnitude between different traditional methods and the actual field
reliability. These errors emerge because the used methods model the reliability based on the
selection of components and ignore other relevant aspects, such as design considerations,
manufacturing, or supplier selection.

Such imprecise reliability predictions may even mislead design choices. Hence, relia-
bility prediction has to be considered highly stochastic and difficult and an uncertainty
quantification is essential for such problems.

In this chapter, a reliability prediction use case of power converters in particle acceler-
ators is studied. It is shown that with the proposed approach the field reliability can be
predicted accurately with few reliability indicators, which are available early in a system
life cycle. This allows to use the approach early in a system life cycle when it is poten-
tially most valuable. The workload is greatly reduced in comparison to other reliability
prediction methods, as the modeling does not need to be carried out manually because
it is automatically inferred from the available data. With appropriately chosen reliability
indicators and regression methods, the influence of each reliability indicator is quantified.
It is shown that non-technical factors show a strong impact on the field reliability. Such
information can help improving reliability cost-effectively on an organizational level.
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Figure 8.1: Illustration of the proposed approach. The achieved field-reliability (c) can be
seen as the result of relevant processes during the whole product life cycle (1-5). It is not
feasible to capture and model all of the relevant processes. Instead, it is proposed to learn
a reduced-order statistical life cycle model (b) with machine-learning algorithms based on
quantitative reliability indicators (a). [138]

8.2 Related Work and Methods Selection
Reliability predictions have evolved over recent decades [140]. IEEE standard 1413 and
its successors give an overview over the numerous existing approaches towards reliability
prediction [141, 142]. The standard proposes a classification by

• handbooks,

• stress and damage models (also called physics-of-failure-based), and

• field data.

These groups of methods are discussed in the following.

Handbook-Based Methods Handbook methods use catalogued reliability data for
components to form a reliability estimate. A major criticism is that they do not con-
sider interactions between components and their configuration but only fault frequencies
of single components. Numerous studies have found that single-component failures only
make up for a fraction of failures in the field [143, 140, 144, 145, 146]. This leads to devi-
ations between predicted and actual field reliability by orders of magnitude [139]. Denson
et al argue that handbook based methods should only be taken as preliminary estimates
for early life cycle stage design choices.

Stress and Damage Model-Based Methods Stress and damage models yield more
accurate reliability estimates than handbook based methods [147]. They are based on
an understanding of the failure mechanisms in a system and how they are influenced by
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operational conditions. The method and use case from Chapter 7 are an example of a stress-
and damage model. Although superior in the predictive performance, model generation
requires much more modeling and data collection effort.

Field Data-Based Methods Methods based on field data estimate the reliability of a
future system based on experience with similar systems and a similarity metric [148, 149].
Their performance mostly depends on the method to derive the similarity metric and the
availability of reliability data of similar systems. The method proposed in this chapter
could be seen as field data-based, whereas it derives the similarity metric automatically
from the available data.

Miller et al [150] evaluate the likelihood of a system achieving a target reliability by
reviewing its design process. They determine a score depending on the design steps carried
out and show that it correlates with the probability of achieving the reliability target.
This allows to include organizational aspects. The method proposed in this chapter takes
a similar approach except that it directly estimates the expected reliability and identifies
the most appropriate scoring method from the data.

Groen et al [151] developed a Bayesian framework to predict reliability of new systems
based on similar systems and expert judgement. Their framework quantifies predictive
uncertainty. However, it involves an iterative approach with manual data input which is
dependent on expert judgement. The proposed method of this Chapter does not require
manual input beyond data collection as it infers all relevant dependencies from the supplied
data.

The studies of Miller et al [150] and Groen et al [151] demonstrate that reliability can
be forecasted accurately with methods based on field data. The proposed approach extends
these methods by automatically extracting significant factors that influence the reliability
from the data, quantifying uncertainty of reliability predictions and its influencing factors,
and being able to include all potentially relevant aspects during a system life cycle. It is
described in detail in the following section.

8.3 Methodology - Statistical System Life Cycle Mod-
els

This section introduces relevant definitions, the mathematical formulation of the problem,
the data collection, the model selection process, and the model learning algorithms.

8.3.1 Definitions
System Reliability Measure The method aims to predict a metric which expresses
the reliability of the system. E.g., this can be a reliability function or the remaining useful
life. For this scenario, repairable systems are considered. Therefore, we use the availability
A as reliability measure as defined in Equation 3.7 based on the MTBF and MTTR. The
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MTBF is calculated by
MTBF = toperation

nfaults
, (8.1)

with toperation being the cumulative operational time of the considered repairable system
and nfaults being the total number of faults within the operational time. The MTTR is
evaluated by

MTTR = tinrepair
nfaults

, (8.2)

with tinrepair being the total time a system is in repair and nfaults the total number of faults
during the operational time.

System Definition In this scenario, the considered systems are power converters of
magnets in particle accelerators. The method is not restricted to certain types of systems
as long as they can be assigned a reliability measure and a life cycle.

8.3.2 Approach
The method assumes that the achieved field reliability of a system is the result of all
the processes in all phases of the system life cycle. Statistical models approximate the
relation between all relevant processes and the achieved field reliability. The statistical
models learn this approximation from observed reliability data and reliability indicators
that describe the life cycle of a fleet of comparable systems. Inspection of the generated
models allows to identify the most relevant factors that influence the field reliability of
systems. Uncertainties, due to the approximation and the intrinsic stochasticity of the
reliability prediction problem, can be quantified with appropriate modeling strategies, such
as Bayesian regression methods.

Mathematical Formulation

One can hypothesize a deterministic model, Φ : Z 7→ Y , that determines the actual field
reliability of a system Y ∈ Y based on data of all relevant processes during a system life
cycle Z ∈ Z:

Y = Φ(Z). (8.3)

Such a model is impossible to obtain since only a fraction of all relevant processes can be
captured and modeled. Hence, a statistical model approximates the actual field reliability
of a system,

Y ≈ y = φ(x), (8.4)

with x ∈ X , dim(X ) � dim(Z) being the set of collected reliability indicators and φ :
x 7→ y,y ∈ Y being the statistical model. Supplying pairs of input and output data,
D = {(x1,Y1), ..., (xN,YN)}, a ML algorithm can identify such a statistical model through
regression.
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Three properties make a learning algorithm better suited for the reliability prediction
and explanation purpose:

1. To identify the factors which influence the field reliability, the relevance of each of
the input reliability indicators xi,j should be quantified with a relevance measure ρj,
where i indicates the system and j the different reliability indicators.

2. Probabilistic methods allow to quantify the uncertainty of the reliability prediction
and the relevance of the reliability indicators:

p(Y|x). (8.5)

3. Methods that identify sparse models, which require fewer input reliability indicators
are preferred. This reduces the data collection effort of reliability indicators. The
preferred use of sparse models can also be generally justified by Occam’s razor [152].

Data Collection

Some data collection guidelines are presented in the following. These refer to the selection
of systems and reliability indicators.

Collection of Training Systems The method assumes that the reliability of a new
system can be extrapolated from observed reliabilities of existing comparable systems.
Hence, a set of comparable systems has to be chosen properly. Following guidelines can be
given for this selection:

• The reliability metrics and reliability indicators have to be determined in a consistent
and identical way for all systems.

• Systems must have been in use for a sufficient time so that their (statistical) reliability
metrics have stabilized.

• The set of systems should be comparable in terms of system type and system usage.

Collection of Reliability Indicators A model can only capture the relevant factors
that influence the reliability when the reliability indicators are chosen appropriately. Fol-
lowing recommendations can be given:

• Differences within the set of systems should be made explicit by the reliability indi-
cators. E.g., if a fleet of cars consists of SUVs and sports cars, the car type, weight,
dimension, power, etc. should be captured. Otherwise, the method will not be able
to identify relevant dependencies.
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• System experts and operators, as well as system life cycle managers and project coor-
dinators, can provide relevant technical and organizational indicators based on their
experience. In terms of technical indicators, e.g. different operational environments
can affect reliability. In terms of organizational indicators, the choice of suppliers or
the production volume may affect reliability.

