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Abstract

Large deviations of the KPZ equation, Markov duality and SPDE limits of the vertex models

Yier Lin

The Kardar-Parisi-Zhang (KPZ) equation is a stochastic PDE describing various objects in

statistical mechanics such as random interface growth, directed polymers, interacting particle sys-

tems. We study large deviations of the KPZ equation, both in the short time and long time regime.

We prove the first short time large deviations for the KPZ equation and detects a Gaussian - 5
2

power law crossover in the lower tail rate function. In the long-time regime, we study the upper

tail large deviations of the KPZ equation starting from a wide range of initial data and explore how

the rate function depends on the initial data.

The KPZ equation plays a role as the weak scaling limit of various models in the KPZ univer-

sality class. We show the stochastic higher spin six vertex model, a class of models which sit on

top of the KPZ integrable systems, converges weakly to the KPZ equation under certain scaling.

This extends the weak universality of the KPZ equation. On the other hand, we show that under a

different scaling, the stochastic higher spin six vertex model converges to a hyperbolic stochastic

PDE called stochastic telegraph equation. One key tool behind the proof of these two stochastic

PDE limits is a property called Markov duality.
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Chapter 1: Introduction

1.1 Overview

The Kardar–Parisi–Zhang (KPZ) equation is a non-linear stochastic PDE (SPDE) which reads

𝜕𝑡H = 1
2𝜕𝑥𝑥H +

1
2 (𝜕𝑥H)

2 + b, (1.1.1)

where H = H(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0,∞) × R. Here, b = b (𝑡, 𝑥) denotes the space-time white noise,

which is a Gaussian field with Dirac delta correlation function E[b (𝑡, 𝑥)b (𝑠, 𝑦)] = 𝛿(𝑡− 𝑠)𝛿(𝑥− 𝑦).

The equation was introduced by [KPZ86] as a model which describes the evolution of a randomly

growing interface, where H(𝑡, 𝑥) represents the height function of the interface at time 𝑡 and at

location 𝑥. Given the expression of (1.1.1), the growing surface is subject to: 1. smoothing; 2.

slope-dependent growth and 3. space-time independent noise. The KPZ equation is connected to

many physical systems including directed polymers in a random environment, last passage perco-

lation, randomly stirred fluids, and interacting particle systems.

Mathematically, the solution to (1.1.1) is ill-posed in the classical sense due to the appearance

of the space-time white noise and the non-linearity term. In fact, by classical Schauder estimate,

one would expect the solution to the KPZ equation has the same regularity of a Brownian motion.

As a result, 𝜕𝑥H should be interpreted as a distribution and the problem arises because one can not

make sense the term (𝜕𝑥H)2, which is the square of a distribution. One way to properly define the

KPZ equation is through the Hopf-Cole transform

H(𝑡, 𝑥) := logZ(𝑡, 𝑥), (1.1.2)
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whereZ(𝑡, 𝑥) is the mild solution of the stochastic heat equation (SHE)

𝜕𝑡Z(𝑡, 𝑥) =
1
2
𝜕𝑥𝑥Z(𝑡, 𝑥) + b (𝑡, 𝑥)Z(𝑡, 𝑥),

which exists and is unique. We say the KPZ equation starts from the narrow wedge initial data

if Z(0, 𝑥) = 𝛿(𝑥) where 𝛿 is the Dirac-Delta function. In this case, we denote the solution to be

Hnw.

Other equivalent ways to define the KPZ equation include the theory of regularity structure

[Hai14], paracontrolled equation [GIP15] or the energy solution [GJ14].

As an important model for the random interface growth, it is valuable to understand the behav-

ior of the KPZ equation. One interesting a question is about the asymptotic behavior. [ACQ11]

proves that for as 𝑡 →∞,

Hnw(2𝑡, 0) + 𝑡
12

𝑡
1
3

⇒ Tracy-Widom GUE.

Having the above as a fluctuation limit theorem for the KPZ equation, a natural following question

is to understand the large deviation principle (LDP). In other words, as 𝑡 → ∞, we want to study

the probability of a rare event where H(2𝑡, 0) + 𝑡
12 deviates from 0 at scale 𝑡. [DT19] proves the

LDP for the upper tail: for every 𝑠 > 0,

lim
𝑡→∞

1
𝑡

logP
(
Hnw(2𝑡, 0) + 𝑡

12
> 𝑠𝑡

)
= −𝜙+(𝑠)

where 𝜙+(𝑠) = 4
3 𝑠

3
2 . Based on this result, we ask the following question: What is the upper tail

LDP for the KPZ equation starting from other initial data? In addition, how will the LDP rate

function depend on the initial data? We will briefly discuss our answer to this question in Section

1.2.
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Note that [Tsa18, CC19] prove a LDP for the lower tail

lim
𝑡→∞

1
𝑡

logP
(
Hnw(2𝑡, 0) + 𝑡

12
< −𝑠𝑡

)
= −𝜙−(−𝑠)

where the rate function is

𝜙−(𝑧) =
4

15𝜋
(1 − 𝜋2𝑧) 5

2 − 4
15𝜋6 +

2
3𝜋4 𝑧 −

1
2𝜋
𝑧2. (1.1.3)

It is interesting to ask what is the lower tail LDP for the KPZ equation starting from general initial

data other than narrow wedge. In particular, how does the rate function depend on the initial data.

We leave the study of this question to the future.

For the KPZ equation starting from the narrow wedge initial data, [ACQ11] shows that the

short time fluctuation limit theorem: as 𝑡 → 0,

Hnw(2𝑡, 0) + log
√

4𝜋𝑡
𝑡

1
4

⇒ N(0,
√︂
𝜋

2
),

where the right hand side is a Gaussian random variable with mean zero and variance 𝜋
2 . It is a

natural question to ask what is the large deviation behavior of Hnw as 𝑡 → 0. In Section 1.3,

we will establish a LDP for the KPZ equation in the short time regime. It turns out that our

LDP also reflects a crossover phenomenon in the lower tail of the KPZ equation. Such result and

phenomenon was proved earlier in the 𝑡 →∞ regime by [CG20b, Tsa18, CC19].

The KPZ equation is not a scaling invariant object. More precisely, if we define H𝜖 (𝑡, 𝑥) =

𝜖 𝑧H(𝜖−𝑏𝑡, 𝜖−1𝑥), using the scaling of space-time white noise b (𝜖−𝑏𝑡, 𝜖−1𝑥) 𝑑= 𝜖 𝑏+1
2 b (𝑡, 𝑥), we get

𝜕𝑡H𝜖 (𝑡, 𝑥) =
1
2
𝜖2−𝑏𝜕2

𝑥H𝜖 (𝑡, 𝑥) +
1
2
𝜖−𝑧+2−𝑏 (𝜕𝑥H𝜖 (𝑡, 𝑥))2 + 𝜖 𝑧+

1
2−

𝑏
2 b (𝑡, 𝑥). (1.1.4)

It is clear that there is no 𝑏, 𝑧 such that the coefficients in the above equation match with those in

(1.1.1). However, if we simultaneously scale some of the parameters 𝛿, ^, 𝐷, it is possible that the
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KPZ equation remains unchanged: such scaling is called weak scaling. It is thus natural to believe

that the KPZ equation is the weak scaling limit of microscopic models with similar properties

such as relaxation and lateral growth. Roughly speaking, this is the weak universality of the KPZ

equation.

The weak universality of the KPZ equation has been verified for a number of interacting particle

systems. The first result was given in the work of [BG97], for Asymmetric Simple Exclusion

Process (ASEP).

The SHS6V model introduced in [CP16] (also see [Bor17]) belongs to the family of vertex

models which themselves are examples of quantum integrable systems. In general, the 𝑅-matrices

(which can be thought of as the weights associated to the vertex) are not stochastic. The authors

of [CP16] worked with the 𝐿-matrices, which is a stochastic version of the 𝑅-matrices and they

defined the SHS6V model. The stochasticity allows us to define the vertex model on the entire

line as an interacting particle system which follows sequential Markov update rule. Moreover,

the 𝐿-matrices in [CP16] satisfy the Yang-Baxter equation which implies the integrability of the

model. In particular, the transfer matrices are diagonalizable by a complete set of Bethe ansatz

eigenfunctions [BCPS15, CP16]. The model also enjoys Markov duality. The 𝐿-matrices of the

SHS6V model have four parameters. By specifying these parameters, the SHS6V model degener-

ates to known integrable systems such as stochastic six vertex (S6V) model, ASEP, q-Hahn TASEP,

q-TASEP. Indeed, it is on top of a hierarchy of KPZ class integrable probabilistic systems.

We prove that under weakly asymmetric scaling, the SHS6V model converges to the KPZ

equation. This significantly extends the class of models which belongs to the weak universality

class of the KPZ equation.

On the other hand, we show that under a different scaling, the SHS6V model converges to a

different SPDE called the stochastic telegraph equation. Our results extend the universality of the

STE beyond the S6V model [BG19]. Unlike the KPZ equation which is parabolic, the STE is

hyperbolic. It is very interesting to see whether there is an interpolation between these two SPDE

limits in the SHS6V model.

4



The rest of the introduction is organized as the following. In Section 1.2, we talk about the

large deviation of the KPZ equation with general initial data. In Section 1.3, we study the short

time large deviations of the KPZ equation. Section 1.4 will concern the KPZ limit of the SHS6V

model. Section 1.5 explains how the stochastic telegraph equation arises as a SPDE limit of the

SHS6V model.

1.2 Large deviation of the KPZ equation with general initial data

This section serves as a summary of Chapter 3. We look at the KPZ equation (1.1.1) with

general function valued initial data H(0, 𝑥) = 𝑓 (𝑥). We obtain the upper tail LDP of the KPZ

equation under certain condition over 𝑓 . For the purpose of simplification, here we will formulate

our condition on the initial data in an imprecise way. We expect that this formulation will deliver

our idea in a more intuitive way. The precise statement is recorded in Definition 3.1.1. Roughly

speaking, the core condition that we impose on 𝑓 is the existence of a function 𝑔 : R+ → R such

that for every 𝑝 > 0,

𝑔(𝑝) := lim
𝑡→∞

1
𝑡

log
∫
R
𝑒
−𝑝𝑥2

2𝑡 E
[
𝑒𝑝 𝑓 (𝑥)

]
𝑑𝑥. (1.2.1)

We also require on certain regularity condition over 𝑓 . The class of 𝑓 satisfying these conditions

includes any bounded deterministic initial data and the two sided Brownian motion (stationary

initial data).

Theorem 1.2.1. Suppose that 𝑔(𝑝) ∈ 𝐶1(R>0) and Z := lim𝑝→0 𝑔
′(𝑝) is finite. Then, for 𝑠 > Z ,

lim
𝑡→∞

1
𝑡

logP
(
H 𝑓 (𝑡, 0) + 𝑡

24
> 𝑠𝑡

)
= −max

𝑝≥0

{
𝑠𝑝 − 𝑝

3

24
− 𝑔(𝑝)

}
Remark 1.2.2. Without proof, Z should be the limit of 𝑡−1(H 𝑓 (𝑡, 0) + 𝑡

24 ) as 𝑡 →∞. Note that we

have max𝑝≥0{Z 𝑝 − 𝑝3

24 − 𝑔(𝑝)} = 0 (for detail, see Chapter 3). In particular, we also know that

lim
𝑡→∞

1
𝑡

logP
(
H 𝑓 (𝑡, 0) + 𝑡

24
> 𝑠𝑡

)
= 0

5



when 𝑠 ≤ Z .

Remark 1.2.3. The theorem above implies that if the initial data 𝑓 is bounded, then 𝑔(𝑝) = 0 and

lim
𝑡→∞

1
𝑡

logP
(
H 𝑓 (𝑡, 0) + 𝑡

24
> 𝑠𝑡

)
= −4

√
2

3
𝑠

3
2

If 𝑓 is a two-sided Brownian motion, then 𝑔(𝑝) = 𝑝3

8 and

lim
𝑡→∞

1
𝑡

logP
(
H 𝑓 (𝑡, 0) + 𝑡

24
> 𝑠𝑡

)
= −2

√
2

3
𝑠

3
2

Let us talk about the proof idea. We denoteZ 𝑓 to be the solution to the SHE

𝜕𝑡Z 𝑓 =
1
2
𝜕𝑥𝑥Z 𝑓 + Z 𝑓 b ,Z 𝑓 (0, 𝑥) = exp

(
𝑓 (𝑥)

)
Note that H 𝑓 := logZ 𝑓 . The large deviation in Theorem 1.2.1 is closely related to the Lyapunov

exponent of the SHE. For 𝑝 ∈ R>0, we define the 𝑝-th moment Lyapunov exponent of theZ 𝑓 as

𝛾
𝑓
𝑝 := lim

𝑡→∞
1
𝑡

logE
[
Z 𝑓 (𝑡, 0)𝑝

]
(1.2.2)

It is well-known that for a sum of i.i.d. random variables, the large deviation rate function equals to

the Legendre transform of the log moment generating function. GivenZ 𝑓 (𝑡, 0) = exp
(
H 𝑓 (𝑡, 0)

)
,

𝛾
𝑓
𝑝 defined above plays a role of the asymptotic log moment generating function of H 𝑓 (𝑡, 0). So

we are able to conclude Theorem 1.2.1 once we prove the following.

Theorem 1.2.4. We have 𝛾 𝑓𝑝 =
𝑝3−𝑝

24 + 𝑔(𝑝) for every 𝑝 > 0.

Even without the connection to the LDP, the Lyapunov exponent is an important quantity which

describes the behavior of random systems. Many multiplicative type random fields or SPDEs

exhibit a universal phenomenon called intermittency. Roughly speaking, the intermittency cor-

responds to the random field that exhibits unusual high peak in a small region. The nature of

intermittency is characterized by the Lyapunov exponent. In the context of the SHE, the study

6



goes back to [BC95], in which paper the authors compute all the integer Lyapunov exponent of the

SHE. However, there is a mistake in their computation beyond the second moment due to an incor-

rect use of the Skorohod’s lemma. This was fixed later by [Che15], who computes the Lyapunov

exponent of the SHE for all bounded initial data. The integer and the fractional Lyapunov expo-

nent of the SHE starting from narrow wedge initial data was obtained by [CG20a] and [DT19].

Our theorem was the first result which computes the fractional Lyapunov exponent of the SHE for

a wide class of initial data.

Let us explain the heuristics of the proof. We start with the convolution formula in [CH16] to

represent 𝑍 𝑓 in terms of a convolution of coupling of the fundamental solution of the SHE and the

initial data:

𝑍 𝑓 (𝑡, 0) 𝑑=
∫ ∞

−∞
𝑍nw(𝑡, 𝑥)𝑒 𝑓 (𝑥)𝑑𝑥

This being the case, to compute the Lyapunov exponent ofZ 𝑓 (𝑡, 0), it suffices to look at the posi-

tive moments of the right hand side. One important step is to justify the following approximation

E

[( ∫ ∞

−∞
𝑍nw(𝑡, 𝑥)𝑒 𝑓 (𝑥)𝑑𝑥

) 𝑝]
≈ E

[ ∫ ∞

−∞
𝑍nw(𝑡, 𝑥)𝑝𝑒𝑝 𝑓 (𝑥)𝑑𝑥

]
This approximation should hold because the main contribution of the integral

∫ ∞
−∞ 𝑍

nw(𝑡, 𝑥)𝑒 𝑓 (𝑥)𝑑𝑥

is localized. Once have this approximation, using the independence of Znw and 𝑓 , together with

the stationarity of {Znw(𝑡, 𝑥)𝑒 𝑥2
2𝑡 } in 𝑥, we obtain

E
[
𝑍 𝑓 (𝑡, 0)𝑝

]
≈ E

[ ∫ ∞

−∞
𝑍nw(𝑡, 𝑥)𝑝𝑒𝑝 𝑓 (𝑥)𝑑𝑥

]
= E

[
𝑍nw(𝑡, 0)𝑝

] ∫ ∞

−∞
E
[
𝑒𝑝( 𝑓 (𝑥)−

𝑥2
2𝑡 )

]
𝑑𝑥

This implies that the Lyapunov exponent of Z 𝑓 equals the sum of the Lyapunov exponents of

Znw and a quantity which can be computed from the initial data. By the result of [DT19] (see

Proposition 3.1.9) and (1.2.1), the first summand equals 𝑝3−𝑝
24 and the second summand equals

𝑔(𝑝). Hence, we get Theorem 1.2.4. For a rigorous proof, one ingredient would be the spatial

short-range regularity of the KPZ equation, which has been studied in [CGH19].
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In Chapter 4, we will look at the KPZ equation defined on a half-line R+. Similar to the full-

line case, the solution can be defined as the logarithm of the half-line SHE. We show an upper tail

LDP for the solution to the half-line KPZ equation by computing the Lyapunov exponent of the

half-line SHE. However, the method of computation is very different from the idea presented in

the last paragraph. Our computation in Chapter 4 follows the idea of [DT19] relies heavily on the

integrability of the solution obtained in [BBCW18, Par19b].

1.3 Short time large deviations of the KPZ equation

This section serves as a summary of Chapter 2. We establish the first short time LDP of the

KPZ equation. Moreover, we prove a Gaussian - 5
2 power law crossover in the lower tail of rate

function. In particular, our asymptotic result of the rate function confirms the physics prediction

of [KK07, KK09, KMS16, MKV16, LDMRS16].

Theorem 1.3.1. Recall thatHnw denotes the solution of the KPZ equation with the narrow wedge

initial data.

(a) For any _ > 0, the limits exist

lim
𝑡→0

𝑡
1
2 logP

[
Hnw(2𝑡, 0) + log

√
4𝜋𝑡 ≤ −_

]
=: −Φ(−_),

lim
𝑡→0

𝑡
1
2 logP

[
Hnw(2𝑡, 0) + log

√
4𝜋𝑡 ≥ _

]
=: −Φ(_)

(b) lim
_→0

_−2Φ(_) = 1√
2𝜋
.

(c) lim
_→∞

_−
5
2Φ(−_) = 4

15𝜋 .

Remark 1.3.2. Our method also works for the KPZ equation starting from the flat initial data

H(0, 𝑥) = 0. We will have a different constant on the right of (b) and (c)

lim
_→0

_−2Φ(_) =
√︂

2
𝜋
, lim

_→∞
_−

5
2Φ(−_) = 8

15𝜋

8



In the following, we focus on explaining how to obtain part (c) since it is more difficult and

interesting. By a scalingHnw
Y (𝑡, 𝑥) := Hnw(Y𝑡, Y 1

2 𝑥) + log Y 1
2 . The short time LDP problem can be

formulated in terms of the LDP ofHnw
𝜖 (2, 0) + log

√
4𝜋 as 𝜖 → 0 whereHnw

Y satisfies

𝜕𝑡Hnw
𝜖 (𝑡, 𝑥) =

1
2
𝜕𝑥𝑥Hnw

𝜖 (𝑡, 𝑥) +
1
2
(
𝜕𝑥Hnw

𝜖 (𝑡, 𝑥)
)2 +
√
𝜖b.

with the narrow wedge initial data. In the following, we explain how to obtain the LDP for

Hnw
𝜖 (2, 0) + log

√
4𝜋 as Y → 0 and the asymptotic of the rate function. We will first illustrate

the idea on a heuristic level and then explain how to make it rigorous.

The weak-noise theory is a physics heuristic that generalizes the Freidlin-Wentzell theory for

the SPDEs. Since the spacetime white noise satisfies a LDP, heuristically, there is a LDP for the

trajectory ofHnw
𝜖 . For suitable function ℎ : [0, 2] × R→ R, we have

lim
𝜖→0
−𝜖 logP

(
Hnw
𝜖 ≈ ℎ

)
=

1
2

∫
[0,2]×R

(
𝜕𝑡ℎ −

1
2
𝜕𝑥𝑥ℎ −

1
2
(𝜕𝑥ℎ)2

)2
𝑑𝑡𝑑𝑥.

Applying the contraction principle, the large deviation rate function for Hnw
𝜖 (2, 0) = −_ corre-

sponds to minimizing the integral on the right hand side of the above display, conditioning on

ℎ(2, 0) = −_. As stated in [KMS16], applying calculus of variation, we get a pair of PDEs

𝜕𝑡ℎ −
1
2
𝜕𝑥𝑥ℎ −

1
2
(
𝜕𝑥ℎ

)2
= 𝜌,

𝜕𝑡𝜌 +
1
2
𝜕𝑥𝑥𝜌 = 𝜕𝑥

(
𝜌𝜕𝑥ℎ).

(1.3.1)

We scale 𝜌 and ℎ by �̃�(𝑡, 𝑥) = _−1𝜌(𝑡, _ 1
2 𝑥) and ℎ̃(𝑡, 𝑥) = _−1ℎ(𝑡, _ 1

2 𝑥). Then

𝜕𝑡 ℎ̃ − (2_)−1𝜕𝑥𝑥 ℎ̃ −
1
2
(
𝜕𝑥 ℎ̃

)2
= �̃�,

𝜕𝑡 �̃� + (2_)−1𝜕𝑥𝑥 �̃� = 𝜕𝑥
(
�̃�𝜕𝑥 ℎ̃

)
.

(1.3.2)

Denote ‖ · ‖2 the norm of 𝐿2( [0, 2] × R), then ‖𝜌‖22 = _
5
2 ‖ �̃�‖22. As _ → ∞, the viscosities in the

9



above PDEs should disappear. [KMS16] solves the PDEs

𝜕𝑡 ℎ̃ −
1
2
(
𝜕𝑥 ℎ̃

)2
= �̃�,

𝜕𝑡 �̃� = 𝜕𝑥
(
�̃�𝜕𝑥 ℎ̃

)
.

(1.3.3)

and obtain

�̃�(𝑥, 𝑡) = 𝜌∗(𝑥, 𝑡) := − 1
2𝜋
𝑟 (𝑡)

(
1 − 𝑥2

ℓ(𝑡)2
)
1{|𝑥 |≤ℓ(𝑡)} (1.3.4)

where 𝑟 (𝑡) and ℓ(𝑡) are explicit functions. In addition, we have 1
2 ‖𝜌∗‖

2
2 = 4

15𝜋 . This number

matches with the one in Theorem 1.3.1 (c).

From the mathematics point of view, there are problems for the above heuristic. The first

problem is that the weak noise theory has not been established in a rigorous way, in particular for

the KPZ equation which is a singular SPDE. There are previous works dealing with the LDP for

some singular SPDE on a torus, see [CM97, BDM08, HW15a, CD19]. To generalize these results

to the full-line equation, one may encounter extra technical challenges. On a different aspect, the

equations (1.3.3) are non-linear and have a similar form as Burgers equation. So it is natural to

expect that (1.3.3) have non-unique weak solution. In order to guarantee the uniqueness, one needs

to impose certain entropy condition. One also need to argue that the limit of the solutions in (1.3.2)

converges to the entropy solution as _→∞.

For the rigorous proof of Theorem 1.3.1, we adopt a different approach by working at the level

of SHE Znw = exp(Hnw). The SHE can be expressed using the Wiener chaos expansion as an

infinite sum, where each term is a multiple Ito-Wiener stochastic integral against the white noise

b. The large deviation of a finite sum of Wiener chaos has been developed in [HW15a]. By an

exponential approximation from finite to infinite sum, we obtain the a LDP for the trajectory of the

SHE under weak noise scaling. By a contraction principle, we note that the rate functions Φ− and

Φ+ in Theorem (c) exist: For _ > 0,

Φ(−_) = inf
{1
2
‖𝜌‖22 : logE

[
exp

( ∫ 2

0
𝜌
(
𝑠, 𝐵b(𝑠)

)
𝑑𝑠

)]
≤ −_

}
10



Φ(_) = inf
{1
2
‖𝜌‖22 : logE

[
exp

( ∫ 2

0
𝜌
(
𝑠, 𝐵b(𝑠)

)
𝑑𝑠

)]
≥ _

}
where (𝐵b(𝑠), 𝑠 ∈ [0, 2]) is a Brownian bridge from 0 to 0. We now explain how to prove Theorem

1.3.1 (c) using this variation formula. Apply scaling 𝜌(𝑡, 𝑥) = _�̃�(𝑡, _− 1
2 𝑥),

Φ(−_) = _ 5
2 inf

{1
2
‖ �̃�‖2 : _−1 logE

[
exp

(
_

∫ 2

0
�̃�
(
𝑠, _−

1
2𝐵b(𝑠)

)
𝑑𝑠

)]
≤ −1

}
(1.3.5)

We only need to show that the _→∞ limit of the infimum above is 4
15𝜋 . To prove this, we want to

show that 𝜌∗ in (1.3.4) is asymptotically the minimizer when _→∞. Using the LDP of Brownian

bridge _−1𝐵b(𝑠) together with Varadhan’s lemma,

lim
_→∞

_−1 logE
[
exp

(
_

∫ 2

0
𝜌∗

(
𝑠, _−

1
2𝐵b(𝑠)

)
𝑑𝑠

)]
= sup

{ ∫ 2

0
𝜌∗(𝑠, 𝑥(𝑠)) −

1
2
¤𝑥(𝑠)2𝑑𝑠 : 𝑥(0) = 𝑥(2) = 0, 𝑥 ∈ 𝐻1( [0, 2])

}
Solving the Euler-Lagrange equation for the variation problem in the supremum above, we know

that the geodesic solves ¥𝑥(𝑠) + 𝜕𝑥𝜌∗(𝑠, 𝑥(𝑠)) = 0. Solving this PDE, we find that the geodesic

from 𝑥(0) = 0 to 𝑥(2) = 0 is non-unique and forms a lens-shape, see Figure 2.1. By utilizing this

collection of geodesics, we are able to show that as _→∞, 𝜌∗ is asymptotically the minimizer for

the infimum on the right hand side of (1.3.5).

1.4 KPZ limit of the stochastic higher spin six vertex model

This section serves as a summary of Chapter 6. We define the stochastic higher spin six vertex

(SHS6V) model as an interacting particle system on the lattice Z. Before that, we need to introduce

the L-matrix.

Definition 1.4.1. We define the 𝐽 = 1 L-matrix to be a stochastic matrix with row and column

11



indexed by {0, . . . , 𝐼} × {0, 1}. The element of the 𝐽 = 1 L-matrix is specified by

𝐿
(𝐽)
𝛼 (𝑚, 0;𝑚, 0) = 1 + 𝛼𝑞𝑚

1 + 𝛼 , 𝐿
(𝐽)
𝛼 (𝑚, 0;𝑚 − 1, 1) = 𝛼(1 − 𝑞𝑚)

1 + 𝛼 ,

𝐿
(𝐽)
𝛼 (𝑚, 1;𝑚 + 1, 0) = 1 − a𝑞𝑚

1 + 𝛼 , 𝐿
(𝐽)
𝛼 (𝑚, 1;𝑚, 1) = 𝛼 + a𝑞𝑚

1 + 𝛼 .

where a = 𝑞−𝐼 (this guarantees that when 𝐽 = 1, 𝐿 (𝐽) (𝐼, 1; 𝐼 + 1, 0) = 0) and 𝐿 (𝐽) (𝑖1, 𝑗1; 𝑖2, 𝑗2) = 0

for all other values of (𝑖1, 𝑗1), (𝑖2, 𝑗2).

For simplicity, here we only provide the expression of L-matrix here when 𝐽 = 1. When 𝐽 > 1,

we refer to L-matrix is a stochastic matrix with row and column indexed by {0, . . . , 𝐼}×{0, . . . , 𝐽}.

We refer to its explicit expression to (6.1.4). One can alternatively define 𝐿 (𝐽)𝛼 from 𝐿
(1)
𝛼 through a

procedure called fusion, see Proposition 6.1.5 or Lemma 7.1.3.

Definition 1.4.2 (SHS6V model as an interacting particle system). For any state ®𝑔 = (𝑔𝑥)𝑥∈Z ∈ G,

we specify the update rule from state ®𝑔 to ®𝑔′ as follows: Assume the leftmost particle in the

configuration ®𝑔 is at 𝑥 (i.e. 𝑔𝑥 > 0 and 𝑔𝑧 = 0 for all 𝑧 < 𝑥). Starting from 𝑥, we update 𝑔𝑥 to 𝑔′𝑥

by setting ℎ𝑥 = 0 and randomly choosing 𝑔′𝑥 according to the probability 𝐿 (𝐽)𝛼 (𝑔𝑥 , ℎ𝑥 = 0; 𝑔′𝑥 , ℎ𝑥+1)

where ℎ𝑥+1 := 𝑔𝑥−𝑔′𝑥 . Proceeding sequentially, we update 𝑔𝑥+1 to 𝑔′
𝑥+1 according to the probability

𝐿
(𝐽)
𝛼 (𝑔𝑥+1, ℎ𝑥+1; 𝑔′

𝑥+1, ℎ𝑥+2) where ℎ𝑥+2 := 𝑔𝑥+1 + ℎ𝑥+1 − 𝑔′𝑥+1. Continuing for 𝑔𝑥+2, 𝑔𝑥+3, . . . , we

have defined the update rule from ®𝑔 to ®𝑔′ = (𝑔′𝑥)𝑥∈Z, see Figure 1.1 for visualization of the update

procedure. We call the discrete time-homogeneous Markov process ®𝑔(𝑡) ∈ G with the update rule

defined above the left-finite SHS6V model.

We remark that with additional efforts, the restriction requiring the existence of a leftmost

particle can be dropped. In other words, we can properly define the SHS6V model as a Markov

process starting from any state of {0, 1, . . . , 𝐼}Z. We call this the bi-infinite SHS6V model and

refer to Section 6.2 for details of the definition.

For a particle configuration ®𝑔 ∈ G, define 𝑁𝑥 ( ®𝑔) =
∑
𝑦≤𝑥 𝑔𝑦 . For the left-finite SHS6V model
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𝑔𝑥 = 3 𝑔𝑥+1 = 2 𝑔𝑥+2 = 1

𝑔′𝑥 = 1 𝑔′
𝑥+1 = 3 𝑔′

𝑥+2 = 2

ℎ𝑥 = 0 ℎ𝑥+1 = 2 ℎ𝑥+2 = 1 ℎ𝑥+3 = 0

𝑔𝑥+3 = 3

𝑔′
𝑥+3 = 2

ℎ𝑥+4 = 1. . .

𝑥 𝑥 + 1 𝑥 + 2 𝑥 + 3

𝐿
(𝐽)
𝛼 (3, 0; 1, 2) 𝐿

(𝐽)
𝛼 (2, 2; 3, 1) 𝐿

(𝐽)
𝛼 (1, 1; 2, 0) 𝐿

(𝐽)
𝛼 (3, 0; 2, 1)

. . .

Figure 1.1: The visualization of the sequential update rule for the left-finite SHS6V model in
Definition 1.4.2. Assuming 𝑥 is the location of the leftmost particle, we update sequentially for
positions 𝑥, 𝑥 + 1, 𝑥 + 2, . . . according to the stochastic matrix 𝐿 (𝐽)𝛼 , the gray particles in the picture
above will move one step to the right.

®𝑔(𝑡) ∈ G, we define the height function as

𝑁 (𝑡, 𝑥) = 𝑁𝑥 ( ®𝑔(𝑡)) − 𝑁0( ®𝑔(0)).

Having defined 𝑁 (𝑡, 𝑥) on the lattice, we linearly interpolate it first in space variable 𝑥 then in

time variable 𝑡, which makes 𝑁 (𝑡, 𝑥) a 𝐶 ( [0,∞),R)-valued process. For construction of height

functions of the bi-infinite version of the SHS6V model, see Section 6.2. Our main result is the

weak convergence from the SHS6V model to the KPZ equation.

Theorem 1.4.3. Fix 𝑏 ∈
(
𝐼+𝐽−2
𝐼+𝐽−1 , 1

)
, 𝐼 ≥ 2 and 𝐽 ≥ 1, for small 𝜖 > 0, let 𝑞 = 𝑒

√
𝜖 and define 𝛼 via

𝑏 =
1+𝛼𝑞
1+𝛼 . We call this weakly asymmetric scaling. Assume that {𝑁𝜖 (0, 𝑥)}𝜖>0 is nearly stationary

with density 𝜌 (see Definition 6.5.5 for detail) and

√
𝜖

(
𝑁𝜖 (0, 𝜖−1𝑥) − 𝜌𝜖−1𝑥

)
⇒H 𝑖𝑐 (𝑥) in 𝐶 (R) as 𝜖 ↓ 0,
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then there exists `Y and _Y (defined in (6.1.9)) such that the following weak convergence in

𝐶 ( [0,∞), 𝐶 (R)) holds

√
𝜖

(
𝑁𝜖 (𝜖−2𝑡, 𝜖−1𝑥 + 𝜖−2𝑡`𝜖 ) − 𝜌(𝜖−1𝑥 + 𝜖−2`𝜖 𝑡)

)
− 𝑡 log_𝜖 ⇒H(𝑡, 𝑥) as Y ↓ 0,

whereH(𝑡, 𝑥) is the Hopf-Cole solution of the KPZ equation

𝜕𝑡H(𝑡, 𝑥) =
𝐽𝑉∗
2
𝜕2
𝑥H(𝑡, 𝑥) −

𝐽𝑉∗
2

(
𝜕𝑥H(𝑡, 𝑥)

)2 +
√︁
𝐽𝐷∗b (𝑡, 𝑥),

with initial conditionH 𝑖𝑐 (𝑥), where the coefficients 𝑉∗ and 𝐷∗ are given by (6.1.12) and (6.1.13)

To prove Theorem 1.4.3, we show that the microscopic Hopf-Cole transform (an exponential

transform) of 𝑁 (𝑡, 𝑥) converges to the SHE. Once this is proved, we can take a logarithm to show

that the height function converges to the KPZ equation.

To prove this convergence to the SHE, we use the Markov duality method developed in [CGST20].

We refer to Definition 5.1.2 for what Markov duality means.

[CP16] shows that the SHS6V model enjoys a self-duality. The simplest case of self-duality

(duality to one particle system) guarantees the existence of the discrete SHE

𝑑𝑍 = L𝑍𝑑𝑡 + 𝑑𝑀. (1.4.1)

Here, 𝑍 is the microscopic Hopf-Cole transform of 𝑁 (𝑡, 𝑥), L is an infinitesimal generator of

a geometric random walk performed by a single particle in the system, which approximates the

Laplacian, 𝑑𝑀 is a discrete martingale increment satisfying E[𝑑𝑀 (𝑡) |F (𝑡−1)] = 0 (where F (𝑡−1)

is the sigma algebra generated by ®𝑔(𝑠) for 𝑠 = 0, 1, . . . , 𝑡−1). By passing through the scaling limit,

we expect that L converges to the Laplacian, and the martingale increment 𝑑𝑀 converges to b𝑍 .

As a consequence, the discrete SHE (1.4.1) converges to the continuum SHE.

As illustrated in [BG97], we can use the martingale problem to define the solution of the SHE.

The proof of Theorem 1.4.3 is composed of the following three steps: (1) Showing the tightness
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of 𝑍; (2) Identifying the limit of the linear martingale problem; (3) Identifying the limit of the

quadratic martingale problem.

Steps 1) and 2) follow from a similar approach as in [BG97, CT17, CGST20]. The most

difficult step is 3). To show this, one needs to prove a self-averaging property for the quadratic

variation of the martingale 𝑀 .

Let us explain what the self-averaging is and how Markov duality can be applied to prove it.

Denote the discrete gradient by ∇ 𝑓 (𝑥) := 𝑓 (𝑥 + 1) − 𝑓 (𝑥). Roughly speaking, the terminology

“self-averaging" refers to the phenomena that as 𝜖 ↓ 0

(A) For 𝑥1 ≠ 𝑥2, the average of 𝜖−1∇𝑍 (𝑡, 𝑥1)∇𝑍 (𝑡, 𝑥2) over a long time interval of length 𝑂 (𝜖−2)

will vanish.

(B) There exists a positive constant _ such that the average of (𝜖− 1
2∇𝑍 (𝑡, 𝑥))2 − _𝑍 (𝑡, 𝑥)2 over a

long time interval of length O(𝜖−2) will vanish.

In general, proving such self-averaging is not easy because of the appearance of the spacial

gradient and the non-linearity in 𝑍 . The power of Markov duality is that it allows us to turn the

problem of proving self-averaging into a problem of estimating two particle transition probability

of the SHS6V model. Thanks to the integrability of the model, the latter object admits exact

formula and one can obtain a good estimate of it.

1.5 The STE limit of the SHS6V model

This section serves as a summary of Chapter 7. The telegraph equation (TE) is a hyperbolic

PDE given by 
𝑢𝑋𝑌 (𝑋,𝑌 ) + 𝛽1𝑢𝑌 (𝑋,𝑌 ) + 𝛽2𝑢𝑋 (𝑋,𝑌 ) = 𝑓 (𝑋,𝑌 ),

𝑢(𝑋, 0) = 𝜒(𝑋), 𝑢(0, 𝑌 ) = 𝜓(𝑌 ),

where the functions 𝜒, 𝜓 ∈ 𝐶1 satisfy 𝜒(0) = 𝜓(0). When 𝑓 is a deterministic function, the TE

is a classical object, see [CH08, Chapter V]. The solution theory of the TE goes back to [CH08],

we present it in the way of [BG19, Section 4]. In fact, the above equation admits a unique solution
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which reads

𝑢(𝑋,𝑌 ) = 𝜓(0)R(𝑋,𝑌, 0, 0) +
∫ 𝑌

0
R(𝑋,𝑌 ; 0, 𝑦)

(
𝜓′(𝑦) + 𝛽2𝜓(𝑦)

)
𝑑𝑦

+
∫ 𝑋

0
R(𝑋,𝑌 ; 𝑥, 0)

(
𝜒′(𝑥) + 𝛽1𝜒(𝑥)

)
𝑑𝑥 +

∫ 𝑋

0

∫ 𝑌

0
R(𝑋,𝑌, 𝑥, 𝑦) 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦. (1.5.1)

Here, R(𝑋,𝑌, 𝑥, 𝑦) is the Riemann function

R(𝑋,𝑌 ; 𝑥, 𝑦) = 1
2𝜋i

∮
−𝛽1

𝛽2 − 𝛽1
(𝑧 + 𝛽1) (𝑧 + 𝛽2)

exp
[
(𝛽1 − 𝛽2)

(
− (𝑋 − 𝑥) 𝑧

𝑧 + 𝛽2
+ (𝑌 − 𝑦) 𝑧

𝑧 + 𝛽1

)]
𝑑𝑧.

The Riemann function can be viewed as a fundamental solution of the TE, see Section 4 of [BG19].

The stochastic versions of the TE were intensively studied in the last 50 years, we refer the

reader to [BG19, Section 1.1] for a brief review. In this section, we consider the 𝑓 given by

𝑓 (𝑋,𝑌 ) =
√︁
\ (𝑋,𝑌 )[(𝑋,𝑌 ), where [ is the space-time white noise with dirac delta correlation

function and \ is a deterministic integrable function. By (1.5.1), the solution to the stochastic

telegraph equation (STE) is a Gaussian field.

Having introduced the TE and STE, we proceed to define the SHS6V model on a corner. In

this section, we are going to view the SHS6V model as a stochastic path ensemble.

Definition 1.5.1 (SHS6V model as a stochastic path ensemble). We define the SHS6V model on a

corner to be a stochastic path ensemble on Z2
≥0. The boundary condition specified by {𝑣𝑥,0}𝑥∈Z≥0

and {ℎ0,𝑦}𝑦∈Z≥0 such that 𝑣𝑥,0 ∈ {0, 1, . . . , 𝐼}, ℎ0,𝑦 ∈ {0, 1, . . . , 𝐽}. In other words, we have

ℎ0,𝑦 number of lines entering into the vertex (0, 𝑦) from the left boundary and 𝑣𝑥,0 number of

lines flowing into the vertex (𝑥, 0) from the bottom boundary. Sequentially taking (𝑥, 𝑦) to be

(0, 0) → (1, 0) → (0, 1) → (2, 0) → (2, 1) . . . , for vertex at (𝑥, 𝑦), given 𝑣𝑥,𝑦, ℎ𝑥,𝑦 as the

number of vertical and horizontal input lines, we randomly choose the number of vertical and

horizontal output lines (𝑣𝑥,𝑦+1, ℎ𝑥+1,𝑦) ∈ {0, 1, . . . , 𝐼} × {0, 1, . . . , 𝐽} according to probability

𝐿
(𝐽)
𝛼 (𝑣𝑥,𝑦, ℎ𝑥,𝑦; ·, ·). Proceeding with this sequential sampling, we get a collection of paths go-

ing to the up-right direction.
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The stochastic path ensemble interpretation of the SHS6V model is closely related to the parti-

cle system viewpoint in the previous section. More precisely, the trajectory of each particle in the

space-time domain is an up-right path in the path ensemble. The only difference here is that we

consider the model on a corner and as time evolves, new particles can enter the system from the

left boundary.

We associate a height function 𝐻 : Z2
≥0 → Z to the path ensemble, where the paths play a role

as the level lines of the height function (see Figure 1.2). Define for any 𝑥, 𝑦 ∈ Z≥0,

𝐻 (𝑥, 𝑦) =
𝑦∑︁
𝑗=1

ℎ0, 𝑗−1 −
𝑥∑︁
𝑖=1

𝑣𝑖−1,𝑦 .

Clearly, we have 𝐻 (0, 0) = 0 and 𝐻 (𝑥, 𝑦) −𝐻 (𝑥−1, 𝑦) = −𝑣𝑥−1,𝑦. Since the vertex is conservative,

we also have

𝐻 (𝑥, 𝑦) − 𝐻 (𝑥, 𝑦 − 1) = ℎ𝑥,𝑦−1.

Let us introduce the scaling of the SHS6V model. Fix 𝐼, 𝐽 ∈ Z≥1 and positive 𝛽1, 𝛽2 such that

0 0 0 0

0011

2 1 1 1

4 2 2 1

5 4 3 2

-1

-1

0

1

2

v0;0 = 0 v1;0 = 0 v2;0 = 0 v3;0 = 1

h0;0 = 1

h0;1 = 1

h0;2 = 2

h0;3 = 1

(x; y)
hx;y hx+1;y

vx;y

vx;y+1

H(x; y) H(x+ 1; y)

H(x; y + 1) H(x+ 1; y + 1)

Figure 1.2: Left: Illustration of the height function around a vertex (𝑥, 𝑦), note that 𝐻 (𝑥, 𝑦 + 1) =
𝐻 (𝑥, 𝑦) + ℎ𝑥,𝑦, 𝐻 (𝑥 + 1, 𝑦) = 𝐻 (𝑥, 𝑦) − 𝑣𝑥,𝑦 and 𝐻 (𝑥 + 1, 𝑦 + 1) = 𝐻 (𝑥, 𝑦) + ℎ𝑥,𝑦 − 𝑣𝑥,𝑦+1 =

𝐻 (𝑥, 𝑦) − 𝑣𝑥,𝑦 + ℎ𝑥+1,𝑦. Right: Sampled stochastic path ensemble on a quadrant. The red number
indicates the number lines entering into the boundary, the blue number represents the height at
each vertex.
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𝛽1 ≠ 𝛽2 , we scale the parameter 𝑞, 𝛼 in the way that

𝑞 = 𝑒
𝛽1−𝛽2

𝐿 ,
1 + 𝛼𝑞𝐽
1 + 𝛼 = 𝑒−

𝐽𝛽2
𝐿 , 𝐿 →∞.

Under this scaling, we prove a law of large number and functional central limit theorem of the

SHS6V model. The hydrodynamic limit and fluctuation are respectively the TE and STE.

Theorem 1.5.2. Define 𝔮 = 𝑒𝛽1−𝛽2 and fix 𝐴, 𝐵 > 0, consider two monotone Lipschitz functions

𝜒 and 𝜓. Suppose that the boundary for the SHS6V model is chosen in the way that as 𝐿 → ∞,

1
𝐿
𝐻 (𝐿𝑥, 0) → 𝜒(𝑥) and 1

𝐿
𝐻 (0, 𝐿𝑦) → 𝜓(𝑦) uniformly in probability for 𝑥 ∈ [0, 𝐴] and 𝑦 ∈

[0, 𝐵], then as 𝐿 →∞,

1
𝐿

sup
𝑥∈[0,𝐴]×[0,𝐵]

|𝐻 (𝐿𝑥, 𝐿𝑦) − 𝐿h(𝑥, 𝑦) |
𝑝
→ 0,

where
𝑝
→ means the convergence in probability. 𝔮h(𝑥,𝑦) is the unique solution to the telegraph

equation
𝜕2

𝜕𝑥𝜕𝑦
𝔮h(𝑥,𝑦) + 𝐽𝛽2

𝜕

𝜕𝑥
𝔮h(𝑥,𝑦) + 𝐼 𝛽1

𝜕

𝜕𝑦
𝔮h(𝑥,𝑦) = 0,

with the boundary condition specified by 𝔮h(𝑥,0) = 𝔮𝜒(𝑥) and 𝔮h(0,y) = 𝔮𝜓(𝑦) .

Theorem 1.5.3. Assuming further that 𝜒(𝑥) and 𝜓(𝑦) are piecewise 𝐶1-smooth, we have the weak

convergence as 𝐿 →∞,

√
𝐿

(
𝑞𝐻 (𝐿𝑥,𝐿𝑦) − E

[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

] )
⇒ 𝜑(𝑥, 𝑦) in 𝐶 (R2

≥0),

where 𝜑(𝑥, 𝑦) is a random continuous function which solves the stochastic telegraph equation

𝜑𝑥𝑦 + 𝐼 𝛽1𝜑𝑦 + 𝐽𝛽2𝜑𝑥 = [ ·
√︃
(𝛽1 + 𝛽2)𝔮h

𝑥𝔮
h
𝑦 + 𝐽 (𝛽2 − 𝛽1)𝛽2𝔮h𝔮h

𝑥 + 𝐼 (𝛽1 − 𝛽2)𝛽1𝔮h𝔮h
𝑦 ,

where 𝔮h
𝑥 := 𝜕𝑥 (𝔮h(𝑥,𝑦)) and 𝔮h

𝑦 := 𝜕𝑦 (𝔮h(𝑥,𝑦)), the boundary of 𝜑 is given by zero.
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[BG19] shows that the stochastic six vertex model height function converges to a telegraph

equation and its fluctuation field converges to a stochastic telegraph equation. The key observation

is the following four point relation, which says that if we define

bS6V(𝑥 + 1, 𝑦 + 1) = 𝑞𝐻 (𝑥+1,𝑦+1) − 𝑏1𝑞
𝐻 (𝑥,𝑦+1) − 𝑏2𝑞

𝐻 (𝑥+1,𝑦) + (𝑏1 + 𝑏2 − 1)𝑞𝐻 (𝑥,𝑦) ,

Here 𝑏1, 𝑏2 are the weight of the six vertex model configuration (in our notation 𝑏1 = 𝛼+a
1+𝛼 , 𝑏2 =

1+𝛼𝑞
1+𝛼 ). Then the conditional expectation and variance of b read

E
[
bS6V(𝑥 + 1, 𝑦 + 1)

��F (𝑥, 𝑦)] = 0, (1.5.2)

E
[
bS6V(𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)] = 𝛾1Δ𝑥Δ𝑦 + 𝛾2𝑞
𝐻 (𝑥,𝑦)Δ𝑥 + 𝛾3𝑞

𝐻 (𝑥,𝑦)Δ𝑦,

where F (𝑥, 𝑦) is a sigma algebra generated by {𝐻 (𝑢, 𝑣) : 𝑢 ≤ 𝑥 or 𝑣 ≤ 𝑦} and Δ𝑥 := 𝑞𝐻 (𝑥+1,𝑦) −

𝑞𝐻 (𝑥,𝑦) , Δ𝑦 := 𝑞𝐻 (𝑥,𝑦+1) − 𝑞𝐻 (𝑥,𝑦) . The parameters 𝛾𝑖, 𝑖 = 1, 2, 3 depend on 𝑏1, 𝑏2.

In our paper, we generalize the above relations to the SHS6V model. Define

bS6SHV(𝑥 + 1, 𝑦 + 1) = 𝑞𝐻 (𝑥+1,𝑦+1) − 𝛼 + a
1 + 𝛼𝑞

𝐻 (𝑥,𝑦+1) − 1 + 𝛼𝑞𝐽
1 + 𝛼 𝑞𝐻 (𝑥+1,𝑦) + a + 𝛼𝑞

𝐽

1 + 𝛼 𝑞𝐻 (𝑥,𝑦) ,

In Chapter 7, we will prove that

E
[
bSHS6V(𝑥 + 1, 𝑦 + 1)

��F (𝑥, 𝑦)] = 0, (1.5.3)

E
[
bSHS6V(𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)] = 𝛾1Δ𝑥Δ𝑦 + 𝛾2𝑞
𝐻 (𝑥,𝑦)Δ𝑥 + 𝛾3𝑞

𝐻 (𝑥,𝑦)Δ𝑦 + R(𝑥, 𝑦), (1.5.4)

where R(𝑥, 𝑦) is an error term that is negligible under our scaling. From now on, we may also use

b to denote bSHS6V.

Why does such a generalization exist? In the context of the stochastic six vertex model, (1.5.2)

is related to the self-duality discovered in [CP16, Theorem 2.21], though it is more of a local

relation than the way duality is generally stated. More precisely, from the interacting particle
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system perspective, let F (𝑦) be sigma algebra generated by the system up to time 𝑦. The one

particle self-duality implies that

E
[
𝑞𝐻 (𝑥+1,𝑦+1)

��F (𝑦)] = ∑︁
𝑧≤𝑥+1

𝑝(𝑥 + 1, 𝑧)𝑞𝐻 (𝑧,𝑦) (1.5.5)

E
[
𝑞𝐻 (𝑥,𝑦+1)

��F (𝑦)] = ∑︁
𝑧≤𝑥

𝑝(𝑥, 𝑧)𝑞𝐻 (𝑧,𝑦) (1.5.6)

where 𝑝 is the transition probability of a geometric walk performed by a single particle. It is not

hard to see that for 𝑧 < 𝑥, 𝑝(𝑥 + 1, 𝑧) = 𝛼+𝑣
1+𝛼 𝑝(𝑥, 𝑧). Multiplying (1.5.6) by (−𝛼+a1+𝛼 ) and add the

result to (1.5.5), one gets

E
[
bSHS6V(𝑥 + 1, 𝑦 + 1) |F (𝑦)

]
= 0

Despite this argument provides convincing evidence that (1.5.3) holds, it is not a proof. The reason

is that we are considering the model on a corner instead of the full line (to which the Markov

duality applies). We will prove (1.5.5) using fusion.

For the quadratic relation (1.5.4), the situation is more subtle here and we refer the details to

Chapter 7.
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Chapter 2: Short time Large deviations of the KPZ equation

Chapter Abstract: We establish the Freidlin–Wentzell Large Deviation Principle

(LDP) for the Stochastic Heat Equation with multiplicative noise in one spatial dimen-

sion. That is, we introduce a small parameter
√
Y to the noise, and establish an LDP

for the trajectory of the solution. Such a Freidlin–Wentzell LDP gives the short-time,

one-point LDP for the KPZ equation in terms of a variational problem. Analyzing this

variational problem under the narrow wedge initial data, we prove a quadratic law for

the near-center tail and a 5
2 law for the deep lower tail. These power laws confirm

existing physics predictions [KK07, KK09, MKV16, LDMRS16, KMS16].

This paper is published at [LT21].

2.1 Introduction

In this paper we study the KPZ equation in one spatial dimension

𝜕𝑡H = 1
2𝜕𝑥𝑥H +

1
2 (𝜕𝑥H)

2 + b, (2.1.1)

where H = H(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0,∞) × R, and b = b (𝑡, 𝑥) denotes the spacetime white noise. The

equation was introduced by [KPZ86] to describe the evolution of a randomly growing interface,

and is connected to many physical systems including directed polymers in a random environment,

last passage percolation, randomly stirred fluids, and interacting particle systems. The equation

exhibits integrability and has statistical distributions related to random matrices. We refer to [FS10,

Qua11, Cor12, QS15, CW17, CS19] and the references therein for the mathematical study of and

related to the KPZ equation.

Due to the roughness ofH , the term (𝜕𝑥H)2 in (2.1.1) does not make literal sense, and the well
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posedness of the KPZ equation requires renormalization [Hai14, GIP15]. In this paper we work

with the notion of Hopf–Cole solution. Informally exponentiating 𝑍 = exp(H) brings the KPZ

equation to the Stochastic Heat Equation (SHE)

𝜕𝑡𝑍 = 1
2𝜕𝑥𝑥𝑍 + b𝑍. (2.1.2)

It is standard to establish the well posedness of (2.1.2) by chaos expansion; see Section 2.2.1

for more discussions on Wiener chaos. For a function-valued initial data 𝑍 (0, ·) ≥ 0 that is not

identically zero, [Mue91] showed that 𝑍 (𝑡, 𝑥) > 0 for all 𝑡 > 0 and 𝑥 ∈ R almost surely. The

Hopf–Cole solution of the KPZ equation is then defined as H := log 𝑍 . This notion of solution

coincides with that of [Hai14, GIP15] under suitable assumptions. An often considered initial data

is to start the SHE from a Dirac delta at the origin, i.e., 𝑍 (0, ·) = 𝛿0(·), which is referred to as

the narrow wedge initial data forH . For such an initial data, [Flo14] established the positivity for

𝑍 (𝑡, 𝑥) so that the Hopf–Cole solutionH := log 𝑍 is well-defined.

Large deviations of the KPZ equation have been intensively studied in the mathematics and

physics communities in recent years. Results are quite fruitful in the long time regime, 𝑡 → ∞.

For the narrow wedge initial data, physics literature predicted that the one-point, lower-tail Large

Deviation Principle (LDP) rate function should go through a crossover from a cubic power to

a 5
2 power [KLD18b]. (The prediction of the 5

2 power actually first appeared in the short time

regime; see the discussion about the short time regime below.) The work [CG20b] derived rigorous,

detailed bounds on the one-point tail probabilities for the narrow wedge initial data and in particular

proved the cubic-to-5
2 crossover. Similar bounds are obtained in [CG20a] for general initial data.

The exact lower-tail rate function were derived in the physics works [SMP17, CGK+18, KLDP18,

Le 19], and was rigorously proven in [Tsa18, CC19]. Each of these works adopts a different

method. In [KLD19], the four methods in [SMP17, CGK+18, KLDP18, Tsa18] were shown to be

closely related. As for the upper tail, the physics work [LDMS16] derived a 3
2 power law for the

entire rate function under the narrow wedge initial data, and [DT19] gave a rigorous proof for this
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upper-tail LDP. The work [GL20] extended this upper-tail LDP to general initial data.

For the finite time regime, 𝑡 ∈ (0,∞) fixed, motivated by studying the positivity or regularity (of

the one-point density) of the SHE or related equations, the works [Mue91, MN08, Flo14, CHN16,

HL18] established tail probability bounds of the SHE or related equations.

In this paper we focus on short time large deviations of the KPZ equation. Employing the

Weak Noise Theory (WNT), the physics works [KK07, KK09, MKV16, KMS16] predicted that

the one-point, lower-tail rate function should crossover from a quadratic power law to a 5
2 power

law for the narrow wedge and flat initial data. By analyzing an exact formula, the physics work

[LDMRS16] obtained the entire one-point rate function for the narrow wedge initial data; see

Section 2.1.4. This was confirmed by the numerical result [HLDM+18b]. From this one-point

rate function [LDMRS16] also demonstrated the crossover. The quadratic power arises from the

Gaussian nature of the KPZ equation in short time, while the 5
2 power appears to be a persisting

trait of the deep lower tail of the KPZ equation in all time regimes. Our main result gives the first

proof of the short time LDP for the KPZ equation and the quadratic-to-5
2 crossover.

Theorem 2.1.1. Let ℎ denote the solution of the KPZ equation (2.1.1) with the initial data 𝑍 (0, ·) =
𝛿0(·).
(a) For any _ > 0, the limits exist

lim
𝑡→0

𝑡
1
2 logP

[
H(2𝑡, 0) + log

√
4𝜋𝑡 ≤ −_

]
=: −Φ(−_),

lim
𝑡→0

𝑡
1
2 logP

[
H(2𝑡, 0) + log

√
4𝜋𝑡 ≥ _

]
=: −Φ(_).

(b) lim
_→0

_−2Φ(_) = 1√
2𝜋
.

(c) lim
_→∞

_−
5
2Φ(−_) = 4

15𝜋 .

Remark 2.1.2. Our method works also for the flat initial data H(0, 𝑥) ≡ 0, but we treat only the

narrow wedge initial data to keep the paper at a reasonable length.
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Our result generalizes immediately to ℎ(2𝑡, 𝑥), for 𝑥 ∈ R. This is because, under the delta

initial data, the one-point law of 𝑍 (2𝑡, 𝑥)/𝑝(2𝑡, 𝑥) does not depend on 𝑥. This fact can be verified

from the Feynman–Kac formula for the SHE.

Remark 2.1.3. Even though LDP rate functions are model dependent, the 5
2 tail seems to be some-

what ubiquitous in the KPZ class. It shows up in all time regimes for the KPZ equation, and has

also been observed in the TASEP [DL98]. A very interesting question is to investigate to what

extend is the 5
2 tail universal, and to find a unifying approach to understand the origin of the tail.

Remark 2.1.4. The aforementioned physics works [KK09, MKV16, LDMRS16, KMS16] also

derived the asymptotics of the deep upper tail. The prediction is lim_→∞ _−3/2Φ(_) = 4
3 . We leave

this question for future work.

Remark 2.1.5. The short-time large deviations for the KPZ equation were also studied under other

initial data or on a half-line. For the KPZ equation starting from Brownian initial data, the problem

was studied in physics works [KLD17, MS17]. For the half-line KPZ equation, the same problem

was studied in the physics work [KLD18a, MV18]; see also [Kra19] for a summary of these results.

It is interesting to see whether our method generalizes in these situations.

Let us emphasize that, even though we follow the overarching idea of the WNT, our method

significantly differs from existing physics heuristics. As will be explained below, the WNT amounts

to establishing a Freidlin–Wentzell LDP and analyzing the corresponding variational problem.

The second step — analyzing the variational problem — is the harder step. The physics works

[KK09, MKV16, KMS16] provide convincing heuristic for this step by a formal PDEs argument.

However, as will be explained in Section 2.1.1, to make this PDE argument rigorous requires elab-

orate treatments and seems challenging. We hence adopt a different method.

In Section 2.1.1, we will recall the physics heuristic from [KK09, MKV16, KMS16] and ex-

plain why it seems challenging to make the heuristic rigorous. In Section 2.1.2, we will explain

our method for proving Theorem 2.1.1.
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2.1.1 Discussions about the physics heuristics

Here we recall the method used in the physics works [KK09, MKV16, KMS16]. The first step

is to perform scaling to turn the short-time LDP into a Freidlin–Wentzell LDP. One scales

HY (𝑡, 𝑥) := H(Y𝑡, Y1/2𝑥) + log(Y1/2), (2.1.3)

which brings the KPZ equation into

𝜕𝑡HY = 1
2𝜕𝑥𝑥HY +

1
2 (𝜕𝑥HY)

2 +
√
Yb. (2.1.4)

The term log(Y1/2) in (2.1.3) ensures that the narrow wedge initial data stays invariant. The equa-

tion (2.1.4) is in the form for studying Freidlin–Wentzell LDPs. Roughly speaking, for a generic

𝜌 ∈ 𝐿2( [0, 𝑇] × R), we expect P[
√
Yb ≈ 𝜌] ≈ exp(−1

2Y
−1‖𝜌‖2

𝐿2). When the event {
√
Yb ≈ 𝜌}

occurs, one expectsHY to approximate the solution h = h(𝜌; 𝑡, 𝑥) of

𝜕𝑡h = 1
2𝜕𝑥𝑥h +

1
2 (𝜕𝑥h)

2 + 𝜌. (2.1.5)

In more formal terms, one expects {HY} to satisfy an LDP with speed Y−1 and the rate function

𝐽 ( 𝑓 ) = inf{ 1
2 ‖𝜌‖𝐿2 : h(𝜌) = 𝑓 }. Once such an LDP is established in a suitable space, by the

contraction principle we should have

Φ(_) = − lim
Y→0

Y logP
[
HY (2, 0) ≥ _

]
= inf

{ 1
2 ‖𝜌‖

2
𝐿2 : h(𝜌; 2, 0) ≥ _

}
, _ > 0, (2.1.6)

Φ(−_) = − lim
Y→0

Y logP
[
HY (2, 0) ≤ −_

]
= inf

{ 1
2 ‖𝜌‖

2
𝐿2 : h(𝜌; 2, 0) ≤ −_

}
, − _ < 0. (2.1.7)

To find the infimum in (2.1.7), one can perform variation of 1
2 ‖𝜌‖

2
𝐿2 = 1

2

∫ 2
0

∫
R
𝜌2 d𝑥d𝑡 in 𝜌

under the constraint h_ (𝜌; 2, 0) = −_, c.f., [MKV16, Sect A, Supplementary Material]. The result

25



suggests that any minimizer 𝜌 should solve

𝜕𝑡𝜌 = −1
2𝜕𝑥𝑥𝜌 + 𝜕𝑥 (𝜌 𝜕𝑥h). (2.1.8)

With a negative Laplacian −1
2𝜕𝑥𝑥𝜌, the equation (2.1.8) needs to be solved backward in time from

the terminal data 𝜌(2, 𝑥) = −𝑐(_)𝛿0(𝑥), c.f., [MKV16, Sect A, Supplementary Material], where

𝑐(_) > 0 is a constant fixed by h(𝜌; 2, 0) = −_.

In the near-center regime, i.e., _ → 0, standard perturbation arguments can be applied to

analyze (2.1.5) and (2.1.8) to conclude the quadratic power law.

We will focus on the deep lower tail regime, i.e., −_ → −∞. We scale _−1h(𝜌; 𝑡, _1/2𝑥) ↦→

h(𝜌; 𝑡, 𝑥) and _−1𝜌(𝑡, _1/2𝑥) ↦→ 𝜌(𝑡, 𝑥). To see why such scaling is relevant, note that, under the

conditioning h(𝜌; 2, 0) ≤ −_, it is natural to scale h by _−1. Time cannot be scaled since we are

probing h at 𝑡 = 2. After scaling h by _−1, we find that the quadratic term 1
2 (𝜕𝑥h)

2 in (2.1.5) gains

an excess _ factor compared to the left hand side. To bring the quadratic term back to the same

footing as the left hand side, we scale 𝑥 by _−1/2. Similar considerations lead to the same scaling

of 𝜌. Under such scaling the equations (2.1.5) and (2.1.8) become

𝜕𝑡h = 1
2_
−1𝜕𝑥𝑥h + 1

2 (𝜕𝑥h)
2 + 𝜌, (2.1.9)

𝜕𝑡𝜌 = −1
2_
−1𝜕𝑥𝑥𝜌 + 𝜕𝑥 (𝜌 𝜕𝑥h). (2.1.10)

As _→∞ it is tempting to drop the Laplacian terms in (2.1.9)–(2.1.10). Doing so produces

𝜕𝑡h = 1
2 (𝜕𝑥h)

2 + 𝜌, (2.1.11)

𝜕𝑡𝜌 = 𝜕𝑥 (𝜌 𝜕𝑥h), (2.1.12)

with the initial data lim𝑡↓0(h(𝑡, 𝑥)𝑡) = −1
2𝑥

2 and the terminal data 𝜌(2, 𝑥) = −𝑐(1)𝛿0(𝑥).

The equations (2.1.11)–(2.1.12) can be solved by the procedure in [KK09, MKV16, KMS16].

For the completeness of presentation we briefly recall the procedure below. It begins by solving
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(2.1.11)–(2.1.12) by power series expansion in 𝑥. In view of the initial data of h and the terminal

data of 𝜌, it is natural to assume h(𝑡, 𝑥) = h(𝑡,−𝑥) and 𝜌(𝑡, 𝑥) = 𝜌(𝑡,−𝑥). Under such assumptions,

the series terminates at the quadratic power for both h and 𝜌 and produces the solution h(𝑡, 𝑥) =

𝑘 (𝑡) + 1
2𝑎(𝑡)𝑥

2 and 𝜌(𝑡, 𝑥) = − 1
2𝜋𝑟 (𝑡) +

1
2𝜋 (𝑟 (𝑡)/ℓ

2(𝑡))𝑥2. The factor 1
2𝜋 is just a convention we

choose; the functions 𝑎(𝑡), 𝑘 (𝑡), 𝑟 (𝑡), and ℓ(𝑡) can be found by inserting the series solution in

(2.1.11)–(2.1.12). The only relevant property to our current discussion is that 𝑟 (𝑡) > 0.

The series solution, however, is nonphysical. Indeed, with 𝑟 (𝑡) > 0, we have ‖𝜌‖𝐿2 = ∞. This

issue is rectified by observing that the minimizing 𝜌 of the right hand side of (2.1.7) should be

nonpositive. This is so because h(𝜌; 𝑡, 𝑥) increases in 𝜌. Hence the positive part 𝜌+ of 𝜌 would

only make h(𝜌; 2, 0) = −1 harder to achieve while costing excess 𝐿2 norm. This observation

prompts us to truncate

𝜌∗(𝑡, 𝑥) := − 1
2𝜋𝑟 (𝑡)

(
1 − 𝑥2

ℓ(𝑡)2
)
+.

It can be verified that such a 𝜌∗ and a suitably truncated h solve (2.1.11)–(2.1.12).

Remark 2.1.6. It may appear that the preceding scaling applies also to the upper-tail regime _ →

∞, but that is not the case. In the upper-tail regime, the analyses of the physics works [KK09,

MKV16, KMS16] show that, in the pre-scaled coordinates, the optimal 𝜌(𝑡, 𝑥) concentrates in a

small corridor of size 𝑂 (_−1/2) around 𝑥 = 0. This behavior is in sharp contrast with that of the

lower-tail, where the optimal 𝜌(𝑡, 𝑥) spans across a region in 𝑥 of width 𝑂 (_1/2) in the pre-scaled

coordinate. The distinction of behaviors in the upper- and lower-tail regimes is ubiquitous in the

KPZ universality class. As a result, the preceding scaling does not apply to the upper-tail regime.

Challenge in making the PDE argument rigorous

To make this PDE analysis rigorous requires elaborate treatments and seems challenging. This

is so because (2.1.11)–(2.1.12) are fully nonlinear equations. Taking derivative 𝑢 = 𝜕𝑥h in (2.1.11)–
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(2.1.12) gives

𝜕𝑡𝑢 = 1
2𝜕𝑥 (𝑢

2) + 𝜕𝑥𝜌,

𝜕𝑡𝜌 = 𝜕𝑥 (𝜌𝑢).

These equations do not have unique weak solutions, just like the inviscid Burgers equation [Eva98,

Chapter 3.4].One needs to impose certain entropy conditions to ensure the uniqueness of weak

solutions, and argue that in the limit _ → ∞ the solution of (2.1.11)–(2.1.12) converges to the

entropy solution.

2.1.2 Our method

Our method, which differs from the physics heuristic described in Section 2.1.1, operates at

the level of the SHE instead of the KPZ equation. Recall that we defined the solution of the

KPZ equation thorough the Hopf–Cole transformation, so the solution ℎY to (2.1.4) is given by

ℎY := log 𝑍Y + log(Y1/2), where 𝑍Y solves

𝜕𝑡𝑍Y =
1
2𝜕𝑥𝑥𝑍Y +

√
Yb𝑍Y, (2.1.13)

with the delta initial condition 𝑍Y (0, ·) = 𝛿0(𝑥). We seek to establish the the Freidlin–Wentzell

LDP for (2.1.13). Roughly speaking, the LDP states that P[𝑍Y ≈ Z] ≈ exp(−Y−1 1
2 ‖𝜌‖

2
𝐿2), where

Z = Z(𝜌; 𝑡, 𝑥) solves the PDE

𝜕𝑡Z = 1
2𝜕𝑥𝑥Z + 𝜌Z. (2.1.14)

The precise statement of the Freidlin–Wentzell LDP as well as the well posedness of (2.1.14) will

be given in Section 2.1.2. Use the contraction principle to specialize the Freidlin–Wentzell LDP to
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one point. We have

Φ(_) = inf
{ 1

2 ‖𝜌‖
2
𝐿2 : log Z(𝜌; 2, 0) ≥ _

}
, (2.1.15)

Φ(−_) = inf
{ 1

2 ‖𝜌‖
2
𝐿2 : log Z(𝜌; 2, 0) ≤ −_

}
. (2.1.16)

To analyze the variational problems (2.1.15)–(2.1.16), we express Z by the Feynman–Kac formula

as

Z(𝜌; 𝑡, 𝑥) = E0→𝑥
[
exp

( ∫ 𝑡

0
𝜌(𝑠, 𝐵b(𝑠)) d𝑠

)]
𝑝(𝑡, 𝑥), (2.1.17)

where the E0→𝑥 is taken with respect to a Brownian bridge 𝐵b(𝑠) that starts from 𝐵b(0) = 0 and

ends in 𝐵b(𝑡) = 𝑥, and 𝑝(𝑡, 𝑥) := exp(−𝑥2/2𝑡)/
√

2𝜋𝑡 denotes the standard heat kernel.

Given the Feynman–Kac formula, standard perturbation argument can be applied to obtained

the quadratic law in the near-center regime, _→ 0; this is done in Section 2.4.1.

Here we focus on the deep lower tail regime, i.e., analyzing (2.1.16) in the limit −_ → −∞.

The scaling 𝜌(·, ·) ↦→ _𝜌(·, _− 1
2 ·) mentioned in Section 2.1.1 gives

Φ(−_) = _5/2 inf
{ 1

2 ‖𝜌‖
2
𝐿2 : h_ (𝜌; 2, 0) ≤ −1

}
, (2.1.18)

where

h_ (𝜌; 𝑡, 𝑥) := (lower order term) − 𝑥2

2𝑡 + _
−1 logE0→_1/2𝑥

[
exp

( ∫ 𝑡

0
_𝜌(𝑠, _− 1

2𝐵b(𝑠)) d𝑠
)]
.

(2.1.19)

The details of this scaling are given in Section 2.4.2, and the precise expression of (2.1.19) is given

in (2.4.11).

We seek to analyze the right hand side of (2.1.19) for (𝑡, 𝑥) = (2, 0). For a suitable class of 𝜌,
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Varadhan’s lemma gives, as −_→ −∞,

_−1 logE0→0

[
exp

( ∫ 2

0
_𝜌(𝑠, _− 1

2𝐵b(𝑠)) d𝑠
)]
−→ − inf

𝛾

{ ∫ 2

0

1
2𝛾
′(𝑠)2 − 𝜌(𝑠, 𝛾(𝑠)) d𝑠

}
,

(2.1.20)

where the infimum is taken over all 𝐻1 path 𝛾(𝑠) that starts and ends in 0, i.e., 𝛾(0) = 𝛾(2) = 0.

This limit transition is reminiscent of the convergence (under the zero-temperature limit) of the

free energy of a directed polymer to that of a last passage percolation. Our task is hence to find the

𝜌 = 𝜌(𝑠, 𝑦) with the minimal 𝐿2 norm such that the right hand side of (2.1.20) is ≤ −1.

It is natural to guess that the minimizing 𝜌 should be the 𝜌∗ obtained in the aforementioned

PDE heuristic. Taking this explicit 𝜌∗, we prove the convergence (2.1.20) (by Varadhan’s lemma)

and solve the path variational problem on the right side of (2.1.20); see Lemma 2.4.2 and Proposi-

tion 2.4.3. The explicit constant 4
15𝜋 in Theorem 2.1.1 (c) comes from the 𝐿2 norm of 𝜌∗.

The last step is to verify that such a 𝜌∗ is indeed the minimizer. This is done in Section 2.4.2.

There we appeal to an identity (2.4.30) that involves 𝜌∗. This identity follows from the fact that

for 𝜌 = 𝜌∗, the right hand side of (2.1.20) is equal to −1. Using this identity, we show that, for any

𝜌 that satisfies the required condition h_ (𝜌; 2, 0) ≤ −1, the quantity 〈𝜌∗ − 𝜌, 𝜌∗〉 is approximately

≤ 0; see (2.4.32). This bound then verifies that 𝜌∗ is the minimizer.

Freidlin–Wentzell LDP for the SHE

Here we state our result on the Freidlin–Wentzell LDP for the SHE (2.1.13). For the purpose

of proving Theorem 2.1.1, it suffices to just consider the narrow wedge initial data, but we also

consider function-valued initial data for their independent interest.

Let us set up the notation, first for function-valued initial data. For 𝑎 ∈ R, define the weighted

sup norm ‖𝑔‖𝑎 := sup𝑥∈R{𝑒−𝑎 |𝑥 | |𝑔(𝑥) |}. Let 𝐶𝑎 (R) := {𝑔 ∈ 𝐶 (R) : ‖𝑔‖𝑎 < ∞}, and endow this

space with the norm ‖·‖𝑎. Slightly abusing notation, for functions that depend also on time, we
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use the same notation

‖ 𝑓 ‖𝑎 :=
{
𝑒−𝑎 |𝑥 | | 𝑓 (𝑡, 𝑥) | : (𝑡, 𝑥) ∈ [0, 𝑇] × R

}
(2.1.21)

to denote the analogous norm, and let 𝐶𝑎 ( [0, 𝑇] × R) := { 𝑓 ∈ 𝐶 ( [0, 𝑇] × R) : ‖ 𝑓 ‖𝑎 < ∞},

endowed with the norm ‖·‖𝑎. Adopt the notation 𝐶𝑎+∗ (R) := ∩𝑎>𝑎∗𝐶𝑎 (R) and 𝐶𝑎+∗ ( [0, 𝑇] × R) :=

∩𝑎>𝑎∗𝐶𝑎 ( [0, 𝑇] × R). Let 𝑝(𝑡, 𝑥) := exp(− 𝑥2

2𝑡 )/
√

2𝜋𝑡 denote the standard heat kernel. Recall that

the mild solution of (2.1.13) with a deterministic initial data 𝑔∗ is a process 𝑍Y that satisfies

𝑍Y (𝑡, 𝑥) =
∫
R
𝑝(𝑡, 𝑥 − 𝑦)𝑔∗(𝑦) d𝑦 + Y

1
2

∫
R
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦)𝑍Y (𝑠, 𝑦)b (𝑠, 𝑦) d𝑠d𝑦. (2.1.22)

It is standard, e.g., [Qua11, Sections 2.1–2.6], to show that for any 𝑔∗ ∈ 𝐶𝑎+∗ (R), there exists a

unique mild solution 𝑍Y of (2.1.13) given by the chaos expansion; see Section 2.2.1 for a discussion

about chaos expansion. Further, as shown later in Corollary 2.3.6, the chaos expansion (and hence

𝑍Y) is 𝐶𝑎+∗ ( [0, 𝑇] × R)-valued. Next we turn to the rate function. Fix 𝑔∗ ∈ 𝐶𝑎∗+(R). For 𝜌 ∈

𝐿2( [0, 𝑇] × R), consider the PDE

𝜕𝑡Z = 1
2𝜕𝑥𝑥Z + 𝜌Z, Z(𝜌; 0, ·) = 𝑔∗(·),

where Z = Z(𝜌; 𝑡, 𝑥), 𝑡 ∈ [0, 𝑇], and 𝑥 ∈ R. This PDE is interpreted in the Duhamel sense as

Z(𝜌; 𝑡, 𝑥) =
∫
R
𝑝(𝑡, 𝑥 − 𝑦)𝑔∗(𝑦) d𝑦 +

∫ 𝑡

0

∫
R
𝜌(𝑠, 𝑦)Z(𝜌; 𝑠, 𝑦) d𝑦d𝑠. (2.1.23)

We will show in Section 2.2.1 that (2.1.23) admit a unique 𝐶𝑎+∗ ( [0, 𝑇] × R)-valued solution. We

will often write Z(𝜌) = Z(𝜌; ·, ·) and accordingly view 𝜌 ↦→ Z(𝜌) as a function 𝐿2( [0, 𝑇] ×R) →

𝐶𝑎 ( [0, 𝑇] × R), for 𝑎 > 𝑎∗. Here 𝜌 should be viewed as a deviation of the spacetime white noise
√
Yb. For each such deviation 𝜌 we run the PDE (2.1.23) to obtain the corresponding deviation

Z(𝜌) = Z(𝜌; 𝑡, 𝑥) of 𝑍Y. Now, since the spacetime white noise b is Gaussian with the correlation
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E[b (𝑡, 𝑥)b (𝑠, 𝑦)] = 𝛿0(𝑡 − 𝑠)𝛿0(𝑥 − 𝑦), one expects the rate function to be the 𝐿2 norm of 𝜌, more

precisely

𝐼 ( 𝑓 ) := inf
{ 1

2 ‖𝜌‖𝐿2 : 𝜌 ∈ 𝐿2( [0, 𝑇] × R),Z(𝜌) = 𝑓
}
, (2.1.24)

with the convention inf ∅ := +∞.

As for the narrow wedge initial data, we adopt the same notation as in the preceding but replace

𝑔∗ ∈ 𝐶𝑎+∗ (R) with 𝑔∗ = 𝛿0. More explicitly, the mild solution of the SHE (2.1.13) satisfies

𝑍Y (𝑡, 𝑥) = 𝑝(𝑡, 𝑥) + Y
1
2

∫
R
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦)𝑍Y (𝑠, 𝑦)b (𝑠, 𝑦) d𝑠d𝑦, (2.1.22-nw)

and the function Z(𝜌) now solves

Z(𝜌; 𝑡, 𝑥) = 𝑝(𝑡, 𝑥) +
∫ 𝑡

0

∫
R
𝜌(𝑠, 𝑦)Z(𝜌; 𝑠, 𝑦) d𝑦d𝑠. (2.1.23-nw)

Recall that 𝑍Y starts from the delta initial condition 𝑍Y (0, ·) = 𝛿0(𝑥). The smoothing effect of the

Laplacian in the SHE makes 𝑍Y (𝑡, ·) function-valued for all 𝑡 > 0, but when 𝑡 → 0 the process

𝑍Y (𝑡, ·) becomes singular as it approaches 𝛿0. To avoid the singularity, we work with the space

𝐶𝑎 ( [[, 𝑇] × R), [ > 0, 𝑎 ∈ R, equipped with the norm

‖ 𝑓 ‖𝑎,[ :=
{
𝑒−𝑎 |𝑥 | | 𝑓 (𝑡, 𝑥) | : (𝑡, 𝑥) ∈ [[, 𝑇] × R

}
. (2.1.25)

It is standard to show that (2.1.22-nw) admits a unique solution that is 𝐶𝑎 ( [[, 𝑇] × R)-valued for

all [ > 0 and 𝑎 ∈ R. The same holds for (2.1.23-nw).

Let Ω be a topological space. Recall that a function 𝜑 : Ω→ R∪{+∞} is a good rate function

if 𝜑 is lower semi-continuous and the set { 𝑓 : 𝜑( 𝑓 ) ≤ 𝑟} is compact for all 𝑟 < +∞. Recall that

a sequence {𝑊Y} of Ω-valued random variables satisfies an LDP with speed Y−1 and the rate

function 𝜑 if for any closed 𝐹 ⊂ Ω and open 𝐺 ⊂ Ω,

lim inf
Y→0

Y logP
[
𝑊Y ∈ 𝐺

]
≥ − inf

𝑓 ∈𝐺
𝜑( 𝑓 ), lim sup

Y→0
Y logP

[
𝑊Y ∈ 𝐹

]
≤ − inf

𝑓 ∈𝐹
𝜑( 𝑓 ).
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In this paper we prove the following Freidlin–Wentzell LDP for the SHE.

Proposition 2.1.7.

(a) Fix 𝑎∗ ∈ R, 𝑔∗ ∈ 𝐶𝑎+∗ (R), and 𝑇 < ∞. Let 𝑍Y be the solution of (2.1.22) and let Z(𝜌) be the

solution of (2.1.23).

For any 𝑎 > 𝑎∗, the function 𝐼 : 𝐶𝑎 ( [0, 𝑇]×R) → R∪{+∞} in (2.1.24) is a good rate function.

Further, {𝑍Y}Y satisfies an LDP in 𝐶𝑎 ( [0, 𝑇] × R) with speed Y−1 and the rate function 𝐼.

(b) Fix 𝑇 < ∞. Let 𝑍Y be the solution of (2.1.22-nw) and let and let Z(𝜌) be the solution of

(2.1.23-nw).

For any 𝑎 ∈ R and [ ∈ (0, 𝑇), the function 𝐼 : 𝐶𝑎 ( [[, 𝑇] × R) → R ∪ {+∞} in (2.1.24) is a

good rate function. Further, {𝑍Y}Y satisfies an LDP in 𝐶𝑎 ( [[, 𝑇] × R) with speed Y−1 and the

rate function 𝐼.

2.1.3 Literature on the WNT and Freidlin-Wentzell LDPs for stochastic PDEs

The WNT, also known as the optimal fluctuation theory, dates back at least to the works [HL66,

ZL66, Lif68] in condensed matter physics. In the context of stochastic PDEs, the WNT studies

large deviations of the solution’s trajectory when the noise is scaled to be weaker and weaker.

Such scaling is often equivalent to the short time scaling of a fixed SPDE. (See (2.1.3)–(2.1.4)

for the case of the KPZ equation.) In the physics literature, the WNT was carried out in [Fog98]

for the noisy Burgers equation, in [KK07, KK09] for directed polymer and in [KMS16, MKV16]

for the KPZ equation. The WNT is also known as the instanton method in turbulence theory

[FKLM96, FGV01, GGS15], the macroscopic fluctuation theory in lattice gases [BDSG+15], and

WKB methods in reaction-diffusion systems [EK04, MS11].

The Freidlin-Wentzell LDP has been established for various stochastic PDEs, including reaction-

diffusion-like stochastic equations [CM97, BDM08], the stochastic Allen–Cahn equation [HW15b],

and the stochastic Navier–Stokes equation [CD19].

33



2.1.4 Some discussions about the rate function Φ

The physics work [LDMRS16] used a different method to derive

Φ(_) =


−1√
4𝜋

min
𝑧∈[−1,+∞)

{
𝑧𝑒_ + Li 5

2
(−𝑧)

}
, _ ≤ _𝑐,

−1√
4𝜋

min
𝑧∈[−1,0)

{
𝑧𝑒_ + Li 5

2
(−𝑧) − 8

√
𝜋

3 (− log(−𝑧))
}
, _ ≥ _𝑐,

where Lia (𝑧) is the poly-logarithm function and _𝑐 = log Z ( 32 ). Though not completely mathemat-

ically rigorous, the derivation is based on convincing arguments and is backed by the numerical

result [HLDM+18b]. Based on this expression, the work obtained many properties of Φ, including

its analyticity on _ ∈ R, and lower-order terms in the deep lower-tail regime −_→ −∞ (beyond the

leading term 4
15𝜋_

5
2 ). Our results do not cover these detailed properties of Φ. Rigorously proving

these properties is an interesting open question.
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Outline of the rest of the paper

In Section 2.2, we recall the formalism of Wiener chaos, recall a result from [HW15b] that

gives the LDP for finitely many chaos, and prepare some properties of the function Z(𝜌). In

Section 2.3, we establish tail probability bounds on the Wiener chaos for the SHE. Based on such

tail bounds, we leverage the LDP for finitely many chaos into the LDP for the SHE, thereby proving
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Proposition 2.1.7. In Section 2.4, we analyze the variational problem given by the one-point LDP

for the SHE and prove Theorem 2.1.1.

2.2 Wiener spaces, Wiener chaos, and the function Z(𝜌)

In this section we recall the formalism of Wiener spaces and chaos, and prepare some properties

of Z(𝜌).

2.2.1 Function-valued initial data

Throughout this subsection we fix 𝑇 < ∞, 𝑎∗ ∈ R, and 𝑔∗ ∈ 𝐶𝑎+∗ (R), and initiate the SHE

(2.1.13) from 𝑍Y (0, ·) = 𝑔∗(·).

Wiener spaces and chaos

We will mostly follow [HW15b, Section 3]. The basic elements of the Wiener space formalism

consists of (B,H , `), where B is a Banach space over R equipped with a Gaussian measure `, and

H ⊂ B is the Cameron–Martin space of B. In our settingH = 𝐿2( [0, 𝑇] × R), and B can be any

a Banach space such that the embedding H ⊂ B is dense and Hilbert–Schmidt. To be concrete,

fixing an arbitrary orthonormal basis {𝑒1, 𝑒2, . . .} ofH = 𝐿2( [0, 𝑇] × R), we let

B :=
{
b =

∑︁
b𝑖𝑒𝑖 : b1, b2, . . . ∈ R, ‖b‖B < ∞

}
,

∑︁
b𝑖𝑒𝑖

2
B :=

∑︁
𝑖≥1

1
𝑖2
|b𝑖 |2. (2.2.1)

Identifying B as a subset of RZ≥1 , we set ` := ⊗Z≥1a, where a is the standard Gaussian measure on

R. The space B serves as the sample space. For example, for 𝑓 ∈ 𝐿2( [0, 𝑇] × R) with 𝑓 =
∑
𝑓𝑖𝑒𝑖,

the function

𝑊 ( 𝑓 ) : B → R, 𝑊 ( 𝑓 ) :=
∑︁

𝑖≥1
𝑓𝑖b𝑖 (2.2.2)

should be identified with the random variable
∫ 𝑇
0

∫
R
𝑓 (𝑡, 𝑥)b (𝑡, 𝑥) d𝑡d𝑥. This identification justifies

using b to denote both elements of B and the spacetime white noise.
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The Hermite polynomials 𝐻𝑛 (𝑥) are the unique polynomials satisfying deg(𝐻𝑛) = 𝑛 and

𝑒𝜏𝑥−
𝜏2
2 =

∞∑︁
𝑛=0

𝜏𝑛𝐻𝑛 (𝑥). (2.2.3)

The 𝑛-th R-valued Wiener chaos is the closure in 𝐿2(B → R, `) of the linear subspace spanned

by
∏∞
𝑖=1 𝐻𝛼𝑖 (𝑊 (𝑒𝑖)), for (𝛼1, 𝛼2, . . .) ∈ Z≥0 × Z≥0 × . . . and 𝛼1 + 𝛼2 + . . . = 𝑛. Since our goal

is to establish a functional LDP, it is natural to consider Wiener chaos at the functional level. We

will follow the formalism of Banach-valued Wiener chaos from [HW15b, Section 3]. Fix 𝑎 > 𝑎∗

and consider 𝐸 = 𝐶𝑎 ( [0, 𝑇] × R), which is a separable Banach space. The 𝑛-th 𝐸-valued Wiener

chaos is the space

{
Ψ ∈ 𝐿2(B → 𝐸, `) :

∫
Ψ(b)𝜓(b)`(db) = 0, ∀𝜓 ∈ (𝑚-th R-valued Wiener chaos), with 𝑚 ≠ 𝑛

}
.

In probabilistic notation, the 𝑛-th 𝐸-valued Wiener chaos consists of𝐶𝑎 ( [0, 𝑇]×R)-valued random

variables Ψ such that E[‖Ψ‖2𝑎] < ∞ and that E[Ψ𝜓] = 0, for all 𝜓 in the 𝑚-th R-valued Wiener

chaos with 𝑚 ≠ 𝑛.

We now turn to the SHE. Set

𝑌𝑛 (𝑡, 𝑥) :=
∫
Δ𝑛 (𝑡)

∫
R𝑛+1

𝑝(𝑠𝑛−𝑠𝑛+1, 𝑦𝑛−𝑦𝑛+1)𝑔∗(𝑦𝑛+1)d𝑦𝑛+1
𝑛∏
𝑖=1

𝑝(𝑠𝑖−1−𝑠𝑖, 𝑦𝑖−1−𝑦𝑖)b (𝑠𝑖, 𝑦𝑖) d𝑠𝑖d𝑦𝑖,

(2.2.4)

where Δ𝑛 (𝑡) = {®𝑠 = (𝑠0, 𝑠1, . . . , 𝑠𝑛+1) : 0 = 𝑠𝑛+1 < 𝑠𝑛 < · · · < 𝑠1 < 𝑠0 = 𝑡}, with the convention

𝑠0 := 𝑡 and 𝑦0 := 𝑥. Iterating (2.1.22) gives

𝑍Y (𝑡, 𝑥) =
∞∑︁
𝑛=0

Y
𝑛
2𝑌𝑛 (𝑡, 𝑥). (2.2.5)

We will show later in Proposition 2.3.5 that each 𝑌𝑛 defines a 𝐶𝑎 ( [0, 𝑇] × R)-valued random vari-

able, and show in Corollary 2.3.6 that the right hand side of (2.2.5) converges in ‖·‖𝑎 almost surely.

It is standard to show that (2.2.5) gives the unique mild solution of the SHE. Further, given the 𝑛-
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fold stochastic integral expression in (2.2.4), it is standard to show that, for fixed (𝑡, 𝑥) ∈ [0, 𝑇]×R,

the random variable 𝑌𝑛 (𝑡, 𝑥) lies in the 𝑛-th R-valued Wiener chaos, and 𝑌𝑛 ∈ 𝐶𝑎 ( [0, 𝑇] × R) =: 𝐸

lies in the 𝑛-th 𝐸-valued Wiener chaos. Accordingly, we refer to the series (2.2.5) as the chaos

expansion for the SHE.

Let 𝑍𝑁,Y :=
∑𝑁
𝑛=0 Y

𝑛
2𝑌𝑛 denote the partial sum of the chaos expansion (2.2.5). The LDPs of

finitely many 𝐸-valued Wiener chaos has been established in [HW15b, Theorem 3.5]. We next

apply this result to obtain an LDP for 𝑍𝑁,Y. Following the notation in [HW15b], we view 𝑌𝑛 as a

function B → 𝐶𝑎 ( [0, 𝑇] × R), denoted 𝑌𝑛 (b), and define

(𝑌𝑛)hom : 𝐿2( [0, 𝑇] × R) → 𝐶𝑎 ( [0, 𝑇] × R), (𝑌𝑛)hom(𝜌) :=
∫
B
𝑌𝑛 (b + 𝜌) `(db). (2.2.6)

The last integral is well-defined for any 𝜌 ∈ 𝐿2( [0, 𝑇] × R) by the Cameron–Martin theorem.

Further define

𝐼𝑁 : 𝐶𝑎 ( [0, 𝑇]×R) → R∪{+∞} 𝐼𝑁 ( 𝑓 ) := inf
{

1
2 ‖𝜌‖

2
𝐿2 : 𝜌 ∈ 𝐿2( [0, 𝑇]×R),

𝑁∑︁
𝑛=0
(𝑌𝑛)hom(𝜌) = 𝑓

}
,

(2.2.7)

with the convention inf ∅ := +∞. We now apply [HW15b, Theorem 3.5] to obtain an LDP for

𝑍𝑁,Y.

Proposition 2.2.1 (Special case of [HW15b, Theorem 3.5]). For any fixed 𝑎 > 𝑎∗, the function 𝐼𝑁

in (2.2.7) is a good rate function. For fixed 𝑁 < ∞, {𝑍𝑁,Y :=
∑𝑁
𝑛=0 Y

𝑛
2𝑌𝑛}Y satisfies an LDP on

𝐶𝑎 ( [0, 𝑇] × R) with speed Y−1 and the rate function 𝐼𝑁 .

Proof. Applying [HW15b, Theorem 3.5] with 𝛿(Y) = 0 and with 𝚿(Y) = (𝑌0, Y
1/2𝑌1, . . . , Y

𝑁/2𝑌𝑁 ) ∈

𝐸𝑁+1 gives an LDP on𝐶𝑎 ( [0, 𝑇]×R)𝑁+1 for 𝚿(Y) with speed Y−1 and the rate function 𝐽 ( 𝑓0, . . . , 𝑓𝑁 ) :=

inf{ 1
2 ‖𝜌‖

2
𝐿2 : 𝜌 ∈ 𝐿2( [0, 𝑇] × R), (𝑌𝑛)hom(𝜌) = 𝑓𝑛, 𝑛 = 0, . . . , 𝑁}. Since the map 𝐶𝑎 ( [0, 𝑇] ×

R)𝑁+1 → 𝐶𝑎 ( [0, 𝑇] × R), ( 𝑓0, . . . , 𝑓𝑁 ) ↦→ 𝑓0 + . . . + 𝑓𝑁 is continuous, the claimed result follows

by the contraction principle. �
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Properties of the function Z(𝜌)

Recall that Z(𝜌) denotes the solution of (2.1.23). We begin by developing an series expansion

for Z(𝜌) that mimics the chaos expansion for the SHE. For fixed 𝜌 ∈ 𝐿2( [0, 𝑇] × R), let

Y𝑛 (𝜌; 𝑡, 𝑥) :=
∫
Δ𝑛 (𝑡)

∫
R𝑛+1

𝑝(𝑠𝑛 − 𝑠𝑛+1, 𝑦𝑛 − 𝑦𝑛+1)𝑔∗(𝑦𝑛+1)d𝑦𝑛+1
𝑛∏
𝑖=1

𝑝(𝑠𝑖−1 − 𝑠𝑖, 𝑦𝑖−1 − 𝑦𝑖)𝜌(𝑠𝑖, 𝑦𝑖)d𝑠𝑖d𝑦𝑖 .

(2.2.8)

where Δ𝑛 (𝑡) := {®𝑠 = (𝑠0, 𝑠1, . . . , 𝑠𝑛+1) : 0 = 𝑠𝑛+1 < 𝑠𝑛 < · · · < 𝑠1 < 𝑠0 = 𝑡}, with the convention

𝑠0 := 𝑡 and 𝑦0 := 𝑥. Iterating (2.1.23) shows that the unique solution is given by

Z(𝜌; 𝑡, 𝑥) =
∞∑︁
𝑛=0

Y𝑛 (𝜌; 𝑡, 𝑥), (2.2.9)

provided that the right hand side of (2.2.9) converges in ‖·‖𝑎.

To verify this convergence we proceed to establish a bound on ‖Y𝑛 (𝜌)‖𝑎. Hereafter, we will use

𝐶 = 𝐶 (𝑎1, 𝑎2, . . .) to denote a deterministic positive finite constant. The constant may change from

line to line or even within the same line, but depends only on the designated variables 𝑎1, 𝑎2, . . ..

Recall that 𝑝(𝑡, 𝑥) denotes the standard heat kernel. The following bounds will be useful in our

subsequent analysis. The proof of these bounds is standard and hence omitted.

Lemma 2.2.2. Fix 𝑎 ∈ R and \ ∈ (0, 1
2 ). There exists 𝐶 = 𝐶 (𝑎, \, 𝑇) such that for all 𝑥, 𝑥′ ∈ R

and 𝑠 < 𝑡 ∈ [0, 𝑇],

(a) 𝑝(𝑡, 𝑥) ≤ 𝐶𝑡−1/2𝑒𝑎 |𝑥 |,

(b)
∫
R
𝑝(𝑡, 𝑥 − 𝑦)𝑒𝑎 |𝑦 |d𝑦 ≤ 𝐶𝑒𝑎 |𝑥 |,

(c)
∫
R
𝑝(𝑡, 𝑥 − 𝑦)2𝑒𝑎 |𝑦 |d𝑦 ≤ 𝐶𝑡− 1

2 𝑒𝑎 |𝑦 |,

(d)
∫
R

(
𝑝(𝑡, 𝑥 − 𝑦) − 𝑝(𝑡, 𝑥′ − 𝑦)

)2
𝑒𝑎 |𝑦 |d𝑦 ≤ 𝐶 |𝑥 − 𝑥′|2\ 𝑡− 1

2−\ (𝑒𝑎 |𝑥 | ∨ 𝑒𝑎 |𝑥 ′ |), and

(e)
∫
R

(
𝑝(𝑡, 𝑥 − 𝑦) − 𝑝(𝑠, 𝑥 − 𝑦)

)2
𝑒𝑎 |𝑦 |d𝑦 ≤ 𝐶 |𝑡 − 𝑠 |\ 𝑠− 1

2−\𝑒𝑎 |𝑥 |.
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Fix 𝑎 ∈ R, [ ∈ (0, 𝑇), and \ ∈ (0, 1
2 ). There exists 𝐶 = 𝐶 (𝑎, \, 𝑇, [) such that for all

𝑠 < 𝑡 ∈ [[, 𝑇] and 𝑥, 𝑥′, 𝑦 ∈ R,

(i) |𝑝(𝑡, 𝑥 − 𝑦) − 𝑝(𝑡, 𝑥′ − 𝑦) | ≤ 𝐶 |𝑥 − 𝑥′|\ (𝑒𝑎 |𝑥−𝑦 | ∨ 𝑒𝑎 |𝑥 ′−𝑦 |), and

(ii) |𝑝(𝑡, 𝑥) − 𝑝(𝑠, 𝑥) | ≤ 𝐶 |𝑡 − 𝑠 |𝑒𝑎 |𝑥 |.

The next lemma gives a bound on ‖Y𝑛 (𝜌)‖𝑎 and verifies the convergence of the right hand side of

(2.2.9).

Lemma 2.2.3. Fix 𝑎 > 𝑎∗. There exists 𝐶 = 𝐶 (𝑇, 𝑎) such that, for all 𝜌 ∈ 𝐿2( [0, 𝑇] × R) and

𝑛 ∈ Z≥0, we have ‖Y𝑛 (𝜌)‖𝑎 ≤ 𝐶𝑛

Γ(𝑛/2)1/2 ‖𝜌‖
𝑛

𝐿2 .

Proof. Throughout this proof we write 𝐶 = 𝐶 (𝑇, 𝑎). Let 𝐹𝑛 (𝑡) := sup𝑥∈R 𝑒2𝑎 |𝑥 | |Y𝑛 (𝜌; 𝑡, 𝑥) |2. For

𝑛 = 0, we have Y0(𝜌; 𝑡, 𝑥) =
∫
R
𝑝(𝑡, 𝑥 − 𝑦)𝑔∗(𝑦)d𝑦. That 𝑔∗ ∈ 𝐶𝑎∗+ (R) implies |𝑔∗(𝑦) | ≤ 𝐶𝑒𝑎 |𝑦 |.

Combining this with Lemma 2.2.2(b) gives 𝐹0(𝑡) ≤ 𝐶. Next, for 𝑛 ≥ 1, referring to (2.2.8), we see

that Y𝑛 (𝜌; 𝑡, 𝑥) can be expressed iteratively as

Y𝑛 (𝜌; 𝑡, 𝑥) =
∫ 𝑡

0

∫
R
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦)Y𝑛−1(𝜌; 𝑠, 𝑦)𝜌(𝑠, 𝑦)d𝑠d𝑦.

Take square on both sides and apply the Cauchy–Schwarz inequality to get Y𝑛 (𝜌; 𝑡, 𝑥)2 ≤
∫ 𝑡

0

∫
R
𝑝(𝑡−

𝑠, 𝑥 − 𝑦)2Y𝑛−1(𝜌; 𝑠, 𝑦)2d𝑠d𝑦 ‖𝜌‖2
𝐿2 . Within the last integral, use Y𝑛−1(𝜌; 𝑠, 𝑦)2 ≤ 𝐹𝑛−1(𝑠)𝑒2𝑎 |𝑦 | and

Lemma 2.2.2(c), and divide both sides by 𝑒−2𝑎 |𝑥 |. We obtain 𝐹𝑛 (𝑡) ≤ 𝐶‖𝜌‖2
𝐿2

∫ 𝑡

0 𝐹𝑛−1(𝑠) (𝑡 −

𝑠)−1/2d𝑠. Iterating this inequality and using 𝐹0(𝑡) ≤ 𝐶 complete the proof. �

As it turns out, the function (𝑌𝑛)hom(𝜌) in (2.2.6) is equal to Y𝑛 (𝜌) in (2.2.8).

Lemma 2.2.4. For any 𝜌 ∈ 𝐿2( [0, 𝑇] × R) and 𝑛 ∈ Z≥0, we have (𝑌𝑛)hom(𝜌) = Y𝑛 (𝜌).

Proof. Recall the notation 𝑊 ( 𝑓 ) from (2.2.2). Since 𝜌 ∈ 𝐿2( [0, 𝑇] × R), the Cameron–Martin

theorem gives

(𝑌𝑛)hom(𝜌) :=
∫
B

Y𝑛 (𝜌 + b)`(db) = E
[
exp

(
𝑊 (𝜌) − 1

2 ‖𝜌‖
2
𝐿2

)
Y𝑛

]
. (2.2.10)
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Taking 𝜏 = ‖𝜌‖𝐿2 and 𝑥 = 𝑊 (𝜌/‖𝜌‖𝐿2) in (2.2.3) gives exp(𝑊 (𝜌)−1
2 ‖𝜌‖

2
𝐿2) =

∑∞
𝑚=0 ‖𝜌‖𝑚𝐿2𝐻𝑚 (𝑊 (𝜌/‖𝜌‖𝐿2)).

Invoke the well-known identity, c.f., [Nua06, Proposition 1.1.4],

‖𝜌‖𝑚
𝐿2𝐻𝑚 (𝑊 (𝜌/‖𝜌‖𝐿2)) =

∫
Δ𝑚 (𝑇)

∫
R𝑚

𝑚∏
𝑖=1

𝜌(𝑠𝑖, 𝑦𝑖)b (𝑠𝑖, 𝑦𝑖)d𝑠𝑖d𝑦𝑖, (2.2.11)

insert the result into (2.2.10), and exchange the sum and expectation in the result. We have

(𝑌𝑛)hom(𝜌; 𝑡, 𝑥) =
∞∑︁
𝑚=0
E

[( ∫
Δ𝑚 (𝑇)

∫
R𝑚
𝜌⊗𝑚 (®𝑠, ®𝑦)

𝑚∏
𝑖=1

b (𝑠𝑖, 𝑦𝑖) d𝑠𝑖d𝑦𝑖
)
𝑌𝑛 (𝑡, 𝑥)

]
.

Within the last expression, the random variable on the right hand side of (2.2.11) belongs to the

𝑚-th R-valued Wiener chaos. Since 𝑌𝑛 belongs to the 𝑛-th 𝐸-valued Wiener chaos, the expectation

is nonzero only when 𝑚 = 𝑛. Calculating this expectation from (2.2.4) concludes the desired

result. �

2.2.2 The narrow wedge initial data

Throughout this subsection we fix 0 < [ < 𝑇 < ∞ and 𝑎 ∈ R, and initiate the SHE (2.1.13)

from 𝑍Y (0, ·) = 𝛿0(·).
For the Wiener space formalism, the spaces H = 𝐿2( [0, 𝑇] × R) and B remain the same as in

Section 2.2.1, while the space 𝐸 now changes to 𝐸 = 𝐶𝑎 ( [[, 𝑇] × R). The chaos expansion takes

the same form as (2.2.5) but with

𝑌𝑛 (𝑡, 𝑥) :=
∫
Δ𝑛 (𝑡)

∫
R𝑛+1

𝑝(𝑠𝑛 − 𝑠𝑛+1, 𝑦𝑛)
𝑛∏
𝑖=1

𝑝(𝑠𝑖−1 − 𝑠𝑖, 𝑦𝑖−1 − 𝑦𝑖)b (𝑠𝑖, 𝑦𝑖) d𝑠𝑖d𝑦𝑖 . (2.2.4-nw)

Recall the norm ‖·‖𝑎,[ from (2.1.25). Proposition 2.3.5-nw in the following asserts that each 𝑌𝑛

defines a𝐶𝑎 ( [[, 𝑇] ×R)-valued random variable, and Corollary 2.3.6-nw asserts that the right hand

side of (2.2.5) converges in ‖·‖𝑎,[ almost surely. The functions (𝑌𝑛)hom(𝜌) and 𝐼𝑁 are defined the
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same way as in Section 2.2.1, but with 𝐶𝑎 ( [[, 𝑇] × R) in place of 𝐶𝑎 ( [0, 𝑇] × R). More explicitly,

(𝑌𝑛)hom : 𝐿2( [0, 𝑇] × R) → 𝐶𝑎 ( [[, 𝑇] × R), (𝑌𝑛)hom(𝜌) :=
∫
B
𝑌𝑛 (b + 𝜌) `(db), (2.2.6-nw)

𝐼𝑁 : 𝐶𝑎 ( [[, 𝑇] × R) → R ∪ {+∞}, 𝐼𝑁 ( 𝑓 ) := inf
{

1
2 ‖𝜌‖

2
𝐿2 : 𝜌 ∈ 𝐿2( [0, 𝑇] × R),

𝑁∑︁
𝑛=0
(𝑌𝑛)hom(𝜌) = 𝑓

}
,

(2.2.7-nw)

with the convention inf ∅ := +∞.

Likewise, for the equation (2.1.23-nw), the unique solution is given by the expansion (2.2.9)

but with

Y𝑛 (𝜌; 𝑡, 𝑥) :=
∫
Δ𝑛 (𝑡)

∫
R𝑛
𝑝(𝑠𝑛 − 𝑠𝑛+1, 𝑦𝑛)

𝑛∏
𝑖=1

𝑝(𝑠𝑖−1 − 𝑠𝑖, 𝑦𝑖−1 − 𝑦𝑖)𝜌(𝑠𝑖, 𝑦𝑖)d𝑠𝑖d𝑦𝑖 . (2.2.8-nw)

Similar proofs of Proposition 2.2.1 and Lemmas 2.2.3 and 2.2.4 applied in the current setting give

Proposition 2.2.1-nw. For any fixed 𝑎 ∈ R and [ ∈ (0, 𝑇), the function 𝐼𝑁 in (2.2.7-nw) is a good

rate function. For fixed 𝑁 < ∞, {𝑍𝑁,Y :=
∑𝑁
𝑛=0 Y

𝑛
2𝑌𝑛}Y satisfies an LDP on 𝐶𝑎 ( [0, 𝑇] × R) with

speed Y−1 and the rate function 𝐼𝑁 .

Lemma 2.2.3-nw. Fix 𝑎 ∈ R and [ < 𝑇 ∈ (0,∞). There exists 𝐶 = 𝐶 (𝑇, 𝑎, [) such that, for all

𝜌 ∈ 𝐿2( [0, 𝑇] × R) and 𝑛 ∈ Z≥0, we have ‖Y𝑛 (𝜌)‖𝑎,[ ≤ 𝐶𝑛

Γ(𝑛/2)1/2 ‖𝜌‖
𝑛

𝐿2 .

Lemma 2.2.4-nw. For any 𝜌 ∈ 𝐿2( [0, 𝑇] × R) and 𝑛 ∈ Z≥0, we have (𝑌𝑛)hom(𝜌) = Y𝑛 (𝜌).

2.3 Freidlin–Wentzell LDP for the SHE

2.3.1 Function-valued initial data

Throughout this subsection, we fix 𝑇 < ∞, 𝑎∗ ∈ R, and 𝑔∗ ∈ 𝐶𝑎+∗ (R) = ∩𝑎>𝑎∗𝐶𝑎 (R), and let 𝑍Y

denote the solution of (2.1.13) with the initial data 𝑔∗.

Recall from Proposition 2.2.1 that 𝑍𝑁,Y :=
∑𝑁
𝑛=0 Y

𝑛
2𝑌𝑛 satisfies an LDP with the rate function
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𝐼𝑁 given in (2.2.7). By Lemma 2.2.4, the function 𝐼𝑁 can be expressed as

𝐼𝑁 ( 𝑓 ) := (2.2.7) = inf
{

1
2 ‖𝜌‖

2
𝐿2 : 𝜌 ∈ 𝐿2( [0, 𝑇] × R),

𝑁∑︁
𝑛=0

Y𝑛 (𝜌) = 𝑓

}
. (2.3.1)

Recall that Z(𝜌) = ∑∞
𝑛=0 Y𝑛 (𝜌). Referring to the definition of 𝐼 in (2.1.24), we see that formally

taking 𝑁 → ∞ in (2.3.1) produces 𝐼 ( 𝑓 ). The proof of Proposition 2.1.7 hence amounts to justi-

fying this limit transition at the level of LDPs. Key to justifying such a limit transition is a tight

enough bound on the tail probability P[‖𝑌𝑛‖𝑎 ≥ 𝑟], which we establish in Section 2.3.1.

Tail probability of ‖𝑌𝑛‖𝑎

We will utilize the fact that, for any (𝑡, 𝑥) ∈ [0, 𝑇] × R, the random variable 𝑌𝑛 (𝑡, 𝑥) belongs to

the 𝑛-th R-valued Wiener chaos. For 𝑋 in the 𝑛-th R-valued Wiener chaos, the hypercontractivity

inequality asserts that higher moments of 𝑋 are controlled by the second moments, c.f., [Nua06,

Theorem 1.4.1],

E
[
|𝑋 |𝑝

]
≤ 𝑝

𝑛𝑝

2
(
E
[
|𝑋 |2

] ) 𝑝

2 , for all 𝑝 ≥ 2. (2.3.2)

We now use this inequality to produce a tail probability bound.

Lemma 2.3.1. Let 𝑋 be an R-valued random variable in the 𝑛-th Wiener chaos and let 𝜎2 :=

E[𝑋2]. There exists a universal constant 𝐶 ∈ (0,∞) such that, for all 𝑛 ∈ Z≥1 and 𝑟 ≥ 0,

P
[
|𝑋 | ≥ 𝑟

]
≤ exp

(
− 𝑛
𝐶
𝜎−

2
𝑛 𝑟

2
𝑛 + 𝑛

)
.

Proof. Assume without loss of generality 𝜎 = 1. We seek to bound E[exp(𝛼 |𝑋 |2/𝑛)] for 𝛼 > 0. To

this end, invoke Taylor expansion to get E[exp(𝛼 |𝑋 |2/𝑛)] = ∑𝑛
𝑘=0

1
𝑘!𝛼

𝑘E[|𝑋 |2𝑘/𝑛]+∑∞𝑘=𝑛+1 1
𝑘!𝛼

𝑘E[|𝑋 |2𝑘/𝑛] .

On the right hand side, use (2.3.2) to bound the moments for 𝑘 ≥ 𝑛 + 1. As for 𝑘 ≤ 𝑛, we sim-

ply bound E[|𝑋 |2𝑘/𝑛] ≤ (E[|𝑋 |2])𝑘/𝑛 = 1. Combining these bounds gives E[exp(𝛼 |𝑋 |2/𝑛)] ≤∑𝑛
𝑘=0

1
𝑘!𝛼

𝑘 + ∑∞
𝑘=𝑛+1

1
𝑘!𝛼

𝑘 ( 2𝑘
𝑛
)𝑘 . The first term on the right hand side is bounded by 𝑒𝛼. For the
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second term, using the inequality 𝑘 𝑘 ≤ 𝑒𝑘 𝑘! gives
∑∞
𝑘=𝑛+1

1
𝑘!𝛼

𝑘 ( 2𝑘
𝑛
)𝑘 ≤ ∑∞

𝑘=𝑛+1( 2𝑒𝛼𝑛 )
𝑘 . Combining

these bounds and setting 𝛼 = 𝑛/(4𝑒) in the result gives E[exp( 𝑛4𝑒 |𝑋 |
2/𝑛)] ≤ 𝑒 𝑛

4𝑒 + 2−𝑛 ≤ 𝑒𝑛. Now

applying Markov’s inequality completes the proof. �

In light of Lemma 2.3.1, bounding the tail probability of 𝑌𝑛 (𝑡, 𝑥) amounts to bounding its

second moment, which we do next. Recall that 𝑇 , 𝑔∗ ∈ 𝐶𝑎+∗ (R), and 𝑎∗ ∈ R are fixed throughout

this section.

Proposition 2.3.2. Fix 𝑎 > 𝑎∗, \1 ∈ (0, 1), \2 ∈ (0, 1
2 ), and 𝑛 ∈ Z≥1. There exists 𝐶 =

𝐶 (𝑇, 𝑎, \1, \2) such that for all 𝑡, 𝑡′ ∈ [0, 𝑇] and 𝑥, 𝑥′ ∈ R,

(a) E
[
𝑌𝑛 (𝑡, 𝑥)2

]
≤ 𝑒2𝑎 |𝑥 | 𝐶𝑛

Γ( 𝑛2 )
,

(b) E
[ (
𝑌𝑛 (𝑡, 𝑥) − 𝑌𝑛 (𝑡, 𝑥′)

)2] ≤ 𝐶𝑛

Γ( 𝑛2 )
(𝑒2𝑎 |𝑥 | ∨ 𝑒2𝑎 |𝑥 ′ |) |𝑥 − 𝑥′|\1 , and

(c) E
[ (
𝑌𝑛 (𝑡, 𝑥) − 𝑌𝑛 (𝑡′, 𝑥)

)2] ≤ 𝐶𝑛

Γ( 𝑛2 )
𝑒2𝑎 |𝑥 | |𝑡 − 𝑡′|\2 .

Proof. Fix 𝑎 > 𝑎∗, \1 ∈ (0, 1), \2 ∈ (0, 1
2 ), and 𝑛 ∈ Z≥1. Throughout this proof we write

𝐶 = 𝐶 (𝑇, 𝑔∗, 𝑎, \1, \2).

(a) We begin by developing an iterative bound. It is readily verified from (2.2.4) that the chaos

can be expressed as

𝑌𝑛 (𝑡, 𝑥) =
∫ 𝑡

0

∫
R
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦)𝑌𝑛−1(𝑠, 𝑦)b (𝑠, 𝑦)d𝑠d𝑦. (2.3.3)

Applying Itô’s isometry gives E[𝑌𝑛 (𝑡, 𝑥)2] =
∫ 𝑡

0

∫
R
𝑝(𝑡−𝑠, 𝑥−𝑦)2E[𝑌𝑛−1(𝑠, 𝑦)2]d𝑠d𝑦. To streamline

notation, set 𝐹𝑛 (𝑠) := sup𝑥∈R 𝑒−2𝑎 |𝑥 |E[𝑌𝑛 (𝑠, 𝑥)2]. The last integral is bounded by
∫ 𝑡

0 𝐹𝑛−1(𝑠)
∫
𝑝(𝑡−

𝑠, 𝑥 − 𝑦)2𝑒2𝑎 |𝑦 |d𝑦. Further using Lemma 2.2.2 (c) to bound the last integral gives E[𝑌𝑛 (𝑡, 𝑥)2] ≤

𝐶
∫ 𝑡

0 (𝑡 − 𝑠)
− 1

2 𝑒2𝑎 |𝑥 |𝐹𝑛−1(𝑠)d𝑠. Multiplying both sides by exp(−2𝑎 |𝑥 |) and taking the supremum

over 𝑥 give

𝐹𝑛 (𝑡) ≤ 𝐶
∫ 𝑡

0
(𝑡 − 𝑠)− 1

2𝐹𝑛−1(𝑠)d𝑠. (2.3.4)
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To utilize the iterative bound (2.3.4), we need to establish a bound on 𝐹0(𝑡). By definition

𝐹0(𝑡) := sup
𝑥∈R

{
𝑒−2𝑎 |𝑥 |

( ∫
𝑝(𝑡, 𝑥 − 𝑦)𝑔∗(𝑦)d𝑦

)2}
.

Note that 𝑔∗ ∈ 𝐶𝑎+∗ (R) implies |𝑔∗(𝑦) | ≤ 𝐶𝑒𝑎 |𝑦 | . Insert this bound into the definition of 𝐹0(𝑡),

and use Lemma 2.2.2 (b) to bound the resulting integral (over 𝑦). The result gives |𝐹0(𝑡) | ≤ 𝐶.

Iterating (2.3.4) from 𝑛 = 1 and using |𝐹0(𝑡) | ≤ 𝐶 give 𝐹𝑛 (𝑡) ≤ 𝐶𝑛 (Γ(𝑛/2))−1𝑡𝑛, which concludes

the desired result.

(b) Set 𝑥 = 𝑥 and 𝑥 = 𝑥′ in (2.3.3), take the difference of the result, and Apply Itô’s isometry.

We have

E
[ (
𝑌𝑛 (𝑡, 𝑥) −𝑌𝑛 (𝑡, 𝑥′)

)2]
=

∫ 𝑡

0

∫
R

(
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦) − 𝑝(𝑡 − 𝑠, 𝑥′− 𝑦)

)2
E
[
𝑌𝑛−1(𝑠, 𝑦)2

]
d𝑠d𝑦. (2.3.5)

Use Part (a) to bound E[𝑌𝑛−1(𝑡, 𝑥)2], and apply Lemma 2.2.2 (d) to bound the resulting integral.

Doing so produces the desired result.

(c) Assume without loss of generality 𝑡 > 𝑡′. Set 𝑡 = 𝑡 and 𝑡 = 𝑡′ in (2.3.3), take the difference,

and apply Itô’s isometry to the result. We have

E
[ (
𝑌𝑛 (𝑡, 𝑥) − 𝑌𝑛 (𝑡′, 𝑥)

)2]
=

∫ 𝑡 ′

0

∫
R

(
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦) − 𝑝(𝑡′ − 𝑠, 𝑥 − 𝑦)

)2
E
[
𝑌𝑛−1(𝑠, 𝑦)2

]
d𝑠d𝑦

+
∫ 𝑡

𝑡 ′

∫
R
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦)E

[
𝑌𝑛−1(𝑠, 𝑦)2

]
d𝑠d𝑦.

(2.3.6)

On the right hand side, use Part (a) to bound E[𝑌𝑛−1(𝑠, 𝑦)2], apply Lemma 2.2.2 (e) and Lemma 2.2.2 (c)

to bound the resulting integrals, respectively. Doing so produces the desired result. �

Based on Lemmas 2.3.1 and Proposition 2.3.2, we now derive some pointwise Hölder bounds

on 𝑌𝑛.

Corollary 2.3.3. Fix 𝑎 ∈ (𝑎∗,∞), 𝛼 ∈ (0, 1
4 ), and 𝛽 ∈ (0, 1

2 ). There exists 𝐶 = 𝐶 (𝑇, 𝑎, 𝛼, 𝛽) such
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that for all 𝑛 ∈ Z≥1, 𝑟 ≥ 0, 𝑡, 𝑡′ ∈ [0, 𝑇], and 𝑥, 𝑥′ ∈ R,

(a) P
[
|𝑌𝑛 (𝑡, 𝑥) − 𝑌𝑛 (𝑡, 𝑥′) | ≥ |𝑥 − 𝑥′|𝛽 (𝑒𝑎 |𝑥 | ∨ 𝑒𝑎 |𝑥

′ |)𝑟
]
≤ exp

(
− 1
𝐶
𝑛

3
2 𝑟

2
𝑛 + 𝑛

)
, and

(b) P
[
|𝑌𝑛 (𝑡′, 𝑥) − 𝑌𝑛 (𝑡, 𝑥) | ≥ 𝑒𝑎 |𝑥 | |𝑡 − 𝑡′|𝛼𝑟

]
≤ exp

(
− 1
𝐶
𝑛

3
2 𝑟

2
𝑛 + 𝑛

)
.

Proof. Set 𝑈 := (𝑒−𝑎 |𝑥 | ∧ 𝑒−𝑎 |𝑥 ′ |)𝑌𝑛 (𝑡,𝑥)−𝑌𝑛 (𝑡,𝑥
′)

|𝑥−𝑥 ′ |𝛽 , 𝑉 := (𝑒−𝑎 |𝑥 | ∧ 𝑒−𝑎 |𝑥 ′ |)𝑌𝑛 (𝑡,𝑥)−𝑌𝑛 (𝑡
′,𝑥)

|𝑡−𝑡 ′ |𝛼 , 𝜎2 := E[𝑈2],

and [2 := E[𝑉2]. Proposition 2.3.2 (b) and (c) give 𝜎2 ≤ 𝐶𝑛/Γ( 𝑛2 ) and [2 ≤ 𝐶𝑛/Γ( 𝑛2 ). Taking 1
𝑛

power on both sides and using Γ( 𝑛2 )
−1/𝑛 ≤ 𝐶𝑛−1/2, we have 𝜎

2
𝑛 ≤ 𝐶𝑛−1/2 and [

2
𝑛 ≤ 𝐶𝑛−1/2. Next,

since 𝑌𝑛 (𝑡, 𝑥), 𝑌𝑛 (𝑡, 𝑥′), 𝑌𝑛 (𝑡′, 𝑥), and 𝑌𝑛 (𝑡′, 𝑥′) belong to the 𝑛-th R-valued Wiener chaos,𝑈 and 𝑉

also belong to the 𝑛-th Wiener chaos. The desired results now follow from Lemma 2.3.1. �

Our next step is to leverage the pointwise bounds in Corollary 2.3.3 to a functional bound. To

this end it is convenient to first work with Hölder seminorms. For 𝑓 ∈ 𝐶 ( [0, 𝑇] × R) and 𝑘 ∈ Z,

set

[ 𝑓 ]𝑎,𝛼,𝛽,𝑘 := 𝑒−𝑎 |𝑘 | sup
{
| 𝑓 (𝑡1, 𝑥1) − 𝑓 (𝑡2, 𝑥2) |
|𝑡1 − 𝑡2 |𝛼 + |𝑥1 − 𝑥2 |𝛽

: (𝑡1, 𝑥1) ≠ (𝑡2, 𝑥2) ∈ [0, 𝑇] × [𝑘, 𝑘 + 1]
}
.

(2.3.7)

This quantity measures the Hölder continuity of 𝑓 on [0, 𝑇] × [𝑘, 𝑘 + 1].

Proposition 2.3.4. Fix 𝑎 ∈ (𝑎∗,∞), 𝛼 ∈ (0, 1
4 ), and 𝛽 ∈ (0, 1

2 ). There exists 𝐶 = 𝐶 (𝑇, 𝑎, 𝛼, 𝛽)

such that, for all 𝑟 ≥ (𝐶𝑛− 1
2 ) 𝑛2 , 𝑛 ∈ Z≥1, and 𝑘 ∈ Z,

P
[
[𝑌𝑛]𝑎,𝛼,𝛽,𝑘 ≥ 𝑟

]
≤ 𝐶 exp

(
− 1
𝐶
𝑛

3
2 𝑟

2
𝑛

)
.

Proof. Throughout this proof we write 𝐶 = 𝐶 (𝑇, 𝑎∗, 𝑎, 𝛼, 𝛽).

The proof follows similar argument in the proof of Kolmogorov’s continuity theorem. The

starting point is an inductive partition of [0, 𝑇] × [𝑘, 𝑘 + 1] into nested rectangles. Let 𝜏0 := 𝑇

and Z0 := 1 denote the side lengths of 𝑅(0)11 := [0, 𝑇] × [𝑘, 𝑘 + 1]. We proceed by induction in
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ℓ = 0, 1, 2, . . .. Assume, for ℓ ≥ 0, we have obtained the rectangles 𝑅(ℓ)
𝑖 𝑗

, for 𝑖 = 1, . . . ,
∏ℓ−1
ℓ′=1𝑚ℓ′

and 𝑗 = 1, . . . ,
∏ℓ−1
ℓ′=1 𝑛ℓ′. We partition each 𝑅(ℓ)

𝑖 𝑗
into 𝑚ℓ × 𝑛ℓ rectangles of equal size. The side

lengths of the resulting rectangles are therefore 𝜏ℓ+1 = 𝜏ℓ/𝑚ℓ and Zℓ+1 = Zℓ/𝑛ℓ. The numbers 𝑚ℓ

and 𝑛ℓ are chosen in such a way that

1
2 ≤ 𝜏

𝛼
ℓ /Z

𝛽

ℓ
≤ 2, for ℓ = 1, 2, . . . , (2.3.8)

2 ≤ 𝑚ℓ, 𝑛ℓ ≤ 𝐶, for ℓ = 0, 1, 2, . . . . (2.3.9)

LetVℓ := {(𝑖𝜏ℓ, 𝑘 + 𝑗 Zℓ) : 𝑖 = 1, . . . ,
∏ℓ−1
ℓ′=1𝑚ℓ′, 𝑗 = 1, . . . ,

∏ℓ−1
ℓ′=1 𝑛ℓ′} denote the set of the vertices

at the ℓ-th level, and let Eℓ denote the corresponding set of edges.

For (𝑡1, 𝑥1) ≠ (𝑡2, 𝑥2) ∈ [0, 𝑇] × [𝑘, 𝑘 + 1], let

ℓ∗ = ℓ∗(𝑡1, 𝑥1, 𝑡2, 𝑥2) := min{ℓ ∈ Z≥0 : |𝑡1 − 𝑡2 | ≥ 𝜏ℓ or |𝑥1 − 𝑥2 | ≥ Zℓ}. (2.3.10)

It is standard to show that, for any 𝑓 ∈ 𝐶 ( [0, 𝑇] × R),

| 𝑓 (𝑡1, 𝑥1) − 𝑓 (𝑡2, 𝑥2) | ≤ 𝐶
∑︁
ℓ≥ℓ∗

max
e∈Eℓ
| 𝑓 (𝜕e) |. (2.3.11)

Here | 𝑓 (𝜕e) | := | 𝑓 (𝑠1, 𝑦1) − 𝑓 (𝑠2, 𝑦2) |, where (𝑠1, 𝑦1) and (𝑠2, 𝑦2) are the two ends of the edge

e ∈ Eℓ.

Below we will apply (2.3.11) for 𝑓 = 𝑒−𝑎 |𝑘 |𝑌𝑛. To prepare for this application let us first derive

a bound on

∑︁
ℓ0≥0
P
[ ∑︁
ℓ≥ℓ0

max
e∈Eℓ

𝑒−𝑎 |𝑘 | |𝑌𝑛 (𝜕e) | ≥ (𝜏𝛼ℓ0 + Z
𝛽

ℓ0
)𝑟

]
. (2.3.12)

Set 𝛿 := ( 12 (
1
4 − 𝛼)) ∧ (

1
2 (

1
2 − 𝛽)). Fix any edge e ∈ Eℓ. If e is in the 𝑡 direction, apply Corol-

lary 2.3.3(b) with {(𝑡, 𝑥), (𝑡′, 𝑥)} = 𝜕e, 𝛼 ↦→ 𝛼 + 𝛿, and 𝑟 ↦→ 𝜏−𝛿
ℓ
𝑟. If e is in the 𝑥 direction, apply
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Corollary 2.3.3(a) with {(𝑡, 𝑥), (𝑡, 𝑥′)} = 𝜕e, 𝛽 ↦→ 𝛽 + 𝛿, and 𝑟 ↦→ Z−𝛿
ℓ
𝑟. The result gives

P
[
𝑒−𝑎 |𝑘 |−|𝑎 | |𝑌𝑛 (𝜕e) | ≥ 𝜏𝛼ℓ 𝑟

]
≤ exp

(
− 1
𝐶
𝑛

3
2 𝜏−𝛿ℓ 𝑟

2
𝑛 + 𝑛

)
, if e is in the 𝑡 direction, (2.3.13)

P
[
𝑒−𝑎 |𝑘 |−|𝑎 | |𝑌𝑛 (𝜕e) | ≥ Z 𝛽

ℓ
𝑟
]
≤ exp

(
− 1
𝐶
𝑛

3
2 Z−𝛿ℓ 𝑟

2
𝑛 + 𝑛

)
, if e is in the 𝑥 direction. (2.3.14)

On the right hand sides of (2.3.13)–(2.3.14), use 𝑚ℓ, 𝑛ℓ ≥ 2 to bound 𝜏−𝛿
ℓ
≥ 𝑒 ℓ

𝐶 and Z−𝛿
ℓ
≥ 𝑒− ℓ

𝐶 .

Take the union bound of the result over e ∈ Eℓ. The condition 𝑚ℓ, 𝑛ℓ ≤ 𝐶 gives |Eℓ | ≤ 𝐶ℓ. Hence

P
[

max
e∈Eℓ

𝑒−𝑎 |𝑘 | |𝑌𝑛 (𝜕e) | ≥ 𝑒 |𝑎 | (𝜏𝛼ℓ + Z
𝛽

ℓ
)𝑟

]
≤ 𝐶ℓ exp

(
− 1
𝐶
𝑒

ℓ
𝐶𝑛 𝑛

3
2 𝑟

2
𝑛 + 𝑛

)
. (2.3.15)

Next, the condition 𝑚ℓ, 𝑛ℓ ≥ 2 implies 𝜏ℓ ≤ 𝜏ℓ02−ℓ+ℓ0 and Zℓ ≤ Zℓ02−ℓ+ℓ0 , and therefore
∑
ℓ≥ℓ0 (𝜏𝛼ℓ +

Z
𝛽

ℓ
)𝑟 ≤ 𝐶 (𝜏𝛼

ℓ0
+ Z 𝛽

ℓ0
)𝑟. Use this inequality to take the union bound of (2.3.15) over ℓ ≥ ℓ0 and absorb

𝑒 |𝑎 | into 𝐶. We have

P
[ ∑︁
ℓ≥ℓ0

max
e∈Eℓ

𝑒−𝑎 |𝑘 | |𝑌𝑛 (𝜕e) | ≥ (𝜏𝛼ℓ0 + Z
𝛽

ℓ0
)𝐶𝑟

]
≤

∑︁
ℓ≥ℓ0

𝐶ℓ exp
(
− 1
𝐶
𝑒

ℓ
𝐶𝑛 𝑛

3
2 𝑟

2
𝑛 + 𝑛

)
.

Use 𝑒
ℓ
𝐶𝑛 ≥ 1 + ℓ

𝐶𝑛
on the right hand side, sum both sides over ℓ0 ∈ Z≥0, and rename 𝐶𝑟 ↦→ 𝑟.

Doing so gives

(2.3.12) ≤ exp(− 1
𝐶
𝑛

3
2 𝑟

2
𝑛 )∑ℓ0≥0

∑
ℓ≥ℓ0 exp(− ℓ

𝐶
𝑛

1
2 𝑟

2
𝑛 + 𝑛 + ℓ𝐶). For all 𝑟 ≥ (𝐶0𝑛

− 1
2 ) 𝑛2 and 𝐶0 suffi-

ciently large, the last double sum is convergent and bounded. Hence

(2.3.12) ≤ 𝐶 exp
(
− 1
𝐶
𝑛

3
2 𝑟

2
𝑛

)
, for all 𝑟 ≥ (𝐶𝑛− 1

2 ) 𝑛2 . (2.3.16)

Now, set 𝑓 = 𝑒−𝑎 |𝑘 |𝑌𝑛 in (2.3.11) and use (2.3.16). We have that, for any 𝑟 ≥ (𝐶𝑛− 1
2 ) 𝑛2 ,

𝑒−𝑎 |𝑘 | |𝑌𝑛 (𝑡1, 𝑥1) − 𝑌𝑛 (𝑡2, 𝑥2) | ≤ 𝐶 (𝜏𝛼ℓ∗ + Z
𝛽

ℓ∗
)𝑟, ∀(𝑡1, 𝑥1), (𝑡2, 𝑥2) ∈ [0, 𝑇] × [𝑘, 𝑘 + 1] (2.3.17)

holds with probability ≥ 1 − 𝐶 exp(− 1
𝐶
𝑛

3
2 𝑟

2
𝑛 ). Referring to the definition of ℓ∗ in (2.3.10), we see
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that either |𝑡1−𝑡2 | ≥ 𝜏ℓ∗ or |𝑥1−𝑥2 | ≥ Zℓ∗ holds. Combining this fact with the condition (2.3.8) gives
𝜏𝛼
ℓ∗+Z

𝛽

ℓ∗
|𝑡1−𝑡2 |𝛼+|𝑥1−𝑥2 |𝛽 ≤ 3. Divide both sides of (2.3.17) by |𝑡1 − 𝑡2 |𝛼 + |𝑥1 − 𝑥2 |𝛽, use the last inequality

on the right hand side, take supremum of over (𝑡1, 𝑥1) ≠ (𝑡2, 𝑥2) ∈ [0, 𝑇] × [𝑘, 𝑘 + 1] in the result,

and rename 3𝐶𝑟 ↦→ 𝑟 . Doing so concludes the desired result. �

We now state and prove a bound on P[ ‖𝑌𝑛‖𝑎 ≥ 𝑟].

Proposition 2.3.5. Fix 𝑎 > 𝑎∗. There exists 𝐶 = 𝐶 (𝑇, 𝑎) such that, for all 𝑟 ≥ (𝐶𝑛− 1
2 ) 𝑛2 and

𝑛 ∈ Z≥0,

P
[
‖𝑌𝑛‖𝑎 ≥ 𝑟

]
≤ 𝐶 exp

(
− 1
𝐶
𝑛

3
2 𝑟

2
𝑛

)
.

Proof. Throughout this proof we write 𝐶 = 𝐶 (𝑇, 𝑎).

For 𝑛 = 0, note that 𝑌0(𝑡, 𝑥) =
∫
R
𝑝(𝑡, 𝑥 − 𝑦)𝑔∗(𝑦) d𝑦 is deterministic. It is straightforward to

check from Lemma 2.2.2(b) and 𝑔∗ ∈ 𝐶𝑎+∗ (R) that ‖𝑌0‖𝑎 < ∞. Let 𝑏 := (𝑎 + 𝑎∗)/2. For 𝑛 ≥ 1,

note from (2.2.4) that 𝑌𝑛 (0, 0) = 0. Given this property, from the definitions (2.1.21) and (2.3.7) of

‖·‖𝑎 and [·]𝑎,𝛼,𝛽,𝑘 it is straightforward to check

‖𝑌𝑛‖𝑎 ≤ 𝐶
∑︁
𝑘∈Z
[𝑌𝑛]𝑎, 18 , 14 ,𝑘 ≤ 𝐶

∑︁
𝑘∈Z
[𝑌𝑛]𝑏, 18 , 14 ,𝑘 𝑒

− 1
2 (𝑎−𝑎∗) |𝑘 | .

Apply Proposition 2.3.4 with 𝑟 ↦→ 𝑒
1
2 (𝑎−𝑎∗) |𝑘 |𝑟 and (𝑎, 𝛼, 𝛽) ↦→ (𝑏, 1

8 ,
1
4 ), and take the union bound

of the result over 𝑘 ∈ Z. We have P[ ‖𝑌𝑛‖𝑎 ≥ 𝐶𝑟] ≤
∑
𝑘∈Z𝐶 exp(− 1

𝐶
𝑛

3
2 𝑒
|𝑘 |
𝐶𝑛 𝑟

2
𝑛 ). Within the last

expression, use 𝑒
|𝑘 |
𝐶𝑛 ≥ 1 + |𝑘 |

𝐶𝑛
, sum the result over 𝑘 ∈ Z, and rename 𝐶𝑟 ↦→ 𝑟 in the result. Doing

so concludes the desired result. �

Proposition 2.3.5 immediately implies

Corollary 2.3.6. Fix 𝑎 > 𝑎∗. We have E[ ‖𝑌𝑛‖𝑘𝑎] < ∞ for all 𝑘, 𝑛 ∈ Z≥0, and P[∑∞𝑛=0 ‖𝑌𝑛‖𝑎 <

∞] = 1.
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Proof of Proposition 2.1.7 (a)

Recall 𝐼 from (2.1.24). We begin by show that this function is a good rate function.

Lemma 2.3.7. For any 𝑎 > 𝑎∗, the function 𝐼 : 𝐶𝑎 ( [0, 𝑇]×R) → R∪{+∞} is a good rate function.

Proof. Throughout this proof we writeH = 𝐿2( [0, 𝑇] ×R) and ‖·‖H = ‖·‖𝐿2 . Recall thatH ⊂ B

is the Cameron–Martin subspace of B.

We begin with a reduction. It is well-known that under `, the random vector
√
Yb satisfies an

LDP on B with speed Y−1 and the good rate function 𝐼∗ : B → R∪{+∞} given by 𝐼∗(𝜌) := 1
2 ‖𝜌‖

2
H

for 𝜌 ∈ H and 𝐼∗(𝜌) := +∞ for 𝜌 ∉ H , c.f. [Led96, Chapter 4]. Recall that Z maps H to

𝐶𝑎 ( [0, 𝑇] × R). We extend the domain of this map to B by setting the function be 0 outside H ,

i.e.,

Z̃ : B → 𝐶𝑎 ( [0, 𝑇] × R), Z̃(Z) :=


Z(Z), when Z ∈ H ,

0 , otherwise.

Referring to (2.1.24), we see that 𝐼 is a pullback of 𝐼∗ via Z̃. Let Ω(𝑟) := {Z ∈ B : 𝐼∗(Z) ≤ 𝑟}

denote a sub-level set of 𝐼∗. By [DS01, Lemma 2.1.4], to prove 𝐼 is a good rate function, it suffices

to construct a sequence of continuous functions 𝜑𝑁 : B → 𝐶𝑎 ( [0, 𝑇] × R) such that for all 𝑟 < ∞,

lim
𝑁→∞

sup
Z∈Ω(𝑟)

‖Z̃(Z) − 𝜑𝑁 (Z)‖𝑎 = 0. (2.3.18’)

Since 𝐼∗(Z) < ∞ only when Z ∈ H , we have Ω(𝑟) = {𝜌 ∈ H : ‖𝜌‖2H ≤ 2𝑟}, and (2.3.18’) reduces

to

lim
𝑁→∞

sup
Z∈Ω(𝑟)

‖Z(𝜌) − 𝜑𝑁 (𝜌)‖𝑎 = 0. (2.3.18)

We will construct the 𝜑𝑁 via truncation. First, combining (2.2.9) and Lemma 2.2.4 gives, for
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𝜌 ∈ H ,

Z(𝜌) =
∞∑︁
𝑛=0

Y𝑛 (𝜌) =
𝑁∑︁
𝑛=0
(𝑌𝑛)hom(𝜌) +

∑︁
𝑛>𝑁

Y𝑛 (𝜌). (2.3.19)

The 𝑛 > 𝑁 terms in (2.3.19) can be bounded by Lemma 2.2.3.

Focusing on the 𝑛 ≤ 𝑁 terms in (2.3.19), we seek to approximate each (𝑌𝑛)hom(𝜌) by a con-

tinuous function. To this end we follow the argument in [HW15b, Section 3]. Recall the notation

𝑊 ( 𝑓 ) from (2.2.2) and recall the orthonormal basis {𝑒1, 𝑒2, . . .} ⊂ H from Section 2.2.1. Re-

garding 𝑊 (𝑒𝑖) : B → R as a random variable, we let F𝑘 be the sigma algebra generated by

𝑊 (𝑒1), . . . ,𝑊 (𝑒𝑘 ), and set Ψ𝑛,𝑘 := E[𝑌𝑛 |F𝑘 ]. Given that 𝑌𝑛 belongs to the 𝑛-th 𝐸-valued Wiener

chaos (recall that 𝐸 = 𝐶𝑎 ( [0, 𝑇] × R)), it is standard to check:

(i) lim𝑘→∞ E[‖𝑌𝑛 −Ψ𝑛,𝑘 ‖2𝑎] = 0,

(ii) Ψ𝑛,𝑘 can be expressed as a finite sum of the form Ψ𝑛,𝑘 =
∑
𝑦𝛼

∏𝑘
𝑖=1𝑊 (𝑒𝑖)𝛼𝑖 , where 𝑦𝛼 ∈

𝐶𝑎 ( [0, 𝑇] × R) and 𝛼 = (𝛼1, 𝛼2, . . .) ∈ Z≥0 × Z≥0 × . . ..

Now consider the function (Ψ𝑛,𝑘 )hom : B → 𝐶𝑎 ( [0, 𝑇]×R) defined by (Ψ𝑛,𝑘 )hom(Z) :=
∫
B Ψ𝑛,𝑘 (b+

Z)`(db). A priori, such an integral is guaranteed to be well-defined only for Z ∈ H . Yet for the

special case considered here, the integral is well-defined for all Z ∈ B and the result gives a

continuous function B → 𝐶𝑎 ( [0, 𝑇] × R). To see why, recall the definition of B from (2.2.1), and

for Z ∈ B write Z =
∑
𝑖≥1 Z𝑖𝑒𝑖. From (ii) we have

∫
B Ψ𝑛,𝑘 (b + Z)`(db) =

∑
𝑦𝛼

∏𝑘
𝑖=1 E[(Z𝑖 + Ξ𝑖)𝛼𝑖 ],

where Ξ1,Ξ2, . . . are independent standard R-valued Gaussian random variables, and the sum is

finite. From the last expression we see that the integral is well-defined and gives a continuous

function B → 𝐶𝑎 ( [0, 𝑇] × R). Next, for 𝜌 ∈ H , by the Cameron–Martin theorem, we have

‖(𝑌𝑛)hom(𝜌) − (Ψ𝑛,𝑘 )hom(𝜌)‖𝑎 = ‖
∫
B exp

(
𝑊 (𝜌) − 1

2 ‖𝜌‖
2
H

) (
𝑌𝑛 (b) − Ψ𝑛,𝑘 (b)

)
`(db)‖𝑎 . Applying

the Cauchy–Schwarz inequality to the last expression gives

‖(𝑌𝑛)hom(𝜌) − (Ψ𝑛,𝑘 )hom(𝜌)‖2𝑎 ≤ exp
( 1

2 ‖𝜌‖
2
H

)
E
[
‖𝑌𝑛 −Ψ𝑛,𝑘 ‖2𝑎

]
. (2.3.20)
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The right hand side converges to zero as 𝑘 → ∞ by (i). We have obtained an approximate of

(𝑌𝑛)hom by the continuous function (Ψ𝑛,𝑘 )hom.

We now construct 𝜑𝑁 . For fixed 𝑁 , invoke (i) to obtain 𝑘𝑛 ∈ Z≥1 such that E[‖𝑌𝑛 −Ψ𝑛,𝑘𝑛 ‖2𝑎] ≤

(𝑁 + 1)−2. Set 𝜑𝑁 :=
∑𝑁
𝑛=0 Ψ𝑛,𝑘𝑛 . This is a continuous function B → 𝐶𝑎 ( [0, 𝑇] × R) since

each Ψ𝑛,𝑘 is. Subtract 𝜑𝑁 from both sides of (2.3.19), take ‖·‖𝑎 on both sides, and use (2.3.20),

E[‖𝑌𝑛 −Ψ𝑛,𝑘𝑛 ‖2𝑎] ≤ (𝑁 + 1)−2, and Lemma 2.2.3 to bound the result. We have, for all 𝜌 ∈ H ,

‖ Z(𝜌) − 𝜑𝑁 (𝜌)‖𝑎 ≤ exp
( 1

4 ‖𝜌‖
2
H

)
(𝑁 + 1)−1 +

∑︁
𝑛≥𝑁

1
Γ(𝑛/2) 1

2

(
𝐶 (𝑎, 𝑇) ‖𝜌‖H

)𝑛
.

Now consider 𝜌 ∈ Ω(2𝑟), whence ‖𝜌‖2H ≤ 2𝑟. We see that the desired property (2.3.18) follows.

�

Recall that 𝑍𝑁,Y :=
∑𝑁
𝑛=0 Y

𝑛/2𝑌𝑛. Next we show that 𝑍𝑁,Y is an exponentially good approxima-

tion of 𝑍Y.

Proposition 2.3.8. For any 𝑟 > 0 and 𝑎 > 𝑎∗, we have lim
𝑁→∞

lim sup
Y→0

Y logP
[
‖𝑍𝑁,Y − 𝑍Y‖𝑎 ≥ 𝑟

]
=

−∞.

Proof. By definition, 𝑍Y − 𝑍𝑁,Y =
∑
𝑛>𝑁 Y

𝑛
2𝑌𝑛. Fix arbitrary 𝑁 ∈ Z≥1 and 𝑟 > 0. We seek to

apply Proposition 2.3.5 with 𝑟 ↦→ 2𝑁−𝑛Y−𝑛/2𝑟 and 𝑛 > 𝑁 . For fixed 𝑁, 𝑟, the required condition

2𝑁−𝑛Y−𝑛/2𝑟 ≥ (𝐶𝑛−1/2)𝑛/2 is satisfied for all 𝑛 > 𝑁 as long as Y is small enough. Summing the

result over 𝑁 > 𝑛 and applying the union bound gives

P
[
‖𝑍Y − 𝑍𝑁,Y‖𝑎 ≥ 𝑟

]
≤

∑︁
𝑛>𝑁

P
[
‖𝑌𝑛‖𝑎 ≥ 2𝑁−𝑛Y−

𝑛
2 𝑟

]
≤ 𝐶

∑︁
𝑛>𝑁

exp
(
− 1
𝐶
Y−1𝑛

3
2 𝑒

𝑁−𝑛
𝐶𝑛

)
,

where 𝐶 = 𝐶 (𝑇, 𝑎, 𝑟). On the right hand side, use 𝑒
𝑁−𝑛
𝐶𝑛 ≥ 1− 𝑁−𝑛

𝐶𝑛
(which holds since 𝑛 > 𝑁), sum

the result. On both sides of the result, apply Y log( · ), and take the limits Y → 0 and 𝑁 → ∞ in

order. Doing so concludes the desired result. �

We seek to apply [DZ94, Theorem 4.2.16 (b)]. Doing so requires establishing a few properties
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of the rate functions. Let 𝐵𝑟 ( 𝑓 ) := { 𝑓 ′ ∈ 𝐶𝑎 ( [0, 𝑇] × R) : ‖ 𝑓 ′ − 𝑓 ‖𝑎 < 𝑟} denote the open ball of

radius 𝑟 around 𝑓 . Recall 𝐼 from (2.1.24) and recall 𝐼𝑁 from (2.3.1).

Lemma 2.3.9.

(a) For any closed 𝐹 ⊂ 𝐶𝑎 ( [0, 𝑇] × R), we have inf
𝑓 ∈𝐹

𝐼 ( 𝑓 ) ≤ lim inf
𝑁→∞

inf
𝑓 ∈𝐹

𝐼𝑁 ( 𝑓 ).

(b) For any 𝑓0 ∈ 𝐶𝑎 ( [0, 𝑇] × R), we have 𝐼 ( 𝑓0) = lim
𝑟→0

lim inf
𝑁→∞

inf
𝑓 ∈𝐵𝑟 ( 𝑓0)

𝐼𝑁 ( 𝑓 ).

Proof. (a) Let 𝐴 denote the right hand side and assume without loss of generality 𝐴 < ∞. Referring

to the definition of 𝐼𝑁 in (2.3.1), we let {(𝑁𝑘 , 𝜌𝑘 )}∞𝑘=1 ⊂ Z≥1 × 𝐿2( [0, 𝑇] × R) be such that 𝑁1 <

𝑁2 < . . . → ∞, ‖𝜌𝑘 ‖𝐿2 ≤ 𝐴 + 1
𝑘
, and

∑𝑁𝑘

𝑛=0 Y𝑛 (𝜌𝑘 ) =: 𝑓𝑘 ∈ 𝐹. Our next step is to relate (𝜌𝑘 , 𝑓𝑘 )

to 𝐼. Recall that Z(𝜌) = ∑∞
𝑛=0 Y𝑛 (𝜌). Letting 𝑓 ′

𝑘
:= 𝑓𝑘 +

∑
𝑛>𝑁𝑘

Y𝑛 (𝜌𝑘 ) ∈ 𝐶𝑎 ( [0, 𝑇] × R), we have

Z(𝜌𝑘 ) = �̃�𝑘 . Referring to the definition of 𝐼 in (2.1.24), we see that 𝐼 ( 𝑓 ′
𝑘
) ≤ 1

2 ‖𝜌𝑘 ‖𝐿2 ≤ 𝐴 + 1
𝑘
.

Also, ‖ 𝑓 ′
𝑘
− 𝑓𝑘 ‖𝑎 ≤

∑
𝑛>𝑁𝑘
‖Y𝑛 (𝜌𝑘 )‖𝑎. Using Lemma 2.2.3 and ‖𝜌𝑘 ‖𝐿2 ≤ 𝐴 + 1 to bound the last

expression gives

lim
𝑘→∞
‖ 𝑓 ′𝑘 − 𝑓𝑘 ‖𝑎 = 0. (2.3.21)

By Lemma 2.3.7, the sequence { 𝑓 ′
𝑘
}∞
𝑘=1 is contained in a compact set. Hence, after passing to a

subsequence we have 𝑓 ′
𝑘
→ 𝑓∗ in 𝐶𝑎 ( [0, 𝑇] ×R). The condition (2.3.21) remains true after passing

to the subsequence. Since 𝑓𝑘 ∈ 𝐹 and 𝐹 is closed, we have 𝑓∗ ∈ 𝐹. By Lemma 2.3.7, 𝐼 is lower

semi-continuous, whereby 𝐼 ( 𝑓∗) ≤ lim inf𝑘 𝐼 ( 𝑓 ′𝑘 ). Lower bound the left hand side by inf 𝑓 ∈𝐹 𝐼 ( 𝑓 )

and upper bound the right hand side by lim inf𝑘 (𝐴 + 1
𝑘
) = 𝐴. We conclude the desired result.

(b) Apply Part (a) with 𝐹 = 𝐵𝑟 ( 𝑓0) and use the lower semicontinuity of 𝐼 on the left hand

side of the result. Doing so gives the inequality ≤ for the desired result. It hence suffices to show

the reverse inequality ≥. To this end, we assume without loss of generality 𝐼 ( 𝑓0) < ∞, and let

{ �̃�𝑘 }∞𝑘=1 ⊂ 𝐿
2( [0, 𝑇] × R) be such that ‖ �̃�𝑘 ‖𝐿2 ≤ 𝐼 ( 𝑓0) + 1

𝑘
and that Z(𝜌𝑘 ) =

∑∞
𝑛=0 Y𝑛 ( �̃�𝑘 ) = 𝑓0.

Let �̃�𝑘 :=
∑𝑛
𝑛=0 Z(𝜌𝑘 ). Referring to the definition of 𝐼𝑁 in (2.3.1), we see that 𝐼𝑁 ( �̃�𝑘 ) ≤ 1

2 ‖𝜌𝑘 ‖𝐿2 ≤

𝐼 ( 𝑓0) + 1
𝑘
. Also, using Lemma 2.2.3 and ‖𝜌𝑘 ‖𝐿2 ≤ 𝐼 ( 𝑓0) + 1 gives lim𝑘→∞ ‖ 𝑓0 − �̃�𝑘 ‖𝑎 = 0. This
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statement implies that, for any given 𝑟 > 0 and for all 𝑘 large enough (depending on 𝑟), we have

�̃�𝑘 ∈ 𝐵𝑟 ( 𝑓0). From this and 𝐼𝑁 ( �̃�𝑘 ) ≤ 𝐼 ( 𝑓0) + 1
𝑘

the desired result follows. �

We are now ready to complete the proof of Proposition 2.1.7 (a). The LDP for {𝑍𝑁,Y}Y is

established in Proposition 2.2.1 with the rate function 𝐼𝑁 . Given this, we apply [DZ94, Theo-

rem 4.2.16 (b)] to go from the large deviations of {𝑍𝑁,Y}Y to that of {𝑍Y}Y. This theorem asserts

that {𝑍Y}Y satisfies an LDP with the rate function 𝐼 contingent upon the following conditions.

1. 𝐼 is a good rate function,

2. {𝑍𝑁,Y}Y is an exponentially good approximation (defined in [DZ94, Definition 4.2.14]) of

{𝑍Y}Y,

3. 𝐼 ( 𝑓0) = sup
𝑟>0

lim inf
𝑁→∞

inf
𝑓 ∈𝐵𝑟 ( 𝑓0)

𝐼𝑁 ( 𝑓 ), and

4. inf
𝑓 ∈𝐹

𝐼 ( 𝑓 ) ≤ lim sup
𝑁→∞

inf
𝑓 ∈𝐹

𝐼𝑚 ( 𝑓 ), for every closed set 𝐹 ⊂ 𝐶𝑎 ( [0, 𝑇] × R).

These conditions are verified by Lemma 2.3.7, Proposition 2.3.8, Lemma 2.3.9 (b), and Lemma 2.3.9 (a),

respectively. Applying [DZ94, Theorem 4.2.16 (b)] completes the proof of Proposition 2.1.7 (a).

2.3.2 The narrow wedge initial data, Proof of Proposition 2.1.7 (b)

Throughout this subsection, we fix 0 < [ < 𝑇 < ∞, 𝑎 ∈ R, and let 𝑍Y denote the solution of

(2.1.13) with the initial data 𝑍Y (0, ·) = 𝛿0(·).
The proof of Proposition 2.1.7 (b) parallels that of Proposition 2.1.7 (a), starting with the analog

of Proposition 2.3.2-nw:

Proposition 2.3.2-nw. Fix \1 ∈ (0, 1
2 ), \2 ∈ (0, 1), and 𝑛 ∈ Z≥1. There exists𝐶 = 𝐶 (𝑇, [, 𝑎, \1, \2)

such that for all 𝑡, 𝑡′ ∈ [[, 𝑇] and 𝑥, 𝑥′ ∈ R,

(a) E
[ (
𝑌𝑛 (𝑡, 𝑥) − 𝑌𝑛 (𝑡, 𝑥′)

)2] ≤ 𝐶𝑛

Γ( 𝑛2 )
(𝑒2𝑎 |𝑥 | ∨ 𝑒2𝑎 |𝑥 ′ |) |𝑥 − 𝑥′|\2 , and

(b) E
[ (
𝑌𝑛 (𝑡, 𝑥) − 𝑌𝑛 (𝑡′, 𝑥)

)2] ≤ 𝐶𝑛

Γ( 𝑛2 )
𝑒2𝑎 |𝑥 | |𝑡 − 𝑡′|\1 .
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Proof. Throughout this proof we write 𝐶 = 𝐶 (𝑇, [, 𝑎, \1, \2).

(a) By [Cor18, Lemma 2.4], we have

E[𝑌𝑛 (𝑡, 𝑥)2] = 𝑡
𝑛
2 2−𝑛Γ( 𝑛2 )

−1𝑝(𝑡, 𝑥)2. (2.3.22)

The identity (2.3.5) continues to hold here. Inserting (2.3.22) into the right hand side of (2.3.5)

gives

E
[
(𝑌𝑛 (𝑡, 𝑥) − 𝑌𝑛 (𝑡, 𝑥′))2

]
≤ 𝐶𝑛

Γ( 𝑛2 )

∫ 𝑡

0

∫
R

(
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦) − 𝑝(𝑡 − 𝑠, 𝑥′ − 𝑦)

)2
𝑝(𝑠, 𝑦)2d𝑦d𝑠.

On the right hand side, divide the integral into two parts for 𝑠 > [/2 and for 𝑠 < [/2. For the former

use Lemma 2.2.2 (a) to bound 𝑝(𝑠, 𝑦)2 ≤ 𝐶𝑒2𝑎 |𝑦 | (note that 𝑠 > [/2) and use Lemma 2.2.2 (d) to

bound the remaining integral; for the latter use Lemma 2.2.2 (i) to bound (𝑝(𝑡 − 𝑠, 𝑥 − 𝑦) − 𝑝(𝑡 −

𝑠, 𝑥′ − 𝑦))2 ≤ 𝐶 |𝑥 − 𝑥′|\2 (𝑒2𝑎 |𝑥−𝑦 | ∨ 𝑎2𝑎 |𝑥 ′−𝑦 |) (note that 𝑡 − 𝑠 ≥ [/2) and use Lemma 2.2.2 (c) to

bound the remaining integral. Doing so concludes the desired result.

(b) The identity (2.3.6) continues to hold here. Inserting (2.3.22) into the right hand side of

(2.3.6) gives

E
[
(𝑌𝑛 (𝑡, 𝑥) − 𝑌𝑛 (𝑡′, 𝑥))2

]
≤ 𝐶𝑛

Γ( 𝑛2 )

( ∫ 𝑡 ′

0

∫
R

(
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦) − 𝑝(𝑡′ − 𝑠, 𝑥 − 𝑦)

)2
𝑝(𝑠, 𝑦)2d𝑦d𝑠

(2.3.23)

+
∫ 𝑡

𝑡 ′

∫
R
𝑝(𝑡 − 𝑠, 𝑥 − 𝑦)2𝑝(𝑠, 𝑦)2d𝑦d𝑠

)
. (2.3.24)

On the right hand side of (2.3.23), divide the integral into two parts for 𝑠 > [/2 and for 𝑠 < [/2.

For the former use Lemma 2.2.2 (a) to bound 𝑝(𝑠, 𝑦)2 ≤ 𝐶𝑒2𝑎 |𝑦 | (note that 𝑠 > [/2) and use

Lemma 2.2.2 (e) to bound the remaining integral; for the latter use Lemma 2.2.2 (ii) to bound

(𝑝(𝑡 − 𝑠, 𝑥 − 𝑦) − 𝑝(𝑡′ − 𝑠, 𝑥 − 𝑦))2 ≤ 𝐶 |𝑡′ − 𝑡 |\1𝑒2𝑎 |𝑥−𝑦 | (note that 𝑡′ − 𝑠 ≥ [/2) and use

Lemma 2.2.2 (c) to bound the remaining integral. The integral in (2.3.24) can be evaluated to

be
∫ 𝑡

𝑡 ′
4−1𝜋−3/2𝑡−1/2𝑠−1/2(𝑡 − 𝑠)−1/2 exp(− 𝑥2

2𝑡 )d𝑠. Using 𝑠, 𝑡 ≥ [ to bound the last integral gives
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(2.3.24) ≤ 𝐶 |𝑡 − 𝑡′|1/2𝑒2𝑎 |𝑥 | ≤ 𝐶 |𝑡 − 𝑡′|\1𝑒2𝑎 |𝑥 |. From the preceding bounds we conclude the desired

result. �

Given Proposition 2.3.2-nw, a similar proof of Proposition 2.3.5-nw adapted to the current

setting yields

Proposition 2.3.5-nw. There exists 𝐶 = 𝐶 (𝑇, [, 𝑎) such that, for all 𝑟 ≥ (𝐶𝑛− 1
2 ) 𝑛2 and 𝑛 ∈ Z≥0,

P
[
‖𝑌𝑛‖𝑎,[ ≥ 𝑟

]
≤ 𝐶 exp

(
− 1
𝐶
𝑛

3
2 𝑟

2
𝑛

)
.

Corollary 2.3.6-nw. We have E[ ‖𝑌𝑛‖𝑘𝑎,[] < ∞ for all 𝑘, 𝑛 ∈ Z≥0, and P[∑∞𝑛=0 ‖𝑌𝑛‖𝑎,[ < ∞] = 1.

Given Proposition 2.3.5-nw, the rest of the proof for Proposition 2.1.7 (b) follows the arguments

in Sections 2.3.1 mutatis mutandis.

2.4 The quadratic and 5
2 laws

Fix 𝑍Y (0, ·) = 𝛿0(·). Our goal is to prove Theorem 2.1.1. By the scaling (2.1.3), we have

P
[
H(2Y, 0) +

√
4𝜋Y ≥ _

]
= P

[√
4𝜋𝑍Y (2, 0) ≥ 𝑒_

]
, P

[
H(2Y, 0) +

√
4𝜋Y ≤ −_

]
= P

[√
4𝜋𝑍Y (2, 0) ≤ 𝑒−_

]
.

Hence Theorem 2.1.1 (a) follows from Proposition 2.1.7 (b) (for any 𝑎 ∈ R and 𝑇 ≥ 2) and the

contraction principle, with

Φ(_) = inf{ 1
2 ‖𝜌‖

2
𝐿2 :
√

4𝜋Z(𝜌; 2, 0) ≥ 𝑒_}, (2.4.1)

Φ(−_) = inf{ 1
2 ‖𝜌‖

2
𝐿2 :
√

4𝜋Z(𝜌; 2, 0) ≤ 𝑒−_}. (2.4.2)

Proving Theorem 2.1.1 (b) and (c) thus amounts to evaluating the infimums in (2.4.1) and (2.4.2),

which will be carried out in Sections 2.4.1 and 2.4.2, respectively.
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2.4.1 Near-center tails, proof of Theorem 2.1.1 (b)

In view of (2.4.1) – (2.4.2), our goal is to show

lim
_→0

_−2 inf{ 1
2 ‖𝜌‖

2
𝐿2 :
√

4𝜋Z(𝜌; 2, 0) ≥ 𝑒_} = 1√
2𝜋
, (2.4.3)

lim
_→0

_−2 inf{ 1
2 ‖𝜌‖

2
𝐿2 :
√

4𝜋Z(𝜌; 2, 0) ≤ 𝑒−_} = 1√
2𝜋
. (2.4.4)

The proofs of (2.4.3) and (2.4.4) are the same so we consider only (2.4.3). Fix 𝜌 ∈ 𝐿2( [0, 2] ×R).

Since our goal is to prove (2.4.3), we assume ‖𝜌‖𝐿2 ≤ _ and _ ≤ 1. Recall that Z(𝜌; 𝑡, 𝑥) =∑∞
𝑛=0 Y𝑛 (𝜌; 𝑡, 𝑥), with Y𝑛 (𝜌; 𝑡, 𝑥) is given (2.2.8-nw). Let 𝑂 (_𝑘 ) denote a generic function of _

such that |𝑂 (_𝑘 ) | ≤ 𝐶_𝑘 , for all _ ∈ (0, 1]. Specialize at (𝑡, 𝑥) = (2, 0) and apply the bound in

Lemma 2.2.3-nw for 𝑛 ≥ 2. We have

√
4𝜋Z(𝜌; 2, 0) = 1 +

√
4𝜋

∫ 2

0

∫
R
𝜌(𝑠, 𝑦)𝑝(2 − 𝑠, 𝑦)𝑝(𝑠, 𝑦) d𝑦d𝑠 +𝑂 (_2). (2.4.5)

Now assume
√

4𝜋Z(𝜌; 2, 0) ≥ 𝑒_. Inserting this inequality into (2.4.5) and Taylor expanding

𝑒_ gives
√

4𝜋
∫ 2

0

∫
R
𝜌(𝑠, 𝑦)𝑝(2 − 𝑠, 𝑦)𝑝(𝑠, 𝑦) d𝑦d𝑠 ≥ _ +𝑂 (_2).

On the left hand side, apply the Cauchy–Schwarz inequality to separate 𝜌(𝑠, 𝑦) and 𝑝(2−𝑠, 𝑦)𝑝(𝑠, 𝑦),

and use

∫ 2

0

∫
R
𝑝(2 − 𝑠, 𝑦)2𝑝(𝑠, 𝑦)2d𝑦d𝑠 = 2−5/2𝜋−1/2 (2.4.6)

We have ‖𝜌‖𝐿2 ≥ (2/𝜋)1/4_ + 𝑂 (_2). Taking square of both sides and divide the result by 1
2_2

gives the inequality ‘≥’ in (2.4.3).

To show the reverse inequality, take ^ > 1 and 𝜌(𝑠, 𝑦) = _^23/2𝑝(2 − 𝑠, 𝑦)𝑝(𝑠, 𝑦). Inserting

this 𝜌 into (2.4.5) and using (2.4.6) give
√

4𝜋Z(𝜌; 2, 0) ≥ 1 + ^_ + 𝑂 (_2). With ^ > 1, the last

expression is larger than 𝑒_ for all _ small enough. On the other hand, by using (2.4.6) we have
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1
2_
−2‖𝜌‖2

𝐿2 = ^2
√

2𝜋
. Hence the left hand side of (2.4.3) is bounded by ^2

√
2𝜋

. Now taking ^ ↓ 1

completes the proof.

2.4.2 Deep lower tail, proof of Theorem 2.1.1 (c)

The Feynman–Kac formula and scaling

Here we consider the deep lower-tail regime, i.e., −_ → −∞. The first step is to express

Z(𝜌; 𝑡, 𝑥) by the Feynman–Kac formula. Namely,

Z(𝜌; 𝑡, 𝑥) = E𝑥
[
exp

( ∫ 𝑡

0
𝜌(𝑠, 𝐵(𝑡 − 𝑠)) d𝑠

)
𝛿0(𝐵(𝑡))

]
(2.4.7)

= E0→𝑥
[
exp

( ∫ 𝑡

0
𝜌(𝑠, 𝐵b(𝑠)) d𝑠

)]
𝑝(𝑡, 𝑥). (2.4.8)

In (2.4.7), the expectation E𝑥 is taken with respect to a Brownian motion that starts from 𝑥, and in

(2.4.8) the E0→𝑥 is taken with respect to a Brownian bridge 𝐵b(𝑠) that starts from 𝐵b(0) = 0 and

ends in 𝐵b(𝑡) = 𝑥. Indeed, the expression (2.4.7) is equivalent to (2.2.9) upon Taylor-expanding

the exponential in (2.4.7) and exchanging the sum with the expectation. The exchange is justified

by the bound in Lemma 2.2.3-nw. Set

h(𝜌; 𝑡, 𝑥) := log(
√

4𝜋Z(𝜌; 𝑡, 𝑥)) = log(
√

4𝜋𝑝(𝑡, 𝑥)) + logE0→𝑥
[
exp

( ∫ 𝑡

0
𝜌(𝑠, 𝐵b(𝑠)) d𝑠

)]
.

(2.4.9)

Take log on both sides of (2.4.7) and insert the result into (2.4.2). We have

Φ(−_) = inf
{ 1

2 ‖𝜌‖
2
𝐿2 : h(𝜌; 2, 0) ≤ −_

}
. (2.4.10)

We expect the right hand side of (2.4.10) to grow as _5/2 when _ → ∞. As pointed out in

[KK07, KK09, MKV16, KMS16], such a power law follows from scaling. More precisely, when

_ → ∞, it is natural to scale h ↦→ _−1h and 𝜌 ↦→ _𝜌. Accordingly, for the Brownian bridge in

(2.4.9) to complete on the same footing, it is desirable to have a factor _−1/2 multiplying 𝐵b(𝑠).
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This is so because large deviations of _−1/2𝐵b(𝑠) occurs at rate _, which is compatible with the

scaling 𝜌 ↦→ _𝜌. To implement these scaling, in (2.4.9) replace 𝜌(𝑡, 𝑥) ↦→ _𝜌(𝑡, _−1/2𝑥) and

𝑥 ↦→ _1/2𝑥 and divide the result by _. Let h_ (𝜌; 𝑡, 𝑥) := _−1h(_𝜌(·, _−1/2·); 𝑡, _1/2𝑥) denote the

resulting function on the left hand side. We have

h_ (𝜌; 𝑡, 𝑥) = _−1 log(
√

4𝜋𝑝(𝑡, _ 1
2 𝑥)) + _−1 logE0→_1/2𝑥

[
exp

( ∫ 𝑡

0
_𝜌(𝑠, _− 1

2𝐵b(𝑠)) d𝑠
)]
.

(2.4.11)

The replacement 𝜌(𝑡, 𝑥) ↦→ _𝜌(𝑡, _−1/2𝑥) changes ‖𝜌‖2
𝐿2 by a factor of _5/2, so (2.4.10) translates

into

Φ(−_) = _ 5
2 inf

{ 1
2 ‖𝜌‖

2
𝐿2 : h_ (𝜌; 2, 0) ≤ −1

}
. (2.4.12)

Proving Theorem 2.1.1 (c) hence amounts to proving

lim
_→∞

(
inf

{ 1
2 ‖𝜌‖

2
𝐿2 : h_ (𝜌; 2, 0) ≤ −1

})
=

4
15𝜋

. (2.4.13)

The optimal deviation 𝜌∗ and its geodesics

We begin by introducing a function 𝜌∗ ∈ 𝐿2( [0, 2] × R). The definition of this function is

motivated by physics argument [KK09, MKV16, KMS16]; see Section 2.1.1. In the context of

Proposition 2.1.7, 𝜌 describes possible deviations of the spacetime white noise
√
Yb. Such 𝜌∗ is a

candidate for the optimal 𝜌, so we refer to 𝜌∗ as the optimal deviation.

To define 𝜌∗, consider the unique 𝐶1 [1, 2)-valued solution 𝑟 (𝑡) of the equation

𝑟′(𝑡) = 2
1
2 𝜋−

1
2 𝑟2

√︁
𝑟 − 𝜋/2, for 𝑡 ∈ (1, 2), 𝑟 (1) = 𝜋/2, and 𝑟 | (1,2) > 𝜋/2, (2.4.14)

and symmetrically extend it to 𝐶1(0, 2) by setting 𝑟 (𝑡) := 𝑟 (2 − 𝑡) for 𝑡 ∈ (0, 1). Integrating
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(2.4.14) gives

(𝑟 (𝑡) − 𝜋/2) 1
2

𝑟 (𝑡)𝜋/2 + ( 2
𝜋
) 3

2 arctan
( ( 𝑟 (𝑡)
𝜋/2 − 1

) 1
2
)
= ( 2

𝜋
) 1

2 |𝑡 − 1|. (2.4.15)

Let us note a few useful properties of 𝑟 (𝑡). It can be checked from (2.4.15) that lim𝑠↓0 𝑟 (𝑠) =

lim𝑠↑2 𝑟 (𝑠) = +∞. The integral
∫ 2
0 𝑟 (𝑡) d𝑡 = 2

∫ 2
1 𝑟 (𝑡) d𝑡 can be evaluated with the aid of (2.4.14):

perform the change of variables 2
∫ 2
1 𝑟 (𝑡) d𝑡 = 2

∫ ∞
𝜋/2

𝑟
𝑟 ′(𝑡)d𝑟 and use (2.4.14) to substitute 𝑟′(𝑡).

The result reads

∫ 2

0
𝑟 (𝑡) d𝑡 =

∫ 2

0
|𝑟 (𝑡) | d𝑡 = 2𝜋. (2.4.16)

Set ℓ(𝑡) := 1/𝑟 (𝑡) for 𝑡 ∈ (0, 2), and let ℓ(0) := 0 and ℓ(2) := 0 so that ℓ ∈ 𝐶 [0, 2]. We define

𝜌∗(𝑡, 𝑥) := −𝑟 (𝑡)
2𝜋

(
1 − 𝑥2

ℓ(𝑡)2
)
+
. (2.4.17)

Next, setting 𝜌 = 𝜌∗ in (2.4.9), we seek to characterize the _ → ∞ limit of the resulting

function:

h∗(𝑡, 𝑥) := lim
_→∞

h_ (𝜌∗; 𝑡, 𝑥), (2.4.18)

for all (𝑡, 𝑥) ∈ (0, 2] × R. Even though only h∗(2, 0) will be relevant toward the proof of (2.4.13),

we treat general (𝑡, 𝑥) ∈ (0, 2] × R for its independent interest.

Remark 2.4.1. Indeed, with 𝜌∗ being the optimal deviation of the spacetime white noise, the

function h∗ should be viewed as the limit shape of HY,_ (𝑡, 𝑥) := _−1 log 𝑍Y (𝑡, _1/2𝑥) under the

conditioning {HY,_ (0, 2) ≤ −1} with _ � 1. A explicit expression of h∗(1, 𝑥) is given in [HMS19].

One can show that [HMS19, Eq’s (10)-(11)] coincide with the variational expression of h∗ given

in (2.4.22) below.

Proving that h∗ is the limit shape of ℎY,_ remains open, which we leave for future work.
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To characterize (2.4.18), we first turn the limit into certain minimization problem over paths,

by using Varadhan’s lemma. To setup notation, we let 𝐻1
0,𝑥 [0, 𝑡] denote the space of 𝐻1 functions

on [0, 𝑡] such that 𝛾(0) = 0 and 𝛾(𝑡) = 𝑥, and likewise for 𝐶0,𝑥 [0, 𝑡]. For 𝛾 ∈ 𝐻1
0,𝑥 [0, 𝑡], set

𝑈 (𝛾; 𝑡, 𝑥) =
∫ 𝑡

0

1
2𝛾
′(𝑠)2 − 𝜌∗(𝑠, 𝛾(𝑠)) d𝑠. (2.4.19)

Lemma 2.4.2. For any (𝑡, 𝑥) ∈ (0, 2] × R,

lim
_→∞

h_ (𝜌∗; 𝑡, 𝑥) =: h∗(𝑡, 𝑥) = − inf
{
𝑈 (𝛾; 𝑡, 𝑥) : 𝛾 ∈ 𝐻1

0,𝑥 [0, 𝑡]
}
. (2.4.20)

Proof. Let 𝐹 (𝛾) :=
∫ 𝑡

0 𝜌∗(𝑠, 𝛾(𝑠)) d𝑠. In (2.4.11), set 𝜌 ↦→ 𝜌∗ and let _→∞ to get

lim
_→∞

h_ (𝜌∗; 𝑡, 𝑥) = − 𝑥
2

2𝑡 + lim
_→∞

_−1 logE0→_1/2𝑥

[
exp

(
_𝐹 (_− 1

2𝐵b(𝑠))
) ]
. (2.4.21)

We have assumed that the last limit exists. To prove the existence of the limit and to evaluate it

we appeal to Varadhan’s lemma. To start, let us establish the LDP for {_−1/2𝐵b(𝑠) : 𝑠 ∈ [0, 𝑡]}.

Express 𝐵b as 𝐵b(𝑠) = 𝐵(𝑠) + (𝑥 − 𝐵(𝑡))𝑠/𝑡, where 𝐵 denotes a standard Brownian motion. Since

the map 𝛾 ↦→ 𝛾 + (𝑥 − 𝛾(𝑡))𝑠/𝑡 from {𝛾 ∈ 𝐶 [0, 𝑡] : 𝛾(0) = 0} to 𝐶0,𝑥 [0, 𝑡] is continuous, we can

use the contraction principle to push forward the LDP for _−1/2𝐵. The result asserts that _−1/2𝐵b

enjoys an LDP with speed _ and the rate function 𝐼bb(𝛾) := inf{ 1
2

∫ 𝑡

0 (𝛾
′(𝑠) − 𝑣 − 𝑥

𝑡
)2d𝑠 : 𝑣 ∈ R}

for 𝛾 ∈ 𝐻1
0,𝑥 [0, 𝑡] and 𝐼bb(𝛾) = +∞ otherwise. Optimizing over 𝑣 ∈ R gives

𝐼bb(𝛾) =


∫ 𝑡

0
1
2𝛾
′(𝑠)2d𝑠 − 𝑥2

2𝑡 , for 𝛾 ∈ 𝐻1
0,𝑥 [0, 𝑡],

+∞ , for 𝛾 ∈ 𝐶0,𝑥 [0, 𝑡] \ 𝐻1
0,𝑥 [0, 𝑡] .

To apply Varadhan’s lemma we need to check, for 𝐹 (𝛾) :=
∫ 𝑡

0 𝜌∗(𝑠, 𝛾(𝑠)) d𝑠:

(i) 𝐹 : 𝐶0,𝑥 [0, 𝑡] → R is continuous.

This statement would follow if 𝜌∗ were uniformly continuous on [0, 𝑡] × R. The function

𝜌∗(𝑠, 𝑦) however is discontinuous at (0, 0) and (2, 0). To circumvent this issue, for small 𝛿 > 0,

60



we consider the truncation 𝜌𝛿∗ (𝑠, 𝑦) := 1{|𝑠−1|<1−𝛿}𝜌∗(𝑠, 𝑦). The truncated functional 𝐹𝛿 (𝛾) :=∫
𝜌𝛿∗ (𝑡, 𝛾(𝑡)) d𝑡 is continuous on𝐶0,𝑥 [0, 𝑡]. The difference 𝐹−𝐹𝛿 is bounded by | (𝐹−𝐹𝛿) (𝛾) | ≤∫
|𝑠−1|>1−𝛿 |𝜌∗(𝑠, 𝛾(𝑠)) | d𝑠 ≤

1
2𝜋

∫
|𝑠−1|>1−𝛿 |𝑟 (𝑠) |d𝑠. By (2.4.16), the last expression converges to

zero as 𝛿 → 0, uniformly in 𝛾 ∈ 𝐶0,𝑥 [0, 𝑡]. From these properties we conclude that 𝐹 :

𝐶0,𝑥 [0, 𝑡] → R is continuous.

(ii) lim
𝑀→∞

lim sup
_→∞

_−1 logE0→𝑥
[
exp

(
_𝐹 (_−1/2𝐵b)

)
1{𝐹 (_−1/2𝐵b) > 𝑀}

]
= −∞

This holds since 𝜌∗ ≤ 0, which implies 𝐹 ≤ 0.

Varadhan’s lemma applied to the last term in (2.4.21) completes the proof. �

Lemma 2.4.2 expresses h∗(𝑡, 𝑥) in terms of a variational problem over paths. We refer to the

minimizing path(s) in (2.4.20) (if exists) as a geodesic. The next step is to identify the geodesic.

Let

Ω := {(𝑠, 𝑦) : 𝑠 ∈ [0, 2], |𝑦 | ≤ ℓ(𝑠)}

denote the support of 𝜌∗, with the boundary 𝜕Ω = {(𝑠, 𝑦) : 𝑡 ∈ [0, 2], |𝑦 | = ℓ(𝑠)}.

Proposition 2.4.3.

(a) For any (𝑡, 𝑥) ∈ (0, 2] × R, the infimum

h∗(𝑡, 𝑥) = − inf
{
𝑈 (𝛾; 𝑡, 𝑥) : 𝛾 ∈ 𝐻1

0,𝑥 [0, 𝑡]
}

(2.4.22)

is attended in 𝐻1
0,𝑥 [0, 𝑡].

(b) When (𝑡, 𝑥) = (2, 0), the geodesics are 𝛼ℓ(·), |𝛼 | ≤ 1.

(c) When (𝑡, 𝑥) ∈ Ω ∩ {𝑡 ∈ (0, 2)}, the unique geodesic is (𝑥/ℓ(𝑡))ℓ(·).
(d) When (𝑡, 𝑥) ∈ Ωc∩ {𝑡 ∈ (0, 2]}, is the geodesic is the unique 𝐶1

0,𝑥 [0, 𝑡] path such that 𝛾 | [0,𝑡∗] =

ℓ | [0,𝑡∗] and 𝛾 | [𝑡∗,𝑡] is linear, for some 𝑡∗ ∈ (0, 𝑡).
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See Figure 2.1 for an illustration for these geodesics.

Figure 2.1: The solid curves are the geodesics for (2.4.22), with the thick ones being ±ℓ(·). Those
geodesics outside ±ℓ(·) are linear, and touch ±ℓ(·) at tangent.

Remark 2.4.4. An intriguing feature of Proposition 2.4.3(b) is the nonuniqueness of the geodesics

between (0, 0) and (2, 0). For any |𝛼 | ≤ 1, 𝛾 = 𝛼ℓ is one such geodesic, so the paths span a lens-

shaped region Ω. For the exponential Last Passage Percolation (LPP), [BGS19] proved that the

point-to-point geodesic (in the context of LPP) does not concentrate around any given path under

a lower-tail conditioning. Though the setups differ, the result of [BGS19] and Proposition 2.4.3(b)

are consistent. It is an intriguing question to explore deeper connection between these two phe-

nomena. For example, is it true that for LPP under lower-tail conditioning, the distribution of the

geodesic spans a lens-like region?

To streamline the proof of Proposition 2.4.3, let us prepare a few technical tools. The Euler–

Lagrangian equation for (2.4.19) is

𝛾′′ = −𝜕𝑥𝜌∗(𝑠, 𝛾(𝑠)) =

− 𝑟 (𝑠)
𝜋ℓ(𝑠)2 𝛾, when (𝑠, 𝛾(𝑠)) ∈ Ω◦,

0 , when (𝑠, 𝛾(𝑠)) ∈ Ωc.
(2.4.23)

The equation (2.4.23) is ambiguous when (𝑠, 𝛾(𝑠)) ∈ 𝜕Ω because 𝜕𝑥𝜌∗ is not continuous there.

We will avoid referencing (2.4.23) when (𝑠, 𝛾(𝑠)) ∈ 𝜕Ω. It will be convenient to also consider

𝛾′′ = − 𝑟 (𝑠)
𝜋ℓ(𝑠)2 𝛾, (2.4.24)
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which coincides with (2.4.23) in Ω◦.

Lemma 2.4.5.

(a) The function ℓ is strictly concave and lim𝑠↓0 |ℓ′(𝑠) | = +∞.

(b) For any 𝛼 ∈ R, the function 𝛼ℓ(𝑠) solves (2.4.24) for 𝑠 ∈ (0, 2).

(c) For any for any |𝛼 | ≤ 1,𝑈 (𝛼ℓ; 2, 0) = −1.

(d) In (𝜕Ω)c, any geodesic of (2.4.22) is 𝐶2 and solves (2.4.23).

(e) When (𝑡, 𝑥) ∈ Ω, any geodesic of (2.4.22) lies entirely in Ω.

(f) Let 𝛾 ∈ 𝐻1
0,𝑥 [0, 𝑡] be a geodesic of (2.4.22), and consider (𝑡∗, 𝛾(𝑡∗)) ∈ 𝜕Ω with 𝑡∗ ∈ (0, 𝑡).

Then

lim
𝛽↓0

( 1
𝛽

∫ 𝑡∗+𝛽

𝑡∗

𝛾′(𝑠)d𝑠 − 1
𝛽

∫ 𝑡∗

𝑡∗−𝛽
𝛾′(𝑠)d𝑠

)
= 0.

Proof. Parts (a)–(c) follow by straightforward calculations from ℓ(𝑠) = 1/𝑟 (𝑠), (2.4.14), and

(2.4.16). Part (d) follows by standard variation procedure.

(e) The geodesic 𝛾 starts and ends within Ω, i.e., (0, 𝛾(0)) = (0, 0) ∈ Ω and (𝑡, 𝛾(𝑡)) =

(𝑡, 𝑥) ∈ Ω. If the geodesic ever leaves Ω, then there exists 𝑡1 < 𝑡2 ∈ [0, 𝑡] such that 𝛾 | (𝑡1,𝑡2) lies

outside Ω and (𝑡𝑖, 𝛾(𝑡𝑖)) ∈ 𝜕Ω for 𝑖 = 1, 2. See Figure 2.2 for an illustration. Let us compare

the functional 𝑈 (·; 𝑡, 𝑥) (c.f., (2.4.19)) restricted onto the segments 𝛾 | [𝑡1,𝑡2] and ±ℓ | [𝑡1,𝑡2] , where

the ± sign depends on which side of the boundary (𝑡1, 𝛾(𝑡1)) and (𝑡2, 𝛾(𝑡2)) belong to, c.f., Fig-

ure 2.2. First 𝜌∗ vanishes along both segments. Next, the strict concavity of ℓ from Part (a) implies∫ 𝑡2
𝑡1
𝛾′(𝑠)2d𝑠 >

∫ 𝑡2
𝑡1
ℓ′(𝑠)2d𝑠. Therefore, we can modify 𝛾 by replacing the segment 𝛾 | [𝑡1,𝑡2] with

±ℓ | [𝑡1,𝑡2] to decreases the value of𝑈 (𝛾; 2, 0). This contradicts with assumption that 𝛾 is a geodesic.

Hence the geodesic must stay completely within Ω.

(f) The idea is to perform variation. Fix a neighborhood 𝑂 of 𝑡∗ with 𝑂 ⊂ (0, 2). For 𝑓 ∈
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Figure 2.2: Illustration of Part (e) of the proof of Lemma 2.4.5

𝐶∞𝑐 (𝑂) consider

𝐹 (𝛼) :=
∫ 𝑡

0

1
2 (𝛾
′ + 𝛼 𝑓 ′)2 − 𝜌∗(𝑠, 𝛾 + 𝛼 𝑓 ) d𝑠.

The derivative 𝜕𝑥𝜌∗ is bounded on 𝑂 × R (even though not continuous). Taylor expanding 𝐹

around 𝛼 = 0 then gives
∫
𝛾′(𝑠) 𝑓 ′(𝑠)d𝑠 ≤ 𝑐

∫
| 𝑓 (𝑠) |d𝑠, for some constant 𝑐 < ∞. Within the last

inequality, substitute 𝑓 (𝑠) ↦→ 𝑓 (𝑠 + 𝑢), integrate the result over 𝑢 ∈ [−1
2 𝛽,

1
2 𝛽], and divide both

sides by 𝛽. This gives

1
𝛽

∫
𝛾′(𝑠) ( 𝑓 (𝑠 + 1

2 𝛽) − 𝑓 (𝑠 −
1
2 𝛽))d𝑠 =

1
𝛽

∫
(𝛾′(𝑠 − 1

2 𝛽) − 𝛾
′(𝑠 + 1

2 𝛽)) 𝑓 (𝑠)d𝑠 ≤ 𝑐
∫
| 𝑓 (𝑠) |d𝑠.

This inequality holds for smooth 𝑓 (𝑠) supported in {𝑠 : 𝑠 ± 1
2 𝛽 ∈ 𝑂}. Since 𝛾′ ∈ 𝐿2 [0, 𝑡], the

equality extends to 𝑓 ∈ 𝐿2. Specializing 𝑓 = ±1(𝑡∗− 1
2 𝛽,𝑡∗+

1
2 𝛽)

and taking 𝛽 ↓ 0 gives the desired

result. �

Proof of Proposition 2.4.3. (a) The proof follows from standard argument of the direct method.

Take any minimizing sequence {𝛾𝑛}. For such a sequence, {𝛾′𝑛} is bounded in 𝐿2 [0, 𝑡]. By the

Banach–Alaoglu theorem, after passing to a subsequence we have 𝛾′𝑛 → [ ∈ 𝐿2 [0, 𝑡] weakly

in 𝐿2 [0, 𝑡]. Let 𝛾(𝑠) :=
∫ 𝑠

0 [(𝑠)d𝑠. We then have 𝛾𝑛 → 𝛾 in 𝐶0,𝑥 [0, 𝑡] and
∫ 𝑡

0 𝛾
′(𝑠)2d𝑠 =

‖[‖2
𝐿2 ≤ lim𝑛 ‖𝛾′𝑛‖2𝐿2 . Also, by Property (i) in the proof of Lemma 2.4.2,

∫ 𝑡

0 𝜌∗(𝑠, 𝛾𝑛 (𝑠))d𝑠 →
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∫ 𝑡

0 𝜌∗(𝑠, 𝛾(𝑠))d𝑠. We have verified that 𝛾 ∈ 𝐻1
0,𝑥 [0, 𝑡] a geodesic.

(b) The proof amounts to showing that any geodesic must be of the form 𝛼ℓ, for some |𝛼 | ≤ 1.

Once this is done, Lemma 2.4.5(c) guarantees that any such path is a geodesic.

We begin with a reduction. For a geodesic 𝛾 ∈ 𝐻1
0,0 [0, 2], consider its first and second halves

𝛾1 := 𝛾 | [0,1] and 𝛾2(𝑠) := 𝛾(2 − 𝑠) |𝑠∈[0,1] . Joining each half with itself end-to-end gives the

symmetric paths 𝛾𝑖 (𝑠) := 𝛾𝑖 (𝑠)1[0,1] (𝑠) + 𝛾𝑖 (𝑠 − 1)1(1,2] (𝑠), for 𝑠 ∈ [0, 2] and 𝑖 = 1, 2. These

symmetrized paths are also geodesics. To see why, note that since 𝜌∗(𝑠, 𝑦) is symmetric around

𝑠 = 1, we have 𝑈 (𝛾𝑖; 2, 0) = 2𝑈 (𝛾𝑖; 1, 𝛾(1)), for 𝑖 = 1, 2, and 𝑈 (𝛾; 2, 0) = 𝑈 (𝛾1; 1, 𝛾(1)) +

𝑈 (𝛾2; 1, 𝛾(1)). On the other hand, 𝛾 being a geodesic implies 𝑈 (𝛾; 2, 0) ≤ 𝑈 (𝛾𝑖; 2, 0), for 𝑖 =

1, 2. From the these relations we infer that 𝑈 (𝛾1; 2, 0) = 𝑈 (𝛾2; 2, 0) = 𝑈 (𝛾; 2, 0), namely, the

symmetrized paths 𝛾1 and 𝛾2 are also geodesics. Recall that our goal is to show any geodesic

must be of the form 𝛼ℓ, for some |𝛼 | ≤ 1. If we can establish the statement for 𝛾1 and 𝛾2, the

same immediately follows for 𝛾. Hence, without loss of generality, hereafter we consider only

symmetric geodesics.

Fix a geodesic 𝛾 ∈ 𝐻1
0,0 [0, 2]. As argued in the preceding paragraph, we can and shall assume

𝛾(𝑠) is symmetric around 𝑠 = 1, and by Lemma 2.4.5(e) the path lies entirely in Ω. The last

condition implies |𝛾(1) | ≤ ℓ(1). Consider first the case |𝛾(1) | < ℓ(1). By Lemma 2.4.5(d),

within a neighborhood of 𝑠 = 1 the path 𝛾(𝑠) is 𝐶2 and solves (2.4.23) and therefore (2.4.24). The

symmetry of 𝛾 gives 𝛾′(1) = 0. The uniqueness of the ODE (2.4.24) and Lemma 2.4.5(b) now

imply 𝛾(𝑠) = 𝛼ℓ(𝑠), for 𝛼 = 𝛾(1)/ℓ(1) and for all 𝑠 in a neighborhood of 𝑠 = 1. This matching

𝛾(𝑠) = 𝛼ℓ(𝑠) extends to 𝑠 ∈ (0, 2) by standard continuity argument. This concludes the desired

result for the case |𝛾(1) | < ℓ(1).

Turning to the case |𝛾(1) | = ℓ(1), we need to show 𝛾 = ±ℓ. Let us argue by contradiction.

Assuming the contrary, we can find 𝑡2 ∈ (0, 1) ∪ (1, 2) such that (𝑡2, 𝛾(𝑡2)) ∈ Ω◦. By the symmetry

of 𝛾 around 𝑠 = 1 we can and shall assume 𝑡2 ∈ (1, 2). Tracking along 𝛾 backward in time

from 𝑡2, we let 𝑡∗ := inf{𝑠 ∈ [0, 𝑡∗] : |𝛾(𝑠) | < ℓ(𝑠)} be the first hitting time of 𝜕Ω. Indeed

𝑡∗ ∈ [1, 𝑡2) and 𝛾(𝑡∗) = ±ℓ(𝑡∗). Let us take ‘+’ for simplicity of notation; see Figure 2.3 for an
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illustration. The case for ‘−’ can be treated by the same argument. By Lemma 2.4.5(d), 𝛾 | (𝑡∗,𝑡2)

solves (2.4.23) and therefore (2.4.24). On the other hand, ℓ also solves (2.4.24) by Lemma 2.4.5(b).

These facts along with the well-posedness of (2.4.24) at (𝑡∗, ℓ(𝑡∗)) imply that 𝛾 | [𝑡∗,𝑡2) ∈ 𝐶2 [𝑡∗, 𝑡2)

and lim𝛽↓0 𝛾
′(𝑡∗ + 𝛽) ≠ ℓ′(𝑡∗). Either ‘<’ or ‘>’ holds between these two quantities. The property

{(𝑡, 𝛾(𝑡))}𝑡∈(𝑡∗,𝑡2) ⊂ Ω◦ tells us that it is ‘<’, namely lim𝛽↓0 𝛾
′(𝑡∗ + 𝛽) < ℓ′(𝑡∗). Combining this

inequality with Lemma 2.4.5(f) gives lim𝛽↓0
1
𝛽

∫ 𝑡∗
𝑡∗−𝛽

𝛾′(𝑠)d𝑠 = lim𝛽↓0
1
𝛽
(ℓ(𝑡∗) − 𝛾(𝑡∗ − 𝛽)) < ℓ′(𝑡∗).

Recall from Lemma 2.4.5(a) that ℓ is concave. The last inequality then forces 𝛾(𝑡∗− 𝛽) > ℓ(𝑡∗− 𝛽)

for all small enough 𝛽 > 0. This statement contradicts with the fact that 𝛾 lies within Ω. We have

reached a contradiction and hence completed the proof for the case |𝛾(1) | = ℓ(1).

Figure 2.3: Illustration of Part (b) of the proof of Proposition 2.4.3. Only the portion 𝑠 ≥ 𝑡∗ of the
curve 𝛾(𝑠) is shown.

(c) Our goal is to characterize the geodesic between (0, 0) and (𝑡, 𝑥). The idea is to ‘embed’

such a minimization problem into a minimization problem between (0, 0) and (2, 0). More pre-

cisely consider

inf
{
𝑈 (𝛾; 2, 0) : 𝛾 ∈ 𝐻1

0,𝑥 [0, 2], 𝛾(𝑡) = 𝑥
}
. (2.4.25)

The infimum is taken over all 𝐻1 path that joins (0, 0) and (2, 0) and passes through (𝑡, 𝑥). Such

an infimum can be divided into two parts as

(2.4.25) = inf
{
𝑈 (𝛾; 𝑡, 𝑥) : 𝛾 ∈ 𝐻1

0,𝑥 [0, 𝑡]
}
+ inf

{ ∫ 2

𝑡

1
2𝛾
′(𝑠)2 − 𝜌∗(𝑠, 𝛾(𝑠)) d𝑠 : 𝛾 ∈ 𝐻1

𝑥,0 [𝑡, 2]
}
.

(2.4.26)

Take any geodesic 𝛾 ∈ 𝐻1
0,𝑥 [0, 𝑡] for the first infimum in (2.4.26) and any geodesic 𝛾 ∈ 𝐻1

𝑥,0 [𝑡, 2]
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for the second infimum in (2.4.26). (The existence of such geodesics can be established by the

same argument in Part (a).) The concatenated path 𝛾c(𝑠) := 𝛾(𝑠)1𝑠∈[0,𝑡] + 𝛾(𝑠)1𝑠∈(𝑡,2] is a geodesic

for (2.4.25). Hence 𝑈 (𝛾c; 2, 0) ≥ 𝑈 (�̃�; 2, 0), for any �̃� ∈ 𝐻1
0,0 [0, 2] that passes through (𝑡, 𝑥).

Set 𝛼 = 𝑥/ℓ(𝑡). The last inequality holds in particular for �̃� = 𝛼ℓ. On the other hand, under

current assumption (𝑡, 𝑥) ∈ Ω, we have |𝛼 | ≤ 1, so Part (b) asserts that 𝛼ℓ minimizes (2.4.25) even

without the constraint 𝛾(𝑡) = 𝑥. Therefore,𝑈 (𝛾c; 2, 0) = 𝑈 (𝛼ℓ; 2, 0), and 𝛾c itself is a geodesic for

inf{𝑈 (·; 0, 2) : �̃� ∈ 𝐻1
0,0 [0, 2]}. The last statement and Part (b) force 𝛾c = 𝛼ℓ, which concludes

the desired result.

(d) Fix a geodesic 𝛾 ∈ 𝐻1
0,𝑥 [0, 𝑡]. By Lemma 2.4.5(d) and the fact that (𝜕𝑥𝜌∗) |Ωc = 0, the

path 𝛾 is linear outside Ω. Tracking along 𝛾 backward in time from 𝑡, we let 𝑡∗ := inf{𝑠 ∈

[0, 𝑡] : |𝛾(𝑠) | > ℓ(𝑠)} > 0 be the first hitting time of the boundary. By Lemma 2.4.5(a) must

have 𝑡∗ > 0. The segment 𝛾 | [0,𝑡∗] is itself is a geodesic for 𝑈 (·; 𝑡∗, 𝛾(𝑡∗)). Since (𝑡∗, 𝛾(𝑡∗)) =

(𝑡∗,±ℓ(𝑡∗)) ∈ Ω, Part (c) implies that 𝛾 | [0,𝑡∗] = ±ℓ | [0,𝑡∗] . The path 𝛾 is 𝐶1 except possibly at 𝑠 = 𝑡∗,

but Lemma 2.4.5(f) guarantees that 𝛾(𝑠) is also 𝐶1 at 𝑠 = 𝑡∗. For the given (𝑡, 𝑥) ∈ Ωc, there is

exactly one 𝑡∗ ∈ (0, 𝑡) that satisfies all the prescribed properties, so we have identified the unique

geodesic 𝛾. �

Given Lemma 2.4.2 and Proposition 2.4.3, it is possible to evaluate h∗(𝑡, 𝑥) by calculating

𝑈 (𝛾; 𝑡, 𝑥) along the geodesic(s) given in Proposition 2.4.3. In particular, Proposition 2.4.3(b) and

Lemma 2.4.5(c) gives

h∗(2, 0) := lim
_→∞

h_ (𝜌∗; 2, 0) = −1. (2.4.27)

Also, straightforward calculations from (2.4.17) (with the help of (2.4.16)) gives 1
2 ‖𝜌∗‖

2
𝐿2 =

4
15𝜋 .

We are now ready to prove one side of the inequalities in (2.4.13), namely

lim sup
_→∞

(
inf

{ 1
2 ‖𝜌‖

2
𝐿2 : h_ (𝜌; 2, 0) ≤ −1

})
≤ 1

2 ‖𝜌∗‖
2
𝐿2 =

4
15𝜋 . (2.4.28)

To show (2.4.28) we would like to have h_ (𝜌∗; 2, 0) ≤ −1 for all large enough _, but (2.4.27)

67



only gives the inequality for _ = +∞. We circumvent this issue by scaling. Fix ^ > 1 and

let (𝜌∗)^ (𝑡, 𝑥) := ^𝜌∗(𝑡, ^1/2𝑥). Referring to the scaling from (2.4.9) to (2.4.11), we see that

h_ ((𝜌∗)^; 2, 0) = ^h_ (𝜌∗; 2, 0). This identity together with (2.4.27) implies h_ ((𝜌∗)^; 2, 0) < −1

for all large enough _. On the other hand, 1
2 ‖(𝜌∗)^ ‖

2
𝐿2 =

^5/2

2 ‖𝜌∗‖
2
𝐿2 , so the left hand side of (2.4.28)

is at most ^
5/2

2 ‖𝜌∗‖
2
𝐿2 . Letting ^ ↓ 1 concludes (2.4.28).

The reverse inequality

To prove (2.4.13), it now remains only to show the reverse inequality. Fix any 𝜌 ∈ 𝐿2( [0, 2] ×

R) with h_ (𝜌; 2, 0) ≤ −1.

The first step is to relate h_ (𝜌; 2, 0) to the functional 𝑈 (𝛾; 2, 0), c.f., (2.4.19). Within (2.4.11),

set (𝑡, 𝑥) ↦→ (2, 0), express the Brownian bridge as 𝐵b(𝑡) = 𝐵(𝑡) − 𝑡𝐵(2)/2, where 𝐵b denotes

a standard Brownian motion, and apply the Cameron–Martin–Girsanov theorem with _1/2𝛾 ∈

𝐻1
0,0 [0, 2] being the drift/shift. The result gives

h_ (𝜌; 2, 0) = −
∫ 2

0

1
2𝛾
′(𝑡)2d𝑡 + _−1 logE0→0

[
exp

( ∫ 2

0

(
_𝜌(𝑡, 𝛾 + _− 1

2𝐵b) d𝑡 + _
1
2 𝛾′(𝑡)d𝐵(𝑡)

))]
.

Applying Jensen’s inequality to the last term yields, for any 𝛾 ∈ 𝐻1
0,0 [0, 2],

−1 ≥ h_ (𝜌; 2, 0) ≥ −_−1 log
√

4𝜋 −
∫ 2

0

1
2𝛾
′(𝑡)2 − E0→0

[
𝜌(𝑡, 𝛾 + _− 1

2𝐵b)
]

d𝑡. (2.4.29)

On the right hand side, the first term vanishes as _ → ∞, and the second term resemble the

functional 𝑈 (𝛾; 2, 0). The difference are that 𝜌 replaces 𝜌∗, and there is an additional expectation

over _−
1
2𝐵b.

We next use (2.4.29) to derive a useful inequality. First, recall from Lemma 2.4.5(c) that, for

all |𝛼 | ≤ 1,

−1 = −𝑈 (𝛼ℓ; 2, 0) = −
∫ 2

0

1
2 (𝛼ℓ

′)2 − 𝜌∗(𝑡, 𝛼ℓ) d𝑡. (2.4.30)
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Substitute 𝛾 ↦→ 𝛼ℓ in (2.4.29) and subtract (2.4.30) from the result. This gives, for all |𝛼 | ≤ 1,

∫ 2

0

(
𝜌∗(𝑡, 𝛼ℓ) − E0→0

[
𝜌(𝑡, 𝛼ℓ + _− 1

2𝐵b)
] )

d𝑡 ≥ −_−1 log
√

4𝜋.

Multiply both sides by − 1
2𝜋 (1 − 𝛼

2)+ and integrate the result over 𝛼 ∈ R. On the left hand side

of the result, swap the integrals, multiply the integrand by 1 = 𝑟 (𝑡)ℓ(𝑡), and recognize − 𝑟 (𝑡)2𝜋 (1 −

𝑥2/ℓ(𝑡)2)+ = 𝜌∗(𝑡, 𝑥). We have

∫ 2

0

∫
R
𝜌∗(𝑡, 𝛼ℓ)

(
𝜌∗(𝑡, 𝛼ℓ) − E0→0

[
𝜌(𝑡, 𝛼ℓ + _− 1

2𝐵b)
] )
ℓ(𝑡)d𝛼d𝑡 ≤ _−1 15

16 log
√

4𝜋. (2.4.31)

To see why (2.4.31) is useful, let us pretend for a moment that _ = +∞ in (2.4.31). The

discussion in this paragraph is informal, and serves merely as a motivation for the rest of the proof.

Informally set _ = +∞ in (2.4.31), and perform the change of variables 𝑥 = 𝛼ℓ(𝑡) on the left hand

side. The result gives 〈𝜌∗, 𝜌∗− 𝜌〉 ≤ 0 and hence ‖𝜌∗‖2𝐿2 + ‖𝜌− 𝜌∗‖2𝐿2 ≤ ‖𝜌‖2𝐿2 . The last inequality

implies ‖𝜌∗‖2𝐿2 ≤ ‖𝜌‖2𝐿2 , which is the desired result.

In light of the preceding discussion, we seek to develop an estimate of 〈𝜌∗, 𝜌∗− 𝜌〉. To alleviate

heavy notation we will often abbreviate _−1/2𝐵b =: bb. Write 〈𝜌∗, 𝜌∗−𝜌〉 =
∫
(𝜌2
∗−𝜌∗𝜌) (𝑡, 𝑥)d𝑥d𝑡.

Within the integral add and subtract E[𝜌2
∗ (𝑡, 𝑥 − bb)] and E[𝜌∗(𝑡, 𝑥 − bb)𝜌(𝑡, 𝑥)]. This gives

〈𝜌∗, 𝜌∗ − 𝜌〉 = 𝐴1 + 𝐴2 + 𝐴3, where

𝐴1 := E
∫ 2

0

∫
R
𝜌∗(𝑡, 𝑥 − bb)

(
𝜌∗(𝑡, 𝑥 − bb) − 𝜌(𝑡, 𝑥)

)
d𝑥d𝑡,

𝐴2 := E
∫ 2

0

∫
R
𝜌2
∗ (𝑡, 𝑥) − 𝜌2

∗ (𝑡, 𝑥 − bb) d𝑥d𝑡,

𝐴3 := E
∫ 2

0

∫
R

(
𝜌∗(𝑡, 𝑥 − bb) − 𝜌∗(𝑡, 𝑥)

)
𝜌(𝑡, 𝑥) d𝑥d𝑡.

For 𝐴1, the change of variables 𝑥 = 𝛼ℓ(𝑡) + bb = 𝛼ℓ(𝑡) + _−1/2𝐵b(𝑡) reveals that 𝐴1 is equal to the

left hand side of (2.4.31). Hence 𝐴1 ≤ _−1 16
15 log

√
4𝜋. The term 𝐴2 does not depend on 𝜌, and it

is readily checked from (2.4.17) that lim_→∞ |𝐴2 | = 0. As for 𝐴3, the Cauchy–Schwarz inequality
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gives |𝐴3 | ≤ 𝐴1/2
31 ‖𝜌‖𝐿2 , where 𝐴31 := E

∫
(𝜌∗(𝑡, 𝑥 − bb) − 𝜌∗(𝑡, 𝑥))2d𝑡d𝑥. The term 𝐴31 does not

depend on 𝜌, and it is readily checked from (2.4.17) that lim_→∞ |𝐴31 | = 0. Adopt the notation

𝑜_ (1) for a generic quantity that depends only on _ such that lim_→∞ |𝑜_ (1) | = 0. Collecting the

preceding results on 𝐴1, 𝐴2, and 𝐴3 now gives

〈𝜌∗, 𝜌∗ − 𝜌〉 ≤ 𝑜_ (1) (1 + ‖𝜌‖𝐿2). (2.4.32)

Since ‖𝜌‖2
𝐿2 = ‖𝜌∗‖2𝐿2 + ‖𝜌 − 𝜌∗‖2𝐿2 − 2〈𝜌∗, 𝜌∗ − 𝜌〉, the bound (2.4.32) implies ‖𝜌∗‖2𝐿2 ≤

(1+𝑜_ (1))‖𝜌‖2𝐿2+𝑜_ (1). This inequality holds for all 𝜌 ∈ 𝐿2 with h_ (𝜌; 0, 2) ≤ −1, and 𝑜_ (1) → 0

does not depend on 𝜌. The desired result hence follows:

lim inf
_→∞

(
inf

{ 1
2 ‖𝜌‖

2
𝐿2 : h_ (𝜌; 2, 0) ≤ −1

})
≥ 1

2 ‖𝜌∗‖
2
𝐿2 =

4
15𝜋 .

70



Chapter 3: Lyapunov exponents of the SHE for general initial data

Chapter Abstract: We consider the (1 + 1)-dimensional stochastic heat equation

(SHE) with multiplicative white noise and the Cole-Hopf solution of the Kardar-Parisi-

Zhang (KPZ) equation. We show an exact way of computing the Lyapunov exponents

of the SHE for a large class of initial data which includes any bounded deterministic

positive initial data and the stationary initial data. As a consequence, we derive exact

formulas for the upper tail large deviation rate functions of the KPZ equation for gen-

eral initial data.

This chapter is available on arxiv [GL20].

3.1 Background and Main result

In this paper, we consider the solution of the (1 + 1)-dimensional SHE under general initial

condition and ask how any positive moment of that solution grows as time goes to∞. In particular,

we take the logarithm of 𝑝-th moment of that solution for any 𝑝 ∈ R>0 and show that the when

scaled by time, those converge. Those limits are known as Lyapunov exponents which are tied to

the large deviation problem of the KPZ equation. Namely, the upper tail large deviation of the

Cole-Hopf solution of the KPZ equation (centered by time/24) is the Legendre-Fenchel dual of

the Lyapunov exponent of the stochastic heat equation. To the best of our knowledge, our result

is the first to provide exact computation of the Lyapunov exponents of the SHE and the upper tail

large deviation of the KPZ for general initial data.

Let us recall the KPZ equation, written formally as

𝜕𝑡H(𝑡, 𝑥) =
1
2
𝜕𝑥𝑥H(𝑡, 𝑥) +

1
2
(𝜕𝑥H(𝑡, 𝑥))2 + b, H(0, 𝑥) = H0(𝑥). (3.1.1)
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The KPZ equation governs growth of the interface H(𝑡, 𝑥) which is subjected to a roughening

by the space-time white noise b. Due to the presence of b, the solution of the KPZ equation is

ill-posed. A formal solution of the KPZ equation comes from the Cole-Hopf transform given as

H(𝑡, 𝑥) := log(Z(𝑡, 𝑥)) (3.1.2)

whereZ(𝑡, 𝑥) is the solution of the SHE:

𝜕𝑡Z(𝑡, 𝑥) =
1
2
𝜕𝑥𝑥Z(𝑡, 𝑥) + Z(𝑡, 𝑥)b (𝑡, 𝑥), Z(0, 𝑥) = exp(H0(𝑥)). (3.1.3)

The SHE is pervasive in the diffusion theory of particles in random environment [Mol96, Kho14],

continuous directed random polymers [HHF85, Com17] and many other fields. The solution theory

of the SHE is well known [Cor18, BC95, Wal86] via Ito integral theory or, martingale problem.

The logarithm in (3.1.2) is well defined due to the strict positivity of the solution of the SHE

[Mue91]. The Cole-Hopf solution correctly approximates discrete growth processes [BG97, CT17,

CGST20, Lin20a] and has shown to appear naturally in various renormalization and regularization

schemes [Hai13, GIP15, GP17].

In this paper, we consider a class of initial data of the KPZ equation which satisfies few tech-

nical conditions. Those conditions are designed as a minimal requirement to study the upper tail

large deviation problem of the KPZ. Below, we introduce a class of functions Hyp whose members

typifies the conditions that we need. Our main result, Theorem 3.1.2 is anchored in to the study

of the solutions corresponding to the initial profiles in Hyp. As we show later in Corollary 3.1.4

and 3.1.6, a wide range of interesting initial profiles of the KPZ equation falls inside this class.

Since the definition of Hyp instigates those technical conditions which might seem less enlight-

ening at the first sight, we recommend to look at Corollary 3.1.4, 3.1.6 and Remarks 3.1.5, 3.1.7

before proceeding towards Theorem 3.1.2.

Definition 3.1.1. A set of measurable functions (𝑔, { 𝑓𝑡}𝑡>0) with deterministic 𝑔 : R>0 → R≥0 and

𝑓𝑡 : R→ R (possibly random) for all 𝑡 ∈ R>0 belongs to the class Hyp if the following conditions
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are satisfied.

1. (Coherence conditions:) For 𝑥 ∈ R and 𝑡 ∈ R≥0, define 𝑀 𝑓𝑡
𝑝 (𝑡, 𝑥) := E[𝑒𝑝 𝑓𝑡 (𝑥)] when 𝑓𝑡 (𝑥) is

random and 𝑀 𝑓𝑡
𝑝 (𝑡, 𝑥) := 𝑒𝑝 𝑓𝑡 (𝑥) when 𝑓𝑡 (𝑥) is deterministic. For all 𝑝 ∈ R>0,

𝑔(𝑝) = lim
𝑡→∞

1
𝑡

sup
𝑥∈R

{−𝑝𝑥2

2𝑡
+ log𝑀 𝑓𝑡

𝑝 (𝑥, 𝑡)
}
. (3.1.4)

Furthermore, for every 𝑝 ∈ R>0,

lim inf
𝜖→0

lim sup
𝑡→∞

1
𝑡

log
( ∫

𝑒−
𝑝 (1−𝜖 )𝑥2

2𝑡 𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥

)
≤ 𝑔(𝑝). (3.1.5)

2. (Growth and lower bound conditions:) For each 𝑝 ∈ R>0, there exist constants 𝐶, 𝐾, 𝐿 > 0

and 0 < 𝛼 < 1 depending on 𝑝 such that for all 𝑡 > 0,

𝑀
𝑓𝑡
𝑝 (𝑡, 𝑥) ≤ 𝐶 (𝑒𝐶 |𝑥 | + 𝑒

𝛼𝑝𝑥2
2𝑡 ), (3.1.6)

sup
𝑥∈[−𝐿,𝐿]

log𝑀 𝑓𝑡
𝑝 (𝑡, 𝑥) > −𝐾. (3.1.7)

3. (Pseudo-stationarity:) We call {\𝑛}𝑛∈Z ⊂ R a sequence of grid points if it satisfies

. . . < \−1 < \0 = 0 < \1 < . . . , lim
𝑛→∞

\𝑛 = ∞, lim
𝑛→−∞

\𝑛 = −∞,

(max{𝑐 |𝑛|, 1})−𝛽 ≤ |\𝑛 − \𝑛+1 | ≤ 1

for some 𝑐 > 0, 𝛽 ∈ (0, 1) and all 𝑛 ∈ Z. There exist constants 𝐶, 𝑡0, 𝑠0 > 0 and a sequence

of grid points {\𝑛}𝑛∈Z such that for all 𝑡 > 𝑡0, 𝑛 ∈ Z, sup𝑥∈[\𝑛,\𝑛+1] | 𝑓𝑡 (𝑥) − 𝑓𝑡 (\𝑛) | ≤ 𝑠0 when

𝑓𝑡 is deterministic or,

P
(

sup
𝑥∈[\𝑛,\𝑛+1]

| 𝑓𝑡 (𝑥) − 𝑓𝑡 (\𝑛) | ≥ 𝑠
)
≤ 𝑒−𝐶𝑠1+𝛿 , ∀𝑠 ≥ 𝑠0 (3.1.8)

when 𝑓𝑡 is random.
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We will often call (𝑔, { 𝑓𝑡}𝑡>0) ∈ Hyp as KPZ data.

Fix a KPZ data (𝑔, { 𝑓𝑡}𝑡>0). We assume that there exists unique solution of the SHE started

from initial data 𝑒 𝑓𝑡 (at least) upto time 𝑡. We denote the SHE solutions started from 𝑓𝑡 byZ 𝑓𝑡 and

the corresponding Cole-Hopf solution of the KPZ equation by H 𝑓𝑡 . For any 𝑝 ∈ R>0, we define

the 𝑝-th moment Lyapunov exponent as

Lya𝑝 ({ 𝑓𝑡}𝑡>0) := lim
𝑡→∞

1
𝑡

logE
[ (
Z 𝑓𝑡 (𝑡, 0)

) 𝑝]
. (3.1.9)

For the KPZ equation, we consider the upper tail probability P(H 𝑓𝑡 (𝑡, 0) + 𝑡
24 ≥ 𝑠𝑡) where 𝑠 is a

positive real number. We ask what is the upper tail large deviation rate function, namely, what is

the limit of 𝑡−1 logP(H 𝑓𝑡 (𝑡, 0) + 𝑡
24 ≥ 𝑠𝑡) as 𝑡 goes to∞. Our main result which we state as follows

computes the 𝑝-th moment Lyapunov exponent of the SHE solutions {Z 𝑓𝑡 }𝑡>0 and the upper tail

large deviation rate function of the Cole-Hopf solution {H 𝑓𝑡 }𝑡>0. We defer its proof to Section 3.2.

Theorem 3.1.2. Let
(
𝑔, { 𝑓𝑡}𝑡≥0

)
be a set of functions in the class Hyp. Then, we have the following:

(a) For any 𝑝 ∈ R>0,

Lya𝑝 ({ 𝑓𝑡}𝑡>0) =
𝑝3 − 𝑝

24
+ 𝑔(𝑝). (3.1.10)

(b) Suppose 𝑔(𝑝) ∈ 𝐶1(R>0) and Z := lim𝑝→0 𝑔
′(𝑝) is finite. Then, for 𝑠 > Z ,

lim
𝑡→∞

1
𝑡

logP
(
H 𝑓𝑡 (𝑡, 0) + 𝑡

24
> 𝑠𝑡

)
= −max

𝑝≥0

{
𝑠𝑝 − 𝑝

3

24
− 𝑔(𝑝)

}
. (3.1.11)

Remark 3.1.3. The class Hyp in Theorem 3.1.2 contains a large collection of interesting initial

profiles for the KPZ equation. Corollary 3.1.4 will show the application of Theorem 3.1.2 to

a wide variety of deterministic initial data with moderate growth whereas Corollary 3.1.6 will

show the same for the Brownian initial data. It is only bounded deterministic initial data and the

delta initial data of the SHE for which all integer moment Lyapunov exponents were known (see
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[BC95, Che15, BC14b, CG20a]) before. We would like to stress that the narrow wedge initial data

of the KPZ equation which corresponds to taking Z(0, 𝑥) = 𝛿𝑥=0 (i.e., the delta initial data of the

SHE) is not covered by Theorem 3.1.2. However, the fractional moment Lyapunov exponents in

the narrow wedge case are recently found in [DT19] and those are one of the key inputs to our

proof of Theorem 3.1.2.

Corollary 3.1.4 (Deterministic initial data). Consider a class of measurable functions 𝑓𝑡 : R→ R

with the following properties:

(i). There exist 𝛿, 𝛼 ∈ (0, 1) and constant𝐶, 𝑡0 > 0 such that for 𝑡 > 𝑡0, | 𝑓𝑡 (𝑥) | ≤ 𝐶
(
1+|𝑥 |𝛿

)
+ 𝛼𝑥2

2𝑡

(ii). There exist 𝛽 ≥ 0, 𝑡0, 𝑠0 > 0 and a sequence of grid points (see pseudo-stationarity condition

of Definition 3.1.1) {\𝑛}𝑛∈Z such that | 𝑓𝑡 (𝑦) − 𝑓𝑡 (\𝑛) | ≤ 𝑠0 for all 𝑡 ≥ 𝑡0, 𝑦 ∈ [\𝑛, \𝑛+1] and

𝑛 ∈ Z.

We assume that there exists unique solution of the SHE started from initial data 𝑒 𝑓𝑡 (at least) up

to time 𝑡. Recall the notations Z 𝑓𝑡 and H 𝑓𝑡 which denote the unique solution of the SHE (started

from 𝑒 𝑓𝑡 ) and the corresponding Cole-Hopf solution of the KPZ equation respectively. Then, we

have the following:

a) For any 𝑝 ∈ R>0,

Lya𝑝 ({ 𝑓𝑡}𝑡>0) =
𝑝3 − 𝑝

24
. (3.1.12)

b) For all 𝑠 ∈ R>0,

lim
𝑡→∞

1
𝑡

logP
(
H 𝑓𝑡 (𝑡, 0) + 𝑡

24
> 𝑠𝑡

)
= −4

√
2

3
𝑠

3
2 . (3.1.13)

Remark 3.1.5. Note that Corollary 3.1.4 applies to any bounded deterministic initial data. To

see this, we set 𝑓𝑡 := 𝑓 for all 𝑡 > 0 where 𝑓 is any given bounded deterministic function. For

this choice of the sequence { 𝑓𝑡}𝑡>0, the conditions of Corollary 3.1.4 will be trivially satisfied

with \𝑛 = 𝑛 for all 𝑛 ∈ Z. Thus, Corollary 3.1.4 gives Lyapunov exponents for any moments of

the (1 + 1)-dimensional SHE started from any bounded deterministic positive initial data. This

solves an open problem mentioned in [Che15, pg. 1489, (1.12)]. Moreover, Corollary 3.1.4 is
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applicable to a far larger class of deterministic initial data. For instance, consider the class of

function 𝜙𝛿 (𝑥) = |𝑥 |𝛿 indexed by 𝛿 ∈ (0, 1). By taking \𝑛 = 𝑛 for all 𝑛 ∈ Z and setting 𝑓𝑡 := 𝜙𝛿

for all 𝑡 > 0, it is straightforward to see that 𝜙𝛿 satisfies both conditions of Corollary 3.1.4. Thus,

𝜙𝛿 has the same value of the Lyapunov exponents as in the case of constant initial data. The same

conclusion also holds for the class of functions 𝜓𝛼 (𝑥) = 𝛼𝑥2/2𝑡 indexed 𝛼 ∈ (0, 1). To see this,

its suffices to verify both conditions of Corollary 3.1.4 for 𝜓𝛼. It is easy to check that 𝜓𝛼 satisfies

condition (𝑖). To check the other condition, we define \𝑛 to be sign(𝑛) × |𝑛|1/2 for any 𝑛 ∈ Z. Note

that | |𝑛 + 1|1/2 − |𝑛|1/2 | ≥ min{1, 4−1 |𝑛|−1/2} for any 𝑛 ∈ Z. Thus, {sign(𝑛) × |𝑛|1/2}𝑛∈Z is indeed

a sequence of grid point. Since sup𝑥∈[\𝑛,\𝑛+1] |𝜓𝛼 (𝑥) − 𝜓𝛼 (\𝑛) | is bounded above by 1/2𝑡, 𝜓𝛼 also

satisfies the second condition of Corollary 3.1.4 for all large 𝑡.

Corollary 3.1.6 (Brownian initial data). Let 𝐵(𝑥) be a two-sided Brownian motion. For any 𝑡 >

0, 𝑥 ∈ R, define 𝑓𝑡 (𝑥) := 𝐵(𝑥) + 𝑎+𝑥1{𝑥>0} − 𝑎−𝑥1{𝑥<0} where 𝑎+ and 𝑎− are the drift parameters

for 𝑥 > 0 and 𝑥 < 0 respectively. Denote by 𝑎 = max{𝑎+, 𝑎−}. Then, we have

a) For any 𝑝 > 0,

Lya𝑝 ({ 𝑓𝑡}𝑡>0) =
𝑝3

24
− 𝑝

24
+ 𝑝

2

(
max

{( 𝑝
2
+ 𝑎

)
, 0

})2
(3.1.14)

b) If 𝑎 ≥ 0, then for all 𝑠 > 𝑎2

2 ,

lim
𝑡→∞

1
𝑡

logP
(
H 𝑓𝑡 (𝑡, 0) + 𝑡

24
> 𝑠𝑡

)
= −2

√
2

3
𝑠

3
2 + 𝑠𝑎 − 𝑎

3

6
. (3.1.15)

If 𝑎 < 0, then,

lim
𝑡→∞

1
𝑡

logP
(
H 𝑓𝑡 (𝑡, 0) + 𝑡

24
> 𝑠𝑡

)
=


−4

3
√

2𝑠 3
2 0 < 𝑠 ≤ 𝑎2

2

−2
√

2
3 𝑠

3
2 + 𝑠𝑎 − 𝑎3

6 𝑠 ≥ 𝑎2

2 .

The proofs of Corollary 3.1.4 and 3.1.6 will be given in Section 3.3.

Remark 3.1.7. It is worthwhile to note the contrast between the upper tail large deviation proba-

bility (LDP) of the KPZ equation under constant or, narrow wedge initial data and the Brownian
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initial data. The large deviation rate function in (3.1.15) is −2
√

2
3 𝑠3/2 when both the drift parame-

ters 𝑎+ and 𝑎− are equal to 0. Comparing this rate function with (3.1.13) or, [DT19, Theorem 1.1]

shows a difference by a factor of 2. This difference between the upper tail LDPs is consistent with

the difference of the upper tail asymptotics of the KPZ equation under KPZ scaling. In the physics

literature, the contrast between the LDPs under different initial data of the KPZ equation is echoed

in [LDMRS16, LDMS16, MS17]. Our result rigorously confirms those predictions.

3.1.1 Proof Ideas

In this section, we will present a sketch of the proof of Theorem 3.1.2 and review the relevant

tools that we use. We start with setting some necessary notations. The narrow wedge solution

Hnw of the KPZ is the Cole-Hopf transform of the fundamental solution of SHE Znw which is

associated to the the delta initial data Znw(0, 𝑥) = 𝛿𝑥=0. As 𝑡 goes to 0, logZnw(𝑡, 𝑥) is well

approximated by the heat kernel whose logarithm is given by a thin parabola 𝑥2

2𝑡 , renderingHnw to

have narrow wedge like structure.

The proof of our main results consists of following tools: (1) a composition law which connects

the SHE under general initial data with its fundamental solution, (2) Lyapunov exponents of the

fundamental solution of the SHE, and (3) tails bounds on the spatial regularity of the narrow wedge

solution of the KPZ.

The following identity gives a convolution formula of the one point distribution of the KPZ

equation in terms of the spatial process Znw(𝑡, ·) and the initial data 𝑓 of the KPZ equation. The

proof of this formula is associated to the linearity and time reversal property of the SHE. For

details, we refer to Lemma 1.18 of [CH16].

Proposition 3.1.8 (Convolution Formula). LetZ 𝑓 be the unique solution of the SHE started from

the initial condition 𝑒 𝑓 for a measurable function 𝑓 : R→ R. Then for any 𝑡 > 0,

Z 𝑓 (𝑡, 0) 𝑑=
∫
Znw(𝑡, 𝑦)𝑒 𝑓 (𝑦)𝑑𝑦
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To complement Proposition 3.1.8, we will make use of the exact expressions of any real positive

moment Lyapunov exponents of the fundamental solution of the SHE from [DT19] and the tail

bounds on the spatial regularity of the narrow wedge solution of the KPZ equation from [CGH19].

The following result describes the first of these two tools.

Proposition 3.1.9 (Lyapunov exponents of fundamental solution, [DT19], Theorem 1.1). For every

𝑝 > 0,

lim
𝑡→∞

1
𝑡

logE
[
Znw(𝑡, 0)𝑝

]
=
𝑝3 − 𝑝

24
.

The third of our main tools is (super)-exponential tail bounds on the spatial regularity of the

narrow wedge solution of the KPZ equation. This is given in the following result.

Proposition 3.1.10 (Tail bounds of increments, [CGH19], Prop. 4.4). For any 𝑡0 > 1, a > 0 and

𝜖 ∈ (0, 1), there exist 𝑠0 = 𝑠0(𝑡0, a, 𝜖) and 𝑐 = 𝑐(𝑡0, a, 𝜖) such that, for 𝑡 ≥ 𝑡0 and 𝑠 ≥ 𝑠0,

P
(

sup
𝑥∈[0,𝑡

1
3 ]

{
Hnw(𝑡, 𝑥) − Hnw(𝑡, 0) − a𝑥

2

2

}
≥ 𝑠

)
≤ exp(−𝑐𝑠 9

8−𝜖 ). (3.1.16)

P
(

inf
𝑥∈[0,𝑡

1
3 ]

{
Hnw(𝑡, 𝑥) − Hnw(𝑡, 0) + a𝑥

2

2

}
≤ −𝑠

)
≤ exp(−𝑐𝑠 9

8−𝜖 ). (3.1.17)

In order to prove (3.1.10) of Theorem 3.1.2, we first use Proposition 3.1.8 to note

Lya𝑝 ({ 𝑓𝑡}𝑡>0) = lim
𝑡→∞

1
𝑡

log
(
E
[( ∫

R
Znw(𝑡, 𝑦)𝑒 𝑓𝑡 (𝑦)𝑑𝑦

) 𝑝] )
and thereafter, focus our effort to analyze E[(

∫
R
Znw(𝑡, 𝑦) exp( 𝑓𝑡 (𝑦))𝑑𝑦)𝑝]. Recall 𝑀 𝑓𝑡

𝑝 (𝑡, 𝑥) from

Definition 3.1.1. Our main technical achievement is to justify the following heuristic approxima-

tion

1
𝑡

logE
[( ∫

R
Znw(𝑡, 𝑦)𝑒 𝑓𝑡 (𝑦)𝑑𝑦

) 𝑝]
≈ 1
𝑡

log
∫
R
E
[
(Znw(𝑡, 𝑦))𝑝

]
𝑀

𝑓𝑡
𝑝 (𝑡, 𝑥)𝑑𝑥 (3.1.18)

for all large 𝑡 ∈ R>0 where ≈ signs indicates the equality upto some additive constant which decays

as 𝑡 → ∞. For this, we observe that the main contributions of the left hand side of (3.1.18) comes
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fromZnw(𝑡, 𝑦0)𝑒 𝑓𝑡 (𝑦0) where 𝑦0 is a point in R such that the function 𝜙(𝑦) := − 𝑝𝑦
2

2 + log𝑀 𝑓𝑡
𝑝 (𝑡, 𝑦)

when evaluated at 𝑦0 attains a close proximity to the supremum value sup𝑦∈𝑅 𝜙(𝑦). Similarly, we

find that the main contribution of the right hand side of (3.1.18) comes from E
[
(Znw(𝑡, 𝑦0))𝑝

]
𝑀

𝑓𝑡
𝑝 (𝑡, 𝑦0).

For showing there are indeed such local representatives of both sides of (3.1.18), we require to

demonstrate that the contributions of E
[
(
∫
R\𝐵Z

nw(𝑡, 𝑦)𝑒 𝑓𝑡 (𝑦)𝑑𝑦)𝑝
]

and
∫
R\𝐵 E

[
(Znw(𝑡, 𝑦))𝑝

]
𝑀

𝑓𝑡
𝑝 (𝑡, 𝑥)𝑑𝑥

cannot grow significantly higher than their local counterparts where 𝐵 is small interval around 𝑦0.

This is done by controlling fluctuation of the spatial processZnw(𝑡, ·) and the growth and regular-

ity of the initial data 𝑓𝑡 . The fluctuation of Znw(𝑡, ·) is controlled by the tail probability bounds

(3.1.16) and (3.1.17) on the spatial regularity of Hnw(𝑡, ·). The growth and the regularity esti-

mates of the initial data are provided by the growth and lower bound conditions (3.1.6), (3.1.7) and

pseudo-stationarity condition (3.1.8) of Definition 3.1.1.

To analyze the integral on the right hand side of the above display, one may first ask how we

deal with E
[
(Znw(𝑡, 𝑦))𝑝

]
for all 𝑦 ∈ R. This will be done by combining Proposition 3.1.9 with

the following result.

Proposition 3.1.11 (Stationarity, [ACQ11], Prop. 1.4). For any fixed 𝑡 > 0, the random process

Hnw(𝑡, 𝑥) + 𝑥2

2𝑡 is stationary in 𝑥.

Proposition 3.1.11 allows to write the right hand side of (3.1.18) as sum of two terms, namely,

𝑡−1 log(E[(Znw(𝑡, 0))𝑝]) and 𝑡−1 log
( ∫
R

exp(− 𝑝𝑥
2

2𝑡 )𝑀
𝑓𝑡
𝑝 (𝑡, 𝑥)𝑑𝑥

)
. To conclude the proof of (3.1.10),

it suffices to show that the limits of those two summands of the right hand side of (3.1.18) coincide

with (𝑝3 − 𝑝)/24 and 𝑔(𝑝) respectively as 𝑡 →∞. The first limit is given in Proposition 3.1.9 and

the second limit will be proved using the coherence conditions (3.1.4) and (3.1.5).

For showing (3.1.11) of Theorem 3.1.2, our main tool is the following proposition which relates

the upper tail large deviation rate function ofH 𝑓𝑡 in terms of the Lyapunov exponents.

Proposition 3.1.12. Let 𝑋 (𝑡) be a stochastic process indexed by 𝑡 ∈ R>0. Fix ℎ ∈ 𝐶1(R>0) such

that ℎ′ : (0,∞) → (Z,∞) is continuous, bijective and increasing for some Z ∈ R. Assume that

lim
𝑡→∞

1
𝑡

logE
[
𝑒𝑝𝑋 (𝑡)

]
= ℎ(𝑝), ∀𝑝 ∈ R>0. (3.1.19)
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Then, we have

lim
𝑡→∞

1
𝑡

logP
(
𝑋 (𝑡) > 𝑠𝑡

)
= − sup

𝑝>0
{𝑝𝑠 − ℎ(𝑝)}, ∀𝑠 > Z . (3.1.20)

We defer the proof of this proposition to Section 3.4.1. Allying this proposition with (3.1.10)

yields the proof of (3.1.11). It is worthwhile to note that the use of Proposition 3.1.12 necessitates

𝑔(·) (in Definition 3.1.1) to be a convex function and few other technical properties. Under the

assumption that
(
𝑔, { 𝑓𝑡}𝑡≥0

)
belong to a class Hyp, the following lemma shows that 𝑔(·) indeed

satisfies those properties. The proof of this lemma is deferred to Section 3.4.2.

Lemma 3.1.13. For any set of functions
(
𝑔, { 𝑓𝑡}𝑡≥0

)
in the class Hyp, we have the following:

(i) 𝑔 is convex and non-negative.

(ii) For every 𝑝 > 0 and 𝜔 > 0, define

MAX 𝑓
𝑝,𝜔 (𝑡) :=

{
𝑥 : − 𝑝𝑥

2

2𝑡
+ log𝑀 𝑓𝑡

𝑝 (𝑡, 𝑥) ≥ sup
𝑦∈R

{
− 𝑝𝑦

2

2𝑡
+ log𝑀 𝑓𝑡

𝑝 (𝑡, 𝑦)
}
− 𝜔

}
. (3.1.21)

Then there exists 𝑇0 > 0 such that for 𝑡 > 𝑇0, MAX 𝑓
𝑝,𝜔 (𝑡) is nonempty for all 𝑝, 𝜔 > 0.

Define 𝑥𝑝,𝜔 (𝑡) := argmax
{
|𝑥 | : 𝑥 ∈ MAX 𝑓

𝑝,𝜔 (𝑡)
}
. There exists a constant 𝐶 = 𝐶 (𝑝, 𝜔) > 0

such that for all 𝑡 > 𝑇0, |𝑥𝑞,𝜔 (𝑡) | ≤ 𝐶𝑡 for all 𝑝

2 < 𝑞 < 2𝑝.

3.1.2 Previous works

Our main result on the Lyapunov exponent of the SHE and the upper tail large deviation of

the KPZ equation fits into the broader endeavor of studying the intermittency phenomenon and

large deviation problems of the random field solution of stochastic partial differential equations.

Intermittency, an universal phenomenon for random fields of mutiplicative type is characterized

by enormous moment growth rate of the random field. The nature of the intermittency is cap-

tured through the Lyapunov exponents. In last few decades, there were extensive amount of

works on studying the growth rate of Lyapunov exponents under variation in structure of the

noise [GM90, CM94, BC95, HHNT15, FK09, CJKS13, CD15, BC16] and the partial differen-
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tial operators [Che17, CHN19]. Large deviation of the stochastic partial differential equations

[HW15a, CD19] is an active area of research in recent years. Upper and lower tail large deviation

of the KPZ equation behold special interests in theoretical as well as in experimental side and have

been recently investigated in a vast amount of works. For detailed history along this line of works,

we refer to [LDMRS16, HLDM+18a, CGK+18, Tsa18, DT19, KLD19] and the references therein.

Below, we compare our results with few of those previous works.

Based on the replica Bethe ansatz techniques, Kardar [Kar87, Section 2.2] predicted the integer

moment Lyapunov exponents of the fundamental solution of the SHE. Bertini and Cancrini [BC95,

Section 2.4] made a rigorous attempt to show the exact match between the integer moment Lya-

punov exponents of the SHE under constant initial data and Kardar’s prediction. Unfortunately, the

computation of [BC95] was incorrect beyond the second moment Lyapunov exponent. This was

later fixed by [Che15] who computed all integer moments Lyapunov exponents for any determin-

istic bounded positive initial data of the SHE. The main tool of [Che15] was the moment formulas

of the SHE in terms of integral of local time of Brownian bridges derived from the Feynman-Kac

representation of the solution.

Alternatively, the integer moments of the fundamental solution of the SHE which are widely

believed to be same as the solution of the attractive delta-Bose gas have formulas in terms of

contour integrals. We refer to [Gho18] and the reference therein for a comprehensive discussion

on this. Similar formulas are known for the moments of the parabolic Anderson model, semi-

discrete directed polymers, 𝑞-Whittaker process (see [BC14b, BC14a]) etc. By analyzing the

contour integrals, [CG20a] derived a sharp upper and lower bound to the integer moments of

the fundamental solution of SHE which positively confirms Kardar’s prediction. Recently, [DT19]

were able to obtain similar tight upper and lower bound to the fractional moments. Using sharp

bounds on the moments, [DT19] computed any positive fractional moment Lyapunov exponent of

the fundamental solution. As an application of their result, [DT19] also found the one point upper

tail large deviation of the narrow wedge solution of the KPZ equation. We refer to [HHNT15,

CHKN18] for tight bounds on the moments of the SHE when the noise is colored in space/time
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and the initial data is a continuous bounded function.

In spite of a substantial amount of works on the fractional moments Lyapunov exponents of the

SHE with colored noise, the case of general initial data for the SHE with white noise was largely

being untouched. The same conclusion applies to the status of the upper tail large deviation result

for the KPZ equation started from general initial data. However, tight bounds on the upper tail

probabilities of the KPZ are available. For instance, [CG20a] obtained the following result: for

any 𝑡0 > 0, there exists 𝑠0 = 𝑠0(𝑡0), 𝑐1 = 𝑐1(𝑡0), 𝑐2 = 𝑐2(𝑡0) > 0 such that for all 𝑠 > 𝑠0 and 𝑡 > 𝑡0,

𝑒−𝑐1𝑠
3/2 ≤ P

(
H(𝑡, 0) + 𝑡

24
≥ 𝑠𝑡1/3

)
≤ 𝑒−𝑐2𝑠

3/2
(3.1.22)

where the initial data of the KPZ solution H belongs to a large class of functions including the

narrow wedge and the stationary initial data. We refer to Section of [CG20a] and the references

therein for more information. In the physics literature, the upper tail large deviation of the KPZ

equation has been studied recently using optimal fluctuation theory which corresponds to Freidlin-

Wentzell type large deviation theory of stochastic PDEs with small noise. By formal computa-

tions, [MKV16, JKM16, MS17] (see also [LDMRS16, LDMS16]) demonstrated the upper tail

LDP of the KPZ started from a large class of initial data including the flat and stationary data.

Corollary 3.1.4 and 3.1.6 rigorously confirms those results from physics literature. In a way, Theo-

rem 3.1.2 is the first result which provides a concrete pathway to compute the Lyapunov exponent

of the SHE started from general initial data and the upper tail large deviation rate function of the

associated Cole-Hopf solution of the KPZ equation.

The probability of the KPZ equation being smaller than its typical value is captured through its

lower tail probability. Like the upper tail, one point lower tail probabilities of the KPZ equation

are equally important. The first tight estimates of the lower tail probabilities of the narrow wedge

solution is obtained in [CG20b] and the lower tail large deviation is rigorously proved in [Tsa18,

CC19] (see also [CGK+18, KLD19] and the reference therein). The case of general initial data was

considered in [CG20a] where the authors provided an upper bound to the lower tail probability
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of the KPZ equation. However, there are only very few things known about the lower tail large

deviation under general initial data. In the physics literature, recently [Le 19] found a connection

between the latter and the Kadomtsev-Petviashvili (KP) equation. It is unclear to us how much

of the techniques of the present paper will help to get the lower tail large deviation of the KPZ

equation started from general initial data.

Outline

Section 3.2 will prove the Theorem 3.1.2. Applying Theorem 3.1.2, Corollary 3.1.4 and Corol-

lary 3.1.6 will be shown in Subsections 3.3.1 and 3.3.2 of Section 3.3. Proofs of Proposition 3.1.12

and Lemma 3.1.13 are given in Subsection 3.4.1 and 3.4.2 of Section 3.4.
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helpful conversations. YL was partially supported by the Fernholz Foundation’s “Summer Minerva

Fellow" program and also received summer support from Ivan Corwin’s NSF grant DMS-1811143,

DMS-1664650.

3.2 Lyapunov exponents and large deviation: Proof of Theorem 3.1.2

The main goal of this section is to prove Theorem 3.1.2. The part (a) of Theorem 3.1.2 is

to compute the Lyapunov exponents lim𝑡→∞ 𝑡−1 logE[Z 𝑓𝑡 (𝑡, 0)𝑝] for all 𝑝 ∈ R>0. The part (b)

involves showing the upper tail large deviation rate function of the KPZ equation. Both of these

two results are proved for general initial data. The part (b) is a straightforward consequence of part

(a). This is shown in Section 3.2.3 using Proposition 3.1.12. We prove part (a) as follows.

Note that (3.1.10) follows once we show for all 𝑝 ∈ R>0,

𝑝3 − 𝑝
24

+ 𝑔(𝑝) ≤ lim inf
𝑡→∞

𝑡−1 logE[Z 𝑓𝑡 (𝑡, 0)𝑝]︸                                                       ︷︷                                                       ︸
LimInf𝑝

≤ lim sup
𝑡→∞

𝑡−1 logE[Z 𝑓𝑡 (𝑡, 0)𝑝] ≤ 𝑝3 − 𝑝
24

+ 𝑔(𝑝)︸                                                        ︷︷                                                        ︸
LimSup𝑝

.

(3.2.1)
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We denote the left and right inequality by LimInf𝑝 and LimSup𝑝 and the proof of these inequalities

will be shown in Section 3.2.1 and 3.2.2 respectively.

3.2.1 Proof of LimSup𝑝 for all 𝑝 ∈ R>0

We divide the proof in two stages. In Stage 1, we prove LimSup𝑝 inequality when 𝑝 > 1 and

Stage 2 will cover the case when 𝑝 ∈ (0, 1].

Stage 1:

There are two main steps in the proof of this stage. The first step is to obtain the following

upper bound

E
[
Z 𝑓𝑡 (𝑡, 0)𝑝

]
≤

(2𝜋𝑡
𝜖𝑞

) 𝑝

2𝑞
E
[ ∫ ∞

−∞
𝑒

𝜖 𝑝𝑥2
2𝑡 Znw(𝑡, 𝑥)𝑝𝑒𝑝 𝑓𝑡 (𝑥)𝑑𝑥

]
. (3.2.2)

by applying Hölder’s inequality in the convolution formula of Proposition 3.1.8. The second step

is to bound the expectation of the right hand side of the above display. For this, we first distribute

the expectation over Znw(𝑡, 𝑥)𝑝 and 𝑒𝑝 𝑓𝑡 (𝑥) as 𝑥 varies in R. The computation of the expectation

of Znw(𝑡, 𝑥)𝑝 for 𝑥 ∈ R will be carried out using the spatial stationarity of Znw(𝑡, 𝑥) from Propo-

sition 3.1.11 and the narrow wedge LDP from Proposition 3.1.9. For the upper bound on the part

involving 𝑒𝑝 𝑓𝑡 (𝑥) , we use the property (3.1.5). Below, we give details of each step.

By the convolution formula of Proposition 3.1.8, E[(Z 𝑓𝑡 (𝑡, 0))𝑝] is equal to E[(
∫ ∞
−∞Z

nw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥)𝑝].

In what follows, we bound
∫ ∞
−∞Z

nw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥 in order to show (3.2.2). Denote by 𝑞 =
𝑝

𝑝−1 . We

writeZnw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥) as a product of 𝑒−
𝜖 𝑥2
2𝑡 and 𝑒

𝜖 𝑥2
2𝑡 Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥) . By applying Hölder’s inequal-

ity

∫ ∞

−∞
Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥 ≤

( ∫ ∞

−∞
𝑒−

𝜖 𝑞𝑥2
2𝑡 𝑑𝑥

) 1
𝑞
( ∫ ∞

−∞
𝑒

𝜖 𝑝𝑥2
2𝑡 Znw(𝑡, 𝑥)𝑝𝑒𝑝 𝑓𝑡 (𝑥)𝑑𝑥

) 1
𝑝

,
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The last inequality in conjunction with the fact that
∫ ∞
−∞ 𝑒

− 𝜖 𝑞𝑥2
2𝑡 𝑑𝑥 is equal to

√︁
2𝜋𝑡/𝜖𝑞 yields

E

[( ∫ ∞

−∞
Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥

) 𝑝]
≤

(2𝜋𝑡
𝜖𝑞

) 𝑝

2𝑞
E
[ ∫ ∞

−∞
𝑒

𝜖 𝑝𝑥2
2𝑡 Znw(𝑡, 𝑥)𝑝𝑒𝑝 𝑓𝑡 (𝑥)𝑑𝑥

]
.

Note that the above inequality shows the upper bound in (3.2.2). We apply Fubini’s theorem

to interchange the expectation and the integral in the above display. Using the stationarity of

Znw(𝑡, 𝑥)𝑒𝑥2/2𝑡 (see Proposition 3.1.11), one can write the expectation in the right hand side of

the above display as the product of E
[
Znw(𝑡, 0)𝑝

]
and

∫ ∞
−∞ 𝑒

−(1−𝜖 ) 𝑝𝑥2
2𝑡 𝑀

𝑓𝑡
𝑝 (𝑡, 𝑥)𝑑𝑥 where 𝑀 𝑓𝑡

𝑝 (𝑡, 𝑥)

is defined in the coherence conditions (see Definition 3.1.1) for the KPZ data (𝑔, { 𝑓𝑡}𝑡>0) . Taking

logarithm on both sides of the inequality, dividing by 𝑡 and letting 𝑡 →∞, 𝜖 → 0 shows

lim sup
𝑡→∞

1
𝑡

logE
[
(Z 𝑓𝑡 (𝑡, 0))𝑝

]
≤ 𝑝3 − 𝑝

24
+ lim inf

𝜖→0
lim sup
𝑡→∞

1
𝑡

log
( ∫ ∞

−∞
𝑒−
(1−𝜖 ) 𝑝𝑥2

2𝑡 𝑀
𝑓𝑡
𝑝 (𝑡, 𝑥)𝑑𝑥

)
where the factor (𝑝3 − 𝑝)/24 in the right hand side is obtained by applying Proposition 3.1.9. To

get the desired upper bound in LimSup𝑝, it suffices to show that

lim inf
𝜖→0

lim sup
𝑡→∞

1
𝑡

log
( ∫ ∞

−∞
𝑒−
(1−𝜖 ) 𝑝𝑥2

2𝑡 𝑀
𝑓𝑡
𝑝 (𝑡, 𝑥)𝑑𝑥

)
≤ 𝑔(𝑝). (3.2.3)

For showing (3.2.3), we use the property (3.1.5) of the KPZ data
(
𝑔, { 𝑓𝑡}𝑡≥0

)
. By Hölder’s inequal-

ity, E
[
𝑒𝑝 𝑓𝑡 (𝑥)

]
is bounded above by (E[𝑒𝑝(1+𝜖) 𝑓𝑡 (𝑥)])1/(1+𝜖) which we can bound by 1+E[𝑒𝑝(1+𝜖) 𝑓𝑡 (𝑥)].