• Data collection and validation can be a time intensive process, especially when relia-
bility indicators are based on non-numeric engineering documentation. At the same
time, the prediction of field reliability is a stochastic process with large uncertain-
ties. Hence, it is recommended to start collecting those reliability indicators with
the highest expected information content at lowest possible collection effort. Once
adding more reliability indicators does not improve model predictions, data collection
can be stopped.

• When few reliability indicators are missing for certain systems, appropriate methods
for missing data, such as the expectation maximization algorithm, can be used.

• Reliability indicators are available at different life cycle phases. E.g., the specifi-
cations of a system are already available during the conception phase, whereas the
chosen manufacturing technology might only be available towards the end of the
design phase. Depending on the phases of the reliability indicators that the predic-
tive model uses as input, the model can be used earlier or later for predicting the
reliability of a new system.

8.3.3 Model Selection and Validation
The collected data can be arranged in a supervised data-set, D = {(x1, Y1), ..., (xN, YN)},
with xi and Yi being the collected reliability indicators and the field-reliability measure
for each system, respectively. Based on the data set, a predictive model can be identified
with appropriate algorithms. To select the best suited model and its (hyper-)parameters,
a nested k-fold cross-validation approach is chosen, similar to the proposition of Hastie et
al in Chapter 7 of [51]: The data set D is split in a training Dtrain and test set Dtest. The
splitting is carried out so that the training set contains systems older than a threshold
age as and the test set systems younger than the threshold age. This ensures that model
testing mimics the prediction of the reliability of future systems and ensures that no bias
in performance estimation is introduced.

The training set is used for model selection. In an outer five-fold cross-validation, differ-
ent algorithms are compared. In an inner five-fold cross-validation, for each of the outer five
folds, different (hyper-)parameters for each algorithm are compared and optimized [153].
The mean and variance of the cross-validation mean squared error, ErrCV , are reported
and later cross checked with the mean squared error on the test set, Errtest.

By inspecting the relevance measure ρ and the model structure it can be inferred
which reliability indicators have the strongest influence on the field reliability. Probabilistic
learning algorithms can quantify the uncertainty of the prediction error and the relevance
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Figure 8.2: Illustration of the iterative data collection and reliability prediction process.
The choice of (1) systems, (2) reliability indicators and (3) feature mappings influences the
quality of the predictive model (4). The learning algorithm provides feedback in the form
of an expected prediction error (a), relevance weights for the reliability indicators (b) and
uncertainty bounds for the field-reliability predictions (c). [138]

measure. The results are discussed with system and project stakeholders. If the results
are not sufficiently accurate or if no conclusions can be derived, the data collection can be
refined as illustrated in Figure 8.2 1: The choice of (1) systems, (2) reliability indicators
and (3) feature mappings influences the quality of the predictive model (4). The learning
algorithm provides feedback in the form of an expected prediction error (a), relevance
weights for the reliability indicators (b) and uncertainty bounds for the field-reliability
predictions (c). Based on the feedback, it can be decided to refine the choice of systems,
reliability indicators, or feature mappings.

Model Testing

The selected and validated models are tested on the full data set. 5-fold cross-validation is
used to determine hyperparameters with the training data set. The test error is evaluated
on the test set and compared to the cross-validation error from the model selection process.
If the test error is within two standard deviations of errors as predicted by the cross-
validation, the model is expected to predict the reliability of a future power converter with
the same order of error.

The overall data collection, model selection and reliability prediction process is sum-
marized in the pseudo-algorithm below. The use case in Section 8.4 follows the presented
procedure closely.

Pseudoalgorithm illustrating the overall model selection and reliability prediction pro-
cess:

1. D = {(x1,Y1), ..., (xN,YN)} ← Initial data collection.
1The number of data collection refinement iterations should be limited to avoid biasing of data collection

and results.
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2. Sort D by system age.

3. Split D in Dtrain and Dtest with atest < as ≤ atrain.

4. Model Selection and Validation:

(a) Shuffle Dtrain randomly.

(b) Evaluate ErrCV by (nested) CV.

(c) Evaluate parameter weights w and predictive uncertainty for one fold.

(d) If Model has large ErrCV or predictive uncertainty then

• Change set of systems, reliability indicators, or feature mapping
based on expert discussions and jump to 4.

5. Model Testing:

(a) Train predictive model with Dtrain.

(b) Evaluate Errtest and compare with ErrCV .

(c) Evaluate parameter weights w and predictive distributions.

Algorithms

A vast range of algorithms for supervised regression problems exists. The requirements
in terms of uncertainty-quantification, reliability indicator relevance, and sparsity narrow
down the selection. A summary of the algorithms and their characteristics with respect
to the requirements is presented in Table 8.1. The shown selection of algorithms is based
on their popularity for different problem domains, their simplicity, and their expected
suitability for stochastic problems. The characteristics are listed in the columns and are
uncertainty quantification (UQ), provision of a relevance measure, producing sparse mod-
els, and global or local models. ARD and BAR algorithms fulfill all criteria.

Table 8.1: Summary of learning algorithms. Adapted from [138].

UQ Relevance Measure Sparsity Global/Local
ARD yes yes yes Global
BAR yes yes yes Global
GP yes no no Local
ENCV no yes yes Global
SVR no only for linear kernel no Local

By formulating the reliability prediction problem as a supervised ML problem, we can
choose from a range of existing learning algorithms to generate the desired statistical model
for predictive purposes. Since the uncertainty in the field-reliability predictions shall be
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quantified (i.e. finding a model as presented in equation 8.5), the choice of algorithms is
narrowed down. Furthermore, sparse models are preferred since they potentially require
fewer reliability indicators to be collected and - more importantly - since they allow an
estimation of the relevance of the choice of reliability indicators and the generated features.

Table 8.1 summarizes the chosen algorithms. The implementation from sklearn have
been used [154]. Detailed descriptions of the methods can be found in their user guide
[106]. A summary of each algorithm is given below:

• ARD - Automatic Relevance Determination Regression: A sparse Bayesian regression
method as introduced in [155] - Chapter 7.2.1. The implementation is described in
[106] - Chapter 1.1.10.2.

• BAR - Bayesian Ridge Regression: A Bayesian regression method [156]. It resembles
ARD Regression except for a simpler and less flexible parametrization of uncertainty
which leads to fewer parameters that have to be learned from the data. It is described
in [106] - Chapter 1.1.10.1.

• GP - Gaussian Process Regression. A Bayesian Regression technique using the kernel
trick [157]. Its implementation is outlined in [158] - Algorithm 2.1 and was adapted
from [106] - Chapter 1.7.1. A combination of a radial-basis-function kernel and a
white-kernel is used. The kernel parameters are optimized during training.

• EN: Elastic Net Regression. A simple regression technique with regularization as de-
scribed in [106] - Chapter 1.1.5. Hyperparameters are determined in a cross-validated
grid-search.

• SVR - Support Vector Machine Regression: A regression method using the kernel
trick as described in [106] - Chapter 1.4.2. Linear basis functions are chosen and a
cross-validated grid-search is used to determine the hyperparameters.

8.4 Numerical Experiments
In this section, the proposed approach is tested for a real use case. The goal is to find a
model to predict the reliability of magnet power converters used at CERN and to identify
relevant factors influencing their reliability. The section is composed of an assessment of
data requirements and actual data availability and quality, a set of model learning tasks,
their results, and a discussion.

8.4.1 Data Requirements and Availability
Data Requirements

The data collection requirements are outlined in the Data Collection subsection of Sec-
tion 8.3. Most of its requirements are optional but leading to a better performance of the
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Table 8.2: Illustration of characteristic power converter attributes of the studied dataset.
[138]

Power [W] Current [A] Voltage [U] Age [yrs] MTBF [hrs]
Minimum 10−6 10−4 10−3 2.2 103

Maximum 108 4 · 104 105 49.7 6 · 105

method and easier interpretation of its results. Compulsory requirements are that relia-
bility indicators and metrics are available for a set of systems, obtained in a coherent and
identical way, and based on sufficient operational experience so that they have stabilized.