Applying this upper bound into the left hand side of (3.2.3),

l.h.s. of (3.2.3) ≤ lim inf
𝜖→0

lim sup
𝑡→∞

1
𝑡

log
( ∫ ∞

−∞
𝑒−
(1−𝜖 ) 𝑝𝑥2

2𝑡
(
1 + 𝑀 𝑓𝑡

𝑝(1+𝜖) (𝑡, 𝑥)
)
𝑑𝑥

)
≤ lim inf

𝜖→0
lim sup
𝑡→∞

1
𝑡

log
(√︄ 2𝜋𝑡
(1 − 𝜖)𝑝 +

∫ ∞

−∞
𝑒−
(1−𝜖 ) 𝑝𝑥2

2𝑡 𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥

)
≤ 𝑔(𝑝).

We have used the property 𝑔(𝑝) ≥ 0 from Lemma 3.1.13 (i) and (3.1.5) in the last line. This
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completes the proof when 𝑝 > 1.

Stage 2:

The derivation of LimSup𝑝 for 𝑝 ∈ (0, 1] depends on Proposition 3.2.1 and 3.2.2. We first

state them; use them to prove LimSup𝑝 for 𝑝 ∈ (0, 1]; and then, prove them in turn.

Proposition 3.2.1. Fix any a ∈ (0, 1). For any 𝑢, 𝑣 ∈ R, define a random function 𝑆[𝑢,𝑣] : (0,∞) →

R as

𝑆[𝑢,𝑣] (𝑡) := sup
𝑥∈[𝑢,𝑣]

(
Hnw(𝑡, 𝑥) − Hnw(𝑡, 𝑢) + (𝑥 − 𝑢)𝑢

𝑡
− a(𝑥 − 𝑢)

2

2

)
. (3.2.4)

Let {\𝑛}𝑛∈Z be a sequence of grid points such that the sequence { 𝑓𝑡}𝑡>0 satisfies (3.1.8). Then, we

have the following:

(i) For all 𝑛 ∈ Z,

(
Hnw(𝑡, \𝑛) +

\2
𝑛

2𝑡
, 𝑆[\𝑛,\𝑛+1] (𝑡)

)
𝑑
=

(
Hnw(𝑡, 0), 𝑆[0,\𝑛+1−\𝑛] (𝑡)

)
, (3.2.5)

(ii) For all 𝑝 ∈ R>0,

lim sup
𝑡→∞

1
𝑡

logE
[
Znw(𝑡, 0)𝑝𝑒𝑝𝑆 [0,1] (𝑡)

]
≤ 𝑝3 − 𝑝

24
. (3.2.6)

Proposition 3.2.2. For any 𝑛 ∈ Z, we define E(𝑛)𝑡,𝑝 := E[(
∫ \𝑛+1
\𝑛

𝑒 𝑓𝑡 (𝑥)𝑑𝑥)𝑝]. Then,

lim sup
𝑡→∞

1
𝑡

log

( ∑︁
𝑛∈Z≥0

𝑒−
𝑝\2

𝑛
2𝑡 E(𝑛)𝑡,𝑝 +

∑︁
𝑛∈Z<0

𝑒−
𝑝\2

𝑛+1
2𝑡 E(𝑛)𝑡,𝑝

)
≤ 𝑔(𝑝). (3.2.7)

PROOF OF LimSup𝑝 FOR 𝑝 ∈ (0, 1] : Fix 𝑝 ∈ (0, 1]. We show that there exists 𝐶 = 𝐶 (𝑝) > 0

such that for all 𝑡 > 0,

E
[
Z 𝑓𝑡 (𝑡, 0)𝑝

]
≤ 𝐶E

[
Znw(𝑡, 0)𝑝𝑒𝑝𝑆 [0,1] (𝑡)

] ( ∑︁
𝑛∈Z≥0

𝑒−
𝑝\2

𝑛
2𝑡 E(𝑛)𝑡,𝑝 +

∑︁
𝑛∈Z<0

𝑒−
𝑝\2

𝑛+1
2𝑡 E(𝑛)𝑡,𝑝

)
. (3.2.8)
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From the above inequality, we first show how LimSup𝑝 follows. By taking logarithms of both

sides of the above inequality, dividing them by 𝑡 and letting 𝑡 → ∞, we get LimSup𝑝 once the

following inequalities are satisfied

lim sup
𝑡→∞

1
𝑡

logE
[
Znw(𝑡, 0)𝑝𝑒𝑝𝑆 [0,1] (𝑡)

]
≤ 𝑝3 − 𝑝

24
,

lim sup
𝑡→∞

1
𝑡

log

( ∑︁
𝑛∈Z≥0

𝑒−
𝑝\2

𝑛
2𝑡 E(𝑛)𝑡,𝑝 +

∑︁
𝑛∈Z<0

𝑒−
𝑝\2

𝑛+1
2𝑡 E(𝑛)𝑡,𝑝

)
≤ 𝑔(𝑝).

But, these two inequalities are given by (3.2.6) and (3.2.7) of Proposition 3.2.1 and 3.2.2 respec-

tively. This completes the proof of LimSup𝑝 when 𝑝 ∈ (0, 1] modulo (3.2.8) which we prove as

follows.

By the convolutional formula of Proposition 3.1.8, it suffices to show (3.2.8) with E[(
∫
Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥)𝑝]

in place of E[Z 𝑓𝑡 (𝑡, 0)𝑝]. Owing to the subadditivity of function 𝑔(𝑥) = 𝑥𝑝 for 𝑥 > 0 and

𝑝 ∈ (0, 1],

E
[ ( ∫

Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝]

= E
[(∑︁

𝑛∈Z

∫ \𝑛+1

\𝑛

Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝]

≤
∑︁
𝑛∈Z
E
[( ∫ \𝑛+1

\𝑛

Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝]

(3.2.9)

Note that (3.2.8) follows from the above inequality if there exists 𝐶 = 𝐶 (𝑝) > 0 such that

E
[( ∫ \𝑛+1

\𝑛

Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝]
≤ 𝐶E

[
Znw(𝑡, 0)𝑝𝑒𝑝𝑆 [0,1] (𝑡)

]
E(𝑛)𝑡,𝑝 ×


𝑒−

𝑝\2
𝑛

2𝑡 𝑛 ≥ 0,

𝑒−
𝑝\2

𝑛+1
2𝑡 𝑛 < 0.

(3.2.10)

holds for all 𝑛 ∈ Z. We show this bound below.

We first show (3.2.10) for 𝑛 ≥ 0. Recall the definition of 𝑆𝑛 (𝑡) from (3.2.4). Since 𝑆[\𝑛,\𝑛+1] (𝑡)

is greater than Hnw(𝑡, 𝑥) − Hnw(𝑡, \𝑛) + (𝑥 − \𝑛)\𝑛/𝑡 − a(𝑥 − \𝑛)2/2 for any 𝑥 ∈ [\𝑛, \𝑛+1], we
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may write

Hnw(𝑡, 𝑥) ≤ Hnw(𝑡, \𝑛) + 𝑆[\𝑛,\𝑛+1] (𝑡) −
(𝑥 − \𝑛)\𝑛

𝑡
+ a(𝑥 − \𝑛)

2

2
. (3.2.11)

Exponentiating both sides of the inequality yields

Znw(𝑡, 𝑥) ≤ Znw(𝑡, \𝑛)𝑒𝑆 [\𝑛,\𝑛+1 ] (𝑡)𝑒
a (𝑥−\𝑛)2

2 𝑒−
(𝑥−\𝑛) \𝑛

𝑡 ≤ 𝐶Znw(𝑡, \𝑛)𝑒𝑆 [\𝑛,\𝑛+1 ] (𝑡) (3.2.12)

where the last inequality follows since exp(2−1a(𝑥 − \𝑛)2 − 𝑡−1(𝑥 − \𝑛)\𝑛)is upper bounded by a

constant over 𝑥 ∈ [\𝑛, \𝑛+1]. BoundingZnw(𝑡, 𝑥) with 𝐶Znw(𝑡, \𝑛)𝑒𝑆 [\𝑛,\𝑛+1 ] (𝑡) yields

( ∫ \𝑛+1

\𝑛

Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝
≤ 𝐶Znw(𝑡, \𝑛)𝑝𝑒𝑝𝑆 [\𝑛,\𝑛+1 ] (𝑡)

( ∫ \𝑛+1

\𝑛

𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝
.

Taking the expectation for both sides in the above display and using the independence between

Znw(𝑡, ·) and 𝑓𝑡 (·) shows

E
[( ∫ \𝑛+1

\𝑛

Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝]
≤ 𝐶E

[
Znw(𝑡, \𝑛)𝑝𝑒𝑝𝑆 [\𝑛,\𝑛+1 ] (𝑡)

]
E(𝑛)𝑡,𝑝

= 𝐶E
[ (
Znw(𝑡, \𝑛)𝑒

\2
𝑛

2𝑡
) 𝑝
𝑒𝑝𝑆 [\𝑛,\𝑛+1 ] (𝑡)

]
E(𝑛)𝑡,𝑝 𝑒

− 𝑝\2
𝑛

2𝑡 (3.2.13)

By (3.2.5) of Proposition 3.2.1, (Znw(𝑡, \𝑛)𝑒
\2
𝑛

2𝑡 , 𝑆[\𝑛,\𝑛+1] (𝑡)) is same in distribution with

(Znw(𝑡, 0), 𝑆[0,\𝑛+1−\𝑛] (𝑡)).

Note that 𝑒𝑝𝑆 [0, \𝑛+1−\𝑛 ] (𝑡) is bounded above by 𝑒𝑝𝑆 [0,1] (𝑡) since |\𝑛+1 − \𝑛 | ≤ 1. Thus, the right hand

side of the above display is less than 𝐶E[Znw(𝑡, 0)𝑝𝑒𝑝𝑆 [0,1] (𝑡)]E(𝑛)𝑡,𝑝 𝑒−
𝑝\2

𝑛
2𝑡 . This shows (3.2.10) for

𝑛 ≥ 0.

We turn to prove (3.2.10) for 𝑛 < 0. The key part of the proof relies on the fact that the law of

Znw(𝑡, ·) is invariant under the reflection w.r.t. 0, i.e., {Znw(𝑡, 𝑥) : 𝑥 ≥ 0} is same in distribution
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with {Znw(𝑡, 𝑥) : 𝑥 ≤ 0}. By this reflection invariance of the law ofZnw(𝑡, ·), it suffices to bound

E[(
∫ −\𝑛
−\𝑛+1
Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (−𝑥)𝑑𝑥)𝑝] instead of E[(

∫ \𝑛+1
\𝑛
Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥)𝑝]. Note that −\𝑛+1 ≥ 0 for

any 𝑛 ∈ Z<0. By (3.2.12), we can bound Znw(𝑡, 𝑥) by 𝐶Znw(𝑡,−\𝑛+1)𝑒𝑆 [−\𝑛+1 ,−\𝑛 ] (𝑡) for some

constant 𝐶 = 𝐶 (𝑝, a) > 0 for any 𝑥 ∈ [−\𝑛+1,−\𝑛]. This allows us to write

E
[( ∫ −\𝑛

−\𝑛+1
Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (−𝑥)𝑑𝑥

) 𝑝]
≤ 𝐶E

[ (
Znw(𝑡,−\𝑛+1)𝑒

\2
𝑛+1
2𝑡

) 𝑝
𝑒𝑝𝑆 [−\𝑛+1 ,−\𝑛 ] (𝑡)

]
E
[ ( ∫ −\𝑛

−\𝑛+1
𝑒 𝑓𝑡 (−𝑥)𝑑𝑥

) 𝑝]
𝑒−

𝑝\2
𝑛+1
2𝑡 (3.2.14)

in the same way as in (3.2.13). In what follows, we explain how to obtain (3.2.10) for 𝑛 < 0 from

the above inequality. We first bound E[(Znw(𝑡,−\𝑛+1)𝑒
\2
𝑛+1
2𝑡 )𝑝𝑒𝑝𝑆 [−\𝑛+1 ,−\𝑛 ] (𝑡)] by E[Znw(𝑡, 0)𝑝𝑒𝑝𝑆 [0,1] (𝑡)]

in the right side of (3.2.14) and this substitution is justified by (3.2.5) of Proposition 3.2.1. Next,

we identify E[(
∫ −\𝑛
−\𝑛+1

𝑒 𝑓𝑡 (−𝑥)𝑑𝑥)𝑝] with E(𝑛)𝑡,𝑝 in (3.2.14) by change of variable inside the integral.

Combining the outcomes of these two steps with the fact that left side of (3.2.14) is equal to

E[(
∫ \𝑛+1
\𝑛
Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥)𝑝] shows (3.2.10) for 𝑛 < 0. This completes the proof of the desired

result.

Proof of Proposition 3.2.1. (i) Recall the definition of 𝑆[\𝑛,\𝑛+1] (𝑡) from (3.2.4). Rewriting (𝑥−\𝑛)\𝑛
𝑡

into 𝑥2

2𝑡 −
\2
𝑛

2𝑡 −
(𝑥−\𝑛)2

2𝑡 , we get

𝑆[\𝑛,\𝑛+1] (𝑡) = sup
𝑥∈[\𝑛,\𝑛+1]

(
Hnw(𝑡, 𝑥) + 𝑥

2

2𝑡
−Hnw(𝑡, \𝑛) −

\2
𝑛

2𝑡
− (𝑥 − \𝑛)

2

2𝑡
− a(𝑥 − \𝑛)

2

2

)
,

= sup
𝑥∈[0,\𝑛+1−\𝑛]

(
Hnw(𝑡, 𝑥 + \𝑛) +

(𝑥 + \𝑛)2
2𝑡

−Hnw(𝑡, \𝑛) −
\2
𝑛

2𝑡
− 𝑥

2

2𝑡
− a𝑥

2

2

)
(3.2.15)

where second line is due to a change of variable 𝑥 → 𝑥 + \𝑛. By Proposition 3.1.11, for any fixed

𝑡 > 0, the process Hnw(𝑡, 𝑥) + 𝑥2

2𝑡 is stationary in 𝑥. This implies {Hnw(𝑡, 𝑥 + \𝑛) + (𝑥+\𝑛)
2

2𝑡 : 𝑥 ∈

[0, \𝑛+1 − \𝑛]} is same in distribution with {Hnw(𝑡, 𝑥) + 𝑥2

2𝑡 ∈ [0, \𝑛]} for any 𝑛 ∈ Z. Note that

𝑆[0,\𝑛+1−\𝑛] (𝑡) = sup
𝑥∈[0,\𝑛+1−\𝑛]

(
Hnw(𝑡, 𝑥) − Hnw(𝑡, 0) − a𝑥

2

2

)
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= sup
𝑥∈[0,\𝑛+1−\𝑛]

(
Hnw(𝑡, 𝑥) + 𝑥

2

2𝑡
−Hnw(𝑡, 0) − 𝑥

2

2𝑡
− a𝑥

2

2

)
(3.2.16)

Now, (3.2.5) follows by comparing (3.2.16) with (3.2.15) and using the stationarity ofHnw(𝑡, 𝑥) +
𝑥2

2𝑡 , which implies the equivalence of the law of {Hnw(𝑡, 𝑥 + \𝑛) + (𝑥+\𝑛)
2

2𝑡 : 𝑥 ∈ [0, \𝑛+1 − \𝑛]} with

{Hnw(𝑡, 𝑥) + 𝑥2

2𝑡 : 𝑥 ∈ [0, \𝑛+1 − \𝑛]}.

(ii) For any 𝜖 > 0, we seek to show that there exists 𝐶 = 𝐶 (𝑝, a, 𝜖) > 0 such that

E
[
Znw(𝑡, 0)𝑝𝑒𝑝𝑆 [0,1] (𝑡)

]
≤ 𝐶

(
E
[
Znw(𝑡, 0)𝑝+𝜖

] ) 𝑝

𝑝+𝜖
. (3.2.17)

Before proceeding to its proof, we first explain how the above inequality implies (3.2.7). Taking

the logarithm and then dividing both side of above display by 𝑡 and letting 𝑡 →∞, we get

lim sup
𝑡→∞

1
𝑡

logE
[
Znw(𝑡, 0)𝑝𝑒𝑝𝑆 [0,1] (𝑡)

]
≤ 𝑝

𝑝 + 𝜖 lim sup
𝑡→∞

1
𝑡

logE
[
Znw(𝑡, 0)𝑝+𝜖

]
=
𝑝(𝑝 + 𝜖)2 − 𝑝

24
,

where the last equality follows from Proposition 3.1.9. Letting 𝜖 → 0 in the last display, we get

the desired (3.2.6).

It remains to show (3.2.17) which is proved as follows. By Hölder’s inequality, for arbitrary

𝜖 > 0,

E
[
Znw(𝑡, 0)𝑝𝑒𝑝𝑆 [0,1] (𝑡)

]
≤

(
E
[
Znw(𝑡, 0)𝑝+𝜖

] ) 𝑝

𝑝+𝜖
(
E
[
𝑒

𝑝 (𝑝+𝜖 )
𝜖

𝑆 [0,1] (𝑡)
] ) 𝜖

𝑝+𝜖
(3.2.18)

From the last inequality, (3.2.17) follows if we can bound E[𝑒
𝑝 (𝑝+𝜖 )

𝜖
𝑆 [0,1] (𝑡)] by some constant 𝐶 =

𝐶 (𝑝, a, 𝜖) > 0. We will now accomplish this using the tail probability bound of 𝑆[0,1] (𝑡). By

(3.1.16) of Proposition 3.1.10, we know that for any fixed 𝛿 > 0, there exist 𝑠0 = 𝑠0(𝛿, a) > 0 and

𝑐 = 𝑐(𝛿, a) > 0 such that P(𝑆[0,1] (𝑡) ≥ 𝑠) ≤ exp(−𝑐𝑠9/8−𝛿) for all 𝑠 ≥ 𝑠0 and 𝑡 > 1. We choose

𝛿 = 1
17 . One may notice that 9

8 −
1
17 > 1 + 1

17 . With this computation and tail bound of 𝑆[0,1] (𝑡) in
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hand, we write

E[𝑒
𝑝 (𝑝+𝜖 )

𝜖
𝑆 [0,1] (𝑡)] ≤ 𝑒

𝑝 (𝑝+𝜖 )
𝜖

𝑠0 +
∫ ∞

𝑠0

𝑒
𝑝 (𝑝+𝜖 )

𝜖
𝑠−𝑐𝑠1+

1
17
𝑑𝑠. (3.2.19)

The right hand side of the above inequality is a finite constant whose value would depend on 𝑝, a, 𝜖 .

Combining this with (3.2.18) yields the proof of (3.2.17).

�

Proof of Proposition 3.2.2. Recall the notation 𝑀
𝑓𝑡
𝑝 (𝑡, 𝑥) from Definition 3.1.1. We will prove

(3.2.7) using the following claim: there exist 𝐶1 = 𝐶1(𝑝, 𝜖) and 𝐶2 = 𝐶2(𝑝, 𝜖) > 0 such that for

all 𝑡 > 1,

∑︁
𝑛∈Z≥0

𝑒−
𝑝\2

𝑛
2𝑡 E(𝑛)𝑡,𝑝 +

∑︁
𝑛∈Z<0

𝑒−
𝑝\2

𝑛+1
2𝑡 E(𝑛)𝑡,𝑝 ≤ 𝐶1𝑡

1
2(1−𝛽) + 𝐶2

∫
R
𝑒−

𝑝 (1−𝜖 )𝑥2
2𝑡 𝑀

𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥 (3.2.20)

where 𝛽 ∈ (0, 1) is the same constant as in the pseudo-stationarity condition of Definition 3.1.1.

Recall E(𝑛)𝑡,𝑝 = E[(
∫ \𝑛+1
\𝑛

𝑒 𝑓𝑡 (𝑥)𝑑𝑥)𝑝]. After proving (3.2.7) which we do as follows, we will pro-

ceed to prove the above inequality. Taking the logarithm of both sides of (3.2.20) and noting that

log(𝑐1𝑎 + 𝑐2𝑏) ≤ log(max{𝑐1, 𝑐2}) + log 2𝑎 +max{log 𝑎, log 𝑏} for any 𝑎 ≥ 1, 𝑏 > 0, 𝑐1, 𝑐2 > 0,

we get

log
(
r.h.s. of (3.2.20)) ≤ log(max{𝐶1, 𝐶2}) + log 2𝑡

1
2(1−𝛽)

+max
{

log 𝑡
1

2(1−𝛽) , log
( ∫
R
𝑒−

𝑝 (1−𝜖 )𝑥2
2𝑡 𝑀

𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)

)}
. (3.2.21)

Now, we divide both sides by 𝑡 and let 𝑡 → ∞. On doing so, we claim that the limit of the right

hand side is less than 𝑔(𝑝). To see this, we first write

lim sup
𝑡→∞

1
𝑡

max
{

log 𝑡
1

2(1−𝛽) , log(
∫
R

exp(−𝑝(1 − 𝜖)𝑥2/2𝑡)𝑀 𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥))𝑑𝑥)

}
≤ max

{
lim sup
𝑡→∞

1
𝑡

log 𝑡
1

2(1−𝛽) , lim sup
𝑡→∞

1
𝑡

log(
∫
R

exp(−𝑝(1 − 𝜖)𝑥2/2𝑡)𝑀 𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥))𝑑𝑥)

}
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Then, we note

lim
𝑡→∞

1
𝑡

log(max{𝐶1, 𝐶2}) = 0, lim
𝑡→∞

1
𝑡

log 𝑡
1

2(1−𝛽) = 0,

lim inf
𝜖→0

lim sup
𝑡→∞

1
𝑡

log
( ∫
R
𝑒−

𝑝 (1−𝜖 )𝑥2
2𝑡 𝑀

𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)

)
≤ 𝑔(𝑝)

where the last inequality follows by applying (3.1.5). Substituting these limiting results into the

right hand side of (3.2.21) and using the non-negativitiy of 𝑔(𝑝) (Lemma 3.1.13 (i)) conclude

(3.2.7). This proves Proposition 3.2.2 modulo (3.2.20) which is proved as follows.

Note that (3.2.20) bounds a discrete sum by an integral. This passage from discrete to con-

tinuum requires a locally uniform control on the discrete summands of (3.2.21) which we seek to

extract from the tail bounds of (3.1.8). To this aim, for any 𝑛 ∈ Z,

TV 𝑓𝑡 (𝑛) := sup
𝑦∈[\𝑛,\𝑛+1]

| 𝑓𝑡 (𝑥) − 𝑓𝑡 (\𝑛) |. (3.2.22)

Since TV 𝑓𝑡 (𝑛) is the supremum of | 𝑓𝑡 (𝑥) − 𝑓𝑡 (\𝑛) | as 𝑥 varies in [\𝑛, \𝑛+1], we may bound 𝑓𝑡 (𝑥)

by TV 𝑓𝑡 (𝑛) + 𝑓𝑡 (\𝑛) for all 𝑥 ∈ [\𝑛, \𝑛+1]. This allows us to bound E[(
∫ \𝑛+1
\𝑛

𝑒 𝑓𝑡 (𝑥)𝑑𝑥)𝑝] by

E[𝑒𝑝 𝑓𝑡 (\𝑛)𝑒𝑝TV 𝑓𝑡 (𝑛)]. Hereafter, we prove (3.2.20) in two steps. Step 1 will show that there ex-

ist 𝑐1 = 𝑐1(𝑝, 𝜖) > 0 and 𝑐2 = 𝑐2(𝑝, 𝜖) > 0 such that the following inequality

E
[
𝑒𝑝 𝑓𝑡 (\𝑛)𝑒𝑝TV 𝑓𝑡 (𝑛)

]
≤ 𝑐1

(
1 + E

[
𝑒𝑝(1+𝜖/2) 𝑓𝑡 (\𝑛)

] )
≤ 𝑐2

(
1 +

∫ \𝑛+1

\𝑛

𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥

)
(3.2.23)

holds for all 𝑛 ∈ Z. In Step 2, we will prove the following: there exist 𝑐′1 = 𝑐′1(𝑝, 𝜖) > 0 and

𝑐′2 = 𝑐′2(𝑝, 𝜖) > 0 such that for all 𝑡 > 1

∑︁
𝑛∈Z≥0

𝑒−
𝑝\2

𝑛
2𝑡

(
1 +

∫ \𝑛+1

\𝑛

𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥

)
+

∑︁
𝑛∈Z<0

𝑒−
𝑝\2

𝑛+1
2𝑡

(
1 +

∫ \𝑛+1

\𝑛

𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥

)
≤ 𝑐′1𝑡

1
2(1−𝛽) + 𝑐′2

∫
R
𝑒−

𝑝 (1−𝜖 )𝑥2
2𝑡 𝑀

𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥 (3.2.24)

where 𝛽 ∈ (0, 1] is the same constant as in the pseudo-stationarity condition of Definition 3.1.1.
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Combining (3.2.23) with (3.2.24) yields (3.2.20).

Step 1: We start with showing the first inequality of (3.2.23). By denoting 𝑋 := exp(𝑝 𝑓𝑡 (\𝑛)) and

𝑊 := exp(𝑝TV 𝑓𝑡 (𝑛)), we apply Hölder’s inequality to bound E[𝑋𝑊] by

(E[𝑋 (1+𝜖/2)])1/(1+𝜖/2) (E[𝑊 (2+𝜖)/𝜖 ])𝜖/(2+𝜖) .

The first inequality of (3.2.23) will follow from this upper bound once we show

(E[𝑋 (1+𝜖/2)])1/(1+𝜖/2) ≤ 1 + E[𝑋 (1+𝜖/2)], (E[𝑊 (2+𝜖)/𝜖 ])𝜖/(2+𝜖) ≤ 𝑐1 (3.2.25)

for some constant 𝑐1 = 𝑐1(𝑝, 𝜖) > 0. The left hand side inequality is straightforward since 𝑥𝑎 ≤

max{1, 𝑥} for any 𝑥 > 0 and 𝑎 ∈ (0, 1). To prove the right hand side inequality, we use the

tail bound TV 𝑓𝑡 (𝑛). By (3.1.8), we know that for any 𝛿 > 0, there exist 𝑠0 = 𝑠0(𝛿) > 0 and

𝑐 = 𝑐(𝛿) > 0 such that P(TV 𝑓𝑡 (𝑛) > 𝑠) ≤ exp(−𝑐𝑠1+𝛿) for all 𝑠 ≥ 𝑠0 and 𝑡 > 0. With this tail

estimate, we can bound E[𝑊 (2+𝜖)/𝜖 ] by exp(𝑝𝑠0(2 + 𝜖)/𝜖) +
∫ ∞
𝑠0

exp(𝑝𝑠(2 + 𝜖)/𝜖 − 𝑐𝑠1+𝛿)𝑑𝑠 from

above. Since this upper bound is a constant which only depends on 𝑝, 𝛿, 𝜖 , we get the right hand

side inequality of the above display. Combining both proofs shows the first inequality of (3.2.23).

Now, we show the second inequality of (3.2.23). Since 𝑓𝑡 (\𝑛) is bounded above by 𝑓𝑡 (𝑥) +

TV 𝑓𝑡 (𝑛) for all 𝑛 ∈ Z and 𝑥 ∈ [\𝑛, \𝑛+1], we get

E
[
𝑒𝑝(1+𝜖/2) 𝑓𝑡 (\𝑛)

]
≤

∫ \𝑛+1

\𝑛

E
[
𝑒𝑝(1+𝜖/2) 𝑓𝑡 (𝑥)𝑒𝑝(1+𝜖/2)TV 𝑓𝑡 (𝑛)

]
𝑑𝑥

From this upper bound, the second inequality of (3.2.23) follows if we can show that E
[
exp((1 +

𝜖/2) 𝑓𝑡 (𝑥)) exp
(
𝑝(1 + 𝜖/2)TV 𝑓𝑡 (𝑛)

) ]
is bounded by 𝑐1 + 𝑐2𝑀

𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥) for some constants 𝑐1 =

𝑐1(𝑝, 𝜖) > 0 and 𝑐2 = 𝑐2(𝑝, 𝜖) > 0. The proof of this upper bound is similar in spirit to

the argument in the previous paragraph. We claim and prove this bound as follows. By de-

noting 𝑋′ := exp(𝑝 𝑓𝑡 (𝑥) (1 + 𝜖/2)) and 𝑊′ := exp
(
𝑝(1 + 𝜖/2)TV 𝑓𝑡 (𝑛)

)
, we use Hölder’s in-
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equality to bound E[𝑋′𝑊′] ≤ (𝐸 [(𝑋′)𝑢])1/𝑢 (E[(𝑊′)𝑣]1/𝑣) where 𝑢 = (1 + 𝜖)/(1 + 𝜖/2) and

𝑢−1 + 𝑣−1 = 1. Using similar argument as in the proof of (3.2.25), we bound (𝐸 [(𝑋′)𝑢])1/𝑢

by 1 + 𝐸 [(𝑋′)𝑢] and (E[(𝑊′)𝑣]1/𝑣) by some constant which only depends on 𝑝, 𝜖 . Combining

these shows that E[𝑋′𝑊′] is bounded above by 𝑐(1 + 𝐸 [𝑋′)𝑢]). This proves our claim since

𝐸 [(𝑋′)𝑢] = E[exp(𝑝(1 + 𝜖) 𝑓𝑡 (𝑥))] = 𝑀 𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥). As a consequence, we get the second inequal-

ity of (3.2.23).

Step 2: To prove (3.2.24), we first claim
∑
𝑛∈Z≥0 exp(− 𝑝\

2
𝑛

2𝑡 ) and
∑
𝑛∈Z<0 exp(− 𝑝\

2
𝑛+1

2𝑡 ) can be bounded

by 𝐶𝑡1/(2(1−𝛽)) for all 𝑡 > 1 where 𝛽 is the same constant as in the pseudo-stationarity condition

of Definition 3.1.1 and the constant 𝐶 > 0 depends on 𝑝 and 𝛽. Note that 1 ≥ |\𝑛+1 − \𝑛 | ≥

min{1, 𝑐 |𝑛|−𝛽} for some 𝑐 > 0, 𝛽 ∈ (0, 1). Therefore, there exists 𝑐1, 𝑐2 > 0 such that 𝑐1𝑛 ≥

|\𝑛 | ≥ 𝑐2 |𝑛|1−𝛽 for all 𝑛 ∈ Z. Due to the last inequality, we may write

|\𝑛+1 − \𝑛 | ≥ 𝐷max{1, |\𝑛 |−
𝛽

(1−𝛽) } ≥ 𝐷max{1, ( |𝑥 | + 1)−
𝛽

(1−𝛽) }, ∀𝑥 ∈ [\𝑛, \𝑛+1]

for some constant 𝐷 > 0. Since exp(− 𝑝\
2
𝑛

2𝑡 ) and exp(− 𝑝\
2
𝑚+1
2𝑡 ) decreases as 𝑛 ↑ ∞ and 𝑚 ↓ −∞

bounding the Riemann sum with its integral approximation yields

max
{ ∑︁
𝑛∈Z≥0

exp(−
𝑝\2

𝑛

2𝑡
),

∑︁
𝑛∈Z<0

exp(−
𝑝\2

𝑛+1
2𝑡
)
}
≤ 1 + 𝐷−1

∫
R
( |𝑥 | + 1)

𝛽

1−𝛽 exp(− 𝑝𝑥
2

2𝑡
)𝑑𝑥

≤ 1 + 2
𝛽

1−𝛽𝐷−1
∫
R
( |𝑥 |

𝛽

1−𝛽 + 1) exp(− 𝑝𝑥
2

2𝑡
)𝑑𝑥.

where the last inequality follows since ( |𝑥 | + 1)𝛽/(1−𝛽) is bounded by 2𝛽/(1−𝛽) ( |𝑥 |𝛽/(1−𝛽) + 1). The

integral on the right hand side of the above display is bounded by 𝐶𝑡1/(2(1−𝛽)) when 𝑡 > 1 for some

constant 𝐶 = 𝐶 (𝑝, 𝛽) > 0. This proves our claim. To complete the proof of (3.2.24), it remains to

show the following: there exists 𝑡0 = 𝑡0(𝜖) > 0 such that for all 𝑡 > 𝑡0,

∑︁
𝑛∈Z≥0

𝑒−
𝑝\2

𝑛
2𝑡

∫ \𝑛+1

\𝑛

𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥 ≤ 𝐶1 + 𝐶2

∫
R
𝑒−

𝑝 (1−𝜖 )𝑥2
2𝑡 𝑀

𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥, (3.2.26)

94



∑︁
𝑛∈Z<0

𝑒−
𝑝\2

𝑛+1
2𝑡

∫ \𝑛+1

\𝑛

𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥 ≤ 𝐶1 + 𝐶2

∫
R
𝑒−

𝑝 (1−𝜖 )𝑥2
2𝑡 𝑀

𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥. (3.2.27)

for some constants 𝐶1 = 𝐶1(𝑝, 𝜖) > 0 and 𝐶2 = 𝐶2(𝑝, 𝜖). We only prove (3.2.26). The proof of

the other inequality is similar and details are skipped.

For any given 𝜖 > 0, there exists 𝑛0 = 𝑛0(𝜖) ∈ Z≥0 such that \2
𝑛 ≥ (1−𝜖)𝑥2 for all 𝑥 ∈ [\𝑛, \𝑛+1]

and 𝑛 ≥ 𝑛0. We write left side of (3.2.26) as

l.h.s. of (3.2.26) =
∑︁

0≤𝑛<𝑛0 (𝜖)
𝑒−

𝑝\2
𝑛

2𝑡

∫ \𝑛+1

\𝑛

𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥 +

∑︁
𝑛≥𝑛0 (𝜖)

𝑒−
𝑝\2

𝑛
2𝑡

∫ \𝑛+1

\𝑛

𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥.

(3.2.28)

We can bound the last term on the right side of the above display by
∫
R

exp(− 𝑝(1−𝜖)𝑥
2

2𝑡 )𝑀 𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥

since \2
𝑛 ≥ (1 − 𝜖)𝑥2 for all 𝑥 ∈ [\𝑛, \𝑛+1] and 𝑛 ≥ 𝑛0. Using the pointwise upper bound on

𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥) from (3.1.6), we can write

∑︁
0≤𝑛<𝑛0 (𝜖)

𝑒−
𝑝\2

𝑛
2𝑡

∫ \𝑛+1

\𝑛

𝑀
𝑓𝑡
𝑝(1+𝜖) (𝑡, 𝑥)𝑑𝑥 ≤

∑︁
0≤𝑛<𝑛0 (𝜖)

𝑒−
𝑝\2

𝑛
2𝑡 𝑒

𝐶𝑝(1+𝜖) (1+\ 𝛿𝑛0 )+
𝛼\2

𝑛0
2𝑡 ≤ 𝑛0𝑒

𝐶𝑝(1+𝜖) (1+\ 𝛿𝑛0 )+𝛼𝑝\
2
𝑛0 .

where the last inequality follows by bounding 𝑒−
𝑝\2

𝑛0
2𝑡 by 1 for all 0 ≤ 𝑛 < 𝑛0 and taking 𝑡 > 1.

Due to the above bound, the first term in the right side of (3.2.28) is bounded by some constant

𝐶 = 𝐶 (𝑝, 𝜖) > 0. Combining the upper bounds on both summands of (3.2.28) yields (3.2.26).

This completes the proof of (3.2.24) and Proposition 3.2.2.

�

3.2.2 Proof of LimInf𝑝 for all 𝑝 ∈ R>0

Fix any 𝑝, a > 0 . Recall the notation 𝑥𝑝,𝜔 (𝑡) of Lemma 3.1.13. For any 0 < 𝜖 < 𝑝/2

and 𝜔 > 0, let 𝑛𝑝,𝜖,𝜔 (𝑡) ∈ Z be such that 𝑥𝑝−𝜖,𝜔 (𝑡) ∈ [\𝑛𝑝,𝜖 ,𝜔 (𝑡) , \𝑛𝑝,𝜖 ,𝜔 (𝑡)+1] where {\𝑛}𝑛∈Z is

a sequence of grid points (see Definition 3.1.1) such that 𝑓𝑡 satisfies (3.1.8) for all 𝑡 > 0. For

notational convenience, we will denote 𝑛𝑝,𝜖,𝜔 (𝑡) by 𝑛(𝑡) and the interval [\𝑛(𝑡) , \𝑛(𝑡)+1] by 𝐼 (𝑡).
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For convenience, we use the following shorthand notations:

Znw
𝑝,𝜖 (𝑡) := Znw(𝑡, 𝑥𝑝−𝜖,𝜔 (𝑡))𝑒

𝑥2
𝑝−𝜖 ,𝜔 (𝑡)

2𝑡 , (3.2.29)

𝑌𝑝,𝜖 (𝑡) := inf
𝑥∈𝐼 (𝑡)

{
Hnw(𝑡, 𝑥) − Hnw (

𝑡, 𝑥𝑝−𝜖,𝜔 (𝑡)
)
+

(
𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡)

)
𝑥𝑝−𝜖,𝜔 (𝑡)

𝑡
+
a
(
𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡)

)2

2

}
(3.2.30)

As in Section 3.2.1, we rely on the convolution formula of Proposition 3.1.8 to express the mo-

ments of Z 𝑓𝑡 (𝑡, 0) in terms the moment of a integral involving Znw(𝑡, ·) and 𝑒 𝑓𝑡 (·) . To prove

LimInf𝑝, we analyze the expected value of 𝑝-th moment of this integral over the interval 𝐼 (𝑡).

After localization of the integral, as we show, proving LimInf𝑝 requires lower bound on the 𝑝-th

moment of Znw
𝑝,𝜖 (𝑡)𝑒𝑌𝑝,𝜖 (𝑡) and

∫
𝐼 (𝑡) 𝑒

𝑓𝑡 (𝑥)𝑑𝑥. Proposition 3.2.3 and 3.2.4 will provide such lower

bound. In what follows, we first state those propositions; prove LimInf𝑝 and then, proceed to prove

those ensuing propositions.

Proposition 3.2.3. We have lim inf𝜖→0 lim inf𝑡→∞ 1
𝑡

logE[(Znw
𝑝,𝜖 (𝑡))𝑝𝑒𝑝𝑌𝑝,𝜖 (𝑡)] ≥

𝑝3−𝑝
24 .

Proposition 3.2.4. We have

lim inf
𝜖→0

lim inf
𝑡→∞

1
𝑡

log
(
𝑒−

𝑝𝑥𝑝−𝜖 ,𝜔 (𝑡)2
2𝑡 E

[( ∫
𝐼 (𝑡)

𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝] )

≥ 𝑔(𝑝). (3.2.31)

Proof of LimInf𝑝: Due to Proposition 3.1.8, it suffices to show the liminf of 𝑡−1 logE[(
∫ ∞
−∞Z

nw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥))𝑝]

as 𝑡 → ∞ is bounded below by (𝑝3 − 𝑝)/24 + 𝑔(𝑝). SinceZnw(𝑡, 𝑥) and the exponential of 𝑓𝑡 (𝑥)

are both almost surely non-negative,
∫ ∞
−∞Z

nw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥 is lower bounded by the integral of

Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥) over the interval 𝐼 (𝑡). We claim and prove that there exists a constant𝐶 = 𝐶 (𝑝) > 0

such that

E
[( ∫

𝐼 (𝑡)
Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥

) 𝑝]
≥ 𝐶E

[
(Znw

𝑝,𝜖 (𝑡))𝑝𝑒𝑝𝑌𝑝,𝜖 (𝑡)
]
· 𝑒−

𝑝𝑥𝑝−𝜖 ,𝑤 (𝑡)2
2𝑡 E

[( ∫
𝐼 (𝑡)

𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝]

.

(3.2.32)

By assuming this inequality, we first prove LimInf𝑝. We take logarithm of both sides of (3.2.32),
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divide them by 𝑡 and let 𝑡 → ∞. After these set of operations, the liminf of the right hand side as

𝑡 →∞, 𝜖 → 0 will be bounded below by (𝑝3−𝑝)/24+𝑔(𝑝) via the inequalities in Proposition 3.2.3

and 3.2.4. From this, the desired inequality of LimInf𝑝 follows since E[(
∫ ∞
−∞Z

nw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥)𝑝]

exceeds E[(
∫
𝐼 (𝑡)Z

nw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥)𝑝]. In the rest of the proof, we focus on showing (3.2.32). We

first derive it from the following inequality: there exists 𝐶 = 𝐶 (𝑝) > 0 such that for all 𝑥 ∈ 𝐼 (𝑡),

Znw(𝑡, 𝑥) ≥ 𝐶Znw (
𝑡, 𝑥𝑝−𝜖,𝜔 (𝑡)

)
𝑒𝑌𝑝,𝜖 (𝑡) (3.2.33)

Owing to this,
∫
𝐼 (𝑡)Z

nw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥 can be bounded below by the product of𝐶Znw (
𝑡, 𝑥𝑝−𝜖,𝜔 (𝑡)

)
𝑒𝑌𝑝,𝜖 (𝑡)

and
∫
𝐼 (𝑡) 𝑒

𝑓𝑡 (𝑥)𝑑𝑥. This readily implies

E
[( ∫

𝐼 (𝑡)
Znw(𝑡, 𝑥)𝑒 𝑓𝑡 (𝑥)𝑑𝑥

) 𝑝]
≥ 𝐶 E

[
Znw (

𝑡, 𝑥𝑝−𝜖,𝜔 (𝑡)
) 𝑝
𝑒𝑝𝑌𝑝,𝜖 (𝑡)

]
E

[( ∫
𝐼 (𝑡)

𝑒 𝑓𝑡 (𝑥)𝑑𝑥
) 𝑝]

(3.2.34)

From the above inequality, (3.2.32) follows by multiplying and dividing the right hand side of

(3.2.34) by exp(𝑝𝑥2
𝑝−𝜖,𝜔 (𝑡)/2𝑡) and recalling that Znw (

𝑡, 𝑥𝑝−𝜖,𝜔 (𝑡)
) 𝑝 exp(𝑝𝑥2

𝑝−𝜖,𝜔 (𝑡)/2𝑡) is equal

to (Znw
𝑝,𝜖 (𝑡))𝑝 (which is defined in (3.2.29)). It remains to show (3.2.33) which we show as follows.

Recall that 𝑌𝑝,𝜖 (𝑡) is defined as an infimum of the right hand side of (3.2.30) over 𝐼 (𝑡). So for

all 𝑥 ∈ 𝐼 (𝑡),

Hnw(𝑡, 𝑥) ≥ Hnw (
𝑡, 𝑥𝑝−𝜖,𝜔 (𝑡)

)
+ 𝑌𝑝,𝜖 (𝑡) −

(
𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡)

)
𝑥𝑝−𝜖,𝜔 (𝑡)

𝑡
−
a
(
𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡)

)2

2
.

Taking the exponential on the both sides and recallingZnw(𝑡, 𝑥) = 𝑒Hnw (𝑡,𝑥) , we get

Znw(𝑡, 𝑥) ≥ Znw (
𝑡, 𝑥𝑝−𝜖,𝜔 (𝑡)

)
𝑒𝑌𝑝,𝜖 (𝑡)𝑒−

a (𝑥−𝑥𝑝−𝜖 ,𝜔 (𝑡))2
2 𝑒−

(𝑥−𝑥𝑝−𝜖 ,𝜔 (𝑡))𝑥𝑝−𝜖 ,𝜔 (𝑡)
𝑡

By Lemma 3.1.13, for any fixed 𝑝 ∈ R>0, there exists 𝐶′ = 𝐶′(𝑝) > such that for all 𝑡 and

0 < 𝜖 <
𝑝

2 , |𝑥𝑝−𝜖,𝜔 (𝑡) | ≤ 𝐶′𝑡. Invoking this bound on the absolute value of 𝑥𝑝−𝜖,𝜔 (𝑡), we may

97



lower bound the infimum value of

exp(−a(𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡))2/2 − (𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡))𝑥𝑝−𝜖,𝜔 (𝑡)/𝑡)

as 𝑥 varies in 𝐼 (𝑡) in the right hand side of the above display by some constant 𝐶 = 𝐶 (𝑝) > 0

(recall 𝐼 (𝑡) = [\𝑛(𝑡) , \𝑛(𝑡)+1], whose length is no bigger than 1). This yields (3.2.33) and hence,

completes the proof of LimInf𝑝.

�

Proof of Proposition 3.2.3. Our main goal is to show there exists 𝐶 = 𝐶 (𝑝, 𝜖) > 0 such that

E
[
(Znw

𝑝,𝜖 (𝑡))𝑝𝑒𝑝𝑌𝑝,𝜖 (𝑡)
]
≥ 𝐶

(
E
[
(Znw

𝑝,𝜖 (𝑡))𝑝−𝜖
] ) 𝑝

𝑝−𝜖
. (3.2.35)

Before proceeding to the proof of the above inequality, we demonstrate how this implies Propo-

sition 3.2.3. Taking the logarithm of both sides of (3.2.35), then dividing them by 𝑡 and letting

𝑡 →∞ yields that

lim inf
𝑡→∞

1
𝑡

logE
[
(Znw

𝑝,𝜖 (𝑡))𝑝𝑒𝑝𝑌𝑝,𝜖 (𝑡)
]
≥ lim inf

𝑡→∞
1
𝑡

log
(
E
[
(Znw

𝑝,𝜖 (𝑡))𝑝−𝜖
] ) 𝑝

𝑝−𝜖
=

𝑝

𝑝 − 𝜖 ·
(𝑝 − 𝜖)3 − (𝑝 − 𝜖)

24
,

(3.2.36)

To see the last equality, we first note thatZnw
𝑝,𝜖 (𝑡) is same in distribution withZnw(𝑡, 0) by Proposi-

tion 3.1.11. Combining this with Proposition 3.1.9 shows that the limit of 𝑡−1 logE[(Znw
𝑝,𝜖 (𝑡))𝑝−𝜖 ]

is equal to ((𝑝−𝜖)3−(𝑝−𝜖))/24 as 𝑡 goes to∞. As a consequence, we get the above equality. Let-

ting 𝜖 → 0 in the above display, we obtain the desired result of Proposition 3.2.3. Thus, completing

the proof of Proposition 3.2.3 boils down to showing (3.2.35) which we prove as follows.

We write (Znw
𝑝,𝜖 (𝑡))𝑝−𝜖 as a product of 𝑋 := (Znw

𝑝,𝜖 (𝑡))𝑝−𝜖𝑒(𝑝−𝜖)𝑌𝑝,𝜖 (𝑡) and 𝑊 := 𝑒−(𝑝−𝜖)𝑌𝑝,𝜖 (𝑡) .

Applying the Hölder’s inequality, we have E[𝑋𝑊] ≤ E[𝑋 𝑝/(𝑝−𝜖)] (𝑝−𝜖)/𝑝E[𝑊 𝑝/𝜖 ]𝜖/𝑝. Multiplying

both sides of this inequality by E[𝑊 𝑝/𝜖 ]−𝜖/𝑝 and raising both sides to the power 𝑝/(𝑝 − 𝜖) yields

E
[
(Znw

𝑝,𝜖 (𝑡))𝑝𝑒𝑝𝑌𝑝,𝜖 (𝑡)
]
≥

(
E
[
(Znw

𝑝,𝜖 (𝑡))𝑝−𝜖
] ) 𝑝

𝑝−𝜖
(
E
[
𝑒−

𝑝 (𝑝−𝜖 )
𝜖

𝑌𝑝,𝜖 (𝑡)
] )− 𝜖

𝑝−𝜖
. (3.2.37)
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From the above inequality, (3.2.35) follows once we show that E[exp(−𝑝(𝑝 − 𝜖)𝑌𝑝,𝜖 (𝑡)/𝜖)] is

uniformly upper bounded by a constant 𝐶′ = 𝐶′(𝑝, 𝜖) for all 𝑡 > 1. This will be shown hereafter.

For proving this bound, our main tools are the spatial stationarity Hnw(𝑡, 𝑥) + 𝑥2/2𝑡 and the tail

bounds of Proposition 3.1.10. By expressing (𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡))𝑥𝑝−𝜖,𝜔 (𝑡) in the definition of 𝑌𝑝,𝜖 (𝑡) as

2−1 (𝑥2 − (𝑥𝑝−𝜖,𝜔 (𝑡))2 − (𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡))2
)
, we may rewrite 𝑌𝑝,𝜖 (𝑡) as

𝑌𝑝,𝜖 (𝑡) = inf
𝑥∈𝐼 (𝑡)

(
Hnw(𝑡, 𝑥) + 𝑥

2

2𝑡
−Hnw (

𝑡, 𝑥𝑝−𝜖,𝜔 (𝑡)
)
−
𝑥𝑝−𝜖,𝜔 (𝑡)2

2𝑡
−

(
𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡)

)2

2𝑡
+
a
(
𝑥 − 𝑥𝑝−𝜖,𝜔 (𝑡)

)2

2

)
Using stationarity ofHnw(𝑡, 𝑥) + 𝑥2

2𝑡 in Proposition 3.1.11, we can shift the spatial variable 𝑥 of the

above display to the left by 𝑥𝑝−𝜖,𝜔 (𝑡) and obtain the distributional identity

𝑌𝑝,𝜖 (𝑡)
𝑑
= inf
𝑥∈𝐼0 (𝑡)

(
Hnw(𝑡, 𝑥) + 𝑥

2

2𝑡
−Hnw(𝑡, 0) − 𝑥

2

2𝑡
+ a𝑥

2

2

)
= inf
𝑥∈𝐼0 (𝑡)

(
Hnw(𝑡, 𝑥) − Hnw(𝑡, 0) + a𝑥

2

2

)
(3.2.38)

where 𝐼0(𝑡) := [\𝑛(𝑡) − 𝑥𝑝−𝜖,𝜔 (𝑡), \𝑛(𝑡)+1 − 𝑥𝑝−𝜖,𝜔 (𝑡)] ⊆ [−1, 1]. Recall that (3.1.17) of Proposi-

tion 3.1.10 provides a lower tail bound of the random variable inf𝑥∈[0,1]{Hnw(𝑡, 𝑥) − Hnw(𝑡, 0) +
a𝑥2

2𝑡 }. Since the law of the process {Hnw(𝑡, 𝑥) − Hnw(𝑡, 0) + a𝑥2

2𝑡 : 𝑥 ∈ [0, 1]} is same as

{Hnw(𝑡, 𝑥) − Hnw(𝑡, 0) + a𝑥2

2𝑡 : 𝑥 ∈ [0,−1]}, there exist 𝑐 = 𝑐(𝛿, a) > 0, 𝑠0 = 𝑠0(𝛿, a) > 0

such that for all 𝑠 > 𝑠0

P
(

inf
𝑥∈[−1,0]

{Hnw(𝑡, 𝑥) − Hnw(𝑡, 0) + a𝑥
2

2𝑡
} ≤ −𝑠

)
≤ exp(−𝑐𝑠 9

8−𝛿
)
.

Owing to the lower tail bound of inf𝑥∈[0,1]{Hnw(𝑡, 𝑥)−Hnw(𝑡, 0)+ a𝑥2

2𝑡 } and inf𝑥∈[−1,0]{Hnw(𝑡, 𝑥)−

Hnw(𝑡, 0)+ a𝑥2

2𝑡 } and the distributional identity (3.2.38), for any 𝛿 ∈ (0, 1), there exist 𝑐 = 𝑐(𝛿, a) >

0 and 𝑠0 = 𝑠0(𝛿, a) such that P(𝑌𝑝,𝜖 (𝑡) ≤ −𝑠) ≤ exp(−𝑐𝑠9/8−𝛿). We chose 𝛿 = 1
17 . It is straightfor-

ward to see that 9
8 −

1
17 > 1 + 1

17 . As a consequence, we may write

E[𝑒−
𝑝 (𝑝−𝜖 )

𝜖
𝑌𝑝,𝜖 (𝑡)] ≤ 𝑒

𝑝 (𝑝−𝜖 )
𝜖

𝑠0P(𝑌𝑝,𝜖 (𝑡) ≥ −𝑠0) +
𝑝(𝑝 − 𝜖)

𝜖

∫ ∞

𝑠0

𝑒
𝑝 (𝑝−𝜖 )

𝜖
𝑠𝑒−𝑐𝑠

1+ 1
17
𝑑𝑠. (3.2.39)
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The integral on the right hand side of the above inequality is finite and its value is equal to some

constant 𝐶′′ = 𝐶′′(a, 𝑝, 𝜖) > 0. This demonstrates why E[exp(−𝑝(𝑝 − 𝜖)𝑌𝑝,𝜖 (𝑡)/𝜖)] is bounded

by some constant which only depends on a, 𝑝 and 𝜖 . Substituting this bound into (3.2.37) yields

(3.2.35). This completes the proof of Proposition 3.2.3.

�

Proof of Proposition 3.2.4. To prove (3.2.31), we show the following inequality: there exists con-

stant 𝐶 = 𝐶 (𝑝, 𝜖) > 0 such that

E
[( ∫

𝐼 (𝑡)
𝑒 𝑓𝑡 (𝑥)𝑑𝑥

) 𝑝]
≥ 𝐶 |𝐼 (𝑡) |𝑝

(
E
[
𝑒(𝑝−𝜖) 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))

] ) 𝑝

𝑝−𝜖
(3.2.40)

where |𝐼 (𝑡) | is the length of the interval 𝐼 (𝑡) = [\𝑛(𝑡) , \𝑛(𝑡)+1]. Let us explain why the above

inequality is sufficient for proving (3.2.31). Owing to (3.2.40), we may write

log
(
𝑒−

𝑝𝑥2
𝑝−𝜖 ,𝜔 (𝑡)

2𝑡 E
[( ∫

𝐼 (𝑡)
𝑒 𝑓𝑡 (𝑥)𝑑𝑥

) 𝑝] )
≥ −

𝑝𝑥2
𝑝−𝜖,𝜔 (𝑡)

2𝑡
+ 𝑝

𝑝 − 𝜖 logE
[
𝑒(𝑝−𝜖) 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))

]
+ 𝑝 log |𝐼 (𝑡) | + log𝐶

Recall that 1 ≥ |\𝑛−\𝑛+1 | ≥ max{1, 𝑐 |𝑛|−𝛽} for some 𝑐 > 0, 𝛽 ∈ (0, 1) and all 𝑛 ∈ Z by the pseudo-

stationarity condition of Definition 3.1.1 and |\𝑛(𝑡) | ≤ 𝐶𝑡 for some constant 𝐶 = 𝐶 (𝑝, 𝜖) > 0 by

Lemma 3.1.13-(𝑖𝑖). From the inequality |\𝑛−\𝑛+1 | ≥ max{1, 𝑐 |𝑛|−𝛽}, we get |\𝑛 | ≥ 𝑐𝑛1−𝛽 for some

constant 𝑐 = 𝑐(𝛽) > 0. Combining this with the upper bound |\𝑛(𝑡) | ≤ 𝐶𝑡 yields 𝑛(𝑡) ≤ |𝐶𝑡 |1/(1−𝛽)

and hence, shows |𝐼 (𝑡) | ≥ |𝐶𝑡 |−𝛽/(1−𝛽) . Conjugating this last inequality with the upper bound

|𝐼 (𝑡) | ≤ 1 implies that 𝑡−1 log |𝐼 (𝑡) | converges to 0 as 𝑡 → ∞. Now, dividing both sides of the

above display by 𝑡 and letting 𝑡 → ∞ followed by 𝜖 → 0, 𝜔 → 0 shows (3.2.31) if the following

inequality is satisfied

lim inf
𝜖→0

lim inf
𝑡→∞

1
𝑡

(
−
𝑝𝑥2

𝑝−𝜖,𝜔 (𝑡)
2𝑡

+ 𝑝

𝑝 − 𝜖 logE
[
𝑒(𝑝−𝜖) 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))

] )
≥ 𝑔(𝑝). (3.2.41)

We prove this inequality as follows. By taking a factor 𝑝/(𝑝 − 𝜖) out of the parantheses of the left

hand side of the above display and recalling the definition of 𝑔(·) from (3.1.4) of Definition 3.1.1,

100



we may write

l.h.s. of (3.2.41) ≥ lim inf
𝜔→0

lim inf
𝜖→0

𝑝

𝑝 − 𝜖 𝑔(𝑝 − 𝜖).

Since 𝑔 is a convex function, 𝑔 is continuous at 𝑝. This shows that lim inf𝜖→0 𝑝𝑔(𝑝 − 𝜖)/(𝑝 − 𝜖) is

equal to 𝑔(𝑝) and indeed, (3.2.41) holds. Consequently, we get (3.2.31) modulo (3.2.40). The rest

of the proof will show (3.2.40).

Recall the definition of TV 𝑓𝑡 (·) from the proof of Proposition 3.2.2. Since TV 𝑓𝑡 (𝑛(𝑡)) is the

supremum of | 𝑓𝑡 (𝑥) − 𝑓𝑡 (\𝑛(𝑡)) | over 𝑥 ∈ 𝐼 (𝑡), we know that 𝑓𝑡 (𝑥) ≥ 𝑓𝑡 (𝑥𝑝−𝜖,𝜔 (𝑡)) − 2TV 𝑓𝑡 (𝑛(𝑡))

for all 𝑥 ∈ 𝐼 (𝑡). Taking the exponential on both sides of this inequality and then integrating on

𝐼 (𝑡) shows
∫
𝐼 (𝑡) exp( 𝑓𝑡 (𝑥))𝑑𝑥 ≥ |𝐼 (𝑡) | exp( 𝑓𝑡 (𝑥𝑝−𝜖,𝜔 (𝑡)) − 2TV 𝑓𝑡 (𝑛(𝑡))) which after raising to 𝑝-th

power and taking expectation yields

E
[( ∫

𝐼 (𝑡)
𝑒 𝑓𝑡 (𝑥)𝑑𝑥

) 𝑝]
≥ |𝐼 (𝑡) |𝑝E

[
𝑒𝑝 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))𝑒−2𝑝TV 𝑓𝑡 (𝑛(𝑡))

]
(3.2.42)

It will suffice to show that the right hand side of the above display is bounded below by a constant

multiple of (E[𝑒(𝑝−𝜖) 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))])𝑝/(𝑝−𝜖) . To get this lower bound, we write 𝑒(𝑝−𝜖) 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡)) as a

product of two random variables X := 𝑒(𝑝−𝜖) 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))𝑒−(𝑝−𝜖)TV 𝑓𝑡 (𝑛(𝑡)) andW := 𝑒(𝑝−𝜖)TV 𝑓𝑡 (𝑛(𝑡)) .

Using the Hölder inequality, we get E[XW] ≤ (E[X𝑝/(𝑝−𝜖)]) (𝑝−𝜖)/𝑝 (E[W 𝑝/𝜖 ])𝜖/𝑝. Multiplying

both sides of this inequality by (E[W 𝑝/𝜖 ])−𝜖/𝑝 and raising both sides to the power 𝑝/(𝑝 − 𝜖)

results in

E
[
𝑒𝑝 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))𝑒−𝑝TV 𝑓𝑡 (𝑛(𝑡))

]
≥

(
E
[
𝑒(𝑝−𝜖) 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))

] ) 𝑝−𝜖
𝑝

(
E
[
𝑒

𝑝 (𝑝−𝜖 )
𝜖

TV 𝑓𝑡 (𝑛(𝑡))
] )− 𝜖

𝑝−𝜖

By the super-exponential tail bounds for TV 𝑓𝑡 (·) specified in (3.1.8) of Definition 3.1.1, we know

that E[exp(𝑝(𝑝 − 𝜖)TV 𝑓𝑡 (𝑛(𝑡))/𝜖)] is upper bounded by a constant. Combining this observation

with the inequality of the above display yields

E
[
𝑒𝑝 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))𝑒−2𝑝TV 𝑓𝑡 (𝑛(𝑡))

]
≥ 𝐶

(
E
[
𝑒(𝑝−𝜖) 𝑓𝑡 (𝑥𝑝−𝜖 ,𝜔 (𝑡))

] ) 𝑝

𝑝−𝜖
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for some𝐶 > 0. Substituting this into the right hand side of (3.2.42) gives (3.2.40). This completes

the proof.

�

3.2.3 Proof of (3.1.11)

We take 𝑋 (𝑡) = H 𝑓𝑡 (𝑡, 0) + 𝑡
24 , by Theorem 3.1.2 part (a), we see that

lim
𝑡→∞

1
𝑡

logE
[
exp(𝑝𝑋 (𝑡))

]
=
𝑝3

24
+ 𝑔(𝑝).

We conclude (3.1.11) via applying Proposition 3.1.12. It suffices to verify ℎ(𝑝) := 𝑔(𝑝)+ 𝑝
3

24 indeed

satisfies the condition in Proposition 3.1.12. By Lemma 3.1.13, 𝑔(𝑝) is convex, since 𝑔 ∈ 𝐶1(R>0)

as we assume, thus 𝑔′(𝑝) is increasing. Consequently, ℎ′(𝑝) = 𝑔′(𝑝) + 𝑝
2

8 is continuous and strictly

increasing on (0,∞). Moreover, lim𝑝→0 ℎ
′(𝑝) = lim𝑝→0 𝑔

′(𝑝) + 𝑝2

8 = Z and

lim
𝑝→∞

ℎ′(𝑝) = lim
𝑝→∞

𝑔′(𝑝) + 𝑝
2

8
= ∞.

This implies that ℎ′(𝑝) is a continuous bijection from (Z,∞) to (0,∞), so it satisfies the condition

in Proposition 3.1.12. Applying this proposition completes the proof of (3.1.11).

3.3 Proof of Corollary 3.1.4 & Corollary 3.1.6

3.3.1 Proof of Corollary 3.1.4

We consider the following KPZ data (𝑔, { 𝑓𝑡}𝑡>0) with 𝑔 ≡ 0 and { 𝑓𝑡}𝑡>0 satisfies the condi-

tions (𝑖) and (𝑖𝑖) of Corollary 3.1.4. We claim that (𝑔, { 𝑓𝑡}𝑡>0) belongs to the class Hyp (see

Definition 3.1.1). Modulo this claim, by Theorem 3.1.2, we have (3.1.12). Furthermore, since

𝑔 ∈ 𝐶1(R>0) with Z = lim𝑝→0 𝑔
′(𝑝) = 0, by (3.1.11), we get

lim
𝑡→∞

1
𝑡

logP
(
H 𝑓𝑡 (𝑡, 0) + 𝑡

24
> 𝑡𝑠

)
= − sup

𝑠>0

(
𝑝𝑠 − 𝑝3/24

)
= −4

√
2

3
𝑠

3
2 . (3.3.1)
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This shows (3.1.13). To complete the proof of Corollary 3.1.4, it suffices to verify our claim that

(𝑔, { 𝑓𝑡}𝑡>0) with 𝑔 ≡ 0 belongs to the class Hyp, i.e., (𝑔, { 𝑓𝑡}𝑡>0) has to satisfy (3.1.4),(3.1.5),

(3.1.6), (3.1.7) and (3.1.8). Note that (3.1.6) and (3.1.7) follow immediately from the property

(𝑖) of 𝑓𝑡 which says that there exist 𝛿, 𝛼 ∈ (0, 1) and constant 𝐶,𝑇0 > 0 such that | 𝑓𝑡 (𝑥) | ≤

𝐶 (1+|𝑥 |𝛿)+ 𝛼𝑥2

2𝑡 . In what follows, we successively prove (3.1.4), (3.1.5) and (3.1.8) for (𝑔, { 𝑓𝑡}𝑡>0).

PROOF OF (3.1.4): Since { 𝑓𝑡 (·)}𝑡≥0 is a sequence of deterministic initial data, the following

limit

lim
𝑡→∞

1
𝑡

sup
𝑥∈R

(
− 𝑝𝑥

2

2𝑡
+ log 𝑒𝑝 𝑓𝑡 (𝑥)

)
= 0. (3.3.2)

will show (3.1.4). Our main objective is to prove (3.3.2). For all large 𝑡 > 0, owing to the growth

condition | 𝑓𝑡 (𝑥) | ≤ 𝐶 (1 + |𝑥 |𝛿) + 𝛼𝑥2

2𝑡 for some constant 𝐶 > 0 and 𝛿, 𝛼 ∈ (0, 1),

sup
𝑥∈R

{
− 𝑝𝑥

2

2𝑡
− 𝐶𝑝(1 + |𝑥 |𝛿) − 𝑝𝛼𝑥

2

2𝑡

}
︸                                           ︷︷                                           ︸

Sup(1)𝑡

≤ sup
𝑥∈R

{
− 𝑝𝑥

2

2𝑡
+log 𝑒𝑝 𝑓𝑡 (𝑥)

}
≤ sup

𝑥∈R

{
− 𝑝𝑥

2

2𝑡
+ 𝐶𝑝(1 + |𝑥 |𝛿) + 𝑝𝛼𝑥

2

2𝑡

}
︸                                           ︷︷                                           ︸

Sup(2)𝑡

In order to prove (3.3.2), it suffices to show 𝑡−1Sup(1)𝑡 and 𝑡−1Sup(2)𝑡 converge to 0 as 𝑡 tends

to ∞. We only show 𝑡−1Sup(2)𝑡 → 0 as 𝑡 → ∞. The other convergence follows verbatim.

We rewrite Sup(2)𝑡 as 𝐶𝑝 + sup𝑥∈R{−𝑝(1 − 𝛼)𝑥2/2𝑡 + 𝐶𝑝 |𝑥 |𝛿}. We do a change of variable

𝑥 → 𝑡1/(2−𝛿)𝑥 in this new form of Sup(2)𝑡 . As a consequence, we can further rewrite Sup(2)𝑡 as

𝐶𝑝 + 𝑝𝑡𝛿/(2−𝛿) sup𝑥∈R{−(1− 𝛼)𝑥2/2 +𝐶 |𝑥 |𝛿}. Note that the function 𝜙(𝑥) = −(1− 𝛼)𝑥2/2 +𝐶 |𝑥 |𝛿

satisfies 𝜙(0) = 0 and 𝜙(+∞) = 𝜙(−∞) = −∞. Thus, the supremum value of 𝜙(𝑥) as 𝑥 varies in

R is finite. This shows we may upper bound Sup(2)𝑡 by 𝐶𝑝 +𝐶′𝑝𝑡𝛿/(2−𝛿) for some constant 𝐶′ > 0

and lower bound it by 𝐶𝑝. These upper and lower bound when divided by 𝑡 with letting 𝑡 → ∞

converge to 0. This proves the claim that 𝑡−1Sup(2)𝑡 → 0 as 𝑡 →∞ and hence, shows (3.3.2).

PROOF OF (3.1.5): Note that (3.1.5) will follow if the following limit holds

lim
𝑡→∞

1
𝑡

log
( ∫

𝑒−
𝑝 (1−𝜖 )𝑥2

2𝑡 · 𝑒𝑝(1+𝜖) 𝑓𝑡 (𝑥)𝑑𝑥
)
= 0 (3.3.3)
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for all small 𝜖 > 0. Throughout the rest of the proof, we show (3.3.3). Since there exist 𝐶 > 0,

𝛿, 𝛼 ∈ (0, 1) such that | 𝑓𝑡 (𝑥) | ≤ 𝐶 (1 + |𝑥 |𝛿) + 𝛼𝑥2

2𝑡 for all large 𝑡 > 0, we may write

∫
𝑒−

𝑝 ( (1−𝜖 )+𝛼(1+𝜖 ))𝑥2
2𝑡 −𝐶𝑝(1+𝜖) |𝑥 | 𝛿𝑑𝑥 ≤

∫
𝑒−

𝑝 (1−𝜖 )𝑥2
2𝑡 𝑒𝑝(1+𝜖) 𝑓𝑡 (𝑥)𝑑𝑥 ≤ 𝑒𝐶𝑝(1+𝜖)

∫
𝑒−

𝑝 ( (1−𝜖 )−𝛼(1+𝜖 ))𝑥2
2𝑡 +𝐶𝑝(1+𝜖) |𝑥 | 𝛿𝑑𝑥

(3.3.4)

We choose 𝜖 small such that (1 − 𝜖) − 𝛼(1 + 𝜖) > 0. For proving (3.3.3), one needs to show that

the logarithm of the left and right hand side of (3.3.4) when divided by 𝑡 with 𝑡 → ∞ converge

to 0. We only show this for the right hand side and the other convergence follows from similar

argument. For convenience, we denote the right hand of (3.3.4) by RHS𝑡 . By a change of variable

𝑥 → 𝑡1/(2−𝛿)𝑥 inside the integral of RHS𝑡 , we may write

RHS𝑡 = 𝑒𝐶𝑝(1+𝜖)𝑡1/(2−𝛿)
∫

𝑒𝑡
𝛿

2−𝛿
(
−𝑝((1−𝜖)−𝛼(1+𝜖))𝑥2/2+𝐶𝑝(1+𝜖) |𝑥 | 𝛿

)
𝑑𝑥 (3.3.5)

By splitting the domain of the above integral into two parts {𝑥 : |𝑥 | ≤ 1} and {𝑥 : |𝑥 | > 1},

we write RHS𝑡 as sum of exp(𝐶𝑝(1 + 𝜖))𝑡1/(2−𝛿)A1 and exp(𝐶𝑝(1 + 𝜖))𝑡1/(2−𝛿)A2 where A1

and A2 denote the integral in (3.3.5) computed over the region {𝑥 : |𝑥 | ≤ 1} and {𝑥 : |𝑥 | > 1}

respectively. To show 𝑡−1 log RHS𝑡 → 0 as 𝑡 →∞, we first find upper bound toA1 andA2. Since

−𝑝
(
(1 − 𝜖) − 𝛼(1 + 𝜖)

)
𝑥2/2 + 𝐶𝑝 |𝑥 |𝛿 is bounded by some constant 𝐶′ = 𝐶′(𝑝, 𝜖, 𝛼) > 0 for all

|𝑥 | ≤ 1 and all large 𝑡, we can bound A1 by exp(𝐶′𝑡𝛿/(2−𝛿)). By using the inequality |𝑥 |𝛿 < |𝑥 | for

all |𝑥 | > 1 (holds since 𝛿 < 1), we may write

A2 ≤
∫
|𝑥 |>1

𝑒𝑡
𝛿

2−𝛿
(
−𝑝((1−𝜖)−𝛼(1+𝜖))𝑥2/2+𝐶𝑝(1+𝜖) |𝑥 |

)
𝑑𝑥 ≤

∫
𝑒𝑡

𝛿
2−𝛿

(
(−𝑝(1−𝜖)−𝛼(1+𝜖))𝑥2/2+𝐶𝑝(1+𝜖) |𝑥 |

)
𝑑𝑥

where the last inequality is obtained by leveraging the positivity of the integrand. Note that the

integral on the right hand side of the above display is a Gaussian integral. It is straightforward

to see that this Gaussian integral can be bounded above by 𝐶1𝑡
−𝛿/(2(2−𝛿)) exp(𝐶2𝑡

𝛿/(2−𝛿)) for some

𝐶1 = 𝐶1(𝑝, 𝛼, 𝜖) > 0 and 𝐶2 = 𝐶2(𝑝, 𝛼, 𝜖) > 0. Combining the upper bounds on A1 and A2 and
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substituting those into the right hand side of (3.3.5) yields

RHS𝑡 ≤ 𝑒𝐶𝑝(1+𝜖)𝑡1/(2−𝛿)
(
𝑒𝐶
′𝑡 𝛿/(2−𝛿) + 𝐶1𝑡

−𝛿/(2(2−𝛿))𝑒𝐶2𝑡
𝛿/(2−𝛿)

)
(3.3.6)

where 𝐶′, 𝐶1, 𝐶2 are some positive constants depending on 𝑝, 𝛼 and 𝜖 . Taking logarithm on both

sides, divising them by 𝑡 and letting 𝑡 →∞ shows 𝑡−1 log RHS𝑡 converge to 0. This completes the

proof of (3.1.5).

PROOF OF (3.1.8): This trivially follows from the condition (𝑖𝑖) for the sequence of initial data

{ 𝑓𝑡}𝑡>0.

3.3.2 Proof of Corollary 3.1.6

For all 𝑡 > 0, define 𝑓𝑡 : R → R as 𝑓𝑡 (𝑥) := 𝐵(𝑥) + 𝑎+𝑥1{𝑥≥0} − 𝑎−𝑥1{𝑥≤0} and define

𝑔 : (0,∞) → R as 𝑔(𝑝) = 𝑝

2 max
{
( 𝑝2 + 𝑎), 0

}2 where 𝑎 := max{𝑎+, 𝑎−}. We claim and prove that

(𝑔, { 𝑓𝑡}𝑡≥0) belongs to the class Hyp. For now, we assume this claim and show how this implies

(3.1.14) and (3.1.15).

Note that (3.1.14) follows immediately from (3.1.10) of Theorem 3.1.2 since (𝑔, { 𝑓𝑡}𝑡≥0) ∈

Hyp by our assumption. We turn now to show (3.1.15). Suppose that 𝑎 > 0. Then, 𝑔(𝑝) =
𝑝

2 (
𝑝

2 +𝑎)
2 and hence, 𝑔 ∈ 𝐶1(R>0) with Z = lim𝑝→0 𝑔

′(𝑝) = 𝑎2

2 and it is striaghtforward to compute

that sup𝑝>0
{
𝑠𝑝 − 𝑝3

24 − 𝑔(𝑝)
}
= −2

√
2

3 𝑠
3
2 + 𝑠𝑎 − 𝑎3

6 for 𝑠 > 𝑎2

2 . By (3.1.11) of Theorem 3.1.2, for

𝑠 > 𝑎2/2,

lim
𝑡→0

1
𝑡

logP
(
H 𝑓𝑡
𝑡 (0) +

𝑡

24
> 𝑠

)
= sup
𝑝>0

{
𝑝𝑠 − 𝑝

3

24
−

( 𝑝3

8
+ 𝑝

2𝑎

2
+ 𝑝𝑎

2

2
)}

= −2
√

2
3
𝑠

3
2 + 𝑠𝑎 − 𝑎

3

6
.

This verifies (3.1.15) when 𝑎 > 0. Now, we suppose 𝑎 < 0. Notice that 𝑔(𝑝) = 0 if 𝑝 < −2𝑎 and

𝑔(𝑝) = 𝑝

2 (
𝑝

2 + 𝑎)
2 if 𝑝 ≥ −2𝑎. In this case, we also have 𝑔 ∈ 𝐶1(𝑅>0) and Z = lim𝑝→0 𝑔

′(𝑝) = 0.
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By a direct computation, we get

sup
𝑝>0

{
𝑠𝑝 − 𝑝

3

24
− 𝑔(𝑝)} =


−4
√

2
3 𝑠

3
2 0 < 𝑠 ≤ 𝑎2

2

−2
√

2
3 𝑠

3
2 + 𝑠𝑎 − 𝑎3

6 𝑠 ≥ 𝑎2

2 .

This shows (3.1.15) when 𝑎 < 0.

We now turn to prove our claim (𝑔, { 𝑓𝑡}𝑡≥0) ∈ Hyp. For this, we serially show that (𝑔, { 𝑓𝑡}𝑡≥0)

satisfies (3.1.4), (3.1.5), (3.1.6), (3.1.7) and (3.1.8).

PROOF OF (3.1.4): Since E[𝑒𝑝𝐵(𝑥)] = exp(𝑝2 |𝑥 |/2) for any 𝑥 ∈ R, we have logE
[
𝑒𝑝 𝑓𝑡 (𝑥)

]
=

𝑝2 |𝑥 |/2 + 𝑝𝑎+𝑥1{𝑥≥0} − 𝑝𝑎−𝑥1{𝑥≤0} . By a direct computation, we get that the maximum value of

−𝑝𝑥2/2𝑡 + logE
[
𝑒𝑝 𝑓𝑡 (𝑥)

]
over 𝑥 ∈ R is given by 𝑝𝑡

2
(
max{( 𝑝2 + 𝑎), 0}

)2 where 𝑎 = max{𝑎+, 𝑎−}.

Consequently,

lim
𝑡→∞

1
𝑡

sup
𝑥∈R

(
− 𝑝𝑥

2

2𝑡
+ logE

[
𝑒𝑝 𝑓𝑡 (𝑥)

] )
=
𝑝

2
(
max{( 𝑝

2
+ 𝑎), 0}

)2
= 𝑔(𝑝).

This verifies (3.1.4).

PROOF OF (3.1.5): By using the inequality 𝑝𝑎+𝑥1{𝑥≥0} − 𝑝𝑎−𝑥1{𝑥≤0} ≤ 𝑝𝑎 |𝑥 | and the identity

E[𝑒𝑝𝐵(𝑥)] = 𝑒𝑝2 |𝑥 |/2, we get E
[
𝑒𝑝(1+𝜖) 𝑓 (𝑥)

]
≤ 𝑒 |𝑥 |𝑝2 (1+𝜖)2/2+𝑝(1+𝜖)𝑎 |𝑥 |. Owing to this inequality, we

may write

∫
𝑒−

𝑝 (1−𝜖 )𝑥2
2𝑡 E

[
𝑒𝑝(1+𝜖) 𝑓𝑡 (𝑥)

]
𝑑𝑥 ≤

∫
𝑒−

𝑝 (1−𝜖 )𝑥2
2𝑡 𝑒 |𝑥 |𝑝

2 (1+𝜖)2/2+𝑝(1+𝜖)𝑎 |𝑥 |𝑑𝑥. (3.3.7)

We will first consider the case 𝑎 < −𝑝/2 and then, will move onto the case 𝑎 ≥ −𝑝/2. Note

that 𝑔(𝑝) = 0 when 𝑎 < −𝑝/2. For any 𝑎 < 0 and 𝑝 > 0 satisfying 𝑎 < −𝑝/2, there exists

𝜖0 = 𝜖0(𝑎, 𝑝) > 0 such that

𝑝2

2
(1 + 𝜖)2 + 𝑎𝑝(1 + 𝜖) < 0, ∀0 < 𝜖 < 𝜖0.
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Therefore, we can bound the right hand side of (3.3.7) by
∫

exp(−𝑝(1− 𝜖)𝑥2/2𝑡)𝑑𝑡 for all 0 < 𝜖 <

𝜖0. Since the limit of 𝑡−1 log(
∫

exp(−𝑝(1− 𝜖)𝑥2/2𝑡)𝑑𝑡) is equal to 0 as 𝑡 →∞ for all small 𝜖 > 0,

we get

lim sup
𝜖→0

lim sup
𝑡→∞

1
𝑡

log
( ∫

𝑒−
𝑝 (1−𝜖 )𝑥2

2𝑡 E
[
𝑒𝑝(1+𝜖) 𝑓𝑡 (𝑥)

]
𝑑𝑥

)
≤ 0, when 𝑎 < − 𝑝

2
.

Now, we turn to the case 𝑎 ≥ −𝑝/2. We start by noting that the right hand side of (3.3.7) can

be bounded by sum of two Gaussian integrals
∫
𝑒−𝜙(𝑥)𝑑𝑥 and

∫
𝑒−𝜙(−𝑥)𝑑𝑥 where 𝜙(𝑥) := 𝑝(1 −

𝜖)𝑥2/(2𝑡) − 𝑥𝑝2(1 + 𝜖)2/2 − 𝑥𝑝(1 + 𝜖)𝑎. By a direct computation, one can show that
∫
𝑒−𝜙(𝑥)𝑑𝑥

and
∫
𝑒−𝜙(−𝑥)𝑑𝑥 are both equal to

√︃
2𝜋𝑡

𝑝(1−𝜖) exp
(
(𝑝2 (1+𝜖)/2+𝑝(1+𝜖)𝑎)2𝑡

2𝑝(1−𝜖)

)
. With this exact formula, it is

straightforward to check that

lim inf
𝜖→0

lim sup
𝑡→∞

1
𝑡

log
(√︄

2𝜋𝑡
𝑝(1 − 𝜖) exp

( (𝑝2(1 + 𝜖)/2 + 𝑝(1 + 𝜖)𝑎)2𝑡
2𝑝(1 − 𝜖)

))
=
(𝑝2/2 + 𝑝𝑎)2

2𝑝
= 𝑔(𝑝).

(3.3.8)

Taking logarithm of both sides of (3.3.7), dividing them by 𝑡 and letting 𝑡 →∞, 𝜖 → 0 yields

lim inf
𝜖→0

lim sup
𝑡→∞

1
𝑡

log(l.h.s. of (3.3.7)) ≤ lim inf
𝜖→0

lim sup
𝑡→∞

1
𝑡

log(r.h.s. of (3.3.7))

≤ lim inf
𝜖→0

lim sup
𝑡→∞

l.h.s. of (3.3.8) = 𝑔(𝑝).

This completes the proof of (3.1.5).

PROOF OF (3.1.6) & (3.1.7): We know 𝑀
𝑓𝑡
𝑝 (𝑡, 𝑥) = E

[
𝑒𝑝 𝑓𝑡 (𝑥)

]
= 𝑒𝑝

2 |𝑥 |/2+𝑎+𝑥 if 𝑥 > 0 and is

equal to 𝑒𝑝
2 |𝑥 |/2−𝑎−𝑥 if 𝑥 ≤ 0. From this exact formula of 𝑀 𝑓𝑡

𝑝 (𝑡, 𝑥), it is clear that the growth

condition (3.1.6) holds for { 𝑓𝑡}𝑡>0. Since 𝑓𝑡 is same for all 𝑡 > 0, so (3.1.7) is true.

107



PROOF OF (3.1.8): From the definition of 𝑓𝑡 (𝑥), we know

| 𝑓𝑡 (𝑥) − 𝑓𝑡 (𝑦) |
|𝑥 − 𝑦 | 12

=



|𝐵(𝑥)−𝐵(𝑦)+𝑎+ (𝑥−𝑦) |
|𝑥−𝑦 |

1
2

𝑥, 𝑦 > 0,

|𝐵(𝑥)−𝐵(𝑦)−𝑎− (𝑥−𝑦) |
|𝑥−𝑦 |

1
2

𝑥, 𝑦 ≤ 0

|𝐵(𝑥)−𝐵(𝑦)+𝑎+𝑥−𝑎−𝑦 |
|𝑥−𝑦 |

1
2

𝑥 > 0, 𝑦 ≤ 0

|𝐵(𝑥)−𝐵(𝑦)+𝑎+𝑦−𝑎−𝑥 |
|𝑥−𝑦 |

1
2

𝑦 > 0, 𝑥 ≤ 0

(3.3.9)

From the above relations, we intend to show that the following inequality

| 𝑓𝑡 (𝑥) − 𝑓𝑡 (𝑦) |
|𝑥 − 𝑦 | 12

≤ |𝐵(𝑥) − 𝐵(𝑦) |
|𝑥 − 𝑦 | 12

+max( |𝑎+ |, |𝑎− |). (3.3.10)

holds for all 𝑥, 𝑦 ∈ R such that |𝑥−𝑦 | ≤ 1. Note that the above inequality trivially holds from (3.3.9)

when 𝑥, 𝑦 > 0 or, 𝑥, 𝑦 ≤ 0. It remains to show this inequality when 𝑥 and 𝑦 have different sign and

|𝑥 − 𝑦 | ≤ 1. We only show the above inequality when 𝑥 > 0, 𝑦 ≤ 0 and |𝑥 − 𝑦 | ≤ 1. The other case

follows from similar argument and is skipped for brevity. We can bound |𝐵(𝑥) −𝐵(𝑦) + 𝑎+𝑥 − 𝑎−𝑦 |

by |𝐵(𝑥) − 𝐵(𝑦) | + |𝑎+𝑥 − 𝑎−𝑦 | and |𝑎+𝑥 − 𝑎−𝑦 | by max{𝑎+, 𝑎−}(|𝑥 | + |𝑦 |) using triangle inequality.

In the case when 𝑥 > 0, 𝑦 ≤ 0 and |𝑥− 𝑦 | ≤ 1, |𝑥− 𝑦 |1/2 is in fact equal to ( |𝑥 | + |𝑦 |)1/2. Combining

these observations shows

|𝐵(𝑥) − 𝐵(𝑦) + 𝑎+𝑥 − 𝑎−𝑦 |
|𝑥 − 𝑦 | 12

≤ |𝐵(𝑥) − 𝐵(𝑦) | +max{𝑎+, 𝑎−}(|𝑥 | + |𝑦 |)
( |𝑥 | + |𝑦 |)1/2

≤ |𝐵(𝑥) − 𝐵(𝑦) |
|𝑥 − 𝑦 | 12

+max{|𝑎+ |, |𝑎− |}.

The last inequality holds since ( |𝑥 | + |𝑦 |)1/2 = |𝑥 − 𝑦 |1/2 ≤ 1. This shows (3.3.10).

Now, we show how (3.3.10) implies (3.1.8). We define \𝑛 = 𝑛 for all 𝑛 ∈ Z. Fix any 𝑛 ∈ Z. By

(3.3.10), we may bound | 𝑓𝑡 (𝑥) − 𝑓𝑡 (\𝑛) | by |𝐵(𝑥) −𝐵(\𝑛) | +max{|𝑎+ |, |𝑎− |} for any 𝑥 ∈ [\𝑛, \𝑛+1].

As a consequence, for all 𝑠 > max{|𝑎+ |, |𝑎− |},

P
(

sup
𝑥∈[\𝑛,\𝑛+1]

| 𝑓𝑡 (𝑥) − 𝑓𝑡 (\𝑛) | ≥ 𝑠
)
≤ P

(
sup

𝑥∈[\𝑛,\𝑛+1]
|𝐵(𝑥) − 𝐵(\𝑛) | ≥ 𝑠 −max{|𝑎+ |, |𝑎− |}

)
≤ 𝑒−𝑐(𝑠−max{|𝑎+ |,|𝑎− |})2

108



where 𝑐 is a constant which does not depend on 𝑛 or 𝑡. The last inequality follows by applying

reflection principle and tail decay of a Gaussian random variable. This shows (3.1.8).

3.4 Auxiliary Results

3.4.1 Proof of Proposition 3.1.12

To prove (3.1.20), it suffices to show that for 𝑠 > Z ,

lim sup
𝑡→∞

1
𝑡

logP
(
𝑋 (𝑡) > 𝑠𝑡

)
≤ − max

𝑝∈R>0
{𝑝𝑠 − ℎ(𝑝)}︸                                                            ︷︷                                                            ︸

𝔏𝔦𝔪𝔖𝔲𝔭

, lim inf
𝑡→∞

1
𝑡
P
(
𝑋 (𝑡) > 𝑠𝑡

)
≥ − max

𝑝∈R>0
{𝑝𝑠 − ℎ(𝑝)}︸                                                      ︷︷                                                      ︸

𝔏𝔦𝔪ℑ𝔫𝔣

.

(3.4.1)

We first show 𝔏𝔦𝔪𝔖𝔲𝔭. Recall the definition of ℎ. Note that ℎ′ is strictly increasing and has

a continuous inverse. Let us define 𝔮 : (0,∞) → (Z,∞) as 𝔮(𝑠) := (ℎ′)−1(𝑠). Note that the

supremum of 𝑝𝑠 − ℎ(𝑝) is attained when 𝑝 is equal to 𝔮(𝑠) and therefore, sup𝑝>0{𝑝𝑠 − ℎ(𝑝)} =

𝔮(𝑠)𝑠− ℎ(𝔮(𝑠)). By using the Markov’s inequality, we get P(𝑋 (𝑡) > 𝑠𝑡) ≤ 𝑒−𝔮(𝑠)𝑠𝑡E[𝑒𝔮(𝑠)𝑋 (𝑡)]. We

take the logarithm of both sides of this inequality, divide them by 𝑡 and let 𝑡 →∞. Consequently,

lim sup
𝑡→∞

1
𝑡

logP
(
𝑋 (𝑡) > 𝑠𝑡

)
≤ lim sup

𝑡→∞

1
𝑡

(
− 𝔮(𝑠)𝑠𝑡 + logE[𝑒𝔮(𝑠)𝑋 (𝑡)]

)
= −(𝑠𝔮(𝑠) − ℎ(𝔮(𝑠))).

where the last equality follows from (3.1.19). This proves 𝔏𝔦𝔪𝔖𝔲𝔭.

We turn to show 𝔏𝔦𝔪ℑ𝔫𝔣. To this aim, we define 𝔮𝜖 : (0,∞) → (Z,∞) as 𝔮𝜖 (𝑠) = (ℎ′)−1(𝑠+𝜖).

For convenience of notation, we will use 𝔮𝜖 to denote 𝔮𝜖 (𝑠). Fix any 𝑠, 𝑡 > 0. We define a

exponentially tilted probability measure P̃𝑡,𝑠 as

P̃𝑡,𝑠
(
𝑋 (𝑡) ∈ 𝐴

)
:=

1
E
[
𝑒𝔮𝜖 𝑋 (𝑡)

] E[𝑒𝔮𝜖 𝑋 (𝑡)1{𝑋 (𝑡)∈𝐴}]
where 𝐴 is a Borel set in R. We denote the expectation with respect to P̃𝑡,𝑠 by Ẽ𝑡,𝑠. We claim that
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for showing 𝔏𝔦𝔪ℑ𝔫𝔣, it suffices to verify for any fixed 𝑠 > 0,

lim
𝑡→∞
P̃𝑡,𝑠

(
𝑋 (𝑡) ∈ [𝑡𝑠, 𝑡 (𝑠 + 2𝜖)]

)
= 1. (3.4.2)

Let us first explain how 𝔏𝔦𝔪ℑ𝔫𝔣 follows from (3.4.2). From the definition of P̃𝑡,𝑠, we know the

following change of measure formula-

P(𝑋 (𝑡) ≥ 𝑡𝑠) = Ẽ𝑡,𝑠 [𝑒−𝔮𝜖 𝑋 (𝑡)1{𝑋 (𝑡)≥𝑡𝑠}] · E
[
𝑒𝔮𝜖 𝑋 (𝑡)

]
. (3.4.3)

Since {𝑡𝑠 ≤ 𝑋 (𝑡) ≤ 𝑡 (𝑠 + 2𝜖)} is contained in {𝑋 (𝑡) ≥ 𝑡𝑠}, we get the following inequality

Ẽ𝑡,𝑠

[
𝑒−𝔮𝜖 𝑋 (𝑡)1{𝑋 (𝑡)≥𝑡𝑠}

]
≥ Ẽ𝑡,𝑠

[
𝑒−𝔮𝜖 𝑋 (𝑡)1{𝑡𝑠≤𝑋 (𝑡)≤𝑡 (𝑠+2𝜖)}

]
≥ 𝑒−(𝑠+2𝜖)𝑡𝔮𝜖 P̃𝑡,𝑠

(
𝑡𝑠 ≤ 𝑋 (𝑡) ≤ 𝑡 (𝑠 + 2𝜖)

)
.

(3.4.4)

Substituting this inequality into the right hand side of (3.4.3) yields

P
(
𝑋 (𝑡) ≥ 𝑡𝑠

)
≥ 𝑒−(𝑠+2𝜖)𝑡𝔮𝜖E

[
𝑒𝔮𝜖 𝑋 (𝑡)

]
P̃𝑡,𝑠

(
𝑠𝑡 ≤ 𝑋 (𝑡) ≤ (𝑠 + 2𝜖)𝑡

)
. (3.4.5)

We take the logarithm of both sides of the above inequality and divide them by 𝑡 for both sides

of (3.4.5). Letting 𝑡 →∞, we conclude that

lim inf
𝑡→∞

1
𝑡

logP
(
𝑋 (𝑡) ≥ 𝑡𝑠

)
≥ −(𝑠 + 2𝜖)𝔮𝜖 + lim inf

𝑡→∞
1
𝑡
E
[
𝑒𝔮𝜖 𝑋 (𝑡)

]
= −(𝑠 + 2𝜖)𝔮𝜖 + ℎ(𝔮𝜖 )

where the first inequality follows from (3.4.2) and the second equality follows from (3.1.19). Re-

call that lim𝜖→0 𝔮𝜖 = 𝔮(𝑠). By the continuity of ℎ, as 𝜖 → 0, the right hand side in the above display

converges to −𝑠𝔮(𝑠) + ℎ(𝔮(𝑠)). Recall that −𝑠𝔮(𝑠) + ℎ(𝔮(𝑠)) is equal to −max𝑝∈R>0{𝑠𝑝 − ℎ(𝑝)}.

This completes demonstrating how 𝔏𝔦𝔪ℑ𝔫𝔣 follows from (3.4.2). Throughout the rest, we prove

(3.4.2).

In order to prove (3.4.2), it is enough to demonstrate lim𝑡→∞ P̃𝑡,𝑠
(
𝑋 (𝑡) ∉ [𝑡𝑠, 𝑡 (𝑠 + 2𝜖)]

)
= 0.
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This follows from the combination of following results:

lim sup
𝑡→∞

1
𝑡

log P̃𝑡,𝑠 (𝑋 (𝑡) < 𝑡𝑠) < 0, lim sup
𝑡→∞

1
𝑡

log P̃𝑡,𝑠
(
𝑋 (𝑡) > 𝑡 (𝑠 + 2𝜖)

)
< 0. (3.4.6)

We proceed to prove these below. We first show lim𝑡→∞ 𝑡−1 log P̃𝑡,𝑠 (𝑋 (𝑡) < 𝑡𝑠) < 0. By Markov’s

inequality, for _ > 0,

P̃𝑡,𝑠 (𝑋 (𝑡) < 𝑡𝑠) ≤ 𝑒_𝑠𝑡Ẽ𝑡,𝑠 [𝑒−_𝑋 (𝑡)] = 𝑒_𝑠𝑡
E[𝑒(𝔮𝜖−_)𝑋 (𝑡)]
E[𝑒𝔮𝜖 𝑋 (𝑡)]

,

We take the logarithm of both sides and divide them by 𝑡. Letting 𝑡 → ∞ and utilizing (3.1.19),

we get

lim sup
𝑡→∞

1
𝑡

log P̃𝑡,𝑠
(
𝑋 (𝑡) < 𝑡𝑠

)
≤ _𝑠 + ℎ(𝔮𝜖 − _) − ℎ(𝔮𝜖 )

The desired result will follow from the above inequality if we can find a positive _ such that the

right hand side above is negative. To find such _, we consider 𝐻 : (0,∞) → R as 𝐻 (_) :=

_𝑠 + ℎ(𝔮𝜖 − _) − ℎ(𝔮𝜖 ). It is straightforward that 𝐻 (0) = 0 and 𝐻′(0) = 𝑠 − ℎ′(𝔮𝜖 ) = −𝜖 < 0 since

𝔮𝜖 := (ℎ′)−1(𝑠 + 𝜖). Since 𝐻 has continuous derivative, there exists _∗ > 0 such that 𝐻 (_∗) < 0.

This implies lim sup𝑡→∞ 𝑡−1 log P̃(𝑋 (𝑡) < 𝑡𝑠) < 0 which concludes the desired result.

Now we show lim sup𝑡→∞ 𝑡−1 log P̃𝑡,𝑠 (𝑋 (𝑡) > 𝑡 (𝑠 + 2𝜖)) < 0. By Markov’s inequality, for

_ > 0,

P̃𝑡,𝑠
(
𝑋 (𝑡) > 𝑡 (𝑠 + 2𝜖)

)
≤ 𝑒−_(𝑠+2𝜖)𝑡Ẽ𝑡,𝑠

[
𝑒_𝑋 (𝑡)

]
= 𝑒−_𝑡 (𝑠+2𝜖)

E[𝑒(𝔮𝜖 +_)𝑋 (𝑡)]
E[𝑒𝔮𝜖 𝑋 (𝑡)]

.

In the same way as in the previous case, we get

lim sup
𝑡→∞

1
𝑡

logP
(
𝑋 (𝑡) > 𝑡 (𝑠 + 2𝜖)

)
≤ −_(𝑠 + 2𝜖) + ℎ(𝔮𝜖 + _) − ℎ(𝔮𝜖 ).
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To conclude the desired result, we will find _ > 0 such that the right hand side is less than 0. Like

as in before, we consider 𝐻 : (0,∞) → R as 𝐻 (_) := −_(𝑠 + 2𝜖) + ℎ(𝔮𝜖 +_) − ℎ(𝔮𝜖 ) for which we

know that 𝐻 (0) = 0, 𝐻′(0) = −𝑠 − 2𝜖 + ℎ′(𝔮𝜖 ) = −𝜖 . Combination of these observations with the

continuity of 𝐻′ yields the existence _ > 0 such that the right hand side of the above inequality is

less than 0. This proves the second limiting result of (3.4.6) and hence, completes the proof.

3.4.2 Proof of Lemma 3.1.13

For proving (i), we first note that the logarithm of 𝑀 𝑓𝑡
𝑝 (𝑡, 𝑥) is a convex function of 𝑝 ∈ (0,∞)

which can be checked by verifying that the second derivative of log𝑀 𝑓𝑡
𝑝 (𝑡, 𝑥) w.r.t. 𝑝 stays positive

for all 𝑝 ∈ (0,∞). Since the convexity is preserved under taking pointwise supremum and/or,

limit of a sequence of convex functions, the convexity of 𝑔(𝑝) for 𝑝 ∈ (0,∞) now follows from

its definition and the fact that log𝑀 𝑓𝑡
𝑝 (𝑡, 𝑥) is convex in 𝑝. To see the non-negativity of 𝑔(𝑝), for

𝑡 > 𝑇0, we write

sup
𝑥∈R

(−𝑝𝑥2

2𝑡
+ log𝑀 𝑓𝑡

𝑝 (𝑡, 𝑥)
)
≥ − 𝑝𝐿

2

2𝑡
+ sup
𝑥∈[−𝐿,𝐿]

log𝑀 𝑓𝑡
𝑝 (𝑡, 𝑥) ≥ −

𝑝𝐿2

2𝑡
− 𝐾

where the first inequality follows noting that the function −𝑝𝑥
2

2𝑡 takes its minimum value in the

interval [−𝐿, 𝐿] at ±𝐿 and the second inequality is obtained by applying the lower bound condition

(3.1.7) on 𝑓𝑡 . By dividing both sides of the above inequality by 𝑡 and letting 𝑡 go to∞, the limit of

the left hand side yields 𝑔(𝑝) whereas the right hand side goes to 0. This proves that 𝑔(𝑝) ≥ 0 for

all 𝑝 > 0.

We turn to show (ii). We first prove that for every 𝑝 > 0 and 𝜔 > 0, the set MAX 𝑓
𝑝,𝜔 (𝑡) is

nonempty. By the definition of supremum, it suffices to prove sup𝑦∈R{−
𝑝𝑦2

2𝑡 + log𝑀 𝑓𝑡
𝑝 (𝑡, 𝑦)} is

finite. By the growth condition (3.1.6), we know that for all 𝑡 > 0,

− 𝑝𝑥
2

2𝑡
+ log𝑀 𝑓𝑡

𝑝 (𝑡, 𝑥) ≤ −
𝑝𝑥2

2𝑡
+ 𝐶 |𝑥 | + 𝛼𝑝𝑥

2

2𝑡
+ 𝐶 =

𝑝(𝛼 − 1)𝑥2

2𝑡
+ 𝐶 |𝑥 | + 𝐶.
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Since 𝛼 < 1, the supremum of the right hand side over 𝑥 ∈ R is finite, which implies sup𝑦∈R{−
𝑝𝑦2

2𝑡 +

log𝑀 𝑓𝑡
𝑝 (𝑡, 𝑦)} is finite. This shows MAX 𝑓

𝑝,𝜔 (𝑡) is nonempty.

It remains to show that for fixed 𝑝, 𝜔 > 0, there exists𝑇0 and𝐶 = 𝐶 (𝑝, 𝜔), |𝑥𝑞,𝜔 (𝑡) | ≤ 𝐶𝑡 for all

𝑡 > 𝑇0 and 𝑝

2 < 𝑞 < 2𝑝. We prove this by contradiction. Suppose that |𝑥𝑞,𝜔 (𝑡) | exceeds 4𝐶𝑡
𝑞(1−𝛼) for

some 𝑞 ∈ [𝑝/2, 2𝑝] where 𝐶 is the constant in the growth condition (3.1.6) of 𝑓𝑡 . In this occasion,

we will show that the lower bound to −𝑞𝑥2
𝑞,𝜔 (𝑡)/2𝑡+𝑀

𝑓𝑡
𝑞 (𝑡, 𝑥𝑞,𝜔 (𝑡)) has to exceeds its upper bound.

Below, we separately compute an upper bound and a lower bound to −𝑞𝑥2
𝑞,𝜔 (𝑡)/2𝑡+𝑀

𝑓𝑡
𝑞 (𝑡, 𝑥𝑞,𝜔 (𝑡)).

Before proceeding to those computations, we note that for any 𝑝

2 ≤ 𝑞 ≤ 2𝑝, 𝑥 ∈ R and 𝑡 ∈ R>0

(using Hölder’s inequality when 𝑓𝑡 (𝑥) is random),

−𝑞𝑥
2

2𝑡
+ 2𝑞
𝑝

log𝑀 𝑓𝑡
𝑝/2(𝑡, 𝑥) ≤ −

𝑞𝑥2

2𝑡
+ log𝑀 𝑓𝑡

𝑞 (𝑡, 𝑥) ≤ −
𝑞𝑥2

2𝑡
+ 𝑞

2𝑝
log𝑀 𝑓𝑡

2𝑝 (𝑡, 𝑥). (3.4.7)

UPPER BOUND TO −𝑞𝑥2
𝑞,𝜔 (𝑡)/2𝑡 +𝑀

𝑓𝑡
𝑞 (𝑡, 𝑥𝑞,𝜔 (𝑡)): By the growth condition (3.1.6), the right hand

side of the second inequality in (3.4.7) is bounded above by −𝑞(1 − 𝛼)𝑥2/2𝑡 + 𝐶 |𝑥 |. Plugging the

bound on |𝑥𝑞,𝜔 (𝑡) | into this bound shows that −𝑞𝑥2
𝑞,𝜔 (𝑡)/2𝑡 + log𝑀 𝑓𝑡

𝑞 (𝑡, 𝑥𝑞,𝜔 (𝑡)) is bounded above

by the maximum of −𝑞(1 − 𝛼)𝑥2/2𝑡 + 𝐶 |𝑥 | over 𝑥 ∈ R, which equals − 2𝐶2𝑡
𝑞(1−𝛼) .

LOWER BOUND TO −𝑞𝑥2
𝑞,𝜔 (𝑡)/2𝑡 + 𝑀

𝑓𝑡
𝑞 (𝑡, 𝑥𝑞,𝜔 (𝑡)): We claim and prove that −𝑞𝑥2

𝑞,𝜔 (𝑡)/2𝑡 +

𝑀
𝑓𝑡
𝑞 (𝑡, 𝑥𝑞,𝜔 (𝑡)) is bounded below by − 𝑞𝐿

2

2𝑡 − 4𝐾 − 𝛿 where 𝐾 is the same constant as in the lower

bound condition (3.1.7) of 𝑓𝑡 .

Recall that 𝑥𝑞,𝜔 (𝑡) ∈ MAX 𝑓
𝑞,𝜔 (𝑡). Referring to (3.1.21),

−
𝑞𝑥𝑞,𝜔 (𝑡)2

2𝑡
+ log𝑀 𝑓𝑡

𝑞 (𝑡, 𝑥𝑞,𝜔 (𝑡)) ≥ sup
𝑦∈R

{
− 𝑞𝑦

2

2𝑡
+ log𝑀 𝑓𝑡

𝑞 (𝑡, 𝑦)
}
− 𝜔

Due to the first inequality of (3.4.7), − 𝑞𝑦
2

2𝑡 +log𝑀 𝑓𝑡
𝑞 (𝑡, 𝑦) is bounded below by−𝑞𝑦2/2+2𝑝−1𝑞 log𝑀 𝑓𝑡

𝑝/2(𝑡, 𝑦)

for all 𝑦 ∈ R. Substituting this inequality into the right hand side of the above display and restrict-

113



ing the supremum over the interval [−𝐿, 𝐿], we get

−
𝑞𝑥𝑞,𝜔 (𝑡)2

2𝑡
+ logE

[
𝑒𝑞 𝑓𝑡 (𝑥𝑞,𝜔 (𝑡))

]
≥ max
𝑦∈[−𝐿,𝐿]

{
− 𝑞𝑦

2

2𝑡
+ 2𝑞
𝑝

log𝑀 𝑓𝑡
𝑝/2(𝑡, 𝑦)

}
− 𝜔

where the constant 𝐿 is same as in the lower bound condition (3.1.7) for log𝑀 𝑓𝑡
𝑝/2(𝑡, 𝑦). One may

bound the right hand side of the above display from below by−𝑞𝐿2/2𝑡+2𝑝−1𝑞max𝑦∈[−𝐿,𝐿]{log𝑀𝑝/2(𝑡, 𝑦)}−

𝜔. Since 2𝑝−1𝑞max𝑦∈[−𝐿,𝐿]{log𝑀𝑝/2(𝑡, 𝑦)} bounded below by −4𝐾 due to (3.1.7) and 𝑞 < 2𝑝,

we find the right hand side in the above display is lower bounded by − 𝑞𝐿
2

2𝑡 − 4𝐾 − 𝜔.

As we have shown above, if |𝑥𝑞,𝜔 (𝑡) | > 4𝐶𝑡
𝑞(1−𝛼) , our lower bound to − 𝑞𝑥𝑞,𝜔 (𝑡)

2

2𝑡 + log𝑀 𝑓𝑡
𝑞 (𝑡, 𝑧)

(which is − 𝑞𝐿
2

2𝑡 − 4𝐾 − 𝛿) exceeds the upper bound (which is − 2𝐶2𝑡
𝑞(1−𝛼) ) for all large 𝑡. This is a

contradiction. Hence, the result follows.
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Chapter 4: Lyapunov exponents of the half-line SHE

Chapter Abstract: We consider the half-line stochastic heat equation (SHE) with

Robin boundary parameter 𝐴 = −1
2 . Under narrow wedge initial condition, we com-

pute every positive (including non-integer) Lyapunov exponents of the half-line SHE.

As a consequence, we prove a large deviation principle for the upper tail of the half-

line KPZ equation under Neumann boundary parameter 𝐴 = −1
2 with rate function

Φhf
+ (𝑠) = 2

3 𝑠
3
2 . This confirms the prediction of [KLD18a, MV18] for the upper tail

exponent of the half-line KPZ equation.

This chapter is available on arxiv [Lin20b].

4.1 Introduction

In this paper, we study the half-line KPZ equation, namely the KPZ equation on R≥0, with

Neumann boundary parameter 𝐴. Introduced in [CS18], the equation is formally written as


𝜕𝑡Hhf(𝑡, 𝑥) = 1

2𝜕𝑥𝑥H
hf(𝑡, 𝑥) + 1

2 (𝜕𝑥H
hf(𝑡, 𝑥))2 + b (𝑡, 𝑥),

𝜕𝑥Hhf(𝑡, 𝑥)
���
𝑥=0

= 𝐴,

(4.1.1)

where b (𝑡, 𝑥) is the Gaussian space time white noise. The solution theory of (4.1.1) is ill-posed

due to the non-linearity and the space-time white noise. One way to properly define the solution

is to consider the Hopf-Cole solution Hhf(𝑡, 𝑥) := logZhf(𝑡, 𝑥) where Zhf solves the half-line

stochastic heat equation (SHE) with Robin boundary parameter 𝐴, i.e.


𝜕𝑡Zhf(𝑡, 𝑥) = 1

2𝜕𝑥𝑥Z
hf(𝑡, 𝑥) + 1

2Z
hf(𝑡, 𝑥)b (𝑡, 𝑥),

𝜕𝑥Zhf(𝑡, 𝑥)
���
𝑥=0

= 𝐴Zhf(𝑡, 0).
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We say Zhf is a solution to the half-line SHE if for every 𝑡 > 0, Zhf(𝑡, ·) is adapted to the sigma

algebra generated by Zhf(0, ·) and the space-time white noise up to time 𝑡, and satisfies the mild

formulation

Zhf(𝑡, 𝑥) =
∫
R≥0

𝑝hf
𝑡 (𝑥, 𝑦)Zhf(0, 𝑦)𝑑𝑦 +

∫ 𝑡

0

∫
R≥0

𝑝hf
𝑡−𝑠 (𝑥, 𝑦)Zhf(𝑠, 𝑦)b (𝑠, 𝑦)𝑑𝑦𝑑𝑠,

For fixed 𝑥 ∈ R≥0, 𝑝hf
𝑡 (𝑥, 𝑦) satisfies the half-line heat equation 𝜕𝑡 𝑝hf

𝑡 (𝑥, 𝑦) = 1
2𝜕𝑦𝑦𝑝

hf
𝑡 (𝑥, 𝑦) for all

𝑦 > 0 with boundary condition 𝑝hf
0 (𝑥, 𝑦) = 𝛿𝑥 (𝑦) and 𝜕𝑥 𝑝hf(𝑡, 0) = −𝐴𝑝hf(𝑡, 0). [CS18] proves

the existence, uniqueness and positivity of Zhf for non-negative boundary parameter 𝐴 and later

[Par19b] extends these results to the scope of all 𝐴 ∈ R. As a consequence, the Hopf-Cole solution

Hhf(𝑡, 𝑥) = logZhf(𝑡, 𝑥) is well-defined. Note that the solution to (4.1.1) can also be formulated

in other different but equivalent ways, see [GPS20, GH19].

The half-line KPZ equation plays an important role characterizing how the surface grows subject

to a boundary. In addition, it is the (weak) scaling limit of various half space models lying in the

half-space KPZ universality [Wu18, CS18, Par19a]. Interestingly, such half-space random growth

models usually exhibit a phase transition depending on the strength of repulsion/attraction at the

boundary, which is characterized by the boundary parameter. Such phase transition is related

to wetting/depinning transition which goes back to [Kar85, Kar87] and was proved for various

discrete half-space models [BR01, SI04, BBCS18].

For the half-line KPZ equation, we restrict ourselves in a particular initial condition called narrow

wedge initial condition, which corresponds to settingZhf(0, 𝑥) to be a Dirac-delta function at zero.

It is widely believed that the fluctuation ofHhf(2𝑡, 0) at late time exhibits a phase transition at 𝐴 =

−1
2 [Par19b, Conjecture 1.2]. More precisely, the fluctuation ofHhf(2𝑡, 0) will be Gaussian/Tracy-

Widom GOE/GSE [TW96] depending on whether the boundary parameter 𝐴 is smaller than, equal

to or larger than −1
2 .
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[Par19b, Theorem 1.1] (also see [BBCW18, Remark 1.1]) shows that when 𝐴 = −1
2 , for all 𝑠 ∈ R,

lim
𝑡→∞
P
(Hhf(2𝑡, 0) + 𝑡

12

𝑡
1
3

≤ 𝑠
)
= 𝐹GOE(𝑠), (4.1.2)

where 𝐹GOE(𝑠) is distribution function of the Tracy-Widom GOE distribution [TW96]. The key

ingredient to arriving at (4.1.2) is the exact formula for the Laplace transform of Zhf(2𝑡, 0) + 𝑡
12

developed in [BBCW18, Par19b], see Theorem 4.1.3. The conjectured Gaussian/GSE fluctuation

for 𝐴 < −1
2 and 𝐴 > −1

2 are supported in a non-rigorous way by the works [GLD12, BBC16,

DNKDT19, KLD20]. In the GSE region 𝐴 > −1
2 , an exact formula of the Laplace transform of

Zhf(2𝑡, 0) is also conjectured in the aforementioned works.

In this paper, we focus on the critical regime 𝐴 = −1
2 .

Having considered the limit theorem (4.1.2), it is natural to think about the large deviation principle

(LDP), i.e. the probability that Hhf(2𝑡, 0) + 𝑡
12 deviates from zero in a size of 𝑡, as 𝑡 → ∞. It is

expected that for 𝑠 > 0,

− lim
𝑡→∞

1
𝑡2

logP
(
Hhf(2𝑡, 0) + 𝑡

12
< −𝑠𝑡

)
= Φhf

− (𝑠) (lower tail)

− lim
𝑡→∞

1
𝑡

logP
(
Hhf(2𝑡, 0) + 𝑡

12
> 𝑠𝑡

)
= Φhf

+ (𝑠). (upper tail)

Note that the upper and lower tail LDP have different speeds (𝑡 vs 𝑡2). One way to explain such

phenomenon is to view Hhf(2𝑡, 0) as the free energy of a half-space continuum directed random

polymer with a wall at 𝑥 = 0. For various discrete/continuum polymers, the 𝑡 vs 𝑡2 phenomenon is

observed and explained in [LDMS16, BGS17, DT19]. Here, let we provide a different explanation.

If we replace 𝑠 with 𝑡
2
3 𝑠 in (4.1.2), the right hand side of (4.1.2) becomes 𝐹GOE(𝑡

2
3 𝑠). Since Tracy-

Widom GOE distribution has left and right tail: as 𝑠 → ∞ 𝐹GOE(−𝑠) ∼ exp(− 𝑠324 ), 1 − 𝐹GOE(𝑠) ∼

exp(−2
3 𝑠

3
2 ), see [TW09]. Hence, we recover the 𝑡2 and 𝑡 speed of LDP for the lower and upper tail.

[Tsa18, Corollary 1.3] proves the LDP for the lower tail and identifies the rate function Φhf
− (𝑠).

In this paper, we prove that the upper tail LDP holds with Φhf
+ (𝑠) = 2

3 𝑠
3
2 . Note that this is the first
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rigorous result concerning the upper tail LDP of the half-space models in the KPZ universality

class. The 3
2 -exponent for the upper tail also arises in the work of [KLD18a, MV18], where the

LDP for half-line KPZ equation at short time was studied.

The upper tail LDP of the half-line KPZ equation is closely related to the Lyapunov exponent of

the half-line SHE. More precisely, for 𝑝 ∈ R>0 we call the 𝑝-th Lyapunov exponent of the SHE

to be limit of 𝑡−1 logE
[
Zhf(2𝑡, 0)𝑝

]
as 𝑡 → ∞. If such limit exists for every 𝑝, in the spirit of

Gärtner-Ellis theorem, Hhf(2𝑡, 0) = logZhf(2𝑡, 0) satisfies a LDP with rate function to be the

Legendre-Fenchel transform of the Lyapunov exponents (as a function of 𝑝). We remark that

the Lyapunov exponents also capture the nature of intermittency, which is a universal property

for the random fields with multiplicative noise and has been studied extensive in the literature

[GM90, CM94, GKM07, FK09, CJK13, CJKS13, CD15, Che15, BC16, KKX17].

4.1.1 Main result and proof idea

From now on, we useZhf(2𝑡, 0) to denote the solution to the half-line SHE with Robin bound-

ary parameter 𝐴 = −1
2 and Dirac-delta initial data Zhf(0, 𝑥) = 𝛿𝑥=0. Our main contribution is

rigorously computing the Lyapunov exponents of the half-line SHE.

Theorem 4.1.1 (Lyapunov exponents and upper tail LDP). We have

(i) For every 𝑝 ∈ R>0, one has lim𝑡→∞
1
𝑡

logE
[
Zhf(2𝑡, 0)𝑝 exp( 𝑝𝑡12 )

]
=

𝑝3

3 .

(ii) For every 𝑠 ∈ R>0, one has the upper tail LDP: − lim𝑡→∞
1
𝑡

logP
(
Hhf(2𝑡, 0) + 𝑡

12 > 𝑠𝑡
)
=

Φ
hf
+ (𝑠) = 2

3 𝑠
3
2 .

Remark 4.1.2. The above upper tail LDP rate function matches with the right tail of the GOE,

which is the limiting distribution in (4.1.2). Such matching between the upper tail LDP rate func-

tion of KPZ equation and the right tail of the limiting Tracy GUE/GOE/Baik-Rains distribution

has been predicted in [LDMS16, LDMRS16, MS17] and has been confirmed in various situations

[DT19, GL20].
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Let us briefly explain the idea for the proof of Theorem 4.1.1. A more detailed discussion will

be given in Section 4.2. First of all, it is not hard to get Theorem 4.1.1 (ii) once we obtain (i), see

Proposition 1.12 of [GL20]. Hence, we focus on the proof of (i). One crucial input is the following

exact formula obtained in [Par19b, Theorem 1.3] (also see [BBCW18, Theorem 7.6]), which is

stated as follows.

Theorem 4.1.3 (Theorem 1.3 of [Par19b], Theorem 7.6 of [BBCW18]). When 𝐴 = −1
2 , we have

for all 𝑠 ≥ 0,

E
[
exp

(
− 𝑠Zhf(2𝑡, 0)𝑒 𝑡

12
) ]

= E
[ ∞∏
𝑖=1

1√︃
1 + 4𝑠 exp(𝑡 1

3 ak)

]
, (4.1.3)

where a1 > a2 > · · · is the GOE-Airy point process defined in Definition 4.2.1.

Our argument for proving Theorem 4.1.1 (i) follows [DT19] at the beginning. Firstly, we write

the 𝑝-th moment ofZhf(2𝑡, 0)𝑒 𝑡
12 in terms of the Laplace transform (Lemma 4.2.5)

E
[ (
Zhf(2𝑡, 0)𝑒 𝑡

12
) 𝑝]

=
(−1)𝑛

Γ(1 − 𝛼)

∫ ∞

0
𝑠−𝛼𝜕𝑛𝑠

(
E
[
exp

(
− 𝑠Zhf(2𝑡, 0)𝑒 𝑡

12
) ] )
𝑑𝑠

where 𝑛 = b𝑝c + 1, 𝛼 = 𝑝 + 1 − 𝑛 ∈ [0, 1). Decompose the integral region into (0, 1] and (1,∞)

and denote the latter integral by R𝑝 (𝑡), we get

E
[(
Zhf(2𝑡, 0)𝑒 𝑡

12
) 𝑝]

=
(−1)𝑛

Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼𝜕𝑛𝑠

(
E
[
exp

(
− 𝑠Zhf(2𝑡, 0)𝑒 𝑡

12
) ] )
𝑑𝑠 + R𝑝 (𝑡) (4.1.4)

It turns out R𝑝 (𝑡) is uniformly bounded in 𝑡 so we only need to focus on the first term on the right

hand side (4.1.4). The Laplace transform E
[
exp

(
− 𝑠Zhf(2𝑡, 0)𝑒 𝑡

12
) ]

in the above integral admits

an explicit formula in terms of the GOE point process given by the right hand side of (4.1.3).

Rewrite the expectation of products of the GOE point process into a Fredholm Pfaffian (Lemma

4.2.4), we get

E
[
exp

(
− 𝑠Zhf(2𝑡, 0)𝑒 𝑡

12
) ]

= 1 +
∞∑︁
𝐿=1

1
𝐿!

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖,
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where the Pfaffian kernel 𝐾 is 2 × 2 matrix defined in Definition 4.2.1 and the function 𝜙𝑠,𝑡 is

specified in (4.2.5). Inserting the above expression to the first term on the right hand side of

(4.1.4), bringing the infinite summation over 𝐿 outside the derivative over 𝑠 and integral from 0 to

1 (which will be justified in Lemma 4.2.7), we get

E
[(
Zhf(2𝑡, 0)𝑒 𝑡

12
) 𝑝]

=

∞∑︁
𝐿=1

(−1)𝑛
Γ(1 − 𝛼)𝐿!

∫ 1

0
𝑠−𝛼

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿+R𝑝 (𝑡).

The next step is to decompose the infinite summation in the above display into 𝐿 = 1 and 𝐿 ≥ 2.

In particular, we denote the first term in the summation by A𝑝 (𝑡) and the 𝐿-th term (𝐿 ≥ 2) by

B𝑝,𝐿 (𝑡), then

E
[ (
Zhf(2𝑡, 0)𝑒 𝑡

12
) 𝑝]

= A𝑝 (𝑡) +
∞∑︁
𝐿=2
B𝑝,𝐿 (𝑡) + R𝑝 (𝑡)

We call A𝑝 (𝑡) the leading order term which will be shown to hold the dominating 𝑡 → ∞ asymp-

totic. It equals an integral of the (1, 2) entry of the 2 × 2 matrix 𝐾 (𝑥, 𝑥) (the Pfaffian of a 2 × 2

matrix equals its (1, 2) entry). The second term on the right hand side of the above display is

composed of the higher order terms. Each B𝑝,𝐿 (𝑡) is related to an integral of 𝐿-th correlation

function Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1 of the GOE point process. In our proof, we show in Proposition 4.2.8

and 4.2.9 that for fixed 𝑝 > 0, as 𝑡 → ∞, 1) : A𝑝 (𝑡) grows asymptotically as exp(𝑝3𝑡/3). 2) :∑∞
𝐿=2

��B𝑝,𝐿 (𝑡)�� is asymptotically upper bounded by exp
(
(𝑝3 − 𝛿𝑝)𝑡/3

)
for some 𝛿𝑝 > 0 . This

demonstrates Theorem 4.1.1 (i).

So far, we have followed the idea in [DT19]. The analysis of the leading order term A𝑝 (𝑡) in

Proposition 4.2.8 involves a steepest descent type analysis of the integral of 𝐾12(𝑥, 𝑥). The harder

problem is to control the higher order terms. In the situation of [DT19], the authors deal with a

Fredholm determinant det(𝐼 + 𝐴) = 1 +∑∞
𝐿=1 Tr(𝐴∧𝐿),1 where 𝐴 is a positive, trace class operator.

[DT19] upper bounds the higher order term Tr(𝐴∧𝐿) by
(
Tr(𝐴)

)𝐿/𝐿!. This can be understood by

1There is a misstatement in page 4 of [DT19] where an extra 𝐿! appears in the definition of Fredholm determinant.
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setting {_𝑖}∞𝑖=1 to be the eigenvalues of 𝐴, since _𝑖 are all non-negative,

Tr(𝐴∧𝐿) =
∑︁

1≤𝑖1<···<𝑖𝐿
_𝑖1 . . . _𝑖𝐿 ≤

1
𝐿!

( ∞∑︁
𝑖=1

_𝑖
)𝐿

=
1
𝐿!

(
Tr(𝐴)

)𝐿
.

Unfortunately, we are unaware of an analogue for such bound in the case of Fredholm Pfaffian.

Instead of mimicking [DT19], we adopt a more direct approach. Using Hadamard’s inequality

and a determinantal analysis, we obtain two upper bounds of Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1 (Proposition 4.4.1).

These upper bounds will be applied to control various terms in
∑∞
𝐿=2 B𝑝,𝐿 (𝑡) depending on whether

𝐿 is greater than a fixed threshold. We want to highlight that we did not pursue to get the sharp

bound of the 𝑝-th moment of Zhf(2𝑡, 0) which holds uniformly for large 𝑝 and 𝑡, as shown in

[DT19, Theorem 1.1 (a)*]. However, it is sufficient to apply our method to obtain the Lyapunov

exponents and LDP for our problem as well as for [DT19, Theorem 1.1].

4.1.2 Previous results

Recently, there has been significant progress in understanding the Lyapunov exponents and

tails of various stochastic PDEs, see [GL20, Section 1.2] and reference therein. Here, we restrict

our discussion to the scope of the KPZ equation and the SHE.

Full line KPZ equation/SHE

The KPZ equation was introduced in [KPZ86] as a paradigmatic model for the random surface

growth. It is a representative of the KPZ universality class [ACQ11, Cor12], a collection of models

sharing the universal scaling exponent and large time scaling behavior. Recently, the upper/lower

tail LDP of the KPZ equation receives plenty of attention from the mathematics and physics com-

munity. In fact, there are two regimes for the LDP of the KPZ equation, long time and short time

(Freidlin-Wentzell regime). We will focus on discussing the long time regime and for the latter

situation, see the physics literature [KK07, KK09, KMS16, MKV16, LDMRS16].

The upper tail of the KPZ equation is closely connected to the Lyapunov exponents of SHE.
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[BC95] first computes the integer Lyapunov exponents of the SHE. However, due to an incor-

rect use of Skorokhod’s lemma, their result is only valid for the second moment. By analyzing the

Brownian local time from Feynman-Kac representation of the SHE, [Che15] obtained the integer

Lyapunov exponents for the SHE under deterministic bounded initial data. For the SHE under nar-

row wedge initial condition, the integer moment of the solution admits a contour integral formula

[BC14a, Gho18]. By a residue calculus, [CG20a] obtains the integer Lyapunov exponents, from

which they obtain a bound for the upper tail of the KPZ equation, showing the correct exponent

3/2. [DT19] improves their result by identifying all positive real Lyapunov exponents of the SHE.

As a consequence, they obtain the upper tail LDP of the KPZ equation with rate function 4
3 𝑠

3
2 .

Recently, [GL20] is capable of computing all positive Lyapunov exponents for the SHE starting

with a class of general (including random) initial data and obtain the corresponding upper tail LDP

of the KPZ equation.

Unlike the upper tail, the lower tail of the KPZ equation does not have a strong connection to

the moment of SHE. For the narrow wedge initial condition, via a delicate analysis of the exact

formula in [BG16], [CG20b] derives a tight bound which detects the crossover of the tail expo-

nent from 3 to 5/2 depending on the depth of the tail, which was first observed in the physics

work [SMP17]. The LDP for the lower tail of the KPZ equation is obtained by [Tsa18, CC19].

For the KPZ equation with general initial data, [CG20b] obtains an upper bound for the lower tail

probability. Besides that, very few things are known at present.

Half-line KPZ equation/SHE

Compared with the knowledge for full-line equation, smaller amount of results are known for

the half-line KPZ equation/SHE. [CS18] proves that on a closed interval or a half line, the open

ASEP weakly converges to the KPZ equation with Neumann boundary parameter 𝐴 ≥ 0. Such

convergence was extended later by [Par19b] to all 𝐴 ∈ R. [BBCW18, Par19b] obtain the Laplace

transform formula for the half-line SHE under narrow wedge initial condition when 𝐴 = −1
2 ,

which helps to capture the Tracy-Widom GOE fluctuation of the KPZ equation. As discussed
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before, there is a conjectured Gaussian-GOE-GSE phase transition the for half-line KPZ equation,

which is only proved at the critical parameter 𝐴 = −1
2 . Recently, there are progress identifying new

limiting distribution for the half-space KPZ equation under stationary initial data [BKD20]. Such

distribution is believed to be universal and arises in other half-space model starting from stationary

initial data [BFO20].

Regarding the tail of half-space KPZ equation, let us focus on 𝐴 = −1
2 and narrow wedge initial

condition. Results for other boundary parameters and initial conditions are fairly untouched for

now. Under the aforementioned boundary condition, a tight estimate of the lower tail was obtained

in [Kim19], which detects the similar crossover of the tail exponent that appears in the full-line

situation. The LDP for the lower tail was obtained by [Tsa18]. Few things were rigorously proved

for the upper tail aside from the current work. [BBC16] (also see [BBC20]) obtains a moment

formula of the half-line SHE by solving the delta-Bose gas (the result is not rigorous, since the

uniqueness of the solution to the delta-Bose gas is unknown). It is also unclear whether one can

extract the integer Lyapunov exponents for the half-line SHE (thus obtaining tail bounds of the

half-line KPZ equation) from a similar residue calculus of the integral formula as carried out in

[CG20a], due to the extra complexity.

On a different aspect, it is worth to mention the works of [KLD18a, MV18] in which the authors

consider the LDP for the half-line KPZ equation in short time. The same exponent 3/2 in the rate

function is obtained therein. In addition, [KLD18a] predicted the upper tail exponent to be 2
3𝑥

3
2

when 𝐴 = −1
2 , 0 and 4

3𝑥
3
2 when 𝐴 = +∞. For the future work, it is appealing to prove a LDP for

the upper tail for general boundary parameter 𝐴 and see how the LDP rate function changes when

𝐴 belongs to the Gaussian/GSE regime.

Outline. The rest of the paper is organized as follows. In section 4.2, we give an overview for

the proof of the main theorem and provide more details for what is discussed in Section 4.1.1. In

particular, we transform our problem into proving Proposition 4.2.8 and 4.2.9. Section 4.3 was

devoted to prove Proposition 4.2.8. In Section 4.4, we provide two different upper bound for the
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pfaffian Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1 which is crucial to the proof of Proposition 4.2.9. We also justify Lemma

4.2.7 in that section. Section 4.5 completes the proof of Proposition 4.2.9.

Acknowledgment. The author thanks Guillaume Barraquand, Ivan Corwin, Sayan Das, Yujin Kim

and Li-Cheng Tsai for helpful discussions. The author was partially supported by the Fernholz

Foundation’s “Summer Minerva Fellow" program and also received summer support from Ivan

Corwin’s NSF grant DMS-1811143, DMS-1664650.

4.2 Proof of Theorem 4.1.1: A detailed overview

In this section, we explain with more details how we prove Theorem 4.1.1. We begin with the

definition of GOE point process that was mentioned in the introduction. As formulated in [AGZ10,

Section 4.2.1], a point process on R is a random point configuration X. The 𝐿-th correlation

function 𝜌𝐿 w.r.t. the measure ` associated to X is defined in the way that for arbitrary distinct

Borel sets 𝐵1, . . . , 𝐵𝐿 ,

∫
𝐵1×···×𝐵𝐿

𝜌𝐿 (𝑥1, . . . , 𝑥𝐿)𝑑`⊗𝐿 = E
[
#
{
(𝑥1, . . . , 𝑥𝐿), such that 𝑥𝑖 ∈ X ∩ 𝐵𝑖, 𝑖 = 1, . . . , 𝐿

}]
.

We say a point process is a Pfaffian, if there exists a matrix kernel 𝐾 : R ×R→ C2×2 such that the

correlation function 𝜌𝐿 (𝑥1, . . . , 𝑥𝐿) = Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1 for arbitrary 𝐿 ∈ Z≥1.

Definition 4.2.1 (GOE point process). We say X = {a1 > a2 > · · · } is the GOE-Airy point

process, if it is a Pfaffian point process on R with kernel

𝐾 (𝑥, 𝑦) =

𝐾11(𝑥, 𝑦), 𝐾12(𝑥, 𝑦)

𝐾21(𝑥, 𝑦), 𝐾22(𝑥, 𝑦)


with the entries

𝐾11(𝑥, 𝑦) =
∫ ∞

0
Ai(𝑥 + _)Ai′(𝑦 + _) − Ai(𝑦 + _)Ai′(𝑥 + _)𝑑_, (4.2.1)
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𝐾12(𝑥, 𝑦) = −𝐾21(𝑦, 𝑥) =
1
2

∫ ∞

0
Ai(𝑥 + _)Ai(𝑦 + _)𝑑_ + 1

2
Ai(𝑥)

∫ 𝑦

−∞
Ai(_)𝑑_, (4.2.2)

𝐾22(𝑥, 𝑦) =
1
4

∫ ∞

0

( ∫ ∞

_

Ai(𝑦 + `)𝑑`
)
Ai(𝑥 + _)𝑑_ − 1

4

∫ ∞

0

( ∫ ∞

_

Ai(𝑥 + `)𝑑`
)
Ai(𝑦 + _)𝑑_

− 1
4

∫ ∞

0
Ai(𝑥 + _)𝑑_ + 1

4

∫ ∞

0
Ai(𝑦 + _)𝑑_ − sgn(𝑥 − 𝑦)

4
. (4.2.3)

Here, sgn(𝑥) is defined as the sign function 1{𝑥>0} − 1{𝑥<0}. Furthermore, we set 𝐾21(𝑥, 𝑦) =

−𝐾12(𝑦, 𝑥).

Remark 4.2.2. Note that our expression of the kernel (4.2.1), (4.2.2), (4.2.3) is different from that

in Eq. (6.1a), (6.1b), (6.1c) of [BBCW18]. However, they are demonstrated to be the same, see

(2.9) and (6.17) of [Fer04] or [BBCS18, Lemma 2.6].

It turns out that the right hand side of (4.1.3) can be rewritten as a Fredholm Pfaffian, which has

been first defined in [Rai00]. We reproduce the definition of the Fredholm Pfaffian from [BBCS18,

Definition 2.3].

Definition 4.2.3 (Fredholm Pfaffian). Let 𝐾 (𝑥, 𝑦) be an asymmetric 2 × 2 matrix and ` to be a

measure on R and 𝑓 : R → C be a measurable function. We define the Fredholm Pfaffian by the

series expansion

Pf
[
𝐽 + 𝐾

]
𝐿2 (R, 𝑓 `) =

∞∑︁
𝐿=0

1
𝐿!

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

( 𝐿∏
𝑖=1

𝑓 (𝑥𝑖)
)
𝑑`⊗𝐿 (𝑥1, . . . , 𝑥𝐿),

where

𝐽 (𝑥, 𝑦) = 1{𝑥=𝑦}


0 1

−1 0

 .
Lemma 4.2.4 (Pfaffian point process and Fredholm Pfaffian [Rai00]). Let a1 > a2 > . . . be a

Pfaffian point process with kernel 𝐾 and 𝑓 : R→ C be a measurable function. We have

E
[ ∞∏
𝑖=1

(
1 + 𝑓 (a𝑖)

) ]
= Pf

[
𝐽 + 𝐾

]
𝐿2 (R, 𝑓 `) , (4.2.4)

as long as both sides of the above equation converge absolutely.
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We take a1 > a2 > . . . to be the GOE point process defined in Definition 4.2.1 and the function

𝑓 in the above lemma to be

𝜙𝑠,𝑡 (𝑥) :=
1√︁

1 + 4𝑠 exp(𝑡1/3𝑥)
− 1, (4.2.5)

Theorem 7.6 of [BBCW18] has already justified the convergence of both sides of (4.2.4). As a

result,

E
[ ∞∏
𝑖=1

1√︃
1 + 4𝑠 exp(𝑡 1

3 a𝑖)

]
=

∞∑︁
𝐿=0

1
𝐿!

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖 .

By Theorem 4.1.3, the left hand side in the above display equals the Laplace transform ofZhf(2𝑡, 0) exp( 𝑡12 ),

thus

E
[
exp

(
− 𝑠Zhf(2𝑡, 0)𝑒 𝑡

12
) ]

=

∞∑︁
𝐿=0

1
𝐿!

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖 (4.2.6)

To prove Theorem 4.1.1, the next step is to link the Laplace transform of Zhf(2𝑡, 0) exp( 𝑡12 ) with

its fractional moment. The following lemma was stated as [DT19, Lemma 1.2], which can be

verified via Fubini’s theorem.

Lemma 4.2.5. For arbitrary non-negative random variable 𝑋 , 0 ≤ 𝛼 < 1 and 𝑛 ∈ Z≥1,

E
[
𝑋𝑛−1+𝛼

]
=
(−1)𝑛

Γ(1 − 𝛼)

∫ ∞

0
𝑠−𝛼𝜕𝑛𝑠

(
E
[
𝑒−𝑠𝑋

] )
𝑑𝑠.

As a convention, we use 𝜕𝑛𝑠 to denote the 𝑛-th partial derivative with respect to 𝑠.

For fixed 𝑝 > 0, we set 𝑛 = b𝑝c + 1 and 𝛼 = 𝑝 − 𝑛 + 1. It is clear that 𝑛 ∈ Z≥1, 𝛼 ∈

[0, 1). Applying Lemma 4.2.5 with 𝑋 = Zhf(2𝑡, 0) exp
(
𝑡

12
)

(note that Zhf(2𝑡, 0) is almost surely

positive), we find that

E
[
Zhf(2𝑡, 0)𝑝𝑒

𝑝𝑡

12

]
=
(−1)𝑛

Γ(1 − 𝛼)

∫ ∞

0
𝑠−𝛼𝜕𝑛𝑠

(
E
[
𝑒−𝑠(Z

hf (2𝑡,0)+ 𝑡
12 )

] )
𝑑𝑠.
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Splitting the interval of integration into [0, 1] and [1,∞) yields

E
[
Zhf(2𝑡, 0)𝑝𝑒

𝑝𝑡

12

]
=
(−1)𝑛

Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼𝜕𝑛𝑠

(
E
[
𝑒−𝑠(Z

hf (2𝑡,0)+ 𝑡
12 )

] )
𝑑𝑠 + R𝑝 (𝑡), (4.2.7)

where R𝑝 (𝑡) := (−1)𝑛
Γ(1−𝛼)

∫ ∞
1 𝑠−𝛼𝜕𝑛𝑠

(
E
[
𝑒−𝑠(Z

hf (2𝑡,0)+ 𝑡
12 )

] )
𝑑𝑠.

Lemma 4.2.6. For fixed 𝑝 > 0, |R𝑝 (𝑡) | is uniformly bounded by a constant for every 𝑡 > 0.

Proof. Since R𝑝 (𝑡) = (−1)𝑛
Γ(1−𝛼)

∫ ∞
1 𝑠−𝛼E

[
𝑒−𝑠𝑋𝑋𝑛

]
𝑑𝑠 with 𝑋 = Zhf(2𝑡, 0) exp

(
𝑡

12
)
. Note that

E
[
𝑒−𝑠𝑋𝑋𝑛

]
≤ sup

𝑥≥0

(
𝑒−𝑠𝑥𝑥𝑛

)
= 𝑠−𝑛𝑛𝑛𝑒−𝑛.

Replacing E
[
𝑒−𝑠𝑋𝑋𝑛

]
with this upper bound inside the integral yields

0 ≤ (−1)𝑛R𝑝 (𝑡) ≤
1

Γ(1 − 𝛼)

∫ ∞

1
𝑠−𝑛−𝛼𝑛𝑛𝑒−𝑛𝑑𝑠 =

𝑛𝑛𝑒−𝑛

Γ(1 − 𝛼) (𝑛 + 𝛼) .

Since 𝛼 and 𝑛 are determined by 𝑝, so the right hand side is a constant that only depends on 𝑝, this

completes our proof. �

By (4.2.6), we see that the first term on the RHS of (4.2.7) can be written as

∫ 1

0
𝑠−𝛼𝜕𝑛𝑠 E

[
𝑒−𝑠(Z

hf (2𝑡,0)+ 𝑡
12 )

]
𝑑𝑠 =

∫ 1

0
𝑠−𝛼𝜕𝑛𝑠

( ∞∑︁
𝐿=1

1
𝐿!

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖
)
𝑑𝑠.

(4.2.8)

Note that we throw out the 𝐿 = 0 term in the summation since it is always 1 and has 𝑠-derivative

to be 0. It turns out that we can interchange the order of derivative, integration and summation for

the right hand side of the above display, for which we formulate as a lemma. The proof of it is

deferred to Section 4.4.2.
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Lemma 4.2.7. We have

∫ 1

0
𝑠−𝛼𝜕𝑛𝑠

( ∞∑︁
𝐿=1

1
𝐿!

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖
)
𝑑𝑠

=

∞∑︁
𝐿=1

1
𝐿!

∫ 1

0
𝑠−𝛼𝑑𝑠

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿 . (4.2.9)

Consequently, it follows from (4.2.8) and the above display that

(−1)𝑛
Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼𝜕𝑛𝑠

(
E
[
exp

(
− 𝑠Zhf(2𝑡, 0)𝑒 𝑡

12
) ] )
𝑑𝑠

=

∞∑︁
𝐿=1

(−1)𝑛
Γ(1 − 𝛼)

1
𝐿!

∫ 1

0
𝑠−𝛼𝑑𝑠

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿 . (4.2.10)

Set the first term in the right hand side summation above as A𝑝 (𝑡) and the higher order terms

as B𝑝,𝐿 (𝑡) (𝐿 ≥ 2). Since the Pfaffian of a 2 × 2 matrix equals its (1, 2) entry, when 𝐿 = 1,

Pf
[
𝐾 (𝑥, 𝑥)

]
= 𝐾12(𝑥, 𝑥). Hence,

A𝑝 (𝑡) =
(−1)𝑛

Γ(1 − 𝛼)

∫ 1

0
𝑠−𝛼

∫
R
𝐾12(𝑥, 𝑥)

(
𝜕𝑛𝑠 𝜙𝑠,𝑡 (𝑥)

)
𝑑𝑥 (4.2.11)

B𝑝,𝐿 (𝑡) =
(−1)𝑛

Γ(1 − 𝛼)𝐿!

∫ 1

0
𝑠−𝛼

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿 , 𝐿 ≥ 2.

(4.2.12)

Under this notation, the left hand side of (4.2.10) equalsA𝑝 (𝑡)+
∑∞
𝑝=2 B𝑝,𝐿 (𝑡). Referring to (4.2.7),

we obtain

E
[
Zhf(2𝑡, 0)𝑝𝑒

𝑝𝑡

12

]
= A𝑝 (𝑡) +

∞∑︁
𝐿=2
B𝑝,𝐿 (𝑡) + R𝑝 (𝑡). (4.2.13)

We want to show that the logarithm of the left hand side in the above display, after divided by 𝑡

and letting 𝑡 → ∞, converges to 𝑝3/3. By Lemma 4.2.6, |R𝑝 (𝑡) | is uniformly upper bounded by

a constant for all 𝑡 > 0. Therefore, to prove Theorem 4.1.1, it suffices to demonstrate that the

following facts for A𝑝 (𝑡) and
∑∞
𝐿=2 |B𝑝,𝐿 (𝑡) |.

Proposition 4.2.8. For fixed 𝑝 ∈ R>0, lim𝑡→∞
1
𝑡

logA𝑝 (𝑡) = 𝑒
𝑝3
3 .
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Proposition 4.2.9. For fixed 𝑝 ∈ R>0, lim sup𝑡→∞ 1
𝑡

log
( ∑∞

𝐿=2 |B𝑝,𝐿 (𝑡) |
)
≤ 𝑒

𝑝3
3 −𝛿𝑝 with 𝛿𝑝 =

min( 23 ,
𝑝3

4 ).

We will prove the two propositions in Section 4.3 and Section 4.5. Let us first conclude the proof

of Theorem 4.1.1.

Proof of Theorem 4.1.1. For part (i), from Proposition 4.2.8 and 4.2.9, we know thatA𝑝 (𝑡) grows

exponentially faster than
∑∞
𝐿=2 |B𝑝,𝐿 (𝑡) | as 𝑡 → ∞. Along with the fact that |R𝑝 (𝑡) | is upper

bounded by a constant for all 𝑡, there exists 𝑡0 > 0 such that for all 𝑡 > 𝑡0,

∞∑︁
𝐿=2
|B𝑝,𝐿 (𝑡) | +

��R𝑝 (𝑡)�� ≤ 1
2
A𝑝 (𝑡).

Referring to the decomposition (4.2.13) and using triangle inequality, we see that for 𝑡 > 𝑡0,

log
(1
2
A𝑝 (𝑡)

)
≤ logE

[
Zhf(2𝑡, 0)𝑝

]
≤ log

(3
2
A𝑝 (𝑡)

)
.

Dividing very term in the above display by 𝑡, Theorem 4.1.1 (i) follows easily from Proposition

4.2.8 as we take 𝑡 → ∞. Since we know that 𝑡−1 lim𝑡→∞ logE
[
Zhf(2𝑡, 0)𝑝 exp( 𝑝𝑡12 )

]
= 𝑝3/3, this

completes the proof of part (i). Applying [GL20, Proposition 1.12] by setting ℎ(𝑝) = 𝑝3

3 therein,

we obtain the upper tail LDP with rate function to be sup𝑝>0(𝑝𝑠 − 𝑝3/3) = 2
3 𝑠

3
2 , thus we obtain

Theorem 4.1.1 (ii). �

4.3 Asymptotic of A𝑝 (𝑡): Proof of Proposition 4.2.8

In this section, we prove Proposition 4.2.8. One crucial step is Lemma 4.3.2, whose proof relies

on Lemma B.0.1 and a steepest descent type analysis. Throughout the rest of the paper, we use

𝐶,𝐶1, 𝐶2 to denote a constant, which may vary from line to line. We might not generally specify

when irrelevant terms are being absorbed into the constants. We might also write 𝐶 (𝑎), 𝐶 (𝑎, 𝑏)

when we want to specify which parameters the constant depends on.
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Lemma 4.3.1. Denote B(𝑢, 𝑣) to be the beta function
∫ 1
0 𝑥𝑢−1(1 − 𝑥)𝑣−1𝑑𝑥. For 𝛾 > 0, 𝛼 < 1 and

𝛼 + 𝛽 > 1, ∫ ∞

0

𝑠−𝛼

(1 + 𝛾𝑠)𝛽
𝑑𝑠 = 𝛾𝛼−1B(1 − 𝛼, 𝛽 + 𝛼 − 1)

Proof. Via a change of variable 𝑠 = 𝑡
𝛾(1−𝑡) , we get

∫ ∞

0

𝑠−𝛼𝑑𝑠

(1 + 𝛾𝑠)𝛽
= 𝛾𝛼−1

∫ 1

0
𝑡−𝛼 (1 − 𝑡)𝛼+𝛽−2𝑑𝑡 = 𝛾𝛼−1B(1 − 𝛼, 𝛽 + 𝛼 − 1). �

Lemma 4.3.2. For fixed 𝑝, 𝑡0 > 0, there exists constant 𝐶 = 𝐶 (𝑝, 𝑡0) such that for all 𝑡 > 𝑡0,

1
𝐶
𝑡−

2
3 𝑒

1
3 𝑝

3𝑡 ≤
∫ ∞

0
𝐾12(𝑡

2
3 𝑥, 𝑡

2
3 𝑥)𝑒𝑝𝑡𝑥𝑑𝑥 ≤ 𝐶𝑡− 2

3 𝑒
1
3 𝑝

3𝑡 .

Proof. Throughout the proof we write 𝐶 = 𝐶 (𝑝, 𝑡0) and denote by𝑈𝑝 (𝑥) = −2
3𝑥

3
2 + 𝑝𝑥. Using the

inequality in Lemma B.0.1 (i),

1
𝐶

∫ ∞

0

𝑒𝑡𝑈𝑝 (𝑥)

(1 + 𝑡 2
3 𝑥) 1

4
𝑑𝑥 ≤

∫ ∞

0
𝐾12(𝑡

2
3 𝑥, 𝑡

2
3 𝑥)𝑒𝑝𝑡𝑥𝑑𝑥 ≤ 𝐶

∫ ∞

0

𝑒𝑡𝑈𝑝 (𝑥)

(1 + 𝑡 2
3 𝑥) 1

4
𝑑𝑥

The proof is completed if we can show there exists a constant 𝐶 such that for all 𝑡 > 𝑡0,

1
𝐶
𝑡−

2
3 𝑒

𝑝3𝑡
3 ≤

∫ ∞

0

𝑒𝑡𝑈𝑝 (𝑥)

(1 + 𝑡 2
3 𝑥) 1

4
𝑑𝑥 ≤ 𝐶𝑡− 2

3 𝑒
𝑝3𝑡
3 (4.3.1)

An elementary calculus tells that the maximum of 𝑈𝑝 (𝑥) = −2
3𝑥

3
2 + 𝑝𝑥 on [0,∞) is reached at

𝑥 = 𝑝, with 𝑈𝑝 (𝑝) = 1
3 𝑝

3. So it is natural to expect that the main contribution of the integral in

the above display comes around a small region around 𝑥 = 𝑝. Having this intuition in mind, we let

q =
𝑝

4 decompose

∫ ∞

0

𝑒𝑡𝑈𝑝 (𝑥)

(1 + 𝑡 2
3 𝑥) 1

4
𝑑𝑥 =

( ∫
[(𝑝−q)2,(𝑝+q)2]

+
∫
R>0\[(𝑝−q)2,(𝑝+q)2]

) 𝑒𝑡𝑈𝑝 (𝑥)

(1 + 𝑡 2
3 𝑥) 1

4
𝑑𝑥 = K1 + K2. (4.3.2)

It suffices to analyze K1 and K2 respectively. For K1, we make a change of variable 𝑥 = (𝑝 + 𝑟)2.
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Noting that𝑈𝑝
(
(𝑝 + 𝑟)2

)
=

𝑝3

3 − (
2
3𝑟 + 𝑝)𝑟

2, we get

K1 =

∫ q

−q

2(𝑝 + 𝑟)𝑒𝑡𝑈𝑝 ((𝑝+𝑟)2)

(1 + 𝑡 2
3 (𝑝 + 𝑟)2) 1

4
𝑑𝑟 = 𝑒

𝑝3𝑡
3

∫ q

−q

2(𝑝 + 𝑟)𝑒−𝑡 ( 23 𝑟+𝑝)𝑟2

(1 + 𝑡 2
3 (𝑝 + 𝑟)2) 1

4
𝑑𝑟 (4.3.3)

Recall that q =
𝑝

4 , so there exists a constant 𝐶 = 𝐶 (𝑝, 𝑡0) such that for all 𝑟 ∈ [− 𝑝4 ,
𝑝

4 ] and 𝑡 > 𝑡0,

𝑒−𝐶𝑡𝑟
2

𝐶𝑡
1
6
≤ 2(𝑝 + 𝑟)𝑒−𝑡 ( 23 𝑟+𝑝)𝑟2

(1 + 𝑡 2
3 (𝑝 + 𝑟)2) 1

4
≤ 𝐶𝑒

− 1
𝐶
𝑡𝑟2

𝑡
1
6

. (4.3.4)

By a change of variable 𝑟 → 𝑡−
1
2 𝑟 , there exists constant 𝐶1 such that for 𝑡 > 𝑡0

𝐶−1
1 𝑡−

2
3 ≤

∫ q

−q

𝑒−𝐶𝑡𝑟
2

𝐶𝑡
1
6
≤

∫ q

−q

𝐶𝑒−
1
𝐶
𝑡𝑟2

𝑡
1
6
≤ 𝐶1𝑡

− 2
3

Integrating the terms in (4.3.4) from −q to q and utilizing the displayed inequality above and

(4.3.3), we conclude that 1
𝐶
𝑡−

2
3 𝑒

𝑝3𝑡
3 ≤ K1 ≤ 𝐶𝑡−

2
3 𝑒

𝑝3𝑡
3 for 𝑡 > 𝑡0.

For K2, by a change of variable 𝑥 = 𝑟2 and noting𝑈𝑝 (𝑟2) = 𝑝3

3 − (𝑟 − 𝑝)
2( 23𝑟 +

1
3 𝑝), we have

K2 = 𝑒
𝑝3𝑡
3

∫
R>0\[𝑝−q,𝑝+q]

𝑒𝑡 (𝑟−𝑝)
2 (− 2

3 𝑟−
1
3 𝑝)

(1 + 𝑡 2
3 𝑟2) 1

4
𝑑𝑟 ≤ 𝑒

𝑡 (𝑝3−𝑝q2)
3

∫
R>0\[𝑝−q,𝑝+q]

𝑒−
2
3 𝑡𝑟 (𝑟−𝑝)

2

(1 + 𝑡 2
3 𝑟2) 1

4
𝑑𝑟 (4.3.5)

The inequality in the above display follows from noticing 1
3 (𝑟−𝑝)

2𝑝 ≥ 𝑝q2

3 when 𝑟 ∉ [𝑝−q, 𝑝+q].

For the integral on the right hand side of the above display, we find that
∫
R>0\[𝑝−q,𝑝+q]

𝑒
− 2

3 𝑡𝑟 (𝑟−𝑝)
2

(1+𝑡
2
3 𝑟2)

1
4
𝑑𝑟 ≤∫

R>0
𝑒−

2
3 𝑡q

2𝑟𝑑𝑟 = 3
2q2𝑡

. Since we assume 𝑡 ≥ 𝑡0, by taking 𝐶 = 3
2q2𝑡0

, we know that

0 ≤ K2 ≤
3

2q2𝑡
𝑒

𝑡 (𝑝3−𝑝q2)
3 ≤ 𝐶𝑒

𝑡 (𝑝3−𝑝q2)
3 .

Combining this with (4.3.3) and recall from (4.3.2) that
∫ ∞
0

𝑒𝑡𝑈𝑝 (𝑥)

(1+𝑡
2
3 𝑥)

1
4
𝑑𝑥 = K1 + K2, we see that K1

is the dominating term. This completes the proof of (4.3.1). �

We are now ready to prove Proposition 4.2.8.
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Proof of Proposition 4.2.8. Recall from (4.2.5) that 𝜙𝑠,𝑡 (𝑥) = 1√
1+4𝑠 exp(𝑡1/3𝑥)

− 1, so

𝜕𝑛𝑠 𝜙𝑠,𝑡 (𝑥) = (−2)𝑛 (2𝑛 − 1)!!(1 + 4𝑠 exp(𝑡 1
3 𝑥))− 2𝑛+1

2 .

By Fubini’s theorem, we switch the order of integration on the right hand side of (4.2.11), hence

A𝑝 (𝑡) =
2𝑛 (2𝑛 − 1)!!
Γ(1 − 𝛼)

∫
R
𝐾12(𝑥, 𝑥)𝑒𝑛𝑡

1
3 𝑥𝑑𝑥

∫ 1

0

𝑠−𝛼

(1 + 4𝑠 exp(𝑡 1
3 𝑥)) 2𝑛+1

2
𝑑𝑠,

Writing the integral w.r.t 𝑠 in the above display as
∫ 1
0 =

∫ ∞
0 −

∫ ∞
1 , we getA𝑝 (𝑡) = A′𝑝 (𝑡) −A′′𝑝 (𝑡),

where

A′𝑝 (𝑡) =
2𝑛 (2𝑛 − 1)!!
Γ(1 − 𝛼)

∫
R
𝐾12(𝑥, 𝑥)𝑒𝑛𝑡

1
3 𝑥𝑑𝑥

∫ ∞

0

𝑠−𝛼

(1 + 4𝑠 exp(𝑡 1
3 𝑥)) 2𝑛+1

2
𝑑𝑠, (4.3.6)

A′′𝑝 (𝑡) =
2𝑛 (2𝑛 − 1)!!
Γ(1 − 𝛼)

∫
R
𝐾12(𝑥, 𝑥)𝑒𝑛𝑡

1
3 𝑥𝑑𝑥

∫ ∞

1

𝑠−𝛼

(1 + 4𝑠 exp(𝑡 1
3 𝑥)) 2𝑛+1

2
𝑑𝑠. (4.3.7)

To conclude our proof of Proposition 4.2.8, it suffices to show the following propositions.

Proposition 4.3.3. For fixed 𝑝, 𝑡0 > 0 there exists 𝐶 = 𝐶 (𝑝, 𝑡0) such that for all 𝑡 > 𝑡0, 1
𝐶
𝑒

1
3 𝑝

3𝑡 ≤

A′𝑝 (𝑡) ≤ 𝐶𝑒
1
3 𝑝

3𝑡 .

Proposition 4.3.4. For fixed 𝑝, 𝑡0 > 0, there exists 𝐶 = 𝐶 (𝑝, 𝑡0) such that for all 𝑡 > 𝑡0, |A′′𝑝 (𝑡) | ≤

𝐶.

Let us first complete our proof of Proposition 4.2.8 using Proposition 4.3.3 and 4.3.4. Recall

A𝑝 (𝑡) = A′𝑝 (𝑡) − A′′𝑝 (𝑡). With the help of these lemmas, it is clear that A′𝑝 (𝑡) is the dominating

term for large enough 𝑡. Hence,

lim
𝑡→∞

1
𝑡

logA𝑝 (𝑡) = lim
𝑡→∞

𝑡−1 logA′𝑝 (𝑡) =
𝑝3

3
.

This completes our proof of Proposition 4.2.8. �

For the rest of this section, we prove Proposition 4.3.3 and 4.3.4 respectively.
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Proof of Proposition 4.3.3. Applying Lemma 4.3.1 to the second integral on the right hand side of

(4.3.6) (with 𝛽 = 2𝑛+1
2 and 𝛾 = 4 exp(𝑡 1

3 𝑥)), we see that (recall 𝑝 = 𝑛 − 1 + 𝛼)

A′𝑝 (𝑡) = 𝑐𝑝
∫ ∞

−∞
𝐾12(𝑥, 𝑥) exp

(
𝑝𝑡

1
3 𝑥

)
𝑑𝑥.

where 𝑐𝑝 is a constant that equals 2𝑛 (2𝑛−1)!! 4𝛼−1

Γ(1−𝛼) B
(
1 − 𝛼, 2𝑛−1

2 + 𝛼
)
. We will not use this explicit

expression of 𝑐𝑝 and later we just write it as a generic constant 𝐶. By a change of variable 𝑥 →

𝑡
2
3 𝑥, we have A′𝑝 (𝑡) = 𝐶𝑡

2
3
∫ ∞
−∞ 𝐾12(𝑡2/3𝑥, 𝑡2/3𝑥) exp(𝑝𝑡𝑥)𝑑𝑥. Decompose the integral region into

(−∞, 0) ∪ [0,∞), we obtain

A′𝑝 (𝑡) = 𝐶𝑡
2
3

( ∫ ∞

0
𝐾12(𝑡

2
3 𝑥, 𝑡

2
3 𝑥)𝑒𝑝𝑡𝑥𝑑𝑥 +

∫ 0

−∞
𝐾12(𝑡

2
3 𝑥, 𝑡

2
3 𝑥)𝑒𝑝𝑡𝑥𝑑𝑥

)
(4.3.8)

For the first integral on the right hand side of the (4.3.8), referring to Lemma 4.3.2, we have

1
𝐶1
𝑡−

2
3 𝑒

𝑝3𝑡
3 ≤

∫ ∞

0
𝐾12(𝑡

2
3 𝑥, 𝑡

2
3 𝑥)𝑒𝑝𝑡𝑥𝑑𝑥 ≤ 𝐶1𝑡

− 2
3 𝑒

𝑝3𝑡
3 . (4.3.9)

For the second integral on the right hand side of (4.3.8), we apply Lemma B.0.1 (ii) and get 𝑡 > 𝑡0

0 ≤
∫ 0

−∞
𝐾12(𝑡

2
3 𝑥, 𝑡

2
3 𝑥)𝑒𝑝𝑡𝑥𝑑𝑥 ≤ 𝐶2

∫ 0

−∞

(
1 − 𝑡 2

3 𝑥
) 1

2 𝑒𝑝𝑡𝑥𝑑𝑥 ≤ 𝐶3. (4.3.10)

where 𝐶1, 𝐶2, 𝐶3 only depends on 𝑝, 𝑡0. Combining (4.3.8), (4.3.9) and (4.3.10), we know that

𝐶𝐶−1
1 𝑒

𝑝3𝑡
3 ≤ A′𝑝 (𝑡) ≤ 𝐶𝐶1𝑒

𝑝3𝑡
3 + 𝐶𝐶3𝑡

2
3 . Note that 𝑡

2
3 can be upper bounded by a constant times

𝑒
𝑝3
3 𝑡 when 𝑡 > 𝑡0, we conclude Proposition 4.3.3. �

Proof of Proposition 4.3.4. Recall the expression of A′′𝑝 (𝑡) from (4.3.7). Since 𝐾12(𝑥, 𝑥) is non-

negative for all 𝑥, A′′𝑝 (𝑡) is lower bounded by 0. To get the upper bound, we decompose A′′𝑝 (𝑡) =
2𝑛 (2𝑛−1)!!
Γ(1−𝛼) (A1 + A2) where

A1 =

∫ ∞

0
𝐾12(𝑥, 𝑥) exp

(
𝑛𝑡

1
3 𝑥

)
𝑑𝑥

∫ ∞

1

𝑠−𝛼(
1 + 4𝑠 exp(𝑡 1

3 𝑥)
) 2𝑛+1

2
𝑑𝑠, (4.3.11)
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A2 =

∫ 0

−∞
𝐾12(𝑥, 𝑥) exp

(
𝑛𝑡

1
3 𝑥

)
𝑑𝑥

∫ ∞

1

𝑠−𝛼(
1 + 4𝑠 exp(𝑡 1

3 𝑥)
) 2𝑛+1

2
𝑑𝑠.

Let us upper bound A1 and A2 respectively. We start with A1, using 1+4𝑠 exp
(
𝑡

1
3 𝑥

)
≥ 4𝑠 exp

(
𝑡

1
3 𝑥

)
,

∫ ∞

1

𝑠−𝛼(
1 + 4𝑠 exp(𝑡 1

3 𝑥)
) 2𝑛+1

2
≤

∫ ∞

1
𝑠−𝛼

(
4𝑠 exp

(
𝑡

1
3 𝑥

) )− 2𝑛+1
2
𝑑𝑠 =

exp(−2𝑛+1
2 𝑡

1
3 𝑥)

22𝑛+1 ( 2𝑛−1
2 + 𝛼

) .
Applying this inequality to the right hand side of (4.3.11), we have A1 ≤ 𝐶

∫ ∞
0 𝐾12(𝑥, 𝑥) exp(−1

2 𝑡
1
3 𝑥)𝑑𝑥.

Using Lemma B.0.1 (i), for all 𝑡 > 0, there exists a constant 𝐶1 such that

A1 ≤ 𝐶
∫ ∞

0

𝑒−
2
3 𝑥

3
2

(1 + 𝑥) 1
4
𝑒−

1
2 𝑡

1
3 𝑥𝑑𝑥 ≤ 𝐶

∫ ∞

0

𝑒−
2
3 𝑥

3
2

(1 + 𝑥) 1
4
𝑑𝑥 = 𝐶1.

We continue to upper bound A2. Relaxing the integral region from [1,∞) to [0,∞), we get

∫ ∞

1

𝑠−𝛼(
1 + 4𝑠 exp(𝑡 1

3 𝑥)
) 2𝑛+1

2
≤

∫ ∞

0

𝑠−𝛼(
1 + 4𝑠 exp(𝑡 1

3 𝑥)
) 2𝑛+1

2
𝑑𝑠 = 4𝛼−1B

(
1 − 𝛼, 2𝑛 − 1 + 2𝛼

2

)
𝑒(𝛼−1)𝑡

1
3 𝑥 .

The equality above follows from a change of variable 𝑠 → 1
4 exp(−𝑡 1

3 𝑥)𝑠 and Lemma 4.3.1. Due

to the above display (set the product of 4𝛼−1 and the beta function to be a constant 𝐶)

A2 ≤ 𝐶
∫ 0

−∞
𝐾12(𝑥, 𝑥) exp

(
(𝑛 + 𝛼 − 1)𝑡 1

3 𝑥
)
𝑑𝑥 = 𝐶

∫ 0

−∞
𝐾12(𝑥, 𝑥) exp

(
𝑝𝑡

1
3 𝑥

)
𝑑𝑥.

Using Lemma B.0.1 to upper bound 𝐾12(𝑥, 𝑥) for negative 𝑥, there exists a constant 𝐶2 such that

for all 𝑡 > 𝑡0,

A2 ≤ 𝐶
∫ 0

−∞

√
1 − 𝑥𝑒𝑝𝑡

1
3 𝑥𝑑𝑥 = 𝐶

∫ 0

−∞

√
1 − 𝑥𝑒𝑝𝑡

1
3
0 𝑥𝑑𝑥 = 𝐶2.

Having A1,A2 upper bounded by a constant uniformly for 𝑡 > 𝑡0, we conclude our lemma by

recalling that A′′𝑝 (𝑡) is a constant multiple of A1 + A2. �
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4.4 Controlling the Pfaffian and Proof of Lemma 4.2.7

In this section, we give two upper bounds of the 𝐿-th Pfaffian Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1 on the right hand

side of (4.2.12) uniformly for all 𝐿 ∈ Z≥1. This is the main technical contribution of our paper. The

purpose is two folded. First, these upper bounds are the crucial inputs to the proof of Proposition

4.2.9 presented in Section 4.5. Secondly, they can be used to validate the interchange of derivative,

integration and summation in Lemma 4.2.7.

4.4.1 Controlling the Pfaffian

We obtain two upper bounds for Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1 for all 𝐿 ∈ 𝑍≥1 and 𝑥1, . . . , 𝑥𝐿 . Each upper

bound has its advantage. The first upper bound has a slower growth in 𝐿 and a slower exponential

decay in 𝑥𝑖 as 𝑥𝑖 →∞. The second upper bound has faster exponential decay in 𝑥𝑖 but also a more

rapid growth in 𝐿. For the proof of Proposition 4.2.9, we will use both of the upper bounds to

control various terms of B𝑝,𝐿 depending on how large our 𝐿 is. To prove these bounds, we utilize

upper and lower bounds for 𝐾𝑖 𝑗 , 𝑖, 𝑗 ∈ {1, 2} that are established in Lemma B.0.2.

Define 𝐹𝛼,𝛽 (𝑥) = 𝑒−𝛼𝑥
3
2 1{𝑥≥0} + (1− 𝑥)𝛽1{𝑥<0}. It is clear that 𝐹𝛼1,𝛽1 (𝑥)𝐹𝛼2,𝛽2 (𝑥) = 𝐹𝛼1+𝛼2,𝛽1+𝛽2 (𝑥).

In addition, for 𝛽1 ≤ 𝛽2, we have 𝐹𝛼,𝛽1 (𝑥) ≤ 𝐹𝛼,𝛽2 (𝑥).

Proposition 4.4.1. There exists constant 𝐶 such that for all 𝐿 ∈ Z≥1 and (𝑥1, . . . , 𝑥𝐿) ∈ R𝐿 ,

(i)
��Pf

[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

�� ≤ (2𝐿)𝐿/2𝐶𝐿 ∏𝐿
𝑖=1 𝐹1

3 ,2
(𝑥𝑖)

(ii)
��Pf

[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

�� ≤ √︁
(2𝐿)!𝐶𝐿 ∏𝐿

𝑖=1 𝐹2
3 ,2
(𝑥𝑖)

Proof of Proposition 4.4.1 (i). The idea for proving Proposition 4.4.1 (i) is as follows. Up to a

sign, the Pfaffian of a matrix equals the square root of its determinant. We apply Hadamard’s

inequality to upper bound the determinant in terms of the product of ℓ∞-norms of each row of the

matrix. Finally, we apply Lemma B.0.2 to control these ℓ∞-norms.
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Now we start our proof. It is well-known that

���Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

��� = √︂
det

[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1. (4.4.1)

Notice that each entry 𝐾 (𝑥𝑖, 𝑥 𝑗 ) is a 2 × 2 matrix, so
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1 is a 2𝐿 × 2𝐿 matrix. Denote

r𝑖 to be the 𝑖-th row vector of this matrix, 𝑖 = 1, . . . 2𝐿. Applying Hadamard’s inequality to the

determinant on the right hand side above, we see that

���Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

��� ≤ (2𝐿) 𝐿2 √√√ 2𝐿∏
𝑖=1
‖r𝑖‖∞, (4.4.2)

where ‖ · ‖∞ denotes the ℓ∞-norm of a vector. It suffices to upper bound each ‖r𝑖‖∞. We do that

according to whether 𝑖 is odd or even. For each 𝑘 = 1, . . . , 𝐿, the vector r2𝑘−1 is composed of the

elements 𝐾11(𝑥𝑘 , 𝑥 𝑗 ) and 𝐾12(𝑥𝑘 , 𝑥 𝑗 ), 𝑗 = 1, . . . , 𝐿. Thus,

‖r2𝑘−1‖∞ = max
𝑗=1,...,𝐿

(
max

(
|𝐾11(𝑥𝑘 , 𝑥 𝑗 ) |, |𝐾12(𝑥𝑘 , 𝑥 𝑗 ) |

) )
(4.4.3)

Using Lemma B.0.2 (a) and (b) for 𝐾11 and 𝐾12 respectively, there exists constant 𝐶 such that

|𝐾11(𝑥𝑘 , 𝑥 𝑗 ) | ≤ 𝐶𝐹2
3 ,

5
4
(𝑥𝑘 ) and |𝐾12(𝑥𝑘 , 𝑥 𝑗 ) | ≤ 𝐶𝐹2

3 ,
3
4
(𝑥𝑘 ). Since 𝐹2

3 ,
3
4
(𝑥𝑘 ) ≤ 𝐹2

3 ,
5
4
(𝑥𝑘 ), referring to

(4.4.3) implies ‖r2𝑘−1‖∞ ≤ 𝐶𝐹2
3 ,

5
4
(𝑥𝑘 ). Similarly, the row vector r2𝑘 is composed of 𝐾21(𝑥𝑘 , 𝑥 𝑗 ) and

𝐾22(𝑥𝑘 , 𝑥 𝑗 ), using Lemma B.0.2 (b) and (c) for 𝐾12 and 𝐾22 respectively (note that |𝐾21(𝑥𝑘 , 𝑥 𝑗 ) | =

|𝐾12(𝑥 𝑗 , 𝑥𝑘 ) | ≤ 𝐶𝐹0, 34
(𝑥𝑘 )), we get

‖r2𝑘 ‖∞ = max
𝑗=1,...,𝐿

(
max

(
|𝐾21(𝑥𝑘 , 𝑥 𝑗 ) |, |𝐾22(𝑥𝑘 , 𝑥 𝑗 ) |

) )
≤ 𝐶𝐹0, 34

(𝑥𝑘 ).

Inserting the upper bounds for ‖𝑟2𝑘−1‖ and ‖𝑟2𝑘 ‖ into the right hand side of (4.4.2), we have

���Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

��� ≤ (2𝐿) 𝐿2𝐶𝐿√√√ 𝐿∏
𝑘=1

𝐹2
3 ,

5
4
(𝑥𝑘 ) ·

√√√
𝐿∏
𝑘=1

𝐹0, 34
(𝑥𝑘 ) ≤ (2𝐿)

𝐿
2𝐶𝐿

𝐿∏
𝑘=1

𝐹1
3 ,2
(𝑥𝑘 ).
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The last equality follows from
√︃
𝐹2

3 ,
5
4
(𝑥𝑘 )𝐹0, 34

(𝑥𝑘 ) = 𝐹1
3 ,1
(𝑥𝑘 ) ≤ 𝐹1

3 ,2
(𝑥𝑘 ). This completes our

proof. �

To prove Proposition 4.4.1 (ii), we upper bound the determinant on the right hand side of

(4.4.1) in a different way. Instead of using Hadamard’s inequality, we work with the permutation

expansion of the determinant and seek to upper bound each term therein. We introduce some

notations. Rewrite the 2𝐿 × 2𝐿 matrix
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1 as

[
D(𝑖, 𝑗)

]2𝐿
𝑖, 𝑗=1 in a way that for all 𝑖, 𝑗 ∈

{1, . . . , 𝐿},

D(2𝑖 − 1, 2 𝑗 − 1) = 𝐾11(𝑥𝑖, 𝑥 𝑗 ), D(2𝑖 − 1, 2 𝑗) = 𝐾12(𝑥𝑖, 𝑥 𝑗 ),

D(2𝑖, 2 𝑗 − 1) = 𝐾21(𝑥𝑖, 𝑥 𝑗 ), D(2𝑖, 2 𝑗) = 𝐾22(𝑥𝑖, 𝑥 𝑗 ).

Note that we suppress the dependence on 𝑥1, . . . , 𝑥𝐿 in the notation of D. Define maps \ :

{1, . . . , 2𝐿} → {1, . . . , 𝐿} and 𝜏 : {1, . . . , 2𝐿} → {0, 1} such that \ (𝑛) = b 𝑛2c and 𝜏(𝑛) =

𝑛 − 2b𝑛/2c. It is clear that

(\, 𝜏) : {1, . . . , 2𝐿} → {1, . . . , 𝐿} × {0, 1}

is a bijection.

Lemma 4.4.2. There exists a constant 𝐶 such that for arbitrary 𝐿 ∈ Z≥1 and 𝑖, 𝑗 ∈ {1, . . . , 2𝐿},

|D(𝑖, 𝑗) | ≤ 𝐶𝐹2
3 𝜏(𝑖),

3
4
(𝑥\ (𝑖))𝐹2

3 𝜏( 𝑗),
3
4
(𝑥\ ( 𝑗)).

Proof. We divide our proof of the above inequality into four cases. Case 1: 𝑖, 𝑗 are both odd. Case

2: 𝑖, 𝑗 are both even. Case 3: 𝑖 is odd and 𝑗 is even. Case 4: 𝑖 is even and 𝑗 is odd.

Case 1. 𝑖, 𝑗 are both odd. Then 𝜏(𝑖) = 𝜏( 𝑗) = 1 and D(𝑖, 𝑗) = 𝐾11(𝑥\ (𝑖) , 𝑥\ ( 𝑗)). By Lemma B.0.2

(a),

|D(𝑖, 𝑗) | ≤ 𝐶𝐹2
3 ,

3
4
(𝑥\ (𝑖))𝐹2

3 ,
3
4
(𝑥\ ( 𝑗)) = 𝐶𝐹2

3 𝜏(𝑖),
3
4
(𝑥\ (𝑖))𝐹2

3 𝜏( 𝑗),
3
4
(𝑥\ ( 𝑗))
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Case 2. 𝑖, 𝑗 are both even. Then 𝜏(𝑖) = 𝜏( 𝑗) = 0 and D(𝑖, 𝑗) = 𝐾22(𝑥\ (𝑖) , 𝑥\ ( 𝑗)). By Lemma B.0.2

(c),

|D(𝑖, 𝑗) | ≤ 𝐶𝐹0, 34
(𝑥\ (𝑖)) ≤ 𝐶𝐹0, 34

(𝑥\ (𝑖))𝐹0, 34
(𝑥\ ( 𝑗)) = 𝐶𝐹2

3 𝜏(𝑖),
3
4
(𝑥\ (𝑖))𝐹2

3 𝜏( 𝑗),
3
4
(𝑥\ ( 𝑗)).

where the second inequality above follows from 𝐹0, 34
(𝑥) = 1 + (1 − 𝑥) 3

4 1{𝑥≤0} ≥ 1.

Case 3. 𝑖 is odd and 𝑗 is even. Then 𝜏(𝑖) = 1, 𝜏( 𝑗) = 0 and D(𝑖, 𝑗) = 𝐾12(𝑥\ (𝑖) , 𝑥\ ( 𝑗)). Using

Lemma B.0.2 (b),

|D(𝑖, 𝑗) | ≤ 𝐶𝐹2
3 ,

3
4
(𝑥\ (𝑖)) ≤ 𝐶𝐹2

3 ,
3
4
(𝑥\ (𝑖))𝐹0, 34

(𝑥\ ( 𝑗)) = 𝐶𝐹2
3 𝜏(𝑖),

3
4
(𝑥\ (𝑖))𝐹2

3 𝜏( 𝑗),
3
4
(𝑥\ ( 𝑗)).

Case 4. 𝑖 is even and 𝑗 is odd. Then 𝜏(𝑖) = 0, 𝜏( 𝑗) = 1 and D(𝑖, 𝑗) = 𝐾21(𝑥\ (𝑖) , 𝑥\ ( 𝑗)). The desired

inequality follows from Case 3 and the fact 𝐾21(𝑥, 𝑦) = −𝐾12(𝑦, 𝑥).

Since our discussion has covered all the cases, we conclude the proof of our lemma. �

Proof of Proposition 4.4.1 (ii). Referring to (4.4.1) and permutation expansion of the determinant,

(
Pf

[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

)2
= det

[
D(𝑥𝑖, 𝑥 𝑗 )

]2𝐿
𝑖, 𝑗=1 =

∑︁
𝜎∈𝑆2𝐿

𝐿∏
𝑖=1

D(𝑖, 𝜎(𝑖)) (4.4.4)

where 𝑆2𝐿 is the permutation group of {1, . . . , 2𝐿}. Applying Lemma 4.4.2, there exists a constant

𝐶 such that for any permutation 𝜎 ∈ 𝑆2𝐿 ,

��� 2𝐿∏
𝑖=1

D
(
𝑖, 𝜎(𝑖)

) ��� ≤ 𝐶2𝐿
2𝐿∏
𝑖=1

(
𝐹2

3 𝜏(𝑖),
3
4
(𝑥\ (𝑖))𝐹2

3 𝜏(𝜎(𝑖)),
3
4
(𝑥\ (𝜎(𝑖)))

)
= 𝐶2𝐿

( 2𝐿∏
𝑖=1

𝐹2
3 𝜏(𝑖),

3
4
(𝑥\ (𝑖))

)2

The first equality above is due to {𝜎(1), . . . , 𝜎(2𝐿)} = {1, . . . , 2𝐿}. Using the bijectivity of

(𝜏, \) : {1, . . . , 2𝐿} → {1, . . . , 𝐿} × {0, 1}, we see that

2𝐿∏
𝑖=1

𝐹2
3 𝜏(𝑖),

3
4
(𝑥\ (𝑖)) =

𝐿∏
𝑖=1

(
𝐹2

3 ,
3
4
(𝑥𝑖)𝐹0, 34

(𝑥𝑖)
)
=

𝐿∏
𝑖=1

𝐹2
3 ,

3
2
(𝑥𝑖).
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This implies that for all permutation 𝜎 ∈ 𝑆2𝐿 , the absolute value of
∏2𝐿
𝑖=1 D

(
𝑖, 𝜎(𝑖)

)
can be

upper bounded by 𝐶2𝐿 ( ∏𝐿
𝑖=1 𝐹2

3 ,
3
2
(𝑥𝑖)

)2. Referring to (4.4.4), since there are (2𝐿)! terms of∏2𝐿
𝑖=1 D

(
𝑖, 𝜎(𝑖)

)
in the summation on the right hand side,

(
Pf

[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

)2
≤ (2𝐿)! max

𝜎∈𝑆2𝐿

( 2𝐿∏
𝑖=1

D(𝑖, 𝜎(𝑖))
)
≤ (2𝐿)!𝐶2𝐿

( 𝐿∏
𝑖=1

𝐹2
3 ,

3
2
(𝑥𝑖)

)2

Taking the square root for both sides above and using 𝐹2
3 ,

3
2
(𝑥𝑖) ≤ 𝐹2

3 ,2
(𝑥𝑖), this completes the

proof. �

4.4.2 Proof of Lemma 4.2.7

In this subsection, we devote to justify that we can interchange the order of derivative, integra-

tion and summation for the right hand side (4.2.8) and provide a proof of Lemma 4.2.7. We will

only rely on Proposition 4.4.1 (i). For the ensuing discussion, we denote the 𝑘-th partial derivative

𝜕𝑘𝑠 𝜙𝑠,𝑡 (𝑥) by 𝜙(𝑘)𝑠,𝑡 (𝑥). In particular, when 𝑘 = 0, 𝜙(𝑘)𝑠,𝑡 (𝑥) coincides with 𝜙𝑠,𝑡 (𝑥).

Lemma 4.4.3. Fix 𝑘 ∈ Z≥0. Recall from (4.2.5) that 𝜙𝑠,𝑡 (𝑥) = 1√
1+4𝑠 exp(𝑡1/3𝑥)

− 1, there exists

𝐶 = 𝐶 (𝑘) such that for all 𝑠 ≥ 0,

|𝜙(𝑘)𝑠,𝑡 (𝑥) | ≤ 1 ∧ 2𝑠𝑒𝑡
1
3 𝑥 if 𝑘 = 0; |𝜙(𝑘)𝑠,𝑡 (𝑥) | ≤ 𝐶

(
𝑒𝑘𝑡

1
3 𝑥 ∧ 𝑠−𝑘

)
if 𝑘 ∈ Z≥1, (4.4.5)

Proof. It is easy to verify that for all 𝑦 ≥ 0, 0 ≤ 1− 1√
1+𝑦
≤ 1∧ 1

2 𝑦. Taking 𝑦 = 4𝑠 exp(𝑡 1
3 𝑥) implies

the first inequality in (4.4.5). For the second inequality, when 𝑘 ∈ Z≥1, we compute 𝜙(𝑘)𝑠,𝑡 (𝑥) =

(−2)𝑘 (2𝑘 − 1)!! exp(𝑘𝑡
1
3 𝑥)

(1+4𝑠 exp(𝑡
1
3 𝑥))

2𝑘+1
2

. Lower bounding (1 + 4𝑠 exp(𝑡 1
3 𝑥)) 2𝑘+1

2 in the denominator by 1,

we get |𝜙(𝑘)𝑠,𝑡 (𝑥) | ≤ 2𝑘 (2𝑘 − 1)!! exp(𝑘𝑡 1
3 𝑥). On the other hand, we have

|𝜙(𝑘)𝑠,𝑡 (𝑥) | ≤ 2𝑘 (2𝑘 − 1)!! exp(𝑘𝑡 1
3 𝑥)(

1 + 4𝑠 exp(𝑡 1
3 𝑥)

) 𝑘 ≤ 𝑠−𝑘2𝑘 (2𝑘 − 1)!!,

Combining these two upper bounds completes our proof. �

Let us introduce a few notations. Define 𝔐(𝐿, 𝑛) :=
{
®𝑚 = (𝑚1, . . . , 𝑚𝐿) ∈ Z𝐿≥0,

∑𝐿
𝑖=1𝑚𝑖 = 𝑛

}
139



and for ®𝑚 ∈ 𝔐(𝐿, 𝑛), we set
( 𝑛
®𝑚
)

:= 𝑛!∏𝐿
𝑖=1 𝑚𝑖!

.

Lemma 4.4.4. Fix 𝑛 ∈ Z≥0 and 𝑡 > 0, there exists a constant 𝐶 = 𝐶 (𝑛, 𝑡) such that for all 𝐿 ∈ Z≥1

and 𝑠 ∈ [0, 1], ���� ∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿

���� ≤ (2𝐿) 𝐿2𝐶𝐿 .
Proof. By Leibniz’s rule,

𝜕𝑛𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
=

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

) 𝐿∏
𝑖=1

𝜙
(𝑚𝑖)
𝑠,𝑡 (𝑥𝑖). (4.4.6)

According to Lemma 4.4.3, there exists constant 𝐶1 = 𝐶1(𝑛) > 2 such that for each 0 ≤ 𝑚𝑖 ≤ 𝑛

and 𝑠 ∈ [0, 1]

|𝜙(𝑚𝑖)
𝑠,𝑡 (𝑥𝑖) | ≤ 2𝑠𝑒𝑡

1
3 𝑥 ≤ 2𝑒𝑡

1
3 𝑥 if 𝑚𝑖 = 0; |𝜙(𝑚𝑖)

𝑠,𝑡 (𝑥𝑖) | ≤ 𝐶1𝑒
𝑚𝑖𝑡

1
3 𝑥 if 1 ≤ 𝑚𝑖 ≤ 𝑛.

Hence, we have |𝜙(𝑚𝑖)
𝑠,𝑡 (𝑥𝑖) | ≤ 𝐶1

(
exp(𝑡 1

3 𝑥) ∨ exp(𝑡 1
3𝑛𝑥)

)
. Taking the absolute value for both sides

of (4.4.6) and applying triangle inequality,

���𝜕𝑛𝑠 ( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)��� ≤ 𝐶𝐿1 ∑︁

®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

) 𝐿∏
𝑖=1

(
𝑒𝑡

1
3 𝑥𝑖 ∨ 𝑒𝑛𝑡

1
3 𝑥𝑖

)
= 𝐶𝐿1

𝐿∏
𝑖=1

(
𝑒𝑡

1
3 𝑥𝑖 ∨ 𝑒𝑛𝑡

1
3 𝑥𝑖

) ( ∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

))
(4.4.7)

It suffices to show that there exists a constant 𝐶2 = 𝐶2(𝑛) such that for all 𝐿 ∈ Z≥1

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
≤ 𝐶𝐿2 . (4.4.8)

Once this is shown, by (4.4.7) we see that
��𝜕𝑛𝑠 ( ∏𝐿

𝑖=1 𝜙𝑠,𝑡 (𝑥𝑖)
) �� is upper bounded by (𝐶1𝐶2)𝐿

∏𝐿
𝑖=1

(
𝑒𝑡

1
3 𝑥𝑖∨
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𝑒𝑛𝑡
1
3 𝑥𝑖

)
. Applying Proposition 4.4.1 (i), there exists a constant 𝐶 such that

���Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)��� ≤ (2𝐿) 𝐿2𝐶𝐿 𝐿∏

𝑖=1

(
𝐹1

3 ,2
(𝑥𝑖)

(
𝑒𝑡

1
3 𝑥𝑖 ∨ 𝑒𝑛𝑡

1
3 𝑥𝑖

) )
(4.4.9)

Integrating both sides on R𝐿 implies that

���� ∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿

���� ≤ (2𝐿) 𝐿2𝐶𝐿 ( ∫
R
𝐹1

3 ,2
(𝑥)

(
𝑒𝑡

1
3 𝑥 ∨ 𝑒𝑛𝑡

1
3 𝑥 )𝑑𝑥)𝐿 .

Since 𝑡 is fixed, the integrand on the right hand side above decays super-exponentially as 𝑥 → +∞

and exponentially as 𝑥 → −∞, hence is integrable. The value of the integration above is a constant

that only depends on 𝑛, 𝑡. This completes our proof of the lemma.

It remains to prove (4.4.8). Let #𝐴 be the number of elements in 𝐴. Note that

#𝔐(𝐿, 𝑛) = #{ ®𝑚 = (𝑚1, . . . , 𝑚𝐿) ∈ Z𝐿≥0,

𝐿∑︁
𝑖=1

𝑚𝑖 = 𝑛} ≤ 𝐿#𝔐(𝐿, 𝑛 − 1). (4.4.10)

Iterating this inequality yields #𝔐(𝐿, 𝑛) ≤ 𝐿𝑛. In addition, for each ®𝑚 ∈ 𝔐(𝐿, 𝑛),
( 𝑛
®𝑚
)

is upper

bounded by 𝑛!. We can find a large constant 𝐶2 = 𝐶2(𝑛) such that for all 𝐿 ≥ 1,

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
≤ 𝑛!#𝔐(𝐿, 𝑛) ≤ 𝑛!𝐿𝑛 ≤ 𝐶𝐿2 . �

The next two propositions validate that we can interchange the order of derivative, summation

and integral.

Proposition 4.4.5. For every fixed 𝑛, 𝐿 ∈ Z≥1, 𝑠 ∈ [0, 1] and 𝑡 > 0, we have

𝜕𝑛𝑠

( ∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖
)
=

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿

Proof. The proof follows from the dominated convergence theorem. It suffices to show that we
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can find an integrable function 𝐺 (𝑥1,. . . , 𝑥𝐿) such that for all 𝑠 ∈ [0, 1],

���Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)��� ≤ 𝐺 (𝑥1, . . . , 𝑥𝐿) (4.4.11)

By (4.4.9), we can take

𝐺 (𝑥1, . . . , 𝑥𝐿) = (2𝐿)
𝐿
2𝐶𝐿

𝐿∏
𝑖=1

𝐹1
3 ,2
(𝑥𝑖)

(
𝑒𝑡

1
3 𝑥𝑖 ∨ 𝑒𝑛𝑡

1
3 𝑥𝑖

)
Since 𝐺 is integrable and satisfy (4.4.11), this completes our proof. �

Proposition 4.4.6. For fixed 𝑛 ∈ Z≥1, 𝑡 > 0 and 𝑠 ∈ [0, 1] we have the following interchange of

differentiation and summation holds

𝜕𝑛𝑠

( ∞∑︁
𝐿=1

1
𝐿!

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖
)
=

∞∑︁
𝐿=1

1
𝐿!
𝜕𝑛𝑠

( ∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖
)
.

Proof. A sufficient condition for the interchange of the order of derivative and infinite summation

is that (see [DT19, Proposition 4.2]),

(i)
∑∞
𝐿=1

1
𝐿!

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

∏𝐿
𝑖=1 𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖 converges pointwisely for 𝑠 ∈ [0, 1].

(ii) For all 𝑛 ∈ Z≥1,
∑∞
𝐿=1

1
𝐿!𝜕

𝑛
𝑠

( ∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

∏𝐿
𝑖=1 𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖

)
converges uniformly for

𝑠 ∈ [0, 1].

Applying Proposition 4.4.5, for (ii), we can place 𝜕𝑛𝑠 inside the integral. Then both (i) and (ii)

follow from Lemma 4.4.4 and the convergence of
∑∞
𝐿=1

𝐶𝐿 (2𝐿)
𝐿
2

𝐿! . �

Proof of Lemma 4.2.7. It is enough to show (4.2.9). Combining Proposition 4.4.5 and 4.4.6, we

know that

∫ 1

0
𝑠−𝛼𝜕𝑛𝑠

( ∞∑︁
𝐿=1

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖
)
𝑑𝑠

=

∫ 1

0
𝑠−𝛼

( ∞∑︁
𝐿=1

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿

)
𝑑𝑠
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Thus, what remains to prove is the interchange of integral and summation:

∫ 1

0
𝑠−𝛼

( ∞∑︁
𝐿=1

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿

)
𝑑𝑠

=

∞∑︁
𝐿=1

∫ 1

0
𝑠−𝛼

( ∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1𝜕

𝑛
𝑠

( 𝐿∏
𝑖=1

𝜙𝑠,𝑡 (𝑥𝑖)
)
𝑑𝑥1 . . . 𝑑𝑥𝐿

)
𝑑𝑠

This can be justified via the dominated convergence theorem, using again Lemma 4.4.4 and the

convergence of
∑∞
𝐿=1

𝐶𝐿 (2𝐿)
𝐿
2

𝐿! . �

4.5 Proof of Proposition 4.2.9

In this section, we prove Proposition 4.2.9. The main inputs will be Proposition 4.4.1 and

Proposition 4.5.2 that we will show in a moment.

Define 𝑉𝑛 (𝑥) = 𝑛𝑥 − 1
3𝑥

3
2 and𝑈𝑛 (𝑥) = 𝑛𝑥 − 2

3𝑥
3/2. By straightforward calculus, 𝑉𝑛 (𝜎 ∧ 4𝑛2) (resp.

𝑈𝑛 (𝜎 ∧ 𝑛2)) is the maximum of 𝑉𝑛 (resp. 𝑈𝑛) over 𝑥 ∈ [0, 𝜎], with 𝜎 ∧ 4𝑛2 (resp. 𝜎 ∧ 𝑛2) to be

the unique maximizer. Recall from the beginning of Section 4.4 that 𝐹𝛼,𝛽 (𝑥) = 𝑒−𝛼𝑥
3
2 1{𝑥≥0} + (1 −

𝑥)𝛽1{𝑥<0}.

Lemma 4.5.1. Fix 𝑛 ∈ Z≥1 and 𝑡0 > 0, there exists 𝐶 = 𝐶 (𝑛, 𝑡0) such that for all 𝜎 ≥ 0 and 𝑡 > 𝑡0,

(i)
∫ 𝜎

−∞ exp(𝑡𝑛𝑥)𝐹1
3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 ≤ 𝐶𝑡− 1
2 exp(𝑡𝑉𝑛 (𝜎 ∧ 4𝑛2))

(ii)
∫ 𝜎

−∞ exp(𝑡𝑛𝑥)𝐹2
3 ,2
(𝑡 2

3 𝑥) ≤ 𝐶𝑡− 1
2 exp(𝑡𝑈𝑛 (𝜎 ∧ 𝑛2))

Proof. Let us first demonstrate (i) and (ii) will follow in a similar way. Decompose

∫ 𝜎

−∞
𝑒𝑡𝑛𝑥𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 =
∫ 0

−∞
𝑒𝑡𝑛𝑥𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 +
∫ 𝜎

0
𝑒𝑡𝑛𝑥𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 (4.5.1)

Since 𝐹𝛼,𝛽 (𝑥) equals (1 − 𝑥)𝛽 when 𝑥 is negative, we can rewrite the first term on the right hand

side in the above display into
∫ 0
−∞ exp(𝑡𝑛𝑥) (1 − 𝑡 2

3 𝑥)2𝑑𝑥. We have

∫ 0

−∞
𝑒𝑡𝑛𝑥 (1 − 𝑡 2

3 𝑥)2𝑑𝑥 = 𝑡−1
∫ ∞

0
𝑒−𝑛𝑥 (1 + 𝑡− 1

3 𝑥)2𝑑𝑥 ≤ 𝑡−1
∫ ∞

0
𝑒−𝑛𝑥 (1 + 𝑡−1/3

0 𝑥)2𝑑𝑥 ≤ 𝐶𝑡−1,
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where the first equality is due to a change of variable 𝑥 → −𝑡−1𝑥, the second equality follows our

condition 𝑡 ≥ 𝑡0 and the third is due to
∫ ∞
0 𝑒−𝑛𝑥 (1 + 𝑡−

1
3 𝑥

0 )2𝑑𝑥 is finite constant only depending

on 𝑛, 𝑡0. We have shown that the first term on the right hand side of (4.5.1) is upper bounded

by 𝐶𝑡−1 for some 𝐶 = 𝐶 (𝑛, 𝑡0). Since 𝑉𝑛 (𝜎 ∧ 4𝑛2) is non-negative, which implies that 𝑡−1 ≤

𝐶𝑡−
1
2 exp(𝑡𝑉𝑛 (𝜎 ∧ 4𝑛2)) for 𝑡 ≥ 𝑡0. To prove (i), it suffices to prove the second term on the right

hand side of (4.5.1) is also upper bounded by 𝐶𝑡−
1
2 exp(𝑡𝑉𝑛 (𝜎 ∧ 4𝑛2)). Note that when 𝑥 ≥ 0,

𝐹1
3 ,2
(𝑡 2

3 𝑥) = exp(−1
3 𝑡𝑥

3
2 ) which yields

∫ 𝜎

0 exp(𝑡𝑛𝑥)𝐹1
3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 =
∫ 𝜎

0 exp(𝑡𝑉𝑛 (𝑥))𝑑𝑥. Thus we

only need to show that there exists a constant 𝐶 = 𝐶 (𝑛, 𝑡0) such that for 𝑡 > 𝑡0∫ 𝜎

0
𝑒𝑡𝑉𝑛 (𝑥)𝑑𝑥 ≤ 𝐶𝑡− 1

2 𝑒𝑡𝑉𝑛 (𝜎∧4𝑛2) . (4.5.2)

To this aim, we split our discussion into the following three cases.

Case 1. 𝜎 ∈ [0, 𝑛2]. Since 𝑉 ′′𝑛 (𝑥) = − 1
4
√
𝑥
< 0, 𝑉𝑛 (𝑥) is concave on 𝜎 ∈ [0, 𝑛2]. Hence, for all

𝑥 ∈ [0, 𝜎],

𝑉𝑛 (𝑥) ≤ 𝑉𝑛 (𝜎) +𝑉 ′𝑛 (𝜎) (𝑥 − 𝜎) = 𝑉𝑛 (𝜎) + (𝑛 −
1
2
√
𝜎) (𝑥 − 𝜎) ≤ 𝑉𝑛 (𝜎) +

𝑛

2
(𝑥 − 𝜎).

The last inequality above follows since 𝑥 ≤ 𝜎 and 𝑛 − 1
2
√
𝜎 ≥ 𝑛/2. Using the displayed inequality

above,

∫ 𝜎

0
𝑒𝑡𝑉𝑛 (𝑥)𝑑𝑥 ≤

∫ 𝜎

0
𝑒𝑡 (𝑉𝑛 (𝜎)+

𝑛
2 (𝑥−𝜎))𝑑𝑥 = 𝑒𝑡𝑉𝑛 (𝜎)

∫ 𝜎

0
𝑒

𝑛𝑡
2 (𝑥−𝜎)𝑑𝑥 ≤ 2

𝑛𝑡
𝑒𝑡𝑉𝑛 (𝜎) .

Since 𝜎 ∈ [0, 𝑛2], 𝑉𝑛 (𝜎) = 𝑉𝑛 (𝜎 ∧ 4𝑛2). Moreover, for 𝑡 ≥ 𝑡0, 2
𝑛𝑡
𝑒𝑡𝑉𝑛 (𝜎) ≤ 2

𝑛
√
𝑡0
𝑡−

1
2 𝑒𝑡𝑉𝑛 (𝜎) , which

implies (4.5.2).

Case 2. 𝜎 ∈ [𝑛2, 4𝑛2]. First, via a change of variable 𝑥 = 𝑟2,
∫ 𝜎

0 𝑒𝑡𝑉𝑛 (𝑥)𝑑𝑥 =
∫ √𝜎
0 2𝑟𝑒𝑡𝑉𝑛 (𝑟2)𝑑𝑟.

Therefore, we only need to prove (4.5.2) with
∫ √𝜎
0 2𝑟𝑒𝑡𝑉𝑛 (𝑟2)𝑑𝑟 in place of

∫ 𝜎

0 𝑒𝑡𝑉𝑛 (𝑥)𝑑𝑥. Since
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𝑟 ≤
√
𝜎 ≤ 2𝑛,

𝑉𝑛 (𝑟2) −𝑉𝑛 (𝜎) = 𝑛(𝑟2−𝜎) − 1
3
(𝑟3−𝜎 3

2 ) ≤
√
𝜎

2
(𝑟2−𝜎) − 1

3
(𝑟3−𝜎 3

2 ) = −1
3
(𝑟 −
√
𝜎)2(𝑟 + 1

2
√
𝜎).

Since 𝜎 ≥ 𝑛2 and 𝑟 ≥ 0, from the above displayed inequality, 𝑉𝑛 (𝑟2) ≤ 𝑉𝑛 (𝜎) − 𝑛
6 (𝑟 −

√
𝜎)2.

Consequently,

∫ √
𝜎

0
2𝑟𝑒𝑡𝑉𝑛 (𝑟

2)𝑑𝑟 ≤
∫ √

𝜎

0
2𝑟𝑒𝑡𝑉𝑛 (𝜎)𝑒−

𝑡𝑛
6 (𝑟−

√
𝜎)2𝑑𝑟 ≤ 𝑒𝑡𝑉𝑛 (𝜎)

∫ √
𝜎

0
2𝑟𝑒−

𝑡
6 (𝑟−
√
𝜎)2𝑑𝑟 ≤ 𝐶

√
𝑡
𝑒𝑡𝑉𝑛 (𝜎) .

This completes the proof of (4.5.2). In the last inequality above, we used
√
𝜎 ≤ 2𝑛 and 𝑡 ≥ 𝑡0,

which implies that

∫ √
𝜎

0
2𝑟𝑒−

𝑡
6 (𝑟−
√
𝜎)2𝑑𝑟 ≤

∫ ∞

−∞
2(𝑟+
√
𝜎)𝑒− 𝑡

6 𝑟
2
𝑑𝑟 ≤

∫ ∞

−∞
2(𝑟+2𝑛)𝑒− 𝑡

6 𝑟
2
𝑑𝑟 = 𝐶1𝑡

−1+𝐶2𝑡
−1/2 ≤ 𝐶𝑡−1/2.

Case 3. 𝜎 > 4𝑛2. As illustrated in Case 2, we only need to show that for 𝑡 > 𝑡0,

∫ √
𝜎

0
2𝑟𝑒𝑡𝑉𝑛 (𝑟

2)𝑑𝑟 ≤ 𝐶𝑡− 1
2 𝑒𝑡𝑉𝑛 (𝜎∧4𝑛2)

Note that 𝑉𝑛 (𝑟2) − 4
3𝑛

3 = 𝑛𝑟2 − 1
3𝑟

3 − 4
3𝑛

3 = −1
3 (𝑟 − 2𝑛)2(𝑛 + 𝑟) ≤ −𝑛3 (𝑟 − 2𝑛)2. This implies

∫ √
𝜎

0
2𝑟𝑒𝑡𝑉𝑛 (𝑟

2)𝑑𝑟 ≤
∫ √

𝜎

0
2𝑟𝑒

4
3 𝑡𝑛

3
𝑒−

𝑛
3 𝑡 (𝑟−2𝑛)2𝑑𝑟 ≤ 𝑒 4

3𝑛
3𝑡

∫ √
𝜎

0
2𝑟𝑒−

𝑛
3 𝑡 (𝑟−2𝑛)2𝑑𝑟 ≤ 𝐶

√
𝑡
𝑒

4
3𝑛

3𝑡 .

The last inequality is due to a similar argument as in Case 2 above. Since 𝜎 > 4𝑛2, we have

𝑉𝑛 (𝜎 ∧ 4𝑛2) = 𝑉𝑛 (4𝑛2) = 4
3𝑛

3, thus we showed (4.5.2). So far, we complete the proof of (i).

The proof of (ii) will be rather similar to (i), instead of showing (4.5.2), one needs to show that

there exists 𝐶 = 𝐶 (𝑛, 𝑡0) such that for 𝑡 ≥ 𝑡0,
∫ 𝜎

0 exp
(
𝑡𝑈𝑛 (𝑥)

)
𝑑𝑥 ≤ 𝐶𝑡− 1

2 exp
(
𝑡𝑈𝑛 (𝜎 ∧ 𝑛2)

)
. We

skip the details. �
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Proposition 4.5.2. For fixed 𝑛 ∈ Z≥1 and 𝑡0 > 0, there exists constant 𝐶 = 𝐶 (𝑛, 𝑡0) such that for

every 𝜎 ≥ 0 and 𝑡 > 𝑡0,

(a)
∫ ∞
−∞ |𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝐹1

3 ,2
(𝑥)𝑑𝑥 ≤ 𝐶𝑡 1

6 exp
(
𝑡𝑉1(𝜎 ∧ 4) − 𝑡𝜎

)
(b)

∫ ∞
−∞ |𝜙

(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝐹1

3 ,2
(𝑥)𝑑𝑥 ≤ 𝐶𝑡 1

6 exp
(
𝑡𝑉𝑛 (𝜎 ∧ 4𝑛2)

)
(c)

∫ ∞
−∞ |𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝐹2

3 ,2
(𝑥)𝑑𝑥 ≤ 𝐶𝑡 1

6 exp
(
𝑡𝑈1(𝜎 ∧ 1) − 𝑡𝜎

)
(d)

∫ ∞
−∞ |𝜙

(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝐹2

3 ,2
(𝑥)𝑑𝑥 ≤ 𝐶𝑡 1

6 exp
(
𝑡𝑈𝑛 (𝜎 ∧ 𝑛2)

)
.

Proof. We first prove (a). Via a change of variable 𝑥 → 𝑡
2
3 𝑥,

∫ ∞

−∞
|𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝐹1

3 ,2
(𝑥)𝑑𝑥 = 𝑡 2

3

∫ ∞

−∞
|𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑡

2
3 𝑥) |𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥. (4.5.3)

We decompose the integral region on the right hand side above into (−∞, 𝜎) ∪ (𝜎,∞) and write

∫ ∞

−∞
|𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑡

2
3 𝑥) |𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 =
( ∫ 𝜎

−∞
+
∫ ∞

𝜎

)
|𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑡

2
3 𝑥) |𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 = E1 + E2

So the left hand side of (4.5.3) equals 𝑡
2
3 (E1 + E2). We provide upper bounds for E1 and E2

respectively. By Lemma 4.4.3, |𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑡
2
3 𝑥) | ≤ 2 exp

(
𝑡 (𝑥 − 𝜎)

)
, so

E1 ≤ 2𝑒−𝑡𝜎
∫ 𝜎

−∞
𝑒𝑡𝑥𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 ≤ 𝐶𝑡− 1
2 𝑒𝑡𝑉1 (𝜎∧4)−𝑡𝜎 . (4.5.4)

where the last inequality above is due to Lemma 4.5.1 (i) (setting 𝑛 = 1 therein). On the other

hand, since 𝐹1
3 ,2
(𝑡 2

3 𝑥) = exp(−1
3 𝑡𝑥

3
2 ) when 𝑥 ≥ 0,

E2 =

∫ ∞

𝜎

|𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑡
2
3 𝑥) |𝑒− 1

3 𝑡𝑥
3/2
𝑑𝑥 ≤

∫ ∞

𝜎

𝑒−
1
3 𝑡𝑥

3/2
𝑑𝑥 = 𝑡−

2
3

∫ ∞

𝑡
2
3 𝜎
𝑒−

1
3 𝑥

3/2
𝑑𝑥 ≤ 𝐶𝑡− 2

3 𝑒−
1
3 𝑡𝜎

3
2 (4.5.5)

The first inequality above is due to Lemma 4.4.3, which yields |𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑡
2
3 𝑥) | ≤ 1. The second

inequality follows from a change of variable 𝑥 → 𝑡−
2
3𝜎, and the last inequality is due to the fact∫ ∞

𝑦
exp(−1

3𝑥
3
2 )𝑑𝑥 ≤ 𝐶 exp(−1

3 𝑦
3
2 ), which holds for all 𝑦 ≥ 0. Combining (4.5.4) and (4.5.5) and
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recall that
∫ ∞
−∞ 𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑥)𝐹1

3 ,2
(𝑥)𝑑𝑥 = 𝑡 2

3 (E1 + E2), we obtain

∫ ∞

−∞
|𝜙𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝐹1

3 ,2
(𝑥)𝑑𝑥 ≤ 𝐶𝑡 2

3
(
𝑡−

1
2 exp(𝑡𝑉1(𝜎 ∧ 4) − 𝑡𝜎) + 𝑡− 2

3 𝑒−
1
3 𝑡𝜎

3
2 )
.

Since 𝑉1(𝜎 ∧ 4) is the maximum of 𝑉1(𝑥) for 𝑥 ∈ [0, 𝜎], 𝑉1(𝜎 ∧ 4) −𝜎 ≥ 𝑉1(𝜎) −𝜎 = −1
3𝜎

3
2 , so

the first term on the right hand side above dominates, this completes the proof of (a).

For the proof of (b), via a change of variable 𝑥 → 𝑡
2
3 𝑥,

∫ ∞

−∞
|𝜙(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝐹1

3 ,2
(𝑥)𝑑𝑥 = 𝑡 2

3

∫ ∞

−∞
|𝜙(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑡

2
3 𝑥) |𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥

Decompose the integral on the right hand side in the above display as

∫ ∞

−∞
|𝜙(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑡

2
3 𝑥) |𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 =
( ∫ 𝜎

−∞
+
∫ ∞

𝜎

)
|𝜙(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑡

2
3 𝑥) |𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 = E′1 + E′2.

Let us upper bound E′1 and E′2 respectively. By Lemma 4.4.3, we know that |𝜙(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑡

2
3 𝑥) | ≤

𝐶 exp(𝑛𝑡𝑥). Using this together with Lemma 4.5.1 (i), we get

E′1 ≤ 𝐶
∫ 𝜎

−∞
𝑒𝑛𝑡𝑥𝐹1

3 ,2
(𝑡 2

3 𝑥)𝑑𝑥 ≤ 𝐶𝑡− 1
2 exp

(
𝑡𝑉𝑛 (𝜎 ∧ 4𝑛2)

)
. (4.5.6)

For E′2, note that 𝐹1
3 ,2
(𝑡 2

3 𝑥) simplifies to exp(−1
3 𝑡𝑥

3
2 ) for 𝑥 ≥ 0. By Lemma 4.4.3, |𝜙(𝑛)

𝑒−𝑡 𝜎 ,𝑡 (𝑡
2
3 𝑥) | ≤

𝐶 exp(𝑛𝑡𝜎) (note that 𝑠 = 𝑒−𝑡𝜎). Using this inequality implies

E′2 =

∫ ∞

𝜎

𝜙
(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑡

2
3 𝑥)𝑒− 1

3 𝑡𝑥
3
2
𝑑𝑥 ≤ 𝐶𝑒𝑡𝑛𝜎

∫ ∞

𝜎

𝑒−
1
3 𝑡𝑥

3
2
𝑑𝑥 ≤ 𝐶𝑡− 2

3 𝑒𝑡𝑛𝜎−
1
3 𝑡𝜎

3
2
. (4.5.7)

Recall that
∫ ∞
−∞ |𝜙

(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝐹1

3 ,2
(𝑥)𝑑𝑥 = 𝑡 2

3 (E′1 + E′2), combining (4.5.6) and (4.5.7) yields

∫ ∞

−∞
|𝜙(𝑛)
𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝐹1

3 ,2
(𝑥)𝑑𝑥 ≤ 𝐶𝑡 2

3

(
𝑡−

1
2 𝑒𝑡𝑉𝑛 (𝜎∧4𝑛2) + 𝑡− 2

3 𝑒𝑡 (𝑛𝜎−
1
3𝜎

3
2 )
)
≤ 𝐶𝑡 1

6 exp
(
𝑡𝑉𝑛 (𝜎 ∧ 4𝑛2)

)
.

The last inequality above is due to 𝑉𝑛 (𝜎 ∧ 4𝑛2) ≥ 𝑉𝑛 (𝜎) = 𝑛𝜎 − 1
3𝜎

3
2 . This completes the proof
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of (b).

The proof for (c), (d) follows a rather similar argument as for (a), (b). Instead of using Lemma

4.5.1 (i), one needs to apply Lemma 4.5.1 (ii). We omit the details here. �

Fix 𝑝 ∈ R > 0, referring to (4.2.12) and applying Leibniz’s rule (4.4.6), we know that

B𝑝,𝐿 (𝑡) =
(−1)𝛼

Γ(1 − 𝛼)𝐿!

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
I®𝑚, (4.5.8)

where

I®𝑚 =

∫ 1

0
𝑠−𝛼𝑑𝑠

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙
(𝑚𝑖)
𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖 . (4.5.9)

Note that 𝑛 and 𝛼 are determined by 𝑝 in a way that 𝑛 = b𝑝c + 1 and 𝛼 = 𝑝 + 1 − 𝑛 ∈ [0, 1). We

want to upper bound B𝑝,𝐿 (𝑡), it suffices to study I®𝑚 For every ®𝑚 ∈ 𝔐(𝐿, 𝑛).

Proposition 4.5.3. Fix 𝑝 ∈ R>0 and 𝑡0 > 0. Define 𝛿𝑝 := min( 23 ,
𝑝3

4 ). There exists 𝐶 = 𝐶 (𝑝, 𝑡0)

such that for all 𝐿 ≥ 2, 𝑡 ≥ 𝑡0 and ®𝑚 ∈ 𝔐(𝐿, 𝑛), we have |I®𝑚 | ≤ 𝐶𝐿 (2𝐿)
𝐿
2 𝑡

𝐿
6 𝑒

𝑝3
3 𝑡−𝛿𝑝𝑡 .

Proof. Without loss of generality, we assume that 𝑚1, . . . , 𝑚𝑟 > 0 and 𝑚𝑟+1 = · · · = 𝑚𝐿 = 0 for

some integer 𝑟 satisfying 1 ≤ 𝑟 ≤ 𝑛 ∧ 𝐿. Referring to (4.5.9), by a change of variable 𝑠 = 𝑒−𝑡𝜎, we

obtain

I®𝑚 =

∫ ∞

0
𝑒𝑡 (𝛼−1)𝜎𝑑𝜎

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙
(𝑚𝑖)
𝑒−𝑡 𝜎 ,𝑡 (𝑥𝑖)𝑑𝑥𝑖 .

It suffice to show that the right hand side of the above display is upper bounded by𝐶𝐿 (2𝐿) 𝐿2 𝑡 𝐿6 𝑒
𝑝3𝑡
3 −𝛿𝑝𝑡 .

We divide our argument into two stages. We prove the inequality for 𝐿 ≥ 4𝑛3 in Stage 1 and Stage

2 will cover the case 2 ≤ 𝐿 < 4𝑛3.

Stage 1. 𝐿 ≥ 2𝑛3. Via Proposition 4.4.1 (i),
��Pf

[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

�� is upper bounded by𝐶𝐿 (2𝐿) 𝐿2 ∏𝐿
𝑖=1 𝐹1

3 ,2
(𝑥𝑖),

thus

|I®𝑚 | ≤ 𝐶𝐿 (2𝐿)
𝐿
2

∫ ∞

0
𝑒𝑡 (𝛼−1)𝜎

𝐿∏
𝑖=1

( ∫
R
𝐹1

3 ,2
(𝑥) |𝜙(𝑚𝑖)

𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝑑𝑥
)
𝑑𝜎. (4.5.10)
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Applying Proposition 4.5.2 (a) and (b). Since 𝑚𝑖 ∈ Z≥1 for 1 ≤ 𝑖 ≤ 𝑟 and 𝑚𝑖 = 0 for 𝑖 ≥ 𝑟 + 1,

there exists a constant 𝐶 = 𝐶 (𝑛, 𝑡0) such that for 𝑡 > 𝑡0,

∫
R
𝐹1

3 ,2
(𝑥) |𝜙(𝑚𝑖)

𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝑑𝑥 ≤


𝐶𝑡

1
6 exp(𝑡𝑉𝑚𝑖

(𝜎 ∧ 4𝑚2
𝑖
)) 𝑖 ≤ 𝑟

𝐶𝑡
1
6 exp(𝑡𝑉1(𝜎 ∧ 4) − 𝑡𝜎) 𝑖 > 𝑟.

Applying this inequality to the right hand side of (4.5.10), we find that |I®𝑚 | ≤ 𝐶𝐿 (2𝐿)
𝐿
2 𝑡

𝐿
6
∫ ∞
0 𝑒𝑡M1 (𝜎)𝑑𝜎,

where

M1(𝜎) := (𝛼 − 1)𝜎 +
𝑟∑︁
𝑖=1
𝑉𝑚𝑖
(𝜎 ∧ 4𝑚2

𝑖 ) + (𝐿 − 𝑟) (𝑉1(𝜎 ∧ 4) − 𝜎). (4.5.11)

To prove Proposition 4.5.3, it suffices to show that for there exists 𝐶 = 𝐶 (𝑛, 𝑡0), such that for all

𝑡 ≥ 𝑡0 and ®𝑚 ∈ 𝔐(𝐿, 𝑛), ∫ ∞

0
𝑒𝑡M1 (𝜎)𝑑𝜎 ≤ 𝐶𝑒

𝑝3
3 𝑡−𝛿𝑝𝑡 . (4.5.12)

where 𝛿𝑝 = min( 23 ,
𝑝3

4 ). To this aim, we decompose

∫ ∞

0
𝑒𝑡M1 (𝜎)𝑑𝜎 =

∫ 4

0
𝑒𝑡M1 (𝜎)𝑑𝜎 +

∫ ∞

4
𝑒𝑡M1 (𝜎)𝑑𝜎 = J1 + J2.

For J1, since 𝜎 ≤ 4, M1 simplifies to

M1(𝜎) = (𝛼 − 1)𝜎 +
𝑟∑︁
𝑖=1
𝑉𝑚𝑖
(𝜎) + (𝐿 − 𝑟) (𝑉1(𝜎) − 𝜎)

= (𝛼 − 1)𝜎 +
𝑟∑︁
𝑖=1
(𝑚𝑖𝜎 −

1
3
𝜎

3
2 ) − 1

3
(𝐿 − 𝑟)𝜎 3

2 = 𝑝𝜎 − 𝐿
3
𝜎

3
2 .

The last equality is due to
∑𝑟
𝑖=1𝑚𝑖 + 𝛼 − 1 = 𝑛 + 𝛼 − 1 = 𝑝. Since 𝐿 ≥ 4𝑛3 ≥ 4, M1(𝜎) =

𝑝𝜎 − 𝐿
3𝜎

3
2 ≤ 𝑝𝜎 − 4

3𝜎
3
2 ≤ 𝑝3

12 . We find that

J1 =

∫ 4

0
𝑒𝑡M1 (𝜎)𝑑𝜎 ≤

∫ 4

0
𝑒

𝑝3𝑡
12 𝑑𝜎 ≤ 4𝑒

𝑝3𝑡
12 . (4.5.13)
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For J2, referring to (4.5.11), since 𝜎 ≥ 4, 𝑉1(𝜎 ∧ 4) = 𝑉1(4) = 4
3 . Moreover, the maximum of

𝑉𝑚𝑖
(𝜎) = 𝑚𝑖𝜎 − 1

3𝜎
3
2 equals 4

3𝑚
3
𝑖
, hence 𝑉𝑚𝑖

(𝜎 ∧ 4𝑚2
𝑖
) ≤ 4

3𝑚
3
𝑖
. As a result,

M1(𝜎) ≤ (𝛼 − 1)𝜎 + 4
3

𝑟∑︁
𝑖=1

𝑚3
𝑖 + (𝐿 − 𝑟) (

4
3
− 𝜎) ≤ (𝛼 − 1)𝜎 + 4

3
𝑛3 − (𝐿 − 𝑟)8

3
.

The last inequality follows from the fact that
∑𝑟
𝑖=1𝑚

3
𝑖
≤ (∑𝑟

𝑖=1𝑚𝑖)3 = 𝑛3 and 4
3 − 𝜎 ≤ −

8
3 . Note

that 𝑟 is the number of 𝑚𝑖 which is non-zero, so 𝑟 ≤ 𝑛. Moreover, since 𝐿 ≥ 4𝑛3,

M1(𝜎) ≤
4
3
𝑛3 − (4𝑛3 − 𝑛)8

3
+ (𝛼 − 1)𝜎 ≤ (𝛼 − 1)𝜎

Consequently, we have J2 =
∫ ∞
4 𝑒𝑡M1 (𝜎)𝑑𝜎 ≤

∫ ∞
0 𝑒(𝛼−1)𝜎𝑡𝑑𝜎 = 𝑡−1

1−𝛼 . Combining this with (4.5.13)

yields that there exists 𝐶 = 𝐶 (𝑝, 𝑡0) such that for all 𝑡 > 𝑡0 and ®𝑚 ∈ 𝔐(𝐿, 𝑛) and 𝐿 ≥ 4𝑛3 (note

that 𝑝3

12 ≤
𝑝3

3 − 𝛿𝑝),

∫ ∞

0
𝑒𝑡M1 (𝜎)𝑑𝜎 = J1 + J2 ≤ 4𝑒

𝑝3𝑡
12 + 𝑡−1

1 − 𝛼 ≤ 𝐶𝑒
𝑝3
3 𝑡−𝛿𝑝𝑡 .

We prove the desired (4.5.12) and conclude our proof for Stage 1.

Stage 2. 2 ≤ 𝐿 ≤ 4𝑛3. Via Proposition 4.4.1 (ii),
��Pf

[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

�� is bounded by𝐶𝐿
∏𝐿
𝑖=1 𝐹2

3 ,2
(𝑥𝑖)

for all 𝑥1, . . . , 𝑥𝐿 and 2 ≤ 𝐿 ≤ 4𝑛3. Note that we throw out the multiplier
√

2𝐿! in the upper bound

since it is bounded by a constant that only depends on 𝑛 when 𝐿 ≤ 4𝑛3. Thus

|I®𝑚 | = 𝐶𝐿
∫ ∞

0
𝑒𝑡 (𝛼−1)𝜎

𝐿∏
𝑖=1

( ∫
R
𝐹2

3 ,2
(𝑥) |𝜙(𝑚𝑖)

𝑒−𝑡 𝜎 ,𝑡 (𝑥) |𝑑𝑥
)
𝑑𝜎

As before, we assume 𝑚1, . . . , 𝑚𝑟 ≥ 1 and 𝑚𝑟+1 = · · · = 𝑚𝐿 = 0. Applying Proposition 4.5.2

(c), (d). For each
∫
R
𝐹2

3 ,2
(𝑥) |𝜙(𝑚𝑖)

𝑒−𝑡 𝜎,𝑡 (𝑥) |𝑑𝑥, 𝑖 = 1, . . . , 𝑟 , since 𝑚𝑖 ∈ Z≥1, this integral can be upper

bounded by 𝐶𝑡
1
6 exp

(
𝑡𝑈𝑚𝑖
(𝜎∧𝑚2

𝑖
)
)
. When 𝑖 ≥ 𝑟 +1, 𝑚𝑖 = 0, the integral can be upper bounded by

𝐶𝑡
1
6 exp

(
𝑡𝑈1(𝜎 ∧ 1) − 𝑡𝜎

)
. Therefore, there exists a constant 𝐶 = 𝐶 (𝑛, 𝑡0) such that for all 𝑡 > 𝑡0,

150



2 ≤ 𝐿 ≤ 4𝑛3 and ®𝑚 ∈ 𝔐(𝐿, 𝑛),

|I®𝑚 | ≤ 𝐶𝐿𝑡
𝐿
6

∫ ∞

0
𝑒𝑡M2 (𝜎)𝑑𝜎 (4.5.14)

where

M2(𝜎) := (𝛼 − 1)𝜎 +
𝑟∑︁
𝑖=1
𝑈𝑚𝑖
(𝜎 ∧ 𝑚2

𝑖 ) + (𝐿 − 𝑟)
(
𝑈1(𝜎 ∧ 1) − 𝜎

)
. (4.5.15)

To conclude the proof of Proposition 4.5.3, it suffices to show that there exists 𝐶 = 𝐶 (𝑛, 𝑡0) such

that for all 𝑡 > 𝑡0 and 𝐿 ≥ 2 and ®𝑚 ∈ 𝔐(𝐿, 𝑛),

∫ ∞

0
𝑒𝑡M2 (𝜎)𝑑𝜎 ≤ 𝐶𝑒

𝑝3
3 𝑡−𝛿𝑝𝑡 . (4.5.16)

Once this is shown, applying (4.5.14) completes the proof of the Proposition 4.5.3.

We are left to show (4.5.16). To this aim, we divide our argument into two cases, depending on

𝑟 = 1 or not.

Case 1. 𝑟 = 1. In this case, 𝑚1 = 𝑛 and 𝑚𝑖 = 0 for 𝑖 > 1. As a result,

M2(𝜎) = (𝛼 − 1)𝜎 +𝑈𝑛 (𝜎 ∧ 𝑛2) + (𝐿 − 1)
(
𝑈1(𝜎 ∧ 1) − 𝜎

)
. (4.5.17)

We decompose

∫ ∞

0
𝑒𝑡M2 (𝜎)𝑑𝜎 =

( ∫ 1

0
+
∫ 𝑛

1
+
∫ ∞

𝑛

)
𝑒𝑡M2 (𝜎)𝑑𝜎 = I1 + I2 + I3,

and we are going to upper bound I1,I2,I3 respectively.

For I1, when 𝜎 ≤ 1, the right hand side of (4.5.17) can be simplified as

M2(𝜎) = (𝛼 − 𝐿)𝜎 +𝑈𝑛 (𝜎) + (𝐿 − 1)𝑈1(𝜎) = 𝑝𝜎 −
2𝐿
3
𝜎

3
2 .

Since 𝐿 ≥ 2, similar to the discussion in Stage 1, M2(𝜎) = 𝑝𝜎 − 2𝐿
3 𝜎

3
2 ≤ 𝑝𝜎 − 4

3𝜎
3
2 ≤ 𝑝3

12 .
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Thereby,

I1 =

∫ 1

0
𝑒𝑡M2 (𝜎)𝑑𝜎 ≤

∫ 1

0
𝑒

𝑝3𝑡
12 𝑑𝜎 = 𝑒

𝑝3𝑡
12 . (4.5.18)

For I2, when 1 ≤ 𝜎 ≤ 𝑛2, referring to (4.5.17), we can simplify M2(𝜎) = 𝑝𝜎− 2
3𝜎

3
2+(𝐿−1)

( 1
3−𝜎

)
.

Note that the maximum of 𝑝𝜎 − 2
3𝜎

3
2 under the condition 𝜎 ≥ 0 equals 1

3 𝑝
3. Using this in

conjunction with 𝐿 ≥ 2, M2(𝜎) ≤ 1
3 𝑝

3 + 1
3 − 𝜎. As a result,

I2 =

∫ 𝑛2

1
𝑒𝑡M2 (𝜎)𝑑𝜎 ≤ 𝑒

𝑝3
3 𝑡

∫ ∞

1
𝑒(

1
3−𝜎)𝑡𝑑𝜎 = 𝑡−1𝑒

𝑝3−2
3 𝑡 . (4.5.19)

For I3, the right hand side of (4.5.17) simplifies to

M2(𝜎) = (𝛼 − 1)𝜎 +𝑈𝑛 (𝑛2) + (𝐿 − 1) (𝑈1(1) − 𝜎) = (𝛼 − 1)𝜎 + 1
3
𝑛3 + (𝐿 − 1) (1

3
− 𝜎).

Since 𝛼 < 1, 𝜎 ≥ 𝑛2 and 𝐿 ≥ 2,

M2(𝜎) ≤ 𝑛2(𝛼 − 1) + 1
3
𝑛3 + (𝐿 − 1) (1

3
− 𝜎) ≤ 𝑛2(𝛼 − 1) + 1

3
𝑛3 + (1

3
− 𝜎)

Note that 𝑛2(𝛼 − 1) + 1
3𝑛

3 ≤ 1
3 (𝑛 + 𝛼 − 1)3 = 1

3 𝑝
3, hence M1(𝜎) ≤ 1

3 𝑝
3 + 1

3 − 𝜎. Thereby,

∫ ∞

𝑛2
𝑒𝑡M2 (𝜎)𝑑𝜎 ≤ 𝑒

𝑝3𝑡
3

∫ ∞

𝑛2
𝑒(

1
3−𝜎)𝑡𝑑𝜎 = 𝑡−1𝑒(

𝑝3+1
3 −𝑛

2)𝑡 ≤ 𝑡−1𝑒
𝑝3−2

3 𝑡 . (4.5.20)

Combining (4.5.18), (4.5.19) and (4.5.20), we conclude that for 𝑡 ≥ 𝑡0,

∫ ∞

0
𝑒𝑡M2 (𝜎)𝑑𝜎 ≤

(
𝑒

1
12 𝑝

3𝑡 + 𝑡−1𝑒
𝑝3−2

3 𝑡 + 𝑡−1𝑒
𝑝3−2

3 𝑡
)
≤ 𝐶𝑒 1

3 𝑝
3𝑡−𝛿𝑝𝑡 ,

The last inequality follows since 𝛿𝑝 = min( 23 ,
1
4 𝑝

3). So far we have shown (4.5.16) when 𝑟 = 1.

Case 2. 𝑟 ≥ 2. This implies 𝑛 ≥ 2. We write

∫ ∞

0
𝑒𝑡M2 (𝜎)𝑑𝜎 =

( ∫ 1

0
+
∫ ∞

1

)
𝑒𝑡M2 (𝜎)𝑑𝜎 = I𝑡1 + I𝑡2
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For I𝑡1, by (4.5.15), when 𝜎 ≤ 1, M2(𝜎) = 𝑝𝜎 − 2
3𝐿𝜎

3. Via the same argument as in Case 1, we

conclude that I𝑡1 ≤ 𝑒
1
12 𝑝

3𝑡 . For I𝑡2, using the inequality 𝑈𝑚𝑖
(𝜎 ∧ 𝑚2

𝑖
) ≤ 1

3𝑚
3
𝑖

and 𝑈1(𝜎 ∧ 1) =

𝑈1(1) = 1
3 , we get

M2(𝜎) ≤
1
3

𝑟∑︁
𝑖=1

𝑚3
𝑖 +

1
3
(𝐿 − 𝑟) + (𝛼 − 𝐿 + 𝑟 − 1)𝜎 ≤ 1

3

𝑟∑︁
𝑖=1

𝑚3
𝑖 + (𝛼 − 1)𝜎 (4.5.21)

Since we assume 𝑟 ≥ 2, it is convincible that
∑𝑟
𝑖=1 𝑚3

𝑖
is at most (𝑛 − 1)3 + 1, since the cubic

sum will increase if we let mass concentrate on fewer terms. To justify this, note that
∑𝑟
𝑖=2𝑚

3
𝑖
≤( ∑𝑟

𝑖=2𝑚𝑖
)3

= (𝑛 − 𝑚1)3. Thus

𝑟∑︁
𝑖=1

𝑚3
𝑖 ≤ 𝑚3

1 + (𝑛 − 𝑚1)3 = (𝑛 − 1)3 + 1 + 3𝑛(𝑚1 − 1) (𝑚1 − (𝑛 − 1)) ≤ (𝑛 − 1)3 + 1.

Applying this inequality to the right hand side of (4.5.21), we see that

M2(𝜎) ≤
1
3
(
(𝑛−1)3+1

)
+(𝛼−1)𝜎 ≤ 1

3
(𝑛−1)3+𝛼−2

3
+(𝛼−1) (𝜎−1) ≤ 1

3
(𝛼+𝑛−1)3−2

3
+(𝛼−1) (𝜎−1).

The second inequality above follows from 𝜎 ≥ 1 and the third equality is due to 1
3 (𝑛 − 1)3 + 𝛼 ≤

1
3 (𝑛 − 1)3 + (𝑛 − 1)2𝛼 ≤ 1

3 (𝑛 − 1 + 𝛼)3. Recall that 𝑝 = 𝛼 + 𝑛 − 1, we obtain M2(𝜎) ≤ 1
3 𝑝

3 − 2
3 +

(𝛼 − 1) (𝜎 − 1), and thus I𝑡2 ≤
∫ ∞
1 exp

(
𝑡 ( 13 𝑝

3 − 2
3 + (𝛼 − 1) (𝜎 − 1))

)
𝑑𝜎 = 1

(1−𝛼)𝑡 𝑒
( 13 𝑝

3− 2
3 )𝑡 . So

there exists a constant 𝐶 such that for 𝑡 > 𝑡0,

∫ ∞

0
𝑒𝑡M2 (𝜎)𝑑𝜎 = I𝑡1 + I𝑡2 ≤ 𝑒

𝑝3𝑡
12 + (1 − 𝛼)−1𝑡−1𝑒

𝑝3−2
3 𝑡 ≤ 𝐶𝑒

𝑝3
3 𝑡−𝛿𝑝𝑡 .

This implies (4.5.16) and completes the proof of Stage 2. �

Proof of Proposition 4.2.9. It suffices to prove that for fixed 𝑝 > 0, there exists a constant 𝐶 =

𝐶 (𝑝) such that for all 𝐿 ≥ 2 and 𝑡 > 1,

|B𝑝,𝐿 (𝑡) | ≤
𝐶𝐿 (2𝐿) 𝐿2

𝐿!
𝑡
𝐿
6 𝑒

𝑝3
3 𝑡−𝛿𝑝𝑡 . (4.5.22)
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One this is shown, we conclude our proof by observing

��� ∞∑︁
𝐿=2
B𝑝,𝐿 (𝑡)

��� ≤ ∞∑︁
𝐿=2
|B𝑝,𝐿 (𝑡) | ≤ 𝑒

𝑝3
3 𝑡−𝛿𝑝𝑡

∞∑︁
𝐿=2

𝐶𝐿 (2𝐿) 𝐿2 𝑡 𝐿6
𝐿!

(4.5.23)

Using the inequality of Stirling’s formula, we know that 𝐿𝐿 ≤ 𝑒𝐿𝐿! for all 𝐿 ∈ Z≥1. Consequently,

(2𝐿) 𝐿2 = 2𝐿 (𝐿𝐿) 1
2 ≤ 2𝐿𝑒 𝐿

2
√
𝐿!. So there exist constants 𝐶1, 𝐶2 such that for all 𝑡 > 1,

∞∑︁
𝐿=2

𝐶𝐿 (2𝐿) 𝐿2 𝑡 𝐿6
𝐿!

≤
∞∑︁
𝐿=2

𝐶𝐿1 𝑡
𝐿
6

√
𝐿!
≤ 𝑒𝐶2𝑡

1
3
.

Combining the above inequality with (4.5.23), the left hand side of (4.5.23) is upper bounded by

exp(𝑝3𝑡/3 − 𝛿𝑝𝑡 + 𝐶2𝑡
1
3 ). Taking the logarithm and dividing by 𝑡 for both sides and letting 𝑡 → ∞

completes the proof of Proposition 4.2.9.

We are left to show (4.5.22). referring to (4.2.12) and using Leibniz’s rule,

B𝑝,𝐿 (𝑡) =
(−1)𝑛

Γ(1 − 𝛼)
∑︁

®𝑚∈𝔐(𝐿,𝑛)

∫ 1

0
𝑠−𝛼

1
𝐿!

∫
R𝐿

Pf
[
𝐾 (𝑥𝑖, 𝑥 𝑗 )

] 𝐿
𝑖, 𝑗=1

𝐿∏
𝑖=1

𝜙
(𝑚𝑖)
𝑠,𝑡 (𝑥𝑖)𝑑𝑥𝑖

=
(−1)𝑛

Γ(1 − 𝛼)𝐿!

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
I®𝑚 (4.5.24)

where I®𝑚 is defined in (4.5.9). Using Proposition 4.5.3 and the above display, recalling that

#𝔐(𝐿, 𝑛) represents the number of elements that lie in 𝔐(𝐿, 𝑛), we get for all 𝐿 ≥ 2,

|B𝑝,𝐿 (𝑡) | ≤
1

Γ(1 − 𝛼)𝐿!

∑︁
®𝑚∈𝔐(𝐿,𝑛)

(
𝑛

®𝑚

)
|I®𝑚 | ≤

𝑛!
Γ(1 − 𝛼) (#𝔐(𝐿, 𝑛)) max

®𝑚∈𝔐(𝐿,𝑛)
|I®𝑚 |

where the first inequality follows from taking the absolute value of both sides of (4.5.24) and

applying triangle inequality to the right hand side. The second inequality follows from upper

bounding
(𝑛!
®𝑚
)

by 𝑛!. Recall from (4.4.10) that #𝔐(𝐿, 𝑛) ≤ 𝐿𝑛. To prove (4.5.22), applying
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Proposition 4.5.3 to upper bound each |I®𝑚 |, we obtain

|B𝑝,𝐿 (𝑡) | ≤
𝑛!𝐿𝑛

Γ(1 − 𝛼)𝐿!
𝐶𝐿 (2𝐿) 𝐿6 𝑡 𝐿6 𝑒

𝑝3𝑡
3 −𝛿𝑝𝑡 .

Note that 𝐿𝑛 grows slower than 𝐶𝐿1 for 𝐶1 > 1, as 𝐿 → ∞. So there exists a constant 𝐶1 such that

𝑛!𝐿𝑛
Γ(1−𝛼)𝐶

𝐿 ≤ 𝐶𝐿1 . Applying this inequality to the right hand side of the above display completes the

proof of (4.5.22). �
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Chapter 5: Markov duality for stochastic six vertex model

Chapter Abstract: We prove that Schütz’s ASEP Markov duality functional is

also a Markov duality functional for the stochastic six vertex model. We introduce a

new method that uses induction on the number of particles to prove the Markov duality.

This chapter is published at [Lin19].

5.1 Introduction

5.1.1 Stochastic six vertex model

The stochastic six vertex model (S6V model) is a classical model in 2d statistical physics first

introduced by Gwa and Spohn [GS92], as a special case of the six vertex (ice) model (see for

example [Lie74] and [Bax16]). We associate each vertex in Z2 with six types of configurations

with weights parametrized by 0 < 𝑏1, 𝑏2 < 1, see Figure 5.1. The configurations chosen for two

neighboring vertices need to be compatible in the sense that the lines keep flowing. We consider

the lines from the south and the west as the inputs and the lines to the north and the east as the

outputs. Each vertex is conservative in the sense that the number of input lines equals the number

of output lines. The model is stochastic in the sense that when we fix the inputs, the weights of

possible configurations sum up to 1.

Type I II III IV V VI

Configuration

Weight 1 1 𝑏2 1 − 𝑏2 𝑏1 1 − 𝑏1

Figure 5.1: Six types of configurations for the vertex.

The S6V model is a member of the KPZ universality class (see [Cor12, Qua11] for a nice survey).
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𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

space

time

Figure 5.2: S6V model viewed as an interacting particle system.

We briefly review a few results that have been obtained for the S6V model. [BCG16] proves that

under step initial condition, the one point fluctuation of the S6V model height function is asymp-

totically Tracy-Widom GUE. One point fluctuations of the S6V model under more general initial

condition including stationary is obtained in [AB16, Agg18a]. In a slightly different direction,

[CGST20] shows that under scaling 𝑏1
𝑏2
→ 1 with 𝑏1 fixed, the fluctuation of the S6V model height

function converges weakly to the solution of KPZ equation. More recently, [BG18, ST19] showed

under a different scaling, the height fluctuation of the S6V model converges in finite dimensional

distribution to the solution of stochastic telegraph equation.

In this paper, we consider the S6V model as an interacting particle system (see [GS92] or Section

2.2 of [BCG16]). Consider vertex configurations in the upper half-plane, we restrict ourselves to

the boundary condition that there are no lines coming from the left boundary. Then the input lines

coming from the bottom of the horizontal axis can be viewed as the trajectories of an exclusion-

type particle system. We see the vertical axis as time variable and horizontal axis as space variable.

The vertex configurations compose several paths, which can be viewed as trajectories of particles

with the vertical lines denoting the particle location. As illustrated by Figure 5.2, we cut our plane

by the line 𝑦 = 𝑡 − 1
2 and the particle location at time 𝑡 is give by the intersections (red points in the

figure) of these trajectories with 𝑦 = 𝑡 − 1
2 . To rigorously define our interacting particle system, we

first introduce the following state spaces.
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Definition 5.1.1. We define the space of left-finite particle occupation configuration G to be

G =
{
®𝑔 = (· · · , 𝑔−1, 𝑔0, 𝑔1, · · · ) ∈ {0, 1}Z : ∃ 𝑖 ∈ Z so that 𝑔𝑥 = 0, ∀𝑥 ≤ 𝑖

}
,

where 𝑔𝑥 is understood as the number of particles (either zero or one) at location 𝑥. We also define

the space of left-finite particle location configuration to be

X = {®𝑥 = (𝑥1 < 𝑥2 < · · · ) : 𝑥𝑖 ∈ Z ∪ {+∞} for every 𝑖 ∈ N} ,

where 𝑥𝑖 stands for the location of 𝑖-th particle counting from the left. Note that there might be

infinite or finite number of particles in our particle configuration. For the latter case, there exists

some 𝑚 ∈ N so that 𝑥𝑖 = +∞ for 𝑖 ≥ 𝑚. It is straightforward that there is a bijection 𝜑 : X → G

defined by

®𝑔 = 𝜑(®𝑥) such that 𝑔𝑖 = 1{there exists 𝑛∈N so that 𝑥𝑛=𝑖} for every 𝑖 ∈ Z.

Having specified our state space, we proceed to define the particle interpretation of the S6V

model as the following discrete-time Markov processes. The following definition is similar as the

one that appears in Section 2.1 of [CGST20].

Definition 5.1.2. We define the S6V location process, which is a discrete-time X-valued Markov

process ®𝑥(𝑡) = (𝑥1(𝑡) < 𝑥2(𝑡) < · · · ) with the update rule (transition probability) from ®𝑥(𝑡) to

®𝑥(𝑡 + 1) specified as follows:

We denote 𝑥0(𝑡) = −∞ for any 𝑡 ∈ Z≥0, this is just a convention to simplify the notation. We

sequentially consider 𝑖 = 1, 2, . . . and update as following independent probabilities:
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(a) When 𝑥𝑖 (𝑡) > 𝑥𝑖−1(𝑡 + 1), we update 𝑥𝑖 (𝑡) to 𝑥𝑖 (𝑡 + 1) via

P (𝑥𝑖 (𝑡 + 1) − 𝑥𝑖 (𝑡) = 𝑛) =



𝑏1, if 𝑛 = 0;

(1 − 𝑏1) (1 − 𝑏2)𝑏𝑛−1
2 if 1 ≤ 𝑛 ≤ 𝑥𝑖+1(𝑡) − 𝑥𝑖 (𝑡) − 1;

(1 − 𝑏1)𝑏𝑛−1
2 if 𝑛 = 𝑥𝑖+1(𝑡) − 𝑥𝑖 (𝑡);

0 else;

(b) When 𝑥𝑖 (𝑡) = 𝑥𝑖−1(𝑡 + 1), we update 𝑥𝑖 (𝑡) to 𝑥𝑖 (𝑡 + 1) via

P (𝑥𝑖 (𝑡 + 1) − 𝑥𝑖 (𝑡) = 𝑛) =



(1 − 𝑏2)𝑏𝑛−1
2 if 1 ≤ 𝑛 ≤ 𝑥𝑖+1(𝑡) − 𝑥𝑖 (𝑡) − 1;

𝑏𝑛−1
2 if 𝑛 = 𝑥𝑖+1(𝑡) − 𝑥𝑖 (𝑡);

0 else.

We also define the S6V occupation process ®𝑔(𝑡) = (𝑔𝑥 (𝑡))𝑥∈Z ∈ G by setting ®𝑔(𝑡) = 𝜑(®𝑥(𝑡)) i.e.

𝑔𝑥 (𝑡) = 1{there exists 𝑛∈N so that 𝑥𝑛 (𝑡)=𝑥} for every 𝑥 ∈ Z.

Clearly, ®𝑔(𝑡) is a discrete-time G-valued Markov process. We remark that the occupation process

®𝑔(𝑡) and location process ®𝑥(𝑡) are just two ways to describe the particle interpretation of the S6V

model.

For a left-finite particle configuration ®𝑔 ∈ G, we define the height function 𝑁𝑥 ( ®𝑔) to be the total

number of particles in this particle configuration that is on the left or at location 𝑥, i.e.

𝑁𝑥 ( ®𝑔) =
∑︁
𝑖≤𝑥

𝑔𝑖 .

Our result is a Markov duality between the S6V occupation process and its space reversal, which

we define below:

159



Definition 5.1.3. Define the space of reversed 𝑘-particle location configuration

Y𝑘 =
{
®𝑦 = (𝑦1 > · · · > 𝑦𝑘 ) : ®𝑦 ∈ Z𝑘

}
.

The reversed 𝑘-particle S6V location process ®𝑦(𝑡) = (𝑦1(𝑡) > · · · > 𝑦𝑘 (𝑡)) is a Y𝑘 -valued Markov

process so that (−𝑦𝑘 (𝑡) < · · · < −𝑦1(𝑡)) has the same update rule as the S6V location process.

5.1.2 Markov Duality

Definition 5.1.4. Given two discrete (continuous) time Markov processes 𝑋 (𝑡) ∈ 𝑈 and 𝑌 (𝑡) ∈ 𝑉

and a function 𝐻 : 𝑈 × 𝑉 → R, we say that 𝑋 (𝑡) and 𝑌 (𝑡) are dual with respect to 𝐻 if for any

𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 and 𝑡 ∈ Z≥0 (𝑡 ∈ R≥0 for continuous time), we have

E𝑥 [𝐻 (𝑋 (𝑡), 𝑦)] = E𝑦 [𝐻 (𝑥,𝑌 (𝑡))] .

Here we use E𝑥 to denote that we take the expectation under initial condition 𝑋 (0) = 𝑥. Likewise,

E𝑦 represents the expectation with initial condition 𝑌 (0) = 𝑦.

Markov duality has been found for different interacting particle systems including the contact

process, voter model and symmetric simple exclusion process, see [Lig12, Lig13]. It also plays

an important role in the analysis of models in the KPZ universality class. The first such example

is the asymmetric simple exclusion process (ASEP), which is an interacting particle system on Z

with at most one particle at each site. Each particle jumps to the left with rate ℓ and jumps to the

right with rate 𝑟 . If the site is already occupied by another particle, the jump is excluded.

We consider ASEP as a process ®𝑔(𝑡) = (𝑔𝑥 (𝑡))𝑥∈Z ∈ {0, 1}Z, where 𝑔𝑥 (𝑡) is an indicator for the

event that at time 𝑡, a particle is at site 𝑥. We call ®𝑔(𝑡) the ASEP occupation process. When the

ASEP has finite 𝑘-particles, in terms of particle location, we also consider the 𝑘-particle ASEP

location process ®𝑦(𝑡) = (𝑦1(𝑡) > · · · > 𝑦𝑘 (𝑡)) ∈ Y𝑘 where 𝑦𝑖 (𝑡) denotes the location of 𝑖-th

particle counting from the right at time 𝑡.
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Schütz [Sch97] derived the following ASEP duality using a spin chain representation: For any

fixed 𝑘 ∈ N, the ASEP occupation process ®𝑔(𝑡) and the 𝑘-particle ASEP location process ®𝑦(𝑡) with

the jump rate 𝑟 and ℓ reversed are dual with respect to the duality functional

𝐻 ( ®𝑔, ®𝑦) =
𝑘∏
𝑖=1

𝑔𝑦𝑖𝑞
−𝑁𝑦𝑖

( ®𝑔) , (5.1.1)

where 𝑞 = ℓ/𝑟 . This generalizes the the Markov duality satisfied by the symmetric simple exclu-

sion process [Lig12] where ℓ and 𝑟 are set to be equal. We call (5.1.1) Schütz’s ASEP Markov

duality functional.

[BCS14] uses a different approach to prove Schütz’s result by directly applying the Markov gen-

erator on the duality functional. Further, they use this method to show that the processes ®𝑔(𝑡) and

®𝑦(𝑡) are also dual with respect to the functional

𝐺 ( ®𝑔, ®𝑦) =
𝑘∏
𝑖=1

𝑞−𝑁𝑦𝑖
( ®𝑔) . (5.1.2)

The ASEP is a continous time limit of the S6V model if we scale the parameter by 𝑏1 = 𝜖ℓ, 𝑏2 = 𝜖𝑟

and scale time by 𝜖−1𝑡 and shift the space to the right by 𝜖−1𝑡, see [BCG16, Agg17]. Given the

ASEP is the limit of the S6V model and enjoys the Markov duality with respect to the functionals

in (5.1.1) and (5.1.2), one might wonder if these functionals are the Markov duality functionals for

the S6V model as well. Indeed, by setting 𝑞 =
𝑏1
𝑏2

, [CP16, Theorem 2.21] justifies that the S6V

occupation process and the reversed 𝑘-particle S6V location process are dual with respect to the

functional in (5.1.2)1.