In the following the collected data for the considered use case is described and whether
it fulfills the stated requirements is discussed. These are the chosen set of system types,
reliability indicators, and reliability metrics.

Set of Systems More than 6000 power converters of around 600 different types are used
at CERN. A centralized computerized maintenance management system helps to track
their field reliability. Of the 600 converter types, 300 have a cumulative operation time of
more than ten years and consistent data recordings. The remaining 300 are removed. An
overview of minimal and maximal attributes of the 300 different selected converter types
are shown in Table 8.2 in terms of rated power, current, voltage, age and MTBF. It shows
that the data set contains a wide range of different power converters.

Reliability Indicators The selection of reliability indicators is based on recommen-
dations of CERN engineers and project managers in charge of systems for complete life
cycles:2

1. Rated current of the converter (I). It influences the choice of technology for power
conversion. Current causes heating in systems which can be handled by appropriate
thermal management [8, 6].

2. Rated voltage of the converter (U). Arcing or corona discharge can be caused by high
voltage. It requires the appropriate electrical insulation [8, 6].

3. Rated power of the converter (P). Power is the product of current and voltage. Hence,
both above considerations can be valid for high powers.

4. Quantity of each power converter per converter type used at CERN (Quantity).
When converters are produced in higher quantities, they tend to be handled differ-
ently during life cycle phases. It may impact the reliability even though it is not
related to any physical failure mechanism.

2The terms in brackets correspond to the acronym later used in figures to express the relevance of each
reliability indicator.
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5. The average age of converters per type (Avg. Age). The age often has a strong
influence on the reliability of systems due to wear-out mechanisms.

6. The cumulative age of converters per type (Cum. Age). Similar to the average age
in term of wear-out mechanisms. However, the availability might also increase with
cumulative age of systems as the organization learns to mitigate system deficiencies.

7. The polarity of the converter which indicates the operating modes, technology and
complexity of the converter (Pol 0-9).3

8. The particle accelerator in which the converter is used (Acc. 1-9). Different accelera-
tors have different operational environments in terms of radiation levels, operational
schedules, and maintenance strategies.

9. The count of different particle accelerators in which each converter is used (in Acc.).

Reliability Metrics The availability of the systems are expressed in terms of their
MTBF and MTTR which are calculated from the data of the Computerised Maintenance
Management System (CMMS). To ensure validity of the data the raw fault and repair
logs were checked for converter types with conspicuous data. Moreover, converters with
incomplete data or too little operational experience were removed.

The full data set D contains 281 different converter types with nine reliability indicators
(see above) and two reliability metrics each, their MTBF and MTTR.

Data Availability and Quality Assessment

The data fulfills the above stated minimal requirements: reliability indicators and metrics
are available for the set of systems, are obtained in a coherent and identical way, and are
based on sufficient operational experience.

The data was selected based on discussions with experts. However, not all recommended
indicators could be obtained for the several thousand converters. For example, operational
temperatures might be relevant, but could not be collected. Nevertheless, the collected
indicators capture the main differences between the converter types. The majority of
indicators is available at early life cycle phases. Hence, any predictive model based on
these indicators can be used to predict the field reliability of a new converter early in its
system life cycle.

8.4.2 Model Selection and Validation
The full data set is split into a training set Dtrain, containing 210 converter types older
than fifteen years, and a test set Dtest, containing 71 types of less than fifteen years. Hence,

3The discrete set of polarities is given by: (1) Unipolar, (2) Bipolar Switch Mechanic, (3) Bipolar I -
Unipolar U - 2 Quadrants, (4) Unipolar I Bipolar U 2 Quadrants, (5) Bipolar Pulse-Width-Modulation, (6)
Bipolar Relay, (7) Bipolar Electronic I/U, (8) Bipolar Anti-Parallel 4 Quadrants, (9) Bipolar I-circulation
4 Quadrants and, (0) un-specified or other Polarity.[138]
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the test setting assumes that the prediction was carried out fifteen years ago based on the
operational experience up to that point in time.

As part of the model selection and validation process, the input data of the training
folds was normalized to a mean of zero and unit variance, as some of the selected learning
algorithms function better with scaled input data. The resulting scaling operator is later
applied to the test folds. The logarithm of the reliability metrics, log(Y), is taken as output
data for numerical purposes.

The following different configurations in terms of set of converter types, reliability
indicators, and reliability indicator mappings are compared:

• Choice of converter types: The complete set of power converter types and a random
sub-selection of only 42 converter types is compared. The goal is to assess whether the
uncertainty of predictions and reliability indicator relevance increases for a smaller
data set.

• Choice of reliability indicators: Models trained with the full set of reliability indica-
tors are compared to those trained on a set without the quantity of converters per
type. The goal is to see whether removing an important indicator can be compen-
sated and whether it can lead to different explanations of relevant factors for field
reliability.

• Choice of reliability indicator mappings: Following features are generated based on
the reliability indicators:

– Linear features and logarithmic features are generated from numeric indicators
xnum (indicators 1-6 and 9) - Φ(xnum) = [xnum, log(xnum)]T (resulting in 7+7
values).

– Categorical indicators, for the polarity of the converters and the particle accel-
erators in which the converter is used, xcat (indicators 7 and 8) are encoded into
binary features (resulting in 10+9 values).

– An additional constant set to 1.

This resulted in an input vector containing 34 values. Two mappings of this vector
were chosen as input data:

– First order mapping: The input vector without additional transformation (ex-
cept for the scaling operation).

– Second order mapping: A second order feature mapping to account for nonlinear
interactions between the reliability indicators,

Φ(xnum) =
[
xnum, log(xnum), [xnum, log(xnum)] · [xnum, log(xnum)]T

]T
.

This results in 629 values for the input. The goal is to test whether a more
accurate model can be generated when interactions between indicators are al-
ready modeled at the level of the input data and whether the relevant factors
influencing the field reliability can still be retrieved.
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The results of the model selection and validation are reported for each of the mentioned
configuration in the following. The cross-validation mean squared error ErrCV and its
variance on the hold-out sets is presented in tabular form and the predictions (MTBF and
MTTR) and the reliability indicator relevance ρ are plotted for the last cross-validation
fold. Only the predictions of the BAR algorithm are plotted to reduce the number of
overall plots. BAR performs well across prediction tasks, produces sparse models, and
quantifies uncertainty of predictions and indicator relevance. The predictive performance
of the algorithms can be assessed from the results Tables.

Reference Configuration The first configuration studied uses the complete set of con-
verter types, all reliability indicators and the first order mapping. Applying the framework
to the data set with the introduced model selection and validation scheme yielded the val-
idation Meas-Squared-Error (MSE) shown in Table 8.3a for the MTBF and in Table 8.4a
for the MTTR. It is observed that all algorithms (shown in different columns of the table)
yield similar errors.

The obtained reliability predictions and their 95% highest probability density interval
on the hold-out set of the last validation fold4 of the BAR algorithm are shown in Fig-
ure 8.3a for the MTBF and Figure 8.3c for the MTTR. The converter types (denoted
System on the x-axis) are ordered by increasing predictedMTBF orMTTF , respectively.
The orange line depicts the mean of the predictive distribution and the orange shaded area
the 95% confidence intervals. The blue dots mark the actual observed field-reliabilites. It
is observed that for the MTBF the variation could be captured accurately. However, the
MTTR model does not manage to identify any relevant variations.

The obtained reliability indicator relevance (feature weight) of the last cross-validation
fold is displayed in Figure 8.3b for the MTBF model and in Figure 8.3d for the MTTR
model. The x-axis displays the different feature as obtained by the first order mapping
of the collected reliability indicators. It is observed that similar indicators are relevant
across different algorithms. The logarithm of the quantity of converters produced per type
log(Qty) is the dominant factor.

It is very interesting to note that the logarithm of the quantity of converters per type
is the most relevant factor in achieving an accurate reliability prediction. Obviously, the
quantity is only a correlating and not a causal factor. Nevertheless, this hints at non-
technical factors being relevant for the reliability of magnet power converters in this use
case. A closer investigation might reveal causal factors, which are overlooked in technical
analysis.

The fact that all models yield similar errors and assign similar relevance to similar
factors is giving confidence in the results. It also suggests that due to the randomness of
the prediction task, sophisticated algorithms do not lead to better results. Hence, it was
not studied to use deep learning methods to improve the predictions.

As theMTTR models did not identify any dependencies they are not discussed further.
4The size of the hold-out set correspond to one fifth of the training set of 210 converters. This is 42,

which is by chance the same amount as the reduced set of training systems but should not be confused.
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Figure 8.3: Results for the reference configuration. (a),(c): Prediction of the log(MTBF )
and log(MTTR) by the BAR algorithm for the last fold of the cross-validation procedure.
The orange line depicts the mean of the predictive distribution and the orange shaded area
the 95% confidence intervals. The blue dots mark the actual observed field-reliabilites.
Note that the converter types on the x axis of the last cross-validation fold were ordered
by the mean of the predictions to recognize whether trends are properly captured. (b),(d):
Estimated feature weights for the parametric models. [138]
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Reduced Set of Training Systems In the second configuration of only 42 randomly
sub-selected converter types, it is tested whether a reduction of the data set affects the
identified models and their predictive and parametric certainty. The obtained validation
MSEs ErrCV in Table 8.3b for the MTBF and Table 8.4b for the MTTR are larger than
the values obtained with the reference data set. Nevertheless, the reliability indicator
relevances (Figure 8.4b for MTBF and Figure 8.4d for MTTR) are identified similarly to
the reference configuration. Variations in the MTBF are captured accurately again (see
Figure 8.4a). Variations in the MTTR are not properly captured (see Figure 8.4c), as was
the case for the reference configuration.

The biggest difference appears in the certainty of the predictions (orange shaded area in
Figures 8.4a and 8.4c) and relevance measures (uncertainty bars in Figures 8.4b and 8.4d),
which are much larger than in the reference configuration. This confirms the expected
behavior, as the algorithms have to learn from much fewer data.

Reduced Set of Reliability Indicators In the third configuration, it is tested whether
omitting relevant reliability indicators can be compensated and whether it suggests conflict-
ing conclusions in terms of relevant factors influencing reliability. To do so, the logarithm
of the quantity of converters per type log(Qty) is removed.

The resulting MSEs for the MTBF (Table 8.3c) are almost three times those of the
reference configuration, whereas the MSEs of the MTTR (Table 8.4c) increased slightly.
The MTBF reliability indicator relevance (Figure 8.5b) do not identify a single dominant
factor anymore; the most relevant being the logarithm of the rated power log(P ) with a
negative influence on the reliability. It did also have a negative influence for the reference
configuration. The MTTR reliability indicator relevance (Figure 8.5d) are comparable to
the ones identified for the reference configuration. For the predictions (Figure 8.4a for the
MTBF and Figure 8.4c for the MTTR ) it is observed that in neither for the MTBF nor
for the MTTR the variations are properly captured and that the uncertainties increase
both for predictions and relevance estimates.

It is concluded that in this case the omission of a relevant indicator cannot be compen-
sated. Furthermore, the relevant factors influencing reliability do not suggest conflicting
conclusions in this scenario. However, a wider study is suggested to confirm these findings
generally.

Second-Order Feature Mapping The fourth configuration tests whether the second-
order feature mapping allows for more accurate modeling of reliability. The resulting
MSEs ErrCV (Table 8.3d for the MTBF and Table 8.4d for the MTTR) are comparable
to those obtained with the reference configuration except for the model generated by ARD
algorithm which performs significantly worse.

The second-order mapping yielded 629 features, which are not illustrated as their visual
interpretation is not possible. The predictions are illustrated in Figure 8.5e for theMTBF
and in Figure 8.5f for theMTTR. They perform similarly to the predictions obtained with
the first order mapping of the reference configuration.
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Figure 8.4: Results for a reduced set of data items in the learning data. (a),(c): Prediction
of the log(MTBF ) and log(MTTR) by the BAR algorithm for the last fold of the cross-
validation procedure. The orange line depicts the mean of the predictive distribution and
the orange shaded area the 95% confidence intervals. The blue dots mark the actual
observed field-reliabilites. Note that the converter types on the x axis of the last cross-
validation fold were ordered by the mean of the predictions to recognize whether trends
are properly captured. (b),(d): Estimated feature weights for the parametric models. [138]
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Table 8.3: Obtained mean-squared-errors for the log(MTBF ) - a) ErrCV for the reference
model, b) ErrCV for a reduced set of systems, c) ErrCV for a reduced set of reliability
indicators, d) ErrCV for nonlinear numeric feature mappings, and e) Errtest for the predic-
tions of the test data-set. Comparison of a) and e) indicates if the method can be extended
to future converter types. [138]

ARD BAR GP EN SVR
ErrCV a) 0.39±0.15 0.35±0.13 0.37±0.14 0.34±0.12 0.46±0.16
ErrCV b) 0.90±0.79 0.82±0.73 0.81±0.74 0.65±0.49 0.64±0.50
ErrCV c) 1.03±0.24 1.00±0.19 1.00±0.19 1.01±0.22 1.02±0.24
ErrCV d) 0.59±0.23 0.37±0.05 0.38±0.05 0.32±0.05 0.48±0.12
Errtest e) 0.30 0.33 0.32 0.30 0.38

It is concluded that the predictive performance is not improved by the second order
feature mapping. This is expected, as it is similar to using more complex modeling ap-
proaches, which also do not lead to better predictions. Besides that, interpreting the 629
features can pose a problem.

8.4.3 Prediction
The reference configuration is identified as the most suitable modeling approach in the
model selection and validation procedure. It is used to perform the reliability prediction
and relevant factor identification on the whole data set. Models are learned using data
of converters more than 15 years old and tested on data of converters of less than 15
years, as previously described. Hence, if the reliability of the more recent converters is
accurately predicted based on older ones, it provides strong evidence that the reliability of
future converters can be predicted accurately based on current ones. Only the MTBF is
predicted as no predictive MTTR model could be identified during model selection.

The obtained test MSEs Errtest are shown in Table 8.3e. They are slightly better than
the predicted generalization errors ErrCV , but also lie within their standard deviation,
as estimated in the cross-validation procedure during model selection. This gives further
confidence in the results. The reliability indicator relevance (Figure 8.6b) and the reliability
predictions (Figure 8.6a) on the test set are consistent with the model validation results
as well. Overall, it is demonstrated that the MTBF can be predicted and most relevant
factors identified accurately.

8.4.4 Discussion
For this use case, several points can be noted. Firstly, with the collected data it is possible
to predict the reliability of future converters with an accuracy that is on par with existing
methods [139]. However, the effort for data collection and modeling is greatly reduced and
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Figure 8.5: (a),(c),(e),(f): Prediction of the log(MTBF ) and log(MTTR) by the BAR
algorithm for the last fold of the cross-validation procedure. The orange line depicts
the mean of the predictive distribution and the orange shaded area the 95% confidence
intervals. The blue dots mark the actual observed field-reliabilites. Note that the converter
types on the x axis of the last cross-validation fold were ordered by the mean of the
predictions to recognize whether trends are properly captured. (b),(d): Estimated feature
weights for the parametric models. Figures (a),(b),(c),(d) are for the configuration with a
reduced set of reliability indicators and Figures (e),(f) for the second-order feature mapping.
Note that the illustrations of the 629 second-order feature weights are omitted. [138]
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Figure 8.6: (a): Predictions of the log(MTBF ) with the final models for the test data-
set. The orange line depicts the mean and the orange shaded area the 95% confidence
intervals. The blue dots mark the actual observed field-reliabilites. Note that the different
converter types were ordered by the mean of the predictive distribution. (b):Estimated
feature weights for the predictive models. [138]

Table 8.4: Obtained mean-squared-errors for the log(MTTR) - a) ErrCV for the reference
model, b) ErrCV for a reduced set of systems, c) ErrCV for a reduced set of reliability indi-
cators, d) ErrCV for nonlinear numeric feature mappings, and e) Errtest for the predictions
of the test data-set. [138]

ARD BAR GP EN SVR
ErrCV a) 0.23±0.05 0.22±0.0.04 0.22±0.04 0.22±0.04 0.23±0.05
ErrCV b) 0.32±0.17 0.24±0.11 0.24±0.12 0.23±0.09 0.25±0.17
ErrCV c) 0.30±0.16 0.23±0.06 0.23±0.06 .28±0.11 0.29±0.16
ErrCV d) 3.12±4.83 0.23±0.02 0.23±0.03 0.22±0.02 0.34±0.06
Errtest e) 0.38 0.35 0.35 0.35 0.36
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independent of the complexity of the studied system, which can be critical for complex sys-
tems. The uncertainty of the overall process can be systematically captured, and relevant
factors affecting the field reliability can be revealed.