Our main result shows that the S6V model also enjoys a Markov duality with respect to the func-

tional in (5.1.1).

Theorem 5.1.5. Consider the S6V model with parameter 𝑏1, 𝑏2 and set 𝑞 =
𝑏1
𝑏2

. For any 𝑘 ∈ N,

1In fact, [CP16, Theorem 2.21] proves the duality for a higher spin generalization of S6V model called stochastic
higher spin vertex model.
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the S6V occupation process ®𝑔(𝑡) ∈ G and the reversed 𝑘-particle S6V location process ®𝑦(𝑡) ∈ Y𝑘

are dual with respect to the function 𝐻 given in (5.1.1).

Remark 5.1.6. We remark that the Markov duality in Theorem 5.1.5 appeared first in [CP16,

Theorem 2.23] and was later used in proving [CGST20, Proposition 5.3]. In fact, [CP16, Theorem

2.23] claims a Markov duality for the stochastic higher spin vertex model (see [CP16, Section 2]

for definition), which is a higher spin generalization of the S6V model (the stochastic higher spin

vertex model has vertical and horizontal spin 𝐼
2 ,

𝐽
2 , where 𝐼, 𝐽 ∈ N. When 𝐼 = 𝐽 = 1, it degenerates

to the S6V model). However, this Markov duality is false when 𝐼 > 1. In fact, the author of

the present paper found a counterexample which is recorded in the erratum [CP19]. For the S6V

model, the Markov duality holds but the proof of [CP16, Theorem 2.23] still breaks down2. In this

paper, we offer the first correct proof for this Markov duality.

Remark 5.1.7. It appears that the proof of Theorem 5.1.5 also adapts to the space inhomogeneous

stochastic six vertex model, where we allow the parameters 𝑏1, 𝑏2 in Figure 5.1 to vary at different

locations 𝑥 ∈ Z and are expressed by 𝑏1,𝑥 and 𝑏2,𝑥 . Under the condition that there exists 𝑞 > 0

such that 𝑏1,𝑥 = 𝑞𝑏2,𝑥 for all 𝑥 ∈ Z, Theorem 5.1.5 holds for this space inhomogeneous stochastic

six vertex model as well. To avoid extra notation, we have opted not to state and prove this more

general result here.

Remark 5.1.8. It is natural to ask whether our method produces duality for stochastic higher spin

vertex model with vertical and horizontal spin 𝐼
2 ,

𝐽
2 . Using fusion, one can prove the same duality

in Theorem 5.1.5 holds if we take 𝐼 = 1 and 𝐽 ∈ N (the proof is similar to that of [CP16, Corollary

3.2]). For 𝐼 > 1, as presented in Section 5.2, our proof relies heavily on the structure of the duality

functional (5.1.1) and the particle exclusion property (i.e. at most one particle allows to stay in each

location) of the S6V model. It is unclear how to adapt our method proving duality for stochastic

higher spin vertex model such as [Kua18, Theorem 4.10], since both of the duality functional and

the model become more complicated.
2The proof of [CP16, Theorem 2.23] claims that the S6V duality (5.1.1) can be deduced by taking the discrete

gradient of the Markov duality functional in (5.1.2), which is not true when the number of particles 𝑘 in Theorem 5.1.5
is larger than 1 [CP].
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Duality has been obtained for generalization of the ASEP and S6V model using algebraic

methods, see [BS15a, BS15b, CGRS16, Kua16, Kua17, Kua18]. In particular, [CGRS16] proves

two ASEP(𝑞, 𝑗) (which is a higher spin generalization of ASEP) dualities based on the higher

spin representations of𝑈𝑞 [𝔰𝔩2]. In the spirit of [CGRS16], duality has also been proved for multi-

species version of ASEP [BS15b, Kua17]. [Kua18] obtains a duality for the multi-species version

of the stochastic higher spin vertex model via an algebraic construction. Instead of using algebraic

tools to prove duality, our proof of Theorem 5.1.5 follows a straightforward induction approach.

We remark that the duality functional from [Kua18, Theorem 4.10] has a degeneration to S6V

model. We state this degeneration here as a lemma.

Proposition 5.1.9. Consider the S6V model with parameter 𝑏1, 𝑏2 and set 𝑞 =
𝑏1
𝑏2

. For any 𝑘 ∈ N,

the S6V occupation process ®𝑔(𝑡) ∈ G and the reversed 𝑘-particle S6V location process ®𝑦(𝑡) ∈ Y𝑘

are dual with respect to the functional

𝐷 ( ®𝑔, ®𝑦) =
𝑘∏
𝑖=1
(1 − 𝑔𝑦𝑖 )𝑞−𝑁𝑦𝑖

( ®𝑔) . (5.1.3)

We remark that there is a misstatement in [Kua18, Theorem 4.10]. The particles in the process

Z and Z𝑟𝑒𝑣 were stated to jump to the left and to the right respectively (see pp.164 of [Kua18]).

However, after discussing with the author, we realize that the correct statement is that the particles

inZ jump to the right and those inZ𝑟𝑒𝑣 jump to the left [Kua].

Proof. Taking the spin parameter 𝑚𝑥 = 1 for all 𝑥 ∈ Z and species number 𝑛 = 1 and substitut-

ing 𝑞 by 𝑞1/2, the multi-species higher spin vertex model considered in [Kua18, Theorem 4.10]

degenerates to the stochastic six vertex model (see [Kua18, Section 2.6.2] for detail). Referring to

the duality functional 〈b |𝐷 (𝑢0) |[〉 considered in [Kua18, Theorem 4.10] (note that b is the con-

figuration for the process Z and [ is the configuration for the process Z𝑟𝑒𝑣). By substituting the

configuration [ by ®𝑔 = (𝑔𝑥)𝑥∈Z and the configuration b by the 𝑘-particle location configuration

®𝑦 = (𝑦1, · · · , 𝑦𝑘 ), we obtain that the reversed S6V occupation process �̃�(𝑡) (with particles jumping
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to the left) is dual to the 𝑘-particle S6V location process �̃�(𝑡) (with particles jumping to the right)

with respect to the functional

𝐷 ( ®𝑔, ®𝑦) =
𝑘∏
𝑖=1
(1 − 𝑔𝑦𝑖 )𝑞−

∑
𝑧>𝑦𝑖

𝑔𝑧− 1
2𝑔𝑦𝑖 =

𝑘∏
𝑖=1
(1 − 𝑔𝑦𝑖 )𝑞−

∑
𝑧≥𝑦𝑖 𝑔𝑧 .

In the last equality we used the fact that 𝑔𝑦𝑖 ∈ {0, 1}. Since �̃�(𝑡) and �̃�(𝑡) are nothing but the space

reversal of ®𝑔(𝑡) and ®𝑦(𝑡) in the lemma. After swapping the role of left and right (then
∑
𝑧≥𝑦𝑖 𝑔𝑧 is

exactly the height function 𝑁𝑦𝑖 ( ®𝑔)), we readily obtain the duality in (5.1.3). �

When we take 𝑘 = 1 in Theorem 5.1.5, our duality can be simply derived by subtracting the

functional 𝐺 in (5.1.2) by the functional 𝐷 in (5.1.3) (see Lemma 5.2.1). However, it appears that

when 𝑘 > 1, there is no easy way to obtain our duality by combining the duality functionals in

(5.1.2) and (5.1.3).

Finally, we explain several applications of our duality. Theorem 5.1.5 combined with the other S6V

duality (5.1.2) are the main tools for proving the self-averaging property of the specific quadratic

function of the S6V height function in [CGST20, Proposition 5.3], which is the crux in proving

the convergence of stochastic six vertex model to KPZ equation. In a different direction, by using

duality, we can compute the exact moment formula of certain observables of our model. [BCS14]

uses the ASEP duality (5.1.1) to derive the moment generating function of the ASEP height func-

tion under Bernoulli step initial data. Applying a similar approach, we expect by using our duality

and the S6V model Bethe ansatz eigenfunction given by [CP16, Proposition 2.12], we can reprove

the moment formula appearing in [BCG16, Theorem 4.12] and [AB16, Theorem 4.4]. Since this

application of the duality is not related to our paper, we do not pursue to give the proof here.

5.1.3 Acknowledgment

The author wants to thank Ivan Corwin for his helpful discussions and comments pertaining

to the earlier draft of this paper and also for his advice on the aspect of paper writing. We wish

to thank Promit Ghosal for his useful comments and Jeffrey Kuan for his helpful discussion about

164



the result in his paper. We are also grateful to the anonymous referees for their valuable sugges-

tions. The author was partially supported by the Fernholz Foundation’s “Summer Minerva Fellow"

program and also received summer support from Ivan Corwin’s NSF grant DMS:1811143.

5.2 Proof of Theorem 5.1.5

In this section, we prove Theorem 5.1.5. We first introduce several notations for our proof.

Define the space of ℓ-particle location configuration

Xℓ =
{
®𝑥 = (𝑥1 < · · · < 𝑥ℓ) : ®𝑥 ∈ Zℓ

}
.

We also denote by | ®𝑔 |, | ®𝑥 | and | ®𝑦 | the number of particles in the particle configuration ®𝑔 ∈ G, ®𝑥 ∈ X

and ®𝑦 ∈ Y𝑘 (obviously | ®𝑦 | = 𝑘 when ®𝑦 ∈ Y𝑘 ) respectively.

Referring to the Definition 5.1.2 of Markov duality, we need to show that for any 𝑘 ∈ N and under

any initial states ®𝑔 ∈ G, ®𝑦 ∈ Y𝑘 , we have

E®𝑔
[
𝐻 ( ®𝑔(𝑡), ®𝑦)

]
= E®𝑦

[
𝐻 ( ®𝑔, ®𝑦(𝑡))

]
.

By Markov property, it suffices to prove that the preceding equation holds for 𝑡 = 1, namely, for

any 𝑘 ∈ N and any ®𝑔 ∈ G, ®𝑦 ∈ Y𝑘 , we have

E®𝑔
[
𝐻 ( ®𝑔(1), ®𝑦)

]
= E®𝑦

[
𝐻 ( ®𝑔, ®𝑦(1))

]
. (5.2.1)

Observing that | ®𝑦 | is finite (since ®𝑦 ∈ Y𝑘 ) whereas | ®𝑔 | can either be finite or infinite. We claim

that it suffices to prove (5.2.1) for all ®𝑔 ∈ G such that | ®𝑔 | is finite, here is the reason: Suppose we

have proved (5.2.1) for every ®𝑔 ∈ G with | ®𝑔 | < ∞. For ®𝑔 ∈ G and ®𝑦 = (𝑦1 > · · · > 𝑦𝑘 ) ∈ Y𝑘

such that | ®𝑔 | = ∞, we consider a particle configuration ®𝑔′ ∈ G that corresponds with ®𝑔 ∈ G in the
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following way:

𝑔′𝑖 =


𝑔𝑖 if 𝑖 ≤ 𝑦1;

0 if 𝑖 > 𝑦1.

Clearly, | ®𝑔′| < ∞ and hence E ®𝑔′
[
𝐻 ( ®𝑔(1), ®𝑦)

]
= E®𝑦

[
𝐻 ( ®𝑔′, ®𝑦(1))

]
. Additionally, observing that the

particles in the configuration ®𝑔 which are on the right of 𝑦1 have no contribution to both of the

expectations E®𝑔
[
𝐻 ( ®𝑔(1), ®𝑦)

]
and E®𝑦

[
𝐻 ( ®𝑔, ®𝑦(1))

]
(see Figure 5.3), thus

E®𝑔
[
𝐻 ( ®𝑔(1), ®𝑦)

]
= E

®𝑔′ [𝐻 ( ®𝑔(1), ®𝑦)] , E®𝑦
[
𝐻 ( ®𝑔, ®𝑦(1))

]
= E®𝑦

[
𝐻 ( ®𝑔′, ®𝑦(1))

]
.

We conclude that E®𝑔
[
𝐻 ( ®𝑔(1), ®𝑦)

]
= E®𝑦

[
𝐻 ( ®𝑔, ®𝑦(1))

]
also holds for all ®𝑔 ∈ G with | ®𝑔 | = ∞.

. . . . . .

𝑦3 𝑦2 𝑦1𝑦1

𝑦1
®𝑔

®𝑦

Figure 5.3: The picture above shows an example for the initial states ®𝑔 ∈ G and ®𝑦 ∈ Y3. Since
the particles in ®𝑔 jumps to the right and the particles in ®𝑦 jumps to the left (as illustrated by the
arrows), the blue particles in ®𝑔 (that are on the right of 𝑦1) do not contribute to the computation of
E®𝑔

[
𝐻 ( ®𝑔(1), ®𝑦)

]
and E®𝑦

[
𝐻 ( ®𝑔, ®𝑦(1))

]
.

It remains to prove (5.2.1) when | ®𝑔 | is finite. In other words, we need to prove (5.2.1) for all

ℓ, 𝑘 ∈ N and all ®𝑦 ∈ Y𝑘 , ®𝑔 ∈ G satisfying | ®𝑔 | = ℓ. We apply induction according to ℓ + 𝑘 . The first

thing is to show that (5.2.1) holds when min(ℓ, 𝑘) = 1, as the induction basis.

Lemma 5.2.1. When min(ℓ, 𝑘) = 1, (5.2.1) holds.

Proof of Lemma 5.2.1. Since min(ℓ, 𝑘) = 1, we have either 𝑘 > 1 and ℓ = 1, or 𝑘 = 1. Note that

𝐻 ( ®𝑔(1), ®𝑦) =
𝑘∏
𝑖=1

𝑔𝑦𝑖 (1)𝑞−𝑁𝑦𝑖
( ®𝑔(1)) .
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If 𝑘 > 1 and ℓ = 1, since ®𝑔(1) has only one non-zero component and 𝑘 > 1, we have
∏𝑘
𝑖=1 𝑔𝑦𝑖 (1) =

0 for any ®𝑔(1) and thus E®𝑔
[
𝐻 ( ®𝑔(1), ®𝑦)

]
= 0. Similarly, we have E®𝑦

[
𝐻 ( ®𝑔, ®𝑦(1))

]
= 0 hence the

desired equality holds.

If 𝑘 = 1, we note that 𝐺 ( ®𝑔, ®𝑦) = 𝐻 ( ®𝑔, ®𝑦) − 𝐷 ( ®𝑔, ®𝑦), where 𝐻 and 𝐷 are given by (5.1.2) and

(5.1.3). Since the subtraction of two duality functionals is still a duality functional (which follows

from Definition 5.1.2), we obtain the desired (5.2.1). �

Before explaining how the induction works, we slightly reformulate (5.2.1). In order to keep

track of the location of the particles, we utilize the S6V location process ®𝑥(𝑡) in Definition 5.1.2.

Via the bijection 𝜑 : X → G (see Definition 5.1.1), we identify a configuration ®𝑔 ∈ G with ®𝑥 ∈ X

and define the function 𝐻 as

𝐻 (®𝑥, ®𝑦) = 𝐻 (𝜑(®𝑥), ®𝑦).

By the relation ®𝑔(𝑡) = 𝜑(®𝑥(𝑡)) between the S6V occupation process ®𝑔(𝑡) and the S6V location

process ®𝑥(𝑡), (5.2.1) can be paraphrased into the following:

For any ℓ, 𝑘 ∈ N and any initial states ®𝑥 ∈ Xℓ and ®𝑦 ∈ Y𝑘 , we have

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= E®𝑦

[
𝐻 (®𝑥, ®𝑦(1))

]
. (5.2.2)

When min(ℓ, 𝑘) = 1, (5.2.2) is established via Lemma 5.2.1. When min(ℓ, 𝑘) ≥ 2, we define

our induction hypothesis as

(5.2.2) holds for any ®𝑥 ∈ X𝑛 and ®𝑦 ∈ Y𝑚 with 𝑛 + 𝑚 < ℓ + 𝑘. (HYPℓ,k)

It suffices to prove (5.2.2) for any ®𝑥 ∈ Xℓ and ®𝑦 ∈ Y𝑘 under (HYPℓ,k). We briefly explain our

strategy: We decompose the LHS expectation of (5.2.2) into a combination of the expectations

which are in the form of E ®𝑥 ′
[
𝐻 ( ®𝑥′(1), ®𝑦′)

]
with | ®𝑥′| + | ®𝑦′| < ℓ + 𝑘 . A similar decomposition occurs
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in the RHS expectation. By applying (HYPℓ,k), we get the desired (5.2.2).

In the sequel, when there is only one particle in the S6V location process, we denote by p(𝑥, 𝑦) the

one particle transition probability from location 𝑥 to 𝑦. Similarly←−p (𝑥, 𝑦) denotes the one particle

transition probability from 𝑥 to 𝑦 for the reversed S6V location process. Clearly, p(𝑥, 𝑦) =←−p (𝑦, 𝑥)

and

p(𝑥, 𝑦) =



𝑏1 if 𝑦 = 𝑥;

(1 − 𝑏1) (1 − 𝑏2)𝑏𝑦−𝑥−1
2 if 𝑦 > 𝑥;

0 else.

In the sequel, we will frequently use the following elementary fact.

Lemma 5.2.2. Consider S6V location processes

®𝑥(𝑡) =
(
𝑥1(𝑡) < · · · < 𝑥ℓ (𝑡)

)
with initial state ®𝑥 = (𝑥1 < · · · < 𝑥ℓ),

®𝑥′(𝑡) =
(
𝑥′1(𝑡), . . . , 𝑥

′
ℓ−1(𝑡)

)
with initial state ®𝑥′ = (𝑥2 < · · · < 𝑥ℓ),

and ®𝑦 = (𝑦1 > · · · > 𝑦𝑘 ) ∈ Y𝑘 , if 𝑥1 < 𝑦𝑘 , then

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥1}

]
= 𝑞−𝑘𝑏1E

®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦)] . (5.2.3)

If 𝑥1 = 𝑦𝑘 , then

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥1}

]
= 𝑞−𝑘𝑏1E

®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦′)] (5.2.4)

where ®𝑦′ = (𝑦2 > · · · > 𝑦𝑘 )

Proof. We only prove for (5.2.3), the proof of (5.2.4) is similar. Knowing 𝑥1(1) = 𝑦𝑘 , the particles

at ®𝑥′ = (𝑥2, . . . , 𝑥ℓ) update as an independent S6V model (see Figure 5.4). Note that the probability

of 𝑥1(1) = 𝑥1 is 𝑏1, furthermore, knowing 𝑥1(1) = 𝑥1, we have

𝐻 (®𝑥(1), ®𝑦) = 𝑞−𝑘𝐻
(
(𝑥2(1), . . . , 𝑥𝑘 (1)), ®𝑦

)
.
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®𝑥

®𝑦

𝑥1 𝑥2 𝑥3 . . .

. . .𝑦𝑘 𝑦𝑘−1 ⇒
®𝑥′

®𝑦

𝑥2 𝑥3

𝑦𝑘−1𝑦𝑘

. . .

. . .

Figure 5.4: Given 𝑥1(1) = 𝑥1, in one step update procedure, there is no interaction between the
particle at 𝑥1 and the remaining particles in ®𝑥. This allows us to treat the remaining particles as an
independent S6V location process starting from ®𝑥′ = (𝑥2 < · · · < 𝑥ℓ). This provides the intuition
of (5.2.3).

Therefore,

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥1}

]
= 𝑞−𝑘𝑏1E

®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦)] ,
which is the desired (5.2.3). �

Proof of Theorem 5.1.5. We denote the processes in (5.2.2) by ®𝑥(𝑡) =
(
𝑥1(𝑡) < · · · < 𝑥ℓ (𝑡)

)
,

®𝑦(𝑡) = (𝑦1(𝑡) > · · · > 𝑦𝑘 (𝑡)) and the initial states by ®𝑥 = (𝑥1 < · · · < 𝑥ℓ), ®𝑦 = (𝑦1 > · · · > 𝑦𝑘 ).

We split our proof into different cases depending on the relation fo ®𝑥 and ®𝑦.

Case (1): 𝑦𝑘 ∉ {𝑥1, · · · , 𝑥ℓ}

Denote by 𝑠 the positive integer satisfying 𝑥𝑠 < 𝑦𝑘 < 𝑥𝑠+1. We consider the S6V location processes

®𝑥′(𝑡) =
(
𝑥′1(𝑡) < · · · < 𝑥

′
𝑠 (𝑡)

)
with initial state ®𝑥′ = (𝑥1 < · · · < 𝑥𝑠),

®𝑥′′(𝑡) =
(
𝑥′′1 (𝑡) < · · · < 𝑥

′′
ℓ−𝑠 (𝑡)

)
with initial state ®𝑥′′ = (𝑥𝑠+1 < · · · < 𝑥ℓ),

and the reversed S6V location processes, see Figure 5.5 (here we do not put arrow on 𝑦′ since it

only has one particle).

𝑦′(𝑡) with initial state 𝑦′ = 𝑦𝑘 ,

®𝑦′′(𝑡) =
(
𝑦′′1 (𝑡) > · · · > 𝑦

′′
𝑘−1(𝑡)

)
with initial state ®𝑦′′ = (𝑦1 > · · · > 𝑦𝑘−1).
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Observing | ®𝑥′| + |𝑦′| and | ®𝑥′′| + | ®𝑦′′| are both less than ℓ + 𝑘 , hence via (HYPℓ,k)

E
®𝑥 ′ [𝐻 ( ®𝑥′(1), 𝑦′)] = E𝑦′ [𝐻 ( ®𝑥′, 𝑦′(1))] , E

®𝑥 ′′ [𝐻 ( ®𝑥′′(1), ®𝑦′′)] = E ®𝑦′′ [𝐻 ( ®𝑥′′, ®𝑦′′(1))] .
To prove (5.2.2), it suffices to show

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= 𝑞−𝑠(𝑘−1)E

®𝑥 ′ [𝐻 ( ®𝑥′(1), 𝑦′)] ,E ®𝑥 ′′ [𝐻 ( ®𝑥′′(1), ®𝑦′′)] , (5.2.5)

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= 𝑞−𝑠(𝑘−1)E𝑦

′ [
𝐻 ( ®𝑥′, 𝑦′(1))

]
E
®𝑦′′ [𝐻 ( ®𝑥′′, ®𝑦′′(1))] . (5.2.6)

. . . . . .

𝑦𝑘 𝑦𝑘−1 𝑦𝑘−2

𝑦𝑘𝑥𝑠−1 𝑥𝑠 𝑥𝑠+1 𝑥𝑠+2 𝑥𝑠+3
®𝑥

®𝑦

⇓
®𝑥′

𝑦′

®𝑥′′

®𝑦′′

𝑥𝑠−1 𝑥𝑠. . .

. . .

𝑦𝑘

𝑥𝑠+1 𝑥𝑠+2 𝑥𝑠+3

𝑦𝑘−2𝑦𝑘−1

. . .

. . .

Figure 5.5: By the form of duality functional (5.1.1), we see that 𝐻 (®𝑥(1), ®𝑦) is zero unless 𝑥𝑠 (1) =
𝑦𝑘 . Knowing 𝑥𝑠 (1) = 𝑦𝑘 , in one step update procedure there is no interaction between the particles
at ®𝑥′ = (𝑥1, . . . , 𝑥𝑠) and those at ®𝑥′′ = (𝑥𝑠+1, . . . , 𝑥ℓ) (since 𝑥𝑠 (1) < 𝑥𝑠+1). Hence, we treat the
particles at ®𝑥′ = (𝑥𝑠+1, . . . , 𝑥ℓ) as an independent S6V location process. This provides the intuition
of (5.2.7).

We first show (5.2.5). Observing that by the update rule of ®𝑥(𝑡) defined in Definition 5.1.2,

𝐻 (®𝑥(1), ®𝑦) = 0 if 𝑥𝑠 (1) ≠ 𝑦𝑘 , thus

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= E®𝑥

[
𝐻 (®𝑥(1), ®𝑦)1{𝑥𝑠 (1)=𝑦𝑘 }

]
.

Knowing 𝑥𝑠 (1) = 𝑦𝑘 , we can treat the particles at ®𝑥′′ = (𝑥𝑠+1 < · · · < 𝑥ℓ) as an independent S6V
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model. Therefore, it is straightforward that

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥𝑠 (1)=𝑦𝑘 }

]
= 𝑞−𝑠(𝑘−1)E

®𝑥 ′ [𝐻 ( ®𝑥′(1), 𝑦′)1{𝑥 ′𝑠 (1)=𝑦𝑘 }]E ®𝑥 ′′ [𝐻 ( ®𝑥′′(1), ®𝑦′′)] . (5.2.7)

The factor 𝑞−𝑠(𝑘−1) comes from knowing 𝑥𝑠 (1) = 𝑦𝑘 ,

𝐻 (®𝑥(1), ®𝑦) = 𝑞−𝑠(𝑘−1)𝐻
(
(𝑥1(1), . . . , 𝑥𝑠 (1)), 𝑦′

)
𝐻

(
(𝑥𝑠+1(1), . . . , 𝑥ℓ (1)), ®𝑦′′

)
Using the fact that E ®𝑥 ′

[
𝐻 ( ®𝑥′(1), 𝑦′)1{𝑥𝑠 (1)=𝑦𝑘 }

]
= E

®𝑥 ′ [𝐻 ( ®𝑥′(1), 𝑦′)] in (5.2.7), we conclude (5.2.5).

Likewise, to show (5.2.6), we have

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= E®𝑦

[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘−1 (1)≥𝑥𝑠+1}

]
= 𝑞−𝑠(𝑘−1)E𝑦

′ [
𝐻 ( ®𝑥′, 𝑦′(1))

]
E
®𝑦′′ [𝐻 ( ®𝑥′′, ®𝑦′′(1))1{𝑦′′

𝑘−1 (1)≥𝑥𝑠+1}
]
.

Using the fact that

E
®𝑦′′ [𝐻 ( ®𝑥′′, ®𝑦′′(1))1{𝑦′′

𝑘−1 (1)≥𝑥𝑠+1}
]
= E

®𝑦′′ [𝐻 ( ®𝑥′′, ®𝑦′′(1))] ,
we conclude (5.2.6).

Case (2): 𝑦𝑘 ∈ {𝑥1, · · · , 𝑥ℓ}

We divide our discussion into three sub-cases.

Case (2a): 𝑦𝑘 = 𝑥1.

In this case, let us consider the S6V location process and the reversed S6V location process

®𝑥′(𝑡) = (𝑥′1(𝑡) < · · · < 𝑥
′
ℓ−1(𝑡)) with initial state ®𝑥′ = (𝑥2 < · · · < 𝑥ℓ),

®𝑦′(𝑡) = (𝑦′1(𝑡) > · · · > 𝑦
′
𝑘−1(𝑡)) with initial state ®𝑦′ = (𝑦1 > · · · > 𝑦𝑘−1).

Since | ®𝑥′|+| ®𝑦′| < ℓ+𝑘 , the induction hypothesis (HYPℓ,k) gives E ®𝑥 ′
[
𝐻 ( ®𝑥′(1), ®𝑦′)

]
= E

®𝑦′ [𝐻 ( ®𝑥′, ®𝑦′(1))] .
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To prove (5.2.2), it suffices to show

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= 𝑞−𝑘𝑏1E

®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦′)] . (5.2.8)

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= 𝑞−𝑘𝑏1E

®𝑦′ [𝐻 ( ®𝑥′, ®𝑦′(1))] . (5.2.9)

We first justify (5.2.8). Since 𝑥1 = 𝑦𝑘 and ®𝑥(𝑡) starts from ®𝑥, it follows from the update rule that

𝐻 (®𝑥(1), ®𝑦) = 0 unless 𝑥1(1) = 𝑥1. Thus,

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= E®𝑥

[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥1}

]
Using Lemma 5.2.2, we conclude (5.2.8). Under the same reasoning,

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= E®𝑦

[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑦𝑘 }

]
= 𝑞−𝑘𝑏1E

®𝑦′ [𝐻 ( ®𝑥′, ®𝑦′(1))] ,
which concludes (5.2.9).

Case (2b): 𝑦𝑘 = 𝑥2 > 𝑥1

The proof for this case is more involved than the previous ones. We consider the S6V location

processes and reversed S6V location process (see Figure 5.6)

®𝑥′(𝑡) = (𝑥′1(𝑡) < · · · < 𝑥
′
ℓ−1(𝑡)) with initial state ®𝑥′ = (𝑥2 < · · · < 𝑥ℓ),

®𝑥′′(𝑡) =
(
𝑥′′1 (𝑡) < · · · < 𝑥

′′
ℓ−2(𝑡)

)
with initial state ®𝑥′′ =

(
𝑥3 < · · · < 𝑥ℓ

)
,

®𝑦′(𝑡) = (𝑦′1(𝑡) > · · · > 𝑦
′
𝑘−1(𝑡)) with initial state ®𝑦′ = (𝑦1 > · · · > 𝑦𝑘−1).

To simplify our notation, we denote

𝐿1 = E
®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦)] , 𝐿2 = E

®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦′)] , 𝐿3 = E
®𝑥 ′′ [𝐻 ( ®𝑥′′(1), ®𝑦′)] ,

𝑅1 = E®𝑦
[
𝐻 ( ®𝑥′, ®𝑦(1))

]
, 𝑅2 = E

®𝑦′ [𝐻 ( ®𝑥′, ®𝑦′(1))] , 𝑅3 = E
®𝑦′ [𝐻 ( ®𝑥′′, ®𝑦′(1))] .
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Since | ®𝑥′| + | ®𝑦 |, | ®𝑥′| + | ®𝑦′|, | ®𝑥′′| + | ®𝑦′| are all less than ℓ+ 𝑘 , we have by induction hypothesis (HYPℓ,k)

𝐿1 = 𝑅1, 𝐿2 = 𝑅2, 𝐿3 = 𝑅3. (5.2.10)

To prove (5.2.2), it suffices to show that

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= 𝑞−𝑘𝐿1 + 𝑏𝑥2−𝑥1−1

2 (𝑞−𝑘𝐿2 + 𝑞−(2𝑘−1) (𝑏1𝑏2 − 𝑏1 − 𝑏2)𝐿3), (5.2.11)

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= 𝑞−𝑘𝑅1 + 𝑏𝑥2−𝑥1−1

2 (𝑞−𝑘𝑅2 + 𝑞−(2𝑘−1) (𝑏1𝑏2 − 𝑏1 − 𝑏2)𝑅3). (5.2.12)

®𝑦

®𝑥. . .

. . .𝑦𝑘 𝑦𝑘−1

𝑥3𝑥1 𝑥2

⇓
. . .

. . .
®𝑦

®𝑥′
𝑦𝑘 𝑦𝑘−1

𝑥3𝑥2 . . .

. . .𝑦𝑘−1

𝑥3𝑥2

®𝑦′

®𝑥′ . . .

. . .𝑦𝑘−1

𝑥3

®𝑦′

®𝑥′′

Figure 5.6: When 𝑥2 = 𝑦𝑘 , we consider three pairs of S6V models starting with less than | ®𝑥 | + | ®𝑦 | =
ℓ + 𝑘 number of particles, we prove (5.2.2) via expressing E

[
𝐻 (®𝑥(1), ®𝑦)

]
(resp. E

[
𝐻 (®𝑥, ®𝑦(1))

]
) in

terms of 𝐿1, 𝐿2, 𝐿3 (resp. 𝑅1, 𝑅2, 𝑅3) and using the induction hypothesis (5.2.10).

Let us show (5.2.11) first. Since 𝑥2 = 𝑦𝑘 , by Lemma 5.2.2,

𝐿1 = 𝑏1𝑞
−𝑘𝐿3. (5.2.13)

Expanding the LHS expectation of (5.2.2) as following (according to the update rule, 𝑥1(1) can not

exceed 𝑥2)

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= E®𝑥

[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)<𝑥2}

]
+ E®𝑥

[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥2}

]
. (5.2.14)
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For the first term on the RHS of (5.2.14), given 𝑥1(1) < 𝑥2, the particles at 𝑥2, . . . , 𝑥ℓ update as an

independent S6V model. Using the fact that

P(𝑥1(1) < 𝑥2) =
𝑥2−1∑︁
𝑦=𝑥1

p(𝑥, 𝑦) = 1 − (1 − 𝑏1)𝑏𝑥2−𝑥1−1
2

and knowing 𝑥1(1) < 𝑥2

𝐻 (®𝑥(1).®𝑦) = 𝑞−𝑘𝐻
(
(𝑥2(1), . . . , 𝑥ℓ (1)), ®𝑦

)
,

one has

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)<𝑥2}

]
= (1 − (1 − 𝑏1)𝑏𝑥2−𝑥1−1

2 )𝑞−𝑘𝐿1. (5.2.15)

Let us compute the second term on the RHS of (5.2.14),

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥2}

]
=

∑︁
®𝑧=(𝑧1<···<𝑧ℓ )

𝑧1=𝑥2

P®𝑥
(
®𝑥(1) = ®𝑧

)
𝐻 (®𝑧, ®𝑦). (5.2.16)

For ®𝑧′ = (𝑧2 < · · · < 𝑧ℓ) and ®𝑧 = (𝑧1 < · · · < 𝑧ℓ) with 𝑧1 = 𝑥2, we have

P®𝑥
(
®𝑥(1) = ®𝑧

)
= 𝑏

𝑥2−𝑥1−1
2 P

®𝑥 ′ ( ®𝑥′(1) = ®𝑧′) ,
𝐻 (®𝑧, ®𝑦) = 𝑞−𝑘𝐻 ( ®𝑧′, ®𝑦′).

(5.2.17)

Plugging the expression on the RHS of (5.2.17) into (5.2.16) gives

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥2}

]
= 𝑞−𝑘𝑏𝑥2−𝑥1−1

2

∑︁
®𝑧′=(𝑧2<···<𝑧ℓ )

𝑧2>𝑥2

P
®𝑥 ′ ( ®𝑥′(1) = ®𝑧′)𝐻 ( ®𝑧′, ®𝑦′),

= 𝑞−𝑘𝑏𝑥2−𝑥1−1
2 E

®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦′)1{𝑥 ′1 (1)≠𝑥2}
]
.
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Consequently,

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥2}

]
= 𝑞−𝑘𝑏𝑥2−𝑥1−1

2

(
𝐿2 − E ®𝑥

′ [
𝐻 ( ®𝑥′(1), ®𝑦′)1{𝑥 ′1 (1)=𝑥2}

] )
. (5.2.18)

It is straightforward that

E
®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦′)1{𝑥 ′1 (1)=𝑥2}

]
= 𝑞−(𝑘−1)𝑏1E

®𝑥 ′′ [𝐻 ( ®𝑥′′(1), ®𝑦′)] = 𝑞−(𝑘−1)𝑏1𝐿3.

Substituting this back to (5.2.18) gives

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥2}

]
= 𝑞−𝑘𝑏𝑥2−𝑥1−1

2 𝐿2 − 𝑞−(2𝑘−1)𝑏1𝑏
𝑥2−𝑥1−1
2 𝐿3. (5.2.19)

Note that the LHS of (5.2.15) and (5.2.19) are the first and second terms on the RHS of (5.2.14),

one has

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= (1 − (1 − 𝑏1)𝑏𝑥2−𝑥1−1

2 )𝑞−𝑘𝐿1 + (𝑞−𝑘𝑏𝑥2−𝑥1−1
2 𝐿2 − 𝑞−(2𝑘−1)𝑏1𝑏

𝑥2−𝑥1−1
2 𝐿3),

= 𝑞−𝑘𝐿1 + 𝑏𝑥2−𝑥1−1
2 (𝑞−𝑘𝐿2 + 𝑞−(2𝑘−1) (𝑏1𝑏2 − 𝑏1 − 𝑏2)𝐿3).

Therefore, we conclude (5.2.11). Note that in the last line above we used the 𝐿1 = 𝑏1𝑞
−𝑘𝐿3

provided by (5.2.13) and the relation 𝑏1 = 𝑞𝑏2,

We turn our attention to demonstrate (5.2.12). Since 𝑦𝑘 = 𝑥2, according to the update rule of

®𝑦(𝑡) = (𝑦1(𝑡) > · · · > 𝑦𝑘 (𝑡)) with initial state ®𝑦, the only possible case for 𝐻 (®𝑥, ®𝑦(1)) ≠ 0 is either

𝑦𝑘 (1) = 𝑥1 or 𝑦𝑘 (1) = 𝑥2. Therefore, we have

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= E®𝑦

[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥2}

]
+ E®𝑦

[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
. (5.2.20)

175



For the first term on the RHS of (5.2.20), we readily have

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥2}

]
= 𝑞−𝑘E®𝑦

[
𝐻 ( ®𝑥′, ®𝑦(1))1{𝑦𝑘 (1)=𝑥2}

]
= 𝑞−𝑘E®𝑦

[
𝐻 ( ®𝑥′, ®𝑦(1))

]
= 𝑞−𝑘𝑅1.

(5.2.21)

The first equality above is due to the fact that the condition 𝑦𝑘 (1) = 𝑥2 implies 𝐻 (®𝑥, ®𝑦(1)) =

𝑞−𝑘𝐻 ( ®𝑥′, ®𝑦(1)).

For the second term on the RHS of (5.2.20), we expand the expectation (using the condition 𝑥𝑘 =

𝑦2)

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
= A + B, (5.2.22)

where

A =
∑︁

®𝑤=(𝑤1>···>𝑤𝑘 )
𝑤𝑘=𝑥1,𝑤𝑘−1>𝑥2

P®𝑦
(
®𝑦(1) = ®𝑤

)
𝐻 (®𝑥, ®𝑤), B =

∑︁
®𝑤=(𝑤1>···>𝑤𝑘 )
𝑤𝑘=𝑥1,𝑤𝑘−1=𝑥2

P®𝑦
(
®𝑦(1) = ®𝑤

)
𝐻 (®𝑥, ®𝑤)

It is easy to check that given ®𝑤 = (𝑤1 > · · · > 𝑤𝑘 ) and ®𝑤′ = (𝑤1 > · · · > 𝑤𝑘−1) with condition

𝑤𝑘 = 𝑥1 and 𝑤𝑘−1 > 𝑥2 implies

P®𝑦
(
®𝑦(1) = ®𝑤

)
=
←−p (𝑥2, 𝑥1)P ®𝑦

′ ( ®𝑦′(1) = ®𝑤′) , 𝐻 (®𝑥, ®𝑤) = 𝑞−(2𝑘−1)𝐻 ( ®𝑥′′, ®𝑤′).

Therefore,

A = P
(
®𝑦(1) = ®𝑤

)
𝐻 (®𝑥, ®𝑤) = 𝑞−(2𝑘−1)←−p (𝑥2, 𝑥1)

∑︁
®𝑤′=(𝑤1>···>𝑤𝑘−1)

𝑤𝑘−1>𝑥2

P
®𝑦′ ( ®𝑦′(1) = ®𝑤′)𝐻 ( ®𝑥′′, ®𝑤′),

= 𝑞−(2𝑘−1) (1 − 𝑏1) (1 − 𝑏2)𝑏𝑥2−𝑥1−1
2 E

®𝑦′ [𝐻 ( ®𝑥′′, ®𝑦′(1))] ,
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Using E ®𝑦′
[
𝐻 ( ®𝑥′′, ®𝑦′(1))

]
= 𝑅3,

A = 𝑞−(2𝑘−1) (1 − 𝑏1) (1 − 𝑏2)𝑏𝑥2−𝑥1−1
2 𝑅3. (5.2.23)

Similarly, given ®𝑤 = (𝑤1 > · · · > 𝑤𝑘 ) and ®𝑤′ = (𝑤1 > · · · > 𝑤𝑘−1) with 𝑤𝑘 = 𝑥1 and 𝑤𝑘−1 = 𝑥2,

we have

P®𝑦
(
®𝑦(1) = ®𝑤

)
= 𝑏

𝑥2−𝑥1−1
2 P

®𝑦′ ( ®𝑦′(1) = ®𝑤′) , 𝐻 (®𝑥, ®𝑤) = 𝑞−𝑘𝐻 ( ®𝑥′, ®𝑤′).

Thus,

B =
∑︁

®𝑤=(𝑤1>···>𝑤𝑘 )
𝑤𝑘=𝑥1,𝑤𝑘−1=𝑥2

P®𝑦
(
®𝑦(1) = ®𝑤

)
𝐻 (®𝑥, ®𝑤) = 𝑞−𝑘𝑏𝑥2−𝑥1−1

2

∑︁
®𝑤′=(𝑤1>···>𝑤𝑘−1)

𝑤𝑘−1=𝑥2

P
®𝑦′ ( ®𝑦′(1) = ®𝑤′)𝐻 ( ®𝑥′, ®𝑤′),

= 𝑞−𝑘𝑏𝑥2−𝑥1−1
2 E

®𝑦′ [𝐻 ( ®𝑥′, ®𝑦′(1))1{𝑦′𝑘−1 (1)=𝑥2}
]
.

Consequently, one has

B = 𝑞−𝑘𝑏𝑥2−𝑥1−1
2

(
𝑅2 − E ®𝑦

′ [
𝐻 ( ®𝑥′, ®𝑦′(1))1{𝑦′𝑘−1 (1)>𝑥2}

] )
. (5.2.24)

Under event
{
𝑦′
𝑘−1(1) > 𝑥2

}
, we have 𝐻 ( ®𝑥′, ®𝑦′(1)) = 𝑞−(𝑘−1)𝐻 ( ®𝑥′′, ®𝑦′(1)) and hence

E
®𝑦′ [𝐻 ( ®𝑥′, ®𝑦′(1))1{𝑦′𝑘−1 (1)>𝑥2}

]
= 𝑞−(𝑘−1)E

®𝑦′ [𝐻 ( ®𝑥′′, ®𝑦′(1))1{𝑦′𝑘−1 (1)>𝑥2}
]
= 𝑞−(𝑘−1)𝑅3.

We obtain from (5.2.24) that

B = 𝑞−𝑘𝑏𝑥2−𝑥1−1
2 (𝑅2 − 𝑞−(𝑘−1)𝑅3). (5.2.25)
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Recall (5.2.22) that E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
= A + B, using (5.2.23) and (5.2.25), we get

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
= 𝑞−(2𝑘−1) (1 − 𝑏1) (1 − 𝑏2)𝑏𝑥2−𝑥1−1

2 𝑅3 + 𝑞−𝑘𝑏𝑥2−𝑥1−1
2 (𝑅2 − 𝑞−(𝑘−1)𝑅3).

(5.2.26)

Note that the LHS of (5.2.21) and (5.2.26) are the first and second term on the RHS of (5.2.20),

hence

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= 𝑞−𝑘𝑅1 + 𝑞−(2𝑘−1) (1 − 𝑏1) (1 − 𝑏2)𝑏𝑥2−𝑥1−1

2 𝑅3 + 𝑞−𝑘𝑏𝑥2−𝑥1−1
2 (𝑅2 − 𝑞−(𝑘−1)𝑅3),

= 𝑞−𝑘𝑅1 + 𝑏𝑥2−𝑥1−1
2 (𝑞−𝑘𝑅2 + 𝑞−(2𝑘−1) (𝑏1𝑏2 − 𝑏1 − 𝑏2)𝑅3).

We have proved the desired (5.2.12), thus concluding (5.2.2) for the case 𝑥2 = 𝑦𝑘 .

It only remains to prove (5.2.2) for the following case:

Case (2c): 𝑦𝑘 > 𝑥2 > 𝑥1.

The computation for this case is similar to Case (2b). Let us consider the S6V location processes

®𝑥′(𝑡) = (𝑥′1(𝑡) < · · · < 𝑥
′
ℓ−1(𝑡)) with initial state ®𝑥′ = (𝑥2 < · · · < 𝑥ℓ),

®𝑥′′(𝑡) =
(
𝑥′′1 (𝑡) < · · · < 𝑥

′′
ℓ−2(𝑡)

)
with initial state ®𝑥′′ =

(
𝑥3 < · · · < 𝑥ℓ

)
,

and denote

𝐿1 = E
®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦)] , 𝐿2 = E

®𝑥 ′′ [𝐻 ( ®𝑥′′(1), ®𝑦)] ,
𝑅1 = E®𝑦

[
𝐻 ( ®𝑥′, ®𝑦(1))

]
, 𝑅2 = E®𝑦

[
𝐻 ( ®𝑥′′, ®𝑦(1))

]
.

By (HYPℓ,k), we have

𝐿1 = 𝑅1, 𝐿2 = 𝑅2. (5.2.27)
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To conclude (5.2.2), it suffices to show that

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= 𝑞−𝑘𝐿1 + 𝑞−(𝑘−1)𝑏𝑥2−𝑥1

2
(
𝐿1 − 𝑞−𝑘𝐿2

)
, (5.2.28)

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= 𝑞−𝑘𝑅1 + 𝑞−(𝑘−1)𝑏𝑥2−𝑥1

2
(
𝑅1 − 𝑞−𝑘𝑅2

)
. (5.2.29)

To prove (5.2.28), we first write

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= E®𝑥

[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)<𝑥2}

]
+ E®𝑥

[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥2}

]
. (5.2.30)

Similar as (5.2.15), the first term on the RHS of (5.2.30) can be expressed as

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)<𝑥2}

]
= 𝑞−𝑘 (1 − (1 − 𝑏1)𝑏𝑥2−𝑥1−1

2 )𝐿1, (5.2.31)

while the second term on the RHS of (5.2.30) equals

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥2}

]
=

∑︁
®𝑧=(𝑧1<···<𝑧ℓ )

𝑧1=𝑥2

P®𝑥
(
®𝑥(1) = ®𝑧

)
𝐻 (®𝑧, ®𝑦). (5.2.32)

Given ®𝑧 =
(
𝑧1 < · · · < 𝑧ℓ

)
and ®𝑧′ =

(
𝑧2 < · · · < 𝑧ℓ

)
with 𝑧1 = 𝑥2, we have

P®𝑥
(
®𝑥(1) = ®𝑧

)
= 𝑏

𝑥2−𝑥1−1
2 P

®𝑥 ′ ( ®𝑥′(1) = ®𝑧′) , 𝐻 (®𝑧, ®𝑦) = 𝑞−𝑘𝐻 ( ®𝑧′, ®𝑦).

Substituting back to (5.2.32) yields

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥2}

]
= 𝑞−𝑘𝑏𝑥2−𝑥1−1

2

∑︁
®𝑧′=(𝑧2<···<𝑧ℓ )

𝑧2>𝑥2

P
®𝑥 ′ ( ®𝑥′(1) = ®𝑧′)𝐻 ( ®𝑧′, ®𝑦),

= 𝑞−𝑘𝑏𝑥2−𝑥1−1
2 E

®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦)1{𝑥 ′1 (1)>𝑥2}
]
.
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Consequently,

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= 𝑞−𝑘𝑏𝑥2−𝑥1−1

2

(
𝐿1 − E ®𝑥

′ [
𝐻 ( ®𝑥′(1), ®𝑦)1{𝑥 ′1 (1)=𝑥2}

] )
. (5.2.33)

By Lemma 5.2.2, we have

E
®𝑥 ′ [𝐻 ( ®𝑥′(1), ®𝑦)1{𝑥 ′1 (1)=𝑥2}

]
= 𝑞−𝑘𝑏1E

®𝑥 ′′ [𝐻 ( ®𝑥′′(1), ®𝑦)] = 𝑞−𝑘𝑏1𝐿2.

Using (5.2.33),

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)1{𝑥1 (1)=𝑥2}

]
= 𝑞−𝑘𝑏𝑥2−𝑥1−1

2
(
𝐿1 − 𝑞−𝑘𝑏1𝐿2

)
. (5.2.34)

Plugging (5.2.31) and (5.2.34) into the RHS of (5.2.30) yields

E®𝑥
[
𝐻 (®𝑥(1), ®𝑦)

]
= 𝑞−𝑘 (1 − (1 − 𝑏1)𝑏𝑥2−𝑥1−1

2 )𝐿1 + 𝑞−𝑘𝑏𝑥2−𝑥1−1
2

(
𝐿1 − 𝑞−𝑘𝑏1𝐿2

)
,

= 𝑞−𝑘𝐿1 + 𝑞−(𝑘−1)𝑏𝑥2−𝑥1
2

(
𝐿1 − 𝑞−𝑘𝐿2

)
,

We conclude (5.2.28). Here, in the last line above we used again the relation 𝑏1 = 𝑞𝑏2.

We turn to demonstrate (5.2.29). As 𝑦𝑘 (1) < 𝑥1 implies 𝐻 (®𝑥, ®𝑦(1)) = 0, we have

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= E®𝑦

[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)>𝑥1}

]
+ E®𝑦

[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
.

Since 𝑦𝑘 (1) > 𝑥1 implies 𝐻 (®𝑥, ®𝑦(1)) = 𝑞−𝑘𝐻 ( ®𝑥′, ®𝑦(1)),

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)>𝑥1}

]
= 𝑞−𝑘E®𝑦

[
𝐻 ( ®𝑥′, ®𝑦(1))1{𝑦𝑘 (1)>𝑥1}

]
= 𝑞−𝑘E®𝑦

[
𝐻 ( ®𝑥′, ®𝑦(1))

]
= 𝑞−𝑘𝑅1.

Consequently,

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= 𝑞−𝑘𝑅1 + E®𝑦

[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
. (5.2.35)

180



For the second term on the RHS of (5.2.35), we have

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
=

∑︁
®𝑤=(𝑤1>···>𝑤𝑘 )

𝑤𝑘=𝑥1

P®𝑦
(
®𝑦(1) = ®𝑤

)
𝐻 (®𝑥, ®𝑤) =

∑︁
®𝑤=(𝑤1>···>𝑤𝑘 )
𝑤𝑘=𝑥1,𝑤𝑘−1≥𝑦𝑘

P®𝑦
(
®𝑦(1) = ®𝑤

)
𝐻 (®𝑥, ®𝑤).

(5.2.36)

Since 𝑦𝑘 > 𝑥2, given ®𝑤 = (𝑤1 > · · · > 𝑤𝑘−1 > 𝑥1) and ®𝑤′ = (𝑤1 > · · · > 𝑤𝑘−1 > 𝑥2) satisfying

𝑤𝑘−1 ≥ 𝑦𝑘 , we have

P®𝑦
(
®𝑦(1) = ®𝑤

)
= 𝑏

𝑥2−𝑥1
2 P®𝑦

(
®𝑦(1) = ®𝑤′

)
, 𝐻 (®𝑥, ®𝑤) = 𝑞−(𝑘−1)𝐻 ( ®𝑥′, ®𝑤′).

Substituting back to the RHS of (5.2.36) yields

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
= 𝑞−(𝑘−1)𝑏𝑥2−𝑥1

2

∑︁
®𝑤′=(𝑤1>···>𝑤𝑘 )
𝑤𝑘=𝑥2,𝑤𝑘−1≥𝑦𝑘

P®𝑦
(
®𝑦(1) = ®𝑤′

)
𝐻 ( ®𝑥′, ®𝑤′),

= 𝑞−(𝑘−1)𝑏𝑥2−𝑥1
2 E®𝑦

[
𝐻 ( ®𝑥′, ®𝑦(1))1{𝑦𝑘 (1)=𝑥2}

]
.

Consequently,

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
= 𝑞−(𝑘−1)𝑏𝑥2−𝑥1

2
(
𝑅1 − E®𝑦

[
𝐻 ( ®𝑥′, ®𝑦(1))1{𝑦𝑘 (1)>𝑥2}

] )
. (5.2.37)

Under event {𝑦𝑘 (1) > 𝑥2}, we have 𝐻 ( ®𝑥′, ®𝑦(1)) = 𝑞−𝑘𝐻 ( ®𝑥′′, ®𝑦(1)) and accordingly

E®𝑦
[
𝐻 ( ®𝑥′, ®𝑦(1))1{𝑦𝑘 (1)>𝑥2}

]
= 𝑞−𝑘E®𝑦

[
𝐻 ( ®𝑥′′, ®𝑦(1)1{𝑦𝑘 (1)>𝑥2})

]
= 𝑞−𝑘E®𝑦

[
𝐻 ( ®𝑥′′, ®𝑦(1)

]
= 𝑞−𝑘𝑅2.

Therefore, we have by (5.2.37)

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))1{𝑦𝑘 (1)=𝑥1}

]
= 𝑞−(𝑘−1)𝑏𝑥2−𝑥1

2 𝑅1 − 𝑞−(2𝑘−1)𝑏𝑥2−𝑥1
2 𝑅2. (5.2.38)
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Substituting (5.2.38) back to (5.2.35) entails

E®𝑦
[
𝐻 (®𝑥, ®𝑦(1))

]
= 𝑞−𝑘𝑅1 + 𝑞−(𝑘−1)𝑏𝑥2−𝑥1

2 𝑅1 − 𝑞−(2𝑘−1)𝑏𝑥2−𝑥1
2 𝑅2,

= 𝑞−𝑘𝑅1 + 𝑞−(𝑘−1)𝑏𝑥2−𝑥1
2

(
𝑅1 − 𝑞−𝑘𝑅2

)
.

which concludes the desired (5.2.29).

As all the possible cases for 𝑥 ∈ Xℓ and ®𝑦 ∈ Y𝑘 were discussed, we justify (5.2.2) and conclude

Theorem 5.1.5. �
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Chapter 6: KPZ equation limit of stochastic higher spin six vertex model

Chapter Abstract: We consider the stochastic higher spin six vertex (SHS6V)

model introduced in [CP16] with general integer spin parameters I,J . Starting from

near stationary initial condition, we prove that the SHS6V model converges to the

KPZ equation under weakly asymmetric scaling.

This chapter is published at [Lin20a].

6.1 Introduction

6.1.1 KPZ equation and weak KPZ universality

The KPZ equation is the following non-linear stochastic partial differential equation (SPDE)

introduced in the seminal work [KPZ86], which describes the random evolution of an interface

that has the property of relaxation and lateral growth

H(𝑡, 𝑥) = 𝛿

2
𝜕2
𝑥H(𝑡, 𝑥) +

^

2
(
𝜕𝑥H(𝑡, 𝑥)

)2 +
√
𝐷b (𝑡, 𝑥). (6.1.1)

Here b (𝑡, 𝑥) is the space time white noise, which could be formally understood as a Gaussian field

with covariance function E
[
b (𝑡, 𝑥)b (𝑠, 𝑦)

]
= 𝛿(𝑡 − 𝑠)𝛿(𝑥 − 𝑦), where 𝛿 is the Dirac delta function.

Care is needed to make sense of (6.1.1) due to the nonlinearity (𝜕𝑥H(𝑡, 𝑥))2. The Hopf-Cole

solution to the KPZ equation is defined by

H(𝑡, 𝑥) = 𝛿

^
logZ(𝑡, 𝑥), (6.1.2)
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whereZ(𝑡, 𝑥) is the mild solution of the SHE

Z(𝑡, 𝑥) = 𝛿

2
𝜕2
𝑥Z(𝑡, 𝑥) +

^
√
𝐷

𝛿
Z(𝑡, 𝑥)b (𝑡, 𝑥).

So long as Z(0, 𝑥) is (almost surely) positive, [Mue91] proved that Z(𝑡, 𝑥) remains positive for

all 𝑡 > 0 and 𝑥. This justifies the well-definedness of (6.1.2). Other equivalent definitions of the

solution are given by regularity structure [Hai14], paracontrolled distribution [GP17] or the notion

of energy solution [GJ14, GP18].

It is well-known that there is no non-trivial scaling under which the KPZ equation is invariant in

law. More precisely, if we define H𝜖 (𝑡, 𝑥) = 𝜖 𝑧H(𝜖−𝑏𝑡, 𝜖−1𝑥), using the scaling of space-time

white noise b (𝜖−𝑏𝑡, 𝜖−1𝑥) = 𝜖 𝑏+1
2 b (𝑡, 𝑥) (in law), then

𝜕𝑡H𝜖 (𝑡, 𝑥) =
𝛿

2
𝜖2−𝑏𝜕2

𝑥H𝜖 (𝑡, 𝑥) +
^

2
𝜖−𝑧+2−𝑏 (𝜕𝑥H𝜖 (𝑡, 𝑥))2 + 𝜖 𝑧+

1
2−

𝑏
2
√
𝐷b (𝑡, 𝑥). (6.1.3)

It is clear that there is no 𝑏, 𝑧 such that the coefficients in the above equation match with those in

(6.1.1). However, if we simultaneously scale some of the parameters 𝛿, ^, 𝐷, it is possible that

the KPZ equation remains unchanged: such scaling is called weak scaling. It is thus natural to be-

lieve that the KPZ equation is the weak scaling limit of microscopic models with similar properties

such as relaxation and lateral growth. Roughly speaking, this is the weak universality of the KPZ

equation, see [Cor12, Qua11] for an extensive survey. We emphasize that the weak universality of

the KPZ equation should be distinguished from KPZ universality, which says that without tuning

of the parameter of the model, the microscopic system converges to a universal limit called KPZ

fixed point under [1 : 2 : 3] scaling, see [MQR16, DOV18, BL19] for some recent progress and

breakthroughs in identifying the KPZ fixed point.

The weak universality of the KPZ equation has been verified for a number of interacting parti-

cle systems. The first result was given in the work of [BG97], for Asymmetric Simple Exclusion

Process (ASEP). For more results of the weak universality of KPZ equation, see Section 1.5.3 of
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[CGST20] for a brief review.

Recently [CGST20, Theorem 1.1] proved that under weak asymmetric scaling (which corresponds

to taking 𝑏 = 2, 𝑧 = 1
2 and ^ →

√
𝜖^ in (6.1.3)), the stochastic six vertex model converges to

the KPZ equation. In this paper, we consider stochastic higher spin six vertex model (SHS6V)

model introduced in [CP16]1. We prove that under similar weak asymmetric scaling, the SHS6V

model converges to the KPZ equation. This extends the result of [CGST20, Theorem 1.1] to the

full generality. We like to emphasize that there are some significant new complications in our case

compared with [CGST20], see Section 6.1.4 for discussion.

Before ending this section, we remark that there might be other SPDEs (besides the KPZ equation)

arising from the vertex model. For instance, it was shown in [BG18, ST19] that under a different

scaling, the stochastic six vertex model converges to the solution of the stochastic telegraph equa-

tion. It is interesting to ask whether the SHS6V model converges to other SPDEs, this question is

left for future work.

6.1.2 The SHS6V model

The SHS6V model introduced in [CP16] (also see [Bor17]) belongs to the family of vertex

models which themselves are examples of quantum integrable systems. In general, the 𝑅-matrix

(which can be thought of as the weights associated to the vertex) are not stochastic. [GS92,

BCG16] studied the stochastic six vertex model, which is a stochastic version of the six vertex

model introduced by [Pau35]. The authors of [CP16] worked with the 𝐿-matrices, which is a

stochastic version of the 𝑅-matrices2 and they defined the SHS6V model. The stochasticity al-

lows us to define the vertex model on the entire line as an interacting particle system which fol-

lows sequential Markov update rule. Moreover, the 𝐿-matrices in [CP16] satisfy the Yang-Baxter

equation which implies the integrability of the model. In particular, the transfer matrices are di-

agonalizable by a complete set of Bethe ansatz eigenfunctions [BCPS15, CP16]. The model also
1The SHS6V model has vertical and horizontal spin parameters 𝐼, 𝐽 ∈ Z≥1. The stochastic six vertex model is a

degeneration of it by taking 𝐼 = 𝐽 = 1.
2See [CP16, Remark 2.2] for more discussion of the relation between 𝐿-matrices and 𝑅-matrices.
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enjoys Markov duality. The stochastic 𝑅-matrices of the SHS6V model have four parameters, by

specifying which the SHS6V model degenerates to known integrable systems such as stochastic

six vertex model, ASEP, q-Hahn TASEP, q-TASEP. Indeed, it is on top of a hierarchy of KPZ class

integrable probabilistic systems. Recent studies of the SHS6V model and its dynamical version

include [OP17, Agg18b, Bor18, BP18, IMS20].

Let us recall the definition of the SHS6V model from [CP16]. Fix 𝐼, 𝐽 ∈ Z≥1, 𝛼, 𝑞 ∈ R, we define

the 𝐿-matrix 𝐿 (𝐽)𝛼 : Z4
≥0 → R via

𝐿
(𝐽)
𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) =1{𝑖1+ 𝑗1=𝑖2+ 𝑗2}𝑞

2 𝑗1− 𝑗21
4 −

2 𝑗2− 𝑗22
4 +

𝑖22+𝑖
2
1

4 +
𝑖2 ( 𝑗2−1)+𝑖1 𝑗1

2

×
a 𝑗1−𝑖2𝛼 𝑗2− 𝑗1+𝑖2 (−𝛼a−1; 𝑞) 𝑗2−𝑖1

(𝑞; 𝑞)𝑖2 (−𝛼; 𝑞)𝑖2+ 𝑗2 (𝑞𝐽+1− 𝑗1; 𝑞) 𝑗1− 𝑗2
4𝜙3

(
𝑞−𝑖2; 𝑞−𝑖1 ,−𝛼𝑞𝐽 ,−𝑞a𝛼−1

a, 𝑞1+ 𝑗2−𝑖1 , 𝑞𝐽+1−𝑖2− 𝑗2

����𝑞, 𝑞) .
(6.1.4)

Here, a = 𝑞−𝐼 and 4𝜙3 is the regularized terminating basic hyper-geometric series defined by

𝑟+1𝜙𝑟

(
𝑞−𝑛, 𝑎1, . . . , 𝑎𝑟

𝑏1, . . . , 𝑏𝑟

����𝑞, 𝑧) =

𝑛∑︁
𝑘=0

𝑧𝑘
(𝑞−𝑛; 𝑞)𝑘
(𝑞; 𝑞)𝑘

𝑟∏
𝑖=1
(𝑎𝑖; 𝑞)𝑘 (𝑏𝑖𝑞𝑘 ; 𝑞)𝑛−𝑘 ,

where we recall the 𝑞-Pochhammer symbols (𝑎, 𝑞)𝑛 (here 𝑛 is allowed to be negative) are defined

by

(𝑎; 𝑞)𝑛 :=



∏𝑛
𝑖=1(1 − 𝑎𝑞𝑖−1), 𝑛 > 0,

1, 𝑛 = 0,∏−𝑛−1
𝑘=0 (1 − 𝑎𝑞𝑛+𝑘 )−1, 𝑛 < 0.

We view 𝐿
(𝐽)
𝛼 as a matrix with row indexed by (𝑖1, 𝑗1) ∈ Z2

≥0 and column indexed by (𝑖2, 𝑗2) ∈ Z2
≥0.

Note that the 𝐿-matrix in (6.1.4) actually depends on four generic parameters 𝛼, 𝑞, 𝐼, 𝐽, we suppress

the dependence on 𝑞, 𝐼 in the notation of 𝐿 (𝐽)𝛼 to simplify the notation.
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It is straightforward by definition that for (𝑖1, 𝑗1) ∈ {0, 1, . . . , 𝐼} × {0, 1, . . . , 𝐽} (using a = 𝑞−𝐼)

𝐿
(𝐽)
𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) = 0, for all (𝑖2, 𝑗2) ∈ Z2

≥0\{0, 1, . . . , 𝐼} × {0, 1, . . . , 𝐽},

which means there is no way to transition out of {0, 1, . . . , 𝐼} × {0, 1, . . . , 𝐽} from itself. There-

fore, in the following we restrict ourselves to the block with (𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ {0, 1, . . . , 𝐼} ×

{0, 1, . . . , 𝐽}.

When 𝐽 = 1, by straightforward calculation, the 𝐿-matrix defined above simplifies to

𝐿
(1)
𝛼 (𝑚, 0;𝑚, 0) = 1 + 𝛼𝑞𝑚

1 + 𝛼 , 𝐿
(1)
𝛼 (𝑚, 0;𝑚 − 1, 1) = 𝛼(1 − 𝑞𝑚)

1 + 𝛼 ,

𝐿
(1)
𝛼 (𝑚, 1;𝑚 + 1, 0) = 1 − a𝑞𝑚

1 + 𝛼 , 𝐿
(1)
𝛼 (𝑚, 1;𝑚, 1) = 𝛼 + a𝑞𝑚

1 + 𝛼 .

(6.1.5)

For the history of the expression (6.1.4), we remark that more intricate expressions for a quantity

similar to the 𝐿 (𝐽)𝛼 had been known in the context of quantum integrable systems since the work of

[KR87]. Relatively compact expressions of 𝐿 (𝐽)𝛼 became available only in more recent times after

the work of [Man14]. [CP16] also provides a probabilistic proof for this expression.

From our perspective, we will think of 𝐿 (𝐽)𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) as the weight associated to a vertex con-

figuration with 𝑖1 input lines from south, 𝑗1 input lines from west, 𝑖2 output lines to the north

and 𝑗2 output lines to the east see Figure 6.1. Since we have restricted 𝐿
(𝐽)
𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) to

(𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ {0, 1, . . . , 𝐼} × {0, 1, . . . , 𝐽}, we can have at most 𝐼 vertical lines and 𝐽 hor-

izontal lines in the vertex configuration. Note that due to the indicator in (6.1.4), all non-zero

vertex weights 𝐿 (𝐽)𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) satisfy 𝑖1 + 𝑗1 = 𝑖2 + 𝑗2, a property that we consider as conserva-

tion of lines.

In this paper, we always assume the following condition.

Condition 6.1.1. We take 𝑞 > 1, 𝛼 < −𝑞−(𝐼+𝐽−1) and as we noted before, a = 𝑞−𝐼 .

It follows from [CP16] that under Condition 6.1.1, 𝐿 (𝐽)𝛼 is a stochastic matrix on {0, 1, . . . , 𝐼}×

{0, 1, . . . , 𝐽}. In other words, for any fixed (𝑖1, 𝑗1) ∈ {0, 1, . . . , 𝐼} × {0, 1, . . . , 𝐽}, 𝐿 (𝐽)𝛼 (𝑖1, 𝑗1; ·, ·)
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defines a probability measure on {0, 1, . . . , 𝐼} × {0, 1, . . . , 𝐽}. Although in this paper we will not

investigate the range of parameters out of Condition 6.1.1, it is worth remarking that there are

other choices of parameters which make 𝐿 (𝐽)𝛼 stochastic, a few of them are provided in [CP16,

Proposition 2.3].

𝑖1

𝑖2

𝑗1 𝑗2

𝑖1

𝑖2

𝑗1 𝑗2

input

output

input

output

Figure 6.1: Left: The vertex configuration labeled by four tuples of integer (𝑖1, 𝑗1; 𝑖2, 𝑗2) ∈ Z4
≥0

(from bottom and then in the clockwise order) has weight 𝐿 (𝐽)𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2), which takes 𝑖1 vertical
input lines and 𝑗1 horizontal input lines, and produce 𝑖2 vertical output lines and 𝑗2 horizontal
output lines. Right: The representation of the vertex configuration (𝑖1, 𝑗1; 𝑖2, 𝑗2) = (2, 2; 3, 1) in
terms of lines.

There are several equivalent ways to define the SHS6V model. In this paper, we view the SHS6V

model as a one-dimensional interacting particle system, which follows a sequential update rule. We

proceed to give a precise definition of it. Denote by the space of left-finite particle configuration

G = {®𝑔 = (. . . , 𝑔−1, 𝑔0, 𝑔1 . . . ) : all 𝑔𝑖 ∈ {0, 1, . . . , 𝐼} and there exists 𝑥 ∈ Z such that 𝑔𝑖 = 0 for all 𝑖 < 𝑥.},

(6.1.6)

where 𝑔𝑥 should be understood as the number of particles at position 𝑥. We define a discrete time

Markov process ®𝑔(𝑡) = (𝑔𝑥 (𝑡))𝑥∈Z ∈ G as follows.

Definition 6.1.2 (left-finite fused SHS6V model). For any state ®𝑔 = (𝑔𝑥)𝑥∈Z ∈ G, we specify

the update rule from state ®𝑔 to ®𝑔′ as follows: Assume the leftmost particle in the configuration ®𝑔

is at 𝑥 (i.e. 𝑔𝑥 > 0 and 𝑔𝑧 = 0 for all 𝑧 < 𝑥). Starting from 𝑥, we update 𝑔𝑥 to 𝑔′𝑥 by setting

ℎ𝑥 = 0 and randomly choosing 𝑔′𝑥 according to the probability 𝐿 (𝐽)𝛼 (𝑔𝑥 , ℎ𝑥 = 0; 𝑔′𝑥 , ℎ𝑥+1) where
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ℎ𝑥+1 := 𝑔𝑥 − 𝑔′𝑥 . Proceeding sequentially, we update 𝑔𝑥+1 to 𝑔′
𝑥+1 according to the probability

𝐿
(𝐽)
𝛼 (𝑔𝑥+1, ℎ𝑥+1; 𝑔′

𝑥+1, ℎ𝑥+2) where ℎ𝑥+2 := 𝑔𝑥+1 + ℎ𝑥+1 − 𝑔′𝑥+1. Continuing for 𝑔𝑥+2, 𝑔𝑥+3, . . . , we

have defined the update rule from ®𝑔 to ®𝑔′ = (𝑔′𝑥)𝑥∈Z, see Figure 6.2 for visualization of the update

procedure. We call the discrete time-homogeneous Markov process ®𝑔(𝑡) ∈ G with the update rule

defined above the left-finite fused SHS6V model.3

𝑔𝑥 = 3 𝑔𝑥+1 = 2 𝑔𝑥+2 = 1

𝑔′𝑥 = 1 𝑔′
𝑥+1 = 3 𝑔′

𝑥+2 = 2

ℎ𝑥 = 0 ℎ𝑥+1 = 2 ℎ𝑥+2 = 1 ℎ𝑥+3 = 0

𝑔𝑥+3 = 3

𝑔′
𝑥+3 = 2

ℎ𝑥+4 = 1. . .

𝑥 𝑥 + 1 𝑥 + 2 𝑥 + 3

𝐿
(𝐽)
𝛼 (3, 0; 1, 2) 𝐿

(𝐽)
𝛼 (2, 2; 3, 1) 𝐿

(𝐽)
𝛼 (1, 1; 2, 0) 𝐿

(𝐽)
𝛼 (3, 0; 2, 1)

. . .

Figure 6.2: The visualization of the sequential update rule for the left-finite fused SHS6V model
in Definition 6.1.2. Assuming 𝑥 is the location of the leftmost particle, we update sequentially for
positions 𝑥, 𝑥 + 1, 𝑥 + 2, . . . according to the stochastic matrix 𝐿 (𝐽)𝛼 , the gray particles in the picture
above will move one step to the right.

For 𝑠 ∈ Z≥0, we define mod𝐽 (𝑠) := 𝑠 − 𝐽 b𝑠/𝐽c. For instance,

(
mod𝐽 (0),mod𝐽 (1), . . . ,mod𝐽 (𝐽 − 1),mod𝐽 (𝐽),mod𝐽 (𝐽 + 1), . . .

)
=

(
0, 1, . . . , 𝐽 − 1, 0, 1, . . .

)
.

We further define 𝛼(𝑡) = 𝛼𝑞mod𝐽 (𝑡) for 𝑡 ∈ Z≥0.

Definition 6.1.3 (left-finite unfused SHS6V model). For all state ®[ ∈ G, we specify the update rule

at time 𝑡 from state ®[ to ®[′ ∈ G as follows. Assume the leftmost particle in the configuration ®[ is
3Note that in Definition 6.1.2, although the update from ®𝑔 to ®𝑔′ may never stop as it goes to the right, the process

is well-defined since we only care about the sigma algebra generated by (𝑔𝑥)𝑥≤𝑧,𝑥∈Z for all 𝑧 ∈ Z.
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at 𝑥. Starting from 𝑥, we update [𝑥 to [′𝑥 by setting ℎ𝑥 = 0 and randomly choosing [′𝑥 according

to the probability 𝐿
(1)
𝛼(𝑡) ([𝑥 , ℎ𝑥; [

′
𝑥 , ℎ𝑥+1) where ℎ𝑥+1 := [𝑥 + ℎ𝑥 − [′𝑥 . Proceeding sequentially,

we update [𝑥+1 to [𝑥+1 according to the probability 𝐿
(1)
𝛼(𝑡) ([𝑥+1, ℎ𝑥+1; [′

𝑥+1, ℎ𝑥+2) where ℎ𝑥+2 :=

[𝑥+1 + ℎ𝑥+1 − [′𝑥+1. Continuing for [𝑥+2, [𝑥+3, . . . , we have defined the update rule from ®[ to

®[′ = ([′𝑥)𝑥∈Z. We call the discrete time-inhomogeneous Markov process ®[(𝑡) ∈ G with the update

rule defined above the left-finite unfused SHS6V model.

Remark 6.1.4. It is straightforward to check that under Condition 6.1.1, for all 𝑡 ∈ Z≥0, 𝐿 (1)
𝛼(𝑡) in

(6.1.5) is a stochastic matrix which transfers {0, 1, . . . , 𝐼} × {0, 1} to itself.

In this paper, as a notational convention, we always use ®𝑔(𝑡) to denote the fused SHS6V model

and ®[(𝑡) to denote the unfused one. The connection between them is specified in the following

proposition.

Proposition 6.1.5 ([CP16], Theorem 3.15). Consider the left-finite fused SHS6V model ®𝑔(𝑡) and

the left-finite unfused SHS6V model ®[(𝑡). If ®𝑔(0) = ®[(0) in law, then

( ®𝑔(𝑡), 𝑡 ≥ 0) = ( ®[(𝐽𝑡), 𝑡 ≥ 0) in law .

By Proposition 6.1.5, we can construct the SHS6V model with higher horizontal spin (𝐽 ∈ Z≥1)

from those with horizontal spin 𝐽 = 1. This procedure is called fusion, which goes back to the work

of [KR87]. Thanks to Proposition 6.1.5, for any left-finite SHS6V model ®𝑔(𝑡), we can couple it

with a left-finite unfused SHS6V model ®[(𝑡) so that ®𝑔(𝑡) = ®[(𝐽𝑡). We will extend the definition

of unfused SHS6V model ®[(𝑡) in Lemma 6.2.1 so that it takes value in a larger space of bi-infinite

particle configuration {0, 1, . . . , 𝐼}Z (thus extend as well the definition of the fused SHS6V model

using the relation ®𝑔(𝑡) = ®[(𝐽𝑡)).

For the particle configuration ®𝑔 ∈ G, define

𝑁𝑥 ( ®𝑔) =
∑︁
𝑦≤𝑥

𝑔𝑦 . (6.1.7)
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For the left-finite unfused SHS6V model ®[(𝑡) ∈ G, we define the unfused height function as

𝑁uf(𝑡, 𝑥) = 𝑁𝑥 ( ®[(𝑡)) − 𝑁0( ®[(0)). (6.1.8)

Note that in the notation of unfused height function, we suppress the underlying process ®[(𝑡).

Similarly, we define the fused height function 𝑁 f(𝑡, 𝑥) for the left-finite fused SHS6V model ®𝑔(𝑡) ∈

G as

𝑁 f(𝑡, 𝑥) = 𝑁𝑥 ( ®𝑔(𝑡)) − 𝑁0( ®𝑔(0)).

Since ®𝑔(𝑡) = ®[(𝐽𝑡), certainly one has for all 𝑡 ∈ Z≥0 and 𝑥 ∈ Z, 𝑁 f(𝑡, 𝑥) = 𝑁uf(𝐽𝑡, 𝑥).

We will state our result for the fused height function 𝑁 f(𝑡, 𝑥) though we will mainly work with the

unfused height function 𝑁uf(𝑡, 𝑥) in our proof. In the future, the notation of 𝑁uf(𝑡, 𝑥) will often be

shortened to 𝑁 (𝑡, 𝑥).

Having defined 𝑁 f(𝑡, 𝑥) (respectively, 𝑁uf(𝑡, 𝑥)) on the lattice, we linearly interpolate it first in

space variable 𝑥 then in time variable 𝑡, which makes 𝑁 f(𝑡, 𝑥) (respectively, 𝑁uf(𝑡, 𝑥)) a𝐶 ( [0,∞), 𝐶 (R))-

valued process. For construction of height functions of the bi-infinite version of the fused or un-

fused SHS6V model, see Lemma 6.2.1.

6.1.3 Result

The main result of our paper shows that the fluctuation of the fused height function 𝑁 f(𝑡, 𝑥)

converges weakly to the solution of the KPZ equation. Fix 𝜌 ∈ (0, 𝐼), define

_ =
1 + 𝛼 − 𝑞𝜌 (𝛼 + a)

1 + 𝛼𝑞𝐽 − 𝑞𝜌 (𝛼𝑞𝐽 + a)
, ` =

𝛼𝑞𝜌 (1 − 𝑞𝐽) (1 − a)
(1 + 𝛼𝑞𝐽 − 𝑞𝜌 (𝛼𝑞𝐽 + a)) (1 + 𝛼 − 𝑞𝜌 (𝛼 + a))

. (6.1.9)

As a matter of convention, we endow the space 𝐶 (R) and 𝐶 ( [0,∞), 𝐶 (R)) with the topology

of uniform convergence over compact subsets, and write “ ⇒ ” for the weak convergence of

probability laws. We present our main theorem.
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Theorem 6.1.6. Fix 𝑏 ∈
(
𝐼+𝐽−2
𝐼+𝐽−1 , 1

)
, 𝐼 ≥ 2 and 𝐽 ≥ 1, for small 𝜖 > 0, wet 𝑞 = 𝑒

√
𝜖 and define 𝛼 via

𝑏 =
1+𝛼𝑞
1+𝛼 . We call this weakly asymmetric scaling. Assume that {𝑁 f

𝜖 (0, 𝑥)}𝜖>0 is nearly stationary

with density 𝜌 (see Definition 6.5.5) and

√
𝜖

(
𝑁 f
𝜖 (0, 𝜖−1𝑥) − 𝜌𝜖−1𝑥

)
⇒H 𝑖𝑐 (𝑥) in 𝐶 (R) as 𝜖 ↓ 0,

then

√
𝜖

(
𝑁 f
𝜖 (𝜖−2𝑡, 𝜖−1𝑥 + 𝜖−2𝑡`𝜖 ) − 𝜌(𝜖−1𝑥 + 𝜖−2`𝜖 𝑡)

)
− 𝑡 log_𝜖 ⇒H(𝑡, 𝑥) (6.1.10)

in 𝐶 ( [0,∞), 𝐶 (R)) as 𝜖 ↓ 0,

whereH(𝑡, 𝑥) is the Hopf-Cole solution of the KPZ equation

𝜕𝑡H(𝑡, 𝑥) =
𝐽𝑉∗
2
𝜕2
𝑥H(𝑡, 𝑥) −

𝐽𝑉∗
2

(
𝜕𝑥H(𝑡, 𝑥)

)2 +
√︁
𝐽𝐷∗b (𝑡, 𝑥), (6.1.11)

with initial conditionH 𝑖𝑐 (𝑥), where the coefficients are given by

𝑉∗ =
(𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 2)

𝐼2(1 − 𝑏)
, (6.1.12)

𝐷∗ =
𝜌(𝐼 − 𝜌)

𝐼

(𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 2)
𝐼2(1 − 𝑏)

. (6.1.13)

Note that the restriction of 𝑏 ∈ ( 𝐼+𝐽−2
𝐼+𝐽−1 , 1) in Theorem 6.1.6 is necessary and sufficient to ensure

Condition 6.1.1 holds for 𝜖 small enough. In Appendix D, we will demonstrate how our theorem

agrees with the non-rigorous KPZ scaling theory used in physics4.

Remark 6.1.7. In a different setting where 0 < 𝑞, a < 1 (in contrast to Condition 6.1.1, there

is no 𝐼 ∈ Z≥1 such that a = 𝑞−𝐼) and 𝛼 ≥ 0, one can show that 𝐿 (𝐽)𝛼 is a stochastic matrix on

Z≥0×{0, 1, . . . , 𝐽} (instead of {0, 1, . . . , 𝐼}×{0, 1, . . . , 𝐽} for our case). In this regime, the SHS6V

4The KPZ scaling theory is a non-rigorous physics method used to compute the constants (the coefficients of
the KPZ equation (6.1.11) as in our case) arising in limit theorems for the models in the KPZ universality class
[KMHH92, Spo12], which has been confirmed in a few cases such as [DT16, Gho17].
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model allows arbitrary number of particles at each site (instead of at most 𝐼 particles for our case).

[CT17] proves the weak universality of the SHS6V model5 under a different type of weak scaling

that corresponds to taking 𝑏 = 3, 𝑧 = 1, 𝛿 → 𝜖𝛿, ^ → 𝜖2^ in (6.1.3). Under this scaling, the

number of particles at each site diverges to infinity with rate 𝜖−1. This simplifies considerably the

control of the quadratic variation of the martingale in the discrete SHE (6.1.14), which is the main

complexity in our analysis.

Remark 6.1.8. Taking 𝐼 = 𝐽 = 1, Theorem 6.1.6 recovers [CGST20, Theorem 1.1]. We assume

𝐼 ≥ 2 in Theorem 6.1.6 merely due to some technical subtleties we met in Section 6.7. The proof

for 𝐼 = 1 needs particular modification and we do not pursue it here.

The proof of Theorem 6.1.6 will be given in the end of Section 6.5, as a corollary of Theorem

6.5.6.

6.1.4 Method

In this section, we explain the method used in proving Theorem 6.1.6. Although initially our

methods follow [CGST20], rather quickly, we encounter novel complexities that are not present in

[CGST20] which require new ideas.

As illustrated in Section 6.1.2, via fusion, to study the fused SHS6V model, it suffices to work with

the unfused version. Similar to [CGST20], the first step is to perform a microscopic Hopf-Cole

transform of the SHS6V model (6.5.6). The existence of the microscopic Hopf-Cole transform

is guaranteed by one particle version of the duality (6.3.8) (which goes back to [CP16, Theorem

2.21]). The microscopic Hopf-Cole transform 𝑍 (𝑡, 𝑥), which is essentially an exponential version

of the unfused height function 𝑁 (𝑡, 𝑥), satisfies a discrete version of SHE

𝑑𝑍 = L𝑍𝑑𝑡 + 𝑑𝑀. (6.1.14)
5In the context of [CT17], the authors prove the weak universality for the higher spin exclusion process defined

in [CP16, Definition 2.10], which is equivalent to the SHS6V model after a gap-particle transform. We describe their
result in the language of the SHS6V model here.
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Here L is an operator which approximates the Laplacian and 𝑀 is a martingale. Owing to the

definition of the Hopf-Cole solution to the KPZ equation, Theorem 6.1.6 is equivalent to showing

that the above discrete SHE converges to its continuum version (Theorem 6.5.6). The proof of

Theorem 6.5.6 reduces to three steps:

1). Showing tightness.

2). Identifying the limit of the linear martingale problem.

3). Identifying the limit of the quadratic martingale problem.

Steps 1) and 2) follow from a similar approach as in [CGST20]. Step 3) is the difficult part; Propo-

sition 6.6.8 does this by proving a form of self-averaging for the quadratic variation of the martin-

gale 𝑀 . We will focus on discussing the method for proving this self-averaging result in the rest

of the section. We remark that other recent KPZ equation convergence results using the Hopf-Cole

transform include ASEP-(𝑞, 𝑗) [CST18], Hall-Littlewood PushTASEP [Gho17], weakly asymmet-

ric bridges [Lab17], open ASEP [CS18, Par19b].

We will explain what is self-averaging in a moment, but first introduce two tools used in proving

it. The first tool is the Markov duality and the second is the exact formula of two particle transition

probability of the SHS6V model.

The stochastic six vertex model enjoys two Markov dualities [CP16, Theorem 2.21] and [Lin19,

Theorem 1.5]6, which are exploited in proving the self-averaging [CGST20, Proposition 5.6]. The

Markov duality in [CP16, Theorem 2.21] also works for the SHS6V model (Proposition 6.3.6 in

our paper), yet it is unknown whether there exists a generalization of [Lin19, Theorem 1.5] for the

SHS6V model. [Kua18, Theorem 4.10] discovers a general duality for the multi-species SHS6V

model using the algebraic machinery7. At first glance, the duality functional written in [Kua18,

Theorem 4.10] takes a rather complicated form, but we only need a two particle version of this
6The Markov duality proved in [Lin19] first appears in [CP16, Theorem 2.23]. In fact [CP16, Theorem 2.23] claims

a more general Markov duality for the SHS6V model. In discussions with the authors of [CP16], we recognized a gap
in that proof as well as a counter-example to the result when 𝐼 > 1, see [CP19] for detail.

7As a remark, the functional in [Kua18, Theorem 4.10] also serves as the duality functional for a multi-species
version of ASEP(q, j), see [CGRS16, Kua17].
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duality, in which case the duality functional simplifies greatly (Proposition 6.3.7 in our paper) and

is applicable for proving the desired self-averaging. We remark that this is the first application of

[Kua18, Theorem 4.10] as far as we know.

In [BCG16, Theorem 3.6], an integral formula was obtained for general 𝑘 particle transition prob-

ability of the stochastic six vertex model via a generalized Fourier theory (Bethe ansatz), using

a complete set of eigenfunction of the stochastic six vertex model transition matrix obtained in

[BCG16, Theorem 3.4] together with the Plancherel identity [TW08, Theorem 2.1]. [CGST20]

applies the steepest descent analysis to a two particle version of this formula to extract a space-

time bound, which is the key to control the quadratic variation of the martingale in (6.1.14).

For the SHS6V model, it is natural to expect that the similar method should apply, since we also

have a set of eigenfunctions from [CP16, Proposiiton 2.12] and a generalized Plancherel identity

from [BCPS15, Corollary 3.13]. However, the Plancherel identity was originally designed only for

0 < 𝑞, a < 1 and there is a technical issue in extending this identity to 𝑞 > 1, a = 𝑞−𝐼 which has

not been addressed in the existing literatures8 (see Remark 6.4.5). Fortunately, we find that when

𝐼 ≥ 2 and there are only two particles, such analytic continuation does work, which produces

an integral formula for the two particle SHS6V model transition probability (Theorem 6.4.4). In

terms of large contours, the integral formula consists of two double contour integrals and one sin-

gle contour integral. We find that the single contour integral can be expressed as a residue of one

of the double contour integrals. This simplifies our analysis since via certain contour deformation,

the single contour integral will be canceled out.

We will analyze (a tilted version of) this integral formula (Corollary 6.5.3) in Section 6.7 using

steepest descent analysis and obtain a very precise estimate of the (tilted) two particle transition

probability V defined in (6.5.20). Compared with the analysis for stochastic six vertex model in

[CGST20, Section 6], one difficulty is to find (and justify) the contours for different 𝐼, 𝐽 such that

8[CP16, Proposition A.3] claims the Plancherel identity for a = 𝑞−𝐼 can be obtained by analytic continuation
of [BCPS15, Corollary 3.13]. After discussions with the authors of [CP16], they agree that there is an issue in this
analytic continuation (and the resulting identity) due to poles encountered along the way [CP19].
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the steepest descent analysis applies. Also in certain cases (Section 6.7.5) the steepest descent

contour can only be implicitly defined (compared with [CGST20, Section 6] where all the steepest

descent contour are circles), which complicates our analysis.

Now let us explain what is self-averaging and how these two tools can be applied to prove it.

Denote the discrete gradient by ∇ 𝑓 (𝑥) := 𝑓 (𝑥 + 1) − 𝑓 (𝑥). Roughly speaking, the terminology

“self-averaging" refers to the phenomena that as 𝜖 ↓ 0

(A) For 𝑥1 ≠ 𝑥2, the average of 𝜖−1∇𝑍 (𝑡, 𝑥1)∇𝑍 (𝑡, 𝑥2) over a long time interval of length

𝑂 (𝜖−2) will vanish.

(B) There exists a positive constant _ such that the average of (𝜖− 1
2∇𝑍 (𝑡, 𝑥))2 − _𝑍 (𝑡, 𝑥)2

over a long time interval of length O(𝜖−2) will vanish.

The proofs of (A) and (B) are given in Lemma 6.8.2 and Lemma 6.8.3 respectively, let us make

a brief discussion about our strategy here. As we will see in (6.8.15), under weakly asymmetric

scaling,

𝜖−
1
2∇𝑍 (𝑡, 𝑥) = (𝜌 − [̃𝑥+1(𝑡))𝑍 (𝑡, 𝑥) + error term . (6.1.15)

where 𝜌 ∈ (0, 𝐼) is the density, [̃𝑥 (𝑡) = [𝑥+ ˆ̀(𝑡) (𝑡) and ˆ̀(𝑡) is some constant defined in (6.5.4).

Pointwisely, 𝜖−
1
2∇𝑍 (𝑡, 𝑥) is of the same order as 𝑍 (𝑡, 𝑥). But (A) tells that after averaging over

a long time interval (we will just say "averaging" afterwards for short), 𝜖−1∇𝑍 (𝑡, 𝑥1)∇𝑍 (𝑡, 𝑥2)

vanishes for 𝑥1 ≠ 𝑥2, this explains the terminology of “self-averaging". To prove (A), by the

first duality in Lemma 6.5.2 (which goes back to Proposition 6.3.6), one is able to write down

the conditional quadratic variation in terms of the summation of (a tilted version of) two particle

transition probability V, i.e. for 𝑥1 ≤ 𝑥2

E
[
𝑍 (𝑡, 𝑥1)𝑍 (𝑡, 𝑥2)

��F (𝑠)] = ∑︁
𝑦1≤𝑦2

V
(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2) (6.1.16)

This allows us to move the gradients from 𝑍 (𝑡, 𝑥1) and 𝑍 (𝑡, 𝑥2) to V. We proceed by using a

very precise estimate of V from Proposition 6.7.1 (which is proved by making use of the steepest
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descent analysis of the integral formula of V). Referring to Proposition 6.7.1, each gradient on

V
(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
gives an extra decay of 1√

𝑡−𝑠+1
, which helps us to conclude (A). We re-

mark that for demonstrating (A), our argument is actually simpler than that of [CGST20]. Since

we assume 𝐼 ≥ 2, (6.1.16) holds for all 𝑥1 ≤ 𝑥2, while in the situation of the stochastic six vertex

model (𝐼 = 1), (6.1.16) holds only for 𝑥1 < 𝑥2, due to the exclusion restriction (i.e. two particles

can not stay in the same site). In fact, [CGST20] needs both of the duality [CP16, Theorem 2.21]

and [Lin19, Theorem 1.5] to prove (A).

For (B), there are two tasks: Identifying _ and proving the self-averaging. These were done

simultaneously for the stochastic six vertex model [CGST20]: Note that by (6.1.15),

(𝜖− 1
2∇𝑍 (𝑡, 𝑥))2 = ([̃𝑥+1(𝑡) − 𝜌)2𝑍 (𝑡, 𝑥)2 + error term . (6.1.17)

For the stochastic six vertex model, [̃𝑥 (𝑡) ∈ {0, 1} for all 𝑡, 𝑥, hence [̃𝑥 (𝑡)2 = [̃𝑥 (𝑡). [CGST20,

Lemma 7.1] uses this crucial observation to obtain

([̃𝑥+1(𝑡) − 𝜌)2𝑍 (𝑡, 𝑥)2 = 𝜌2𝑍 (𝑡, 𝑥)2 + (1 − 2𝜌)[̃𝑥+1(𝑡)𝑍 (𝑡, 𝑥)

= 𝜌(1 − 𝜌)𝑍 (𝑡, 𝑥)2 + 𝜖− 1
2 (2𝜌 − 1)∇𝑍 (𝑡, 𝑥)𝑍 (𝑡, 𝑥) + error term .

By similar method used in demonstrating (A), it is not hard to prove that 𝜖−
1
2∇𝑍 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)

vanishes after averaging, implying that _ = 𝜌(1 − 𝜌).

For our case, first we note that [̃𝑥 (𝑡) ∈ {0, 1, . . . , 𝐼} with 𝐼 ≥ 2, so the [̃𝑥 (𝑡)2 = [̃𝑥 (𝑡) identity

obviously fails. We need to find another way to determine _ and prove the self-averaging. We

proceed by first guessing the _. Via (6.1.17), the average of 𝜖−1(∇𝑍 (𝑡, 𝑥))2 over a long time

interval can be approximated by the average of ([̃𝑥 (𝑡) − 𝜌)2𝑍 (𝑡, 𝑥)2. In Appendix C, we derive a

family of stationary distribution of the SHS6V model, which is a product measure
⊗

𝜋𝜌, where

𝜋𝜌 is a probability measure on {0, 1, . . . , 𝐼} indexed by its mean 𝜌 ∈ (0, 𝐼). Starting the SHS6V

model ®[(𝑡) from ®[(0) ∼
⊗

𝜋𝜌, it is clear that [̃𝑥 (𝑡) ∼ 𝜋𝜌 for all 𝑡, 𝑥. In a heuristic level, one
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can approximate the average of ([̃𝑥+1(𝑡) − 𝜌)2𝑍 (𝑡, 𝑥)2 by that of the E𝜋𝜌
[
([̃𝑥+1(𝑡) − 𝜌)2

]
𝑍 (𝑡, 𝑥)2.

Under weakly asymmetric scaling, one computes that

lim
𝜖↓0
E𝜋𝜌

[
([̃𝑥+1(𝑡) − 𝜌)2

]
=
𝜌(𝐼 − 𝜌)

𝐼
,

which suggests _ =
𝜌(𝐼−𝜌)
𝐼

.

To prove (B) with _ =
𝜌(𝐼−𝜌)
𝐼

, note that the second duality in Lemma 6.5.2 (which goes back to

Proposition 6.3.7) implies

E
[
𝐷 (𝑡, 𝑥, 𝑥)

��F (𝑠)] = ∑︁
𝑦1≤𝑦2

𝐷 (𝑠, 𝑦1, 𝑦2)V
(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

)
(6.1.18)

where approximately9

𝐷 (𝑠, 𝑦1, 𝑦2) =


𝑍 (𝑠, 𝑦1)2

(
𝐼 − [̃𝑦1 (𝑠)

) (
𝐼 − 1 − [̃𝑦1 (𝑠)

)
if 𝑦1 = 𝑦2,

𝐼−1
𝐼
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)

(
𝐼 − [̃𝑦1 (𝑠)

) (
𝐼 − [̃𝑦2 (𝑠)

)
if 𝑦1 < 𝑦2

(6.1.19)

Note that the expression of 𝐷 (𝑠, 𝑦1, 𝑦2) is different depending on whether 𝑦1 = 𝑦2, which is crucial

to our proof. Rewriting (𝜖− 1
2∇𝑍 (𝑡, 𝑥))2 − 𝜌(𝐼−𝜌)

𝐼
𝑍 (𝑡, 𝑥)2 in terms of the two duality functionals in

(6.1.16) and (6.1.19)

(𝜖− 1
2∇𝑍 (𝑡, 𝑥))2 − 𝜌(𝐼 − 𝜌)

𝐼
𝑍 (𝑡, 𝑥)2 =

(
([̃𝑥+1(𝑡) − 𝜌)2 −

𝜌(𝐼 − 𝜌)
𝐼

)
𝑍 (𝑡, 𝑥)2 + error term

=

(
(𝐼 − [̃𝑥+1(𝑡)) (𝐼 − 1 − [̃𝑥+1(𝑡)) −

(𝐼 − 1) (𝐼 − 𝜌)2
𝐼

)
𝑍 (𝑡, 𝑥 + 1)2 − (2𝜌 + 1 − 2𝐼)𝜖− 1

2∇𝑍 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)

+ error term ,

=

(
𝐷 (𝑡, 𝑥 + 1, 𝑥 + 1) − (𝐼 − 1) (𝐼 − 𝜌)2

𝐼
𝑍 (𝑡, 𝑥 + 1)2

)
− (2𝜌 + 1 − 2𝐼)𝜖− 1

2∇𝑍 (𝑡, 𝑥)𝑍 (𝑡, 𝑥) + error term .

9In fact, the functional 𝐷 (𝑠, 𝑦1, 𝑦2) below is only an approximate version of the duality functional defined in
(6.5.19), we use this approximate version here to avoid extra notations and make our argument more intuitive.
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It is not hard to show that the second term 𝜖−
1
2∇𝑍 (𝑡, 𝑥)𝑍 (𝑡, 𝑥) vanishes after averaging. For the

first term above, we combine both of the dualities (6.1.16), (6.1.18) and get

E

[
𝐷 (𝑡, 𝑥 + 1, 𝑥 + 1) − (𝐼 − 1) (𝐼 − 𝜌)2

𝐼
𝑍 (𝑡, 𝑥 + 1)2

����F (𝑠)]
=

∑︁
𝑦1≤𝑦2

V
(
𝑥 + 1, 𝑥 + 1, 𝑦1, 𝑦2, 𝑡, 𝑠

) (
𝐷 (𝑠, 𝑦1, 𝑦2) −

(𝐼 − 1) (𝐼 − 𝜌)2
𝐼

𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)
)
. (6.1.20)

The number of pairs (𝑦1, 𝑦2) such that 𝑦1 = 𝑦2 compared with 𝑦1 < 𝑦2 is negligible in the summa-

tion above so it suffices to study for 𝑦1 < 𝑦2

𝐷 (𝑠, 𝑦1, 𝑦2) −
(𝐼 − 1) (𝐼 − 𝜌)2

𝐼
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)

=

(
𝐼 − 1
𝐼
(𝐼 − [̃𝑦1 (𝑠)) (𝐼 − [̃𝑦2 (𝑠)) −

(𝐼 − 1) (𝐼 − 𝜌)2
𝐼

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)

= (𝐼 − [̃𝑦2 (𝑠)) (𝜖−
1
2∇𝑍 (𝑠, 𝑦1))𝑍 (𝑠, 𝑦2) + (𝐼 − 𝜌) (𝜖−

1
2∇𝑍 (𝑠, 𝑦2))𝑍 (𝑠, 𝑦1) + error term .

Inserting this expression into the RHS of (6.1.20) and using the summation by part formula (see

(6.8.39)), we can move the gradient from 𝑍 to V. Similar to the argument for (A), applying the

estimate in Proposition 6.7.1 completes the proof of (B).

6.1.5 Outline

The paper will be organized as follows. In Section 6.2 we give an equivalent definition of

SHS6V model through fusion. At the beginning, we require the existence of a leftmost particle.

After that we extend the definition to a bi-infinite version of the SHS6V model (Lemma 6.2.1),

which is the object that we study for the rest of the paper. In Section 6.3, we introduce two Markov

dualities enjoyed by the model. The first one is taken directly from the [CP16, Theorem 2.21]. The

second one is a certain degeneration from a general duality in [Kua18, Theorem 4.10]. Section 6.4

contains the derivation of integral formula for the two point transition probability of the SHS6V

model. In Section 5, we define the microscopic Hopf-Cole transform and prove that it satisfies

a discrete version of SHE. Due to the definition of the Hopf-Cole solution to the KPZ equation,
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it suffices to prove that the discrete SHE converges to its continuum version. In Section 6.6, we

prove this result in two steps. First, we establish the tightness of the discrete SHE. Second, we

show that any limit point is the solution to the SHE in continuum, assuming the self-averaging

property (Proposition 6.6.8). The last two sections are devoted to the proof of Proposition 6.6.8. In

Section 6.7, we obtain a very precise estimate for the two point transition probability by applying

steepest descent analysis to the integral formula that we obtain in Section 6.4. In Section 6.8,

we prove Proposition 6.6.8 using the Markov duality and our estimate of the two point transition

probability.

6.1.6 Notation

In this paper, we denote Z≥𝑖 = {𝑛 ∈ Z : 𝑛 ≥ 𝑖}. 1𝐸 denotes the indicator function of an event

𝐸 . We use E (respectively, P) to denote the expectation (respectively, probability) with respect to

the process or random variable that follow. The symbol C𝑟 represents a circular contour centered

at the origin with radius 𝑟. All contours, unless otherwise specified, are counterclockwise.
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6.2 The bi-infinite SHS6V model

The main goal of this section is to extend the definition of the left-finite unfused (fused) SHS6V

model in Definition 6.1.3 (Definition 6.1.2) to the space of bi-infinite configurations {0, 1, . . . , 𝐼}Z.

The motivation of such extension is to include one important class of initial condition called near

stationary initial condition as in [BG97]. We will proceed following the idea of [CGST20], which

goes back to [CT17]. By fusion (Proposition 6.1.5), it suffices to extend the left-finite unfused

SHS6V model ®[(𝑡), the extension of the fused version ®𝑔(𝑡) follows readily by taking ®𝑔(𝑡) = ®[(𝐽𝑡).

For the extension, the first step is to restate the SHS6V model in a parallel update rule. To this

end, we equip the probability space with a family of independent Bernoulli random variables

𝐵(𝑡, 𝑦, [), 𝐵′(𝑡, 𝑦, [) such that

𝐵(𝑡, 𝑦, [) ∼ Ber
(
𝛼(𝑡) (1 − 𝑞[)

1 + 𝛼(𝑡)

)
, 𝐵′(𝑡, 𝑦, [) ∼ Ber

(
𝛼(𝑡) + a𝑞[
1 + 𝛼(𝑡)

)
, (6.2.1)

for 𝑡 ∈ Z≥0, 𝑦 ∈ Z and [ ∈ {0, 1, . . . , 𝐼}, recall that 𝛼(𝑡) = 𝛼𝑞mod𝐽 (𝑡) .

Treating these Bernoulli random variables as a random environment, we find an equivalent way to

define the left-finite unfused SHS6V model, through recursion. Given initial state ®[(0) ∈ G, define

𝑁 (0, 𝑥) := 𝑁𝑥 ( ®[(0)) − 𝑁0( ®[(0)) (recall the notation from (6.1.7)) and recursively for 𝑡 = 0, 1, . . . ,

𝑁 (𝑡 + 1, 𝑦) :=


𝑁 (𝑡, 𝑦) − 𝐵(𝑡, 𝑦, [𝑦 (𝑡)) if 𝑁 (𝑡, 𝑦 − 1) − 𝑁 (𝑡 + 1, 𝑦 − 1) = 0,

𝑁 (𝑡, 𝑦) − 𝐵′(𝑡, 𝑦, [𝑦 (𝑡)) if 𝑁 (𝑡, 𝑦 − 1) − 𝑁 (𝑡 + 1, 𝑦 − 1) = 1.
(6.2.2)

[𝑦 (𝑡 + 1) := 𝑁 (𝑡 + 1, 𝑦) − 𝑁 (𝑡 + 1, 𝑦 − 1).

It is straightforward to see that ®[(𝑡) = ([𝑦 (𝑡))𝑦∈Z is a left-finite unfused SHS6V model and 𝑁 (𝑡, 𝑥)

is indeed its height function defined by (6.1.8).
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The recursion (6.2.2) is equivalent to

𝑁 (𝑡, 𝑦)−𝑁 (𝑡+1, 𝑦) =
(
𝑁 (𝑡, 𝑦−1)−𝑁 (𝑡+1, 𝑦−1)

) (
𝐵′(𝑡, 𝑦, [𝑦 (𝑡))−𝐵(𝑡, 𝑦, [𝑦 (𝑡))

)
+𝐵(𝑡, 𝑦, [𝑦 (𝑡)).

(6.2.3)

Iterating (6.2.3) implies

𝑁 (𝑡, 𝑦) − 𝑁 (𝑡 + 1, 𝑦) =
𝑦∑︁

𝑦′=−∞

𝑦∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)
𝐵(𝑡, 𝑧, [𝑧 (𝑡)). (6.2.4)

Note that the summation above is finite. The reason is that since ®[(𝑡) ∈ G, there exists 𝑤 such that

[𝑧 (𝑡) = 0 for all 𝑧 < 𝑤, which implies 𝐵(𝑡, 𝑧, [𝑧 (𝑡)) = 0 for all 𝑧 < 𝑤.

In light of (6.2.4), we extend the Definition 6.1.3 to the space of bi-infinite particle configuration

{0, 1, . . . , 𝐼}Z.

Lemma 6.2.1. For any bi-infinite particle configuration ®[(0) ∈ {0, 1, . . . , 𝐼}Z, define the initial

height function

𝑁 (0, 𝑥) = 1{𝑥>0}

𝑥∑︁
𝑖=1

[𝑖 (0) − 1{𝑥<0}

−𝑥∑︁
𝑖=1

[−𝑖 (0).

Note that if ®[(0) ∈ G, 𝑁 (0, 𝑥) defined above coincides with that defined in (6.1.8). We inductively

define the ®[(𝑡) and 𝑁 (𝑡, 𝑥) for 𝑡 = 0, 1, . . . via the recursion

𝑁 (𝑡, 𝑦) − 𝑁 (𝑡 + 1, 𝑦) :=
𝑦∑︁

𝑦′=−∞

𝑦∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)
𝐵(𝑡, 𝑧, [𝑧 (𝑡)), (6.2.5)

[𝑦 (𝑡 + 1) := 𝑁 (𝑡 + 1, 𝑦) − 𝑁 (𝑡 + 1, 𝑦 − 1). (6.2.6)

For 𝑝 ≥ 1, the infinite sum in (6.2.5) converges almost surely and in 𝐿𝑝 to a {0, 1}-valued random

variable. Furthermore, consider left-finite initial configuration ®[𝑤 (0) = ([𝑖 (0)1{𝑖≥𝑤})𝑖∈Z and the
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height function 𝑁𝑤 (𝑡, 𝑦) inductively defined by (6.2.5) and (6.2.6), then for all 𝑡 ∈ Z≥0 and 𝑦 ∈ Z

lim
𝑤→−∞

𝑁𝑤 (𝑡, 𝑦) = 𝑁 (𝑡, 𝑦) in 𝐿𝑝 .

Remark 6.2.2. It is clear that via (6.2.5), one can recover the recursion (6.2.2) since

𝑁 (𝑡, 𝑦) − 𝑁 (𝑡 + 1, 𝑦)

=

𝑦∑︁
𝑦′=−∞

𝑦∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)
𝐵(𝑡, 𝑧, [𝑧 (𝑡))

= 𝐵(𝑡, 𝑦, [𝑦 (𝑡)) +
(
𝐵′(𝑡, 𝑦, [𝑦 (𝑡)) − 𝐵′(𝑡, 𝑦, [𝑦 (𝑡))

) 𝑦−1∑︁
𝑦′=−∞

𝑦−1∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)
= 𝐵(𝑡, 𝑦, [𝑦 (𝑡)) +

(
𝐵′(𝑡, 𝑦, [𝑦 (𝑡)) − 𝐵′(𝑡, 𝑦, [𝑦 (𝑡))

) (
𝑁 (𝑡, 𝑦 − 1) − 𝑁 (𝑡, 𝑦)

)
.

In particular, if ®[(0) ∈ G, the ®[(𝑡) defined in Lemma 6.2.1 is a left-finite unfused SHS6V model.

Therefore, Lemma 6.2.1 truly extends the scope of Definition 6.1.3.

Proof of Lemma 6.2.1. Define the canonical filtration

F (𝑡) = 𝜎
(
®[(0), 𝐵(𝑠, 𝑧, [), 𝐵′(𝑠, 𝑧, [), 0 ≤ 𝑠 ≤ 𝑡 − 1

)
.

It is not hard to see (via (6.2.5) and (6.2.6)) that 𝑁 (𝑡, 𝑦) and ®[(𝑡) are adapted to this filtration.

Let us first justify the convergence of the infinite summation (6.2.5). To simplify notation, we

denote by E′
[
·
]
= E

[
·
��F (𝑡)] . For 𝑥 < 𝑦 ∈ Z, denote by

𝐾𝑥,𝑦 (𝑡) :=
𝑦∑︁

𝑦′=𝑥

𝑦∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)
𝐵(𝑡, 𝑦′, [𝑦′ (𝑡))

Observing that 𝐾𝑥,𝑦 (𝑡) ∈ {0, 1} for all realization of 𝐵, 𝐵′ ∈ {0, 1}. Therefore, as 𝑥 → −∞, the

𝐿𝑝 convergence of 𝐾𝑥,𝑦 (𝑡) implies the almost sure convergence. Note that 𝐵, 𝐵′ are independent

Bernoulli random variables with mean given in (6.2.1). As a consequence, there exists constant
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𝛿 > 0 such that

P
(
𝐵′(𝑡, 𝑧, [) − 𝐵(𝑡, 𝑧, [) = 0

)
> 𝛿, ∀ (𝑡, 𝑧, [) ∈ Z≥0 × Z × {0, 1, . . . , 𝐼}.

Since |𝐵′(𝑡, 𝑧, [) − 𝐵(𝑡, 𝑧, [) | ≤ 1,

E′
[ (
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

) 𝑝] ≤ 1 − 𝛿.

Furthermore, note that conditioning on F (𝑡), 𝐵(𝑡, 𝑧, [𝑧 (𝑡)), 𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) are all independent, which

yields

E′
[(
𝐵(𝑡, 𝑦′, [𝑦′ (𝑡))

𝑦∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)) 𝑝]
= E′

[
𝐵(𝑡, 𝑦′, [𝑦′ (𝑡))𝑝

] 𝑦∏
𝑧=𝑦′+1

E′
[ (
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

) 𝑝] ≤ (1 − 𝛿)𝑦−𝑦′ . (6.2.7)

Taking expectation on both side of (6.2.7), by tower property( 𝑦∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)
𝐵(𝑡, 𝑦′, [𝑦′ (𝑡))

)
𝑝

≤ (1 − 𝛿)
𝑦−𝑦′
𝑝 ,

which implies the convergence of 𝐾𝑥,𝑦 (𝑡) in 𝐿𝑝 as 𝑥 → −∞.

We proceed to justify

lim
𝑤→−∞

𝑁𝑤 (𝑡, 𝑦) = 𝑁 (𝑡, 𝑦) in 𝐿𝑝 . (6.2.8)

We prove this by applying induction on 𝑡. The 𝑡 = 0 case is immediately checked. Assuming that

we have a proof for 𝑡 = 𝑠, we show that (6.2.8) also holds for 𝑡 = 𝑠 + 1. Note that for all 𝑦 ∈ Z,

[𝑤𝑦 (𝑠) = 𝑁𝑤 (𝑠, 𝑦) − 𝑁𝑤 (𝑠, 𝑦 − 1) → 𝑁 (𝑠, 𝑦) − 𝑁 (𝑠, 𝑦 − 1) = [𝑦 (𝑠) in 𝐿𝑝 as 𝑤 → −∞.
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Since both [𝑤𝑦 (𝑠), [𝑦 (𝑠) take value in {0, 1, . . . , 𝐼}, we obtain

lim
𝑤→−∞

P
(
[𝑤𝑦 (𝑠) = [𝑦 (𝑠)

)
= 1.

Taking 𝑤 → −∞, one achieves

𝑁𝑤 (𝑠, 𝑦) − 𝑁𝑤 (𝑠 + 1, 𝑦) =
𝑦∑︁

𝑦′=−∞

𝑦∏
𝑧=𝑦′+1

(
𝐵′(𝑠, 𝑧, [𝑤𝑧 (𝑠)) − 𝐵(𝑠, 𝑧, [𝑤𝑧 (𝑠))

)
𝐵(𝑠, 𝑧, [𝑤𝑧 (𝑠)),

we find that lim𝑤→−∞ 𝑁𝑤 (𝑠, 𝑦)−𝑁𝑤 (𝑠+1, 𝑦) = 𝑁 (𝑠, 𝑦)−𝑁 (𝑠, 𝑦+1) in 𝐿𝑝. Since we have assumed

(6.2.8) for 𝑡 = 𝑠, we have

𝑁𝑤 (𝑠 + 1, 𝑦) → 𝑁 (𝑠 + 1, 𝑦) in 𝐿𝑝,

which completes the induction. �

Definition 6.2.3. We call the ®[(𝑡) ∈ {0, 1, . . . , 𝐼}Z defined in Lemma 6.2.1 the bi-infinite unfused

SHS6V model and associate it with the height function 𝑁 (𝑡, 𝑥) defined in Lemma 6.2.1. We simply

define the bi-infinite fused SHS6V model ®𝑔(𝑡) and its height function 𝑁 f(𝑡, 𝑥) via

®𝑔(𝑡) := ®[(𝐽𝑡), 𝑁 f(𝑡, 𝑥) := 𝑁 (𝐽𝑡, 𝑥).

It is clear that to prove Theorem 6.1.6, it suffices to work with the bi-infinite unfused SHS6V

model. Unless specified otherwise, the SHS6V model now means the bi-infinite unfused SHS6V

model ®[(𝑡). We associate it with the canonical filtration F (𝑡) = 𝜎
(
®[(0), 𝐵(𝑠, 𝑧, [), 𝐵′(𝑠, 𝑧, [), 0 ≤

𝑠 ≤ 𝑡 − 1
)
.

6.3 Markov duality

One main tool that we rely on to prove Theorem 6.1.6 is the Markov duality. It is a powerful

property which has been found for different interacting particle systems including the contact pro-

cess, voter model and symmetric simple exclusion process [Lig12, Lig13]. Using Markov duality,
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Spitzer and Liggett showed that the only extreme translation invariant measures for the SSEP on

Z𝑑 are the Bernoulli product measure.

In this section, we first state two Markov dualities for the 𝐽 = 1 version of left-finite SHS6V model,

which comes form [CP16, Theorem 2.21] and [Kua18, Theorem 4.10] respectively. The extension

of them to the unfused left-finite SHS6V model is immediate since the transition operators of the

model are commute. Finally we explain how to extend these dualities to the bi-infinite unfused

SHS6V model constructed in the previous section.

Let us recall the definition of Markov duality in the first place.

Definition 6.3.1. Given two discrete time Markov processes 𝑋 (𝑡) ∈ 𝑈 and 𝑌 (𝑡) ∈ 𝑉 (might be

time inhomogeneous) and a function 𝐻 : 𝑈 × 𝑉 → R, we say that 𝑋 (𝑡) and 𝑌 (𝑡) are dual with

respect to 𝐻 if for any 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 and 𝑠 ≤ 𝑡 ∈ Z≥0, we have

E
[
𝐻 (𝑋 (𝑡), 𝑦)

��𝑋 (𝑠) = 𝑥] = E[𝐻 (𝑥,𝑌 (𝑡))��𝑌 (𝑠) = 𝑦] .
The Markov dualities that we are going to present are between the unfused SHS6V model and

the 𝑘-particle reversed unfused SHS6V model location process. To define the latter process, let us

first introduce several state spaces.

Definition 6.3.2. Recall the space of left-finite particle configuration G from (6.1.6). We likewise

define the space of right-finite particle configuration

M = { ®𝑚 = (. . . , 𝑚−1, 𝑚0, 𝑚1, . . . ) : all 𝑚𝑖 ∈ {0, 1, . . . , 𝐼}, ∃ 𝑥 ∈ Z such that 𝑚𝑖 = 0 for all 𝑖 > 𝑥}.

When there are finite number of 𝑘 particles, we restrict G andM to

G𝑘 = {®𝑔 ∈ G :
∑︁
𝑖

𝑔𝑖 = 𝑘}, M𝑘 = { ®𝑚 ∈ M :
∑︁
𝑖

𝑚𝑖 = 𝑘}.
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In terms of particle positions, the spaces G𝑘 andM𝑘 are in bijection with

W𝑘
𝐼 =

{
®𝑦 = (𝑦1 ≤ · · · ≤ 𝑦𝑘 ) : ®𝑦 ∈ Z𝑘 , max

1≤𝑖≤𝑀 (®𝑦)
𝑐𝑖 ≤ 𝐼

}
,

where (𝑐1, . . . , 𝑐𝑀 (®𝑦)) denotes the cluster number in ®𝑦, i.e. ®𝑦 = (𝑦1 = · · · = 𝑦𝑐1 < 𝑦𝑐1+1 = · · · =

𝑦𝑐1+𝑐2 < . . . ). (𝑦1 ≤ · · · ≤ 𝑦𝑘 ) should be understood as the location of 𝑘 particles in a non-

decreasing order. In particular, we denote by 𝜑 : W𝑘
𝐼
→ G𝑘 and 𝜙 : W𝑘

𝐼
→ M𝑘 to be the bijective

maps respectively.

Definition 6.3.3. When 𝐽 = 1, it is clear that Definition 6.1.2 and Definition 6.1.3 define the

same Markov process. We call it the left-finite 𝐽 = 1 SHS6V model. In addition, we call ®b (𝑡) =

(b𝑥 (𝑡))𝑥∈Z ∈ M the reversed 𝐽 = 1 SHS6V model if ®b′(𝑡) = (b−𝑥 (𝑡))𝑥∈Z ∈ G is a left-finite 𝐽 = 1

SHS6V model.

Since the SHS6V model preserves the number of particles, we can consider SHS6V model

with 𝑘 particles as a process on the particle locations.

Definition 6.3.4. We define the 𝑘 particle 𝐽 = 1 SHS6V model location process ®𝑥(𝑡) =
(
𝑥1(𝑡) ≤

· · · ≤ 𝑥𝑘 (𝑡)
)
∈ W𝑘

𝐼
if 𝜑(®𝑥(𝑡)) (recall the bijective map 𝜑 : W𝑘

𝐼
→ G𝑘 from Definition 6.3.2) is the

𝐽 = 1 left-finite SHS6V model. We say that ®𝑦(𝑡) = (𝑦1(𝑡) ≤ · · · ≤ 𝑦𝑘 (𝑡)) ∈ W𝑘
𝐼

is a 𝑘-particle

reversed 𝐽 = 1 SHS6V model location process if −®𝑦(𝑡) = (−𝑦𝑘 (𝑡) ≤ · · · ≤ −𝑦1(𝑡)) is a 𝑘-particle

𝐽 = 1 SHS6V model location process. In addition, for ®𝑦, ®𝑦′ ∈ W𝑘
𝐼
, we denote by B̃𝛼 (®𝑦, ®𝑦′) to be the

transition probability from ®𝑦 to ®𝑦′ of the 𝑘-particle reversed 𝐽 = 1 SHS6V model location process.

As a matter of convention, B̃𝛼 could be seen as an operator acting on function 𝑓 : W𝑘
𝐼
→ R in the

manner that

(B̃𝛼 𝑓 ) (®𝑦) :=
∑︁
®𝑦′∈W𝑘

𝐼

B̃𝛼 (®𝑦, ®𝑦′) 𝑓 (®𝑦′).

Definition 6.3.5. We define the 𝑘-particle unfused SHS6V model location process ®𝑥(𝑡) = (𝑥1(𝑡) ≤

· · · ≤ 𝑥𝑘 (𝑡)) so that 𝜑(®𝑥(𝑡)) is the left-finite unfused SHS6V model. We say ®𝑦(𝑡) = (𝑦1(𝑡) ≤ · · · ≤

𝑦𝑘 (𝑡)) is a 𝑘-particle reversed unfused SHS6V model location process if −®𝑦(𝑡) = (−𝑦𝑘 (𝑡) ≤ · · · ≤
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−𝑦1(𝑡)) is a 𝑘-particle unfused SHS6V model location process.

Note that for the reversed 𝑘-particle SHS6V model ®𝑦(𝑡), we denote by P←−−−−−−
SHS6V

(
®𝑥, ®𝑦, 𝑡, 𝑠

)
the

transition probability from ®𝑦(𝑠) = ®𝑥 to ®𝑦(𝑡) = ®𝑦. Apparently, one has

P←−−−−−−
SHS6V

(
®𝑥, ®𝑦, 𝑡, 𝑠

)
=

(
B̃𝛼(𝑠) · · · B̃𝛼(𝑡−1)

)
(®𝑥, ®𝑦).

It follows from [CP16, Corollary 2.14] (or the Yang-Baxter equation [BP18, Section 3]) that B̃𝛼(𝑖)

commutes with itself for different values of 𝑖 (i.e. B̃𝛼(𝑖)B̃𝛼( 𝑗) = B̃𝛼( 𝑗)B̃𝛼(𝑖)). Consequently,

P←−−−−−−
SHS6V

(
®𝑥, ®𝑦, 𝑡, 𝑠

)
=

(
B̃𝛼(𝑡−1) · · · B̃𝛼(𝑠)

)
(®𝑥, ®𝑦). (6.3.1)

Let us first state the 𝐽 = 1 version of Markov duality.

Proposition 6.3.6 ([CP16], Proposition 2.21). For all 𝑘 ∈ Z≥1, the 𝐽 = 1 left-finite SHS6V model

®[(𝑡) ∈ G (Definition 6.3.3) and 𝑘-particle 𝐽 = 1 reversed SHS6V model location process ®𝑦(𝑡)

(Definition 6.3.4) are dual with respect to the functional 𝐻 : G × Y𝑘 → R

𝐻 ( ®[, ®𝑦) =
𝑘∏
𝑖=1

𝑞−𝑁𝑦𝑖
( ®[) , (6.3.2)

recall 𝑁𝑦 ( ®[) =
∑
𝑖≤𝑦 [𝑖.

In [Kua18], the author discovers a Markov duality for a multi-species version of the SHS6V

model. For our application, we explain how to degenerate this result to a two particle SHS6V

model duality. Before stating the proposition, let us recall the notation of 𝑞-deformed quantity

[𝑛]𝑞 :=
𝑞𝑛 − 𝑞−𝑛
𝑞 − 𝑞−1 , [𝑛]!𝑞 :=

𝑛∏
𝑖=1
[𝑖]𝑞,

(
𝑛

𝑘

)
𝑞

:=
[𝑛]!𝑞

[𝑘]!𝑞 [𝑛 − 𝑘]!𝑞
.

Proposition 6.3.7. The 𝐽 = 1 left-finite SHS6V model ®[(𝑡) and the two particle 𝐽 = 1 reversed
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SHS6V model location process ®𝑦(𝑡) are dual with respect to

𝐺 ( ®[, (𝑦1, 𝑦2)) =


𝑞−2𝑁𝑦1 ( ®[) [𝐼 − [𝑦1]

𝑞
1
2
[𝐼 − 1 − [𝑦1]

𝑞
1
2
𝑞[𝑦1 if 𝑦1 = 𝑦2;

[𝐼−1]
𝑞

1
2

[𝐼]
𝑞

1
2

𝑞−𝑁𝑦1 ( ®[)𝑞−𝑁𝑦2 ( ®[) [𝐼 − [𝑦1]
𝑞

1
2
[𝐼 − [𝑦2]

𝑞
1
2
𝑞

1
2[𝑦1𝑞

1
2[𝑦2 if 𝑦1 < 𝑦2.