Secondly, the most relevant indicator for an accurate prediction is the quantity of
produced converters per type. This indicator is available very early during a system life
cycle. Hence, a reliability prediction based on such an indicator is available at the beginning
of the life cycle of a new converter when it is most valuable. It can be used as input to
model the availability of a whole accelerator complex.

Thirdly, using complex modeling strategies with better modeling flexibility do not lead
to better prediction results. Most likely, this is due to the stochasticity of the problem.
The choice of the right reliability indicators has the strongest impact on the predictive
performance of the learned models.

8.5 Chapter Summary, Conclusions and Outlook
An approach to predict the reliability of systems is presented. It allows to quantify the
relevance of factors influencing reliability as well as the uncertainty of the overall modeling
process. For a power converter use case it is demonstrated that theMTBF can be predicted
with state of the art performance at a reduced data collection and modeling effort.

The quantity of produced converters per type was the factor with the highest relevance
for predicting reliability. Hence, the prediction can be carried out at the beginning of a
system life cycle, as this indicator is already available then. The output of this study can
be used as input for particle accelerator reliability optimization studies. The reduced data
collection and modeling effort in comparison to traditional reliability prediction methods
will make accurate reliability estimates available for more systems and hence improve the
modeling of the overall particle accelerator reliability.

For future work, the causal factors behind the correlation of the produced quantity
of converters per type with field reliability should be closer investigated. It hints at the
relevance of factors not covered by traditional reliability analysis, which focuses on tech-
nical aspects. Moreover, the overall methodology should be validated for a wider range of
systems.

Chapter Learning Summary

The findings indicate that reliability is influenced by all processes during a system
life cycle. Instead of focusing on isolated aspects, such as the system design, all
processes should be evaluated for their impact on reliability.



120 8. Data-Driven Discovery of Organizational Reliability Aspects



Chapter 9

Synthesis: Developing Robust
Data-Driven Reliability Optimization
Methods

In the previous three chapters, data-driven reliability optimization methods for different
scenarios have been presented. They provide solutions to a wide range of representative
challenges in industrial applications. This chapter combines the findings of the previous
chapters to answer the Umbrella RQ. It is structured as follows:

• Section 9.1 is a critical assessment of the previous three constructive chapters to ver-
ify that the tailored CRISP-DM methodology helps to resolve practical limitations
of data-driven reliability optimization methods. It consists of two parts: Firstly,
Subsection 9.1.1 evaluates whether the practical limitations have been addressed
successfully in each of the constructive methods of Chapters 6-8. Secondly, Subsec-
tion 9.1.2 studies the usefulness and potential improvements of the tailored CRISP-
DM methodology.
The critical assessment confirms that practical limitations are resolved and that
the CRISP-DM methodology is useful. The assessment also reveals that two ad-
ditional aspects, which are necessary to use the reliability optimization methods
cost-effectively, are not covered in the previous chapters. These are the correct tim-
ing when applying reliability optimization methods within a system life cycle and the
provision of high-quality data for the methods. These two aspects and their solutions
are discussed in the two following sections.

• Section 9.2 discusses the optimal timing of each constructive method within a system
life cycle to maximize their effectiveness.

• Section 9.3 lists the types of data required for reliability optimization methods. Sug-
gestions are made for the effective collection and provision of these data in high
quality.
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• Finally, Section 9.4 combines all the previous findings and provides a cost-effective
data-driven reliability optimization framework for complex engineered systems, which
addresses the Umbrella RQ.

9.1 Critical Assessment of Constructive Chapters

9.1.1 Addressing Practical Limitations
The aim of this section is to assess whether the limitations of existing works, as introduced
in Section 4.2, have been addressed appropriately by the methods developed in Chapters 6-
8. All existing limitations are listed in Tables 9.1 and 9.2, respectively, and assessed for
each of the developed methods. Each line in the table corresponds to an existing limitation.
It is described in the first column and assessed for each of the methods from Chapters 6-8
in the columns marked Ch5-7. Additional remarks are given in the comment column.

The tables shows all stated limitations have been either fully or partially addressed by
the presented data-driven reliability optimization methods. Nevertheless, some trade-offs
remain, which are discussed in the following:

• The lack of fault data: This trade-off arises from fundamental conflicts of interest.
As soon as a system has one or several faults, investigations will be started. It will
not be waited until the system has accumulated a sufficient number of failures so
that quantitative estimates can be made with high confidence. Hence, such methods
will always be used at the limits of statistical validity.
To alleviate associated risks, methods in this thesis provide explanations of their
predictions and an uncertainty-quantification. Thereby, a human expert can assess
whether a model learned from few data is technically sound or not.
An alternative approach would be to use methods that only use the healthy system
state as reference and detect deviations from it. Usually, there is sufficient data to
characterize the healthy state of a system. However, such approaches cannot detect
whether a deviation of system leads to a failure or not. Hence, replacing or stopping a
system with a deviating behavior can prove highly uneconomical because it might not
lead to failure. In complex systems, such as particle accelerators, where operational
settings are frequently changed, deviating behavior is often expected not to lead to
failure. Therefore, such methods have not been further investigated in this thesis.

• Life cycle phases without monitoring: Although tracing and monitoring of products
during shipping or storage can be implemented (e.g. [159]), it is questionable whether
complete monitoring and information exchange throughout all life cycle phases is
feasible and cost-effective. Hence, in practice such solutions are rare for reliability
purposes.
In the fourth line of Table 9.1 it is written that the problem of un-monitored life
cycle phases is ’Implicitly addressed’ by the developed methods of Chapter 6-8. This
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does not mean that they collect data from all life cycle phases, but that they can
appropriately handle situations with missing life cycle data. The method from Chap-
ter 6 would adapt its reliability model when the monitored system is affected from
previous un-monitored damage. The models from Chapter 7 and Chapter 8 can in-
clude monitoring and damage data if they are available. However, if such data is not
available, the additional uncertainty due to lack of data will be quantified.

• Complexity of methods: The complexity of realistic scenarios often demands the
use of complex methods. Such methods require advanced mathematical skills from
project stakeholders for the correct use of the methods and the interpretation of their
results. For the core teams involved in the presented use cases, this could be ensured.
However, for a wider adoption of the methods and effective use, special training would
be necessary. It is noticed that with the emergence of ML as a discipline of its own
and the associated education becoming more prevalent, the adoption of complex
data-driven methods is facilitated.

Besides these trade-offs, two other aspects are critical for cost-effective reliability im-
provement, which have not been addressed in the constructive chapters:

• The optimal embedding of the presented methods in a system life cycle for cost-
effective reliability optimization.

• The effective collection and provision of the data required for reliability optimization.

These two aspects and their solutions are presented in detail in Section 9.2 and Sec-
tion 9.3, respectively. Before these two aspects are covered, the usefulness of the tailored
CRISP-DM methodology is assessed in the following subsection.

9.1.2 Usefulness of the Tailored CRISP-DM Methodology
Having confirmed that practical limitations can be overcome in the previous section, the
goal of this section is to assess whether the tailored CRISP-DM methodology for method
development is appropriate.

This is examined by evaluating the usefulness of the recommended steps as stated in
the methodology description (Section 5.2) for each of the use cases from Chapters 6-8.
Tables 9.3 and 9.4 list the stated recommendations, the degree to which they have been
adopted in each of the constructive chapters, and additional comments on the usefulness
of each recommendation.

To summarize the tables, the CRISP-DM methodology with its minor adaptations has
been very appropriate for the considered reliability optimization projects. The step of a
modeling method evaluation in addition to establishing the decision objectives and assess-
ing the data availability has proven useful to determine the correct modeling approaches.
Moreover, the strict separation between project assessment and project implementation
has been helpful to avoid investment of time and effort into projects, which are deemed to
be unsuccessful.
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Two minor improvements can be suggested: Firstly, the requirements definition for
explanations provided by the implemented methods should receive more attention during
the objectives definition stage. However, assigning appropriate goals and metrics for qual-
itative explanation outputs are more difficult than for quantitative predictive outputs in
general and especially at such early project stages.

Secondly, the proposed long-term validation of any implemented method is difficult
to realize. It would require follow-up over years and it is uncertain whether the effects
from a certain method can be disentangled from effects due to other methods. To reduce
the associated risks, the methodology recommends to test the methods extensively on
benchmark problems or in simulation before they are used for decision support.

9.2 Embedding Data-Driven Reliability Optimization
Methods in System Life Cycles

In this section, the goal is to embed the reliability optimization methods from Chapters 6-8
within a system life cycle so that they can be used effectively. As illustrated in Figure 1.1,
reliability optimization methods are generally more cost-effective when they support deci-
sion making in early life cycle phases.

The phases of a system life cycle, the main engineering tasks at each phase, and popular
established reliability methods and their role within different life cycle phases are presented
at the end of Section 3.1. On this basis, the optimal integration of the optimization methods
is discussed as described below.

In the following three subsections, each of the methods from Chapters 6-8 are charac-
terized by their required (data) inputs and when they are available during a life cycle, as
well as their outputs and how they can be used to improve system reliability. A distinc-
tion is made between systems with and without predecessors for which reliability expertise
has already been accumulated, as this makes a difference for the usage of the methods.
Differences to established reliability methods and how they can be complemented by the
methods introduced in Chapters 6-8 are discussed.

In the fourth and final subsection, it is described how the methods can be used to
support decision making in early life cycle phases, which leads to cost-effective reliability
optimization.

9.2.1 Embedding Data-Driven Discovery of Failure Mechanisms
The method from Chapter 6, which addresses RQ1, can be used to predict and identify
failure mechanisms in systems from their logging and monitoring data. The required input
knowledge is limited to a selection of logging or monitoring signals, which signify the
failures that one aims to predict, as well as a range of signals, which are expected to
contain precursors of the relevant failures. The outputs of the method are predictions of
faults in advance and a selection of the most relevant precursors of these faults, from which
the failure mechanism can be inferred by experts.
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This method has the advantage that it requires almost no a-priori system knowledge.
However, it requires monitoring data of the studied system. Hence, for a system without
predecessors, it can mainly be used as soon as a data logging environment has been set
up. This may happen after prototyping or production. The choice of monitoring signals
to consider can be guided by the results of an FMEA analysis. The output of the method
can be used in an online and offline setting. In an online use, arising operational issues
are predicted and mitigated by experts before they happen. In an offline use, failure
mechanisms are detected and mitigation measures discussed. Again, the results of an
FMEA analysis can guide the identification of failure mechanisms. The outputs may trigger
further reliability investigations that use the inferred knowledge on failure mechanisms as
input.

For systems with predecessors, the usage of the method is similar. The previously
accumulated knowledge allows a more focused selection of relevant precursor and failure
monitoring signals. However, more abstract knowledge, such as pre-existing failure behav-
ior quantification, cannot be utilized by the method.

The classical equivalent of the data-driven method would be manual monitoring and
failure analysis by machine operators and experts. Manual analysis is effective when (1) few
or only a single failure have been observed, (2) the operators and experts are experienced
and knowledgeable with the affected systems, and (3) the set of potential root-causes of
the fault is small (e.g. because the affected systems are simple). Contrary to that, the
introduced method is effective when (1) several faults have been observed, (2) the operators
and experts are neither experienced nor knowledgeable about the affected systems, and (3)
the set of potential root causes is large (because the affected systems are complex and
interconnected).

In summary, the method is best suited for complex systems with sufficient monitoring
data and limited expert knowledge. Its output helps to avoid arising operational failures
and to build up expert knowledge on failure mechanisms within a complex system.

9.2.2 Embedding Data and Knowledge-Driven Parametric Model-
Based Reliability Optimization

The method from Chapter 7, addressing RQ2, utilizes expert knowledge, failure data, and
scientific literature to develop quantitative models of failure behavior. With a simulation
engine, optimal operation and maintenance strategies are derived. The required inputs
include quantification of failure behavior as a function of the operational conditions, as
well as knowledge on the intended future system usage and costs associated with repairs
and downtime events. The output is an expected system life cycle cost, which serves as
decision metric for different operational, maintenance, and design strategies.

The advantage of this method is that it can effectively combine all available sources
of knowledge. The required quantification of failure behavior can be obtained from op-
erational experience from predecessor systems, established models and parameters from
scientific literature, or reliability testing. For systems without predecessors, reliability
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testing can be carried out as soon as prototypes are available. To refine prediction models
and to account for differences between the prototypes and the final systems, the reliability
tests should be repeated after the production stage. Moreover, models should be con-
tinuously updated during operational phases. Bayesian parameter estimation techniques
provide a systematic way for updating model parameters. Thereby, the quality of predic-
tions of the models increase continuously and can be used to optimize operations of the
existing system, as well as successor systems.

Successors, which reuse parts of the design, can also reuse the corresponding parts of
the reliability models. Changed or newly introduced parts of the system have to be treated
as systems without predecessors.

The introduced method is an extension of established reliability techniques. These
include (accelerated) reliability testing, acceleration factor models, Weibull analysis, Monte
Carlo simulation, and life cycle cost modeling. Whereas the established methods are used at
certain life cycle stages only, the introduced method allows to combine data and knowledge
across life cycle stages and reuse it for future derivations of systems. Overall, the method
is best suited to combine various sources of data and knowledge across a system life cycle
and use it to optimize the operation of existing and future systems.

9.2.3 Embedding Data-Driven Discovery of Organizational Reli-
ability Aspects

The method from Chapter 8, addressing RQ3, predicts the expected field reliability of
future systems as well as the most relevant factors influencing it based on the experience
with existing comparable systems. The required input is a measured field reliability for
the existing systems and a range of quantitative reliability indicators selected by experts
for both the existing systems as well as the systems for which the reliability should be
predicted. The method provides reliability predictions for new systems and the factors
with a positive or negative impact on reliability.

The stage at which the method can be used to predict the reliability of a system depends
on the set of relevant reliability indicators that have been identified. In the presented use
case, the relevant indicators are already available at the concept stage of a life cycle. Hence,
the reliability of a future system can be predicted at its concept stage already.

Comparable established reliability prediction methods have been outlined in Section 8.2.
They are mostly characterized by focusing on technical aspects and certain life cycle phases.
Hence, they can only be used when sufficient technical information about the system is
available. Moreover, their modeling and data collection effort is coupled to the complexity
of the studied system. In contrast, the introduced method integrates non-technical aspects
seamlessly and considers all system life cycle phases. The effort for modeling and data
collection is independent of the complexity of the investigated systems. Hence, it is recom-
mended to use the introduced method when (1) non-technical aspects shall be considered,
(2) the systems are complex, or (3) when predictions need to be available very early in the
life cycle of a system.



9.3 Improving Data Quality through Automatic Reliability Data Collection131

9.2.4 Using the Methods for Cost-Effective Decision Making
To use the presented methods as tools for cost-effective reliability optimization, they need
to be integrated in system life cycles in a way that they can support engineering decision
making at early stages of the life cycle. This subsection assesses how to achieve this for
each of the methods addressing RQ1-3, respectively.

The method addressing RQ3 satisfies above-mentioned requirement by providing reli-
ability predictions and relevant factors at early life cycle stages. The methods addressing
RQ1 and RQ2 do not satisfy this requirement up-front. Both provide useful outputs only
after a system has been built and operated for some time.