(6.3.3)

We remark that there is a misstatement in [Kua18, Theorem 4.10]. The particles in the process

Z𝑍 and Z𝑍𝑟𝑒𝑣 were stated to jump to the left and to the right respectively. However, after discussing

with the author, we realize that the right statement is that the particles in Z𝑍 jump to the right and

those in Z𝑍𝑟𝑒𝑣 jump to the left.

Proof. This is a degeneration from [Kua18, Theorem 4.10]. By taking the species number 𝑛 = 1,

the spin parameter 𝑚𝑥 = 𝐼 for all 𝑥 ∈ Z as well as replacing 𝑞 by 𝑞
1
2 , the multi-species SHS6V

model considered in [Kua18] degenerates to the 𝐽 = 1 SHS6V model (see Section 2.6.2 of [Kua18]

for detail). Then Theorem 4.10 of [Kua18] reduces to: The 𝐽 = 1 left-finite SHS6V model ®b (𝑡)

and the 𝐽 = 1 reversed SHS6V model ®[(𝑡) are dual with respect to the functional

𝐺1( ®b, ®[) =
∏
𝑥∈Z
[[𝑥]!

𝑞
1
2
[𝐼 − [𝑥]!

𝑞
1
2

(
𝐼 − b𝑥
[𝑥

)
𝑞

1
2
𝑞−

1
2 b𝑥 (

∑
𝑧>𝑥 2[𝑧+[𝑥) .

Swapping the role of left and right, which makes the particles in ®b (𝑡) jump to the left and those in

®[(𝑡) jump to the right. Then ®[(𝑡) becomes the 𝐽 = 1 left-finite SHS6V model and ®b (𝑡) becomes

the 𝐽 = 1 reversed SHS6V model. They are dual with respect to the functional

𝐺2( ®[, ®b) =
∏
𝑥∈Z
[[𝑥]!

𝑞
1
2
[𝐼 − [𝑥]!

𝑞
1
2

(
𝐼 − b𝑥
[𝑥

)
𝑞

1
2
𝑞−

1
2 b𝑥 (

∑
𝑧<𝑥 2[𝑧+[𝑥) ,

=
∏
𝑥∈Z
[[𝑥]!

𝑞
1
2
[𝐼 − [𝑥]!

𝑞
1
2

(
𝐼 − b𝑥
[𝑥

)
𝑞

1
2
𝑞−b𝑥𝑁𝑥 ( ®[)+ 1

2 b𝑥[𝑥 . (6.3.4)

Assuming ®b (𝑡) has two particles, recall the bijective map 𝜙 : W2
𝐼
→ M2 (take 𝑘 = 2) in Definition

6.3.2, then ®𝑦(𝑡) = 𝜙−1( ®b (𝑡)) is the 𝐽 = 1 reversed two particle location process. The 𝐽 = 1

left-finite SHS6V model ®[(𝑡) and the two particle 𝐽 = 1 reversed SHS6V model location process
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®𝑦(𝑡) = (𝑦1(𝑡) ≤ 𝑦2(𝑡)) are dual with respect to 𝐺2( ®[, 𝜙−1(𝑦1, 𝑦2)), where ®b = 𝜙(𝑦1, 𝑦2) is given

by

b𝑥 =


21{𝑥=𝑦1} if 𝑦1 = 𝑦2

1{𝑥=𝑦1} + 1{𝑥=𝑦2} if 𝑦1 < 𝑦2

, for all 𝑥 ∈ Z.

In addition, note that

[[𝑥]!
𝑞

1
2
[𝐼 − [𝑥]!

𝑞
1
2

(
𝐼 − b𝑥
[𝑥

)
𝑞

1
2
=



[𝐼]
𝑞

1
2

if b𝑥 = 0,

[𝐼 − [𝑥]
𝑞

1
2

if b𝑥 = 1,
[𝐼−[𝑥]

𝑞
1
2
[𝐼−1−[𝑥]

𝑞
1
2

[𝐼−1]
𝑞

1
2

if b𝑥 = 2.

(6.3.5)

When ®b = 𝜙(𝑦1, 𝑦2), there are at most two values for 𝑥 ∈ Z so that b𝑥 ≠ 0. To make sense of the

infinite product in (6.3.4), one needs to normalize 𝐺2( ®[, ®b) by dividing each factor in the product

(6.3.4) by [𝐼]
𝑞

1
2
. After such normalization, it is straightforward via (6.3.5) that 𝐺2( ®[, 𝜙(𝑦1, 𝑦2))

equals the functional 𝐺 ( ®[, (𝑦1, 𝑦2)) in (6.3.3) up to a constant factor. �

We note that the duality functional in (6.3.2) and (6.3.3) does not depend on parameter 𝛼. By

Markov property and the commutative property between B̃𝛼(𝑖) for different value of 𝑖, it is clear

that the same Markov dualities in Proposition 6.3.6 and Proposition 6.3.7 apply for the left-finite

unfused SHS6V model.

Corollary 6.3.8. For all 𝑘 ∈ Z≥1, the left-finite unfused SHS6V model ®[(𝑡) ∈ G (Definition 6.1.3)

and the reversed 𝑘-particle unfused SHS6V model location process ®𝑦(𝑡) ∈ W𝑘
𝐼

(Definition 6.3.5)

are dual with respect to the functional 𝐻 in (6.3.2). The left-finite SHS6V model ®[(𝑡) and the

two particle reversed unfused SHS6V model location process ®𝑦(𝑡) are dual with respect to the

functional 𝐺 in (6.3.3).

Proof. Due to Proposition 6.3.6, we see that for all ®[ ∈ G and ®𝑦 ∈ W𝑘
𝐼
,

E
[
𝐻 ( ®[(𝑡), ®𝑦)

��®[(𝑡 − 1) = ®[
]
=

∑︁
®𝑥∈W𝑘

𝐼

B̃𝛼(𝑡−1) (®𝑦, ®𝑥)𝐻 ( ®[, ®𝑥). (6.3.6)
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Using Markov property and applying (6.3.6) repetitively, we see that

E
[
𝐻 ( ®[(𝑡), ®𝑦)

��®[(𝑠) = ®[] = ∑︁
®𝑥∈W𝑘

𝐼

(
B̃𝛼(𝑠) · · · B̃𝛼(𝑡−1)

)
(®𝑦, ®𝑥)𝐻 ( ®[, ®𝑥)

=
∑︁
®𝑥∈W𝑘

𝐼

P←−−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡, 𝑠

)
𝐻 ( ®[, ®𝑥)

= E
[
𝐻 ( ®[, ®𝑦(𝑡))

��®𝑦(𝑠) = ®𝑦]
Here, the second equality follows from (6.3.1). This proves the desired duality with respect to the

functional 𝐻. The duality with respect to the functional 𝐺 follows by a similar argument. �

For our application, we like to extend the dualities stated in Proposition 6.3.6 and Proposition

6.3.7 to the bi-infinite SHS6V model. Denote by

𝐷 (𝑡, 𝑦1, 𝑦2) =


𝑞−2𝑁 (𝑡,𝑦1) [𝐼 − [𝑦1 (𝑡)]

𝑞
1
2
[𝐼 − 1 − [𝑦1 (𝑡)]

𝑞
1
2
𝑞[𝑦1 (𝑡) if 𝑦1 = 𝑦2;

[𝐼−1]
𝑞

1
2

[𝐼]
𝑞

1
2

𝑞−𝑁 (𝑡,𝑦1)𝑞−𝑁 (𝑡,𝑦2) [𝐼 − [𝑦1 (𝑡)]
𝑞

1
2
[𝐼 − [𝑦2 (𝑡)]

𝑞
1
2
𝑞

1
2[𝑦1 (𝑡)𝑞

1
2[𝑦2 (𝑡) if 𝑦1 < 𝑦2.

(6.3.7)

Here ®[(𝑡) = ([𝑥 (𝑡))𝑥∈Z is the bi-infinite unfused SHS6V model defined in Definition 6.2.3 and

𝑁 (𝑡, 𝑦) is the associated height function.

Corollary 6.3.9. For the bi-infinite unfused SHS6V model ®[(𝑡), for ®𝑦 = (𝑦1 ≤ · · · ≤ 𝑦𝑘 ) ∈ W𝑘
𝐼

one

has

E
[ 𝑘∏
𝑖=1

𝑞−𝑁 (𝑡,𝑦𝑖)
��F (𝑠)] = ∑︁

®𝑥∈W𝑘
𝐼

P←−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡, 𝑠

) 𝑘∏
𝑖=1

𝑞−𝑁 (𝑠,𝑥𝑖) . (6.3.8)

For 𝑦1 ≤ 𝑦2 ∈ Z (Since 𝐼 ≥ 2, this is equivalent to (𝑦1, 𝑦2) ∈ W2
𝐼
)

E
[
𝐷 (𝑡, 𝑦1, 𝑦2)

��F (𝑠)] = ∑︁
𝑥1≤𝑥2∈Z2

P←−−−−−
SHS6V

(
(𝑦1, 𝑦2), (𝑥1, 𝑥2), 𝑡, 𝑠

)
𝐷 (𝑠, 𝑥1, 𝑥2). (6.3.9)

Proof. Let us prove (6.3.8) in the first place. Given initial condition of the bi-infinite unfused

SHS6V model ®[(0), we construct a sequence of left-finite SHS6V model ®[𝑤 (𝑡) with initial con-
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dition ®[𝑤 (0) := ([𝑖 (0)1{𝑖≥𝑤})𝑖∈Z. We denote by 𝑁𝑤 (𝑡, 𝑦) the associated height function. The first

duality in Corollary 6.3.8 implies that for any 𝑤 ∈ Z

E
[ 𝑘∏
𝑖=1

𝑞−𝑁
𝑤 (𝑡,𝑦𝑖)

��F (𝑠)] = ∑︁
®𝑥∈W𝑘

𝐼

P←−−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡, 𝑠

) 𝑘∏
𝑖=1

𝑞−𝑁
𝑤 (𝑠,𝑥𝑖) . (6.3.10)

Let us show the LHS and RHS of (6.3.10) approximates those of (6.3.8) as 𝑤 → −∞.

For the approximation of the LHS, as |[𝑥 (0) | ≤ 𝐼 for all 𝑥 ∈ Z, we have |𝑁𝑤 (0, 𝑦𝑖) | ≤ 𝐼 |𝑦𝑖 |.

Moreover, in a single time step, 𝑁𝑤 (𝑡, 𝑦𝑖) may change by at most one, hence for all 𝑤 ∈ Z

|𝑁𝑤 (𝑡, 𝑦𝑖) | ≤ |𝑁𝑤 (0, 𝑦𝑖) | + 𝑡

≤ 𝑦𝑖 𝐼 + 𝑡. (6.3.11)

Therefore, for fixed 𝑡 ∈ Z≥0 and 𝑞 > 1,
∏𝑘
𝑖=1 𝑞

−𝑁𝑤 (𝑡,𝑦𝑖) is uniformly bounded. Via Lemma 6.2.1,

we know that 𝑁𝑤 (𝑡, 𝑦𝑖) → 𝑁 (𝑡, 𝑦𝑖) in probability, by conditional dominated convergence theorem,

one has

lim
𝑤→−∞

E
[ 𝑘∏
𝑖=1

𝑞−𝑁
𝑤 (𝑡,𝑦𝑖)

��F (𝑠)] = E[ 𝑘∏
𝑖=1

𝑞−𝑁 (𝑡,𝑦𝑖)
��F (𝑠)] .

For the RHS approximation, according to Definition 6.3.5, when there is only one particle in the

reversed SHS6V model location process, it jumps to the left (at time 𝑡) as a geometric random

variables with parameter a+𝛼(𝑡)
1+𝛼(𝑡) . When there are 𝑘 particles, they jump to the left (at time 𝑡) as 𝑘

independent geometric random variables with parameter a+𝛼(𝑡)
1+𝛼(𝑡) except when they hit each other.

So there exists constant 𝐶 such that for all 𝑡, ®𝑥, ®𝑦

P←−−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡 + 1, 𝑡

)
≤ 𝐶

𝑘∏
𝑖=1

(
a + 𝛼(𝑡)
1 + 𝛼(𝑡)

) |𝑦𝑖−𝑥𝑖 |
.
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Denote by \ = sup𝑡∈Z≥0
a+𝛼(𝑡)
1+𝛼(𝑡) , one has

P←−−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡 + 1, 𝑡

)
≤ 𝐶

𝑘∏
𝑖=1

\ |𝑦𝑖−𝑥𝑖 | . (6.3.12)

For fixed 𝑠 ≤ 𝑡, observing that P←−−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡, 𝑠

)
can be written as a (𝑡− 𝑠)-fold convolution of one-

step transition probability. The convolution can be expanded into a sum over all trajectories from

®𝑦 = (𝑦1, . . . , 𝑦𝑘 ) to ®𝑥 = (𝑥1, . . . , 𝑥𝑘 ). The contribution of each trajectories can be bounded by the

product of 𝑡 − 𝑠 one-step transition probability, which is upper bounded by the RHS of (6.3.12). As

the particles in the reversed SHS6V model can only jump to the left, the number of the trajectories

can be upper bounded by
∏𝑘
𝑖=1

( |𝑥𝑖−𝑦𝑖 |+𝑡−𝑠
𝑡−𝑠

)
. We obtain

P←−−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡, 𝑠

)
≤ 𝐶

𝑘∏
𝑖=1

(
|𝑥𝑖 − 𝑦𝑖 | + 𝑡 − 𝑠

𝑡 − 𝑠

)
\ |𝑦𝑖−𝑥𝑖 | (6.3.13)

Furthermore, it is readily verified that under Condition 6.1.1

𝑞𝐼\ = sup
𝑡∈Z≥0

1 + 𝑞𝐼𝛼(𝑡)
1 + 𝛼(𝑡) < 1.

Using the bounds in (6.3.11) and (6.3.13), fix 𝑠 ≤ 𝑡 ∈ Z≥0 and ®𝑦 ∈ W𝑘
𝐼
, we have for all ®𝑥 ∈ W𝑘

𝐼

P←−−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡, 𝑠

)
𝑞−𝑁

𝑤 (𝑠,𝑥𝑖) ≤ 𝐶
𝑘∏
𝑖=1

(
|𝑥𝑖 − 𝑦𝑖 | + 𝑡 − 𝑠

𝑡 − 𝑠

)
\ |𝑦𝑖−𝑥𝑖 |𝑞𝐼 |𝑥𝑖 |,

≤ 𝐶
𝑘∏
𝑖=1

(
|𝑥𝑖 − 𝑦𝑖 | + 𝑡 − 𝑠

𝑡 − 𝑠

)
(𝑞𝐼\) |𝑦𝑖−𝑥𝑖 |,

≤ 𝐶
𝑘∏
𝑖=1

𝛿 |𝑦𝑖−𝑥𝑖 |

for some constant 0 < 𝛿 < 1. Since 𝑁𝑤 (𝑠, 𝑥𝑖) → 𝑁 (𝑠, 𝑥𝑖) in probability, we find that

∑︁
𝑥∈W𝐼

𝐼

P←−−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡, 𝑠

) 𝑘∏
𝑖=1

𝑞−𝑁
𝑤 (𝑠,𝑥𝑖) −→

∑︁
𝑥∈W𝑘

𝐼

P←−−−−−−
SHS6V

(
®𝑦, ®𝑥, 𝑡, 𝑠

) 𝑘∏
𝑖=1

𝑞−𝑁 (𝑠,𝑥𝑖) in probability.
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Therefore, We conclude (6.3.8). The proof of (6.3.9) is similar to (6.3.8), where we consider

instead

𝐷𝑤 (𝑡, 𝑦1, 𝑦2) =


𝑞−2𝑁𝑤 (𝑡,𝑦1) [𝐼 − [𝑤𝑦1 (𝑡)]𝑞 1

2
[𝐼 − 1 − [𝑤𝑦1 (𝑡)]𝑞 1

2
𝑞
[𝑤𝑦1 (𝑡) if 𝑦1 = 𝑦2;

[𝐼−1]
𝑞

1
2

[𝐼]
𝑞

1
2

𝑞−𝑁
𝑤 (𝑡,𝑦1)𝑞−𝑁

𝑤 (𝑡,𝑦2) [𝐼 − [𝑤𝑦1 (𝑡)]𝑞 1
2
[𝐼 − [𝑤𝑦2 (𝑡)]𝑞 1

2
𝑞

1
2[

𝑤
𝑦1 (𝑡)𝑞

1
2[

𝑤
𝑦2 (𝑡) if 𝑦1 < 𝑦2.

Applying the second duality in Corollary 6.3.8, we find that

E
[
𝐷𝑤 (𝑡, 𝑦1, 𝑦2)

��F (𝑠)] = ∑︁
𝑥1≤𝑥2∈Z2

P←−−−−−−
SHS6V

(
(𝑦1, 𝑦2), (𝑥1, 𝑥2), 𝑡, 𝑠

)
𝐷𝑤 (𝑠, 𝑥1, 𝑥2).

By taking 𝑤 → −∞ and using similar approximation, we conclude (6.3.9). �

6.4 Integral formula for the two particle transition probability

In this section, we give an explicit integral formula for P←−−−−−−
SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
(note

that for the rest of the paper, we prefer to swap the order of (𝑥1, 𝑥2) and (𝑦1, 𝑦2) in the notation

compared with the RHS of (6.3.9)). Our approach is to utilize the generalized Fourier theory (Bethe

ansatz) developed in [BCPS15]. Let us review a few results obtained in [BCPS15] and [CP16] on

which we rely to derive the integral formula.

Definition 6.4.1. For ®𝑦 ∈ (𝑦1 ≤ · · · ≤ 𝑦𝑘 ) ∈ Z𝑘 , we define the left and right Bethe ansatz

eigenfunction10

Ψℓ
®𝑤 (®𝑦) =

∑︁
𝜎∈𝑆𝑘

∏
1≤𝐵<𝐴≤𝑘

𝑤𝜎(𝐴) − 𝑞𝑤𝜎(𝐵)
𝑤𝜎(𝐴) − 𝑤𝜎(𝐵)

𝑘∏
𝑖=1

( 1 − 𝑤𝜎( 𝑗)
1 − a𝑤𝜎( 𝑗)

)−𝑥𝑘+1− 𝑗
,

Ψ𝑟®𝑤 (®𝑦) = (−1)𝑘 (1 − 𝑞)𝑘𝑞
𝑘 (𝑘−1)

2 𝑚𝑞,𝑣 (®𝑦)
∑︁
𝜎∈𝑆𝑘

∏
1≤𝐵<𝐴≤𝑘

𝑤𝜎(𝐴) − 𝑞−1𝑤𝜎(𝐵)
𝑤𝜎(𝐴) − 𝑤𝜎(𝐵)

𝑘∏
𝑖=1

( 1 − 𝑤𝜎( 𝑗)
1 − a𝑤𝜎( 𝑗)

)𝑥𝑘+1− 𝑗
,

10Comparing with the original definition for Bethe ansatz function defined in (2.11) and (2.14) of [BCPS15], we
reverse the order of components in the vector: We prefer to write ®𝑦 = (𝑦1 ≤ · · · ≤ 𝑦𝑘 ) instead of ®𝑦 = (𝑦1 ≥ · · · ≥ 𝑦𝑘 ).
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where 𝑆𝑘 is the permutation group of {1, . . . , 𝑘} and

𝑚𝑞,𝑣 (®𝑦) :=
𝑀 (®𝑦)∏
𝑖=1

(a; 𝑞)𝑐𝑖
(𝑞; 𝑞)𝑐𝑖

, (6.4.1)

where (𝑐1, . . . , 𝑐𝑀 (®𝑦)) denotes the cluster number in ®𝑦, i.e. ®𝑦 = (𝑦1 = · · · = 𝑦𝑐1 < 𝑦𝑐1+1 = · · · =

𝑦𝑐1+𝑐2 < . . . ).

It turns out that Ψℓ
®𝑤 are the eigenfunctions of the operator B̃𝛼 defined in Definition 6.3.4.

Lemma 6.4.2 (Proposition 2.12 of [CP16]). For all 𝑘 ∈ Z≥1 and ®𝑤 = (𝑤1, . . . , 𝑤𝑘 ) ∈ C𝑘 such that�� 1−𝑤𝑖

1−a𝑤𝑖

𝛼+a
1+𝛼

�� < 1 for all 𝑖 ∈ {1, . . . , 𝑘},

(
B̃𝛼Ψℓ

®𝑤
)
(®𝑦) =

( 𝑘∏
𝑖=1

1 + 𝛼𝑞𝑤𝑖
1 + 𝛼𝑤𝑖

)
Ψℓ
®𝑤 (®𝑦)

[BCPS15] shows that the left and right Bethe ansatz eigenfunctions enjoy the following bi-

orthogonal relation.

Lemma 6.4.3 (Corollary 3.13 of [BCPS15]). For 0 < 𝑞, a < 1 and 𝑘 ∈ Z≥1 ®𝑥 = (𝑥1 ≤ · · · ≤ 𝑥𝑘 ) ∈

Z𝑘 and ®𝑦 = (𝑦1 ≤ · · · ≤ 𝑦𝑘 ) ∈ Z𝑘 ,

∑︁
_`𝑘

∮
𝛾

· · ·
∮
𝛾

𝑑𝑚
𝑞

_
( ®𝑤)

ℓ(_)∏
𝑖=1

1
(𝑤𝑖, 𝑞)_ 𝑗

(a𝑤𝑖, 𝑞)_ 𝑗

Ψℓ
®𝑤◦_ (®𝑥)Ψ

𝑟
®𝑤◦_ (®𝑦) = 1{®𝑥=®𝑦} (6.4.2)

Some notations must be specified here. 𝛾 is a very small circular contour around 1 so as to exclude

all the poles of the integrand except 1. The Plancherel measure is defined as

𝑑𝑚
𝑞

_
( ®𝑤) = (−1)𝑘 (1 − 𝑞)𝑘𝑞−𝑘 (𝑘−1)/2

𝑚1!𝑚2! . . .
det

[
1

𝑤𝑖𝑞
_𝑖 − 𝑤𝑖

]ℓ(_)
𝑖, 𝑗=1

𝑘∏
𝑖=1

𝑞_𝑖 (_𝑖−1)/2𝑤
_ 𝑗

𝑖

𝑑𝑤𝑖

2𝜋i
, (6.4.3)

where the sum in (6.4.3) is taken over the partition _ of 𝑘 , that is to say, _ = (_1 ≥ · · · ≥ _𝑠) ∈ Z𝑠≥1

with
∑𝑠
𝑖=1 _𝑖 = 𝑘 , ℓ(_) = 𝑠 is the length of the partition _. For instance, the partitions of 𝑘 = 3

are given by (2, 1) and (1, 1, 1). We denote by 𝑚 𝑗 to be number of components that equal 𝑗 in _ so
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that _ = 1𝑚12𝑚2 . . . . Furthermore, we define

®𝑤 ◦ _ := (𝑤1, . . . , 𝑞
_1−1𝑤1, 𝑤2, . . . , 𝑞

_2−1𝑤2, . . . , 𝑤𝑠, . . . , 𝑞
_𝑠−1𝑤𝑠).

We are in a position to present our formula.

Theorem 6.4.4. Assume 𝐼 ≥ 2, for any 𝑥1 ≤ 𝑥2 ∈ Z and 𝑦1 ≤ 𝑦2 ∈ Z, the two point transition

probability of reversed SHS6V model admits the following integral formula

P←−−−−−
SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= 𝑐(𝑦1, 𝑦2)

[ ∮
C𝑅

∮
C𝑅

2∏
𝑖=1

�̃�(𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ̃(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥𝑖−𝑦𝑖𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

−
∮
C𝑅

∮
C𝑅

�̃�(𝑧1, 𝑧2)
2∏
𝑖=1

�̃�(𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ̃(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

+ Res𝑧1=̃𝔰(𝑧2)

∮
C𝑅

∮
C𝑅

�̃�(𝑧1, 𝑧2)
2∏
𝑖=1

�̃�(𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ̃(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

]
, (6.4.4)

where C𝑅 is a circle centered at zero with a large enough radius 𝑅 so as to include all the poles of

all the integrands. In addition,

𝑐(𝑦1, 𝑦2) := 1{𝑦1<𝑦2} +
1 − 𝑞a

(1 + 𝑞) (1 − a)1{𝑦1=𝑦2}, (6.4.5)

�̃�(𝑧) :=
(1 + 𝛼𝑞𝐽)𝑧 − (a + 𝛼𝑞𝐽)
(1 + 𝛼)𝑧 − (a + 𝛼) ,

ℜ̃(𝑧, 𝑡, 𝑠) :=
𝑡−1∏

𝑘=𝑠+𝐽 b 𝑡−𝑠
𝐽
c

(1 + 𝛼(𝑘)𝑞)𝑧 − (a + 𝛼(𝑘)𝑞)
(1 + 𝛼(𝑘))𝑧 − (a + 𝛼(𝑘)) ,

�̃�(𝑧1, 𝑧2) :=
𝑞a − a + (a − 𝑞)𝑧2 + (1 − 𝑞a)𝑧1 + (𝑞 − 1)𝑧1𝑧2
𝑞a − a + (a − 𝑞)𝑧1 + (1 − 𝑞a)𝑧2 + (𝑞 − 1)𝑧1𝑧2

,

�̃�(𝑧) :=
(1 − 𝑞a)𝑧 − a(1 − 𝑞)
(𝑞 − a) + (1 − 𝑞)𝑧 .
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Note that 𝑧1 = �̃�(𝑧2) corresponds to the pole produced by the denominator of �̃�(𝑧1, 𝑧2) and

Res𝑧1=̃𝔰(𝑧2)

∮
C𝑅

∮
C𝑅

�̃�(𝑧1, 𝑧2)
2∏
𝑖=1

�̃�(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖
𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

denotes the residue of the double contour integral above at the pole 𝑧1 = �̃�(𝑧2).

Proof of Theorem 6.4.4. The first step to prove Theorem 6.4.4 is utilizing the bi-orthogonality of

the Bethe ansatz function. Taking 𝑘 = 2 in the previous lemma, since the possible partition is either

_ = (1, 1) or _ = (2), we obtain

1{(𝑥1,𝑥2)=(𝑦1,𝑦2)} =

∮
𝛾

∮
𝛾

𝑑𝑚
𝑞

(1,1) (𝑤1, 𝑤2)
2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

Ψℓ
(𝑤1,𝑤2) (𝑥1, 𝑥2)Ψ𝑟(𝑤1,𝑤2) (𝑦1, 𝑦2)

+
∮
𝛾

𝑑𝑚
𝑞

(2) (𝑤)
1

(𝑤, 𝑞)2(a𝑤, 𝑞)2
Ψℓ
(𝑤,𝑞𝑤) (𝑥1, 𝑥2)Ψ𝑟(𝑤,𝑞𝑤) (𝑦1, 𝑦2). (6.4.6)

Note that according to the previous lemma, (6.4.6) holds only for 0 < 𝑞, a < 1, we want to extend

this identity to 𝑞 > 1 and a = 𝑞−𝐼 . This extension can be justified by analytic continuation.

Note that the RHS of (6.4.6) is an analytic function of 𝑞, a in a suitable domain which connects

{(𝑞, a) : (𝑞, a) ∈ (0, 1)2} and {(𝑞, a) : 𝑞 > 1, a = 𝑞−𝐼}. The reason behind is that after plugging in

a = 𝑞−𝐼 , there is no new pole of integrand generated inside 𝛾 (Here we use the assumption 𝐼 ≥ 2,

this analytic continuation argument is not valid when 𝐼 = 1, see Remark 6.4.5).

Let us now fix 𝑦1 ≤ 𝑦2 ∈ Z on both side of (6.4.6) and treat both sides as functions of (𝑥1, 𝑥2). We

denote by the operator

B̃𝛼 (𝑠, 𝑡) := B̃𝛼 (𝑠) · · · B̃𝛼 (𝑡 − 1).

Acting the operator B̃𝛼 (𝑠, 𝑡) on both side of (6.4.6). For the LHS, it is clear that

(
B̃𝛼 (𝑠, 𝑡)1{·=(𝑦1,𝑦2)}

)
(𝑥1, 𝑥2) = P←−−−−−−

SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
.
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For the RHS, we move B̃𝛼 (𝑠, 𝑡) inside the integrand, which yields

P←−−−−−−
SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
𝛾

∮
𝛾

𝑑𝑚
𝑞

(1,1) (𝑤1, 𝑤2)
2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

(
B̃𝛼 (𝑠, 𝑡)Ψℓ

(𝑤1,𝑤2)
)
(𝑥1, 𝑥2)Ψ𝑟(𝑤1,𝑤2) (𝑦1, 𝑦2)

+
∮
𝛾

𝑑𝑚
𝑞

(2) (𝑤)
1

(𝑤, 𝑞)2(a𝑤, 𝑞)2
( (
B̃𝛼 (𝑠, 𝑡)Ψℓ

(𝑤,𝑞𝑤)
)
(𝑥1, 𝑥2)Ψ𝑟(𝑤,𝑞𝑤) (𝑦1, 𝑦2). (6.4.7)

Due to Lemma 6.4.2 (note that 𝛾 is a small circle around 1, hence 𝑤1, 𝑤2 satisfy the condition of

Lemma 6.4.2),

(
B̃𝛼 (𝑠, 𝑡)Ψℓ

(𝑤1,𝑤2)
)
(𝑥1, 𝑥2) =

2∏
𝑖=1

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

)
Ψℓ
(𝑤1,𝑤2) (𝑥1, 𝑥2),

(
B̃𝛼 (𝑠, 𝑡)Ψℓ

(𝑤,𝑞𝑤)
)
(𝑥1, 𝑥2) =

𝑡−1∏
𝑘=𝑠

(
1 + 𝛼(𝑘)𝑞𝑤
1 + 𝛼(𝑘)𝑤 ·

1 + 𝛼(𝑘)𝑞2𝑤

1 + 𝛼(𝑘)𝑞𝑤

)
Ψℓ
(𝑤1,𝑤2) (𝑥1, 𝑥2),

=

𝑡−1∏
𝑘=𝑠

(
1 + 𝛼(𝑘)𝑞2𝑤

1 + 𝛼(𝑘)𝑤

)
Ψℓ
(𝑤1,𝑤2) (𝑥1, 𝑥2).

We name the first term on the RHS of (6.4.7) 𝐼1 and the second term 𝐼2,

𝐼1 =

∮
𝛾

∮
𝛾

𝑑𝑚
𝑞

(1,1) (𝑤1, 𝑤2)
2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

)
Ψℓ
(𝑤1,𝑤2) (𝑥1, 𝑥2)Ψ𝑟(𝑤1,𝑤2) (𝑦1, 𝑦2),

(6.4.8)

𝐼2 =

∮
𝛾

𝑑𝑚
𝑞

(2) (𝑤)
1

(𝑤, 𝑞)2(a𝑤, 𝑞)2

𝑡−1∏
𝑘=𝑠

(
1 + 𝛼(𝑘)𝑞2𝑤

1 + 𝛼(𝑘)𝑤

)
Ψℓ
(𝑤,𝑞𝑤) (𝑥1, 𝑥2)Ψ𝑟(𝑤,𝑞𝑤) (𝑦1, 𝑦2). (6.4.9)

We compute 𝐼1 in the first place. In the integrand of (6.4.8), the function Ψℓ
(𝑤1,𝑤2) (𝑥1, 𝑥2) is a

symmetrization of
𝑤2 − 𝑞𝑤1
𝑤2 − 𝑤1

2∏
𝑖=1

(
1 − 𝑤𝑖
1 − a𝑤𝑖

)−𝑥3−𝑖

Furthermore, all other terms of the integrand (6.4.8) are symmetric function of 𝑤1, 𝑤2. In addition,
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we are integrating 𝑤1, 𝑤2 along the same contour, this allows us to desymmetrize the integrand

𝐼1 = 2
∮
𝛾

∮
𝛾

𝑑𝑚
𝑞

(1,1) (𝑤1, 𝑤2)
2∏
𝑖=1

(
1

(1 − 𝑤𝑖) (1 − a𝑤𝑖)

𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

)
𝑤2 − 𝑞𝑤1
𝑤2 − 𝑤1

×
2∏
𝑖=1

(
1 − 𝑤𝑖
1 − a𝑤𝑖

)−𝑥3−𝑖

Ψ𝑟(𝑤1,𝑤2) (𝑦1, 𝑦2). (6.4.10)

We readily calculate

𝑑𝑚
𝑞

(1,1) (𝑤1, 𝑤2) =
(1 − 𝑞)2𝑞−1

2
det

[
1

𝑤𝑖𝑞 − 𝑤 𝑗

]2

𝑖, 𝑗=1

2∏
𝑖=1

𝑤𝑖𝑑𝑤𝑖

2𝜋i
=

(𝑤1 − 𝑤2)2
2(𝑤2 − 𝑞𝑤1) (𝑞𝑤2 − 𝑤1)

2∏
𝑖=1

𝑑𝑤𝑖

2𝜋i

(6.4.11)

Ψ𝑟®𝑤 (𝑦1, 𝑦2) = 𝑞(1 − 𝑞)2𝑚𝑞,𝑣 (𝑦)
∑︁
𝜎∈𝑆2

∏
1≤𝐵<𝐴≤2

𝑤𝜎(𝐴) − 𝑞−1𝑤𝜎(𝐵)
𝑤𝜎(𝐴) − 𝑤𝜎(𝐵)

2∏
𝑖=1

( 1 − 𝑤𝜎(𝑖)
1 − a𝑤𝜎(𝑖)

) 𝑦3−𝑖

= (1 − 𝑞)2𝑚𝑞,𝑣 (𝑦)
(
𝑞𝑤2 − 𝑤1
𝑤2 − 𝑤1

2∏
𝑖=1

(
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦3−𝑖

+ 𝑞𝑤1 − 𝑤2
𝑤1 − 𝑤2

2∏
𝑖=1

(
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖 )
(6.4.12)

Replacing the terms 𝑑𝑚𝑞(1,1) (𝑤1, 𝑤2) and Ψ𝑟®𝑤 (𝑦1, 𝑦2) in the integrand of (6.4.10) by the RHS of

(6.4.11) and (6.4.12), one sees that

𝐼1 =(1 − 𝑞)2𝑚𝑞,𝑣 (𝑦1, 𝑦2)
[ ∮

𝛾

∮
𝛾

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

) (
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦3−𝑖−𝑥3−𝑖 𝑑𝑤𝑖

2𝜋i

−
∮
𝛾

∮
𝛾

𝑞𝑤1 − 𝑤2
𝑞𝑤2 − 𝑤1

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

) (
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥3−𝑖 𝑑𝑤𝑖

2𝜋i

]
,

=(1 − 𝑞)2𝑚𝑞,𝑣 (𝑦1, 𝑦2)
[ ∮

𝛾

∮
𝛾

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

) (
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥𝑖 𝑑𝑤𝑖
2𝜋i

−
∮
𝛾

∮
𝛾

𝑞𝑤1 − 𝑤2
𝑞𝑤2 − 𝑤1

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

) (
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥3−𝑖 𝑑𝑤𝑖

2𝜋i

]
.

(6.4.13)

For the second equality above, we changed
( 1−𝑤𝑖

1−a𝑤𝑖

) 𝑦3−𝑖−𝑥3−𝑖 to
( 1−𝑤𝑖

1−a𝑤𝑖

) 𝑦𝑖−𝑥𝑖 , due to the symmetry of
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𝑤1, 𝑤2.

We proceed to compute 𝐼2, by a straightforward calculation

𝑚
𝑞

(2) (𝑤) =
(𝑞 − 1)𝑤
𝑞 + 1

𝑑𝑤

2𝜋𝑖
, Ψℓ

𝑤,𝑞𝑤 (𝑥1, 𝑥2) = (1 + 𝑞)
(

1 − 𝑤
1 − a𝑤

)−𝑥1 (
1 − 𝑞𝑤
1 − a𝑞𝑤

)−𝑥2

,

Ψ𝑟𝑤,𝑞𝑤 (𝑦1, 𝑦2) = (1 − 𝑞)2𝑚𝑞,𝑣 (𝑦) (1 + 𝑞)
(

1 − 𝑤
1 − a𝑤

) 𝑦2 (
1 − 𝑞𝑤
1 − 𝑞a𝑤

) 𝑦1

.

Inserting these expressions into the integrand of (6.4.9) gives

𝐼2 = (1−𝑞)2𝑚𝑞,𝑣 (𝑦1, 𝑦2)
∮
𝛾

(𝑞2 − 1)𝑤
(𝑤, 𝑞)2(a𝑤, 𝑞)2

𝑡−1∏
𝑘=𝑠

(
1 + 𝛼(𝑘)𝑞2𝑤

1 + 𝛼(𝑘)𝑤

) (
1 − 𝑤
1 − a𝑤

) 𝑦2−𝑥1 ( 1 − 𝑞𝑤
1 − 𝑞a𝑤

) 𝑦1−𝑥2 𝑑𝑤

2𝜋i
.

A crucial observation is that one can verify directly

𝐼2 = −(1 − 𝑞)2𝑚𝑞,𝑣 (𝑦1, 𝑦2)Res𝑤1=𝑞𝑤2

∮
𝛾

∮
𝛾

𝑞𝑤1 − 𝑤2
𝑞𝑤2 − 𝑤1

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

)
×

(
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥3−𝑖 𝑑𝑤𝑖

2𝜋i
, (6.4.14)

Note that P←−−−−−−
SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= 𝐼1 + 𝐼2, using (6.4.13) and (6.4.14) one has

P←−−−−−−
SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= (1 − 𝑞)2𝑚𝑞,𝑣 (𝑦1, 𝑦2)

[ ∮
𝛾

∮
𝛾

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

) (
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥𝑖 𝑑𝑤𝑖
2𝜋i

−
∮
𝛾

∮
𝛾

𝑞𝑤1 − 𝑤2
𝑞𝑤2 − 𝑤1

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

) (
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥3−𝑖 𝑑𝑤𝑖

2𝜋i

− Res𝑤1=𝑞𝑤2

∮
𝛾

∮
𝛾

𝑞𝑤1 − 𝑤2
𝑞𝑤2 − 𝑤1

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

( 𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

) (
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥3−𝑖 𝑑𝑤𝑖

2𝜋i

]
.

Recall that 𝛼(𝑘) = 𝛼𝑞mod𝐽 (𝑘) for all 𝑘 , we can simplify the telescoping product in the integrand

via
𝑡−1∏
𝑘=𝑠

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

=

(
1 + 𝛼𝑞𝐽𝑤𝑖
1 + 𝛼𝑤𝑖

) b 𝑡−𝑠
𝐽
c 𝑡−1∏
𝑘=𝑠+𝐽 b 𝑡−𝑠

𝐽
c

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

.
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Furthermore, referring to the expression (6.4.1) and (6.4.5), we notice that (1 − 𝑞)2𝑚𝑞,𝑣 (𝑦1, 𝑦2) =

𝑐(𝑦1, 𝑦2). Thereby,

P←−−−−−−
SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= 𝑐(𝑦1, 𝑦2)

[ ∮
𝛾

∮
𝛾

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

(
1 + 𝛼𝑞𝐽𝑤𝑖
1 + 𝛼𝑤𝑖

) b 𝑡−𝑠
𝐽
c ( 𝑡−1∏

𝑘=𝑠+𝐽 b 𝑡−𝑠
𝐽
c

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

) (
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥𝑖 𝑑𝑤𝑖
2𝜋i

−
∮
𝛾

∮
𝛾

𝑞𝑤1 − 𝑤2
𝑞𝑤2 − 𝑤1

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

(
1 + 𝛼𝑞𝐽𝑤𝑖
1 + 𝛼𝑤𝑖

) b 𝑡−𝑠
𝐽
c ( 𝑡−1∏

𝑘=𝑠+𝐽 b 𝑡−𝑠
𝐽
c

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

) (
1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥3−𝑖 𝑑𝑤𝑖

2𝜋i

− Res𝑤1=𝑞𝑤2

∮
𝛾

∮
𝛾

𝑞𝑤1 − 𝑤2
𝑞𝑤2 − 𝑤1

2∏
𝑖=1

1
(1 − 𝑤𝑖) (1 − a𝑤𝑖)

(
1 + 𝛼𝑞𝐽𝑤𝑖
1 + 𝛼𝑤𝑖

) b 𝑡−𝑠
𝐽
c ( 𝑡−1∏

𝑘=𝑠+𝐽 b 𝑡−𝑠
𝐽
c

1 + 𝛼(𝑘)𝑞𝑤𝑖
1 + 𝛼(𝑘)𝑤𝑖

)
×

(6.4.15)

×
(

1 − 𝑤𝑖
1 − a𝑤𝑖

) 𝑦𝑖−𝑥3−𝑖 𝑑𝑤𝑖

2𝜋i

]
.

Lastly, we transform the small circle 𝛾 surrounding 1 into the big circle C𝑅 via a change of variable

𝑤𝑖 = Ξ(𝑧𝑖) =
1 − 𝑧𝑖
a − 𝑧𝑖

(equivalently 𝑧𝑖 =
1 − a𝑤𝑖
1 − 𝑤𝑖

), 𝑖 = 1, 2.

By the following relations

𝑞Ξ(𝑧1) − Ξ(𝑧2)
𝑞Ξ(𝑧2) − Ξ(𝑧1)

= �̃�(𝑧1, 𝑧2),
1 − Ξ(𝑧𝑖)
1 − aΞ(𝑧𝑖)

= 𝑧−1
𝑖 ,

1 + 𝛼𝑞𝐽Ξ(𝑧𝑖)
1 + 𝛼Ξ(𝑧𝑖)

= �̃�(𝑧𝑖),
𝑡−1∏

𝑘=𝑠+𝐽 b 𝑡−𝑠
𝐽
c

1 + 𝛼(𝑘)𝑞Ξ(𝑧𝑖)
1 + 𝛼(𝑘)Ξ(𝑧𝑖)

= ℜ̃(𝑧𝑖, 𝑡, 𝑠),

𝑑Ξ(𝑧𝑖)
(1 − Ξ(𝑧𝑖)) (1 − aΞ(𝑧𝑖))

=
𝑑𝑧𝑖

(1 − a)𝑧𝑖
,

we obtain

P←−−−−−−
SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
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= 𝑐(𝑦1, 𝑦2)
[ ∮
C𝑅

∮
C𝑅

2∏
𝑖=1

�̃�(𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ̃(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥𝑖−𝑦𝑖𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

−
∮
C𝑅

∮
C𝑅

�̃�(𝑧1, 𝑧2)
2∏
𝑖=1

�̃�(𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ̃(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

+ Res𝑧1=̃𝔰(𝑧2)

∮
C𝑅

∮
C𝑅

�̃�(𝑧1, 𝑧2)
2∏
𝑖=1

�̃�(𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ̃(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

]
. (6.4.16)

This concludes the proof of Theorem 6.4.4. Note that we change the sign in front of the residue

from (6.4.15) to (6.4.16). This is due to the fact that, before employing the change of variable,

the set of the poles {𝑞𝑤1 : 𝑤1 ∈ 𝛾} lies outside the 𝑤2-contour 𝛾, while after the change of

variable, the set of the pole {̃𝔰(𝑧1) : 𝑧1 ∈ C𝑟} lies inside the 𝑧2-contour C𝑟 , since 𝑅 is chosen to be

sufficiently large. �

Remark 6.4.5. We remark that our argument in proving that (6.4.6) holds for 𝑞 > 1 and a = 𝑞−𝐼

does not work when 𝐼 = 1. The reason is as follows: Note that the factor 1
(a𝑧1,𝑞)2 in the integrand of

(6.4.6) gives a pole for the 𝑧1-contour at 𝑧1 = a−1𝑞. Before the substitution of a = 𝑞−1, this pole lies

outside the contour 𝛾. Yet after substituting a = 𝑞−1, the pole becomes 𝑧1 = 1, which runs inside

the contour 𝛾, hence the argument of analytic continuation fails. This issue is also addressed in

[BCPS19], when the authors try to reproduce the integral formula for the 𝑘 particle ASEP transition

probability (which first appears in [TW08, Theorem 2.1]) via analytic continuation of (6.4.2). For

a similar reason, our method does not yield the general 𝑘 particle transition probability formula of

the SHS6V model with any fixed parameter 𝐼.

6.5 Microscopic Hopf-Cole transform and SHE

In this section, we first define the microscopic Hopf-Cole transform 𝑍 (𝑡, 𝑥), which is an expo-

nential transform of the height function 𝑁 (𝑡, 𝑥). Using 𝑘 = 1 version of duality of (6.3.8), it turns

out that 𝑍 (𝑡, 𝑥) satisfies a discrete version of SHE. As the Hopf-Cole solution to the KPZ equation

is the logarithm of the mild solution of the SHE, this reduces the proof of Theorem 6.1.6 to proving

that 𝑍 (𝑡, 𝑥) converges to the solution of SHE. We will also derive the two dualities for 𝑍 (𝑡, 𝑥) in
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Lemma 6.5.2, as a tilted version of (6.3.8). This will be used in the proof of self-averaging property

Proposition 6.6.8.

6.5.1 Microscopic Hopf-Cole Transform

We first study a one particle version of the unfused SHS6V model location process (Definition

6.3.5). When there is only one particle, it performs a random walk 𝑋′(𝑡) = ∑𝑡−1
𝑘=0 𝑅

′(𝑘) where

𝑅′(𝑘) are independent (but not same distributed) Z≥0-valued random variables with distribution

P
(
𝑅′(𝑘) = 𝑛

)
=



1+𝑞𝛼(𝑘)
1+𝛼(𝑘) if 𝑛 = 0;

𝛼(𝑘) (1−𝑞)
1+𝛼(𝑘)

(
1 − a+𝛼(𝑘)

1+𝛼(𝑘)
) ( a+𝛼(𝑘)

1+𝛼(𝑘)
)𝑛−1 if 𝑛 ∈ Z

0 else.

By tilting and centering 𝑅′(𝑘) with respect to E
[
𝑞𝜌𝑅

′(𝑘)1{𝑅′(𝑘)=·}
]
, we define a tilted random walk

𝑋 (𝑡) = ∑𝑡−1
𝑘=0 𝑅(𝑘), where 𝑅(𝑘) are independent Z≥0 − `(𝑘) valued with distribution11

P
(
𝑅(𝑘) = 𝑛 − `(𝑘)

)
=



_(𝑘) 1+𝑞𝛼(𝑘)1+𝛼(𝑘) if 𝑛 = 0;

_(𝑘) 𝛼(𝑘) (1−𝑞)1+𝛼(𝑘)
(
1 − a+𝛼(𝑘)

1+𝛼(𝑘)
) ( a+𝛼(𝑘)

1+𝛼(𝑘)
)𝑛−1

𝑞𝜌𝑛 if 𝑛 ∈ Z≥1

0 else.

(6.5.1)

Here, _(𝑘) =
(
E
[
𝑞𝜌𝑅(𝑘)

] )−1 is the normalizing parameter and `(𝑘) is the centering parameter

which makes E
[
𝑅(𝑘)] = 0. Under straightforward calculation, we see that

_(𝑘) = 1 + 𝛼(𝑘) − 𝑞𝜌 (𝛼(𝑘) + a)
1 + 𝑎(𝑘)𝑞 − 𝑞𝜌 (𝛼(𝑘)𝑞 + a) , (6.5.2)

`(𝑘) = 𝛼(𝑘) (1 − 𝑞) (1 − a)𝑞𝜌
(1 + 𝛼(𝑘)𝑞 − 𝑞𝜌 (𝛼(𝑘)𝑞 + a)) (1 + 𝛼(𝑘) − 𝑞𝜌 (𝛼(𝑘) + a)) . (6.5.3)

11The tilted and centered random walk 𝑋 (𝑡) provides the heat kernel p(𝑡 +1, 𝑡) for the discrete SHE (6.5.7) satisfied
by the microscopic Hopf-Cole transform (6.5.6), which is an exponential transform of the LHS of (6.1.10).
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We remark that _(𝑘) (respectively `(𝑘)) are 𝐽 periodic in the sense that _(𝑘) = _(𝐽 + 𝑘) (respec-

tively `(𝑘) = `(𝐽 + 𝑘)). Denote by

_̂(𝑡) :=
𝑡−1∏
𝑘=0

_(𝑘), ˆ̀(𝑡) :=
𝑡−1∑︁
𝑘=0

`(𝑘), Ξ(𝑡, 𝑠) := Z − ˆ̀(𝑡) + ˆ̀(𝑠), Ξ(𝑡) := Ξ(𝑡, 0).

(6.5.4)

It can be verified that the parameter _, ` defined in (6.1.9) satisfies

_ = _̂(𝐽), ` = ˆ̀(𝐽),

hence, one has

_̂(𝐽𝑡) = _𝑡 , ˆ̀(𝐽𝑡) = `𝑡. (6.5.5)

We define the microscopic Hopf-Cole transform for 𝑥 ∈ Ξ(𝑡) as

𝑍 (𝑡, 𝑥) := _̂(𝑡)𝑞−(𝑁 (𝑡,𝑥+ ˆ̀(𝑡))−𝜌(𝑥+ ˆ̀(𝑡))) . (6.5.6)

For 𝑥 ∈ Ξ(𝑡, 𝑠), we set p(𝑡, 𝑠, 𝑥) := P
(
𝑋 (𝑡) − 𝑋 (𝑠) = 𝑥

)
. Denote by the convolution

(p(𝑡, 𝑠) ∗ 𝑓 (𝑠)) (𝑥) :=
∑︁
𝑦∈Ξ(𝑠)

p(𝑡, 𝑠, 𝑥 − 𝑦) 𝑓 (𝑠, 𝑦).

We set

𝐾 (𝑡, 𝑥) := 𝑁 (𝑡, 𝑥) − 𝑁 (𝑡 + 1, 𝑥), 𝐾 (𝑡, 𝑥) := 𝐾 (𝑡, 𝑥) − E
[
𝐾 (𝑡, 𝑥)

��F (𝑡)] .
We sometimes call 𝐾 (𝑡, 𝑥) the flux, since it records the number of particles (either zero or one) that

move across the position 𝑥 between time 𝑡 and 𝑡 + 1. Now we present the discrete SHE satisfied by

the microscopic Hopf-Cole transform of the unfused SHS6V model.
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Proposition 6.5.1. For 𝑡 ∈ Z≥0 and 𝑥 ∈ Ξ(𝑡), 𝑍 (𝑡, 𝑥) satisfies the following discrete SHE

𝑍 (𝑡 + 1, 𝑥 − `(𝑡)) = (p(𝑡 + 1, 𝑡) ∗ 𝑍 (𝑡)) (𝑥 − `(𝑡)) + 𝑀 (𝑡, 𝑥), (6.5.7)

where

𝑀 (𝑡, 𝑥) = _(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥 + ˆ̀(𝑡))𝐾 (𝑡, 𝑥 + ˆ̀(𝑡)). (6.5.8)

Furthermore, 𝑀 (𝑡, 𝑥) is a martingale increment, i.e. E
[
𝑀 (𝑡, 𝑥)

��F (𝑡)] = 0. The conditional

quadratic variation of 𝑀 (𝑡, 𝑥) equals

E
[
𝑀 (𝑡, 𝑥1)𝑀 (𝑡, 𝑥2)

��F (𝑡)] = (
𝑞𝜌
a + 𝛼(𝑡)
1 + 𝛼(𝑡)

) |𝑥1−𝑥2 |
Θ1(𝑡, 𝑥1 ∧ 𝑥2)Θ2(𝑡, 𝑥1 ∧ 𝑥2), 𝑥1, 𝑥2 ∈ Ξ(𝑡),

(6.5.9)

where

Θ1(𝑡, 𝑥) := 𝑞_(𝑡)𝑍 (𝑡, 𝑥) −
(
p(𝑡 + 1, 𝑡) ∗ 𝑍 (𝑡)

)
(𝑥 − `(𝑡)), (6.5.10)

Θ2(𝑡, 𝑥) := −_(𝑡)𝑍 (𝑡, 𝑥) +
(
p(𝑡 + 1, 𝑡) ∗ 𝑍 (𝑡)

)
(𝑥 − `(𝑡)). (6.5.11)

Proof. We first show that 𝑀 (𝑡, 𝑥) is a martingale increment. Note by (6.5.7),

𝑀 (𝑡, 𝑥) = 𝑍 (𝑡 + 1, 𝑥 − `(𝑡)) = (p(𝑡 + 1, 𝑡) ∗ 𝑍 (𝑡)) (𝑥 − `(𝑡)).

Taking 𝑘 = 1 in the duality (6.3.8), one has

E
[
𝑍 (𝑡 + 1, 𝑥 − `(𝑡))

��F (𝑡)] = (p(𝑡 + 1, 𝑡) ∗ 𝑍 (𝑡)) (𝑥 − `(𝑡)).

Hence,

𝑀 (𝑡, 𝑥) = 𝑍 (𝑡 + 1, 𝑥 − `(𝑡)) − E
[
𝑍 (𝑡 + 1, 𝑥 − `(𝑡))

��F (𝑡)] , (6.5.12)
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which implies E
[
𝑀 (𝑡, 𝑥)

��F (𝑡)] = 0.

We turn to justify (6.5.8). Note that by (6.5.6)

𝑍 (𝑡 + 1, 𝑥 − `(𝑡)) = _(𝑡)𝑍 (𝑡, 𝑥)𝑞𝑁 (𝑡,𝑥+ ˆ̀(𝑡))−𝑁 (𝑡+1,𝑥+ ˆ̀(𝑡)) = _(𝑡)𝑍 (𝑡, 𝑥)𝑞𝐾 (𝑡,𝑥+ ˆ̀(𝑡)) .

Since 𝐾 (𝑡, 𝑥 + ˆ̀(𝑡)) ∈ {0, 1},

𝑍 (𝑡 + 1, 𝑥 − `(𝑡)) = _(𝑡)𝑍 (𝑡, 𝑥) + _(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥)𝐾 (𝑡, 𝑥 + ˆ̀(𝑡)). (6.5.13)

Combining with (6.5.12) gives

𝑀 (𝑡, 𝑥) = _(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥)
(
𝐾 (𝑡, 𝑥 + ˆ̀(𝑡)) − E

[
𝐾 (𝑡, 𝑥 + ˆ̀(𝑡))

��F (𝑡)] ) ,
= _(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥)𝐾 (𝑡, 𝑥 + ˆ̀(𝑡)), (6.5.14)

which gives the desired equality.

We turn our attention to (6.5.9). Define the short notation 𝐸′
[
·
]

:= E
[
·
��F (𝑡)] and write Var′, Cov′

to be the corresponding conditional variance and covariance. We assume without loss of generosity

𝑥1 ≤ 𝑥2 and use shorthand notation 𝑥′
𝑖

:= 𝑥𝑖 + ˆ̀(𝑡) ∈ Z, 𝑖 = 1, 2. Owing to (6.5.14),

E′
[
𝑀 (𝑡, 𝑥′1)𝑀 (𝑡, 𝑥

′
2)

]
= _(𝑡)2(𝑞 − 1)2𝑍 (𝑡, 𝑥1)𝑍 (𝑡, 𝑥2)E′

[
𝐾 (𝑡, 𝑥′1)𝐾 (𝑡, 𝑥

′
2)

]
,

= _(𝑡)2(𝑞 − 1)2𝑍 (𝑡, 𝑥1)𝑍 (𝑡, 𝑥2)Cov′
(
𝐾 (𝑡, 𝑥′1), 𝐾 (𝑡, 𝑥

′
2)

)
. (6.5.15)

Define

𝐿𝑥 ′1,𝑥
′
2
(𝑡) =

𝑥 ′2∏
𝑧=𝑥 ′1+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)
, (6.5.16)

𝐾𝑥 ′1,𝑥
′
2
(𝑡) =

𝑥 ′2∑︁
𝑦′=𝑥 ′1+1

𝑥 ′2∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡)

)
𝐵(𝑡, 𝑧, [𝑧 (𝑡)),
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where 𝐵, 𝐵′ are defined in (6.2.1). Since 𝐵, 𝐵′ are all independent, due to the expression (6.2.5)

of 𝐾 (𝑡, 𝑥′1) = 𝑁 (𝑡, 𝑥
′
1) − 𝑁 (𝑡 + 1, 𝑥′1) provided by (6.2.5), it is straightforward that conditioning on

F (𝑡), (𝐾𝑥 ′1,𝑥 ′2 (𝑡), 𝐿𝑥 ′1,𝑥 ′2 (𝑡)) are independent with 𝐾 (𝑡, 𝑥′1). Furthermore, (6.2.5) implies

𝐾 (𝑡, 𝑥′2) = 𝐾𝑥 ′1,𝑥 ′2 (𝑡) + 𝐿𝑥 ′1,𝑥 ′2 (𝑡)𝐾 (𝑡, 𝑥
′
1).

By the independence, we see that

Cov′
(
𝐾 (𝑡, 𝑥′1), 𝐾 (𝑡, 𝑥

′
2)

)
= E′

[
𝐿𝑥 ′1,𝑥

′
2
(𝑡)

]
Var′

(
𝐾 (𝑡, 𝑥′1)

)
(6.5.17)

Referring to (6.5.16),

E′
[
𝐿𝑥 ′1,𝑥

′
2
(𝑡)

]
=

𝑥 ′2∏
𝑧=𝑥 ′1+1

E′
[
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

]
=

(
a + 𝛼(𝑡)
1 + 𝛼(𝑡)

)𝑥 ′2−𝑥 ′1 𝑥 ′2∏
𝑧=𝑥 ′1+1

𝑞[𝑧 (𝑡) .

Inserting this into the RHS of (6.5.17), we find that

Cov′
(
𝐾 (𝑡, 𝑥1), 𝐾 (𝑡, 𝑥2)

)
=

(
a + 𝛼(𝑡)
1 + 𝛼(𝑡)

)𝑥 ′2−𝑥 ′1 𝑥 ′2∏
𝑧=𝑥 ′1+1

𝑞[𝑧 (𝑡)
(
E′

[
𝐾2(𝑡, 𝑥′1)

]
− E′

[
𝐾 (𝑡, 𝑥′1)

]2)
,

=

(
a + 𝛼(𝑡)
1 + 𝛼(𝑡)

)𝑥2−𝑥1 𝑥 ′2∏
𝑧=𝑥 ′1+1

𝑞[𝑧 (𝑡)E′
[
𝐾 (𝑡, 𝑥′1)

] (
1 − E′

[
𝐾 (𝑡, 𝑥′1)

] )
. (6.5.18)

Here, the last equality follows from the fact 𝐾 (𝑡, 𝑥′1)
2 = 𝐾 (𝑡, 𝑥′1). Furthermore, due to (6.5.13),

E′
[
𝐾 (𝑡, 𝑥′1)

]
=
E
[
𝑍 (𝑡 + 1, 𝑥1 − `(𝑡)) − _(𝑡)𝑍 (𝑡, 𝑥1)

��F (𝑡)]
_(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥1)

=
(p(𝑡 + 1, 𝑡) ∗ 𝑍 (𝑡)) (𝑥1 − `(𝑡)) − _(𝑡)𝑍 (𝑡, 𝑥1)

_(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥1)
.

Inserting this into the RHS of (6.5.18) yields

Cov′
(
𝐾 (𝑡, 𝑥1), 𝐾 (𝑡, 𝑥2)

)
=

(
a + 𝛼(𝑡)
1 + 𝛼(𝑡)

)𝑥2−𝑥1 (p(𝑡 + 1, 𝑡) ∗ 𝑍 (𝑡)) (𝑥1 − `(𝑡)) − _(𝑡)𝑍 (𝑡, 𝑥1)
_(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥1)
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×
(
1 − (p(𝑡 + 1, 𝑡) ∗ 𝑍 (𝑡)) (𝑥1 − `(𝑡)) − _(𝑡)𝑍 (𝑡, 𝑥1)

_(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥1)

) 𝑥 ′2∏
𝑧=𝑥 ′1+1

𝑞[𝑧 (𝑡) ,

=

(
a + 𝛼(𝑡)
1 + 𝛼(𝑡)

)𝑥2−𝑥1 Θ2(𝑡, 𝑥1)
_(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥1)

· Θ1(𝑡, 𝑥1)
_(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥1)

𝑥 ′2∏
𝑧=𝑥 ′1+1

𝑞[𝑧 (𝑡) .

Using the fact 𝑍 (𝑡, 𝑥2) = 𝑞𝜌(𝑥2−𝑥1)𝑍 (𝑡, 𝑥1)
∏𝑥 ′2
𝑧=𝑥 ′1+1

𝑞−[𝑧 (𝑡) , we obtain

Cov′
(
𝐾 (𝑡, 𝑥1), 𝐾 (𝑡, 𝑥2)

)
=

(
𝑞𝜌
a + 𝛼(𝑡)
1 + 𝛼(𝑡)

)𝑥2−𝑥1 Θ1(𝑡, 𝑥1)
_(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥1)

· Θ2(𝑡, 𝑥1)
_(𝑡) (𝑞 − 1)𝑍 (𝑡, 𝑥2)

.

Combining with (6.5.15), we arrive at the desired (6.5.9). �

For 𝑥 ∈ Ξ(𝑡), define

[̃𝑥 (𝑡) := [𝑥+ ˆ̀(𝑡) (𝑡).

We consider a tilted version of the duality functional 𝐷 in (6.3.7), for 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑡), define

𝐷 (𝑡, 𝑦1, 𝑦2) :=


𝑍 (𝑡, 𝑦1)2

[
𝐼 − [̃𝑦1 (𝑡)

]
𝑞

1
2

[
𝐼 − 1 − [̃𝑦1 (𝑡)

]
𝑞

1
2
𝑞[̃𝑦1 (𝑡) if 𝑦1 = 𝑦2,

[𝐼−1]
𝑞

1
2

[𝐼]
𝑞

1
2

𝑍 (𝑡, 𝑦1)𝑍 (𝑡, 𝑦2) [𝐼 − [̃𝑦1 (𝑡)]
𝑞

1
2
[𝐼 − [̃𝑦2 (𝑡)]

𝑞
1
2
𝑞

1
2 [̃𝑦1 (𝑡)𝑞

1
2 [̃𝑦2 (𝑡) if 𝑦1 < 𝑦2.

(6.5.19)

We further define for 𝑥1, 𝑥2 ∈ Ξ(𝑡) and 𝑦1, 𝑦2 ∈ Ξ(𝑠),

V
(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
:=

(
_̂(𝑡)
_̂(𝑠)

)2
𝑞𝜌(𝑥1+𝑥2−𝑦1−𝑦2+2( ˆ̀(𝑡)− ˆ̀(𝑠)))P←−−−−−−

SHS6V

(
𝑥1 + ˆ̀(𝑡), 𝑥2 + ˆ̀(𝑡), 𝑦1 + ˆ̀(𝑠), 𝑦2 + ˆ̀(𝑠), 𝑡, 𝑠

)
.

(6.5.20)

Observe that 𝑍 (𝑡, 𝑥) is a tilted version of 𝑞−𝑁 (𝑡,𝑥) , thus it is clear that it inherits the two dualities

stated in Corollary 6.3.9.
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Lemma 6.5.2. For 𝑠 ≤ 𝑡 ∈ Z≥0 and 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡),

E
[
𝑍 (𝑡, 𝑥1)𝑍 (𝑡, 𝑥2)

��F (𝑠)] = ∑︁
𝑦1≤𝑦2∈Ξ(𝑠)

V
(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2), (6.5.21)

E
[
𝐷 (𝑡, 𝑥1, 𝑥2)

��F (𝑠)] = ∑︁
𝑦1≤𝑦2∈Ξ(𝑠)

V
(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝐷 (𝑠, 𝑦1, 𝑦2). (6.5.22)

Proof. We use the shorthand notation 𝑥′
𝑖

:= 𝑥𝑖 + ˆ̀(𝑡). Referring to (6.5.6),

E
[
𝑍 (𝑡, 𝑥1)𝑍 (𝑡, 𝑥2)

��F (𝑠)] = _̂(𝑡)2𝑞𝜌(𝑥 ′1+𝑥 ′2)E[𝑞−𝑁 (𝑡,𝑥 ′1)𝑞−𝑁 (𝑡,𝑥 ′2) ��F (𝑠)] (6.5.23)

Using Corollary 6.3.9, we have

E
[
𝑞−𝑁 (𝑡,𝑥

′
1)𝑞−𝑁 (𝑡,𝑥

′
2)
��F (𝑠)] = ∑︁

𝑦′1≤𝑦
′
2∈Z2

P←−−−−−−
SHS6V

(
(𝑥′1, 𝑥

′
2), (𝑦

′
1, 𝑦
′
2), 𝑡, 𝑠

)
𝑞−𝑁 (𝑠,𝑦

′
1)𝑞−𝑁 (𝑠,𝑦

′
2) ,

=
∑︁

𝑦1≤𝑦2∈Ξ(𝑠)2
P←−−−−−−

SHS6V

(
(𝑥1 + ˆ̀(𝑡), 𝑥2 + ˆ̀(𝑡), (𝑦1 + ˆ̀(𝑠), 𝑦2 + ˆ̀(𝑠), 𝑡, 𝑠

)
𝑞−𝑁 (𝑠,𝑦1+ ˆ̀(𝑠))𝑞−𝑁 (𝑠,𝑦2+ ˆ̀(𝑠)) ,

=
∑︁

𝑦1≤𝑦2∈Ξ(𝑠)2
P←−−−−−−

SHS6V

(
(𝑥1 + ˆ̀(𝑡), 𝑥2 + ˆ̀(𝑡), (𝑦1 + ˆ̀(𝑠), 𝑦2 + ˆ̀(𝑠), 𝑡, 𝑠

) 𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)
_̂(𝑠)2

𝑞−2 ˆ̀ (𝑠) .

Inserting this into the RHS of (6.5.23), via a straightforward computation, we conclude (6.5.21).

The second duality (6.5.22) follows from a similar argument, we do not repeat here. �

The following corollary follows from Theorem 6.4.4.

Corollary 6.5.3. For all 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡) and 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠), we have

V
(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= 𝑐(®𝑦)

[ ∮
C𝑅

∮
C𝑅

2∏
𝑖=1

𝔇(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥𝑖−𝑦𝑖𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
−

∮
C𝑅

∮
C𝑅

𝔉(𝑧1, 𝑧2)
2∏
𝑖=1

𝔇(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖
𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

+ Res𝑧1=𝔰(𝑧2)
∮
C𝑅

∮
C𝑅

𝔉(𝑧1, 𝑧2)
2∏
𝑖=1

𝔇(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖
𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

]
. (6.5.24)

where C𝑅 is a circle centered at zero with a large enough radius 𝑅 so as to include all the poles of
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the integrands, 𝑐(®𝑦) is defined in (6.4.5) and

𝔇(𝑧) := _𝑧`
(1 + 𝛼𝑞𝐽)𝑞−𝜌𝑧 − (a + 𝛼𝑞𝐽)
(1 + 𝛼)𝑞−𝜌𝑧 − (a + 𝛼) , (6.5.25)

ℜ(𝑧, 𝑡, 𝑠) :=
𝑡−1∏

𝑘=𝑠+𝐽 b 𝑡−𝑠
𝐽
c
_(𝑘)𝑧`(𝑘) (1 + 𝛼(𝑘)𝑞)𝑞

−𝜌𝑧 − (a + 𝛼(𝑘)𝑞)
(1 + 𝛼(𝑘))𝑞−𝜌𝑧 − (a + 𝛼(𝑘)) , (6.5.26)

𝔉(𝑧1, 𝑧2) :=
𝑞a − a + (a − 𝑞)𝑞−𝜌𝑧2 + (1 − 𝑞a)𝑞−𝜌𝑧1 + (𝑞 − 1)𝑞−2𝜌𝑧1𝑧2

𝑞a − a + (a − 𝑞)𝑞−𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌𝑧2 + (𝑞 − 1)𝑞−2𝜌𝑧1𝑧2
, (6.5.27)

𝔰(𝑧) :=
(1 − 𝑞a)𝑞−𝜌𝑧 − a(1 − 𝑞)
(𝑞 − a)𝑞−𝜌 + (1 − 𝑞)𝑞−2𝜌𝑧

. (6.5.28)

Proof. Note that the integral formula for P←−−−−−−
SHS6V

is given by (6.4.4), referring to (6.5.20), we find

that

V
(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

(
_̂(𝑡)
_̂(𝑠)

)2
𝑞𝜌(𝑥1+𝑥2−𝑦1−𝑦2+2 ˆ̀(𝑡)−2 ˆ̀(𝑠))P←−−−−−−

SHS6V

(
𝑥1 + ˆ̀(𝑡), 𝑥2 + ˆ̀(𝑡), 𝑦1 + ˆ̀(𝑠), 𝑦2 + ˆ̀(𝑠), 𝑡, 𝑠

)
,

= 𝑐(®𝑦) ·
(
_̂(𝑡)
_̂(𝑠)

)2
𝑞𝜌(𝑥1+𝑥2−𝑦1−𝑦2+2 ˆ̀ (𝑡)−2 ˆ̀ (𝑠))

[ ∮
C𝑅

∮
C𝑅

2∏
𝑖=1

�̃�(𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ̃(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥𝑖−𝑦𝑖𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

−
∮
C𝑅

∮
C𝑅

�̃�(𝑧1, 𝑧2)
2∏
𝑖=1

�̃�(𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ̃(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

+ Res𝑧1=̃𝔰(𝑧2)

∮
C𝑅

∮
C𝑅

�̃�(𝑧1, 𝑧2)
2∏
𝑖=1

�̃�(𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ̃(𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

]
.

We refer to the context of Theorem 6.4.4 for the notation. Multiplying the constant
( _̂(𝑡)
_̂(𝑠)

)2
𝑞𝜌(𝑥1+𝑥2−𝑦1−𝑦2+2 ˆ̀(𝑡)−2 ˆ̀(𝑠))

to each term inside the square bracket above and applying change of variable 𝑧𝑖 → 𝑞−𝜌𝑧𝑖 readily

yield the desired formula. �

6.5.2 The SHE

Consider the KPZ equation with parameter 𝑉∗ and 𝐷∗ given in (6.1.12) and (6.1.13),

H(𝑡, 𝑥) = 𝑉∗
2
𝜕2
𝑥H(𝑡, 𝑥) −

𝑉∗
2

(
𝜕𝑥H(𝑡, 𝑥)

)2 +
√︁
𝐷∗b (𝑡, 𝑥), (6.5.29)
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As mentioned in Section 6.1.1, via formally applying Hopf-Cole transform, we say thatH(𝑡, 𝑥) is

a Hopf-Cole solution of (6.5.29) if

H(𝑡, 𝑥) = − logZ(𝑡, 𝑥),

whereZ(𝑡, 𝑥) is a mild solution of the SHE

𝜕𝑡Z(𝑡, 𝑥) =
𝑉∗
2
𝜕2
𝑥Z(𝑡, 𝑥) +

√︁
𝐷∗b (𝑡, 𝑥)Z(𝑡, 𝑥)

in the sense that it satisfies the following Duhamel form

Z(𝑡, 𝑥) =
∫
R
𝑝(𝑉∗𝑡, 𝑥 − 𝑦)Zic(𝑦)𝑑𝑦 +

∫ 𝑡

0

∫
R
𝑝(𝑉∗(𝑡 − 𝑠), 𝑥 − 𝑦)Z(𝑠, 𝑦)

√︁
𝐷∗b (𝑠, 𝑦)𝑑𝑠𝑑𝑦,

where 𝑝(𝑡, 𝑥) = 1√
2𝜋𝑡
𝑒−

𝑥2
2𝑡 is the heat kernel. The stochastic heat equation has a unique mild solution

Z(𝑡, 𝑥), see [Cor12] and references therein.

We recall the weakly asymmetric scaling for the SHS6V model stated in Theorem 6.1.6

For 𝜖 > 0, fix 𝐼 ∈ Z≥2, 𝐽 ∈ Z≥1 and 𝑏 ∈
(
𝐼 + 𝐽 − 2
𝐼 + 𝐽 − 1

, 1
)
, set 𝑞 = 𝑒

√
𝜖 and define 𝛼 via 𝑏 =

1 + 𝛼𝑞
1 + 𝛼 .

(6.5.30)

Such scaling corresponds to taking 𝑏 = 2, 𝑧 = 1
2 , ^ →

√
𝜖^ and keeping 𝛿, 𝐷 unchanged in (6.1.3).

Note that all parameters in the SHS6V model rely on the generic parameters 𝑞, 𝑏, 𝐼, 𝐽, 𝜌, since

under weakly asymmetry scaling, 𝑏, 𝐼, 𝐽, 𝜌 are all fixed and 𝑞 = 𝑒
√
𝜖 , the evolution of the entire

model depends on 𝜖 . As we will let 𝜖 go to zero, it suffices to consider all 𝜖 > 0 small enough,

which means that we only consider 𝜖 ∈ (0, 𝜖0) for some generic but fixed threshold 𝜖0 > 0.

Lemma 6.5.4. Under weakly asymmetric scaling (6.5.30), we have the following asymptotics near

𝜖 = 0

a + 𝛼(𝑡)
1 + 𝛼(𝑡) =

𝑏(𝐼 +mod𝐽 (𝑡)) − (𝐼 +mod𝐽 (𝑡) − 1)
𝑏mod𝐽 (𝑡) − (mod𝐽 (𝑡) − 1) + O(𝜖 1

2 ),

231



a + 𝑞𝛼(𝑡)
1 + 𝛼(𝑡) =

𝑏(𝐼 + 1 +mod𝐽 (𝑡)) − (𝐼 +mod𝐽 (𝑡))
𝑏mod𝐽 (𝑡) − (mod𝐽 (𝑡) − 1) + O(𝜖 1

2 ),

1 + 𝑞𝛼(𝑡)
1 + 𝛼(𝑡) =

𝑏(1 +mod𝐽 (𝑡)) −mod𝐽 (𝑡)
𝑏mod𝐽 (𝑡) − (mod𝐽 (𝑡) − 1) + O(𝜖

1
2 ),

`(𝑡) = 1
𝐼
+ O(𝜖 1

2 ), _(𝑡) = 1 − 𝜌𝜖
1
2

𝐼
+ O(𝜖).

As notational convention, we denote O(𝑎) to be a generic quantity such that sup0<𝑎<1 |O(𝑎) |𝑎−1 <

∞.

Proof. For every 𝜖 > 0, we have 𝑞 = 𝑒
√
𝜖 , a = 𝑒−𝐼

√
𝜖 and 𝛼(𝑡) = 𝛼𝑞mod𝐽 (𝑡) = 1−𝑏

𝑏−𝑒
√
𝜖
𝑒
√
𝜖mod𝐽 (𝑡) ,

where 𝑏, 𝐼, 𝐽, 𝜌 are fixed. The relation of _(𝑡) and `(𝑡) with 𝜖 is implied by (6.5.2) and (6.5.3) The

verification of the above asymptotic is then straightforward. �

To highlight the dependence on 𝜖 under weakly asymmetric scaling, we denote by the micro-

scopic Hopf-Cole transform 𝑍𝜖 (𝑡, 𝑥) := 𝑍 (𝑡, 𝑥). Note that presently 𝑍𝜖 (𝑡, 𝑥) is only defined for

𝑡 ∈ Z≥0 and 𝑥 ∈ Ξ(𝑡), we extend 𝑍𝜖 (𝑡, 𝑥) to be a 𝐶 ( [0,∞), 𝐶 (R))-valued process by first linearly

interpolating in 𝑥 ∈ Z, then in 𝑡 ∈ Z≥0. This is slightly different from exponentiating the inter-

polated height function 𝑁 (𝑡, 𝑥). Nevertheless, under the weak asymmetric scaling 𝑞 = 𝑒
√
𝜖 , it is

straightforward to see that the difference between these two interpolation schemes is negligible as

𝜖 ↓ 0.

As a notational convention, we write ‖𝑋 ‖𝑝 := (E|𝑋 |𝑝)
1
𝑝 for 𝑝 ≥ 1. Following the work of [BG97],

we define the near stationary initial data for the unfused/fused SHS6V model.

Definition 6.5.5. Fix 𝜌 ∈ (0, 𝐼), we call the initial data 𝑁𝜖 (0, 𝑥) (equivalently 𝑁 f
𝜖 (0, 𝑥)) near

stationary with density 𝜌 if for any 𝑛 ∈ Z≥1 and 𝑎 ∈ (0, 1
2 ), there exists constant 𝑢 := 𝑢(𝑛, 𝑎) and

𝐶 := 𝐶 (𝑛, 𝑎) such that for all 𝑥, 𝑥′ ∈ Z

‖𝑍𝜖 (0, 𝑥)‖𝑛 ≤ 𝐶𝑒𝑢𝜖 |𝑥 |, ‖𝑍𝜖 (0, 𝑥) − 𝑍𝜖 (0, 𝑥′)‖𝑛 ≤ 𝐶 (𝜖 |𝑥 − 𝑥′|)𝑎𝑒𝑢𝜖 ( |𝑥 |+|𝑥
′ |) ,

holds for 𝜖 > 0 small enough.
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Theorem 6.5.6. Under weakly asymmetric scaling, assuming that 𝑁𝜖 (0, 𝑥) is near stationary with

density 𝜌 and for some 𝐶 (R)-valued processZ𝑖𝑐 (𝑥)

𝑍𝜖 (0, 𝑥) ⇒ Z𝑖𝑐 (0, 𝑥) in 𝐶 (R) as 𝜖 ↓ 0,

then

𝑍𝜖 (𝜖−2𝑡, 𝜖−1𝑥) ⇒ Z(𝑡, 𝑥) in 𝐶
(
[0,∞), 𝐶 (R)

)
as 𝜖 ↓ 0,

whereZ(𝑡, 𝑥) is the mild solution to the SHE

𝜕𝑡Z(𝑡, 𝑥) =
𝑉∗
2
𝜕2
𝑥Z(𝑡, 𝑥) +

√︁
𝐷∗b (𝑡, 𝑥)Z(𝑡, 𝑥), (6.5.31)

with initial conditionZ𝑖𝑐 (𝑥).

As a consequence of the preceding theorem, we prove Theorem 6.1.6.

Proof of Theorem 6.1.6. Via the discussion in Section 6.5.2, H(𝑡, 𝑥) = − logZ(𝑡, 𝑥) solves the

KPZ equation

H(𝑡, 𝑥) = 𝑉∗
2
𝜕2
𝑥H(𝑡, 𝑥) −

𝑉∗
2

(
𝜕𝑥H(𝑡, 𝑥)

)2 +
√︁
𝐷∗b (𝑡, 𝑥).

One has by (6.5.7),

𝑍𝜖 (𝜖−2𝑡, 𝜖−1𝑥) = _̂𝜖 (𝑡)𝑒−
√
𝜖
(
𝑁𝜖 (𝜖−2𝑡,𝜖−1𝑥+𝜖−2 ˆ̀ 𝜖 (𝑡))−𝜌(𝜖−1𝑥+𝜖−2 ˆ̀ 𝜖 (𝑡)

)
= 𝑒−

√
𝜖
(
𝑁𝜖 (𝜖−2𝑡,𝜖−1𝑥+𝜖−2 ˆ̀ 𝜖 (𝑡))−𝜌(𝜖−1𝑥+𝜖−2 ˆ̀ 𝜖 (𝑡))

)
+log _̂𝜖 (𝑡) .

By Theorem 6.5.6 and continuous mapping theorem, we obtain

− log 𝑍𝜖 (𝜖−2𝑡, 𝜖−1𝑥) ⇒ H(𝑡, 𝑥) in 𝐶 ( [0,∞), 𝐶 (R)).
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In other words,

√
𝜖
(
𝑁𝜖 (𝜖−2𝑡, 𝜖−1𝑥 + 𝜖−2 ˆ̀𝜖 (𝑡)) − 𝜌(𝜖−1𝑥 + 𝜖−2 ˆ̀𝜖 (𝑡))

)
− log _̂𝜖 (𝑡) ⇒ H(𝑡, 𝑥) in 𝐶 ( [0,∞), 𝐶 (R)).

(6.5.32)

Note that we have 𝑁 f
𝜖 (𝑡, 𝑥) = 𝑁𝜖 (𝐽𝑡, 𝑥) (although in fact, they only equal on the lattice due to dif-

ferent linear interpolation scheme, but it is obvious that the difference between them is negligible).

Moreover, via (6.5.5)

_̂𝜖 (𝐽𝑡) = _𝑡𝜖 , ˆ̀𝜖 (𝐽𝑡) = `𝑡𝜖 .

Therefore, replacing the time variable 𝑡 with 𝐽𝑡 in (6.5.32),

√
𝜖
(
𝑁 f
𝜖 (𝜖−2𝑡, 𝜖−1𝑥 + 𝜖−2`𝜖 𝑡) − 𝜌(𝜖−1𝑥 + 𝜖−2`𝜖 𝑡)

)
− 𝑡 log_𝜖 ⇒ H̃(𝑡, 𝑥) in 𝐶 ( [0,∞), 𝐶 (R)),

where H̃ (𝑡, 𝑥) := H(𝐽𝑡, 𝑥). It is straightforward to check that H̃ (𝑡, 𝑥) satisfies the KPZ equation

H̃ (𝑡, 𝑥) = 𝐽𝑉∗
2
𝜕2
𝑥 H̃ (𝑡, 𝑥) −

𝐽𝑉∗
2

(
𝜕𝑥H̃ (𝑡, 𝑥)

)2 +
√︁
𝐽𝐷∗b (𝑡, 𝑥),

which concludes the proof of Theorem 6.1.6. �

6.6 Tightness and proof of Theorem 6.5.6

In this section, we prove Theorem 6.5.6 assuming Proposition 6.6.8, whose proof is postponed

to Section 6.8. First of all, we prove the tightness of {𝑍𝜖 (𝜖−2·, 𝜖−1·)}0<𝜖<1, which indicates that as

𝜖 ↓ 0, 𝑍𝜖 (𝜖−2·, 𝜖−1·) converges weakly along a subsequence. To identify the limit as well as prov-

ing the convergence of the entire sequence, we appeal to the martingale problem of SHE that was

first introduced in the work of [BG97]. Using approximation from the microscopic SHE (6.5.7) to

the SHE in continuum, we show that any subsequential limit of 𝑍𝜖 (𝜖−2·, 𝜖−1·) satisfies the same

martingale problem, hence is the mild solution of SHE.

Hereafter, we always assume that we are under weakly asymmetric scaling (6.5.30). In general,
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we will not specify the dependence of parameters on 𝜖 . We will also write 𝑞𝜖 ,a𝜖 , etc. when we do

want to emphasize the dependence. The dependence on 𝐼 ∈ Z≥2, 𝐽 ∈ Z≥1, 𝑏 =
1+𝛼𝑞
1+𝛼 ∈ (

𝐼+𝐽−2
𝐼+𝐽−1 , 1),

𝜌 ∈ (0, 𝐼) will not be indicated as they are fixed.

For the ensuing discussion, we will usually write 𝐶 for constants. We might not generally specify

when irrelevant terms are being absorbed into the constants. We might also write𝐶 (𝑇), 𝐶 (𝛽, 𝑇), . . .

when we want to specify which parameters the constant depends on. We say “for all 𝜖 > 0 small

enough" if the referred statement holds for all 0 < 𝜖 < 𝜖0 for some generic but fixed threshold

𝜖0 > 0 that may change from line to line.

6.6.1 Moment bounds and tightness

The goal of this section is to prove the following Kolmogorov-Chentsov type bound for the

microscopic Hopf-Cole transform.

Proposition 6.6.1. Assume that we start the SHS6V model with near stationary initial data with

density 𝜌 ∈ (0, 𝐼). Given 𝑛 ∈ Z≥1, 𝑎 ∈ (0, 1
2 ) and 𝑇 > 0, there exists positive constants 𝐶 :=

𝐶 (𝑛, 𝑎, 𝑇), 𝑢 := 𝑢(𝑛, 𝑎) such that

‖𝑍 (𝑡, 𝑥)‖2𝑛 ≤ 𝐶𝑒𝑢𝜖 |𝑥 |, (6.6.1)

‖𝑍 (𝑡, 𝑥) − 𝑍 (𝑡, 𝑥′)‖2𝑛 ≤ 𝐶 |𝜖 (𝑥 − 𝑥′) |𝑎𝑒𝑢𝜖 ( |𝑥 |+|𝑥
′ |) , (6.6.2)

‖𝑍 (𝑡, 𝑥) − 𝑍 (𝑡′, 𝑥)‖2𝑛 ≤ 𝐶 |𝜖2(𝑡 − 𝑡′) | 𝑎2 𝑒2𝑢𝜖 |𝑥 |, (6.6.3)

for all 𝑡, 𝑡′ ∈ [0, 𝜖−2𝑇] and 𝑥, 𝑥′ ∈ R.

We immediately deduce the tightness of 𝑍𝜖 (𝜖−2·, 𝜖−1·) once we have the moment bound above.

Corollary 6.6.2. The law of 𝐶 ( [0,∞), 𝐶 (R))-valued process {𝑍𝜖 (𝜖−2·, 𝜖−1·)}0<𝜖<1 is tight.

Proof. (6.6.1), (6.6.2) and (6.6.3) indicate that with large probability {𝑍𝜖 (𝜖−2·, 𝜖−1·)}0<𝜖<1 is uni-

formly bounded, uniformly spatially and uniformly temporally Hölder continuous. Applying

Arzela-Ascoli theorem together with Prokhorov’s theorem [Bil13] yields the desired result. �
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For the proof of Proposition 6.6.1, we will basically follow the framework developed in [CGST20].

Let us begin with a technical lemma which will be frequently used for the rest of the paper.

Lemma 6.6.3. Fix 𝑇 > 0, for any 𝑢 > 0, there exists 𝛽0 > 0 such that for all 𝛽 > 𝛽0 and

𝐶 (𝛽) > 0, there exists 𝜖0 such that for all positive 𝜖 < 𝜖0, 𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z and 𝑥 ∈ Ξ(𝑡), the

following inequality holds12

∑︁
𝑦∈Ξ(𝑡)

𝑒
− 𝛽 |𝑥−𝑦 |√

𝑡+1+𝐶 (𝛽) 𝑒𝑢𝜖 |𝑦 | ≤ 2
√
𝑡 + 1𝑒𝑢𝜖 |𝑥 | .

Proof. Take 𝛽0 = 4
√
𝑇𝑢, for 𝛽 > 𝛽0 and arbitrary 𝐶 (𝛽) > 0, due to 𝑡 ∈ [0, 𝜖−2𝑇], one has

𝛽 |𝑥 |
√
𝑡 + 1 + 𝐶 (𝛽)

≥ 𝛽𝜖 |𝑥 |
√
𝑇 + 𝜖2 + 𝐶 (𝛽)𝜖

≥ 2𝑢𝜖 |𝑥 |

holds for 𝜖 < 𝜖0, where is 𝜖0 is to be chosen small enough. Thereby,

∑︁
𝑦∈Ξ(𝑡)

𝑒
− 𝛽 |𝑥−𝑦 |√

𝑡+1+𝐶 (𝛽) 𝑒𝑢𝜖 |𝑦 | ≤ 𝑒𝑢𝜖 |𝑥 |
∑︁
𝑦∈Ξ(𝑡)

𝑒
− 𝛽 |𝑥−𝑦 |√

𝑡+1+𝐶 (𝛽) 𝑒𝑢𝜖 |𝑥−𝑦 |,

≤ 𝑒𝑢𝜖 |𝑥 |
∑︁
𝑦∈Z

𝑒
− 𝛽 |𝑦 |√

𝑡+1+𝐶 (𝛽) 𝑒𝑢𝜖 |𝑦 |

≤ 𝑒𝑢𝜖 |𝑥 |
∑︁
𝑦∈Z

𝑒
− 𝛽 |𝑦 |

2(
√
𝑡+1+𝐶 (𝛽))

≤ 2
√
𝑡 + 1𝑒𝑢𝜖 |𝑥 | .

Here, the last inequality follows from

∑︁
𝑥∈Ξ(𝑡)

𝑒
− 𝛽 |𝑦 |

2(
√
𝑡+1+𝐶 (𝛽)) ≤ 2

1 − 𝑒−
𝛽

2(
√
𝑡+1+𝐶 (𝛽))

≤ 2
√
𝑡 + 1.

Thus, we conclude the lemma. �

The following estimate for the one particle transition probability will be useful in proving

12Here, 𝐶 (𝛽) can be any positive constant, though for application it usually depends on the value of 𝛽.
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Proposition 6.6.1.

Lemma 6.6.4. For any 𝑢, 𝑇 ∈ (0,∞) and 𝑎 ∈ (0, 1), there exists constant 𝐶 (depending on 𝑎, 𝑢, 𝑇)

such that

(𝑖) p(𝑡, 𝑠, 𝑥) ≤ 𝐶 (𝑡 − 𝑠 + 1)− 1
2 , (𝑖𝑖)

∑︁
𝑥∈Ξ(𝑡,𝑠)

p(𝑡, 𝑠, 𝑥)𝑒𝑢𝜖 |𝑥 | ≤ 𝐶,

(𝑖𝑖𝑖)
∑︁

𝑥∈Ξ(𝑡,𝑠)
|𝑥 |𝑎p(𝑡, 𝑠, 𝑥)𝑒𝑢𝜖 |𝑥 | ≤ 𝐶 (𝑡 − 𝑠 + 1) 𝑎2 , (𝑖𝑣) |p(𝑡, 𝑠, 𝑥) − p(𝑡, 𝑠, 𝑥′) | ≤ 𝐶 |𝑥 − 𝑥′|𝑎 (𝑡 − 𝑠 + 1)−

𝑎+1
2 .

for 𝜖 > 0 small enough and 𝑠 ≤ 𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z.

Proof. The proof is more or less analogous to [CGST20, Lemma 5.1]. We first claim that p(𝑡, 𝑠, 𝑥)

admits the following integral formula

p(𝑡, 𝑠, 𝑥) =
∮
C𝑅

(
𝔇(𝑧)

) b 𝑡−𝑠
𝐽
c
ℜ(𝑧, 𝑡, 𝑠)𝑧𝑥 𝑑𝑧

2𝜋i𝑧
, (6.6.4)

where 𝔇(𝑧), ℜ(𝑧, 𝑡, 𝑠) are defined in (6.5.25) and (6.5.26) respectively and 𝑅 is large enough so that

the circle C𝑟 includes all the singularities of the integrand. This claim can be proved by observing

E
[
𝑧−𝑅(𝑘)

]
=

∞∑︁
𝑛=0
P
(
𝑅(𝑘) = 𝑛 − `(𝑘)

)
𝑧`(𝑘)−𝑛,

= _(𝑘) 1 + 𝑞𝛼(𝑘)
1 + 𝛼(𝑘) 𝑧

`(𝑘) +
∞∑︁
𝑛=1

_(𝑘)
(
1 − 1 + 𝑞𝛼(𝑘)

1 + 𝛼(𝑘)

) (
1 − a + 𝛼(𝑘)

1 + 𝛼(𝑘)

) (
a + 𝛼(𝑘)
1 + 𝛼(𝑘)

)𝑛−1
𝑞𝜌𝑛𝑧`(𝑘)−𝑛,

= _(𝑘)𝑧`(𝑘) 1 + 𝛼(𝑘)𝑞 − (a + 𝛼(𝑘)𝑞)𝑞
𝜌𝑧−1

1 + 𝛼(𝑘) − (a + 𝛼(𝑘))𝑞𝜌𝑧−1 . (6.6.5)

This implies

E
[
𝑧−(𝑋 (𝑡)−𝑋 (𝑠))

]
=

𝑡−1∏
𝑘=𝑠

E
[
𝑧−𝑅(𝑘)

]
=

(
𝔇(𝑧)

) b 𝑡−𝑠
𝐽
c
ℜ(𝑧, 𝑡, 𝑠).

Via Fourier inversion formula, we have

p(𝑡, 𝑠, 𝑥) = P
(
𝑋 (𝑡) − 𝑋 (𝑠) = 𝑥

) ∮
C𝑟
E
[
𝑧−(𝑋 (𝑡)−𝑋 (𝑠)

]
𝑧𝑥

𝑑𝑧

2𝜋i𝑧
=

∮
C𝑅

(
𝔇(𝑧)

) b 𝑡−𝑠
𝐽
c
ℜ(𝑧, 𝑡, 𝑠) 𝑑𝑧

2𝜋i𝑧
,
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In Section 6.7, we will obtain an upper bound of p(𝑡, 𝑠, 𝑥) by applying steepest descent analysis to

the integral formula above and we use this upper bound here in advance. Referring to (6.7.21), by

taking 𝑥𝑖 − 𝑦𝑖 → 𝑥, we obtain for all 𝛽, 𝑇 > 0, there exists positive constant 𝐶 (𝛽), 𝐶 (𝛽, 𝑇) such

that for 𝜖 > 0 small enough

p(𝑡, 𝑠, 𝑥) ≤ 𝐶 (𝛽, 𝑇)
√
𝑡 − 𝑠 + 1

𝑒
− 𝛽 |𝑥 |√

𝑡−𝑠+1+𝐶 (𝛽) , 𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z. (6.6.6)

which gives (i). Using (6.6.6) together with Lemma 6.6.3 gives (ii)

∑︁
𝑥∈Ξ(𝑡,𝑠)

p(𝑡, 𝑠, 𝑥)𝑒𝑢𝜖 |𝑥 | ≤
∑︁

𝑥∈Ξ(𝑡,𝑠)

𝐶 (𝛽, 𝑇)
√
𝑡 − 𝑠 + 1

𝑒
− 𝛽 |𝑥 |√

𝑡−𝑠+1+𝐶 (𝛽) 𝑒𝑢𝜖 |𝑥 | ≤ 𝐶.

For (iii), we see that

∑︁
𝑥∈Ξ(𝑡,𝑠)

|𝑥 |𝑎p(𝑡, 𝑠, 𝑥)𝑒𝑢𝜖 |𝑥 | ≤
∑︁

𝑥∈Ξ(𝑡,𝑠)
𝐶 (𝛽, 𝑇) |𝑥 |𝑎𝑒−

𝛽 |𝑥 |
2(
√
𝑡−𝑠+1+𝐶 (𝛽)) ≤ 𝐶

(√
𝑡 − 𝑠 + 1 + 𝐶 (𝛽)

)𝑎+1 ≤ 𝐶 (𝑡 − 𝑠 + 1) 𝑎+12 .

For the second inequality above, we used the inequality

∑︁
𝑥∈Ξ(𝑡,𝑠)

|𝑥 |𝑎𝑒−𝑏 |𝑥 | ≤ 𝐶
∫ ∞

0
𝑥𝑎𝑒−𝑏𝑥𝑑𝑥 ≤ 𝐶𝑏−𝑎−1.

Finally, to prove (iv), one has by (6.7.24) (taking 𝛽 = 1)

|∇𝑝(𝑡, 𝑠, 𝑥) | = |p(𝑡, 𝑠, 𝑥 + 1) − p(𝑡, 𝑠, 𝑥) | ≤ 𝐶 (𝑇)
𝑡 − 𝑠 + 1

𝑒
− |𝑥 |√

𝑡−𝑠+1+𝐶 .

Summing the above equation over [𝑥, 𝑥′ − 1] (assuming with out loss of generosity that 𝑥 < 𝑥′),

we obtain ��p(𝑡, 𝑠, 𝑥) − p(𝑡, 𝑠, 𝑥′)
�� ≤ 𝐶 (𝑇)

𝑡 − 𝑠 + 1

𝑥 ′−1∑︁
𝑦=𝑥

𝑒
− |𝑦 |√

𝑡−𝑠+1+𝐶

If we bound each term in the geometric sum by 1, we have
��p(𝑡, 𝑥) − p(𝑡, 𝑥′)

�� ≤ 𝐶
𝑡+1 |𝑥

′ − 𝑥 |. In
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addition, we can bound the geometric sum by

𝑥 ′−1∑︁
𝑦=𝑥

𝑒
− |𝑦 |√

𝑡−𝑠+1+𝐶 ≤ 2
∞∑︁
𝑦=0

𝑒
− |𝑦 |√

𝑡−𝑠+1+𝐶 =
2

1 − 𝑒−
1√

𝑡−𝑠+1+𝐶

≤ 𝐶
√
𝑡 − 𝑠 + 1,

which implies ��p(𝑡, 𝑠, 𝑥) − p(𝑡, 𝑠, 𝑥′)
�� ≤ 𝐶
√
𝑡 − 𝑠 + 1

.

Thereby,

��p(𝑡, 𝑠, 𝑥) − p(𝑡, 𝑠, 𝑥′)
�� ≤ min

(
𝐶

𝑡 − 𝑠 + 1
|𝑥 − 𝑥′|, 𝐶

√
𝑡 − 𝑠 + 1

)
≤ 𝐶 |𝑥 − 𝑥′|𝑎 (𝑡 − 𝑠 + 1)− 𝑎+1

2 ,

which concludes the proof of (iv). �

Recall the discrete SHE in Proposition 6.5.1

𝑍 (𝑡, 𝑥) = (p(𝑡, 𝑡 − 1) ∗ 𝑍 (𝑡 − 1)) (𝑥) + 𝑀 (𝑡 − 1, 𝑥 + `(𝑡 − 1)). (6.6.7)

Iterating (6.6.7) for 𝑡 times yields

𝑍 (𝑡, 𝑥) = (p(𝑡, 0) ∗ 𝑍 (0)) (𝑥) + 𝑍𝑚𝑔 (𝑡), (6.6.8)

where the martingale 𝑍𝑚𝑔 (𝑡) equals

𝑍𝑚𝑔 (𝑡) =
𝑡−1∑︁
𝑠=0

(
p(𝑡, 𝑠 + 1) ∗ 𝑀 (𝑠)

)
(𝑥 + `(𝑠)). (6.6.9)

To estimate 𝑍 (𝑡, 𝑥), it suffices to estimate (p(𝑡, 0) ∗ 𝑍 (0)) (𝑥) and 𝑍𝑚𝑔 (𝑡) respectively. In general,

the former one is easier to bound due to Lemma 6.6.4, while controlling the latter one is much

harder. Following the style of [CGST20], to estimate 𝑍𝑚𝑔 (𝑡), we need to establish the following

two lemmas, which are in analogy with Lemma 5.2 and Lemma 5.3 of [CGST20].

239



Let P23(𝑛) denote the set of the partitions into intervals of 2 or 3 elements. Here, the interval refers

to the set of form𝑈 = [𝑎, 𝑏] := [𝑎, 𝑏] ∩ Z, 𝑎 ≤ 𝑏 ∈ Z. For example,

P23(6) = {{[1, 2], [3, 4], [5, 6], {[1, 2], [3, 6]}, {[1, 4], [5, 6]}, {[1, 3], [4, 6]}} .

For ®𝑦 = (𝑦1 ≤ · · · ≤ 𝑦𝑛) and𝑈 = [𝑎, 𝑏], we define | ®𝑦 |𝑈 = 𝑦𝑏 − 𝑦𝑎.

Lemma 6.6.5. Fix 𝑛 ∈ Z>0, for all 𝑡 ∈ Z≥0 and 𝑦1 ≤ · · · ≤ 𝑦𝑛 ∈ Z, we have����E[ 𝑛∏
𝑖=1

𝐾 (𝑡, 𝑦𝑖)
����F (𝑡)] ���� ≤ 𝐶 (𝑛) ∑︁

𝜋∈P23 (𝑛)

∏
𝑈∈𝜋

𝑒
− 1

𝐶 (𝑛) | ®𝑦 |𝑈 .

Proof. [CGST20, Lemma 5.2] proved this inequality for 𝐼 = 1. When 𝐼 ≥ 2, the proof is almost

the same. Let us denote by E′
[
·
]
= E

[
·
��F (𝑡)] and

𝐼 (𝑦′, 𝑦) =
𝑦∏

𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)
𝐵(𝑡, 𝑦′, [𝑦′ (𝑡)).

Due to (6.2.7), there exists 𝐶 > 0 such that

��E′ [𝐼 (𝑦′, 𝑦)ℓ] �� ≤ 𝐶𝑒− 1
𝐶
|𝑦−𝑦′ |, ℓ ∈ Z≥1.

This gives bound similar to (5.10) in [CGST20, Lemma 5.2]. The rest of the proof is the same as

in [CGST20, Lemma 5.2], we do not repeat it here. �

Lemma 6.6.6. Fix 𝑛 ∈ Z≥1, recall the martingale increment 𝑀 (𝑡, 𝑥) from (6.5.7) and let 𝑓 (𝑡, 𝑥) be

a deterministic function defined on 𝑡 ∈ [𝑡1, 𝑡2] ∩ Z and 𝑥 ∈ Ξ(𝑡). Write 𝑓∞(𝑡) := sup𝑥∈Ξ(𝑡) | 𝑓 (𝑡, 𝑥) |,

we have  𝑡2−1∑︁
𝑡=𝑡1

∑︁
𝑥∈Ξ(𝑡)

𝑓 (𝑡, 𝑥)𝑀 (𝑡, 𝑥)
2

2𝑛
≤ 𝜖𝐶 (𝑛)

𝑡2−1∑︁
𝑡=𝑡1

∑︁
𝑥∈Ξ(𝑡)

�� 𝑓∞(𝑡) 𝑓 (𝑡, 𝑥)��‖𝑍 (𝑡, 𝑥)‖22𝑛.
Proof. Using the previous lemma, the proof is the same as the one appeared in [CGST20, Lemma
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5.3]. �

Have prepared the preceding lemmas, we proceed to prove Proposition 6.6.1. Here we use a

slightly different approach compared with the proof of the moment bounds in [CGST20, Proposi-

tion 5.4].

Proof of Proposition 6.6.1. Recall that 𝑍 (𝑡, 𝑥) is defined on [0,∞)×R through linear interpolation.

It suffices to prove the theorem for the lattice 𝑡 ∈ Z≥0 and 𝑥, 𝑥′ ∈ Ξ(𝑡). Generalization to continuum

𝑡, 𝑥 follows easily.

Let us begin with proving (6.6.1). We have by (6.6.8)

‖𝑍 (𝑡, 𝑥)‖2𝑛 ≤ ‖
(
p(𝑡, 0) ∗ 𝑍 (0)

)
(𝑥)‖2𝑛 + ‖𝑍𝑚𝑔 (𝑡)‖2𝑛.

Using (𝑥 + 𝑦)2 ≤ 2(𝑥2 + 𝑦2), we get

‖𝑍 (𝑡, 𝑥)‖22𝑛 ≤ 2‖
(
p(𝑡, 0) ∗ 𝑍 (0)

)
(𝑥)‖22𝑛 + 2‖𝑍𝑚𝑔 (𝑡)‖22𝑛. (6.6.10)

For the first term on RHS of (6.6.10), by Cauchy-Schwarz inequality,

‖
(
p(𝑡, 0) ∗ 𝑍 (0)

)
(𝑥)‖22𝑛 ≤

(
p(𝑡, 0) ∗ ‖𝑍 (0)‖22𝑛

)
(𝑥). (6.6.11)

For the second term ‖𝑍𝑚𝑔 (𝑡)‖22𝑛, by (6.6.9)

𝑍𝑚𝑔 (𝑡) =
𝑡−1∑︁
𝑠=0

(
p(𝑡, 𝑠 + 1) ∗ 𝑀 (𝑠)

)
(𝑥 + `(𝑠)) =

𝑡−1∑︁
𝑠=0

∑︁
𝑦∈Ξ(𝑠)

p
(
𝑡, 𝑠 + 1, 𝑥 + `(𝑠) − 𝑦

)
𝑀 (𝑠, 𝑦).

Applying Lemma 6.6.6, there exists a constant 𝐶∗ so that

‖𝑍𝑚𝑔 (𝑡)‖22𝑛 ≤ 𝐶∗𝜖
𝑡−1∑︁
𝑠=0

∑︁
𝑦∈Ξ(𝑠)

(
sup
𝑦∈Ξ(𝑠)

p(𝑡, 𝑠 + 1, 𝑥 + `(𝑠) − 𝑦)
)
p(𝑡, 𝑠 + 1, 𝑥 + `(𝑠) − 𝑦)‖𝑍 (𝑠, 𝑦)‖22𝑛,
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≤
𝑡−1∑︁
𝑠=0

∑︁
𝑦∈Ξ(𝑠)

𝐶∗𝜖√
𝑡 − 𝑠

p
(
𝑡, 𝑠 + 1, 𝑥 + `(𝑠) − 𝑦

)
‖𝑍 (𝑠, 𝑦)‖22𝑛, (6.6.12)

where the last inequality follows from Theorem 6.6.4 (i).

Replacing the RHS of (6.6.10) by upper bound obtained in (6.6.11) and (6.6.12), we obtain

‖𝑍 (𝑡, 𝑥)‖22𝑛 ≤ (p(𝑡, 0) ∗ ‖𝑍 (0)‖
2
2𝑛) (𝑥) +

𝑡−1∑︁
𝑠=0

𝐶∗𝜖√
𝑡 − 𝑠

(
p(𝑡, 𝑠 + 1) ∗ ‖𝑍 (𝑠)‖22𝑛

)
(𝑥 + `(𝑠)). (6.6.13)

Define the set Δ+𝑛 = {(𝑠1, . . . , 𝑠𝑛) ∈ Z𝑛≥0 : 0 ≤ 𝑠𝑛 < · · · < 𝑠1 < 𝑡} for 𝑛 ∈ Z≥1. Iterating (6.6.13)

yields

‖𝑍 (𝑡, 𝑥)‖22𝑛 ≤ (p(𝑡, 0) ∗ ‖𝑍 (0)‖
2
2𝑛) (𝑥)

+
∞∑︁
𝑛=1

∑︁
(𝑠1,...𝑠𝑛)∈Δ+𝑛

(𝐶∗𝜖)𝑛√
𝑡 − 𝑠1

√
𝑠1 − 𝑠2 . . .

√
𝑠𝑛−1 − 𝑠𝑛

(p(𝑡, 𝑠1, . . . , 𝑠𝑛) ∗ ‖𝑍 (0)‖22𝑛) (𝑥 +
𝑛∑︁
𝑖=1

`(𝑠𝑖)).

(6.6.14)

where p(𝑡, 𝑠1, . . . , 𝑠𝑛) = p(𝑡, 𝑠1 + 1) ∗ p(𝑠1, 𝑠2 + 1) ∗ · · · ∗ p(𝑠𝑛−1 + 1, 𝑠𝑛). Following Lemma 6.6.4,

we bound

(p(𝑡, 0) ∗ ‖𝑍 (0)‖22𝑛) (𝑥) ≤ 𝐶𝑒
2𝑢𝜖 |𝑥 |,

(p(𝑡, 𝑠1, . . . , 𝑠𝑛) ∗ ‖𝑍 (0)‖22𝑛) (𝑥 +
𝑛∑︁
𝑖=1

`(𝑠𝑖)) ≤ 𝐶𝑒2𝑢𝜖 ( |𝑥 |+𝑛) . (6.6.15)

For the second term on the RHS of (6.6.14), note that via integral approximation, we readily see

that

∑︁
(𝑠1,...,𝑠𝑛)∈Δ+𝑛

(𝐶∗𝜖)𝑛√
𝑡 − 𝑠√𝑠1 − 𝑠2 . . .

√
𝑠𝑛−1 − 𝑠𝑛

≤
∫

0≤𝑠1≤···≤𝑠𝑛≤𝑡

(𝐶∗𝜖)𝑛𝑑𝑠1 . . . 𝑑𝑠𝑛√
𝑡 − 𝑠1

√
𝑠1 − 𝑠2 . . .

√
𝑠𝑛−1 − 𝑠𝑛

= (𝐶∗𝜖𝑡
1
2 )𝑛

∫
𝜏1+···+𝜏𝑛≤1

1
√
𝜏1 . . .

√
𝜏𝑛
𝑑𝜏1 . . . 𝑑𝜏𝑛 =

(Γ( 12 )𝐶∗𝜖𝑡
1
2 )𝑛

Γ(𝑛/2) (6.6.16)
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where Γ(𝑧) is the Gamma function. Combining (6.6.15) and (6.6.16) yields

‖𝑍 (𝑡, 𝑥)‖22 ≤ 𝐶𝑒
2𝑢𝜖 |𝑥 | +

∞∑︁
𝑛=1

(Γ( 12 )𝐶∗𝜖𝑡
1
2 )𝑛

Γ(𝑛/2) 𝑒2𝑢𝜖 ( |𝑥 |+𝑛) = 𝑒2𝑢𝜖 |𝑥 |
(
𝐶 +

∞∑︁
𝑛=1

(Γ( 12 )𝐶∗𝜖𝑡
1
2 𝑒2𝑢𝜖 )𝑛

Γ(𝑛/2)

)
Note that 𝜖𝑡

1
2 ≤
√
𝑇 (since 𝑡 ∈ [0, 𝜖−2𝑇]), as the growth rate of Γ( 𝑛2 ) is much faster than that of 𝑥𝑛,

the infinite series in the parentheses above converge, which concludes (6.6.1).

The proof for (6.6.2) and (6.6.3) relies on (6.6.1). We proceed to prove (6.6.2), denote by

𝑍∇(𝑡, 𝑥, 𝑥′) := 𝑍 (𝑡, 𝑥) − 𝑍 (𝑡, 𝑥′), p∇(𝑡, 𝑠, 𝑥, 𝑥′) := p(𝑡, 𝑠, 𝑥) − p(𝑡, 𝑠, 𝑥′).

Using (6.6.8) (subtract 𝑍 (𝑡, 𝑥′) from 𝑍 (𝑡, 𝑥)) , we have

𝑍∇(𝑡, 𝑥, 𝑥′) =
∑︁
𝑦∈Ξ(𝑡)

p(𝑡, 0, 𝑦)𝑍∇(0, 𝑥 − 𝑦, 𝑥′ − 𝑦) + 𝑍∇𝑚𝑔 (𝑡),

where

𝑍∇𝑚𝑔 (𝑡) =
𝑡−1∑︁
𝑠=0

∑︁
𝑦∈Ξ(𝑠)

p∇
(
𝑡, 𝑠 + 1, 𝑥 + `(𝑠) − 𝑦, 𝑥′ + `(𝑠) − 𝑦

)
𝑀 (𝑠, 𝑦). (6.6.17)

It is straightforward that

‖𝑍∇(𝑡, 𝑥, 𝑥′)‖22𝑛 ≤ 2
∑︁
𝑦∈Ξ(𝑡)

p(𝑡, 0, 𝑦)‖𝑍∇(0, 𝑥 − 𝑦, 𝑥′ − 𝑦)‖22𝑛 + 2‖𝑍∇𝑚𝑔 (𝑡)‖22𝑛.

By the definition of the near stationary initial data (Definition 6.5.5), for 𝑎 ∈ (0, 1
2 ), there exists 𝐶

such that

∑︁
𝑦∈Ξ(𝑡)

p(𝑡, 0, 𝑦)‖𝑍∇(0, 𝑥 − 𝑦, 𝑥′ − 𝑦)‖22𝑛 ≤ 𝐶
∑︁
𝑦∈Ξ(𝑡)

p(𝑡, 0, 𝑦) (𝜖 |𝑥 − 𝑥′|)2𝑎𝑒2𝑢𝜖 ( |𝑥−𝑦 |+|𝑥 ′−𝑦 |)

≤ 𝐶 (𝜖 |𝑥 − 𝑥′|)2𝑎𝑒2𝑢𝜖 ( |𝑥 |+|𝑥 ′ |)
∑︁
𝑦∈Ξ(𝑡)

p(𝑡, 0, 𝑦)𝑒4𝑢𝜖 |𝑦 |
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Further applying Theorem 6.6.4 (ii), one has

∑︁
𝑦∈Ξ(𝑡)

p(𝑡, 0, 𝑦)𝑒4𝑢𝜖 |𝑦 | ≤ 𝐶.

We conclude that

∑︁
𝑦∈Ξ(𝑡)

p(𝑡, 0, 𝑦)‖𝑍∇(0, 𝑥 − 𝑦, 𝑥′ − 𝑦)‖22𝑛 ≤ 𝐶 (𝜖 |𝑥 − 𝑥
′|)2𝑎𝑒2𝑢𝜖 ( |𝑥 |+|𝑥 ′ |) . (6.6.18)

To bound ‖𝑍∇𝑚𝑔 (𝑡)‖2𝑛, we appeal to Lemma 6.6.6. Note that due to Lemma 6.6.4 (iv),

sup
𝑦∈Ξ(𝑠)

��p∇(𝑡, 𝑠 + 1, 𝑥 + `(𝑡 − 1) − 𝑦, 𝑥′ + `(𝑡 − 1) − 𝑦)
�� ≤ 𝐶 |𝑥 − 𝑥′|2𝑎 (𝑡 − 𝑠)− 2𝑎+1

2 ,

Applying Lemma 6.6.6 to (6.6.17) implies

‖𝑍∇𝑚𝑔 (𝑡)‖22𝑛 ≤ 𝐶𝜖 |𝑥 − 𝑥
′|2𝑎

𝑡−1∑︁
𝑠=0
(𝑡 − 𝑠)− 𝑎+1

2
∑︁
𝑦∈Ξ(𝑠)

p∇(𝑡 − 𝑠−1, 𝑥 + `(𝑠) − 𝑦, 𝑥′+ `(𝑠) − 𝑦)‖𝑍 (𝑠, 𝑦)‖22𝑛.

Owing to Theorem 6.6.4 (i), we observe that

∑︁
𝑦∈Ξ(𝑠)

p∇(𝑡 − 𝑠 − 1, 𝑥 + `(𝑠) − 𝑦, 𝑥′ + `(𝑠) − 𝑦)‖𝑍 (𝑠, 𝑦)‖22

≤ 𝐶
∑︁
𝑦∈Ξ(𝑠)

p∇(𝑡 − 𝑠 − 1, 𝑥 + `(𝑠) − 𝑦, 𝑥′ + `(𝑠) − 𝑦)𝑒2𝑢𝜖 |𝑦 | ≤ 𝐶𝑒2𝑢𝜖 ( |𝑥 |+|𝑥 ′ |) .

Consequently,

‖𝑍∇𝑚𝑔 (𝑡)‖22𝑛 ≤ 𝐶𝜖 |𝑥
′ − 𝑥 |2𝑎𝑒2𝑢𝜖 ( |𝑥 |+|𝑥 ′ |)

𝑡−1∑︁
𝑠=0
(𝑡 − 𝑠)− 2𝑎+1

2 ≤ 𝐶 (𝜖 |𝑥 − 𝑥′|)2𝑎 (𝜖2𝑡) 1−2𝑎
2 𝑒2𝑢𝜖 ( |𝑥 |+|𝑥 ′ |) ,

≤ 𝐶 (𝜖 |𝑥 − 𝑥′|)2𝑎𝑒2𝑢𝜖 ( |𝑥 |+|𝑥 ′ |) . (6.6.19)

We conclude (6.6.2) via combining (6.6.18) and (6.6.19).

244



Finally, we justify (6.6.3), we have

𝑍 (𝑡, 𝑥) − 𝑍 (𝑡′, 𝑥) =
∑︁
𝑦∈Ξ(𝑡 ′)

p(𝑡, 𝑡′, 𝑥 − 𝑦) (𝑍 (𝑡′, 𝑦) − 𝑍 (𝑡′, 𝑥)) + 𝑍𝑚𝑔 (𝑡, 𝑡′),

where 𝑍𝑚𝑔 (𝑡, 𝑡′) =
∑𝑡−1
𝑠=𝑡 ′

∑
𝑦∈Ξ(𝑠) p(𝑡 − 𝑠 − 1, 𝑥 + `(𝑠) − 𝑦)𝑀 (𝑠, 𝑦). Similar to the previous proof,

we have

‖𝑍 (𝑡, 𝑥) − 𝑍 (𝑡′, 𝑥)‖22𝑛 ≤ 2
∑︁
𝑦∈Ξ(𝑡 ′)

p(𝑡, 𝑡′, 𝑥 − 𝑦)‖𝑍 (𝑡′, 𝑦) − 𝑍 (𝑡′, 𝑥)‖22𝑛 + 2‖𝑍𝑚𝑔 (𝑡, 𝑡′)‖22𝑛. (6.6.20)

For the first term on the RHS of (6.6.20), we apply (6.6.2) and Lemma 6.6.4 (iii), for any 𝑎 ∈ (0, 1
2 ),

∑︁
𝑦∈Ξ(𝑡 ′)

p(𝑡, 𝑡′, 𝑥 − 𝑦)‖𝑍 (𝑡′, 𝑦) − 𝑍 (𝑡′, 𝑥)‖22𝑛 ≤ 𝐶𝜖
2𝑎

∑︁
𝑦∈Ξ(𝑡 ′)

p(𝑡, 𝑡′, 𝑥 − 𝑦) |𝑥 − 𝑦 |2𝑎𝑒𝑢𝜖 ( |𝑥 |+|𝑦 |)

≤ 𝐶𝜖2𝑎 (𝑡 − 𝑡′ + 1)𝑎𝑒2𝑢𝜖 |𝑥 | .

For the second term, invoking Lemma 6.6.6 gives

‖𝑍𝑚𝑔 (𝑡, 𝑡′)‖22𝑛 ≤ 𝐶𝜖
𝑡−1∑︁
𝑠=𝑡 ′

1
√
𝑡 − 𝑠

∑︁
𝑦∈Ξ(𝑠)

p(𝑡 − 𝑠 − 1, 𝑥 + `(𝑠) − 𝑦)‖𝑍 (𝑠, 𝑦)‖22𝑛

≤ 𝐶𝜖𝑒2𝑢𝜖 |𝑥 |
𝑡−1∑︁
𝑠=𝑡 ′

1
√
𝑡 − 𝑠

≤ 𝐶 (𝜖2(𝑡 − 𝑡′)) 1
2 𝑒2𝑢𝜖 |𝑥 | . (6.6.21)

Combining (6.6.20)-(6.6.21), we obtain ‖𝑍 (𝑡, 𝑥) − 𝑍 (𝑡′, 𝑥)‖2𝑛 ≤ 𝐶 (𝜖2(𝑡 − 𝑡′)) 𝑎2 𝑒𝑢𝜖 |𝑥 | . We complete

the proof of Proposition 6.6.1. �

Having shown the tightness of 𝑍𝜖 (𝜖−2·, 𝜖−1·), to prove Theorem 5.6, it suffices to show that

any limit pointZ of 𝑍𝜖 (𝜖−2·, 𝜖−1·) is the mild solution to the SHE (6.5.31). This is the goal of the

Section 6.6.2 and Section 6.6.3, where we will formulate the notion of “solution to the martingale

problem" (which is equivalent to the mild solution) and prove that any limit point of 𝑍𝜖 (𝜖−2·, 𝜖−1·)

satisfies the martingale problem.
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6.6.2 The martingale problem

We recall the martingale problem of the SHE from [BG97].

Definition 6.6.7. We say that a 𝐶 ( [0,∞), 𝐶 (R))-valued processZ(𝑡, 𝑥) is a solution of martingale

problem of the SHE (6.5.31)

𝜕𝑡Z(𝑡, 𝑥) =
𝑉∗
2
𝜕2
𝑥Z(𝑡, 𝑥) +

√︁
𝐷∗b (𝑡, 𝑥)Z(𝑡, 𝑥)

with initial conditionZ𝑖𝑐 ∈ 𝐶 (R) ifZ(0, 𝑥) = Z𝑖𝑐 (𝑥) in distribution and

(i) Given any 𝑇 > 0, there exists 𝑢 < ∞ such that

sup
𝑡∈[0,𝑇]

sup
𝑥∈R

𝑒−𝑢 |𝑥 |E
[
Z(𝑡, 𝑥)2

]
< ∞.

(ii) For any test function 𝜓 ∈ 𝐶∞𝑐 (R),

M𝜓 (𝑡) =
∫
R
Z(𝑡, 𝑥)𝜓(𝑥)𝑑𝑥 −

∫
R
Z(0, 𝑥)𝜓(𝑥)𝑑𝑥 − 𝑉∗

2

∫ 𝑡

0

∫
R
Z(𝑠, 𝑥)𝜓′′(𝑥)𝑑𝑥𝑑𝑠

is a local martingale.

(iii) For any test function 𝜓 ∈ 𝐶∞𝑐 (R),

Q𝜓 (𝑡) =M𝜓 (𝑡)2 − 𝐷∗
∫ 𝑡

0

∫
R
Z(𝑠, 𝑥)2𝜓(𝑥)2𝑑𝑥𝑑𝑠

is a local martingale.

[BG97, Proposition 4.11] proves the the solutionZ to the martingale problem is also the weak

solution (equivalently, the mild solution) to the SHE. Moreover, they show that there is a unique

such solution.

To prove Theorem 6.5.6, it suffices to prove that any limit point of 𝑍𝜖 (𝜖−2·, 𝜖−1·) satisfies (i), (ii),
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(iii). We will do it in the next section. The main difficulty arises for justifying the quadratic

martingale problem (iii), we need the following proposition, whose proof is postponed to Section

6.8.

Proposition 6.6.8. For 𝑠 ∈ Z≥0, define

𝜏(𝑠) = 𝜌(𝐼 − 𝜌)
𝐼2

· 𝑏(𝐼 + 2mod𝐽 (𝑠) + 1) − (𝐼 + 2mod𝐽 (𝑠) − 1)
𝑏(𝐼 + 2mod𝐽 (𝑠)) − (𝐼 + 2mod𝐽 (𝑠) − 2) . (6.6.22)

Start the unfused SHS6V model from near stationary initial condition, for given 𝑇 > 0, there exists

constant 𝐶 and 𝑢 such that (recall the expressions Θ1 and Θ2 from (6.5.10))𝜖2
𝑡∑︁
𝑠=0

(
𝜖−1Θ1Θ2 − 𝜏(𝑠)𝑍2

)
(𝑠, 𝑥★ − ˆ̀(𝑠) + b ˆ̀(𝑠)c)


2
≤ 𝐶𝜖 1

4 𝑒𝑢𝜖 |𝑥
★ | (6.6.23)

for all 𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z, 𝑥★ ∈ Z and 𝜖 > 0 small enough.

Remark 6.6.9. In (6.6.23), we compensate the space variable 𝑥★ ∈ Z by ˆ̀(𝑠) − b ˆ̀(𝑠)c ∈ [0, 1) to

ensure that 𝑥★ − ˆ̀(𝑠) + b ˆ̀(𝑠)c ∈ Ξ(𝑠).