However, the results of the RQ2 method can be reused for optimising future similar
systems at early life cycle stages. Moreover, the RQ1 method can provide outputs that fa-
cilitate the implementation of the RQ2 method by indicating the relevant failure precursors
and mechanisms. Hence, an iterative approach emerges: It starts with data-driven meth-
ods to explore fault patterns and mechanisms and inform system experts (RQ1 method).
Then, it continues with model-driven methods (RQ2 method), which allow system experts
to combine their built-up knowledge with the fault data to generate transparent quantifi-
cation of failure behavior, which can be reused for future systems optimization.

This combination of data and model-driven methods across life-cycle allows to improve
the reliability of future systems cost-effectively in early life cycle stages. Finally, the
RQ3 method can help assessing the effectiveness of the employed reliability optimization
methods in the long term.

9.3 Improving Data Quality through Automatic Re-
liability Data Collection

Throughout the use cases, provision of sufficient and high-quality reliability data was an
issue. However, such data is crucial for a cost-effective implementation of the presented
methods. This section presents potential solutions to address data provision issues based
on evidence from the literature and experience from use cases in this thesis.

The scarcity of reliability data has been reported and studied in literature (see Sec-
tion 4.2). The reasons for insufficient data are both of technical and organizational kind.

Technical reasons include that failures can be complex emergent phenomena that are
hard to monitor and understand. Sensing and monitoring is expensive, increases the com-
plexity of a system, and can introduce new failure modes.

Organizational reasons include that the responsibility of data taking is not assigned,
teams responsible for data taking are not given enough context or incentives to carry it
out properly, data needs to be stored and maintained over many years, and lastly that the
process from data taking to effective decision for reliability optimization is complex and
involves many steps and people.

To provide potential solutions to data provision issues, this section
• lists the types of data required for reliability optimization,
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• provides recommendations for designing a system to automatically collect the re-
quired data, and

• provides recommendations for organising a project to facilitate manual collection the
required data.

9.3.1 Types of Data Required for Reliability Optimization
For each of the reliability optimization scenarios in this thesis, a list of minimal data
requirements and recommendations for optimal data provisioning has been compiled in
the constructive chapters. Comparing the compiled data requirements reveals a significant
overlap, although the scenarios cover a wide range of different reliability optimization
scenarios, objectives, and methods. Hence, it is concluded that across many reliability
optimization tasks, similar kind of data is required, which facilitates the provision of data
collection guidelines.

The required data types for the reliability optimization scenarios of this thesis are
listed below. These data are grouped by the requirements of different characteristic re-
liability modeling approaches. These are lifetime models (Weibull models, acceleration
factor models, statistical reliability models), system condition models (Physics-of-Failure
models, data-driven remaining useful life models), or qualitative evaluation models (Pareto
analysis, design reviews; not presented in the thesis but dealt with during preparation of
use cases):

1. System identifiers: system ID, assembly ID, component ID

2. Failure identifiers: fault timestamp, fault location (e.g. connector xyz), fault effect
(e.g. open circuit), fault mechanism (e.g. corrosion), root cause (e.g. humidity
because water leak)

3. Data for lifetime models:

• System utilization time until failure
• Suspension times: times/dates switched off, (Optional:) times in other usage

before current use, (Optional:) times in storage and shipping before usage
• Sample size: Number and ID of components, assemblies, or systems of the same

type
• (Optional:) Downtime due to failure
• (Optional:) Downtime unrelated to failure
• (Optional:) Operating condition history (mostly relevant if non-uniform across

sample)

4. Data for system condition models:

• Operational loads
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• Environmental loads
• System condition indicators

5. Data for qualitative assessment methods:

• Design documentation
• Manufacturing documentation
• Repair documentation

The first two items are required for all reliability investigations. The necessity of the third
and fourth item depend on the type of modeling and decision objective. The fifth item is
usually required to provide data on fault mechanisms and root causes.

The data types for system condition models (item 4) are only vaguely defined in the
list. Methods to determine the precise kind of required data for system condition models
can be found in the literature [147, 160, 44, 24, 45]. A few general guidelines are given in
the following: The output of an FMEA analysis helps to identify failure precursors that
are likely to occur and deserve monitoring. Indicators, which are cheap to measure and
likely to cover several failure modes, should be prioritized as they are expected to improve
the cost-effectiveness of monitoring. An example for electronic systems is the difference
between input and output power, which indicates the dissipated power. An increase of
power dissipation can be an indicator for a range of failure modes.

Having the listed data types available in high quality is expected to facilitate the
achievement of a large variety of common reliability optimization objectives. Recommen-
dations for the effective collection of these data items are provided in the following two
subsections. The recommendations are not conclusive but should serve as starting points
for future investigations.

9.3.2 Design for Automatic Reliability Collection
Designing automatic data collection mechanism into systems would be a promising ap-
proach for cost-effective provision of data. However, not all data collection procedures can
be automated.

Criteria to assess whether automatic collection and storage of data through sensors,
networks, and databases are feasible and economic are (0) the necessity and utility of
the data for reliability optimization, (1) the feasibility of automatising, (2) band-width
requirements, and (3) storage requirements for data logging. In the following, the data
types listed in the previous subsection are grouped by the expected automation capability
of their collection according to the criteria above and data collection considerations are
discussed for each group.

• System identifiers, the fault timestamp, the sample size, and most data for system
condition models are well suited for automated collection and storage. The imple-
mentation of an automatic collection system is not expected to be challenging.
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• A range of data items might qualify for automatic collection. These are the fault
location and effect, system utilization time until failure, times and dates a system
has been switched off, times in storage and shipping, and downtime (un-/)related to
failures.
All these data, except for times in storage and shipping, are related to a fault or an
unavailability of a system. Hence, the fault or unavailability can affect the monitoring
system, which is supposed to collect the considered data automatically. Therefore, it
is necessary to design automatic collection systems in a fault proof way so that a fault
neither in the monitored system nor in the monitoring system causes inconsistencies
in the data collection. Although such fault tolerant fault monitoring systems exist
[161, 162], their cost-effectiveness has to be assessed for each scenario.
The times in storage and shipping can principally be collected automatically with
additional monitoring efforts. However, when a system is stored, handled and shipped
properly, the aging and reliability effects should be limited [8] and monitoring is not
justifiable.

• The remaining data items can partially be collected automatically. This includes the
fault mechanism and root cause.
The fault mechanism and root cause can be automatically detected for recurring and
expected faults for which diagnostic systems are "designed-in". For new emergent
fault behavior, it is unlikely that a reliable automatic mechanism and root cause
diagnosis system, which works without additional expert input, can be developed.
A human expert analysis, assisted by semi-automatized diagnostic systems, such as
introduced in Chapter 6, is expected to be more cost- and time-effective for identi-
fying novel fault mechanisms and root-causes. In the following subsection, organiza-
tional factors, which encourage system stakeholders to carry out such manual failure
analysis and reporting in detail, are discussed.

9.3.3 Organization for Automatic Reliability Data Collection
Some data or information is most effectively collected by human experts. Especially failure
mechanisms and root causes of novel and complex failures require manual analysis and
validation by system experts. These analysis need to generate high-quality data to be
useful for reliability optimization methods.

Based on the literature from Section 4.2 and experience from use cases in this thesis,
the following factors improve the quality of manually collected reliability data:

• Data collectors need to be aware of the value of data collection for an organization.
They need to understand the potential use of the data that they collect and have
sufficient expertise on the systems they investigate.

• The responsibility for data collection has to be assigned. Appropriate means for
reliability data collection have to be considered for a system at early life cycle stages.
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• Across use cases it is observed that the quality of collected data improves when
the data collection responsibility is assigned to experts, which were involved in the
conception and design of a system.

Further recommendations for improving organizational data collection practices are pro-
vided by Unsworth et al [71].