6.6.3 Proof of Theorem 6.5.6

The entire section is devoted to the proof of Theorem 6.5.6. As we mentioned earlier, due

to the tightness obtained in Proposition 6.6.1, if suffices to prove that for any limit point Z𝑍 of

𝑍𝜖 (𝜖−2·, 𝜖−1·) satisfies the martingale problem. The proof is accomplished once we verify (i), (ii),

(iii) forZ.

For the ensuing discussion, we denote by E𝜖 (𝑡) to be a generic process (which may differ from line

to line) satisfying for all fixed 𝑇 > 0

lim
𝜖↓0

sup
𝑡∈[0,𝜖−2𝑇]∩Z

‖E𝜖 (𝑡)‖2 = 0.
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We start by verifying (i). Due to (6.6.1) and 𝑍𝜖 (𝜖−2𝑡, 𝜖−1𝑥) ⇒ Z𝑍 (𝑡, 𝑥), by Skorohod representa-

tion theorem and Fatou’s lemma, (i) holds.

We continue to prove (ii). To show thatM𝜓 (𝑡) is a local martingale, we consider a discrete ana-

logue. Define

𝑀𝜓 (𝑡) := 𝜖
𝑡−1∑︁
𝑠=0

∑︁
𝑥∈Ξ(𝑠)

𝑀 (𝑠, 𝑥)𝜓(𝜖 (𝑥 − `(𝑠))). (6.6.24)

Due to Proposition 6.5.1, 𝑀 (𝑡, 𝑥) is a F (𝑡)-martingale increment, which implies 𝑀𝜓 (𝑡) is a F (𝑡)-

martingale.

Define 〈𝑍 (𝑡), 𝜓〉𝜖 :=
∑
𝑥∈Ξ(𝑡) 𝜖𝜓(𝜖𝑥)𝑍 (𝑡, 𝑥). By (6.5.7),

𝑍 (𝑡, 𝑥) =
∑︁

𝑦∈Ξ(𝑡−1)
p𝜖 (𝑡, 𝑡 − 1, 𝑥 − 𝑦)𝑍 (𝑡 − 1, 𝑦) + 𝑀 (𝑡 − 1, 𝑥 + `(𝑡 − 1)), 𝑥 ∈ Ξ(𝑡),

we obtain

〈𝑍 (𝑠), 𝜓〉𝜖 − 〈𝑍 (𝑠 − 1), 𝜓〉𝜖 =
∑︁
𝑥∈Ξ(𝑡)

𝜖𝜓(𝜖𝑥)𝑍 (𝑡, 𝑥) −
∑︁

𝑦∈Ξ(𝑡−1)
𝜖𝜓(𝜖 𝑦)𝑍 (𝑡 − 1, 𝑦)

=
∑︁
𝑥∈Ξ(𝑠)

𝜖𝜓(𝜖𝑥)
( ∑︁
𝑦∈Ξ(𝑠−1)

p𝜖 (𝑠, 𝑠 − 1, 𝑥 − 𝑦)𝑍 (𝑠 − 1, 𝑦) + 𝑀 (𝑠 − 1, 𝑥 + `(𝑠 − 1))
)
−

∑︁
𝑦∈Ξ(𝑠−1)

𝜖𝜓(𝜖 𝑦)𝑍 (𝑠 − 1, 𝑦)

=
∑︁

𝑦∈Ξ(𝑠−1)
𝜖𝑍 (𝑠 − 1, 𝑦)

( ∑︁
𝑥∈Ξ(𝑠)

p𝜖 (𝑠, 𝑠 − 1, 𝑥 − 𝑦)
(
𝜓(𝜖𝑥) − 𝜓(𝜖 𝑦)

) )
+

∑︁
𝑥∈Ξ(𝑠)

𝜖𝜓(𝜖𝑥)𝑀 (𝑠 − 1, 𝑥 + `(𝑠 − 1))

(6.6.25)

Summing (6.6.25) over 𝑠 ∈ [1, 𝑡] ∩ Z yields

𝑀𝜓 (𝑡) = 〈𝑍 (𝑡), 𝜓〉𝜖 − 〈𝑍 (0), 𝜓〉𝜖 −
𝑡−1∑︁
𝑠=0

𝜖
∑︁
𝑦∈Ξ(𝑠)

𝑍 (𝑠, 𝑦)
( ∑︁
𝑥∈Ξ(𝑠+1)

p𝜖 (𝑠 + 1, 𝑠, 𝑥 − 𝑦) (𝜓(𝜖𝑥) − 𝜓(𝜖 𝑦))
)

(6.6.26)
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Recall that 𝑅𝜖 (𝑠) is the random variable defined in (6.5.1), as usual we put on the subscript 𝜖 to

emphasize the dependence. Note that,

E
[
𝑅𝜖 (𝑠)

]
=

∑︁
𝑥∈Ξ(1)

p𝜖 (𝑠 + 1, 𝑠, 𝑥)𝑥 = 0, Var
[
𝑅𝜖 (𝑠)

]
=

∑︁
𝑥∈Ξ(1)

p𝜖 (𝑠 + 1, 𝑠, 𝑥)𝑥2.

By Taylor expansion

𝜓(𝜖𝑥) = 𝜓(𝜖 𝑦) + 𝜖𝜓′(𝜖 𝑦) (𝑥 − 𝑦) + 1
2
𝜖2𝜓′′(𝜖 𝑦) (𝑥 − 𝑦)2 + 𝜖3O(|𝑥 − 𝑦 |3),

whereby (6.6.26) becomes

𝑀𝜓 (𝑡) = 〈𝑍 (𝑡), 𝜓〉𝜖 − 〈𝑍 (0), 𝜓〉𝜖 −
1
2
𝜖2

𝑡−1∑︁
𝑠=0

Var
[
𝑅𝜖 (𝑠)

]
〈𝑍 (𝑠), 𝜓′′〉𝜖 + E𝜖 (𝑡).

Furthermore, we have

Var
[
𝑅𝜖 (𝑠)

]
= _(𝑠)

∞∑︁
𝑛=1

𝛼(𝑠) (1 − 𝑞)
1 + 𝛼(𝑠)

(
1 − a + 𝛼(𝑠)

1 + 𝛼(𝑠)

) (
a + 𝛼(𝑠)
1 + 𝛼(𝑠)

)𝑛−1
𝑞𝜌𝑛𝑛2

−
(
_(𝑠)

∞∑︁
𝑛=1

𝛼(𝑠) (1 − 𝑞)
1 + 𝛼(𝑠)

(
1 − a + 𝛼(𝑠)

1 + 𝛼(𝑠)

) (
a + 𝛼(𝑠)
1 + 𝛼(𝑠)

)𝑛−1
𝑞𝜌𝑛𝑛

)2

=
(𝐼 + 1 + 2mod𝐽 (𝑠))𝑏 − (𝐼 + 2mod𝐽 (𝑠) − 1)

𝐼2(1 − 𝑏)
+ O(𝜖 1

2 ). (6.6.27)

In the last line, we used Lemma 6.5.4 to get asymptotics. Denote by

𝑉 (𝑠) = (𝐼 + 1 + 2mod𝐽 (𝑠))𝑏 − (𝐼 + 2mod𝐽 (𝑠) − 1)
𝐼2(1 − 𝑏)

Then

𝑀𝜓 (𝑡) = 〈𝑍 (𝑡), 𝜓〉𝜖 − 〈𝑍 (0), 𝜓〉𝜖 −
1
2
𝜖2

𝑡−1∑︁
𝑠=0
𝑉 (𝑠)〈𝑍 (𝑠), 𝜓′′〉𝜖 + E𝜖 (𝑡).
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Note that {𝑉 (𝑠)}∞
𝑠=0 is a periodic sequence with period 𝐽, by the time regularity of 𝑍 (𝑡, 𝑥) in (6.6.3),

we can replace 𝑉 (𝑠) by

𝑉∗ =
1
𝐽

𝐽−1∑︁
𝑠=0
𝑉 (𝑠) = (𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 2)

𝐼2(1 − 𝑏)

as defined in (6.1.12). Consequently,

𝑀𝜓 (𝑡) = 〈𝑍 (𝑡), 𝜓〉𝜖 − 〈𝑍 (0), 𝜓〉𝜖 −
1
2
𝜖2𝑉∗

𝑡−1∑︁
𝑠=0
〈𝑍 (𝑠), 𝜓′′〉𝜖 + E𝜖 (𝑡).

Since lim𝜖↓0 sup𝑡∈[0,𝜖−2𝑇]∩Z ‖E𝜖 (𝑡)‖2 = 0, by a standard discrete to continuous argument from the

martingale 𝑀𝜓 (𝑡) toM𝜓 (𝑡), we conclude thatM𝜓 (𝑡) is a local martingale.

We finish the proof of (iii) based on Proposition 6.6.8. Similar to what we did in proving (ii),

we want to find a discrete approximation of Q𝜓 (𝑡). This is given by 𝑀𝜓 − 〈𝑀𝜓〉(𝑡). Referring to

(6.6.24), the martingale 𝑀𝜓 (𝑡) possesses the quadratic variation

〈𝑀𝜓〉(𝑡) = 𝜖2
𝑡−1∑︁
𝑠=0

∑︁
𝑥,𝑥′∈Ξ(𝑠)

𝜓(𝜖 (𝑥 − `(𝑠)))𝜓(𝜖 (𝑥′ − `(𝑠)))E
[
𝑀 (𝑠, 𝑥)𝑀 (𝑠, 𝑥′)

��F (𝑠)]
= 𝜖2

𝑡−1∑︁
𝑠=0

∑︁
𝑥,𝑥′∈Ξ(𝑠)

𝜓(𝜖 (𝑥 − `(𝑠)))𝜓(𝜖 (𝑥′ − `(𝑠)))
(
a + 𝛼(𝑠)
1 + 𝛼(𝑠) 𝑞

𝜌

) |𝑥−𝑥 ′ |
Θ1(𝑠, 𝑥 ∧ 𝑥′)Θ2(𝑠, 𝑥 ∧ 𝑥′)

(6.6.28)

where the last equality follows from Proposition 6.5.1. Since 𝜓 ∈ 𝐶∞𝑐 (R), there exists a constant

𝐶 such that

��𝜓(𝜖 (𝑥 − `(𝑠)))𝜓(𝜖 (𝑥′ − `(𝑠))) − 𝜓(𝜖 (𝑥 ∧ 𝑥′))2�� ≤ 𝐶𝜖 ( |𝑥 − 𝑥′| + 1)
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Consequently, the expression (6.6.28) is well-approximated with the corresponding term 𝜓(𝜖 (𝑥 −

`(𝑠)))𝜓(𝜖 (𝑥′ − `(𝑠))) replaced by 𝜓(𝜖 (𝑥 ∧ 𝑥′))𝜓(𝜖 (𝑥′ ∧ 𝑥′)), which yields

〈𝑀𝜓〉(𝑡) = 𝜖2
𝑡−1∑︁
𝑠=0

∑︁
𝑥,𝑥′∈Ξ(𝑠)

𝜓(𝜖 (𝑥 ∧ 𝑥′))2
(
a + 𝛼(𝑠)
1 + 𝛼(𝑠) 𝑞

𝜌

) |𝑥−𝑥 ′ |
Θ1(𝑠, 𝑥 ∧ 𝑥′)Θ2(𝑠, 𝑥 ∧ 𝑥′) + E𝜖 (𝑡),

= 𝜖2
𝑡−1∑︁
𝑠=0

∑︁
𝑥∈Ξ(𝑠)

∞∑︁
𝑛=−∞

(
a + 𝛼(𝑠)
1 + 𝛼(𝑠) 𝑞

𝜌

) |𝑛|
𝜓(𝜖𝑥)2Θ1(𝑠, 𝑥)Θ2(𝑠, 𝑥) + E𝜖 (𝑡),

= 𝜖2
𝑡−1∑︁
𝑠=0

∑︁
𝑥∈Ξ(𝑠)

1 + 𝛼(𝑠) + (a + 𝛼(𝑠))𝑞𝜌
1 + 𝛼(𝑠) − (a + 𝛼(𝑠))𝑞𝜌𝜓(𝜖𝑥)

2Θ1(𝑠, 𝑥)Θ2(𝑠, 𝑥) + E𝜖 (𝑡),

= 𝜖2
𝑡−1∑︁
𝑠=0

𝑏(𝐼 + 2mod𝐽 (𝑠)) − (𝐼 + 2mod𝐽 (𝑠) − 2)
𝐼 (1 − 𝑏)

∑︁
𝑥∈Ξ(𝑠)

𝜖𝜓(𝜖𝑥)2
(
𝜖−1Θ1(𝑠, 𝑥)Θ2(𝑠, 𝑥)

)
+ E𝜖 (𝑡).

(6.6.29)

Here, in the third equality we used
∑∞
𝑛=−∞ 𝑥

−|𝑛| = 1+𝑥
1−𝑥 . In the last equality, using Lemma 6.5.4 for

asymptotics expansion of a+𝛼(𝑠)
1+𝛼(𝑠) , one has

1 + 𝛼(𝑠) + (a + 𝛼(𝑠))𝑞𝜌
1 + 𝛼(𝑠) − (a + 𝛼(𝑠))𝑞𝜌 =

1 + a+𝛼(𝑠)
1+𝛼(𝑠) 𝑞

𝜌

1 − a+𝛼(𝑠)
1+𝛼(𝑠) 𝑞

𝜌
=
𝑏(𝐼 + 2mod𝐽 (𝑠)) − (𝐼 + 2mod𝐽 (𝑠) − 2)

𝐼 (1 − 𝑏) + O(𝜖 1
2 ).

Using Proposition 6.6.8, we replace the term 𝜖−1Θ1(𝑠, 𝑥)Θ2(𝑠, 𝑥) in (6.6.29) with 𝜏(𝑠)𝑍 (𝑠, 𝑥)2,

〈𝑀𝜓〉(𝑡) = 𝜖2
𝑡−1∑︁
𝑠=0

𝑏(𝐼 + 2mod𝐽 (𝑠)) − (𝐼 + 2mod𝐽 (𝑠) − 2)
𝐼 (1 − 𝑏)

∑︁
𝑥∈Ξ(𝑠)

𝜖𝜓(𝜖𝑥)2𝜏(𝑠)𝑍 (𝑠, 𝑥)2 + E𝜖 (𝑡),

= 𝜖2
𝑡−1∑︁
𝑠=0

𝜌(𝐼 − 𝜌)
𝐼2

· 𝑏(𝐼 + 2mod𝐽 (𝑠) + 1) − (𝐼 + 2mod𝐽 (𝑠) − 1)
𝐼 (1 − 𝑏)

∑︁
𝑥∈Ξ(𝑠)

𝜖𝜓(𝜖𝑥)2𝑍 (𝑠, 𝑥)2 + E𝜖 (𝑡).

Using again the time regularity of 𝑍 (𝑡, 𝑥) in (6.6.3), we conclude that

〈𝑀𝜓〉(𝑡) = 𝐷∗
𝑡−1∑︁
𝑠=0

∑︁
𝑥∈Ξ(𝑠)

𝜖𝜓(𝜖𝑥)2𝑍 (𝑠, 𝑥)2 + E𝜖 (𝑡),
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where

𝐷∗ =
1
𝐽

𝐽−1∑︁
𝑠=0

𝜌(𝐼 − 𝜌)
𝐼2

·𝑏(𝐼 + 2mod𝐽 (𝑠) + 1) − (𝐼 + 2mod𝐽 (𝑠) − 1)
𝐼 (1 − 𝑏) =

𝜌(𝐼 − 𝜌)
𝐼

(𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 2)
𝐼2(1 − 𝑏)

as defined in (6.1.13). Via a standard discrete to continuous argument from the martingale 𝑀𝜓 (𝑡) −

〈𝑀𝜓〉(𝑡) to Q𝜓 (𝑡), we conclude that Q𝜓 (𝑡) is a local martingale. Since we have proved that for any

limit pointZ of 𝑍𝜖 (𝜖−2·, 𝜖−1·), it satisfies (i), (ii), (iii) in Definition 6.6.7, this concludes the proof

of Theorem 6.5.6.

6.7 Estimate of the two particle transition probability

In this section, we prove a space-time estimate for the (tilted) two particle transition probability

V𝜖 , using the integral formula provided in Corollary 6.5.3. This technical result is crucial to the

proof of Proposition 6.6.8.

Recall from Corollary 6.5.3 that

V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= 𝑐(𝑦1, 𝑦2)

[ ∮
C𝑅

∮
C𝑅

2∏
𝑖=1

(
𝔇𝜖 (𝑧𝑖)

) b 𝑡−𝑠
𝐽
c
ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥𝑖−𝑦𝑖𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

−
∮
C𝑅

∮
C𝑅

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

(
𝔇𝜖 (𝑧𝑖)

) b 𝑡−𝑠
𝐽
c
ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

+ Res𝑧1=𝔰𝜖 (𝑧2)
∮
C𝑅

∮
C𝑅

𝔉𝜖 (𝑧1, 𝑧2)
(
𝔇𝜖 (𝑧𝑖)

) b 𝑡−𝑠
𝐽
c
ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

]
, (6.7.1)

where C𝑟 is a circle centered at zero with a large enough radius 𝑅 so as to include all the poles of

the integrand, 𝑐(𝑦1, 𝑦2) is defined in (6.4.5) and the functions in the integrand above are defined

respectively in (6.5.25) - (6.5.28). We put 𝜖 in the notation of V𝜖 and other functions to emphasize

the dependence on 𝜖 under the weakly asymmetry scaling.
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We define the discrete gradients ∇𝑥1 ,∇𝑥2 ,∇𝑦1 ,∇𝑦2

∇𝑥1V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= V𝜖

(
(𝑥1 + 1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
− V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
,

∇𝑥2V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡) = V𝜖

(
(𝑥1, 𝑥2 + 1), (𝑦1, 𝑦2), 𝑡, 𝑠

)
− V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
,

∇𝑦1V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= V𝜖

(
(𝑥1, 𝑥2), (𝑦1 + 1, 𝑦2), 𝑡, 𝑠

)
− V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
,

∇𝑦2V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2 + 1), 𝑡, 𝑠

)
− V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
.

Furthermore, we define the mixed discrete gradient

∇𝑥1,𝑥2V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= ∇𝑥2

(
∇𝑥1V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) )
= V𝜖

(
(𝑥1 + 1, 𝑥2 + 1), (𝑦1, 𝑦2), 𝑡, 𝑠

)
− V𝜖

(
(𝑥1 + 1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
− V𝜖

(
(𝑥1, 𝑥2 + 1), (𝑦1, 𝑦2), 𝑡, 𝑠

)
+ V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
We define the ∇-Weyl chamber (which is understood with respect to whichever gradient is taken)

to be

{(𝑥1, 𝑥2, 𝑦1, 𝑦2) : 𝑥1 + 1 ≤ 𝑥2 ∈ Ξ(𝑡), 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠)} if ∇ = ∇𝑥1 ,

{(𝑥1, 𝑥2, 𝑦1, 𝑦2) : 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡), 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠)} if ∇ = ∇𝑥2 ,

{(𝑥1, 𝑥2, 𝑦1, 𝑦2) : 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡), 𝑦1 + 1 < 𝑦2 ∈ Ξ(𝑠)} if ∇ = ∇𝑦1 ,

{(𝑥1, 𝑥2, 𝑦1, 𝑦2) : 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡), 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠)} if ∇ = ∇𝑦2 .

(6.7.2)

We remark that V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
is defined only for 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡) and 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠). In

the definition of ∇-Weyl chamber, when ∇ = ∇𝑥1 ,∇𝑥2 ,∇𝑦2 , the corresponding ∇-Weyl chamber is

exactly where the quantities ∇𝑥1V𝜖 , ∇𝑥2V𝜖 or ∇𝑦2V𝜖 are well defined. But for ∇ = ∇𝑦1 , we require

𝑦1 + 1 < 𝑦2, which is stronger than 𝑦1 + 1 ≤ 𝑦2 (where ∇𝑦1V𝜖 is well defined). The motivation of

this requirement is to ensure that (6.7.9) holds.

The following result is the main technical contribution of our paper.
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Proposition 6.7.1. For all fixed 𝛽, 𝑇 > 0, there exists positive constant 𝐶 (𝛽), 𝐶 (𝛽, 𝑇) such that for

𝜖 > 0 small enough and 𝑠 ≤ 𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z

(𝑎) For all 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡) and 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠),

��V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) . (6.7.3)

(𝑏) For all (𝑥1, 𝑥2, 𝑦1, 𝑦2) in the ∇-Weyl chamber,

��∇𝑥𝑖V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1) 3

2
𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) , 𝑖 = 1, 2,��∇𝑦𝑖V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1) 3

2
𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) . 𝑖 = 1, 2.

(c) For all 𝑥1 < 𝑥2 ∈ Ξ(𝑡) and 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠),

��∇𝑥1,𝑥2V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1)2

𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) .

It is helpful to divide the proof of Proposition 6.7.1 depending on whether the time increment

𝑡−𝑠 is large enough. More precisely, we use the phrase 𝑡−𝑠 is large enough if the referred statement

holds for all 𝑡 − 𝑠 ≥ 𝑡0, where 𝑡0 is some generic time threshold which may change from line to

line (depend on 𝛽 and 𝑇 , but does not depend on 𝜖). Note that this is not to be confused with the

global assumption 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝜖−2𝑇 , which implies 𝑡 − 𝑠 ≤ 𝜖−2𝑇 .

Given arbitrary fixed 𝑡0 > 0, let us first prove the proposition for 𝑡 − 𝑠 ≤ 𝑡0.

Proof of Proposition 6.7.1 for 𝑡 − 𝑠 ≤ 𝑡0. According to Lemma 6.5.4,

lim
𝜖↓0

sup
𝑡∈Z≥0

a + 𝛼(𝑡)
1 + 𝛼(𝑡) = sup

𝑡∈Z≥0

(𝐼 +mod𝐽 (𝑡))𝑏 − (𝐼 +mod𝐽 (𝑡) − 1)
mod𝐽 (𝑡)𝑏 − (mod𝐽 (𝑡) − 1) < 1, (6.7.4)
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here we used the condition 𝐼+𝐽−2
𝐼+𝐽−1 < 𝑏 < 1 in (6.5.30). Taking 𝑘 = 2 in (6.3.13) yields

P←−−−−−−
SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
≤ 𝐶

2∏
𝑖=1

(
|𝑥𝑖 − 𝑦𝑖 | + 𝑡 − 𝑠

𝑡 − 𝑠

)
\ |𝑥𝑖−𝑦𝑖 | (6.7.5)

where \ = sup𝑡∈Z≥0
a+𝛼(𝑡)
1+𝛼(𝑡) . So there exists 0 < 𝛿 < 1 such that for 𝜖 small enough and all 𝑠 ≤ 𝑡

such that 𝑡 − 𝑠 ≤ 𝑡0

P←−−−−−−
SHS6V

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
≤ 𝐶𝛿 |𝑥𝑖−𝑦𝑖 |, (6.7.6)

Referring to the relation (6.5.20) between V and P←−−−−−−
SHS6V

. By lim𝜖↓0 𝑒
√
𝜖 = 1 along with (6.7.6),

there exists 0 < 𝛿′ < 1 s.t.

V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
≤ 𝐶𝛿′|𝑥1−𝑦1 |+|𝑥2−𝑦2 | .

Consequently, we can take 𝐶 (𝛽, 𝑇) and 𝐶 (𝛽) in (6.7.3) large enough such that for 𝑡 − 𝑠 ≤ 𝑡0,

V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
≤ 𝐶𝛿′|𝑥1−𝑦1 |+|𝑥2−𝑦2 | ≤ 𝐶 (𝛽, 𝑇)

𝑡0 + 1
𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡0+1+𝐶 (𝛽)

≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽)

For the gradients, let us consider ∇𝑥1V𝜖 for example. Note that

∇𝑥1V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= V𝜖

(
(𝑥1 + 1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
− V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
Using the same argument as above, there exists constant 𝐶 (𝛽, 𝑇) and 𝐶 (𝛽) such that for all 𝑠 ≤ 𝑡

satisfying 𝑡 − 𝑠 ≤ 𝑡0,

V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
,V𝜖

(
(𝑥1 + 1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1) 3

2
𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) ,

which gives the desired bound for ∇𝑥1V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
. The argument for the gradient

∇𝑥2V𝜖 ,∇𝑦1V𝜖 ,∇𝑦2V𝜖 and ∇𝑥1,𝑥2V𝜖 is similar. �
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Having proved Proposition 6.7.1 for 𝑡− 𝑠 ≤ 𝑡0, it suffices to prove the same proposition for 𝑡− 𝑠

large enough. In other words, we need to show that there exists 𝑡0 > 0 such that the proposition

holds for 𝑡 − 𝑠 ≥ 𝑡0. We decompose V𝜖 (6.7.1) by

V𝜖 = 𝑐(𝑦1, 𝑦2)
(
Vfr
𝜖 − Vin

𝜖

)
,

where

Vfr
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
:=

∮
C𝑅

∮
C𝑅

2∏
𝑖=1

(
𝔇𝜖 (𝑧𝑖)

) b 𝑡−𝑠
𝐽
c
ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥𝑖−𝑦𝑖𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
, (6.7.7)

Vin
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
:=

∮
C𝑅

∮
C𝑅

(
𝔇𝜖 (𝑧𝑖)

) b 𝑡−𝑠
𝐽
c
ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

− Res𝑧1=𝔰𝜖 (𝑧2)
∮
C𝑅

∮
C𝑅

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

(
𝔇𝜖 (𝑧𝑖)

) b 𝑡−𝑠
𝐽
c
ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
.

(6.7.8)

Referring to (6.4.5), 𝑐(𝑦1, 𝑦2) equals 1 as long as 𝑦1 < 𝑦2. It is straightforward that for (𝑥1, 𝑥2, 𝑦1, 𝑦2)

in the ∇-Weyl chamber (6.7.2),

∇𝑥𝑖V𝜖 = 𝑐(𝑦1, 𝑦2)
(
∇𝑥𝑖Vfr

𝜖 − ∇𝑥𝑖Vin
𝜖

)
,

∇𝑦𝑖V𝜖 = 𝑐(𝑦1, 𝑦2)
(
∇𝑦𝑖Vfr

𝜖 − ∇𝑦𝑖Vin
𝜖

)
. (6.7.9)

In addition, for 𝑥1 + 1 ≤ 𝑥2 ∈ Ξ(𝑡) and 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠),

∇𝑥1,𝑥2V𝜖 = 𝑐(𝑦1, 𝑦2)
(
∇𝑥1,𝑥2V

fr
𝜖 − ∇𝑥1,𝑥2V

in
𝜖

)
.

Note that under weakly asymmetric scaling,

lim
𝜖↓0

𝑐(𝑦1, 𝑦2) = 1{𝑦1<𝑦2} +
𝐼 − 1
2𝐼

1{𝑦1=𝑦2},

which implies that 𝑐(𝑦1, 𝑦2) is uniformly bounded for 𝜖 small enough, This being the case, to
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prove Proposition 6.7.1 for 𝑡 − 𝑠 large enough, it suffices to prove the same result for Vfr
𝜖 and Vin

𝜖

respectively.

Proposition 6.7.2. For all 𝛽, 𝑇 > 0, there exists positive constant 𝑡0 := 𝑡0(𝛽, 𝑇) and 𝐶 (𝛽, 𝑇) such

that for 𝜖 > 0 small enough and 0 ≤ 𝑠 ≤ 𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z satisfying |𝑡 − 𝑠 | ≥ 𝑡0

(𝑎) for all 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡), 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠)

��Vfr
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1

(𝑏) For all (𝑥1, 𝑥2, 𝑦1, 𝑦2) in the ∇-Weyl chamber,

��∇𝑥𝑖Vfr
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1) 3

2
𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1 , 𝑖 = 1, 2,��∇𝑦𝑖Vfr
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1) 3

2
𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1 , 𝑖 = 1, 2.

(c) For all 𝑥1 + 1 ≤ 𝑥2 ∈ Ξ(𝑡) and 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠),

��∇𝑥1,𝑥2V
fr
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1)2

𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1 .

Proposition 6.7.3. For all 𝛽, 𝑇 > 0, there exists positive constant 𝑡0 := 𝑡0(𝛽, 𝑇) and 𝐶 (𝛽, 𝑇) such

that for 𝜖 > 0 small enough 0 ≤ 𝑠 ≤ 𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z such that |𝑡 − 𝑠 | ≥ 𝑡0,

(𝑎) for all 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡) and 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠),

��Vin
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

𝑒
− 𝛽 ( |𝑥2−𝑦1 |+ |𝑥1−𝑦2 |)√

𝑡−𝑠+1 .

(𝑏) For all (𝑥1, 𝑥2, 𝑦1, 𝑦2) in the ∇-Weyl chamber,

��∇𝑥𝑖Vin
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1) 3

2
𝑒
− 𝛽 ( |𝑥2−𝑦1 |+ |𝑥1−𝑦2 |)√

𝑡−𝑠+1 , 𝑖 = 1, 2,��∇𝑦𝑖Vin
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1) 3

2
𝑒
− 𝛽 ( |𝑥2−𝑦1 |+ |𝑥1−𝑦2 |)√

𝑡−𝑠+1 , 𝑖 = 1, 2.
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(c) For all 𝑥1 + 1 ≤ 𝑥2 ∈ Ξ(𝑡) and 𝑦1 ≤ 𝑦2 ∈ Ξ(𝑠),

��∇𝑥1,𝑥2V
in
𝜖 ((𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡)

�� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1)2

𝑒
− 𝛽 ( |𝑥2−𝑦1 |+ |𝑥1−𝑦2 |)√

𝑡+1 .

The reader might notice that in Proposition 6.7.3, we write |𝑥2 − 𝑦1 | + |𝑥1 − 𝑦2 | on the RHS

exponents (compared with |𝑥1 − 𝑦1 | + |𝑥2 − 𝑦2 | in Proposition 6.7.1). This in fact yields a stronger

upper bound since by 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2, one always has

|𝑥1 − 𝑦1 | + |𝑥2 − 𝑦2 | ≤ |𝑥2 − 𝑦1 | + |𝑥1 − 𝑦2 |.

Hence, combining Proposition 6.7.2 and Proposition 6.7.3, we conclude Proposition 6.7.1.

6.7.1 Estimate of Vfr
𝜖

In this section, we will prove Proposition 6.7.2. Referring to (6.6.4),

p𝜖 (𝑡, 𝑠, 𝑥𝑖 − 𝑦𝑖) =
∮
C𝑅

(
𝔇𝜖 (𝑧𝑖)

) b(𝑡−𝑠)/𝐽c
ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥𝑖−𝑦𝑖𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
(6.7.10)

where 𝑅 is large enough so that C𝑟 encircles all the poles of the integrand. Therefore, from (6.7.7)

we have

Vfr
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= p𝜖

(
𝑡, 𝑠, 𝑥1 − 𝑦1

)
p𝜖

(
𝑡, 𝑠, 𝑥2 − 𝑦2

)
. (6.7.11)

To estimate V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
, it suffices to analyze p𝜖 (𝑡, 𝑠, 𝑥𝑖 − 𝑦𝑖). Referring to the ex-

pression (6.5.25) and (6.5.26),

𝔇𝜖 (𝑧) := _𝑧`
(1 + 𝛼𝑞𝐽)𝑞−𝜌𝑧 − (a + 𝛼𝑞𝐽)
(1 + 𝛼)𝑞−𝜌𝑧 − (a + 𝛼) , (6.7.12)

ℜ𝜖 (𝑧, 𝑡, 𝑠) :=
𝑡−1∏

𝑘=𝑠+𝐽 b 𝑡−𝑠
𝐽
c
_(𝑘)𝑧`(𝑘) (1 + 𝛼(𝑘)𝑞)𝑞

−𝜌𝑧 − (a + 𝛼(𝑘)𝑞)
(1 + 𝛼(𝑘))𝑞−𝜌𝑧 − (a + 𝛼(𝑘)) . (6.7.13)
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Define the set of poles of the integrand in (6.7.10) to be P, it is clear that

P ⊆
∞⋃
𝑘=0
{𝑞𝜌 a + 𝛼(𝑘)

1 + 𝛼(𝑘) } ∪ {0} =
𝐽−1⋃
𝑘=0
{𝑞𝜌 a + 𝛼(𝑘)

1 + 𝛼(𝑘) } ∪ {0}.

Due to Lemma 6.5.4,

lim
𝜖↓0

𝑞𝜌 (𝛼(𝑘) + a)
1 + 𝛼(𝑘) =

(𝐼 +mod𝐽 (𝑘))𝑏 − (𝐼 +mod𝐽 (𝑘) − 1)
𝑏mod𝐽 (𝑘) − (mod𝐽 (𝑘) − 1) ∈ (0, 1).

Therefore, there exists 0 < Θ < 1 such that for 𝜖 small enough

P ⊆ [0,Θ] . (6.7.14)

To extract the spatial decay of p𝜖 (𝑡, 𝑠, 𝑥𝑖 − 𝑦𝑖), we deform the contour of 𝑧𝑖 from C𝑅 to C𝑟𝑖 where

𝑟𝑖 = u(𝑡 − 𝑠,−sgn(𝑥𝑖 − 𝑦𝑖)𝛽). (6.7.15)

Note that when 𝑡 − 𝑠 is large enough, 𝑟𝑖 is close to 1, thus deforming the contour from C𝑅 to C𝑟𝑖 ,

we do not cross the poles in the integrand. We parametrize C𝑟𝑖 by 𝑧𝑖 (\𝑖) = 𝑟𝑖𝑒i\𝑖 , \ ∈ (−𝜋, 𝜋] and

get

p𝜖 (𝑡, 𝑠, 𝑥𝑖 − 𝑦𝑖) =
1

2𝜋

∮
C𝑟𝑖

(
𝔇𝜖 (𝑧𝑖 (\𝑖))

) b(𝑡−𝑠)/𝐽c
ℜ𝜖 (𝑧𝑖 (\𝑖), 𝑡, 𝑠)𝑧𝑖 (\𝑖)𝑥𝑖−𝑦𝑖𝑑\𝑖

We want to bound each terms that appear in the integrand above. Note that by (6.7.15), |𝑧𝑖 (\𝑖) |𝑥𝑖−𝑦𝑖 =

𝑒
− 𝛽√

𝑡−𝑠+1
|𝑥𝑖−𝑦𝑖 |.

To estimate ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠), referring to (6.7.13), ℜ𝜖 (𝑧, 𝑡, 𝑠) is a product of up to 𝐽 terms (since

𝑡 − 𝑠 − 𝐽 b 𝑡−𝑠
𝐽
c ≤ 𝐽). For each term, by Lemma 6.5.4

lim
𝜖↓0

����_(𝑘)𝑧`(𝑘) (1 + 𝛼(𝑘)𝑞)𝑞−𝜌𝑧 − (a + 𝛼(𝑘)𝑞)(1 + 𝛼(𝑘))𝑞−𝜌𝑧 − (a + 𝛼(𝑘))

����
= |𝑧 | 1𝐼 (𝑏(1 +mod𝐽 (𝑘)) −mod𝐽 (𝑘))𝑧 − (𝑏(𝐼 +mod𝐽 (𝑘) + 1) − (𝐼 +mod𝐽 (𝑘))

(𝑏mod𝐽 (𝑘) − (mod𝐽 (𝑘) − 1))𝑧 − ((𝐼 +mod𝐽 (𝑘))𝑏 − (𝐼 +mod𝐽 (𝑘) − 1)) . (6.7.16)
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The singularities in (6.7.16) lie strictly inside the unit disk. Since 𝑟𝑖 is close to 1 when 𝑡− 𝑠 is large,

for 𝜖 small enough and 𝑡 − 𝑠 large enough, there exists constant 𝐶 such that for 𝑧 ∈ C𝑟𝑖 and 𝑘 ∈ Z≥0����_(𝑘)𝑧`(𝑘) (1 + 𝛼(𝑘)𝑞)𝑞−𝜌𝑧 − (a + 𝛼(𝑘)𝑞)(1 + 𝛼(𝑘))𝑞−𝜌𝑧 − (a + 𝛼(𝑘))

���� ≤ 𝐶,
which implies

|ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠) | ≤ 𝐶. (6.7.17)

Consequently,

p𝜖 (𝑡, 𝑠, 𝑥𝑖 − 𝑦𝑖) ≤
∫ 𝜋

−𝜋
|𝔇𝜖 (𝑧𝑖) | b(𝑡−𝑠)/𝐽c |ℜ𝜖 (𝑧𝑖 (\), 𝑡, 𝑠) | |𝑧𝑖 (\) |𝑥𝑖−𝑦𝑖𝑑\

≤ 𝐶𝑒−
𝛽√

𝑡−𝑠+1
|𝑥𝑖−𝑦𝑖 |

∫ 𝜋

−𝜋

��𝔇𝜖 (𝑧𝑖 (\))
��b(𝑡−𝑠)/𝐽c𝑑\ (6.7.18)

We expect to extract the temporal decay 1√
𝑡−𝑠+1

from the integral above. To this end, we need to

the following lemma.

Lemma 6.7.4. There exists positive constants 𝐶 (𝛽, 𝑇), 𝐶 such that for \ ∈ (−𝜋, 𝜋]

��𝔇𝜖 (𝑧(\))
��𝑡−𝑠 ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\2

, 𝑧(\) = u(𝑡 − 𝑠,±𝛽)𝑒i\

holds for 𝜖 > 0 small enough and large enough 𝑡 − 𝑠 ≤ 𝜖−2𝑇 .

As a remark, we see from (6.7.12) that the function 𝔇𝜖 (𝑧) is not globally analytic due to the

factor 𝑧` (` is not an integer), but it is analytic in a neighborhood of 1. Furthermore,
��𝔇𝜖 (𝑧)

�� is a

continuous function in a neighborhood of the unit circle.

Proof of Lemma 6.7.4. We only prove Lemma 6.7.4 for 𝑧(\) = u(𝑡 − 𝑠, 𝛽)𝑒i\ , the argument for

𝑧(\) = u(𝑡 − 𝑠,−𝛽)𝑒i\ is similar. By writing
��𝔇𝜖 (𝑧(\))

��𝑡−𝑠 = 𝑒(𝑡−𝑠)Re log𝔇𝜖 (𝑧(\)) , it suffices to show

that there exists positive constants 𝐶 (𝛽, 𝑇), 𝐶 such that for 𝜖 > 0 small enough and 𝑡 − 𝑠 ≤ 𝜖−2𝑇

large enough

Re log𝔇𝜖 (u(𝑡 − 𝑠, 𝛽)𝑒i\) ≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

− 𝐶\2,
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where Re 𝑧 denotes the real part of a complex number 𝑧.

We divide our proof into three cases. It suffices to show

• (\ = 0) : log𝔇𝜖 (u(𝑡 − 𝑠, 𝛽)) ≤ 𝐶 (𝛽,𝑇)
𝑡−𝑠+1

• (\ small): There exists Z > 0 s.t.

Re log𝔇𝜖 (u(𝑡 − 𝑠, 𝛽)𝑒i\) ≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

− 𝐶\2 for |\ | ≤ Z .

• (\ large): There exists 𝛿 > 0 such that
��𝔇𝜖 (u(𝑡 − 𝑠, 𝛽)𝑒i\)

�� < 1 − 𝛿 for |\ | > Z .

The proof for the first and second bullet point are done by using the local property of 𝔇𝜖 (𝑧) near 1

(applying Taylor expansion). Let 𝑂 be a small neighborhood around 1 such that 𝔇𝜖 (𝑧) is analytic

inside 𝑂.

(\ = 0): We write 𝔇𝜖 (𝑧) into terms of a telescoping product

𝔇𝜖 (𝑧) =
𝐽−1∏
𝑘=0

_(𝑘)𝑧`(𝑘) 1 + 𝛼(𝑘)𝑞 − (a + 𝛼(𝑘)𝑞)𝑞
𝜌𝑧−1

1 + 𝛼(𝑘) − (𝛼(𝑘) + a)𝑞𝜌 .

By (6.6.5), we see that

𝔇𝜖 (𝑧) =
𝐽−1∏
𝑘=0
E
[
𝑧−𝑅𝜖 (𝑘)] = E[𝑧−∑𝐽−1

𝑘=0 𝑅𝜖 (𝑘)] ,
thus

𝔇𝜖
′(1) = −E

[ 𝐽−1∑︁
𝑘=0

𝑅𝜖 (𝑘)
]
= 0, 𝔇𝜖

′′(1) = Var
[ 𝐽−1∑︁
𝑘=0

𝑅𝜖 (𝑘)
]
=

𝐽−1∑︁
𝑘=0

Var
[
𝑅𝜖 (𝑘)

]
.

Referring to (6.6.27),

lim
𝜖↓0

𝐽−1∑︁
𝑘=0

Var
[
𝑅𝜖 (𝑘)

]
=

𝐽−1∑︁
𝑘=0

(𝐼 + 1 + 2𝑘)𝑏 − (𝐼 + 2𝑘 − 1)
𝐼2(1 − 𝑏)

= 𝐽𝑉∗,

261



where 𝑉∗ is given by (6.1.12). The above discussion implies that

log𝔇𝜖 (1) = 0, (log𝔇𝜖 )′(1) = 0.

Moreover, there exists constant 𝐶 such that uniformly for 𝑧 ∈ 𝑂 and 𝜖 small enough,

| (log𝔇𝜖 )′′(𝑧) | ≤ 𝐶.

Since lim𝑡−𝑠→∞ u(𝑡 − 𝑠, 𝛽) = 1, we see that u(𝑡 − 𝑠, 𝛽) ∈ 𝑂 for 𝑡 − 𝑠 large enough. Thus, we taylor

expand 𝔇𝜖 (𝑧) around 𝑧 = 1 and get

log𝔇𝜖 (u(𝑡 − 𝑠, 𝛽)) ≤ 𝐶
��u(𝑡 − 𝑠, 𝛽) − 1

��2 ≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

, (6.7.19)

which justifies the first bullet point.

(\ small): Consider the function 𝔇𝜖 (𝑧(\)), we calculate for 𝑧(\) ∈ 𝑂

𝜕\ (log𝔇𝜖 (𝑧(\)))
��
\=0 ∈ iR,

lim
𝜖↓0,𝑡−𝑠→∞

𝜕2
\ (log𝔇𝜖 (𝑧(\)))

��
\=0 = −𝐽𝑉∗,��𝜕3

\ (log𝔇𝜖 (𝑧(\)))
�� ≤ 𝐶.

Given these properties, we taylor expand log𝔇𝜖 (𝑧(\)) at \ = 0, there exists Z > 0 such that

Re log𝔇𝜖 (𝑧(\)) ≤ Re log𝔇𝜖 (𝑧(0)) −
𝐽𝑉∗
2
\2 |\ | ≤ Z

In conjunction with Re log𝔇𝜖 (𝑧(0)) ≤ 𝐶 (𝛽,𝑇)
𝑡−𝑠+1 (which is shown by (6.7.19)), we conclude the

second bullet point.
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(\ large): We set

𝔇∗(𝑧) := 𝑧
𝐽
𝐼
(𝑏𝐽 − (𝐽 − 1))𝑧 − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))

𝑧 − (𝐼𝑏 − (𝐼 − 1)) (6.7.20)

Referring to the expression of 𝔇𝜖 in (6.7.12) and using Lemma 6.5.4, one has

lim
𝜖↓0

��𝔇𝜖 (𝑧)
�� = ��𝔇∗(𝑧)��.

The convergence is uniform in an open neighborhood of unit circle. Thereby,

lim
𝜖↓0,𝑡−𝑠→∞

��𝔇𝜖 (u(𝑡 − 𝑠, 𝛽)𝑒i\)
�� = ��𝔇∗(𝑒i\)

�� uniformly over (−𝜋, 𝜋] .

As a result, we conclude the third bullet point as long as we verify the following steepest descent

condition ��𝔇∗(𝑧)�� < 1 for 𝑧 ∈ C1\{1}. (SD.C1)

To prove (SD.C1), we compute

��𝔇∗(𝑒i\)
��2 =

���� (𝑏𝐽 − (𝐽 − 1))𝑒i\ − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))
𝑒i\ − (𝐼𝑏 − (𝐼 − 1))

����2
=
(𝑏𝐽 − (𝐽 − 1))2 + ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))2 − 2(𝑏𝐽 − (𝐽 − 1)) ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1)) cos \

1 + (𝐼𝑏 − (𝐼 − 1))2 − 2(𝐼𝑏 − (𝐼 − 1)) cos \

= 1 − 2𝐽 (1 − 𝑏) (1 − cos \) ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 2))
1 + (𝐼𝑏 − (𝐼 − 1))2 − 2(𝐼𝑏 − (𝐼 − 1)) cos \

< 1, \ ∈ (−𝜋, 𝜋]\{0}.

In the last step, we used the condition 𝐼+𝐽−2
𝐼+𝐽−1 < 𝑏 < 1. �

Having proved Lemma 6.7.4, we proceed to finish the proof of Theorem 6.7.2.

Proof of Theorem 6.7.2. Due to Lemma 6.7.4,

∫ 𝜋

−𝜋

��𝔇𝜖 (𝑧𝑖 (\))
��b 𝑡−𝑠𝐽 c𝑑\ ≤ ∫ 𝜋

−𝜋
𝐶 (𝛽, 𝑇)𝑒−𝐶 (b 𝑡−𝑠𝐽 c+1)\2

𝑑\ ≤ 𝐶 (𝛽, 𝑇)
√
𝑡 − 𝑠 + 1

.
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This being the case, by (6.7.18) we readily see that

p𝜖 (𝑡, 𝑠, 𝑥𝑖 − 𝑦𝑖) ≤
𝐶 (𝛽, 𝑇)
√
𝑡 − 𝑠 + 1

𝑒
− 𝛽√

𝑡−𝑠+1
|𝑥𝑖−𝑦𝑖 |

. (6.7.21)

Incorporating this bound into (6.7.11) concludes Theorem 6.7.2 part (a).

For the gradient, notice that one has

∇𝑥1V
fr
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= ∇p(𝑡, 𝑠, 𝑥1 − 𝑦1)p(𝑡, 𝑠, 𝑥2 − 𝑦2), (6.7.22)

∇𝑦1V
fr
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= p(𝑡, 𝑠, 𝑥1 − 𝑦1)∇p(𝑡, 𝑠, 𝑥2 − 𝑦2 − 1),

∇𝑥1,𝑥2V
fr
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= ∇p(𝑡, 𝑠, 𝑥1 − 𝑦1)∇p(𝑡, 𝑠, 𝑥2 − 𝑦2). (6.7.23)

The proof for gradients ∇𝑥2 , ∇𝑦2 is similar to that for ∇𝑥1 ,∇𝑦1 by symmetry. It suffices to analyze

∇p(𝑡, 𝑥1 − 𝑦1) =
1

2𝜋

∫ 𝜋

−𝜋
𝔇(𝑧1(\1)) b

𝑡−𝑠
𝐽
cℜ𝜖 (𝑧1(\1), 𝑡, 𝑠)𝑧1(\1)𝑥1−𝑦1 (𝑧1(\1) − 1)𝑑\1

By the fact
��𝑧1(\1) − 1

�� = ��𝑒± 𝛽√
𝑡−𝑠+1

+i\1 − 1
�� ≤ 𝐶 ( 1√

𝑡−𝑠+1
+ |\1 |), we conclude

��∇p(𝑡, 𝑥𝑖 − 𝑦𝑖)
�� ≤ 𝐶 (𝛽, 𝑇)𝑒− 𝛽√

𝑡−𝑠+1
|𝑥𝑖−𝑦𝑖 |

∫ 𝜋

−𝜋
𝑒−𝐶 b

𝑡−𝑠
𝐽
c\2

1 ( 1
√
𝑡 − 𝑠 + 1

+ |\1 |)𝑑\1 ≤
𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

𝑒
− 𝛽√

𝑡−𝑠+1
|𝑥𝑖−𝑦𝑖 |

,

(6.7.24)

where the last inequality follows by a change of variable \1 → \1√
𝑡−𝑠+1

. Incorporating this bound

into (6.7.22) and (6.7.23), we conclude the Theorem 6.7.2 (b), (c). �

6.7.2 Estimate of Vin
𝜖 , an overview.

Recall from (6.7.8) that

Vin
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
C𝑅

∮
C𝑅

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
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− Res𝑧1=𝔰𝜖 (𝑧2)

[ ∮
C𝑅

∮
C𝑅

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

]
.

(6.7.25)

We study the double contour integral in (6.7.25). Recall from (6.5.27) and (6.5.28) that

𝔉𝜖 (𝑧1, 𝑧2) =
𝑞a − a + (a − 𝑞)𝑞−𝜌𝑧2 + (1 − 𝑞a)𝑞−𝜌𝑧1 + (𝑞 − 1)𝑞−2𝜌𝑧1𝑧2

𝑞a − a + (a − 𝑞)𝑞−𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌𝑧2 + (𝑞 − 1)𝑞−2𝜌𝑧1𝑧2
, (6.7.26)

which produces a pole at 𝑧1 = 𝔰𝜖 (𝑧2) where

𝔰𝜖 (𝑧) =
(1 − 𝑞a)𝑞−𝜌𝑧 − a(1 − 𝑞)
(𝑞 − a)𝑞−𝜌 + (1 − 𝑞)𝑞−2𝜌𝑧

.

Referring to (6.7.14), the other poles of the integrand belong to [0,Θ] for some 0 < Θ < 1.

We say the contour Γ is admissible if

(1) : Γ contains [0,Θ] but does not contain 1 − 𝐼, (2) : 𝑑 (1 − 𝐼, Γ) > 1
2𝐼
, (6.7.27)

where the distance between a point 𝑧 ∈ C and a set 𝐴 is define by 𝑑 (𝑧, 𝐴) := inf{|𝑧 − 𝑦 | : 𝑦 ∈ 𝐴}.

Figure 6.3 below gives several graphical examples of admissible and not admissible contours.

Define

𝔰∗(𝑧) := lim
𝜖↓0

𝔰𝜖 (𝑧) =
(𝐼 − 1)𝑧 + 1
𝐼 + 1 − 𝑧 .

Note that

lim
|𝑧 |→∞

𝔰∗(𝑧) = 1 − 𝐼 .

Note that 𝑧2 ∈ C𝑟 , from above we have: For 𝑅 large enough and 𝜖 small enough, if Γ is admissible,

deforming the 𝑧1-contour from C𝑟 to Γ will cross the pole 𝑠𝜖 (𝑧2) for all 𝑧2 ∈ C𝑟 . Moreover, such
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deformation does not cross any other poles in P. Therefore,

Vin
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
Γ

∮
C𝑅

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
.

In practice, we deform the 𝑧1-contour to some contour Γ(𝑡 − 𝑠, 𝜖) which depends on both 𝑡 − 𝑠 and

𝜖 so that it is admissible for 𝑡 − 𝑠 large enough and 𝜖 small enough.

1− I

1

2I

δ∗

Γ

1− I

1

2I

δ∗

Γ

1− I

1

2I

δ∗

Γ

Figure 6.3: Graphical examples of admissible and not admissible contour Γ.

Assuming that we have deformed 𝑧1-contour to Γ(𝑡 − 𝑠, 𝜖), which is admissible. The next step is to

deform the 𝑧2-contour. Note that given 𝑧1 ∈ Γ(𝑡 − 𝑠, 𝜖), 𝔉𝜖 (𝑧1, 𝑧2) generates a pole at 𝑧2 = 𝔭𝜖 (𝑧1)

(𝔭𝜖 is the inverse of 𝔰𝜖 )

𝔭𝜖 (𝑧1) =
(1 − 𝑞)a + (𝑞 − a)𝑞−𝜌𝑧1
(𝑞 − 1)𝑞−2𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌

. (6.7.28)

We consider three potential radius

𝑟2 := u(𝑡−𝑠, sgn(𝑥1−𝑦2)𝑘2𝛽), 𝑟′2 := u(𝑡−𝑠, sgn(𝑥1−𝑦2)2𝑘2𝛽), 𝑟′′2 := u(𝑡−𝑠, sgn(𝑥1−𝑦2)3𝑘2𝛽),

(6.7.29)

where 𝑘2 ≥ 1 is a constant which is irrelevant with the current discussion. We deform 𝑧2-contour

from C𝑅 to C𝑟∗2 (𝑧1) , where

𝑟∗2 (𝑧1) = 𝑟21{𝔭𝜖 (𝑧1)>𝑟 ′2} + 𝑟
′′
2 1{𝔭𝜖 (𝑧1)≤𝑟 ′2} .
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In other words, if the pole 𝔭𝜖 (𝑧1) lies outside C𝑟 ′2 , we choose 𝑧2-contour to be a circle with radius

𝑟2 < 𝑟
′
2. If the pole 𝔭𝜖 (𝑧1) lies inside C𝑟 ′2 , we choose 𝑧2-contour to be circle with radius 𝑟′′2 > 𝑟

′
2. It

is clear we always have for 𝑡 − 𝑠 large enough that

|𝔭𝜖 (𝑧1) − 𝑧2 | ≥
𝛽

√
𝑡 − 𝑠 + 1

, ∀𝑧2 ∈ C𝑟∗2 (𝑧1) . (6.7.30)

Referring to the expression of 𝔉𝜖 (𝑧1, 𝑧2) (6.7.26), we find that

Res𝑧2=𝔭𝜖 (𝑧1)𝔉𝜖 (𝑧1, 𝑧2) =
𝑞a − a + (a − 𝑞)𝑞−𝜌𝔭𝜖 (𝑧1) + (1 − 𝑞a)𝑞−𝜌𝑧1 + (𝑞 − 1)𝑞−2𝜌𝑧1𝔭𝜖 (𝑧1)

(𝑞 − 1)𝑞−2𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌
.

We set

ℌ𝜖 (𝑧1) = 𝔇𝜖 (𝑧1)𝔇𝜖 (𝔭𝜖 (𝑧1)),

𝔍𝜖 (𝑧1) = Res𝑧2=𝔭𝜖 (𝑧1)𝔉𝜖 (𝑧1, 𝑧2)𝑧
𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥2−𝑦11{|𝔭𝜖 (𝑧1) |>𝑟 ′2},

=
𝑞a − a + (a − 𝑞)𝑞−𝜌𝔭𝜖 (𝑧1) + (1 − 𝑞a)𝑞−𝜌𝑧1 + (𝑞 − 1)𝑞−2𝜌𝑧1𝔭𝜖 (𝑧1)

(𝑞 − 1)𝑞−2𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌
𝑧
𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥2−𝑦11{|𝔭𝜖 (𝑧1) |>𝑟 ′2} .

(6.7.31)

From preceding discussion, we decompose Vin
𝜖 = Vblk

𝜖 + Vres
𝜖 , where

Vblk
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
Γ(𝑡−𝑠,𝜖)

∮
C𝑟2 (𝑧1)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
c𝑧𝑥3−𝑖−𝑦𝑖
𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
,

Vres
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
Γ(𝑡−𝑠,𝜖)

1{|𝔭𝜖 (𝑧1) |>𝑟 ′2}𝔍𝜖 (𝑧1)ℌ𝜖 (𝑧1)
b 𝑡−𝑠

𝐽
c 𝑑𝑧1
2𝜋i𝑧1𝔭𝜖 (𝑧1)

. (6.7.32)

Note that we integrate under the indicator 1{|𝔭𝜖 (𝑧1) |>𝑟 ′2}, which arises in the case that deforming the

𝑧2-contour from C𝑟 to C𝑟∗2 (𝑧1) crosses the pole 𝔭𝜖 (𝑧1).

We want to perform the steepest descent argument for Vblk
𝜖 and Vres

𝜖 , similar to what we have done

in Section 6.7.1. More precisely, as 𝑡 − 𝑠 → ∞ and 𝜖 ↓ 0, Γ(𝑡 − 𝑠, 𝜖) converges to some fixed
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contour Γ∗.13 We set

𝔭∗(𝑧) := lim
𝜖↓0

𝔭𝜖 (𝑧) =
(𝐼 + 1)𝑧 − 1
𝑧 + (𝐼 − 1) . (6.7.33)

Recall from (6.7.20) that

𝔇∗(𝑧) = 𝑧
𝐽
𝐼
(𝐽𝑏 − (𝐽 − 1))𝑧 − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))

𝑧 − (𝐼𝑏 − (𝐼 − 1)) .

and set

ℌ∗(𝑧) = 𝔇∗(𝑧)𝔇∗(𝔭∗(𝑧)).

Note that

|𝔇∗(𝑧) | = lim
𝜖↓0
|𝔇𝜖 (𝑧) |, |ℌ∗(𝑧) | = lim

𝜖↓0
|ℌ𝜖 (𝑧) |.

We require the contour Γ∗ satisfying the steepest descent condition.

(𝑖)
��𝔇∗(𝑧)�� < 1, 𝑧 ∈ Γ∗\{1}; (𝑖𝑖)

��ℌ∗(𝑧)�� < 1, 𝑧 ∈ Γ∗\{1}. (6.7.34)

As we see from (SD.C1) that if we take Γ∗ = C1, (𝑖) holds. However, (𝑖𝑖) does not hold. In truth,

Figure 6.4 indicates the region where |𝔇∗(𝑧) | ≤ 1 and |ℌ∗(𝑧) | ≤ 1 for 𝐼 = 2 and 𝑏 = 0.8. We see

that C1 lies fully inside |𝔇∗(𝑧) | ≤ 1, but partially outside |ℌ∗(𝑧) | ≤ 1.

SetM = {
��𝑧− 1

𝐼+1
�� = 𝐼

𝐼+1 }, the following lemma says thatM the satisfies steepest descent condition

(6.7.34).

Lemma 6.7.5. We have

|𝔇∗(𝑧) | < 1, 𝑧 ∈ M\{1}, |ℌ∗(𝑧) | < 1, 𝑧 ∈ M\{1}. (SDM)
13We define the distance of two contours to be dist

(
Γ1, Γ2

)
= sup𝑥∈Γ1 ,𝑦∈Γ2

(
𝑑 (𝑥, Γ2) ∨ 𝑑 (𝑦, Γ1)

)
. We say a sequence

of contours Γ𝑛 converges to Γ if lim𝑛→∞ dist (Γ𝑛, Γ) = 0.
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Figure 6.4: We choose 𝑏 = 0.8 and 𝐼 = 2. The figures on the left and right show respectively the
region where

��𝔇∗(𝑧)�� ≤ 1 and
��ℌ∗(𝑧)�� ≤ 1, which is filled with gray color. The unit circle (with

blue color) is drawn for comparison.

Proof. ParametrizeM by 𝑧(\) = 1
𝐼+1 +

𝐼
𝐼+1𝑒

i\ , \ ∈ (−𝜋, 𝜋], we compute

|𝔇∗(𝑧(\)) |2 ≤ |𝑧(\) |
2𝐽
𝐼

���� (𝐽𝑏 − (𝐽 − 1))𝑧(\) − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))
𝑧(\) − (𝐼𝑏 − (𝐼 − 1))

����2
≤

���� (𝐽𝑏 − (𝐽 − 1))𝑧(\) − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))
𝑧(\) − (𝐼𝑏 − (𝐼 − 1))

����2
=

���� (𝐽𝑏 − (𝐽 − 1)) ( 1
𝐼+1 +

𝐼
𝐼+1𝑒

𝑖\) − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))
𝐼
𝐼+1 +

𝐼
𝐼+1𝑒

i\ − (𝐼𝑏 − (𝐼 − 1))

����2
= 1 − 2𝐼2𝐽 (1 − 𝑏) ((𝐼 + 𝐽 + 1)𝑏 − (𝐼 + 𝐽 − 1)) (1 − cos \)�� 1

𝐼+1 +
𝐼
𝐼+1𝑒

i\ − (𝐼𝑏 − (𝐼 − 1))
��2(1 + 𝐼)2 < 1, \ ∈ (−𝜋, 𝜋]\{0}.

where in the first line we used the fact |𝑧(\) | ≤ 1 and in the last line we used 𝐼+𝐽−2
𝐼+𝐽−1 < 𝑏 < 1, note

that when 𝐼 ≥ 2 and 𝐽 ≥ 1, we have

𝑏 ≥ 𝐼 + 𝐽 − 2
𝐼 + 𝐽 − 1

>
𝐼 + 𝐽 − 1
𝐼 + 𝐽 + 1

,

which concludes the last inequality.
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For ℌ∗(𝑧), note that

ℌ∗(𝑧)

= 𝑧
𝐽
𝐼
(𝑏𝐽 − (𝐽 − 1))𝑧 − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))

𝑧 − (𝐼𝑏 − (𝐼 − 1)) 𝔭∗(𝑧)
𝐽
𝐼
(𝑏𝐽 − (𝐽 − 1))𝔭∗(𝑧) − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))

𝔭∗(𝑧) − (𝐼𝑏 − (𝐼 − 1))

=
(
𝑧𝔭∗(𝑧)

) 𝐽
𝐼
(𝑏𝐽 − (𝐽 − 1))𝑧 − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))

𝑧 − (𝐼𝑏 − (𝐼 − 1)) · (𝑏𝐽 − (𝐽 − 1))𝔭∗(𝑧) − ((𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1))
𝔭∗(𝑧) − (𝐼𝑏 − (𝐼 − 1))

A crucial observation is that
��𝑧 − 1

𝐼+1
�� = 𝐼

𝐼+1 implies

��𝑧𝔭∗(𝑧)�� = ��𝑧 (𝐼 + 1)𝑧 − 1
𝑧 + (𝐼 − 1)

�� = �� 𝐼𝑧

𝑧 + (𝐼 − 1)
�� = 1.

which can be verified by inserting 𝑧(\) = 1
𝐼+1 +

𝐼
𝐼+1𝑒

i\ . Consequently, we see that

��ℌ∗(𝑧(\))��2 =

���� 𝑏𝑧(\) − (𝐼 + 1)𝑏 − 1
𝑧(\) − (𝐼𝑏 − (𝐼 − 1)) ·

𝑏𝔭∗(𝑧(\)) − ((𝐼 + 1)𝑏 − 𝐼)
𝔭∗(𝑧(\)) − (𝐼𝑏 − (𝐼 − 1))

����2
=

�� 𝐼 + 𝐽 − (𝐼 + 𝐽 + 1)𝑏 + (𝐽𝑏 − (𝐽 − 1))𝑒i\

𝐼 − (𝐼 + 1)𝑏 + 𝑒i\ · (𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 1) + ((1 − 𝐽)𝑏 + 𝐽 − 2)𝑒i\

𝐼𝑏 − (𝐼 − 1) + (𝑏 − 2)𝑒i\

����2
= 1 + −4(𝑏 − 1)𝐽 (2 − 𝐽 − 𝐼 + 𝑏(𝐽 + 𝐼)) (cos \ − 1) (𝑎𝐽 − 𝑏𝐽 cos \)��(𝑏 − 2)𝑒i\ + (1 + (𝑏 − 1)𝐼)

��2��𝑒i\ − (𝑏 + (𝑏 − 1)𝐼)
��2 (6.7.35)

where

𝑎𝐽 = (𝐽2 + 𝐽𝐼) (1 − 𝑏)2 + 2 + (2𝑏 − 2)𝐽 + (𝑏2 − 1)𝐼 + (𝑏 − 1)2𝐼2

𝑏𝐽 = (𝐽2 + 𝐽𝐼) (1 − 𝑏)2 + (2𝑏 − 2)𝐽 + (1 + 2𝑏 − 𝑏2) + (−3 + 4𝑏 − 𝑏2)𝐼

We claim that |𝑏𝐽 | < 𝑎𝐽 , which implies 𝑎𝐽 − 𝑏𝐽 cos \ > 0. This claim is justified by showing

𝑎𝐽 + 𝑏𝐽 = (2𝐽2 + 2𝐽𝐼 + 𝐼2) (1 − 𝑏)2 + (4𝑏 − 4) (𝐼 + 𝐽) + 3 + 2𝑏 − 𝑏2

= (𝐽2 − 1) (1 − 𝑏)2 + ((𝐽 + 𝐼) (𝑏 − 1) + 2)2 > 0,

𝑎𝐽 − 𝑏𝐽 = (𝑏 − 1)2𝐼2 + 2(𝑏 − 1)2𝐼 + (𝑏 − 1)2 = (𝑏 − 1)2(𝐼 + 1)2 > 0.
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Therefore, by 𝐼+𝐽−2
𝐼+𝐽−1 < 𝑏 < 1 and (6.7.35)

|ℌ∗(𝑧(\)) | < 1, \ ∈ (−𝜋, 𝜋]\{0},

which concludes our proof. �

We need to consider the following modification ofM

M(𝑢) := 𝜕
(
{𝑧 : |𝑧 − 1

𝐼 + 1
| = 𝐼

𝐼 + 1
+ 𝑢} ∩ {|𝑧 | ≤ 1}

)
,

where 𝑢 is some positive real number.

Lemma 6.7.6. There exists 𝛿 > 0 such that for all 0 < 𝑢 < 𝛿, one has

|𝔇∗(𝑧) | < 1, 𝑧 ∈ M(𝑢)\{1},

|ℌ∗(𝑧) | < 1, 𝑧 ∈ M(𝑢)\{1}.
(SDM(𝑢))

Proof. The proof of this lemma uses similar techniques which appear in [CGST20, Lemma 6.4].

By straightforward computation, one finds that

𝔇∗(1) = 1; 𝔇′∗(1) = 0; 𝔇′′∗ (1) = 𝐽𝑉∗.

ℌ∗(1) = 1; ℌ′∗(1) = 0; ℌ′′∗ (1) = 2𝐽𝑉∗.

Here, 𝑉∗ is given by (6.1.12). We taylor expand 𝔇∗(𝑧) and ℌ∗(𝑧) around 𝑧 = 1 and get

𝔇∗(𝑧) = 1 + 1
2
𝐽𝑉∗(𝑧 − 1)2 + O(|𝑧 − 1|3),

ℌ∗(𝑧) = 1 + 𝐽𝑉∗(𝑧 − 1)2 + O(|𝑧 − 1|3).

Notice that in the vertical direction where 𝑧 − 1 ∈ iR, 1
2 (𝑧 − 1)2 is negative. This implies that

|𝔇∗(𝑧) | < 1 𝑧 ∈ A𝑝\{1}; |ℌ∗(𝑧) | < 1 𝑧 ∈ A𝑝\{1}. (6.7.36)
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where A𝑝 is a hourglass region centered at one, A𝑝 = {𝑧 : 𝑧 = 1 + 𝑣𝑒i𝜙, |𝜙 − 𝜋
2 | < 𝜙0, |a | < a0}

with a0, 𝜙0 > 0 fixed. For 𝑧 ∈ M(𝑢)\A𝑝, due to lim𝑢↓0 dist (M(𝑢)\A𝑝,M\A𝑝) = 0 and Lemma

6.7.5, we find that there exists a small 𝛿, such that for 0 < 𝑢 < 𝛿

sup
𝑧∈M(𝑢)\A𝑝

|𝔇∗(𝑧) | < 1, sup
𝑧∈M(𝑢)\A𝑝

|ℌ∗(𝑧) | < 1.

Combining this with (6.7.36) concludes the proof of Lemma 6.7.6. �

We fix a constant 0 < 𝑢∗ < 𝛿 ∧ 1
4𝐼 , and setM′ := M(𝑢∗). From our discussion above,M′ is

admissible and satisfies (SDM(𝑢)).

To prove Proposition 6.7.3, we need to choose our contour such that it controls both Vblk
𝜖 and Vres

𝜖 .

The choice will depend on the sign of 𝑥2 − 𝑦1 and 𝑥1 − 𝑦2. We need to discuss separately for each

of the following cases

(i): (+−) case: 𝑥2 − 𝑦1 ≥ 0 and 𝑥1 − 𝑦2 ≤ 0,

(ii): (−−) case: 𝑥2 − 𝑦1 ≤ 0 and 𝑥1 − 𝑦2 ≤ 0,

(iii): (++) case: 𝑥2 − 𝑦1 ≥ 0 and 𝑥1 − 𝑦2 ≥ 0.

Note that we don’t need to consider the case where 𝑥2− 𝑦1 < 0 and 𝑥1− 𝑦2 < 0, since it contradicts

our condition 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2.

6.7.3 Estimate of Vin
𝜖 , the (+−) case

In this case we shrink the 𝑧1-contour from C𝑟 to

M(𝑡 − 𝑠,−𝛽) := {𝑧1 :
��𝑧1 − 1

𝐼 + 1
�� = 𝐼

𝐼 + 1
− 𝛽
√
𝑡 − 𝑠 + 1

}.

It is clear that for 𝑡 − 𝑠 large enough,M(𝑡 − 𝑠,−𝛽) is admissible. Consequently, we have

Vin
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
= Vblk

𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
+ Vres

𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
,
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where

Vblk
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
C𝑟∗2 (𝑧1)

∮
M(𝑡,−𝛽)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
,

(6.7.37)

Vres
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
M(𝑡,−𝛽)

1{|𝔭𝜖 (𝑧1) |>𝑟 ′2}𝔍𝜖 (𝑧1)ℌ𝜖 (𝑧1)
b 𝑡−𝑠

𝐽
cℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠)

𝑑𝑧1
2𝜋i𝑧1𝔭𝜖 (𝑧1)

.

(6.7.38)

Parametrizing 𝑧1(\1) = 1
𝐼+1 +

(
𝐼
𝐼+1 −

𝛽√
𝑡−𝑠+1

)
𝑒i\1 , we need the following lemma.

Lemma 6.7.7. There exists positive 𝐶 (𝛽, 𝑇), 𝐶 such that

|𝔇𝜖 (𝑧(\)) |𝑡−𝑠 ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\
2
; |ℌ𝜖 (𝑧(\)) |𝑡−𝑠 ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\

2

with 𝑧(\) = 1
𝐼+1 +

(
𝐼
𝐼+1 −

𝛽√
𝑡−𝑠+1

)
𝑒i\ for 𝜖 > 0 small enough and 𝑡 − 𝑠 ≤ 𝜖−2𝑇 large enough.

Proof. Similar to the proof of Lemma 6.7.4, it suffices to show there exists positive constants

𝐶 (𝛽, 𝑇), 𝐶 such that

Re log𝔇𝜖 (𝑧(\)) ≤
𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

− 𝐶\2; Re logℌ𝜖 (𝑧(\)) ≤
𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

− 𝐶\2. (6.7.39)

We prove the lemma for (\ = 0), (\ small) and (\ large) respectively

• (\ = 0) : Re𝔇𝜖 (𝑧(0)),Reℌ𝜖 (𝑧(0)) ≤ 𝐶 (𝛽,𝑇)
𝑡−𝑠+1 .

• (\ small): There exists Z > 0 and constants 𝐶 (𝛽, 𝑇) and 𝐶 > 0 such that (6.7.39) holds for

|\ | ≤ Z .

• (\ large): There exists 𝛿 > 0 such that
��𝔇𝜖 (𝑧(\))

��, ��ℌ𝜖 (𝑧(\))�� < 1 − 𝛿 for |\ | > Z .

We consider the first two bullet points (\ = 0) and (\ small). The analysis of (\ = 0) and (\ small)

case for 𝔇𝜖 is similar to Lemma 6.7.4, we do not repeat here. For ℌ𝜖 (𝑧) = 𝔇𝜖 (𝑧)𝔇𝜖 (𝔭𝜖 (𝑧)), by
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straightforward calculation,

ℌ𝜖 (1) = 𝔇𝜖 (𝔭𝜖 (1)),

ℌ′𝜖 (1) = 𝔇′𝜖 (𝔭𝜖 (1))𝔭′𝜖 (1),

lim
𝜖↓0

ℌ′′𝜖 (1) = 2𝐽𝑉∗. (6.7.40)

For the first equation above, we taylor expand 𝔇𝜖 (𝑧) at 𝑧 = 1 and according to (6.7.44),

ℌ𝜖 (1) = 1 + 1
2
𝔇′′𝜖 (1) (𝔭𝜖 (1) − 1)2 + O

(
(𝔭𝜖 (1) − 1)3

)
= 1 + 𝐽𝑉∗(𝜌𝐼 − 𝜌

2)2
2𝐼2

𝜖2 + O(𝜖 5
2 ). (6.7.41)

For ℌ′𝜖 (1) = 𝔇′𝜖 (𝔭𝜖 (1))𝔭′𝜖 (1), taylor expanding 𝔇′𝜖 (𝑧) around 𝑧 = 1, according to (6.7.44),

𝔇′𝜖 (𝔭𝜖 (1)) = 𝔇′𝜖 (1) +𝔇′′𝜖 (1) (𝔭𝜖 (1) − 1) + O(𝔭𝜖 (1) − 1)2 =
𝐽𝑉∗(𝜌𝐼 − 𝜌2)

2𝐼
𝜖 + O(𝜖 3

2 ),

Combining this with 𝔭′𝜖 (1) = 1 + O(𝜖 1
2 ) yields

ℌ′𝜖 (1) =
𝐽𝑉∗(𝜌𝐼 − 𝜌2)

2𝐼
𝜖 + O(𝜖 3

2 ). (6.7.42)

Using (6.7.41), (6.7.42) and (6.7.40), we get

(logℌ𝜖 ) (1) =
𝐽𝑉∗(𝜌𝐼 − 𝜌2)2

2𝐼2
𝜖2 + O(𝜖 5

2 ), (logℌ𝜖 )′(1) =
𝐽𝑉∗(𝜌𝐼 − 𝜌2)

2𝐼
𝜖 + O(𝜖 3

2 ), lim
𝜖↓0
, (logℌ𝜖 )′′(1) = 2𝐽𝑉∗.

(6.7.43)

Moreover, straightforward calculation gives | (logℌ𝜖 )′′′(𝑧) | ≤ 𝐶 for 𝑧 ∈ 𝑂 (which is a small

neighborhood of 1). Thereby, by Taylor expansion we find that

logℌ𝜖 (𝑧(0)) = logℌ𝜖 (1) + (logℌ𝜖 )′(1) (𝑧(0) − 1) + (logℌ𝜖 )′′(1) (𝑧(0) − 1)2 + O((𝑧(0) − 1)3).

Using (6.7.43), 𝑧(0) = 1 − 𝛽√
𝑡−𝑠+1

and 𝜖2(𝑡 − 𝑠) ≤ 𝑇 , we see that there exists 𝐶 (𝛽, 𝑇) such that for

274



𝑡 − 𝑠 large and 𝜖 small,

logℌ𝜖 (𝑧(0)) ≤
𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

,

which gives the first bullet point.

For (\ small), we readily calculate

𝜕\ (logℌ𝜖 (𝑧(\)))
��
\=0 ∈ iR,

lim
𝜖↓0,𝑡→∞

𝜕2
\ (logℌ𝜖 (𝑧(\)))

��
\=0 = − 2𝐼2𝐽𝑉∗

(𝐼 + 1)2
,��𝜕3

\ (logℌ𝜖 (𝑧(\)))
�� ≤ 𝐶, for |\ | ≤ Z .

Thus, via Taylor expansion, we find that for |\ | ≤ Z ,

Re logℌ𝜖 (𝑧(\)) ≤ Re logℌ𝜖 (𝑧(0)) −
𝐼2𝐽𝑉∗

2(𝐼 + 1)2
\2 ≤ 𝐶 (𝛽, 𝑇)

𝑡 − 𝑠 + 1
− 𝐼2𝐽𝑉∗

2(𝐼 + 1)2
\2,

which conclude the second bulletin point.

For (\ large), recall 𝑧(\) = 1
𝐼+1 +

(
𝐼
𝐼+1 −

𝛽√
𝑡−𝑠+1

)
𝑒i\ , we notice that

lim
𝜖↓0,𝑡−𝑠→∞

��𝔇𝜖 (𝑧(\))
�� = ��𝔇∗( 1

𝐼 + 1
+ 𝐼

𝐼 + 1
𝑒i\)

��, uniformly for \ ∈ (−𝜋, 𝜋] .

lim
𝜖↓0,𝑡−𝑠→∞

��ℌ𝜖 (𝑧(\))�� = ��ℌ∗( 1
𝐼 + 1

+ 𝐼

𝐼 + 1
𝑒i\)

��, uniformly for \ ∈ (−𝜋, 𝜋] .

Thanks to Lemma 6.7.5, there exists 𝛿 > 0 such that for 𝑡− 𝑠 large enough and 𝜖 > 0 small enough,

��𝔇𝜖 (𝑧(\))
��, ��ℌ𝜖 (𝑧(\))�� < 1 − 𝛿 for |\ | > Z,

which completes our proof. �

For Vres
𝜖 (6.7.38), we show that the indicator 1{𝔭𝜖 (𝑧)>𝑟 ′2} prohibits \ to be too small.
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Lemma 6.7.8. We can choose 𝑘2 large enough such that if
��𝔭𝜖 (𝑧(\))�� > 𝑟′2 with 𝑧(\) = 1

𝐼+1 +
(
𝐼
𝐼+1 −

𝛽√
𝑡−𝑠+1

)
𝑒i\ , then |\ | ≥ (𝑡 − 𝑠 + 1)− 1

4 .

Proof. Note that 𝑟′2 = u(𝑡 − 𝑠, 2𝑘2𝛽) ≥ 1 + 2𝑘2𝛽√
𝑡−𝑠+1

, it suffices to show that

��𝔭𝜖 (𝑧(\))�� > 1 + 2𝑘2𝛽√
𝑡 − 𝑠 + 1

implies |\ | > 𝐶 (𝑡 − 𝑠 + 1)− 1
4 .

Referring to (6.7.28), we taylor expand 𝔭𝜖 (1) around 𝜖 = 0

𝔭𝜖 (1) =
𝑒−𝐼
√
𝜖 (1 − 𝑒

√
𝜖 ) + (𝑒

√
𝜖 − 𝑒−𝐼

√
𝜖 )𝑒−𝜌

√
𝜖

(1 − 𝑒(1−𝐼)
√
𝜖 )𝑒−𝜌

√
𝜖 − (1 − 𝑒

√
𝜖 )𝑒−2𝜌

√
𝜖
= 1 + 𝜌𝐼 − 𝜌

2

𝐼
𝜖 + O(𝜖 3

2 ). (6.7.44)

We highlight that there is no
√
𝜖 term in the expansion, which is important for our proof.

We taylor expand 𝔭𝜖 (𝑧) at 𝑧 = 1. Using (6.7.44), 𝑧(0) = 1 − 𝛽√
𝑡−𝑠+1

and lim𝜖↓0 𝔭
′
𝜖 (1) = 1, we find

that for 𝑡 − 𝑠 large enough and 𝜖 small enough,

𝔭𝜖 (𝑧(0)) = 𝔭𝜖 (1) +𝔭′𝜖 (1) (𝑧(0) − 1) + O
(
𝑧(0) − 1

)2 ≤ 1+ 2(𝜌𝐼 − 𝜌2)
𝐼

𝜖 ≤ 1+ 𝐶
√
𝑡 − 𝑠 + 1

. (6.7.45)

In the last inequality, we used the condition 𝑡 − 𝑠 ∈ [0, 𝜖−2𝑇]. In addition, it is straightforward to

see that 𝑑
𝑑\
|𝔭𝜖 (𝑧(\)) |

��
\=0 = 0 and there exists Z, 𝐶′ > 0 such that

�� 𝑑2

𝑑\2 |𝔭𝜖 (𝑧(\)) |
�� ≤ 𝐶′ for |\ | ≤ Z .

Consequently, via Taylor expansion, for |\ | ≤ Z ,

��𝑝𝜖 (𝑧(\))�� ≤ ��𝑝𝜖 (𝑧(0))�� + 𝐶′\2

2
≤ 1 + 𝐶

√
𝑡 − 𝑠 + 1

+ 𝐶
′\2

2
.

Consequently, we have that when |\ | ≤ Z ,

��𝔭𝜖 (𝑧(\))�� > 1 + 2𝑘2𝛽√
𝑡 − 𝑠 + 1

implies 1 + 𝐶
√
𝑡 − 𝑠 + 1

+ 𝐶
′\2

2
≥ 1 + 2𝑘2𝛽√

𝑡 − 𝑠 + 1

By choosing 𝑘2 large enough, we see that |\ | > (𝑡 − 𝑠 + 1)−1/4. �

We are ready to prove Theorem 6.7.3 for (+−) case. As Vin
𝜖 = Vblk

𝜖 +Vres
𝜖 , it is enough to bound
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respectively Vblk
𝜖 and Vres

𝜖 . We begin with Vblk
𝜖 (6.7.37). The proof consists a sequence of bounds

on terms appearing in the integrand (6.7.37). We parametrize by 𝑧1(\1) = 1
𝐼+1 +

(
𝐼
𝐼+1 −

𝛽√
𝑡−𝑠+1

)
𝑒i\1

and 𝑧2(\2) = 𝑟∗(𝑧1)𝑒i\ .

(Vblk
𝜖 , 𝑧

𝑥2−𝑦1
1 𝑧

𝑥1−𝑦2
2 ): Show that |𝑧𝑥2−𝑦1

1 𝑧
𝑥1−𝑦2
2 | ≤ 𝐶𝑒−

𝛽√
𝑡−𝑠+1

( |𝑥1−𝑦2 |+|𝑥2−𝑦1 |) .

Observe that |𝑧1(\1) | =
�� 1
𝐼+1 +

(
𝐼
𝐼+1 −

𝛽√
𝑡−𝑠+1

)
𝑒i\1

�� reaches its maximum at \1 = 0, hence

|𝑧1(\1) | ≤ |𝑧1(0) | = 1 − 𝛽
√
𝑡 − 𝑠 + 1

≤ 𝑒−
𝛽√

𝑡−𝑠+1 ,

which gives |𝑧1 |𝑥2−𝑦1 ≤ 𝑒−
𝛽√

𝑡−𝑠+1
|𝑥2−𝑦1 |. By |𝑧2 | ≥ u(𝑡 − 𝑠, 𝛽), we deduce |𝑧2 |𝑥1−𝑦2 ≤ 𝑒−

𝛽√
𝑡−𝑠+1

|𝑥1−𝑦2 |.

(Vblk
𝜖 , 1

𝑧𝑖
): Show that | 1

𝑧𝑖
| ≤ 𝐶.

Clearly, 1
|𝑧𝑖 | is bounded for 𝑧1 ∈ M(𝑡,−𝛽) and 𝑧2 ∈ C𝑟∗ (𝑧1) .

(Vblk
𝜖 , 𝔉𝜖 (𝑧1, 𝑧2)): Show that

��𝔉𝜖 (𝑧1, 𝑧2)�� ≤ 𝐶 + 𝐶√𝑡 − 𝑠 + 1( |\1 | + |\2 |).

To justify this claim, write

𝔉𝜖 (𝑧1, 𝑧2) =
𝑞a − a + (a − 𝑞)𝑞−𝜌𝑧2 + (1 − 𝑞a)𝑞−𝜌𝑧1 + (𝑞 − 1)𝑞−2𝜌𝑧1𝑧2

((𝑞 − 1)𝑞−2𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌) (𝑧2 − 𝔭𝜖 (𝑧1))

= 1 + 𝑞−𝜌 (1 + 𝑞) (a − 1)
(𝑞 − 1)𝑞−2𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌

· (𝑧2 − 𝑧1) ·
1

𝑧2 − 𝔭𝜖 (𝑧1)
. (6.7.46)

Let us bound each factor on the RHS of (6.7.46). Referring to (6.7.30), we know that 1
|𝑧2−𝔭𝜖 (𝑧1) | ≤

𝐶
√
𝑡 − 𝑠 + 1. Furthermore, we note that

𝑧2−𝑧1 = 𝑒i𝑟∗2 (𝑧1)\2−
( 1
𝐼 + 1
+( 𝐼

𝐼 + 1
− 𝛽
√
𝑡 − 𝑠 + 1

)𝑒i\1
)
= 𝑒i𝑟∗2 (𝑧1)\2−1−

( 𝐼

𝐼 + 1
− 𝛽
√
𝑡 − 𝑠 + 1

)
(𝑒i\1−1)+ 𝛽

√
𝑡 − 𝑠 + 1

,

which implies |𝑧2 − 𝑧1 | ≤ 𝐶
( 1√
𝑡−𝑠+1

+ |\1 | + |\2 |
)
.

In addition, we observe that

lim
𝜖↓0

𝑞−𝜌 (1 + 𝑞) (a − 1)
(𝑞 − 1)𝑞−2𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌

= − 2𝐼
𝑧1 + 𝐼 − 1

.
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Thus, | 𝑞−𝜌 (1+𝑞) (a−1)
(𝑞−1)𝑞−2𝜌𝑧1+(1−𝑞a)𝑞−𝜌

| is uniformly bound over M(𝑡 − 𝑠,−𝛽). Incorporating the bound for

each factor on the RHS of (6.7.46) gives the desired bound.

(Vblk
𝜖 , ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)): Show that |ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠) | ≤ 𝐶.

This is proved using the same reasoning for (6.7.17).

(Vblk
𝜖 , 𝔇𝜖 (𝑧𝑖) b

𝑡−𝑠
𝐽
c): Show that |𝔇𝜖 (𝑧𝑖 (\𝑖)) | b

𝑡−𝑠
𝐽
c ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\2

𝑖 .

The result 𝔇𝜖 (𝑧1(\1)) | b
𝑡−𝑠
𝐽
c ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\2

1 directly follows from Lemma 6.7.7. For |𝔇𝜖 (𝑧2(\2)) | b
𝑡−𝑠
𝐽
c ,

note that either 𝑧2(\2) = u(𝑡, 𝑘2𝛽)𝑒i\2 or u(𝑡, 3𝑘2𝛽)𝑒i\2 (depending on the choice of 𝑧1). Lemma

6.7.4 implies |𝔇𝜖 (𝑧2(\2)) | b
𝑡−𝑠
𝐽
c ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\2

2 .

Via change of variable 𝑧1 = 𝑧1(\1) and 𝑧2 = 𝑧2(\2) and incorporating the preceding bounds, we

arrive at

��Vblk
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) ��
≤ 𝐶 (𝛽, 𝑇)𝑒−

𝛽√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)
∫ 𝜋

−𝜋

∫ 𝜋

−𝜋
(1 +
√
𝑡 − 𝑠 + 1( |\1 | + |\2 |))𝑒−𝐶 (𝑡−𝑠+1) (\

2
1+\

2
2)𝑑\1𝑑\2.

Applying change of variable \𝑖 → 1√
𝑡−𝑠+1

\𝑖, we conclude

|Vblk
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
| ≤ 𝐶 (𝛽, 𝑇)

𝑡 − 𝑠 + 1
𝑒
− 𝛽√

𝑡−𝑠+1
( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)

. (6.7.47)

We turn to study Vres
𝜖 in (6.7.38). The proof consists of bounds on terms involved in the integral

(6.7.38). In the following we parametrize 𝑧1(\1) = 1
𝐼+1 +

(
𝐼
𝐼+1 −

𝛽√
𝑡−𝑠+1

)
𝑒i\1 .

(Vres
𝜖 , 1

𝑧1𝔭𝜖 (𝑧1) ) Show that 1
|𝑧1𝔭𝜖 (𝑧1) | ≤ 𝐶.

By lim𝜖↓0 𝔭𝜖 (𝑧1) = (𝐼+1)𝑧1−1
𝑧1+(𝐼−1) , we deduce that 1

|𝑧1𝔭𝜖 (𝑧1) | ≤ 𝐶 for 𝑧1 ∈ M(𝑡 − 𝑠,−𝛽).

(Vres
𝜖 , ℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠)): Show that |ℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠) | ≤ 𝐶.

By (Vblk
𝜖 , ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)), we see that |ℜ𝜖 (𝑧1, 𝑡, 𝑠) | ≤ 𝐶 for 𝑧1 ∈ M(𝑡 − 𝑠,−𝛽). We are left to show
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for 𝑡 − 𝑠 large and 𝜖 small,

|ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠) | ≤ 𝐶, 𝑧1 ∈ M(𝑡 − 𝑠,−𝛽). (6.7.48)

Recall from (6.7.14) that when 𝜖 > 0 is small enough, all the singularity of ℜ𝜖 (𝑧, 𝑡, 𝑠) belongs to

the interval [0,Θ] for some Θ < 1. As lim𝜖↓0 𝔭𝜖 (𝑧) = 𝔭∗(𝑧), it suffices to show that

|𝔭∗(𝑧1) | ≥ 1, 𝑧1 ∈ M .

To justify this, we parametrize by 𝑧1(\) = 1
𝐼+1 +

𝐼
𝐼+1𝑒

i\ ∈ M,

|𝔭∗(𝑧1) |2 =
(𝐼 + 1)2

𝐼2 + 1 + 2𝐼 cos \
≥ 1.

Hence, we conclude (6.7.48).

(Vres
𝜖 , 𝔍𝜖 (𝑧1)): Show that |𝔍𝜖 (𝑧1) | ≤ 𝐶𝑒

− 𝛽√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |) .

Referring to (6.7.31),

𝔍𝜖 (𝑧1) =
𝑞a − a + (a − 𝑞)𝑞−𝜌𝔭𝜖 (𝑧1) + (1 − 𝑞a)𝑞−𝜌𝑧1 + (𝑞 − 1)𝑞−2𝜌𝑧1𝔭𝜖 (𝑧1)

(𝑞 − 1)𝑞−2𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌
𝑧
𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥2−𝑦11{|𝔭𝜖 (𝑧1) |>𝑟 ′2} .

Let us first bound 𝑧𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥1−𝑦21{|𝔭𝜖 (𝑧1) |>𝑟 ′2}. We know from the discussion in (Vblk

𝜖 , 𝑧
𝑥2−𝑦1
1 𝑧

𝑥1−𝑦2
2 )

that |𝑧1 | ≤ 𝑒
− 𝛽√

𝑡−𝑠+1 . It is straightforward that
��𝔭𝜖 (𝑧1)𝑥1−𝑦21{|𝔭𝜖 (𝑧1) |>𝑟 ′2}

�� ≤ 𝑒− 𝛽√
𝑡−𝑠+1

|𝑥1−𝑦2 |, which im-

plies

|𝑧𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥1−𝑦2 | ≤ 𝑒−

𝛽√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)
. (6.7.49)

In addition, one can compute

lim
𝜖↓0

𝑞a − a + (a − 𝑞)𝑞−𝜌𝔭𝜖 (𝑧1) + (1 − 𝑞a)𝑞−𝜌𝑧1 + (𝑞 − 1)𝑞−2𝜌𝑧1𝔭𝜖 (𝑧1)
(𝑞 − 1)𝑞−2𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌

=
1 − (1 + 𝐼)𝔭∗(𝑧) + (𝐼 − 1)𝑧 + 𝑧𝔭∗(𝑧)

𝑧 + 𝐼 − 1
,
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recall 𝔭∗(𝑧1) = (𝐼+1)𝑧1−1
𝑧1+(𝐼−1) . This implies that

��𝑞a − a + (a − 𝑞)𝑞−𝜌𝔭𝜖 (𝑧1) + (1 − 𝑞a)𝑞−𝜌𝑧1 + (𝑞 − 1)𝑞−2𝜌𝑧1𝔭𝜖 (𝑧1)
(𝑞 − 1)𝑞−2𝜌𝑧1 + (1 − 𝑞a)𝑞−𝜌

�� ≤ 𝐶, 𝑧1 ∈ M(𝑡,−𝛽).

(6.7.50)

Combining (6.7.49) and (6.7.50) yields

|𝔍𝜖 (𝑧1) | ≤ 𝐶𝑒
− 𝛽√

𝑡−𝑠+1
( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)

.

(Vres
𝜖 , ℌ𝜖 (𝑧1(\1)) b

𝑡−𝑠
𝐽
c): Show that |ℌ𝜖 (𝑧1(\1)) | b

𝑡−𝑠
𝐽
c ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\2

1 .

This directly follows from Lemma 6.7.7.

Consequently, we find that

|Vres
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
| ≤ 𝐶

∮
M(𝑡−𝑠,−𝛽)

1{|𝔭𝜖 (𝑧1 (\1)) |>𝑟 ′2} |𝔍𝜖 (𝑧1(\1)) | |ℌ𝜖 (𝑧1(\1)) | b
𝑡−𝑠
𝐽
c 𝑑\1
|𝔭𝜖 (𝑧1(\1)) |

,

≤ 𝐶 (𝛽, 𝑇)𝑒−
𝛽√

𝑡−𝑠+1
( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)

∫ 𝜋

−𝜋
1{𝔭𝜖 (𝑧1 (\1))>𝑟 ′2}𝑒

−𝐶 (𝑡−𝑠+1)\2
1𝑑\1,

≤ 𝐶 (𝛽, 𝑇)𝑒−
𝛽√

𝑡−𝑠+1
( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)

∫
|\1 |>(𝑡−𝑠+1)−

1
4
𝑒−𝐶 (𝑡−𝑠+1)\

2
1𝑑\1,

where the last inequality is due to Lemma 6.7.8. Via change of variable \1 → \1√
𝑡−𝑠+1

, we get

∫
|\1 |>(𝑡−𝑠+1)−

1
4
𝑒−𝐶 (𝑡−𝑠+1)\

2
1𝑑\1 ≤

∫
|\1 |>(𝑡−𝑠+1)

1
2
𝑒−𝐶\

2
1𝑑\1 ≤

𝑒−𝐶 (𝑡−𝑠+1)
√
𝑡 − 𝑠 + 1

≤ 𝐶

𝑡 − 𝑠 + 1
.

For the second inequality above, we used the fact
∫ ∞
𝑏
𝑒−𝑥

2
𝑑𝑥 ≤ 𝐶

𝑏
𝑒−𝑏

2
. Thereby,

|Vres
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
| ≤ 𝐶 (𝛽, 𝑇)

𝑡 − 𝑠 + 1
𝑒
− 𝛽√

𝑡−𝑠+1
( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)

.

Combining this with the upper bound over Vblk
𝜖 (6.7.47) concludes Theorem 6.7.3 part (a).

For the gradient, note that applying ∇𝑥𝑖 or ∇𝑦𝑖 to (6.7.37) and (6.7.38) will gives an additional
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𝑧±
𝑖
− 1 in the integrand of Vblk

𝜖 and Vres
𝜖 , we bound |𝑧𝑖 (\𝑖) − 1| ≤ 𝐶 ( 1√

𝑡−𝑠+1
+ |\𝑖 |) and perform the

change of variable \𝑖 → 1√
𝑡−𝑠+1

\𝑖 produces an extra factor of 1√
𝑡−𝑠+1

. Similarly, applying ∇𝑥1,𝑥2 will

produce an additional factor (𝑧1(\1) − 1) (𝑧2(\2) − 1). We bound

|𝑧1(\1) − 1| · |𝑧2(\2) − 1| ≤ 𝐶
( 1
√
𝑡 − 𝑠 + 1

+ |\1 |
)
·
( 1
√
𝑡 − 𝑠 + 1

+ |\2 |
)
,

performing change of variable \𝑖 → 1√
𝑡−𝑠+1

\𝑖 produces an extra factor of 1
𝑡−𝑠+1 . This completes the

proof of Theorem 6.7.3 (b), (c).

6.7.4 Estimate of Vin
𝜖 , the (−−) case

We turn to prove Theorem 6.7.1 when 𝑥2 − 𝑦1 ≤ 0 and 𝑥1 − 𝑦2 ≤ 0. This case is more involved

than the previous one. One stumbling block is that we prefer to deform the 𝑧1-contour to be Cu(𝑡,𝛽)

to extract the spatial exponential decay. On the other hand, as depicted in Figure 6.4, the unit circle

does not satisfy the steepest descent condition for ℌ𝜖 (𝑧). We resolve this issue by first shrinking

the 𝑧1-contour to M′(𝑡 − 𝑠, 𝛽), then for Vblk
𝜖 , we re-deform the 𝑧1-contour from M(𝑡 − 𝑠, 𝛽) to

Cu(𝑡,𝛽) .

We define

M′(𝑡, 𝛽) = 𝜕
{
{|𝑧 − 1

𝐼 + 1
| ≤ 𝐼

𝐼 + 1
+ 𝑢∗} ∩ {|𝑧 | ≤ u(𝑡, 𝛽)}

}
,

recall 𝑢∗ is some fix constant which belongs to (0, 𝛿 ∧ 1
4𝐼 ). SinceM′(𝑡, 𝛽) → M′ as 𝑡 → ∞, it

is clear that for 𝑡 − 𝑠 large enough, M′(𝑡 − 𝑠, 𝛽) is admissible. Note that the parametrization of

M′(𝑡 − 𝑠, 𝛽) is given by the right part of Figure 6.5.

We decompose Vin
𝜖 = Vblk

𝜖 + Vres
𝜖 ,

Vblk
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
M ′(𝑡−𝑠,𝛽)

∮
𝐶𝑟∗2 (𝑧1)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
,

Vres
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
M ′(𝑡−𝑠,𝛽)

1{|𝔭𝜖 (𝑧1) |>𝑟 ′2}𝔍𝜖 (𝑧1)ℌ𝜖 (𝑧1)
b 𝑡−𝑠

𝐽
cℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠)

𝑑𝑧1
2𝜋i𝑧1𝔭𝜖 (𝑧1)

.

(6.7.51)
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1

I+1

I

I+1
+ u∗

u(t− s;β)

θ

M0(t− s; β)

1
I+1

M0(t− s; β)

z(θ)

Figure 6.5: The contourM′(𝑡 − 𝑠, 𝛽) and its parametrization

Let us study Vblk
𝜖 in the first place. As we mention at the beginning, when 𝑥2 − 𝑦1 ≤ 0, 𝑧1 does

not favor the contourM′(𝑡 − 𝑠, 𝛽) to extract spatial decay. We prove in the following that we can

re-deform the 𝑧1-contour fromM′(𝑡 − 𝑠, 𝛽) to Cu(𝑡−𝑠,𝛽) .

Lemma 6.7.9. For 𝑡 − 𝑠 large enough and 𝜖 small enough,

∮
M ′(𝑡−𝑠,𝛽)

∮
C𝑟∗2 (𝑧1)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

=

∮
Cu(𝑡−𝑠,𝛽)

∮
C𝑟∗2 (𝑧1)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
.

Proof. The contourM′(𝑡 − 𝑠, 𝛽) and Cu(𝑡−𝑠,𝛽) share a common part Λ(𝑡 − 𝑠) := M′(𝑡 − 𝑠, 𝛽) ∩

Cu(𝑡−𝑠,𝛽) . We denote by Λ1(𝑡 − 𝑠) := M′(𝑡 − 𝑠, 𝛽)\Λ(𝑡 − 𝑠) and Λ2(𝑡 − 𝑠) := Cu(𝑡−𝑠,𝛽)\Λ(𝑡 − 𝑠).

Decompose the contourM′(𝑡 − 𝑠, 𝛽) = Λ(𝑡 − 𝑠) ∪ Λ1(𝑡 − 𝑠), Cu(𝑡−𝑠,𝛽) = Λ(𝑡 − 𝑠) ∪ Λ2(𝑡 − 𝑠), it

suffices to prove

∮
Λ1 (𝑡−𝑠)

∮
C𝑟∗2 (𝑧1)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

=

∮
Λ2 (𝑡−𝑠)

∮
C𝑟∗2 (𝑧1)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
(6.7.52)
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To prove the above equation, we first claim that for 𝜖 small enough and 𝑡 − 𝑠 ≤ 𝜖−2𝑇 large enough,

𝑟∗2 (𝑧1) = u(𝑡 − 𝑠, 𝑘2𝛽), ∀ 𝑧1 ∈ Λ1(𝑡 − 𝑠) ∪ Λ2(𝑡 − 𝑠) (6.7.53)

That is to say, the 𝑧2-contour is always Cu(𝑡,𝑘2𝛽) , which does not depend on the choice of 𝑧1.

To justify this claim, we need to prove for 𝜖 small enough and 𝑡 − 𝑠 large enough

|𝔭𝜖 (𝑧1) | > u(𝑡 − 𝑠, 2𝑘2𝛽).

We denote by Λ∗ =M′ ∩ C1, Λ∗1 =M′\Λ∗ and Λ∗2 = C1\Λ∗. Note that as 𝑡 − 𝑠→∞ and 𝜖 ↓ 0,

Λ1(𝑡 − 𝑠, 𝛽) → Λ∗1, Λ2(𝑡 − 𝑠, 𝛽) → Λ∗2, 𝔭𝜖 (𝑧1) → 𝔭∗(𝑧1), u(𝑡 − 𝑠, 2𝑘2𝛽) → 1.

Therefore, it suffices to consider the limit case and show that there exists 𝛿 > 0 s.t.

|𝔭∗(𝑧1) | =
���� (𝐼 + 1)𝑧1 − 1
𝑧1 + (𝐼 − 1)

���� > 1 + 𝛿, 𝑧1 ∈ Λ∗1 ∪ Λ
∗
2.

If 𝑧1 ∈ Λ∗1, we parametrize 𝑧1(\) = 1
𝐼+1 +

𝐼
𝐼+1𝑒

i\ , where |\ | ≥ Z for some positive constant Z . We

readily compute

|𝔭∗(𝑧1(\)) |2 =
(𝐼 + 1)2

𝐼2 + 1 + 2𝐼 cos \
≥ (𝐼 + 1)2
𝐼2 + 1 + 2𝐼 cos Z

> 1.

If 𝑧1 ∈ Λ∗2, we parametrize 𝑧1(\) = 𝑒i\ where |\ | ≥ Z ′ for some positive constant Z ′.

|𝔭∗(𝑧1) |2 =
(𝐼 + 1)2 + 1 − 2(𝐼 + 1) cos \
(𝐼 − 1)2 + 1 + 2(𝐼 − 1) cos \

≥ (𝐼 + 1)2 + 1 − 2(𝐼 + 1) cos Z ′

(𝐼 − 1)2 + 1 + 2(𝐼 − 1) cos Z ′
> 1,

where the first inequality above is due to the fact that (𝐼+1)
2+1−2(𝐼+1) cos \

(𝐼−1)2+1+2(𝐼−1) cos \ increases as |\ | ∈ [0, 𝜋]

increases.
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Having shown (6.7.53), by Fubini’s theorem, the desired identity (6.7.52) turns into

∮
Cu(𝑡−𝑠,𝑘2𝛽)

∮
Λ1 (𝑡−𝑠)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

=

∮
Cu(𝑡−𝑠,𝑘2𝛽)

∮
Λ2 (𝑡−𝑠)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

In order justify the identity above, it is sufficient to show that for all 𝑧2 ∈ Cu(𝑡−𝑠,𝑘2𝛽) ,

∮
Λ1 (𝑡−𝑠)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
=

∮
Λ2 (𝑡−𝑠)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
,

which is equivalent to

∮
𝜕G(𝑡−𝑠)

𝔉𝜖 (𝑧1, 𝑧2)𝔇𝜖 (𝑧1) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧1, 𝑡, 𝑠)𝑧𝑥2−𝑦1

1
𝑑𝑧1

2𝜋i𝑧1
= 0, (6.7.54)

where 𝜕G(𝑡−𝑠) is the boundary of the crescent G(𝑡−𝑠) = {|𝑧 | ≤ u(𝑡−𝑠, 𝛽)}\{|𝑧− 1
𝐼+1 | =

𝐼
𝐼+1 +𝑢∗},

which is depicted in Figure 6.6 (note that 𝜕G(𝑡 − 𝑠) = Λ1(𝑡 − 𝑠) ∪ Λ2(𝑡 − 𝑠)).

We set out proving (6.7.54). Since 𝜕G(𝑡 − 𝑠) is a closed curve, according to Cauchy’s theorem, we

only need to prove that no pole of the integrand (6.7.54) lies inside of G(𝑡 − 𝑠). As we mentioned

before, for 𝜖 small enough, the pole either equals 𝔰𝜖 (𝑧2) or belongs to [0,Θ]. It is straightforward

that [0,Θ]∩G(𝑡−𝑠) = ∅. Hence, we only need to show that 𝔰𝜖 (𝑧2) ∉ G(𝑡−𝑠) for all 𝑧2 ∈ Cu(𝑡−𝑠,𝑘2𝛽) .

We claim that for 𝑡 − 𝑠 large enough and 𝜖 small enough,

inf
𝑧2∈Cu(𝑡−𝑠,𝑘2𝛽)

Re 𝔰𝜖 (𝑧2) > sup
𝑧1∈G(𝑡−𝑠)

Re 𝑧1.

Note that as 𝑡 − 𝑠→∞ and 𝜖 ↓ 0,

Cu(𝑡−𝑠,𝑘2𝛽) → C1, G(𝑡 − 𝑠) → G, 𝔰𝜖 (𝑧) → 𝔰∗(𝑧)
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1
I+1

I
I+1 + u∗

u(t− s; β)

@G(t− s)

Figure 6.6: The crescent G(𝑡 − 𝑠) and its boundary 𝜕G(𝑡 − 𝑠).

where G := {|𝑧 | ≤ 1}\{|𝑧 − 1
𝐼+1 | =

𝐼
𝐼+1 + 𝑢∗} and recall 𝔰∗(𝑧) = (𝐼−1)𝑧+1

𝐼+1−𝑧 . Therefore, it suffices to

show that

inf
𝑧2∈C1

Re 𝔰∗(𝑧2) > sup
𝑧1∈G

Re 𝑧1.

To justify the inequality above, we first observe that sup𝑧1∈G Re 𝑧1 < 1. In addition, by setting

𝑧2 = 𝑒i\ , we see that

Re 𝔰∗(𝑒i\) = Re
(𝐼 − 1)𝑒i\ + 1
𝐼 + 1 − 𝑒i\ =

2 + (𝐼2 − 2) cos \
(𝐼 + 1)2 + 1 − 2(𝐼 + 1) cos \

≥ 1.

Consequently, we proved 𝔰𝜖 (𝑧2) ∉ G(𝑡 − 𝑠), which completes the proof for Lemma 6.7.9. �

In summary, we can write Vin
𝜖 = Vblk

𝜖 + Vres
𝜖 , where

Vblk
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
Cu(𝑡−𝑠,𝛽)

∮
C𝑟∗2 (𝑧1)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖

(6.7.55)
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and Vres
𝜖 is given by (6.7.51).

Lemma 6.7.10. For the parametrization 𝑧(\) given in Figure 6.5, we have for 𝑡 − 𝑠 ≤ 𝜖−2𝑇 large

enough and 𝜖 > 0 small enough

|𝔇𝜖 (𝑧(\)) |𝑡−𝑠 ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\
2
, |𝔇𝜖 (𝑧(\)) |𝑡−𝑠 ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\

2
, 𝑧(\) ∈ M′(𝑡−𝑠, 𝛽).

Proof. Similar to Lemma 6.7.7, it suffices to show that there exists 𝐶 (𝛽, 𝑇), 𝐶 > 0 s.t.

Re log𝔇𝜖 (𝑧(\)) ≤
𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

− 𝐶\2; Re logℌ𝜖 (𝑧(\)) ≤
𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

− 𝐶\2.

We split out proof for (\ = 0), for (\ small) and for (\ large).

• (\ = 0) : Re𝔇𝜖 (𝑧(0)),Reℌ𝜖 (𝑧(0)) ≤ 𝐶 (𝛽,𝑇)
𝑡−𝑠+1 .

• (\ small): There exists Z > 0 and constants 𝐶 (𝛽, 𝑇) and 𝐶 > 0 such that (6.7.39) holds for

|\ | ≤ Z .

• (\ large): We can find 𝛿 > 0 such that
��𝔇𝜖 (𝑧(\))

��, ��ℌ𝜖 (𝑧(\))�� < 1 − 𝛿 for |\ | > Z .

Recall that M′(𝑡 − 𝑠, 𝛽) is the same as Cu(𝑡−𝑠,𝛽) in a neighborhood of 1, hence 𝑧(\) ∈ Cu(𝑡−𝑠,𝛽)

when \ is small. This being the case, the proof for (\ = 0) and (\ small) is the same as in Lemma

6.7.7. For (\ large), since M′(𝑡 − 𝑠, 𝛽) → M′ when 𝑡 − 𝑠 → ∞ and M′ satisfies the steepest

descent condition, we find that for 𝑡 − 𝑠 large and 𝜖 small,

|𝔇𝜖 (𝑧(\)) | < 1 − 𝛿, |ℌ𝜖 (𝑧(\)) | < 1 − 𝛿, for |\ | ≥ Z .

This completes our proof. �

We begin to estimate Vblk
𝜖 in (6.7.55). In what follows we check a sequence of bounds on terms

involved in the integral (6.7.55), we parametrize 𝑧1 = u(𝑡 − 𝑠, 𝛽)𝑒i\1 and 𝑧2 = 𝑟∗2 (𝑧1)𝑒
i\2 .

(Vblk
𝜖 , 𝑧

𝑥2−𝑦1
1 𝑧

𝑥1−𝑦2
2 ): Show that |𝑧𝑥2−𝑦1

1 𝑧
𝑥1−𝑦2
2 | ≤ 𝑒−

𝛽√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |) .
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Since 𝑧1 ∈ Cu(𝑡−𝑠,𝛽) and 𝑧2 ∈ C𝑟∗2 (𝑧1) , we have |𝑧𝑖 | ≥ u(𝑡 − 𝑠, 𝛽). Along with the condition

𝑥3−𝑖 − 𝑦𝑖 ≤ 0 for 𝑖 = 1, 2, we obtain |𝑧1 |𝑥2−𝑦1 |𝑧2 |𝑥1−𝑦2 ≤ 𝑒−
𝛽√

𝑡−𝑠+1
( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |) .

(Vblk
𝜖 ,𝔉𝜖 (𝑧1, 𝑧2)): Show that

��𝔉𝜖 (𝑧1, 𝑧2)�� ≤ 𝐶 + 𝐶√𝑡 − 𝑠 + 1( |\1 | + |\2 |).

The argument for this part is the same as in the (+−) case.

(Vblk
𝜖 ,ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)): Show that |ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠) | ≤ 𝐶.

The argument is the same as (+−) case (Vblk
𝜖 ,ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)).

(Vblk
𝜖 ,𝔇𝜖 (𝑧𝑖) b

𝑡−𝑠
𝐽
c): Show that |𝔇𝜖 (𝑧𝑖 (\𝑖)) | b

𝑡−𝑠
𝐽
c ≤ 𝐶 (𝛽, 𝑇) exp(−𝐶 (𝑡 − 𝑠 + 1)\2

𝑖
).

This is the content of Lemma 6.7.4.

As a consequence, we perform the same procedure as in the (+−) case and get

|Vblk
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
|

≤ 𝐶 (𝛽, 𝑇)𝑒−
𝛽√

𝑡−𝑠+1
( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)

∫ 𝜋

−𝜋

∫ 𝜋

−𝜋
(1 +
√
𝑡 − 𝑠 + 1( |\1 | + |\2 |))𝑒−𝐶 (𝑡−𝑠+1) (\

2
1+\

2
2)𝑑\1𝑑\2

≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

𝑒
− 𝛽√

𝑡−𝑠+1
( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)

. (6.7.56)

We turn our attention to study Vres
𝜖 , the proof similarly consists of bounds on terms involved in the

integral (6.7.51). In the following we parametrize 𝑧1 = 𝑧1(\) ∈ M′(𝑡 − 𝑠, 𝛽) as depicted in Figure

6.5.

(Vres
𝜖 , 1

𝑧1𝔭𝜖 (𝑧1) ): Show that | 1
𝑧1𝔭𝜖 (𝑧1) | ≤ 𝐶.

This is by the same argument as in the (+−) case.

(Vres
𝜖 ,ℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠)): Show that |ℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠) | ≤ 𝐶.

The argument for this part is the same as (Vres
𝜖 ,ℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠)) in the (+−) case.

(Vres
𝜖 , ℌ𝜖 (𝑧1) b

𝑡−𝑠
𝐽
c): Show that |ℌ𝜖 (𝑧1) | b

𝑡−𝑠
𝐽
c ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\2

.

This is the content of Lemma 6.7.10.

(Vres
𝜖 ,𝔍𝜖 (𝑧1)): Show that |𝔍𝜖 (𝑧1) | ≤ 𝐶𝑒

− 𝛽

2
√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |) .
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Similar to the discussion in (Vres
𝜖 ,𝔍𝜖 (𝑧1)) for the (+−) case, it is sufficient to show

|𝑧𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥1−𝑦21{|𝔭𝜖 (𝑧1) |>𝑟 ′2} | ≤ 𝑒

− 𝛽

2
√
𝑡−𝑠+1

( |𝑥1−𝑦2 |+|𝑥2−𝑦1 |)
.

Since for 𝑧1 ∈ M(𝑡 − 𝑠, 𝛽), |𝑧1 | could be much less than 1, we can not bound 𝑧1 and 𝔭𝜖 (𝑧1)

separately. Instead, we write

|𝑧𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥1−𝑦21{|𝔭𝜖 (𝑧1) |>𝑟 ′2} | = |𝑧1𝔭𝜖 (𝑧1) |

𝑥2−𝑦1 |𝔭𝜖 (𝑧1) |𝑥1−𝑥2+𝑦1−𝑦21{|𝔭𝜖 (𝑧1) |>𝑟 ′2} (6.7.57)

Note that 𝑥1 − 𝑥2 + 𝑦1 − 𝑦2 ≤ 0 (since 𝑥1 ≤ 𝑦1 and 𝑥2 ≤ 𝑦2), hence

|𝔭𝜖 (𝑧1) |𝑥1−𝑥2+𝑦1−𝑦21{|𝔭𝜖 (𝑧1) |>𝑟 ′2} ≤ u(𝑡 − 𝑠, 𝛽)𝑥2−𝑥1+𝑦2−𝑦1 .

We claim that

|𝑧1𝔭𝜖 (𝑧1) | > u(𝑡 − 𝑠, 𝛽), 𝑧1 ∈ M′(𝑡 − 𝑠, 𝛽). (6.7.58)

Once this is proved, by (6.7.57)

|𝑧𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥1−𝑦21{|𝔭𝜖 (𝑧1) |>𝑟 ′2} | ≤ u(𝑡 − 𝑠, 𝛽)𝑥2−𝑦1u(𝑡 − 𝑠, 𝛽)𝑥1−𝑥2+𝑦1−𝑦2 ≤ 𝑒−

𝛽

2
√
𝑡−𝑠+1

( |𝑥1−𝑦2 |+|𝑥2−𝑦1 |)
.

Let us justify (6.7.58). We decompose M′(𝑡 − 𝑠, 𝛽) = Λ(𝑡 − 𝑠) ∪ Λ1(𝑡 − 𝑠), where Λ(𝑡 − 𝑠) =

M′(𝑡 − 𝑠, 𝛽) ∩ Cu(𝑡−𝑠,𝛽) and Λ1(𝑡 − 𝑠) = M′(𝑡 − 𝑠, 𝛽)\Λ(𝑡 − 𝑠). If 𝑧1 ∈ Λ(𝑡 − 𝑠) ⊆ Cu(𝑡−𝑠,𝛽) , we

reparametrize by 𝑧1(\1) = u(𝑡 − 𝑠, 𝛽)𝑒i\1 . It suffices to show that

|𝔭𝜖 (u(𝑡 − 𝑠, 𝛽)𝑒i\1) | ≥ 1.

By straightforward computation, one sees that |𝔭𝜖 (u(𝑡 − 𝑠, 𝛽)𝑒i\1) | reaches its minimum at \1 = 0.
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Hence we only need to prove that

𝔭𝜖 (u(𝑡 − 𝑠, 𝛽)) ≥ 1.

By (6.7.44), 𝔭𝜖 (1) = 1 + 𝜌𝐼−𝜌2

𝐼
𝜖 + O(𝜖 3

2 ). In addition, direct computation yields lim𝜖↓0 𝔭
′
𝜖 (1) = 1

and |𝔭′′𝜖 (𝑧) | uniformly bounded in a small neighborhood of 1. Consequently, we taylor expand

𝔭𝜖 (𝑧) at 1,

𝔭𝜖 (u(𝑡 − 𝑠, 𝛽)) = 𝔭𝜖 (1) + 𝔭′𝜖 (1) (u(𝑡 − 𝑠, 𝛽) − 1) + O((u(𝑡 − 𝑠, 𝛽) − 1)2) ≥ 1.

for 𝑡 − 𝑠 large and 𝜖 small.

If 𝑧1 ∈ Λ1(𝑡 − 𝑠), which means that |𝑧1 − 1
𝐼+1 | =

𝐼
𝐼+1 + 𝑢∗. We see that

lim
𝜖↓0
|𝑧1𝔭𝜖 (𝑧1) | = |𝑧1𝔭∗(𝑧1) | = | (𝐼 + 1)𝑧1 − 1| ·

�� 𝑧1
𝑧1 + 𝐼 − 1

�� = (𝐼 + (𝐼 + 1)𝑢∗) ·
�� 𝑧1
𝑧1 + 𝐼 − 1

�� (6.7.59)

We claim that for 𝑧1 ∈ Λ1(𝑡− 𝑠),
�� 𝑧1
𝑧1+𝐼−1

�� > 1
𝐼
. This could verify by inserting 𝑧1 = 1

𝐼+1 + (
𝐼
𝐼+1 +𝑢∗)𝑒

i\

into (6.7.59). A geometric way to prove this inequality is that one has | 𝑧
𝑧+𝐼−1 | =

1
𝐼

for all 𝑧 satisfying

|𝑧 − 1
𝐼+1 | =

𝐼
𝐼+1 . If ones increase the radius of circle |𝑧 − 1

𝐼+1 | =
𝐼
𝐼+1 } (by 𝑢∗), the value of

�� 𝑧
𝑧+𝐼−1

��
will also increase. Thereby,

lim
𝜖↓0
|𝑧1𝔭𝜖 (𝑧1) | ≥

𝐼 + (𝐼 + 1)𝑢∗
𝐼

> 1.

This implies when 𝑧1 ∈ Λ(𝑡 − 𝑠), |𝑧1𝔭𝜖 (𝑧1) | > 1 for 𝑡 − 𝑠 large and 𝜖 small, which completes the

proof of (6.7.58).

Similar to the proof of Lemma 6.7.8 in the (+−) case, we find that {|𝔭𝜖 (𝑧1(\)) | > u(𝑡−𝑠, 2𝑘2𝛽)} ⊆

{|\ | > (𝑡 − 𝑠 + 1)− 1
4 }, hence

|Vres
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
| ≤ 𝐶 (𝛽, 𝑇)𝑒−

𝛽

2
√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)
∫ 𝜋

−𝜋
1{|𝔭𝜖 (𝑧1 (\)) |≥𝑟 ′2}𝑒

−𝐶 (𝑡−𝑠+1)\2
𝑑\
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≤ 𝐶 (𝛽, 𝑇)𝑒−
𝛽

2
√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)
∫
|\ |>(𝑡−𝑠+1)−

1
4
𝑒−𝐶 (𝑡−𝑠+1)\

2
𝑑\ ≤ 𝐶 (𝛽, 𝑇)

𝑡 − 𝑠 + 1
𝑒
− 𝛽

2
√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)

(6.7.60)

Combining the bounds (6.7.56) and (6.7.60) implies Theorem 6.7.3 (a).

To estimate the gradient, the procedure is similar to in (+−) case, note that applying ∇𝑥𝑖 or ∇𝑦𝑖 to

(6.7.55) and (6.7.51) gives an additional 𝑧±
𝑖
−1 factor, applying ∇𝑥1,𝑥2 produces an additional factor

(𝑧1 − 1) (𝑧2 − 1). By |𝑧𝑖 (\𝑖) − 1| ≤ 𝐶 ( 1√
𝑡−𝑠+1

+ |\𝑖 |), we conclude Theorem 6.7.3 (b), (c).

6.7.5 Estimate of Vin
𝜖 , the (++) case

In this section, we fix 𝑘2 = 1 in (6.7.29). Note that 𝑥1 − 𝑦2 ≥ 0, the difficulty for this case is to

choose a suitable 𝑧1-contour Γ(𝑡 − 𝑠, 𝜖) so as to extract the spatial decay from 𝑧
𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥1−𝑦2 in

the integrand Vres
𝜖 (6.7.32). Let us write

|𝑧𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥1−𝑦2 | = |𝑧1𝔭𝜖 (𝑧1) |𝑥1−𝑦2 |𝑧1 |𝑥2−𝑥1+𝑦2−𝑦1

We control respectively |𝑧1𝔭𝜖 (𝑧1) | and |𝑧1 |. We deform the 𝑧1-contour to

M′′(𝑡 − 𝑠, 𝜖 ,−𝑘1𝛽) = {𝑧1 : |𝑧1𝔭𝜖 (𝑧1) | = u(𝑡 − 𝑠,−𝑘1𝛽)},

where 𝑘1 is a positive constant that we will specify later. Note that when 𝐼 ≥ 2, this contour

can only be implicitly defined (when 𝐼 = 1 it is a circle). The following lemma provides a few

properties of the contour.

Lemma 6.7.11. For 𝑡−𝑠 large enough and 𝜖 small enough, given \ ∈ (−𝜋, 𝜋], there exists a unique

positive 𝑟𝜖,𝑡−𝑠 (\) such that

|𝑧1𝔭𝜖 (𝑧1) | = u(𝑡 − 𝑠,−𝑘1𝛽), 𝑧1(\) =
1

𝐼 + 1
+ 𝑟𝜖,𝑡−𝑠 (\)𝑒i\ . (6.7.61)
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𝑟𝜖,𝑡−𝑠 (\) is infinitely differentiable with 𝑟′𝜖,𝑡−𝑠 (0) = 0. Moreover, one has uniformly for \ ∈ (−𝜋, 𝜋],

lim
𝜖↓0,𝑡−𝑠→∞

𝑟𝜖,𝑡−𝑠 (\) =
𝐼

𝐼 + 1
,

lim
𝜖↓0,𝑡−𝑠→∞

𝑟
(𝑛)
𝜖,𝑡−𝑠 (\) = 0, ∀𝑛 ∈ Z≥1.

where 𝑓 (𝑛) (\) represents the 𝑛-th derivative of 𝑓 (\).

Proof. Let 𝑤 = 𝑡 − 𝑠, as 𝑤 →∞ and 𝜖 ↓ 0, the equation |𝑧1𝔭𝜖 (𝑧1) | = u(𝑤,−𝛽) converges to

|𝑧1𝔭∗(𝑧1) | =
���� 𝑧1((𝐼 + 1)𝑧1 − 1)

𝑧1 + (𝐼 − 1)

���� = 1. (6.7.62)

(note 𝔭𝜖 (𝑧1) → 𝔭∗(𝑧) and u(𝑤, 𝛽) → 1). Setting 𝑧1 = 1
𝐼+1 + 𝑟𝑒

i\ in (6.7.62) yields

(𝐼 + 1)4𝑟4 + 2(𝐼 + 1)3𝑟3 cos \ − 2𝐼2(𝐼 + 1)𝑟 cos \ − 𝐼4 = 0. (6.7.63)

Factorizing the LHS of (6.7.63) yields

(
(𝐼 + 1)2𝑟2 − 𝐼2

) (
(𝐼 + 1)2𝑟2 + 𝐼2 + 2(𝐼 + 1)𝑟 cos \

)
= 0.