9.4 A Data-Driven Framework for Cost-Effective Con-
tinuous Reliability Optimization

In this section, a proposal for a data-driven reliability optimization framework based on
the previous findings is presented. Section 9.1 confirms that the developed reliability op-
timization methods resolve many practical limitations, Section 9.2 presents an embedding
of these optimization methods within system life cycles to use them cost-effectively, and
Section 9.3 outlines how sufficient data of high quality can be provided for the optimization
methods.

The proposed framework combines the previous findings and leads to cost-effective
data-driven system reliability optimization for complex engineered systems by overcoming
many practical limitations:

1. Automatic Reliability Data Collection: Systems and processes need to be designed
with data collection for reliability analysis and corresponding decision making in
mind. A detailed listing of relevant data as well as guidelines for the implementation
of effective data collection methods are presented in Section 9.3. These data should
be available to stakeholders throughout the system life cycle.

2. Automatic data-driven failure pattern identification: A data-driven approach to ob-
tain predictive models of system failures and supporting information on failure mech-
anisms from logging data as presented in Chapter 6. The predictive models can help
to prevent unforeseen failures and the failure mechanism information simplifies failure
analysis for complex systems.

3. Degradation quantification and generalization: A systematic approach to combine
failure mechanism information, failure data and expert knowledge into a transparent
quantification of system degradation as presented in Chapter 7. It can be generalized
to systems with different operating conditions and reused for future generations of
systems.

4. Reliability prediction and effectiveness evaluation: The recorded field reliability of a
system can be correlated with factors characterising its system life as presented in
Chapter 8. For a set of comparable systems, multivariate statistical models can be
obtained. They allow to estimate future systems’ field reliability at early life cycle
stages and provide insight on the factors that impact reliability, which enables early
strategic decision making.
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The framework can be integrated into system life cycles and complement existing reliability
efforts.

Chapter Learning Summary

Reliability data collection should be designed into systems at early life cycle phases.
Effective use of data mining methods reveals insights that improves future systems’
reliability.



Chapter 10

Conclusions and Future Research
Directions

The complexity of modern engineered systems keeps increasing. At the same time, demands
on reliability are growing. Traditional techniques, which are based on manual expert
analysis, are reaching their limits in such situations and new approaches are required.

Modern data-science methods provide a possible solution. Such methods handle com-
plex and dynamic data, which are common for modern systems but challenging for tra-
ditional approaches. They can extract valuable information from the increasing volumes
of data, which are accumulated during operation of modern technical infrastructures, to
help operators and experts improving the reliability of their infrastructures. As an exam-
ple for one of the most complex technical infrastructures, this thesis focuses on particle
accelerators, such as the LHC.

Despite the potential of modern data-science methods, they frequently fail in practical
reliability optimization scenarios because they make too simplistic assumptions of the
system behavior, do not consider organizational contexts for cost-effectiveness, and build
on specific monitoring data, which are too expensive to record.

The goal of this thesis is to resolve these practical limitations and better leverage the
capabilities of modern data-science methods. This has been achieved by the following
contributions:

• A methodology for the development and implementation of practical data-driven
reliability optimization methods, which address previous limitations and considers
organizational contexts. It is based on the CRISP-DM methodology consisting of a
project assessment and implementation phase.
For three realistic use cases, it is demonstrated that applying the methodology led
to the development of data-driven reliability optimization methods for addressing
existing limitations and advance the state-of-the-art. The diversity of mathematical
modeling approaches and reliability optimization objectives used across the scenarios
is matched by few other studies in the field of reliability optimization. The contri-
butions of the three methods to the state-of-the-art are detailed below.
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1. Explainable deep learning methods predict failures in modern technical infras-
tructures and help to explain their failure mechanisms. This helps to increase
system availability directly by predicting impeding failures and their precursors
as well as indirectly by assisting experts to build up their expertise on how to
improve the system.
The presented method is among the first experimental studies of Explainable
AI in time-series applications and demonstrates the advantages of deep learning
techniques over existing approaches based on Support Vector Machine, Random
Forest, or kNearestNeighbor methods for modeling the complexity of realistic
phenomena. The generality of the method allows its application to other do-
mains where the discovery of mechanisms in time series data is crucial.

2. Hierarchical parametric models allow to combine expert knowledge and oper-
ational data throughout the system life cycle for improved reliability model
accuracy. Together with a Monte-Carlo simulation engine and an end-to-end
uncertainty-quantification, the system operations and associated life cycle cost
can be optimized. The transparent modeling structure allows generalizing re-
sults to new operating conditions as well as reusing models and parameters to
optimize future generations of systems cost-effectively.
The method is a realization of the digital twin concept and among the most
matured examples in the reliability domain. As such, it serves as a valuable
reference for the further development of digital twin solutions for reliability
purposes.

3. The field-reliability of systems and its most influencing factors can be predicted
with multivariate statistical models. They are trained on reliability data as well
as on quantified life cycle descriptors for a group of comparable systems. In
comparison to traditional reliability prediction methods, this allows to perform
more accurate reliability predictions at earlier life cycle phases for a wider range
of systems at reduced modeling efforts. Moreover, it can be used to disentangle
the effects of various reliability improvement methods on the field-reliability.

• For the success of all three methods, the collection and provision of high-quality data
is crucial. Section 9.3 contributes a list of data types that are required for a range
of common reliability optimization objectives as well as recommendations for the
effective collection of these data. These are derived with a systematic approach to
identify data requirements across optimization objectives and with a translation of
the obtained requirements into concrete suggestions for improving the data collection
and provisioning.

• Finally, to increase the cost-effectiveness of the methods, their optimal embedding
within the different phases of the system life cycle is derived in Section 9.2 with
respect to the availability of data and the optimal timing of decision making. The
cost-effective embedding and combined use of reliability optimization methods across
system life cycles has not been covered elsewhere.
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The contributions of this thesis push data-driven reliability optimization methods a
substantial step closer to succeeding in realistic environments. It is demonstrated that
these methods have the potential to improve the reliability of systems and reduce their
cost at reduced additional capital and labor investment. For future generations of technical
infrastructures, specifically particle accelerators, effective use of such methods might prove
critical to ensure high reliability at reduced cost despite the continuously growing system
complexity.

10.1 Future Research Directions
The findings of this thesis suggest a range of potential future research directions. These
are grouped in three blocks:

1. Future data-science techniques and their impact on the presented methods.

2. Future research on the usage and application of the presented methods.

3. Future research on applying the findings of this thesis to other domains.

With respect to 1., future data-science techniques are expected to have a positive impact
on the cost-effectiveness, user friendliness, and the range of applications of the presented
methods:

• Few-Shot Learning (FSL) could extend the use of data-driven methods to scenarios
with even less failure data to learn from.

• Bayesian parameter identification methods can combine data from prototype tests
as well as operation in a systematic manner including quantification of uncertainty.
User friendly, open source tools for such assessments are currently not available.

• Symbolic regression might provide more intuitive model interpretations than cur-
rently used input relevance measures.

With respect to 2., future research on the usage of the presented methods could lead
to improved guidelines for practitioners:

• Objective criteria should be identified to judge whether traditional knowledge-driven
or advanced data-driven reliability optimization methods are more suited for specific
scenarios.

• The tailored CRISP-DM methodology should be validated and refined for reliability
optimization projects not covered by the three considered representative scenarios.

With respect to 3., future research on applying the findings of this thesis to other
domains could help to advance other areas of applied data-science:
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• The method from Chapter 6 can be applied to domains where the discovery and
understanding of mechanisms in time series data is critical.

• The method from Chapter 7 serves as a valuable reference for the further development
of digital twin solutions in industrial environments.

• The systematic approach to improve the collection and provision of high-quality data
from Section 9.3 could prove useful for other applied data-science domains, which are
affected by insufficient data of low quality.

• The approach from Section 9.2 to embed data-driven optimization methods within
a system life cycle to maximize cost-effectiveness can be generalized to other data-
driven optimizations in organizational contexts.

Learning Summary

Using modern data-science methods delivers new approaches in many different fields.
In this thesis, the practical applicability of such methods for reliability optimization
of complex technical infrastructures is demonstrated in general and for the particle
accelerators of CERN in particular.
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