Thus, (6.7.63) permits four root at

𝑟 = ± 𝐼

𝐼 + 1
,
−1 ± i

√
cos \2 − 𝐼2
𝐼 + 1

. (6.7.64)

We only care about positive root, thus the contour (6.7.62) can be parametrized by 𝑧1(\) = 1
𝐼+1 +

𝐼
𝐼+1𝑒

i\ .

Similarly, inserting 𝑧1 = 1
𝐼+1 + 𝑟𝑒

i\ in (6.7.61) yields

𝑎0(𝜖, 𝑤)𝑟4 + 2𝑎1(𝜖, 𝑤)𝑟3 cos \ + 𝑎2(𝜖, 𝑤)𝑟2 + 𝑎3(𝜖, 𝑤)𝑟 cos \ + 𝑎4(𝜖, 𝑤) = 0
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where {𝑎𝑖 (𝜖, 𝑤)}4𝑖=0 are a sequence of deterministic constants converging to the coefficient in

(6.7.63)

lim
𝜖↓0,𝑤→∞

(
𝑎0(𝜖, 𝑤), 𝑎1(𝜖, 𝑤), 𝑎2(𝜖, 𝑤), 𝑎3(𝜖, 𝑤), 𝑎4(𝜖, 𝑤)

)
=

(
(𝐼+1)4, 2(𝐼+1)3, 0,−2𝐼2(𝐼+1),−𝐼4

)
.

(6.7.65)

Denote by

𝑃(\, 𝑟) = (𝐼 + 1)4𝑟4 + 2(𝐼 + 1)3𝑟3 cos \ − 2𝐼2(𝐼 + 1)𝑟 cos \ − 𝐼4

𝑃𝜖,𝑤 (\, 𝑟) = 𝑎0(𝜖, 𝑤)𝑟4 + 2𝑎1(𝜖, 𝑤)𝑟3 cos \ + 𝑎2(𝜖, 𝑤)𝑟2 + 𝑎3(𝜖, 𝑤)𝑟 cos \ + 𝑎4(𝜖, 𝑤).

By (6.7.65), when 𝜖 is small and 𝑤 is large, 𝑃𝜖,𝑤 (\, 0) < 0 and 𝑃𝜖,𝑤 (\, +∞) = +∞. By continuity,

for each \ ∈ (−𝜋, 𝜋], 𝑃𝜖,𝑤 (\, 𝑟) = 0 admits a positive root. Since 𝑃𝜖,𝑤 (\, 𝑟) is a perturbation of

𝑃(\, 𝑟), as 𝜖 ↓ 0 and 𝑤 → ∞, the roots of 𝑃𝜖,𝑤 (\, 𝑟) converge to those in (6.7.64), which implies

the the positive root of 𝑃𝜖,𝑤 (\) is unique for 𝜖 small and 𝑡 large. We denote this unique positive

root by 𝑟𝜖,𝑤 (\). It is also clear that for \ ∈ (−𝜋, 𝜋]

lim
𝜖↓0,𝑤→∞

𝑟𝜖,𝑤 (\) =
𝐼

𝐼 + 1
uniformly. (6.7.66)

Moreover, for all \ ∈ [−𝜋, 𝜋], 𝑟 = 𝐼
𝐼+1 is a simple root of 𝑃(\, 𝑟) = 0. Hence, 𝜕

𝜕𝑟
𝑃(\, 𝑟)

��
𝑟= 𝐼

𝐼+1
≠ 0,

using implicit function theorem shows that for 𝜖 small and 𝑤 large, 𝑟𝜖,𝑡−𝑠 (\) is smooth over (−𝜋, 𝜋].

Furthermore,

𝑟′𝜖,𝑤 (0) = −
𝜕
𝜕\
𝑃𝜖,𝑤 (\, 𝑟𝜖,𝑤 (0))

��
\=0

𝜕
𝜕𝑟
𝑃𝜖,𝑤 (0, 𝑟)

��
𝑟=𝑟 𝜖 ,𝑤 (0)

= −
(
− 2𝑎1(𝜖, 𝑤)𝑟𝜖,𝑤 (0)3 sin \ + 2𝐼2(𝐼 + 1)𝑟𝜖,𝑤 (0) sin \

) ��
\=0

𝜕
𝜕𝑟
𝑃𝜖,𝑤 (0, 𝑟)

��
𝑟=𝑟 𝜖 ,𝑤 (0)

= 0.

In addition, by (6.7.66) and implicit function theorem, uniformly over \ ∈ (−𝜋, 𝜋]

lim
𝜖↓0,𝑤→∞

𝑟
(𝑛)
𝜖,𝑤 (\) =

( 𝐼

𝐼 + 1

) (𝑛)
= 0,
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this completes our proof. �

We adopt the parametrization 𝑧1(\1) = 1
𝐼+1 + 𝑟𝜖,𝑡−𝑠 (\1)𝑒i\1 ∈ M′′(𝑡 − 𝑠, 𝜖 ,−𝑘1𝛽). From the

preceding lemma, as 𝑡 − 𝑠 → ∞ and 𝜖 ↓ 0,M′′(𝑡 − 𝑠, 𝜖 ,−𝑘1𝛽) → M, thus the contourM′′(𝑡 −

𝑠, 𝜖 ,−𝑘1𝛽) is admissible for 𝜖 small and 𝑡 − 𝑠 large. As before, we decompose Vin
𝜖 = Vblk

𝜖 + Vres
𝜖 ,

where

Vblk
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
M ′′(𝑡−𝑠,𝜖 ,−𝑘1𝛽)

∮
C𝑟∗2 (𝑧1)

𝔉𝜖 (𝑧1, 𝑧2)
2∏
𝑖=1

𝔇𝜖 (𝑧𝑖) b
𝑡−𝑠
𝐽
cℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)𝑧𝑥3−𝑖−𝑦𝑖

𝑖

𝑑𝑧𝑖

2𝜋i𝑧𝑖
,

(6.7.67)

Vres
𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
=

∮
M ′′(𝑡−𝑠,𝜖 ,−𝑘1𝛽)

1{|𝔭𝜖 (𝑧1) |>𝑟 ′2}𝔍𝜖 (𝑧1)ℌ𝜖 (𝑧1)
b 𝑡−𝑠

𝐽
cℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠)

𝑑𝑧1
2𝜋i𝑧1𝔭𝜖 (𝑧1)

.

(6.7.68)

Lemma 6.7.12. There exists 𝐾 > 0 (which depends on 𝑘1) such that for 𝑡− 𝑠 ≤ 𝜖−2𝑇 large enough,

𝜖 > 0 small enough, we have

𝑧1(0) ≥ 1 − 𝐾𝛽
√
𝑡 − 𝑠 + 1

,

|𝑧1(\) | ≤ 1 − 𝑘1𝛽

5
√
𝑡 − 𝑠 + 1

.

Proof. Consider an alternate parametrization �̃�1(\) = �̃�𝜖,𝑡−𝑠 (\)𝑒i\ ∈ M′′(𝑡 − 𝑠, 𝜖 ,−𝑘1𝛽), where

the existence and uniqueness of �̃�𝜖,𝑡−𝑠 (\) are confirmed by Lemma 6.7.11. It suffices to show for

𝑡 − 𝑠 ≤ 𝜖−2𝑇 large enough and 𝜖 > 0 small enough,

�̃�𝜖,𝑡−𝑠 (0) ≥ 1 − 𝐾𝛽
√
𝑡 − 𝑠 + 1

; |�̃�𝜖,𝑡−𝑠 (\) | ≤ 1 − 𝑘1𝛽

5
√
𝑡 − 𝑠 + 1

, ∀\ ∈ (−𝜋, 𝜋] . (6.7.69)

We prove (6.7.69) in two steps.

• First, 𝑘1𝛽

5
√
𝑡−𝑠+1

≤ 1 − �̃�𝜖,𝑡−𝑠 (0) ≤ 𝐾𝛽√
𝑡−𝑠+1

.
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• Second, |�̃�𝜖,𝑡−𝑠 (\) | ≤ �̃�𝜖,𝑡−𝑠 (0) for \ ∈ (−𝜋, 𝜋].

We verify the first bullet point. Note that uniformly in an neighborhood of 1,

lim
𝜖↓0

𝔭𝜖 (𝑧) = 𝔭∗(𝑧), lim
𝜖↓0

𝔭′𝜖 (𝑧) = 𝔭′∗(𝑧).

Referring to (6.7.33), 𝑑
𝑑𝑧
𝑧𝔭∗(𝑧)

��
𝑧=1 = 2. Thus, there exists 𝛿 > 0 such that for 𝜖 small enough and

𝑧 ∈ (1 − 𝛿, 1 + 𝛿),

| (𝑧𝔭𝜖 (𝑧))′ − 2| < 1
2
. (6.7.70)

We taylor expand 𝑧𝔭𝜖 (𝑧) around 𝑧 = 1,

u(𝑡−𝑠,−𝑘1𝛽) = �̃�𝜖,𝑡−𝑠 (0)𝔭𝜖 (�̃�𝜖,𝑡−𝑠 (0)) = 𝔭𝜖 (1)+
𝑑

𝑑𝑧
(𝑧𝔭𝜖 (𝑧))

����
𝑧=𝑥

· (�̃�𝜖,𝑡−𝑠 (0)−1), 𝑥 ∈ (1−𝛿, 1+𝛿).

(6.7.71)

Referring to (6.7.44), we see 𝔭𝜖 (1) ≥ 1 for 𝜖 small enough, which implies

1 ≥ u(𝑡 − 𝑠,−𝑘1𝛽) ≥ 1 + 𝑑

𝑑𝑧
(𝑧𝔭𝜖 (𝑧))

��
𝑧=𝑥
· (�̃�𝜖,𝑡−𝑠 (0) − 1).

Hence, �̃�𝜖,𝑡−𝑠 (0) ≤ 1. We have by (6.7.70) and (6.7.71)

u(𝑡 − 𝑠,−𝑘1𝛽) ≥ 𝔭𝜖 (1) +
5
2
(�̃�𝜖,𝑡−𝑠 (0) − 1)

u(𝑡 − 𝑠,−𝑘1𝛽) ≤ 𝔭𝜖 (1) +
3
2
(�̃�𝜖,𝑡−𝑠 (0) − 1)

The first inequality yields

1 − �̃�𝜖,𝑡−𝑠 (0) ≥
2
5
(
𝔭𝜖 (1) − u(𝑡 − 𝑠,−𝑘1𝛽)

)
≥ 2

5
(
1 − u(𝑡 − 𝑠,−𝑘1𝛽)

)
≥ 𝑘1𝛽

5
√
𝑡 − 𝑠 + 1

.

which gives the lower bound. The second inequality indicates that (by (6.7.44))

1 − �̃�𝜖,𝑡−𝑠 (0) ≤
2
3
(
𝔭𝜖 (1) − u(𝑡 − 𝑠,−𝑘1𝛽)

)
≤ 2

3
(
1 − u(𝑡 − 𝑠,−𝑘1𝛽)

)
+ 𝜌𝐼 − 𝜌

2

𝐼
𝜖 .
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Owing to 𝜖 ≤
√︃

𝑇
𝑡−𝑠 , we see that 1 − �̃�𝜖,𝑡−𝑠 (0) ≤ 𝐾𝛽√

𝑡−𝑠+1
for constant 𝐾 large enough, which

concludes the first bullet point.

We move on proving the second bullet point. We set 𝐹\ (𝑟) = |𝑟𝔭𝜖 (𝑟𝑒i\) |. When 𝜖 small and 𝑡 − 𝑠

large, we readily compute (note that �̃�𝜖,𝑡−𝑠 (0) is nearly 𝐼
𝐼+1 and 𝔭𝜖 approximates 𝔭∗)

|𝐹\ (�̃�𝜖,𝑡−𝑠 (0)) |2 = �̃�𝜖,𝑡−𝑠 (0)2 |𝔭𝜖 (�̃�𝜖,𝑡−𝑠 (0)𝑒i\) |2 =
𝑐2

1 + 𝑐
2
2 − 2𝑐1𝑐2 cos \

𝑑2
1 + 𝑑

2
2 + 2𝑑1𝑑2 cos \

, 𝑐1, 𝑐2, 𝑑1, 𝑑2 > 0,

which implies |𝐹\ (𝑟𝜖,𝑡−𝑠 (0)) | reaches its minimum at \ = 0. In other words, 𝐹\ (𝑟𝜖,𝑡−𝑠 (0)) ≥

𝐹0(𝑟𝜖,𝑡−𝑠 (0)) = u(𝑡 − 𝑠,−𝑘1𝛽). In addition, 𝐹\ (0) = 0. By intermediate value theorem, for each

fixed \ ∈ (−𝜋, 𝜋], the equation 𝐹\ (𝑟) = u(𝑡 − 𝑠,−𝑘1𝛽) admits a root 𝑟 ∈ (0, �̃�𝜖,𝑡−𝑠 (0)]. By

uniqueness, this root equals �̃�𝜖,𝑡−𝑠 (\), thereby �̃�𝜖,𝑡−𝑠 (\) ≤ �̃�𝜖,𝑡−𝑠 (0) for all \ ∈ (−𝜋, 𝜋]. �

Lemma 6.7.13. For 𝑘1 large enough, 𝑡 − 𝑠 ≤ 𝜖−2𝑇 large enough and 𝜖 > 0 small enough, the

condition |𝔭𝜖 (𝑧(\)) | > 𝑟′2 with 𝑧(\) = 1
𝐼+1 +𝑟𝜖,𝑡−𝑠 (\)𝑒

i\ ∈ M′′(𝑡−𝑠, 𝜖 , 𝛽) implies |\ | ≥ (𝑡−𝑠+1)− 1
4 .

Proof. The proof is similar to Lemma 6.7.8. Since 𝑘2 = 1, we have 𝑟′2 = u(𝑡 − 𝑠,−2𝛽). Hence,

𝑟′2 ≥ 1 − 4𝛽√
𝑡−𝑠+1

. It suffices to show that

|𝔭𝜖 (𝑧(\)) | ≥ 1 − 4𝛽
√
𝑡 − 𝑠 + 1

⇒ |\ | ≥ (𝑡 − 𝑠 + 1)− 1
4 .

Referring to (6.7.45), we see that

𝔭𝜖 (𝑧(0)) = 𝔭𝜖 (1) + 𝔭′𝜖 (1) (𝑧(0) − 1) + O
(
𝑧(0) − 1

)2

By (6.7.44), we see 𝔭𝜖 (1) ≤ 1 + 𝐶√
𝑡−𝑠+1

for some positive constant 𝐶, together with the fact

𝑧(0) − 1 ≤ −𝑘1𝛽

5
√
𝑡 − 𝑠 + 1

, lim
𝜖↓0

𝔭′𝜖 (1) = 1,
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we obtain

𝔭𝜖 (𝑧(0)) ≤ 1 + 𝐶
√
𝑡 − 𝑠 + 1

− 𝑘1𝛽

10
√
𝑡 − 𝑠 + 1

.

In addition, by Lemma 6.7.11, 𝑟′𝜖,𝑡−𝑠 (0) = 0. Using this, it is straightforward to compute 𝑑
𝑑\
|𝔭𝜖 (𝑧(\)) |

��
\=0 =

0 and there exists Z, 𝐶′ > 0 such that
�� 𝑑2

𝑑\2 |𝔭𝜖 (𝑧(\)) |
�� ≤ 𝐶′ for |\ | < Z . Consequently, one has by

taylor expansion

|𝔭𝜖 (𝑧(\)) | ≤ 𝔭𝜖 (𝑧(0)) + 𝐶′\2 ≤ 1 + 10𝐶 − 𝑘1𝛽

10
√
𝑡 − 𝑠 + 1

+ 𝐶′\2

Thereby, we can pick 𝑘1 large enough s.t. |𝔭𝜖 (𝑧(\)) | ≥ 1 − 4𝛽√
𝑡−𝑠+1

implies |\ | ≥ (𝑡 − 𝑠 + 1)− 1
4 . �

Lemma 6.7.14. For 𝑡 − 𝑠 large and 𝜖 small, there exists positive constants 𝐶 (𝛽, 𝑇), 𝐶 such that

|𝔇𝜖 (𝑧(\)) |𝑡−𝑠 ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\
2
, |ℌ𝜖 (𝑧(\)) |𝑡−𝑠 ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\

2
with 𝑧(\) = 1

𝐼 + 1
+𝑟𝜖,𝑡−𝑠 (\)𝑒i\ .

Proof. Similar to Lemma 6.7.7, it suffices to show that there exists 𝐶 (𝛽, 𝑇), 𝐶 > 0 s.t.

Re log𝔇𝜖 (𝑧(\)) ≤
𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

− 𝐶\2; Re logℌ𝜖 (𝑧(\)) ≤
𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

− 𝐶\2.

We split out proof for (\ = 0), for (\ small) and for (\ large).

• (\ = 0) : Re𝔇𝜖 (𝑧(0)),Reℌ𝜖 (𝑧(0)) ≤ 𝐶 (𝛽,𝑇)
𝑡−𝑠+1 .

• (\ small): There exists Z > 0 and constants 𝐶 (𝛽, 𝑇) and 𝐶 > 0 such that (6.7.39) holds for

|\ | ≤ Z .

• (\ large): There exists 𝛿 > 0 such that
��𝔇𝜖 (𝑧(\))

��, ��ℌ𝜖 (𝑧(\))�� < 1 − 𝛿 for |\ | > Z .

Owing to Lemma 6.7.12, 𝐾√
𝑡−𝑠+1

≤ 1 − 𝑧(0) ≤ 𝑘1
5
√
𝑡−𝑠+1

, hence the argument for (\ = 0) is similar

to Lemma 6.7.10.
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For (\ small), using Lemma 6.7.11, one has

𝑟′𝜖,𝑡−𝑠 (0) = 0, lim
𝜖↓0,𝑡−𝑠→∞

𝑟′′𝜖,𝑡−𝑠 (\) = 0, lim
𝜖↓0,𝑡−𝑠→∞

𝑟′′′𝜖,𝑡−𝑠 (\) = 0.

Using this, after a tedious but straightforward calculation (recall 𝑧(\) = 1
𝐼+1 +

𝐼
𝐼+1𝑟𝜖,𝑡−𝑠 (\)),

𝜕\ (log𝔇𝜖 (𝑧(\)))
��
\=0 ∈ iR, 𝜕\ (logℌ𝜖 (𝑧(\)))

��
\=0 ∈ iR

lim
𝜖↓0,𝑡−𝑠→∞

𝜕2
\ (log𝔇𝜖 (𝑧(\)))

��
\=0 = − 𝐼2𝐽𝑉∗

(𝐼 + 1)2
, lim

𝜖↓0,𝑡−𝑠→∞
𝜕2
\ (logℌ𝜖 (𝑧(\)))

��
\=0 = − 2𝐼2𝐽𝑉∗

(𝐼 + 1)2��𝜕3
\ (log𝔇𝜖 (𝑧(\)))

�� ≤ 𝐶, ��𝜕3
\ (logℌ𝜖 (𝑧(\)))

�� ≤ 𝐶.
The last line holds for all |\ | < Z where Z > 0 is a constant. Hereafter, the argument is same as in

Lemma 6.7.7, we do not repeat it here.

For (\ large), since

lim
𝜖↓0,𝑡−𝑠→∞

𝑟𝜖,𝑡−𝑠 (\) =
𝐼

𝐼 + 1
, uniformly for \ ∈ (−𝜋, 𝜋] .

We have

lim
𝜖↓0,𝑡−𝑠→∞

𝔇𝜖 (𝑧(\)) = 𝔇∗(
1

𝐼 + 1
+ 𝐼

𝐼 + 1
𝑒i\), uniformly over \ ∈ (−𝜋, 𝜋],

lim
𝜖↓0,𝑡−𝑠→∞

ℌ𝜖 (𝑧(\)) = ℌ∗(
1

𝐼 + 1
+ 𝐼

𝐼 + 1
𝑒i\), uniformly over \ ∈ (−𝜋, 𝜋] .

By the steepest descent condition (SDM), we conclude (\ large). �

Now we are ready to bound Vblk
𝜖 and Vres

𝜖 . We begin with Vblk
𝜖 given by (6.7.67). The proof

consists of bounding each terms involved in the integrand (6.7.67). We parametrize 𝑧1(\1) =

𝑟𝜖,𝑡−𝑠 (\1)𝑒i\1 , 𝑧2(\2) = 𝑟∗2 (𝑧1)𝑒
i\2 .

(Vblk
𝜖 , 𝑧

𝑥2−𝑦1
1 𝑧

𝑥1−𝑦2
2 ): Show that |𝑧𝑥2−𝑦1

1 𝑧
𝑥1−𝑦2
2 | ≤ 𝑒−

𝛽√
𝑡−𝑠+1

( |𝑥1−𝑦2 |+|𝑥2−𝑦1 |) .

By Lemma 6.7.12, we see that |𝑧1 | ≤ 𝑒
− 𝛽√

𝑡−𝑠+1 , since 𝑟∗2 (𝑧1) equals u(𝑡 − 𝑠,−𝛽) or u(𝑡 − 𝑠,−3𝛽), we
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find that |𝑧2 | ≤ 𝑒
− 𝛽√

𝑡−𝑠+1 , which implies |𝑧𝑥2−𝑦1
1 𝑧

𝑥1−𝑦2
2 | ≤ 𝑒−

𝛽√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |) .

(Vblk
𝜖 ,𝔉𝜖 (𝑧1, 𝑧2)): Show that

��𝔉𝜖 (𝑧1, 𝑧2)�� ≤ 𝐶 + 𝐶√𝑡 − 𝑠 + 1( |\1 | + |\2 |).

By the argument in (Vblk
𝜖 ,𝔉𝜖 (𝑧1, 𝑧2)) in (+−) case. It suffices to show that |𝑧2 − 𝑧1 | ≤ 𝐶 ( 1√

𝑡−𝑠+1
+

|\1 | + |\2 |). Note that

|𝑧2(\2) − 𝑧1(\1) | ≤ |𝑧1(\1) − 1| + |𝑧2(\2) − 1| ≤ |𝑟𝜖,𝑡−𝑠 (\1)𝑒i\1 − 1| + |𝑟∗(𝑧1)𝑒i\2 − 1|. (6.7.72)

By Lemma 6.7.11 and Lemma 6.7.12, we know that |𝑟𝜖,𝑡−𝑠 (0)−1| ≤ 𝐶√
𝑡−𝑠+1

and lim𝜖↓0,𝑡−𝑠→∞ 𝑟
′
𝜖,𝑡−𝑠 (\) =

0 uniformly for \ ∈ (−𝜋, 𝜋], we see that

|𝑟𝜖,𝑡−𝑠 (\1)𝑒i\1 − 1| ≤ |𝑟𝜖,𝑡−𝑠 (\1) − 𝑟𝜖,𝑡−𝑠 (0) | + |𝑟𝜖,𝑡−𝑠 (0) − 1| + |𝑒−i\1 − 1| ≤ 𝐶 ( 1
√
𝑡 − 𝑠 + 1

+ |\1 |)

(6.7.73)

Since 𝑟∗(𝑧1) = u(𝑡 − 𝑠, 𝛽) or 𝑟∗(𝑧1) = u(𝑡 − 𝑠, 3𝛽), we have

|𝑟∗(𝑧1)𝑒i\2 − 1| ≤ 𝐶 ( 1
√
𝑡 − 𝑠 + 1

+ |\2 |) (6.7.74)

Incorporating the bound (6.7.73) and (6.7.74) into the RHS of (6.7.72), we conclude |𝑧2(\2) −

𝑧1(\1) | ≤ 𝐶 ( 1√
𝑡−𝑠+1

+ |\1 | + |\2 |).

(Vblk
𝜖 ,ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)): Show that |ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠) | ≤ 𝐶.

This is the same as (+−) case (Vblk
𝜖 ,ℜ𝜖 (𝑧𝑖, 𝑡, 𝑠)).

(Vblk
𝜖 ,𝔇𝜖 (𝑧𝑖) b

𝑡−𝑠
𝐽
c): Show that |𝔇𝜖 (𝑧𝑖) | b

𝑡−𝑠
𝐽
c ≤ 𝐶 (𝛽, 𝑇) exp(−𝐶 (𝑡 − 𝑠 + 1)\2

𝑖
).

This is the content of Lemma 6.7.14.

Consequently, we perform the same procedure as in the (+−) case and get

|Vblk
𝜖 | ≤ 𝐶 (𝛽, 𝑇)

∫ 𝜋

−𝜋

∫ 𝜋

−𝜋
(1 +
√
𝑡 − 𝑠 + 1( |\1 | + |\2 |))𝑒−𝐶 (𝑡−𝑠+1) (\

2
1+\

2
2)𝑑\1𝑑\2

≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

𝑒
− 𝛽√

𝑡−𝑠+1
( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)

.
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Let us move on bounding Vres
𝜖 with integral expression (6.7.68). We parametrize by 𝑧1(\) =

𝑟𝜖,𝑡−𝑠 (\)𝑒i\ ∈ M′′(𝑡 − 𝑠, 𝜖 ,−𝑘1𝛽).

(Vres
𝜖 , 1

𝑧1𝔭𝜖 (𝑧1) ): Show that | 1
𝑧1𝔭𝜖 (𝑧1) | ≤ 𝐶.

This is by the same argument as in the (+−) case.

(Vres
𝜖 ,ℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠)): Show that |ℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠) | ≤ 𝐶.

The argument for this is the same as (Vres
𝜖 ,ℜ𝜖 (𝑧1, 𝑡, 𝑠)ℜ𝜖 (𝔭𝜖 (𝑧1), 𝑡, 𝑠)) in the (+−) case.

(Vres
𝜖 , ℌ𝜖 (𝑧1) b

𝑡−𝑠
𝐽
c):Show that |ℌ𝜖 (𝑧1) | b

𝑡−𝑠
𝐽
c ≤ 𝐶 (𝛽, 𝑇)𝑒−𝐶 (𝑡−𝑠+1)\2

.

This is the content of Lemma 6.7.14.

(Vres
𝜖 ,𝔍𝜖 (𝑧1)): Show that |𝔍𝜖 (𝑧1) | ≤ 𝐶𝑒

− 𝛽

2
√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |.

By the discussion in (Vres
𝜖 ,𝔍𝜖 (𝑧1)), It is sufficient to show that |𝑧𝑥2−𝑦1

1 𝔭𝜖 (𝑧1)𝑥1−𝑦2 | ≤ 𝑒−
𝛽

2
√
𝑡−𝑠+1

( |𝑥1−𝑦2 |+|𝑥2−𝑦1 |) .

We write

|𝑧𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥1−𝑦2 | = |𝑧1𝔭𝜖 (𝑧1) |𝑥1−𝑦2 |𝑧1 |𝑥2−𝑥1+𝑦2−𝑦1

Since 𝑧1 ∈ M′′(𝑡 − 𝑠, 𝜖 ,−𝑘1𝛽), |𝑧1𝔭𝜖 (𝑧1) | = u(𝑡 − 𝑠,−𝑘1𝛽) ≤ 𝑒
− 𝛽√

𝑡−𝑠+1 . In addition, referring to

Lemma 6.7.12, one has |𝑧1 | ≤ 𝑒
− 𝛽√

𝑡−𝑠+1 . Consequently,

|𝑧𝑥2−𝑦1
1 𝔭𝜖 (𝑧1)𝑥1−𝑦2 | ≤ 𝑒−

𝛽√
𝑡−𝑠+1

(𝑥1−𝑦2)
𝑒
− 𝛽√

𝑡−𝑠+1
(𝑥2−𝑥1+𝑦2−𝑦1)

= 𝑒
− 𝛽√

𝑡−𝑠+1
(𝑥2−𝑦1) ≤ 𝑒−

𝛽

2
√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)
.

Thereby, using the same manner as (+−) case,

|Vres
𝜖 | ≤ 𝐶 (𝛽, 𝑇)𝑒

− 𝛽

2
√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)
∫ 𝜋

−𝜋
1{|𝔭𝜖 (𝑧1 (\)) |≥𝑟 ′2}𝑒

−𝐶 (𝑡−𝑠+1)\2
𝑑\,

≤ 𝐶 (𝛽, 𝑇)𝑒−
𝛽

2
√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)
∫
|\ |>(𝑡−𝑠+1)−

1
4
𝑒−

1
𝐶
(𝑡−𝑠+1)\2

𝑑\ ≤ 𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

𝑒
− 𝛽

2
√
𝑡−𝑠+1

( |𝑥2−𝑦1 |+|𝑥1−𝑦2 |)
.

We conclude Theorem 6.7.3 (a).

To estimate the gradient, the procedure is similar to in (+−) case, note that applying ∇𝑥𝑖 or ∇𝑦𝑖
will give an additional factor 𝑧±

𝑖
− 1, while applying ∇𝑥1,𝑥2 will produce an additional factor (𝑧1 −
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1) (𝑧2 − 1). By |𝑧𝑖 (\𝑖) − 1| ≤ 𝐶 ( 1√
𝑡−𝑠+1

+ |\𝑖 |), we conclude Theorem 6.7.3 (b), (c).

6.8 Proof of Proposition 6.6.8 via self-averaging

In this section, we apply the two Markov dualities in Corollary 6.3.9 and the estimate of V𝜖

in Theorem 6.7.1 to conclude Proposition 6.6.8. The first step is to expand the term Θ1(𝑡, 𝑥) and

Θ2(𝑡, 𝑥).

6.8.1 Expanding Θ1(𝑡, 𝑥) and Θ2(𝑡, 𝑥)

We use B𝜖 (𝑡, 𝑥1, . . . , 𝑥𝑛) to denote a generic uniformly bounded (random) process, which may

differ from line to line. Define

𝑢𝜖 (𝑡, 𝑖) :=
∞∑︁
𝑗=𝑖

p𝜖 (𝑡 + 1, 𝑡, 𝑗 − `𝜖 (𝑡))

Referring to (6.5.10) for the expression of Θ1(𝑡, 𝑥)

𝜖−
1
2Θ1(𝑡, 𝑥) = 𝜖−

1
2 𝑞𝜖_𝜖 (𝑡)𝑍 (𝑡, 𝑥) −

∞∑︁
𝑖=1

𝜖−
1
2 p𝜖 (𝑡 + 1, 𝑡, 𝑖 − `𝜖 (𝑡))𝑍 (𝑡, 𝑥 − 𝑖),

= 𝜖−
1
2 (𝑞𝜖_𝜖 (𝑡) − 1)𝑍 (𝑡, 𝑥) +

∞∑︁
𝑖=1

𝜖−
1
2 p𝜖 (𝑡 + 1, 𝑡, 𝑖 − `𝜖 (𝑡))

(
𝑍 (𝑡, 𝑥) − 𝑍 (𝑡, 𝑥 − 𝑖)

)
,

= 𝜖−
1
2 (𝑞𝜖_𝜖 (𝑡) − 1)𝑍 (𝑡, 𝑥) +

∞∑︁
𝑖=1

𝑢𝜖 (𝑡, 𝑖)
(
𝜖−

1
2∇𝑍 (𝑡, 𝑥 − 𝑖)

)
.

Here, we used the relation 𝑍 (𝑡, 𝑥) − 𝑍 (𝑡, 𝑥 − 𝑖) = ∑𝑖
𝑗=1 ∇𝑍 (𝑡, 𝑥 − 𝑗) and then changed the order of

summation in the last equality.

Likewise, by the expression (6.5.11) of Θ2(𝑡, 𝑥)

𝜖−
1
2Θ2(𝑡, 𝑥) = 𝜖−

1
2 (1 − _𝜖 (𝑡))𝑍 (𝑡, 𝑥) −

∞∑︁
𝑖=1

𝑢𝜖 (𝑡, 𝑖) (𝜖−
1
2∇𝑍 (𝑡, 𝑥 − 𝑖)).
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Using Lemma 6.5.4, one has 𝜖−
1
2 (𝑞𝜖_𝜖 (𝑡) − 1) = 1 − 𝜌

𝐼
+ O(𝜖 1

2 ) and 𝜖−
1
2 (1 − _𝜖 (𝑡)) = 𝜌

𝐼
+ O(𝜖 1

2 ).

Consequently,

𝜖−
1
2Θ1(𝑡, 𝑥) =

(
1 − 𝜌

𝐼

)
𝑍 (𝑡, 𝑥) +

∞∑︁
𝑖=1

𝑢𝜖 (𝑡, 𝑖) (𝜖−
1
2∇𝑍 (𝑡, 𝑥 − 𝑖)) + 𝜖 1

2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥), (6.8.1)

𝜖−
1
2Θ2(𝑡, 𝑥) =

𝜌

𝐼
𝑍 (𝑡, 𝑥) −

∞∑︁
𝑖=1

𝑢𝜖 (𝑡, 𝑖) (𝜖−
1
2∇𝑍 (𝑡, 𝑥 − 𝑖)) + 𝜖 1

2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥). (6.8.2)

For 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡) and 𝑥 ∈ Ξ(𝑡), we denote by

𝑍∇(𝑡, 𝑥1, 𝑥2) := 𝜖−
1
2∇𝑍 (𝑡, 𝑥1)𝑍 (𝑡, 𝑥2),

𝑍∇,∇(𝑡, 𝑥1, 𝑥2) := 𝜖−1∇𝑍 (𝑡, 𝑥1)∇𝑍 (𝑡, 𝑥2),

Y∇(𝑡, 𝑥) :=
∑︁
𝑖∈Z≥1

𝑢𝜖 (𝑡, 𝑖)𝑍∇(𝑡, 𝑥 − 𝑖, 𝑥), (6.8.3)

Y∇,∇(𝑡, 𝑥) :=
∑︁

𝑖> 𝑗∈Z≥1

𝑢𝜖 (𝑡, 𝑖)𝑢𝜖 (𝑡, 𝑗)𝑍∇,∇(𝑡, 𝑥 − 𝑖, 𝑥 − 𝑗), (6.8.4)

Ỹ(𝑡, 𝑥) :=
∞∑︁
𝑖=1

𝑢𝜖 (𝑡, 𝑖)2
(
𝑍∇,∇(𝑡, 𝑥 − 𝑖, 𝑥 − 𝑖) −

𝜌(𝐼 − 𝜌)
𝐼

𝑍 (𝑡, 𝑥 − 𝑖)2
)
. (6.8.5)

Lemma 6.8.1. Recall from (6.6.22) that

𝜏(𝑡) = 𝜌(𝐼 − 𝜌)
𝐼2

· 𝑏(𝐼 + 2mod𝐽 (𝑡) + 1) − (𝐼 + 2mod𝐽 (𝑡) − 1)
𝑏(𝐼 + 2mod𝐽 (𝑡)) − (𝐼 + 2mod𝐽 (𝑡) − 2) ,

we have

𝜖−1Θ1(𝑡, 𝑥)Θ2(𝑡, 𝑥) − 𝜏(𝑡)𝑍 (𝑡, 𝑥)2

=

(
2𝜌
𝐼
− 1

)
Y∇(𝑡, 𝑥) + 2Y∇,∇(𝑡, 𝑥) + Ỹ(𝑡, 𝑥) + 𝜖

1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2.

Proof. We name the three terms on the RHS of (6.8.1) (from left to right) as 𝐴1,𝑍 , 𝐴1,∇, 𝐴1,err

respectively and those on the RHS of (6.8.2) as 𝐴2,𝑍 , 𝐴2,∇, 𝐴2,err. Multiplying (6.8.1) by (6.8.2)
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gives

𝜖−1Θ1(𝑡, 𝑥)Θ2(𝑡, 𝑥) =
(
𝐴1,𝑍 + 𝐴1,∇ + 𝐴1,err

)
·
(
𝐴2,𝑍 + 𝐴2,∇ + 𝐴2,err

)
.

Expanding this product, it is straightforward that

𝐴1,𝑍𝐴2,𝑍 =
𝜌

𝐼
(1 − 𝜌

𝐼
)𝑍 (𝑡, 𝑥)2, 𝐴1,∇𝐴2,𝑍 + 𝐴2,∇𝐴1,𝑍 =

(
2𝜌
𝐼
− 1

)
Y∇(𝑡, 𝑥),

𝐴1,∇𝐴2,∇ = −Y∇,∇(𝑡, 𝑥) −
∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2𝑍∇,∇(𝑡, 𝑥 − 𝑘, 𝑥 − 𝑘).

The sum of the rest of terms equals

𝐴1,𝑍𝐴2,err + 𝐴1,∇𝐴2,err + 𝐴1,err𝐴2,𝑍 + 𝐴1,err𝐴2,∇ + 𝐴1,err𝐴2,err,

= 𝜖
1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥) (𝜖−

1
2Θ1(𝑡, 𝑥) + 𝜖−

1
2Θ2(𝑡, 𝑥)) − 𝜖B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2 = 𝜖

1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2.

Therefore, we find that

𝜖−1Θ1(𝑡, 𝑥)Θ2(𝑡, 𝑥) =
𝜌

𝐼
(1 − 𝜌

𝐼
)𝑍 (𝑡, 𝑥)2 + Y∇(𝑡, 𝑥) − Y∇,∇(𝑡, 𝑥) −

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2𝑍∇,∇(𝑡, 𝑥 − 𝑘, 𝑥 − 𝑘)

+ 𝜖 1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2.

Thus,

𝜖−1Θ1(𝑡, 𝑥)Θ2(𝑡, 𝑥) −
𝜌

𝐼
(1 − 𝜌

𝐼
)𝑍 (𝑡, 𝑥)2 = Y∇(𝑡, 𝑥) − Y∇,∇(𝑡, 𝑥) −

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2𝑍∇,∇(𝑡, 𝑥 − 𝑘, 𝑥 − 𝑘)

+ 𝜖 1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2.

Adding 𝜌(𝐼−𝜌)
𝐼

∑∞
𝑘=1 𝑢𝜖 (𝑡, 𝑘)2𝑍 (𝑡, 𝑥 − 𝑘)2 to both sides yields

𝜖−1Θ1(𝑡, 𝑥)Θ2(𝑡, 𝑥) −
𝜌

𝐼
(1 − 𝜌

𝐼
)𝑍 (𝑡, 𝑥)2 + 𝜌(𝐼 − 𝜌)

𝐼

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2𝑍 (𝑡, 𝑥 − 𝑘)2

= Y∇(𝑡, 𝑥) − Y∇,∇(𝑡, 𝑥) −
∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2
(
𝑍∇,∇(𝑡, 𝑥 − 𝑘, 𝑥 − 𝑘) −

𝜌(𝐼 − 𝜌)
𝐼

𝑍 (𝑡, 𝑥 − 𝑘)2
)
+ 𝜖 1

2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2
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= Y∇(𝑡, 𝑥) − Y∇,∇(𝑡, 𝑥) − Ỹ(𝑡, 𝑥) + 𝜖
1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2. (6.8.6)

We claim that

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2𝑍 (𝑡, 𝑥−𝑘)2 =
1 − 𝑏

𝐼 (𝑏(𝐼 + 2mod𝐽 (𝑡)) − (𝐼 + 2mod𝐽 (𝑡) − 2)) 𝑍 (𝑡, 𝑥)
2+𝜖 1

2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2.

(6.8.7)

If (6.8.7) holds, note that

𝜏(𝑡) = 𝜌

𝐼
(1 − 𝜌

𝐼
) − 𝜌(𝐼 − 𝜌)

𝐼

1 − 𝑏
𝐼 (𝑏(𝐼 + 2mod𝐽 (𝑡)) − (𝐼 + 2mod𝐽 (𝑡) − 2)) .

Replacing the term
∑∞
𝑘=1 𝑢𝜖 (𝑡, 𝑘)2𝑍 (𝑡, 𝑥 − 𝑘)2 in the LHS of (6.8.6) by the RHS of (6.8.7), we

prove Lemma 6.8.1.

To justify (6.8.7), we write

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2𝑍 (𝑡, 𝑥 − 𝑘)2 =

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2
(
𝑍 (𝑡, 𝑥 − 𝑘)2 − 𝑍 (𝑡, 𝑥)2

)
+
∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2𝑍 (𝑡, 𝑥)2. (6.8.8)

Let us analyze the first and second term on the RHS of (6.8.8) respectively. For the second term,

we compute

𝑢𝜖 (𝑡, 𝑘) =
∞∑︁
𝑗=𝑘

p𝜖 (𝑡 + 1, 𝑡, 𝑗) = 𝛼(𝑡) (1 − 𝑞)
1 + 𝛼(𝑡)

(
a + 𝛼(𝑡)
1 + 𝛼(𝑡)

) 𝑘−1
. (6.8.9)

Here, we used 𝔭𝜖 (𝑡 + 1, 𝑡, 𝑗) = P(𝑅(𝑡) = 𝑗), the expression of which is given in (6.5.1). Using the

preceding equation, we find that

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2 =

(
1 − 1+𝑞𝛼(𝑡)

1+𝛼(𝑡)
)2

1 −
( a+𝛼(𝑡)

1+𝛼(𝑡)
)2 .

Due to Lemma 6.5.4,

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2 =
1 − 𝑏

𝐼
(
(𝐼 + 2mod𝐽 (𝑡))𝑏 − (𝐼 + 2mod𝐽 (𝑡) − 2)

) + O(𝜖 1
2 ).
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Thereby, for the second term on the RHS of (6.8.8),

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2𝑍 (𝑡, 𝑥)2 =
1 − 𝑏

𝐼 (𝑏(𝐼 + 2mod𝐽 (𝑡)) − (𝐼 + 2mod𝐽 (𝑡) − 2)) 𝑍 (𝑡, 𝑥)
2 + 𝜖 1

2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2

(6.8.10)

For the first term on the RHS of (6.8.8), noticing 𝑍 (𝑡, 𝑥 − 𝑘) = 𝑒−
√
𝜖
∑𝑘

𝑖=1 ([̃𝑥−𝑖+1 (𝑡)−𝜌)𝑍 (𝑡, 𝑥) (recall

[̃𝑥 (𝑡) = [𝑥 (𝑥 + ˆ̀(𝑡))), hence

𝑍 (𝑡, 𝑥 − 𝑘)2 − 𝑍 (𝑡, 𝑥)2 = 𝑍 (𝑡, 𝑥)2
(
𝑒−2
√
𝜖
(
([̃𝑥 (𝑡)−𝜌)+···+([̃𝑥−𝑘+1 (𝑡)−𝜌)

)
− 1

)
Since |[̃𝑥 (𝑡) − 𝜌 | ≤ 𝐼, ���� 𝑘∑︁

𝑖=1
([̃𝑥−𝑖+1(𝑡) − 𝜌)

���� ≤ 𝑘 𝐼.
Note that for any 𝐾 > 0, there exists a constant 𝐶 such that

|𝑒𝑥 − 1| ≤ 𝐶 |𝑥 |, for |𝑥 | ≤ 𝐾.

Thus, if 𝑘 ≤ 𝜖− 1
2 , one has

��𝑒−2
√
𝜖
∑𝑘

𝑖=1 ([̃𝑥−𝑖+1 (𝑡)−𝜌) − 1
�� ≤ 𝐶√𝜖 𝑘 𝐼.

If 𝑘 > 𝜖−
1
2 , one simply has

��𝑒−2
√
𝜖
∑𝑘

𝑖=1 ([̃𝑥−𝑖+1 (𝑡)−𝜌) − 1
�� ≤ 𝑒2𝑘 𝐼

√
𝜖 .

Therefore, ��𝑒−2
√
𝜖
∑𝑘

𝑖=1 ([̃𝑥−𝑖+1 (𝑡)−𝜌) − 1
�� ≤ 𝐶 (√

𝜖 𝑘 𝐼1
{𝑘≤𝜖−

1
2 }
+ 𝑒2𝑘 𝐼

√
𝜖1
{𝑘>𝜖−

1
2 }

)
. (6.8.11)

Referring to (6.8.9) for the expression of 𝑢𝜖 (𝑡, 𝑘), using (6.7.4) we see that there exists 0 < 𝛿 < 1
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s.t. for 𝜖 small enough and for all 𝑡, 𝑘

𝑢𝜖 (𝑡, 𝑘) ≤ 𝛿𝑘−1. (6.8.12)

Combining this with (6.8.11) gives

∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2
(
𝑍 (𝑡, 𝑥 − 𝑘)2 − 𝑍 (𝑡, 𝑥)2

)
= 𝑍 (𝑡, 𝑥)2

( ∞∑︁
𝑘=1

𝑢𝜖 (𝑡, 𝑘)2
(
𝑒−2
√
𝜖
∑𝑘

𝑖=1 ([̃𝑥−𝑖+1 (𝑡)−𝜌) − 1
) )
,

≤ 𝐶𝑍 (𝑡, 𝑥)2
( b𝜖− 1

2 c∑︁
𝑘=1

√
𝜖 𝑘𝛿𝑘 +

∞∑︁
𝑘=b𝜖−

1
2 c+1

𝑒2𝑘 𝐼
√
𝜖𝛿𝑘

)
,

= 𝜖
1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2.

Combining this with (6.8.10), we prove the desired claim (6.8.7). �

By Lemma 6.8.1, we reduce the proof of Proposition 6.6.8 to the following lemmas.

Lemma 6.8.2. For any given 𝑇 > 0, there exists positive constants 𝐶 and 𝑢 such that for all

𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z, 𝑥★ ∈ Z 𝜖2
𝑡∑︁
𝑠=0
Y∇(𝑠, 𝑥★(𝑠))


2
≤ 𝐶𝜖 1

4 𝑒2𝑢𝜖 |𝑥★ |, (6.8.13)𝜖2
𝑡∑︁
𝑠=0
Y∇,∇(𝑠, 𝑥★(𝑠))


2
≤ 𝐶𝜖 1

4 𝑒2𝑢𝜖 |𝑥★ |, (6.8.14)

where we used the shorthand notation 𝑥★(𝑠) := 𝑥★ − ˆ̀(𝑠) + b ˆ̀(𝑠)c.

Lemma 6.8.3. Fix 𝑇 > 0, there exists positive constants 𝐶 and 𝑢 such that for all 𝑡 ∈ [0, 𝜖−2𝑇] ∩Z

and 𝑥★ ∈ Z, 𝜖2
𝑡∑︁
𝑠=0
Ỹ(𝑠, 𝑥★(𝑠))


2
≤ 𝐶𝜖 1

4 𝑒2𝑢𝜖 |𝑥★ |

We will prove Lemma 6.8.2 and Lemma 6.8.3 in the next two sections. Let us first conclude

Proposition 6.6.8 based on them.
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Proof of Proposition 6.6.8. Referring to Lemma 6.8.1, we have

𝜖2
𝑡∑︁
𝑠=0

(
𝜖−1Θ1Θ2 − 𝜏(𝑠)𝑍2

)
(𝑠, 𝑥★(𝑠)) = 𝜖2

𝑡∑︁
𝑠=0
Y∇(𝑠, 𝑥★(𝑠)) + 𝜖2

𝑡∑︁
𝑠=0
Y∇,∇(𝑠, 𝑥★(𝑠)) + 𝜖2

𝑡∑︁
𝑠=0
Ỹ(𝑠, 𝑥★(𝑠))

+ 𝜖2
𝑡∑︁
𝑠=0

𝜖
1
2B𝜖 (𝑠, 𝑥)𝑍 (𝑠, 𝑥★(𝑠))2.

By Lemma 6.8.2 and Lemma 6.8.3, together with the bound ‖𝑍 (𝑠, 𝑥★(𝑠))‖2 ≤ 𝐶𝑒𝑢𝜖 |𝑥
★ | (which

follows from Proposition 6.6.1), one has𝜖2
𝑡∑︁
𝑠=0

(
𝜖−1Θ1Θ2 − 𝜏(𝑠)𝑍2

)
(𝑠, 𝑥★(𝑠))


2

≤
𝜖2

𝑡∑︁
𝑠=0
Y∇(𝑠, 𝑥★(𝑠))


2
+

𝜖2
𝑡∑︁
𝑠=0
Y∇,∇(𝑠, 𝑥★(𝑠))


2
+

𝜖2
𝑡∑︁
𝑠=0
Ỹ(𝑠, 𝑥★(𝑠))


2

+ 𝜖2
𝑡∑︁
𝑠=0

𝜖
1
2B𝜖 (𝑠, 𝑥)‖𝑍 (𝑠, 𝑥★(𝑠))‖22

≤ 𝐶
(
𝜖

1
4 𝑒2𝑢𝜖 |𝑥★ | + 𝜖 5

2 𝑡𝑒2𝑢𝜖 |𝑥★ | ) .
Using 𝑡 ≤ 𝜖−2𝑇 , we obtain𝜖2

𝑡∑︁
𝑠=0

(
𝜖−1Θ1Θ2 − 𝜏(𝑠)𝑍2

)
(𝑠, 𝑥★(𝑠))


2
≤ 𝐶𝜖 1

4 𝑒2𝑢𝜖 |𝑥★ |

This completes the proof of Proposition 6.6.8. �

6.8.2 Proof of Lemma 6.8.2

Recall the notation [̃𝑥 (𝑡) = [𝑥+ ˆ̀(𝑡) (𝑡), we see that by Taylor expansion

∇𝑍 (𝑡, 𝑥) = 𝑍 (𝑡, 𝑥)
(
𝑒−
√
𝜖 ([̃𝑥+1 (𝑡)−𝜌) − 1

)
=
√
𝜖𝑍 (𝑡, 𝑥) (𝜌 − [̃𝑥+1(𝑡)) + 𝜖B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥).
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Hence,

𝜖−
1
2∇𝑍 (𝑡, 𝑥) = (𝜌 − [̃𝑥+1(𝑡))𝑍 (𝑡, 𝑥) + 𝜖

1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥), (6.8.15)

𝑍 (𝑡, 𝑥 + 1) = 𝑍 (𝑡, 𝑥) + ∇𝑍 (𝑡, 𝑥) = 𝑍 (𝑡, 𝑥) + 𝜖 1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥). (6.8.16)

We will use these elementary relations frequently in the sequel.

The following lemma is crucial for the proof of Lemma 6.8.2.

Lemma 6.8.4. Given 𝑇 > 0 and 𝑛 ∈ Z≥1, there exists constant 𝐶 and 𝑢 such that for all 𝑠 ≤ 𝑡 ∈

[0, 𝜖−2𝑇] ∩ Z such that for 𝑥1 ≤ 𝑥2 ∈ Ξ(𝑡),E[𝑍∇(𝑡, 𝑥1, 𝑥2)
��F (𝑠)]

𝑛

≤ 𝐶𝜖−
1
2

√
𝑡 − 𝑠 + 1

𝑒𝑢𝜖 ( |𝑥1 |+|𝑥2 |) . (6.8.17)

For 𝑥1 < 𝑥2 ∈ Ξ(𝑡), E[𝑍∇,∇(𝑡, 𝑥1, 𝑥2)
��F (𝑠)]

𝑛

≤ 𝐶𝜖−1

𝑡 − 𝑠 + 1
𝑒𝑢𝜖 ( |𝑥1 |+|𝑥2 |) . (6.8.18)

Proof. Let us first justify (6.8.17). Recall the two point duality (6.5.21),

E
[
𝑍 (𝑡, 𝑥1)𝑍 (𝑡, 𝑥2)

��F (𝑠)] = ∑︁
𝑦1≤𝑦2∈Ξ(𝑠)2

V
(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2).

As 𝑍∇(𝑡, 𝑥1, 𝑥2) = 𝜖−
1
2∇𝑍 (𝑡, 𝑥1)𝑍 (𝑡, 𝑥2), it is straightforward that by this duality, if 𝑥1 < 𝑥2,

E
[
𝑍∇(𝑡, 𝑥1, 𝑥2)

��F (𝑠)] = 𝜖− 1
2

∑︁
𝑦1≤𝑦2∈Ξ(𝑠)

∇𝑥1V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2). (6.8.19)

If 𝑥1 = 𝑥2,

E
[
𝑍∇(𝑡, 𝑥1, 𝑥2)

��F (𝑠)] = 𝜖− 1
2

∑︁
𝑦1≤𝑦2∈Ξ(𝑠)

∇𝑥2V𝜖

(
(𝑥1, 𝑥1), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2).
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We assume 𝑥1 < 𝑥2 without loss of generosity, the proof of (6.8.17) for 𝑥1 = 𝑥2 will be similar

(one only needs to replicate the estimate of ∇𝑥1V𝜖 to ∇𝑥2V𝜖 ). By the estimate of ∇𝑥1V𝜖 provided

in Theorem 6.7.1 (b), we see that

��∇𝑥1V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1) 3

2
𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) .

This, together with the moment bound of 𝑍 (𝑡, 𝑥) in (6.6.1) yields ∑︁
𝑦1≤𝑦2

∇𝑥1V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)


𝑛

≤
∑︁

𝑦1≤𝑦2∈Ξ(𝑠)

𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1) 3

2
𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) 𝑒𝑢𝜖 |𝑦1 |𝑒𝑢𝜖 |𝑦2 |

Due to Lemma 6.6.3, we see that we can choose 𝛽 large enough so that

∑︁
𝑦1,𝑦2∈Ξ(𝑠)

𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) 𝑒𝑢𝜖 ( |𝑦1 |+|𝑦2 |) ≤
( ∑︁
𝑦1∈Ξ(𝑠)

𝑒
− 𝛽 |𝑥1−𝑦1 |√

𝑡−𝑠+1+𝐶 (𝛽) 𝑒𝑢𝜖 ( |𝑦1 |)
) ( ∑︁

𝑦2∈Ξ(𝑠)
𝑒
− 𝛽 |𝑥2−𝑦2 |√

𝑡−𝑠+1+𝐶 (𝛽) 𝑒𝑢𝜖 ( |𝑦2 |)
)
,

≤ 𝐶 (𝑡 − 𝑠 + 1)𝑒𝑢𝜖 ( |𝑥1 |+|𝑥2 |) .

Thus,  ∑︁
𝑦1≤𝑦2

∇𝑥1V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)


𝑛

≤ 𝐶 (𝛽, 𝑇)
√
𝑡 − 𝑠 + 1

𝑒𝑢𝜖 ( |𝑥1 |+|𝑥2 |) .

Referring to (6.8.19), we conclude (6.8.17).

We turn our attention to prove (6.8.18). With the aid of (6.5.21), one has for 𝑥1 < 𝑥2 ∈ Ξ(𝑡),

E
[
𝑍∇,∇(𝑡, 𝑥1, 𝑥2)

��F (𝑠)] = 𝜖−1E
[
∇𝑍 (𝑡, 𝑥1)∇𝑍 (𝑡, 𝑥2)

��F (𝑠)] ,
= 𝜖−1

∑︁
𝑦1≤𝑦2∈Ξ(𝑠)

∇𝑥1,𝑥2V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2).

(6.8.20)

Note that (6.8.20) does not hold when 𝑥1 = 𝑥2 (see Remark 6.8.5 below). Theorem 6.7.1 (𝑐)
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implies ��∇𝑥1,𝑥2V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

) �� ≤ 𝐶 (𝛽, 𝑇)
(𝑡 − 𝑠 + 1)2

𝑒
− 𝛽 ( |𝑥1−𝑦1 |+ |𝑥2−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) .

By same argument used in proving (6.8.17), one hasE[𝑍∇,∇(𝑡, 𝑥1, 𝑥2)
��F (𝑠)]

𝑛

≤ 𝐶𝜖−1

𝑡 − 𝑠 + 1
𝑒𝑢𝜖 ( |𝑥1 |+|𝑥2 |) .

This concludes the proof of the lemma. �

With the help of the preceding lemma, we proceed to prove Lemma 6.8.2.

Proof of Lemma 6.8.2. Referring to (6.8.3), (6.8.4) that

𝑡∑︁
𝑠=0
Y∇(𝑠, 𝑥★(𝑠)) =

(
2𝜌
𝐼
− 1

) ∑︁
𝑖∈Z≥1

𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑍∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠)),

𝑡∑︁
𝑠=0
Y∇,∇(𝑠, 𝑥★(𝑠)) =

∑︁
𝑖> 𝑗∈Z≥1

𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑢𝜖 (𝑠, 𝑗)𝑍∇,∇(𝑠, 𝑥 − 𝑖, 𝑥 − 𝑗).

By triangle inequality, one has𝜖2
𝑡∑︁
𝑠=0
Y∇(𝑠, 𝑥★(𝑠))


2
≤

(
2𝜌
𝐼
− 1

) ∑︁
𝑖∈Z≥1

𝜖2
𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑍∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠))


2𝜖2
𝑡∑︁
𝑠=0
Y∇,∇(𝑠, 𝑥★(𝑠))


2
≤

∑︁
𝑖> 𝑗∈Z≥1

𝜖2
𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑢𝜖 (𝑠, 𝑗)𝑍∇,∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠) − 𝑗)


2
.

To prove Lemma 6.8.2, it is sufficient to show that there exists constant 𝐶, 𝑢 such that for all

𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z, 𝑥★ ∈ Z and some constant 0 < 𝛿 < 1,𝜖2
𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑍∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠))


2
≤ 𝐶𝜖 1

4 𝑒𝑢𝜖 (2|𝑥
★ |+𝑖)𝛿𝑖, ∀𝑖 ∈ Z≥0, (6.8.21)𝜖2

𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑢𝜖 (𝑠, 𝑗)𝑍∇,∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠) − 𝑗)


2
≤ 𝐶𝜖 1

4 𝑒𝑢𝜖 (2|𝑥
★ |+𝑖+ 𝑗)𝛿𝑖+ 𝑗 , ∀𝑖 > 𝑗 ∈ Z≥1.

(6.8.22)

309



Note that here, we include 𝑖 = 0 in (6.8.21), which is not needed to prove Lemma 6.8.2. We are

going to use this in the proof of Lemma 6.8.3.

We begin with proving (6.8.21), by writing 𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑍∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠))
2

2

= 2
∑︁

0≤𝑠1<𝑠2≤𝑡
E

[
𝑢𝜖 (𝑠1, 𝑖)𝑢𝜖 (𝑠2, 𝑖)𝑍∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1))𝑍∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2))

]
+

𝑡∑︁
𝑠=0
E
[
𝑢𝜖 (𝑠, 𝑖)2𝑍∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠))2

]
= 2

∑︁
0≤𝑠1<𝑠2≤𝑡

𝑢𝜖 (𝑠1, 𝑖)𝑢𝜖 (𝑠2, 𝑖)E
[
𝑍∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1))E

[
𝑍∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2))

��F (𝑠1)] ]
+

𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)2E
[
𝑍∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠))2

]
Using (6.8.12) to bound 𝑢𝜖 (𝑠, 𝑖), one has 𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑍∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠))
2

2
≤ 𝐶𝛿2𝑖

∑︁
0≤𝑠1<𝑠2≤𝑡

����E[𝑍∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1))E[𝑍∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2))��F (𝑠1)] ] ����
+ 𝐶𝛿2𝑖

𝑡∑︁
𝑠=0
E
[
𝑍∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠))2

]
(6.8.23)

Let us analyze the two terms on the RHS of (6.8.23) respectively. For the first term, via Cauchy-

Schwarz inequality |E
[
𝑋𝑌

]
| ≤ ‖𝑋 ‖2‖𝑌 ‖2, one has����E[𝑍∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1))E[𝑍∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2))��F (𝑠1)] ] ����

≤ ‖𝑍∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1))‖2‖E
[
𝑍∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2))

��F (𝑠1)] ‖2
By the moment bound in Proposition 6.6.1, we have ‖𝑍∇(𝑠, 𝑥1, 𝑥2)‖2 ≤ 𝐶𝑒𝑢𝜖 ( |𝑥1 |+|𝑥2 |) . Combining
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this with (6.8.17),����E[𝑍∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1))E[𝑍∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2))��F (𝑠1)] ] ����
≤ 𝐶𝑒𝑢𝜖 ( |𝑥★(𝑠1)−𝑖 |+|𝑥★(𝑠1) |) 𝜖−

1
2

√
𝑠2 − 𝑠1 + 1

𝑒𝑢𝜖 ( |𝑥
★(𝑠2)−𝑖 |+|𝑥★(𝑠2) |)

≤ 𝐶𝜖−
1
2

√
𝑠2 − 𝑠1 + 1

𝑒2𝑢𝜖 ( |𝑥★ |+|𝑥★−𝑖 |) .

Consequently, the first term in (6.8.23) is upper bounded by���� ∑︁
0≤𝑠1<𝑠2≤𝑡

E

[
𝑍∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1))E

[
𝑍∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2))

��F (𝑠1)] ] ����
≤

∑︁
0≤𝑠1<𝑠2≤𝑡

𝐶𝜖−
1
2

√
𝑠2 − 𝑠1 + 1

𝑒2𝑢𝜖 ( |𝑥★ |+|𝑥★−𝑖 |) ≤ 𝐶𝜖− 1
2 𝑡

3
2 𝑒2𝑢𝜖 (2|𝑥★ |+𝑖) ≤ 𝐶𝜖− 7

2 𝑒2𝑢𝜖 (2|𝑥★ |+𝑖) . (6.8.24)

where in the second inequality above we used the integral approximation

∑︁
0≤𝑠1<𝑠2≤𝑡

1
√
𝑠2 − 𝑠1 + 1

≤ 𝐶
∫

0≤𝑠1≤𝑠2≤𝑡

𝑑𝑠1𝑑𝑠2√
𝑠2 − 𝑠1

= 𝐶𝑡
3
2

and in the last inequality we used 𝑡 ≤ 𝜖−2𝑇 .

Using again ‖𝑍∇(𝑠, 𝑥1, 𝑥2)‖2 ≤ 𝐶𝑒𝑢𝜖 ( |𝑥1 |+|𝑥2 |) , the second term in (6.8.23) is readily upper bounded

by ���� 𝑡∑︁
𝑠=0
E
[
𝑍∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠))2

] ���� ≤ 𝐶 𝑡∑︁
𝑠=0

𝑒2𝑢𝜖 ( |𝑥★ |+|𝑥★−𝑖 |) ≤ 𝐶𝜖−2𝑒2𝑢𝜖 (2|𝑥★ |+𝑖) . (6.8.25)

Incorporating the bounds (6.8.24) and (6.8.25) into the RHS of (6.8.23), we get (6.8.21).

We proceed to justify (6.8.22), the method is similar to the proof of (6.8.21). Write 𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑢𝜖 (𝑠, 𝑗)𝑍∇,∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠) − 𝑗)
2

2
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= 2
∑︁

0≤𝑠1<𝑠2≤𝑡
𝑢𝜖 (𝑠1, 𝑖)𝑢𝜖 (𝑠1, 𝑗)𝑢𝜖 (𝑠2, 𝑖)𝑢𝜖 (𝑠2, 𝑗)×

E

[
𝑍∇,∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1) − 𝑗)E

[
𝑍∇,∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2) − 𝑗)

��F (𝑠1)] ]
+

𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)2𝑢𝜖 (𝑠, 𝑗)2E
[
𝑍∇,∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠) − 𝑗)2

]
.

Using again (6.8.12), one has 𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑢𝜖 (𝑠, 𝑗)𝑍∇,∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠) − 𝑗)
2

2

≤ 𝐶𝛿2(𝑖+ 𝑗)
∑︁

0≤𝑠1<𝑠2≤𝑡

����E[𝑍∇,∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1) − 𝑗)E[𝑍∇,∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2) − 𝑗)��F (𝑠1)] ] ����
+ 𝐶𝛿2(𝑖+ 𝑗)

𝑡∑︁
𝑠=0
E
[
𝑍∇,∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠) − 𝑗)2

]
. (6.8.26)

Let us analyze the two terms on the RHS of (6.8.26) respectively. For the first term, by Cauchy

Schwarz,����E[𝑍∇,∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1) − 𝑗)E[𝑍∇,∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2) − 𝑗)��F (𝑠1)] ] ����
≤ ‖𝑍∇,∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1) − 𝑗)‖2‖E

[
𝑍∇,∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2) − 𝑗)

��F (𝑠1)] ‖2
Using the bound ‖𝑍∇(𝑠, 𝑥1, 𝑥2)‖2 ≤ 𝐶𝑒𝑢𝜖 ( |𝑥1 |+|𝑥2 |) and (6.8.18), we have����E[𝑍∇,∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1) − 𝑗)E[𝑍∇,∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2) − 𝑗)��F (𝑠1)] ] ����

≤ 𝑒𝑢𝜖 ( |𝑥★−𝑖 |+|𝑥★− 𝑗 |) 𝐶𝜖−1

𝑠2 − 𝑠1 + 1
𝑒𝑢𝜖 ( |𝑥

★−𝑖 |+|𝑥★− 𝑗 |) =
𝐶𝜖−1

𝑠2 − 𝑠1 + 1
𝑒2𝑢𝜖 ( |𝑥★−𝑖 |+|𝑥★− 𝑗 |) .

Therefore,

∑︁
0≤𝑠1<𝑠2≤𝑡

����E[𝑍∇,∇(𝑠1, 𝑥★(𝑠1) − 𝑖, 𝑥★(𝑠1) − 𝑗)E[𝑍∇,∇(𝑠2, 𝑥★(𝑠2) − 𝑖, 𝑥★(𝑠2) − 𝑗)��F (𝑠1)] ] ����
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≤
∑︁

0≤𝑠1<𝑠2≤𝑡

𝐶𝜖−1

𝑠2 − 𝑠1 + 1
𝑒2𝑢𝜖 ( |𝑥★−𝑖 |+|𝑥★− 𝑗 |) (6.8.27)

≤ 𝐶𝜖−1(𝑡 + 1) log(𝑡 + 1)𝑒2𝑢𝜖 ( |𝑥★−𝑖 |+|𝑥★− 𝑗 |) ≤ 𝐶𝜖− 7
2 𝑒2𝑢𝜖 (2|𝑥★ |+𝑖+ 𝑗) .

In the second inequality above, we used the integral approximation

∑︁
0≤𝑠1<𝑠2≤𝑡

1
𝑠2 − 𝑠1 + 1

≤ 𝐶
∫

0≤𝑠1≤𝑠2≤𝑡

1
𝑠2 − 𝑠1 + 1

𝑑𝑠1𝑑𝑠2 ≤ 𝐶 (𝑡 + 1) log(𝑡 + 1).

For the second term in (6.8.26), it is clear that

𝑡∑︁
𝑠=0
E
[
𝑍∇,∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠) − 𝑗)2

]
≤ 𝐶𝑡𝑒2𝑢𝜖 (2|𝑥★ |+𝑖+ 𝑗) ≤ 𝐶𝜖−2𝑒2𝑢𝜖 (2|𝑥★ |+𝑖+ 𝑗) . (6.8.28)

Incorporating the bounds (6.8.27) and (6.8.28) into the RHS of (6.8.26), we prove the desired

(6.8.22). �

Remark 6.8.5. In the argument above, we showed 𝑍∇,∇(𝑡, 𝑥1, 𝑥2) = (𝜖−
1
2∇𝑍 (𝑡, 𝑥1)) (𝜖−

1
2∇𝑍 (𝑡, 𝑥2))

vanishes after averaging over a long time interval when 𝑥1 ≠ 𝑥2. The readers might wonder whether

the same holds for 𝑥1 = 𝑥2? The answer is negative. In the case 𝑥1 ≠ 𝑥2, we used two particle

duality (6.5.21) to move the gradient from 𝑍 to V𝜖

E
[
𝑍∇,∇(𝑡, 𝑥1, 𝑥2)

��F (𝑠)] = 𝜖−1
∑︁

𝑦1≤𝑦2∈Ξ(𝑠)
∇𝑥1,𝑥2V𝜖

(
(𝑥1, 𝑥2), (𝑦1, 𝑦2), 𝑡, 𝑠

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2).

However, if 𝑥1 = 𝑥2, the same two particle duality gives instead

E
[
𝑍∇,∇(𝑡, 𝑥1, 𝑥2)

��F (𝑠)]
= 𝜖−1

∑︁
𝑦1≤𝑦2∈Ξ(𝑠)

(
V𝜖

(
(𝑥1 + 1, 𝑥1 + 1), (𝑦1, 𝑦2), 𝑡, 𝑠

)
− 2V𝜖

(
(𝑥1, 𝑥1 + 1), (𝑦1, 𝑦2), 𝑡, 𝑠

)
+ 1

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2).
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The same argument fails because we do not have an effective estimate of

V𝜖

(
(𝑥1 + 1, 𝑥1 + 1), (𝑦1, 𝑦2), 𝑡, 𝑠

)
− 2V𝜖

(
(𝑥1, 𝑥1 + 1), (𝑦1, 𝑦2), 𝑡, 𝑠

)
+ 1.

In fact, when 𝑥1 = 𝑥2, 𝑍∇,∇(𝑡, 𝑥1, 𝑥2) does not vanish after averaging. One quick way to see this is

to use

𝑍∇,∇(𝑡, 𝑥1, 𝑥1) =
(
𝜖−

1
2∇𝑍 (𝑡, 𝑥1)

)2

= ([̃𝑥1+1(𝑡) − 𝜌)2𝑍 (𝑡, 𝑥1)2 + 𝜖
1
2B𝜖𝑍 (𝑡, 𝑥1)2

≥ min
(
1 − {𝜌}, {𝜌}

)2
𝑍 (𝑡, 𝑥1)2 + 𝜖

1
2B𝜖𝑍 (𝑡, 𝑥1)2

where {𝜌} represents the fractional part of 𝜌. This implies that 𝑍∇,∇(𝑡, 𝑥, 𝑥) is lower bounded by a

constant times 𝑍 (𝑡, 𝑥)2, which does not vanish after averaging.

6.8.3 Proof of Lemma 6.8.3

The aim of this section is to justify Lemma 6.8.3, which indicates that 𝑍∇,∇(𝑡, 𝑥, 𝑥)− 𝜌(𝐼−𝜌)𝐼
𝑍 (𝑡, 𝑥)2

vanishes after averaging over a long time interval. This was proved for the stochastic six vertex

model [CGST20] (which corresponds to 𝐼 = 1, 𝐽 = 1). Note that when 𝐼 = 1, for all 𝑡, 𝑥 one has

[̃𝑥 (𝑡) ∈ {0, 1}, which yields [̃𝑥 (𝑡)2 = [̃𝑥 (𝑡). [CGST20] utilizes this crucial observation to show

that

𝑍∇,∇(𝑡, 𝑥, 𝑥) = ([̃𝑥+1(𝑡) − 𝜌)2𝑍 (𝑡, 𝑥)2 + 𝜖
1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2,

= 𝜌2𝑍 (𝑡, 𝑥)2 + (1 − 2𝜌)[̃𝑥+1(𝑡)𝑍 (𝑡, 𝑥)2,

= 𝜌(1 − 𝜌)𝑍 (𝑡, 𝑥)2 + (2𝜌 − 1)𝑍∇(𝑡, 𝑥, 𝑥) + 𝜖
1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2,

where in the last line above, we used (6.8.15). We have seen in the previous section that 𝑍∇(𝑡, 𝑥, 𝑥)

vanishes after averaging, which implies that 𝑍∇,∇(𝑡, 𝑥, 𝑥) − 𝜌(1 − 𝜌)𝑍 (𝑡, 𝑥)2 will also vanish.
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When 𝐼 ≥ 2, [̃𝑥 (𝑡) can takes more than two values so the [̃𝑥 (𝑡)2 = [̃𝑥 (𝑡) relation no longer holds.

Notice that in the proof of Lemma 6.8.2, we have only leveraged the first duality (6.5.21) in the

Lemma 6.5.2. To conclude Lemma 6.8.3, we will combine both of the dualities (6.5.21) and

(6.5.22).

Before moving to the proof, we first offer a heuristic argument to explain why the _ =
𝜌(𝐼−𝜌)
𝐼

is the

value which makes 𝑍∇,∇(𝑡, 𝑥, 𝑥) − _𝑍 (𝑡, 𝑥)2 vanish after averaging.

Heuristic argument for Lemma 6.8.3. Note that

𝑍∇,∇(𝑡, 𝑥, 𝑥) = ([̃𝑥+1(𝑡) − 𝜌)2𝑍 (𝑡, 𝑥)2 + 𝜖
1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2.

In Theorem C.0.3, we find that the stationary distribution of the (bi-infinite) SHS6V model is given

by
⊗

𝜋𝜌, where 𝜋𝜌 is defined in (C.0.1). It is straightforward to verify that
⊗

𝜋𝜌 is near stationary

with density 𝜌 (Definition 6.5.5). Start the SHS6V model from ®[(0) ∼
⊗

𝜋𝜌, by stationarity

[𝑥 (𝑡) ∼ 𝜋𝜌 for all 𝑡 ∈ Z≥0 and 𝑥 ∈ Z. Heuristically, we can approximate ([̃𝑥+1(𝑡) − 𝜌)2𝑍 (𝑡, 𝑥)2 by

E𝜋𝜌
[
([̃𝑥+1(𝑡) − 𝜌)2

]
𝑍 (𝑡, 𝑥)2. Note that

E𝜋𝜌
[
([̃𝑥+1(𝑡) − 𝜌)2

]
𝑍 (𝑡, 𝑥)2 = Var

[
𝜋𝜌

]
𝑍 (𝑡, 𝑥)2

where Var
[
𝜋𝜌

]
represents the variance of the probability distribution 𝜋𝜌. Referring to Lemma

C.0.2, we have

Var
[
𝜋𝜌

]
= 𝜌 −

𝐼∑︁
𝑖=1

𝜒2

(𝑞𝑖 − 𝜒)2
.

where 𝜒 is the unique negative real number satisfying
∑𝐼
𝑖=1

𝜒

𝜒−𝑞𝑖 = 𝜌. It is straightforward that

under weak asymmetric scaling (6.5.30), one has lim𝜖↓0 𝜒𝜖 =
𝜌

𝜌−𝐼 . Therefore,

lim
𝜖↓0

Var
[
𝜋𝜌

]
=
𝜌(𝐼 − 𝜌)

𝐼
,

which explains _ =
𝜌(𝐼−𝜌)
𝐼

. �
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We proceed to prove Lemma 6.8.3 rigorously. The first step is to express 𝑍∇,∇(𝑡, 𝑥, 𝑥) −
𝜌(𝐼−𝜌)
𝐼

𝑍 (𝑡, 𝑥)2 in terms of the two duality functionals in Lemma 6.5.2,

𝑍∇,∇(𝑡, 𝑥, 𝑥) −
𝜌(𝐼 − 𝜌)

𝐼
𝑍 (𝑡, 𝑥)2

=

(
([̃𝑥+1(𝑡) − 𝜌)2 −

𝜌(𝐼 − 𝜌)
𝐼

)
𝑍 (𝑡, 𝑥)2 + 𝜖 1

2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2

=

(
(𝐼 − [̃𝑥+1(𝑡)) (𝐼 − 1 − [̃𝑥+1(𝑡)) −

(𝐼 − 1) (𝐼 − 𝜌)2
𝐼

)
𝑍 (𝑡, 𝑥)2 − (2𝜌 + 1 − 2𝐼)𝑍∇(𝑡, 𝑥, 𝑥) + 𝜖

1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2

=

(
(𝐼 − [̃𝑥+1(𝑡)) (𝐼 − 1 − [̃𝑥+1(𝑡)) −

(𝐼 − 1) (𝐼 − 𝜌)2
𝐼

)
𝑍 (𝑡, 𝑥 + 1)2 − (2𝜌 + 1 − 2𝐼)𝑍∇(𝑡, 𝑥, 𝑥)

+ 𝜖 1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2 (6.8.29)

In the last equality, we replaced 𝑍 (𝑡, 𝑥) by 𝑍 (𝑡, 𝑥+1), according to (6.8.16), this procedure produces

an error term which can be absorbed in the 𝜖
1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2.

Recall that [𝑛]
𝑞

1
2
=

𝑞
𝑛
2 −𝑞−

𝑛
2

𝑞
1
2 −𝑞−

1
2

. Under weak asymmetric scaling, 𝑞 = 𝑒
√
𝜖 , one has

[𝑛]
𝑞

1
2
= 𝑛 + O(𝜖 1

2 ), 𝑞[𝑥 (𝑡) = 1 + O(𝜖 1
2 ). (6.8.30)

These approximations imply that

(𝐼 − [̃𝑥+1(𝑡)) (𝐼 − 1 − [̃𝑥+1(𝑡))𝑍 (𝑡, 𝑥 + 1)2

= [𝐼 − [̃𝑥+1(𝑡)]
𝑞

1
2
[𝐼 − 1 − [̃𝑥+1(𝑡)]

𝑞
1
2
𝑍 (𝑡, 𝑥 + 1)2𝑞[̃𝑥+1 (𝑡) + 𝜖 1

2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2,

= 𝐷 (𝑡, 𝑥 + 1, 𝑥 + 1) + 𝜖 1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2. (6.8.31)

where we recall the expression of the functional 𝐷 from (6.5.19). Inserting (6.8.31) into the RHS

of (6.8.29)

𝑍∇,∇(𝑡, 𝑥, 𝑥) −
𝜌(𝐼 − 𝜌)

𝐼
𝑍 (𝑡, 𝑥)2
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= 𝐷 (𝑡, 𝑥 + 1, 𝑥 + 1) − (𝐼 − 1) (𝐼 − 𝜌)2
𝐼

𝑍 (𝑡, 𝑥 + 1)2 − (2𝜌 + 1 − 2𝐼)𝑍∇(𝑡, 𝑥, 𝑥) + 𝜖
1
2B𝜖 (𝑡, 𝑥)𝑍 (𝑡, 𝑥)2

(6.8.32)

Recall that our goal is to show 𝜖2
𝑡∑︁
𝑠=0
Ỹ(𝑠, 𝑥★(𝑠))


2
≤ 𝐶𝜖 1

4 𝑒2𝑢𝜖 |𝑥★ |

Referring to the expression of Ỹ(𝑠, 𝑥★(𝑠)) in (6.8.5), we need to prove that there exists some

0 < 𝛿 < 1 such that for all 𝑖 ∈ Z≥1,𝜖2
𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)
(
𝑍∇,∇(𝑠, 𝑥★(𝑠) − 𝑖, 𝑥★(𝑠) − 𝑖) −

𝜌(𝐼 − 𝜌)
𝐼

𝑍 (𝑠, 𝑥★(𝑠) − 𝑖)2
)

2
≤ 𝐶𝜖 1

4 𝑒2𝑢𝜖 |𝑥★ |𝛿𝑖 .

Using (6.8.32), it suffices to show that for all 𝑖 ∈ Z≥1, 𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)
(
𝐷 (𝑠, 𝑥★(𝑠) + 1 − 𝑖, 𝑥★(𝑠) + 1 − 𝑖) − (𝐼 − 1) (𝐼 − 𝜌)2

𝐼
𝑍 (𝑠, 𝑥★(𝑠) + 1 − 𝑖)2

)
2
≤ 𝐶𝜖 1

4 𝑒2𝑢𝜖 |𝑥★ |𝛿𝑖 .

(6.8.33)

and  𝑡∑︁
𝑠=0

𝑢𝜖 (𝑠, 𝑖)𝑍∇(𝑠, 𝑥★(𝑠), 𝑥★(𝑠))


2
≤ 𝐶𝜖 1

4 𝑒2𝑢𝜖 |𝑥★ |𝛿𝑖 . (6.8.34)

Note that (6.8.34) is proved by taking 𝑖 = 0 in (6.8.21). Therefore, we only need to prove (6.8.33).

Similar to the proof in Lemma 6.8.2, to conclude (6.8.33), it suffices to prove the following lemma

for upper bounding the conditional expectation. We do not repeat the rest of the proof here.

Lemma 6.8.6. For 𝑇 > 0 and 𝑛 ∈ Z≥1, there exists constant 𝐶 and 𝑢 such that for all 𝑥 ∈ Ξ(𝑡) and

𝑠 ≤ 𝑡 ∈ [0, 𝜖−2𝑇] ∩ Z,E[𝐷 (𝑡, 𝑥, 𝑥) − (𝐼 − 1) (𝐼 − 𝜌)2
𝐼

𝑍 (𝑡, 𝑥)2
����F (𝑠)]

𝑛

≤ 𝐶𝜖−
1
2

√
𝑡 − 𝑠 + 1

𝑒2𝑢𝜖 |𝑥 | . (6.8.35)
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Proof. Combining both of the dualities (6.5.21) and (6.5.22), one has

E

[
𝐷 (𝑡, 𝑥, 𝑥) − (𝐼 − 1) (𝐼 − 𝜌)2

𝐼
𝑍 (𝑡, 𝑥)2

����F (𝑠)]
=

∑︁
𝑦1≤𝑦2∈Ξ(𝑠)

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

) (
𝐷 (𝑠, 𝑦1, 𝑦2) −

(𝐼 − 1) (𝐼 − 𝜌)2
𝐼

𝑍 (𝑡, 𝑦1)𝑍 (𝑡, 𝑦2)
)

We split the summation above according to the range of the value of |𝑦1 − 𝑦2 |,

E

[
𝐷 (𝑡, 𝑥, 𝑥) − (𝐼 − 1) (𝐼 − 𝜌)2

𝐼
𝑍 (𝑡, 𝑥)2

����F (𝑠)]
=

∑︁
𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |≥3

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

) (
𝐷 (𝑠, 𝑦1, 𝑦2) −

(𝐼 − 1) (𝐼 − 𝜌)2
𝐼

𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)
)

+
∑︁

𝑦1≤𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |≤2

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

) (
𝐷 (𝑠, 𝑦1, 𝑦2) −

(𝐼 − 1) (𝐼 − 𝜌)2
𝐼

𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)
)
.

(6.8.36)

We name the terms on the RHS of (6.8.36) by E1 and E2 respectively and we bound them sepa-

rately. It follows from Proposition 6.6.1 that𝐷 (𝑠, 𝑦1, 𝑦2) −
(𝐼 − 1) (𝐼 − 𝜌)2

𝐼
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)


𝑛

≤ 𝐶𝑒𝑢𝜖 ( |𝑦1 |+|𝑦2 |)

Invoking Theorem 6.7.1 (a) and Lemma 6.6.3, we find that

‖E2‖𝑛 ≤
∑︁

𝑦1≤𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |≤2

𝐶 (𝛽, 𝑇)
𝑡 − 𝑠 + 1

𝑒
−𝛽 ( |𝑦1−𝑥 |+ |𝑦2−𝑥 |)√

𝑡−𝑠+1+𝐶 (𝛽) 𝑒𝑢𝜖 ( |𝑦1 |+|𝑦2 |) ≤ 𝐶
√
𝑡 − 𝑠 + 1

𝑒2𝑢𝜖 |𝑥 | . (6.8.37)

We proceed to bound E1, recall that when 𝑦1 < 𝑦2,

𝐷 (𝑠, 𝑦1, 𝑦2) =
[𝐼 − 1]

𝑞
1
2

[𝐼]
𝑞

1
2

𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2) [𝐼 − [̃𝑦1 (𝑠)]
𝑞

1
2
[𝐼 − [̃𝑦2 (𝑠)]

𝑞
1
2
𝑞

1
2 [̃𝑦1 (𝑠)𝑞

1
2 [̃𝑦2 (𝑠) ,
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which could be rewritten as (using (6.8.30))

𝐷 (𝑠, 𝑦1, 𝑦2) =
𝐼 − 1
𝐼
(𝐼 − [̃𝑦1 (𝑠)) (𝐼 − [̃𝑦2 (𝑠))𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2) + 𝜖

1
2B𝜖 (𝑠, 𝑦1, 𝑦2)𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2).

Consequently, we write

E1 =
𝐼 − 1
𝐼

∑︁
𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |≥3

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

) (
(𝐼 − [̃𝑦1 (𝑠)) (𝐼 − [̃𝑦2 (𝑠)) − (𝐼 − 𝜌)2

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)

+ 𝜖 1
2

∑︁
𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |≥3

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

)
B𝜖 (𝑠, 𝑦1, 𝑦2)𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)

=
𝐼 − 1
𝐼

∑︁
𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |≥3

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

) (
(𝜌 − [̃𝑦1 (𝑠)) (𝐼 − [̃𝑦2 (𝑠)) + (𝐼 − 𝜌) (𝜌 − [̃𝑦2 (𝑠))

)
𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)

+ 𝜖 1
2

∑︁
𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |≥3

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

)
B𝜖 (𝑠, 𝑦1, 𝑦2)𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2) (6.8.38)

It Is straightforward by (6.8.15) and (6.8.16) that

(𝜌 − [̃𝑦1 (𝑠))𝑍 (𝑠, 𝑦1)

= (𝜌 − [̃𝑦1 (𝑠))𝑍 (𝑠, 𝑦1 − 1) + 𝜖 1
2B𝜖 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦1) = 𝜖−

1
2∇𝑍 (𝑠, 𝑦1 − 1) + 𝜖 1

2B𝜖 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦1),

(𝜌 − [̃𝑦2 (𝑠))𝑍 (𝑠, 𝑦2)

= (𝜌 − [̃𝑦2 (𝑠))𝑍 (𝑠, 𝑦2 − 1) + 𝜖 1
2B𝜖 (𝑠, 𝑦2)𝑍 (𝑠, 𝑦2) = 𝜖−

1
2∇𝑍 (𝑠, 𝑦2 − 1) + 𝜖 1

2B𝜖 (𝑠, 𝑦2)𝑍 (𝑠, 𝑦2).

Inserting these into the RHS of (6.8.38),

E1 =
𝐼 − 1
𝐼

∑︁
𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |>2

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

)
(𝐼 − [̃𝑦2 (𝑠)) (𝜖−

1
2∇𝑍 (𝑠, 𝑦1))𝑍 (𝑠, 𝑦2)

+ 𝐼 − 1
𝐼

∑︁
𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |>2

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

)
(𝐼 − 𝜌) (𝜖− 1

2∇𝑍 (𝑠, 𝑦2))𝑍 (𝑠, 𝑦1)
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+
∑︁

𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |>2

𝜖
1
2 V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

)
B𝜖 (𝑠, 𝑦1, 𝑦2)𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2).

Let us name respectively the three terms on the RHS above to be J1, J2, J3. Recall the summation

by part formula (with notation ∇ 𝑓 (𝑥) = 𝑓 (𝑥 + 1) − 𝑓 (𝑥))

∑︁
𝑥<𝑦

∇ 𝑓 (𝑥) · 𝑔(𝑥) = 𝑓 (𝑦)𝑔(𝑦 − 1) −
∑︁
𝑥<𝑦

𝑓 (𝑥) · ∇𝑔(𝑥 − 1), (6.8.39)∑︁
𝑥>𝑦

∇ 𝑓 (𝑥) · 𝑔(𝑥) = − 𝑓 (𝑦 + 1)𝑔(𝑦 + 1) −
∑︁
𝑥>𝑦

𝑓 (𝑥 + 1)∇𝑔(𝑥).

Note that

J1 =
𝐼 − 1
𝐼

∑︁
𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |>2

V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

)
(𝐼 − [̃𝑦2 (𝑠)) (𝜖−

1
2∇𝑍 (𝑠, 𝑦1))𝑍 (𝑠, 𝑦2),

by (6.8.39), we move the gradient from ∇𝑍 (𝑠, 𝑦1) to V𝜖 ,

J1 =
𝐼 − 1
𝐼

[ ∑︁
𝑦2∈Ξ(𝑠)

𝜖−
1
2 V𝜖

(
(𝑥, 𝑥), (𝑦2 − 3, 𝑦2), 𝑡, 𝑠

)
(𝐼 − [̃𝑦2 (𝑠))𝑍 (𝑠, 𝑦2 − 3)𝑍 (𝑠, 𝑦2)

−
∑︁

𝑦1<𝑦2∈Ξ(𝑠)
|𝑦1−𝑦2 |>2

𝜖−
1
2∇𝑦1V𝜖

(
(𝑥, 𝑥), (𝑦1, 𝑦2), 𝑡, 𝑠

)
(𝐼 − [̃𝑦2 (𝑠))𝑍 (𝑠, 𝑦1)𝑍 (𝑠, 𝑦2)

]
.

Using Theorem 6.7.1 part (a) and part (b) to control V𝜖 and ∇V𝜖 respectively, we see that for

𝑛 ∈ Z≥1,

‖J1‖𝑛 ≤ 𝐶 (𝛽, 𝑇)
( ∑︁
𝑦2∈Ξ(𝑠)

𝜖−
1
2

𝑡 − 𝑠 + 1
𝑒
−𝛽 ( |𝑦2−𝑥 |+ |𝑦2−3−𝑥 |)√

𝑡−𝑠+1+𝐶 (𝛽) 𝑒𝑢𝜖 ( |𝑦2−3|+|𝑦2 |)

+
∑︁

𝑦1≤𝑦2∈Ξ(𝑠)

𝜖−
1
2

(𝑡 − 𝑠 + 1) 3
2
𝑒
− 𝛽 ( |𝑦1−𝑥1 |+ |𝑦2−𝑥2 |)√

𝑡−𝑠+1+𝐶 (𝛽) 𝑒𝑢𝜖 ( |𝑦1 |+|𝑦2 |)
)
.

Applying Lemma 6.6.3 yields ‖J1‖𝑛 ≤ 𝐶𝜖
− 1

2√
𝑡−𝑠+1

𝑒2𝑢𝜖 |𝑥 |. Likewise, we obtain ‖J2‖𝑛 ≤ 𝐶𝜖
− 1

2√
𝑡−𝑠+1

𝑒2𝑢𝜖 |𝑥 |.
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For J3, applying Theorem 6.7.1 part (a) and Lemma 6.6.3 implies that

‖J3‖𝑛 ≤
∑︁
𝑦1≤𝑦2

𝐶 (𝛽, 𝑇)𝜖 1
2

𝑡 − 𝑠 + 1
𝑒
− 𝛽 ( |𝑥−𝑦1 |+ |𝑥−𝑦2 |)√

𝑡−𝑠+1+𝐶 (𝛽) 𝑒𝑢𝜖 ( |𝑦1 |+|𝑦2 |) ≤ 𝐶𝜖 1
2 𝑒2𝑢𝜖 |𝑥 | ≤ 𝐶𝜖−

1
2

√
𝑡 − 𝑠 + 1

𝑒2𝑢𝜖 |𝑥 | .

In the last inequality above, we used the fact 𝑠 ≤ 𝑡 ∈ [0, 𝜖−2𝑇], which implies 𝑡 − 𝑠 ≤ 𝜖−2𝑇 .

Combining the bounds for ‖J1‖𝑛, ‖J2‖𝑛, ‖J3‖𝑛, we have

‖E1‖𝑛 ≤
𝐶𝜖−

1
2

√
𝑡 − 𝑠 + 1

𝑒2𝑢𝜖 |𝑥 | . (6.8.40)

Recall from (6.8.36) that

E

[
𝐷 (𝑡, 𝑥, 𝑥) − (𝐼 − 1) (𝐼 − 𝜌)2

𝐼
𝑍 (𝑡, 𝑥)2

����F (𝑠)] = E1 + E2,

combining the bounds for E1 and E2 in (6.8.40) and (6.8.37), we conclude the desired (6.8.35). �
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Chapter 7: The stochastic telegraph equation limit of the stochastic higher

spin six vertex model

Chapter Abstract: In this paper, we prove that the stochastic telegraph equation

arises as a scaling limit of the stochastic higher spin six vertex (SHS6V) model with

general spin 𝐼/2,𝐽/2. This extends results of Borodin and Gorin which focused on the

𝐼 = 𝐽 = 1 six vertex case and demonstrates the universality of the stochastic telegraph

equation in this context. We also provide a functional extension of the central limit

theorem obtained in [Borodin and Gorin 2019, Theorem 6.1].

This chapter is published at [Lin20c].

7.1 Introduction

7.1.1 Telegraph equation and stochastic telegraph equation

The telegraph equation is a hyperbolic PDE given by


𝑢𝑋𝑌 (𝑋,𝑌 ) + 𝛽1𝑢𝑌 (𝑋,𝑌 ) + 𝛽2𝑢𝑋 (𝑋,𝑌 ) = 𝑓 (𝑋,𝑌 ),

𝑢(𝑋, 0) = 𝜒(𝑋), 𝑢(0, 𝑌 ) = 𝜓(𝑌 ),
(7.1.1)

where the functions 𝜒, 𝜓 ∈ 𝐶1 satisfy 𝜒(0) = 𝜓(0). When 𝑓 is a deterministic function, the equa-

tion (7.1.1) is a classical object, see [CH08, Chapter V]. The stochastic versions of the telegraph

equation were intensively studied in the last 50 years, we refer the reader to [BG19, Section 1.1]

for a brief review. The solution theory of the telegraph equation goes back to [CH08], we present
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it in the way of [BG19, Section 4]. In fact, (7.1.1) admits a unique solution which reads

𝑢(𝑋,𝑌 ) = 𝜓(0)R(𝑋,𝑌, 0, 0) +
∫ 𝑌

0
R(𝑋,𝑌 ; 0, 𝑦)

(
𝜓′(𝑦) + 𝛽2𝜓(𝑦)

)
𝑑𝑦+

+
∫ 𝑋

0
R(𝑋,𝑌 ; 𝑥, 0)

(
𝜒′(𝑥) + 𝛽1𝜒(𝑥)

)
𝑑𝑥

∫ 𝑋

0

∫ 𝑌

0
R(𝑋,𝑌, 𝑥, 𝑦) 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦. (7.1.2)

Here, R(𝑋,𝑌, 𝑥, 𝑦) is the Riemann function defined as

R(𝑋,𝑌 ; 𝑥, 𝑦) = 1
2𝜋i

∮
−𝛽1

𝛽2 − 𝛽1
(𝑧 + 𝛽1) (𝑧 + 𝛽2)

exp
[
(𝛽1 − 𝛽2)

(
− (𝑋 − 𝑥) 𝑧

𝑧 + 𝛽2
+ (𝑌 − 𝑦) 𝑧

𝑧 + 𝛽1

)]
𝑑𝑧,

(7.1.3)

where the contour of the complex integration is a small circle in positive direction which only in-

cludes the pole at −𝛽1. When 𝑓 is given by 𝑓 (𝑋,𝑌 ) =
√︁
\ (𝑋,𝑌 )[(𝑋,𝑌 ), where [ is the space-time

white noise with dirac delta correlation function and \ is a deterministic integrable function. By

formula (7.1.2), the solution to the stochastic telegraph equation is a Gaussian field with covari-

ance function

Cov
(
𝑢(𝑋1, 𝑌1), 𝑢(𝑋2, 𝑌2)

)
=

∫ 𝑋1∧𝑌1

0

∫ 𝑋2∧𝑌2

0
R(𝑋1, 𝑌1, 𝑥, 𝑦)R(𝑋2, 𝑌2, 𝑥, 𝑦)\ (𝑥, 𝑦)𝑑𝑥𝑑𝑦. (7.1.4)

[BG19, Section 4] identifies the following discretization of the telegraph equation


Φ(𝑋 + 1, 𝑌 + 1) − 𝑏1Φ(𝑋,𝑌 + 1) − 𝑏2Φ(𝑋 + 1, 𝑌 ) + (𝑏1 + 𝑏2 − 1)Φ(𝑋,𝑌 ) = 𝑔(𝑋 + 1, 𝑌 + 1),

Φ(𝑋, 0) = 𝜒(𝑋), Φ(0, 𝑌 ) = 𝜓(𝑌 ),
(7.1.5)

where 𝜒(0) = 𝜓(0). The unique solution to (7.1.5) is given by [BG19, Theorem 4.7]:

Φ(𝑋,𝑌 ) = 𝜓(0)R𝑑 (𝑋,𝑌 ; 0, 0) +
𝑌∑︁
𝑦=1
R𝑑 (𝑋,𝑌 ; 0, 𝑦)

(
𝜓(𝑦) − 𝑏2𝜓(𝑦 − 1)

)
+

𝑋∑︁
𝑥=1
R𝑑 (𝑋,𝑌 ; 𝑥, 0)

(
𝜒(𝑥) − 𝑏1𝜒(𝑥 − 1)

)
+

𝑋∑︁
𝑥=1

𝑌∑︁
𝑦=1
R𝑑 (𝑋,𝑌 ; 𝑥, 𝑦)𝑔(𝑥, 𝑦). (7.1.6)

323



where the discrete Riemann function R𝑑 equals (see [BG19, Eq. 45])

R𝑑 (𝑋,𝑌 ; 𝑥, 𝑦) = 1
2𝜋i

∮
− 1

𝑏2 (1−𝑏1)

(𝑏2 − 𝑏1)𝑑𝑧
(1 + 𝑏2(1 − 𝑏1)𝑧) (1 + 𝑏1(1 − 𝑏2)𝑧)

×
(1 + 𝑏1(1 − 𝑏1)𝑧
1 + 𝑏2(1 − 𝑏1)𝑧

)𝑋−𝑥 (1 + 𝑏2(1 − 𝑏2)𝑧
1 + 𝑏1(1 − 𝑏2)𝑧

)𝑌−𝑦
. (7.1.7)

Here, the contour is a small circle going in positive direction which only encircles the pole at

− 1
𝑏2 (1−𝑏1) .

In the first version of the arxiv paper [BG18], Borodin and Gorin showed that under a special

scaling regime where the weight of the corner type vertex goes to zero, the height function of

the stochastic six vertex model converges to the telegraph equation. They also conjectured that

the fluctuation field will converge to the stochastic telegraph equation with some heuristic argu-

ments and proved this result under a special situation called low density boundary regime. The

result for general boundary condition was later proved in [ST19] and [BG19] via two distinct ap-

proaches. This result comes as a surprise. Since from [GS92, BCG16] we know that the stochastic

six vertex model belongs to the KPZ universality class. The one point fluctuation of the mod-

els in this universality is governed by Tracy Widom distribution [TW94]. However, the solution

to the stochastic telegraph equation does not lie in this universality (since it is a Gaussian field).

In addition,[CGST20] shows that under weakly asymmetric scaling (which is a different scaling

compared with the one in [BG19]), the stochastic six vertex model converges to the KPZ equation

[KPZ86, Cor12], which is a parabolic stochastic PDE while the stochastic telegraph equation is

hyperbolic!

It is natural to ask if the stochastic telegraph equation also arises as a scaling limit of other proba-

bilistic models. In this paper, we show that the stochastic higher spin six vertex (SHS6V) model,

which is a higher spin generalization of the stochastic six vertex model, converges to the stochas-

tic telegraph equation under certain scaling regime. This extends the universality of the stochastic

telegraph equation. In addition, [Lin20a] showed that under a different scaling than the one consid-
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ered in this paper, the SHS6V model converges to the KPZ equation. This tells us that the SHS6V

model converges to two distinct types of stochastic PDE under various choice of scaling.

7.1.2 The SHS6V model

The SHS6V model is a four-parameter family of quantum integrable system first introduced

in [CP16] and has been intensely studied in recent years, from the perspective of symmetric poly-

nomial [Bor17, Bor18], exact solvability [BCPS15, CP16, BP18], Markov duality [CP16, Kua18,

Lin19] and scaling limit [CT17, IMS20, Lin20a, DR20]. In particular, it is a higher spin gener-

alization of stochastic six vertex model from spin parameter 𝐼 = 𝐽 = 1 to general 𝐼, 𝐽 ∈ Z≥1. In

this paper, we discover a scaling regime for the SHS6V model (which degenerates to the scaling

in [BG19] when 𝐼 = 𝐽 = 1), under which we prove that: 1) the hydrodynamic limit of the SHS6V

model is a telegraph equation; 2) the fluctuation field of the model converges to a stochastic tele-

graph equation. To explain our result with more detail, we start with a brief review of the SHS6V

model.

Definition 7.1.1 (𝐽 = 1 L-matrix). We define the 𝐽 = 1 L-matrix to be a matrix with row and

column indexed by Z≥0 × {0, 1}. The element of the 𝐽 = 1 L-matrix is specified by

𝐿
(1)
𝛼 (𝑚, 0;𝑚, 0) = 1 + 𝛼𝑞𝑚

1 + 𝛼 , 𝐿
(1)
𝛼 (𝑚, 0;𝑚 − 1, 1) = 𝛼(1 − 𝑞𝑚)

1 + 𝛼 ,

𝐿
(1)
𝛼 (𝑚, 1;𝑚, 1) = 𝛼 + a𝑞𝑚

1 + 𝛼 , 𝐿
(1)
𝛼 (𝑚, 1;𝑚 + 1, 0) = 1 − a𝑞𝑚

1 + 𝛼

and 𝐿 (1)𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) = 0 for all other values of (𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ Z≥0 × {0, 1}. As a convention,

throughout the paper, we set a = 𝑞−𝐼 for some fixed 𝐼 ∈ Z≥1. Note that 𝐿 (1)𝛼 (𝐼, 1; 𝐼 + 1, 0) = 0,

hence the 𝐽 = 1 L-matrix transfers the subspace {0, 1, . . . , 𝐼} × {0, 1} to itself and we will restrict

ourselves on this subspace.

We call 𝛼 the spectral parameter and in the notation of 𝐿 (1)𝛼 , where the dependence on other

parameters is not made explicit. It is clear from the definition that for fixed 𝑖1 ∈ {0, 1, . . . , 𝐼} and
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𝑗1 ∈ {0, 1}, ∑︁
(𝑖2, 𝑗2)∈{0,1,...,𝐼}×{0,1}

𝐿
(1)
𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) = 1.

Moreover, 𝐿 (1)𝛼 is stochastic if we impose the following condition.

Lemma 7.1.2. 𝐿 (1)𝛼 is stochastic if one of the following holds:

• 𝑞 ∈ (0, 1) and 𝛼 < −𝑞−𝐼 ,

• 𝑞 > 1 and −𝑞−𝐼 < 𝛼 < 0.

Proof. This follows from [CP16, Proposition 2.3], which can also be verified directly. �

For an entry 𝐿 (1)𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2), we interpret the four tuple (𝑖1, 𝑗1, 𝑖2, 𝑗2) as a vertex configuration

in the sense that a vertex is associated with 𝑖1 input lines and 𝑗1 input lines coming from bottom

and left, 𝑖2 output lines and 𝑗2 output lines flowing to above and right, see Figure 7.1. The quantity

𝐿
(1)
𝛼 (𝑖1, 𝑖2; 𝑗1, 𝑗2) gives the weight of the vertex configuration. Note that for a vertex associated

with 𝐿 (1)𝛼 , we allow up to 𝐼 number of vertical lines and up to one horizontal line. We say that

the L-matrix is conservative in lines as it assigns zero weight to the entry 𝐿 (1)𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) unless

𝑖1 + 𝑗1 = 𝑖2 + 𝑗2.

We want to relax the restriction that the multiplicities of the horizontal line are bounded by 1,

and instead, consider multiplicities bounded by any fixed 𝐽. This motivates us to define the 𝐿 (𝐽)𝛼

matrix, the construction of it follows the so-called fusion procedure, which was invented in a

representation-theoretic context [KRS81, KR87] to produce higher-dimensional solutions of the

Yang–Baxter equation from lower-dimensional ones. The explicit expression of general 𝐽 L-matrix

is derived separately in [Man14] and [CP16]:

𝐿
(𝐽)
𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) =1{𝑖1+ 𝑗1=𝑖2+ 𝑗2}𝑞

2 𝑗1− 𝑗21
4 −

2 𝑗2− 𝑗22
4 +

𝑖22+𝑖
2
1

4 +
𝑖2 ( 𝑗2−1)+𝑖1 𝑗1

2

×
a 𝑗1−𝑖2𝛼 𝑗2− 𝑗1+𝑖2 (−𝛼a−1; 𝑞) 𝑗2−𝑖1

(𝑞; 𝑞)𝑖2 (−𝛼; 𝑞)𝑖2+ 𝑗2 (𝑞𝐽+1− 𝑗1; 𝑞) 𝑗1− 𝑗2
4𝜙3

(
𝑞−𝑖2; 𝑞−𝑖1 ,−𝛼𝑞𝐽 ,−𝑞a𝛼−1

a, 𝑞1+ 𝑗2−𝑖1 , 𝑞𝐽+1−𝑖2− 𝑗2

����𝑞, 𝑞) .
(7.1.8)
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i1

i2

j1 j2

input

output

i1 = 2

i2 = 3

j1 = 1 j2 = 0

Figure 7.1: Left panel: The vertex configuration labeled by four tuple (𝑖1, 𝑗1; 𝑖2, 𝑗2) (from bottom
and then in the clockwise order) has weight 𝐿 (1)𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2), which absorbs 𝑖1 ∈ {0, 1, . . . , 𝐼} in-
put lines from bottom, 𝑗1 ∈ {0, 1} input line from left, and produces 𝑖2 ∈ {0, 1, . . . , 𝐼} output lines
to above, 𝑗2 ∈ {0, 1} output lines to right. Right panel: Visualization of the vertex configuration
(𝑖1, 𝑗1; 𝑖2, 𝑗2) = (2, 1; 3, 0) in terms of lines.

Here, 4𝜙3 is the regularized terminating basic hyper-geometric series defined by

𝑟+1𝜙𝑟

(
𝑞−𝑛, 𝑎1, . . . , 𝑎𝑟

𝑏, . . . , 𝑏𝑟

����𝑞, 𝑧) =

𝑛∑︁
𝑘=0

𝑧𝑘
(𝑞−𝑛; 𝑞)𝑘
(𝑞; 𝑞)𝑘

𝑟∏
𝑖=1
(𝑎𝑖; 𝑞)𝑘 (𝑏𝑖𝑞𝑘 ; 𝑞)𝑛−𝑘 .

It is a simple exercise to see when 𝐽 = 1, the expression of 𝐿 (𝐽)𝛼 matches with 𝐿 (1)𝛼 in Definition

7.1.1. We will show momentarily that 𝐿 (𝐽)𝛼 is stochastic (Corollary 7.1.4). This allows us to view

the matrix element 𝐿 (𝐽)𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) as a vertex configuration in the manner that we described in

𝐽 = 1 case. Note that now we allow up to 𝐽 lines in the horizontal direction.

Despite explicitness, the expression of the L-matrix above is too complicated to manipulate. For

instance, using (7.1.8) directly, it might be hard to demonstrate the stochasticity of 𝐿 (𝐽)𝛼 . To this

end, we recall a probabilistic derivation of 𝐿 (𝐽)𝛼 in [CP16] using the idea of fusion, which goes back

to [KR87]. We start by introducing a few notations.

Define the stochastic matrix Ξ with rows and columns indexed by {0, 1}⊗𝐽 and {0, 1, . . . , 𝐽} such
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that

Ξ
(
(ℎ1, . . . , ℎ𝐽), ℎ

)
=


1 if ℎ =

∑𝐽
𝑖=1 ℎ𝑖

0 else

and the stochastic matrix Λ with row and column indexed by {0, 1, . . . , 𝐽} and {0, 1}⊗𝐽 . The matrix

element is given by

Λ
(
ℎ, (ℎ1, . . . , ℎ𝐽)

)
=


1

𝑍𝐽 (ℎ)
∏
𝑖:ℎ𝑖=1

𝑞𝑖−1 if ℎ =
∑𝐽
𝑖=1 ℎ𝑖

0 else

where 𝑍𝐽 (ℎ) = 𝑞ℎ(ℎ−1)/2 (𝑞,𝑞)𝐽
(𝑞,𝑞)ℎ (𝑞,𝑞)𝐽−ℎ is the normalizing constant (it can be computed using 𝑞-

binomial theorem).

We also define the matrix 𝐿⊗𝑞𝐽𝛼 with rows and columns indexed by {0, 1, . . . , 𝐼} × {0, 1}⊗𝐽 with

matrix elements

𝐿
⊗𝑞𝐽
𝛼 (𝑣, ℎ1, . . . , ℎ𝐽 ; 𝑣′, ℎ′1, . . . , ℎ

′
𝐽) =

∑︁
𝑣0,𝑣1,...,𝑣𝐽
𝑣0=𝑣,𝑣𝐽=𝑣

′

𝐽∏
𝑖=1

𝐿
(1)
𝛼𝑞𝑖−1 (𝑣𝑖−1, ℎ𝑖; 𝑣𝑖, ℎ′𝑖).

In terms of the right part of Figure 7.2, these matrix elements provide the transition probabilities

from the lines coming into a column from bottom and left, to those leaving to the top and right.

The following lemma allows us to decompose the vertex with horizontal spin 𝐽/2 (i.e. the vertex

associated with 𝐿
(𝐽)
𝛼 ) in terms of a sequence of horizontal spin 1/2 vertices, see Figure 7.2 for

visualization.

Lemma 7.1.3. The following identity holds

𝐿
(𝐽)
𝛼 (𝑣, ℎ; 𝑣′, ℎ′) =

∑︁
(ℎ1,...,ℎ𝐽 )∈{0,1}𝐽
(ℎ′1,...,ℎ

′
𝐽
)∈{0,1}𝐽

Λ
(
ℎ; (ℎ1, ℎ2, . . . ℎ𝐽)

)
𝐿
⊗𝑞𝐽
𝛼 (𝑣, ℎ1, . . . , ℎ𝐽 ; 𝑣′, ℎ′1, . . . , ℎ

′
𝐽) Ξ

(
(ℎ′1, . . . , ℎ

′
𝐽); ℎ′

)
.
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Proof. This was shown in [CP16, Theorem 3.15]. �
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Figure 7.2: Pictorial representation of the identity in Lemma 7.1.3. Fixing ℎ, 𝑣, ℎ′, 𝑣′, the weight of
vertex configuration on the left is given by 𝐿 (𝐽)𝛼 (𝑣, ℎ; 𝑣′, ℎ′). It is equal to the weight of the column
on the right, which is the summation of all 𝐿⊗𝑞𝐽𝛼 (𝑣, ℎ1, . . . , ℎ𝐽 ; 𝑣′, ℎ′1, . . . , ℎ

′
𝐽
), under the condition

ℎ1 + · · · + ℎ𝐽 = ℎ and ℎ′1 + · · · + ℎ
′
𝐽
= ℎ′, each term in the summation is reweighted by multiplying

Λ
(
ℎ; (ℎ1, . . . , ℎ𝐽)

)
.

Applying Lemma 7.1.3, we show that 𝐿 (𝐽)𝛼 is stochastic, under the following choice of param-

eters.

Corollary 7.1.4. The matrix 𝐿 (𝐽)𝛼 is stochastic if either of the following condition holds

• 𝑞 ∈ [0, 1) and 𝛼 < −𝑞−𝐼−𝐽+1,

• 𝑞 > 1 and −𝑞−𝐼−𝐽+1 < 𝛼 < 0.

Proof. Note that under the range imposed on 𝑞, 𝛼, referring to Lemma 7.1.2, the matrix 𝐿 (1)
𝛼𝑞𝑖

is

stochastic for each 𝑖 = 0, 1, . . . , 𝐽 − 1. As the product of stochastic matrices is stochastic as well,

the stochasticity of 𝐿 (𝐽)𝛼 follows directly from Lemma 7.1.3. �

We proceed to define the SHS6V model on the first quadrant Z2
≥0. For each vertex (𝑥, 𝑦) ∈ Z2

≥0,

we associate it with a four tuple (𝑣𝑥,𝑦, ℎ𝑥,𝑦, 𝑣𝑥,𝑦+1, ℎ𝑥+1,𝑦) ∈ Z4
≥0 such that 𝑣𝑥,𝑦, ℎ𝑥,𝑦 represent the

number of lines entering into the vertex from bottom and left, 𝑣𝑥,𝑦+1, ℎ𝑥+1,𝑦 denote the number of

lines flowing from the vertex to above and right. Note that configurations chosen for two neigh-

boring vertices need to be compatible in the sense that the lines keep flowing. For instance, 𝑣𝑥,𝑦+1
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also represents the number of vertical input lines flowing into (𝑥, 𝑦 + 1), ℎ𝑥,𝑦+1 equals the number

of horizontal lines entering into (𝑥 + 1, 𝑦) (see the right part of Figure 7.3).

Definition 7.1.5. We define the SHS6V model to be a stochastic path ensemble on Z2
≥0. The

boundary condition specified by {𝑣𝑥,0}𝑥∈Z≥0 and {ℎ0,𝑦}𝑦∈Z≥0 such that 𝑣𝑥,0 ∈ {0, 1, . . . , 𝐼}, ℎ0,𝑦 ∈

{0, 1, . . . , 𝐽}. In other words, we have ℎ0,𝑦 number of lines entering into the vertex (0, 𝑦) from the

left boundary and 𝑣𝑥,0 number of lines flowing into the vertex (𝑥, 0) from the bottom boundary.

Sequentially taking (𝑥, 𝑦) to be (0, 0) → (1, 0) → (0, 1) → (2, 0) → (2, 1) . . . , for vertex at

(𝑥, 𝑦), given 𝑣𝑥,𝑦, ℎ𝑥,𝑦 as the number of vertical and horizontal input lines, we randomly choose

the number of vertical and horizontal output lines (𝑣𝑥,𝑦+1, ℎ𝑥+1,𝑦) ∈ {0, 1, . . . , 𝐼} × {0, 1, . . . , 𝐽}

according to probability 𝐿 (𝐽)𝛼 (𝑣𝑥,𝑦, ℎ𝑥,𝑦; ·, ·). Proceeding with this sequential sampling, we get a

collection of paths going to the up-right direction and we call this the SHS6V model.

We associate a height function 𝐻 : Z2
≥0 → Z to the path ensemble, where the paths play a role

as the level lines of the height function (see Figure 7.3). Define for any 𝑥, 𝑦 ∈ Z≥0,

𝐻 (𝑥, 𝑦) =
𝑦∑︁
𝑗=1

ℎ0, 𝑗−1 −
𝑥∑︁
𝑖=1

𝑣𝑖−1,𝑦 .

Clearly, we have 𝐻 (0, 0) = 0 and 𝐻 (𝑥, 𝑦) −𝐻 (𝑥−1, 𝑦) = −𝑣𝑥−1,𝑦. Since the vertex is conservative,

we also have

𝐻 (𝑥, 𝑦) − 𝐻 (𝑥, 𝑦 − 1) = ℎ𝑥,𝑦−1.

Graphically, when we move across 𝑖 number of vertical lines from left to right, the height function

will decrease by 𝑖. When we move across 𝑗 number of horizontal lines, the height function will

increase by 𝑗 . We further extend 𝐻 (𝑥, 𝑦) to all (𝑥, 𝑦) ∈ R2
≥0 by first linearly interpolating the height

function first in the 𝑥-direction, then in the 𝑦-direction. It is obvious that the resulting function is

Lipschitz and monotone.

For later use, we call 𝐼/2, 𝐽/2 the vertical and horizontal spin respectively. If a vertex is of hori-

zontal spin 1/2, we call it a 𝐽 = 1 vertex, otherwise we call it a general 𝐽 vertex.
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Figure 7.3: Left: Illustration of the height function around a vertex (𝑥, 𝑦), note that 𝐻 (𝑥, 𝑦 + 1) =
𝐻 (𝑥, 𝑦) + ℎ𝑥,𝑦, 𝐻 (𝑥 + 1, 𝑦) = 𝐻 (𝑥, 𝑦) − 𝑣𝑥,𝑦 and 𝐻 (𝑥 + 1, 𝑦 + 1) = 𝐻 (𝑥, 𝑦) + ℎ𝑥,𝑦 − 𝑣𝑥,𝑦+1 =

𝐻 (𝑥, 𝑦) − 𝑣𝑥,𝑦 + ℎ𝑥+1,𝑦. Right: Sampled stochastic path ensemble on a quadrant. The red number
indicates the number lines entering into the boundary, the blue number represents the height at
each vertex.

7.1.3 Four point relation

[BG19] shows that the stochastic six vertex model height function converges to a telegraph

equation and its fluctuation field converges to a stochastic telegraph equation. The key observation

is the following four point relation, which says that if we define

bS6V(𝑥 + 1, 𝑦 + 1) = 𝑞𝐻 (𝑥+1,𝑦+1) − 𝑏1𝑞
𝐻 (𝑥,𝑦+1) − 𝑏2𝑞

𝐻 (𝑥+1,𝑦) + (𝑏1 + 𝑏2 − 1)𝑞𝐻 (𝑥,𝑦) ,

Here 𝑏1, 𝑏2 are the weight of the six vertex model configuration (in our notation 𝑏1 = 𝛼+a
1+𝛼 , 𝑏2 =

1+𝛼𝑞
1+𝛼 ). Then the conditional expectation and variance of b read

E
[
bS6V(𝑥 + 1, 𝑦 + 1)

��F (𝑥, 𝑦)] = 0, (7.1.9)

E
[
bS6V(𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)] = 𝛾1Δ𝑥Δ𝑦 + 𝛾2𝑞
𝐻 (𝑥,𝑦)Δ𝑥 + 𝛾3𝑞

𝐻 (𝑥,𝑦)Δ𝑦, (7.1.10)

where F (𝑥, 𝑦) is a sigma algebra generated by {𝐻 (𝑢, 𝑣) : 𝑢 ≤ 𝑥 or 𝑣 ≤ 𝑦} and Δ𝑥 := 𝑞𝐻 (𝑥+1,𝑦) −

𝑞𝐻 (𝑥,𝑦) , Δ𝑦 := 𝑞𝐻 (𝑥,𝑦+1) − 𝑞𝐻 (𝑥,𝑦) . The parameters 𝛾𝑖, 𝑖 = 1, 2, 3 depend on 𝑏1, 𝑏2.
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In our paper, we generalize the above relations to the SHS6V model. Define

bS6SHV(𝑥 + 1, 𝑦 + 1) = 𝑞𝐻 (𝑥+1,𝑦+1) − 𝛼 + a
1 + 𝛼𝑞

𝐻 (𝑥,𝑦+1) − 1 + 𝛼𝑞𝐽
1 + 𝛼 𝑞𝐻 (𝑥+1,𝑦) + a + 𝛼𝑞

𝐽

1 + 𝛼 𝑞𝐻 (𝑥,𝑦) ,

We prove (respectively in Theorem 7.2.3 and Theorem 7.2.5) that

E
[
bSHS6V(𝑥 + 1, 𝑦 + 1)

��F (𝑥, 𝑦)] = 0, (7.1.11)

E
[
bSHS6V(𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)] = 𝛾1Δ𝑥Δ𝑦 + 𝛾2𝑞
𝐻 (𝑥,𝑦)Δ𝑥 + 𝛾3𝑞

𝐻 (𝑥,𝑦)Δ𝑦 + R(𝑥, 𝑦). (7.1.12)

R(𝑥, 𝑦) is an error term that is negligible under our scaling. From now on, we may also use b to

denote bSHS6V.

Why does such a generalization exist? In the context of the stochastic six vertex model, (7.1.9)

is related to the self-duality discovered in [CP16, Proposition 2.20], though it is more of a local

relation than the way duality is generally stated (it is unclear to us how to prove (7.1.9) from the

duality directly). In fact, [CP16, Corollary 3.3] shows that the SHS6V model with general 𝐼, 𝐽

enjoys the same self-duality, so it is natural to expect that (7.1.11), as a generalized version of

(7.1.9) holds. For the quadratic variation, the situation is more subtle for the SHS6V model. We

do not come up with a simple reason why (7.1.12) holds, though this may be understandable from

our proof, which is briefly explained in the next paragraph. Here, we just emphasize that as shown

in Remark 7.2.6, there exist no 𝛾𝑖, 𝑖 = 1, 2, 3 such that the identity without an error term holds

for the SHS6V model. We also emphasize that it is only under our scaling (7.1.13) that R(𝑥, 𝑦) is

negligible.

Let us explain the ideas and techniques used in proving (7.1.11) and (7.1.12). In [BG19], the au-

thors prove (7.1.9) and (7.1.10) via a direct computation, which corresponds to enumerating all

possible six vertex configurations. In our case, the situation is more involved: when 𝐽 is large, the

expression of 𝐿 (𝐽)𝛼 is so complicated that it is hopeless to check these relations directly. Alterna-

tively, we first verify them directly for 𝐽 = 1, in which case the L-matrix has a simple expression
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given by Definition 7.1.1. For general 𝐽, we use fusion, which allows us to decompose the general

𝐽 vertex into a sequence of 𝐽 = 1 vertices (see Figure 7.2). Repeatedly using the 𝐽 = 1 version

of (7.1.11) (where the spectral parameter 𝛼 is replaced by 𝛼𝑞𝑖 in the expression of b), we get 𝐽

identities. Summing up these identities in a clever way, we see a telescoping property and (7.1.11)

follows. To prove (7.1.12), besides using fusion, we need to refer to the property of our scaling

(7.1.13), which says that with a probability converging to 1, the lines entering into a vertex will

keep flowing in the same direction (see Lemma 7.2.4).

In [CP16], the fusion was stated in a way that the spectral parameters progress geometrically by

𝑞 from bottom to top when we decompose the general 𝐽 vertex to a column of 𝐽 = 1 vertices.

It turns out that (Lemma 7.2.1) we can also reverse the direction and let the parameters progress

geometrically by 𝑞 from top to bottom (meanwhile we change the probability distribution assigned

on the input lines from the left). We did not see this result elsewhere. Note that it is only after

this reversal of the spectral parameters that we obtain the telescoping property mentioned in the

previous paragraph.

7.1.4 Stochastic telegraph equation as a scaling limit of the SHS6V model

Having established the four point relation, we are ready to talk about our result. We show that

under our scaling,

(i). (Hydrodynamic limit (or law of large numbers) – Theorem 7.1.6): The SHS6V model height

function converges uniformly in probability to a telegraph equation.

(ii). (Functional central limit theorem – Theorem 7.1.7 (also see Corollary 7.1.9)): The fluctua-

tion field of the height function around its hydrodynamic limit (viewed as a random contin-

uous function) converges weakly to a stochastic telegraph equation.

Once we have proved the four point relation for the SHS6V model, the proof for the law of large

numbers is akin to [BG19, Theorem 5.1]. For the functional central limit theorem, our proof
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breaks down into proving the finite dimensional weak convergence (Proposition 7.3.1) and tight-

ness (Proposition 7.3.2). For finite dimensional convergence, the proof follows a similar idea

as in [BG19, Theorem 6.1], subject to certain generalization. For the tightness, we rely on the

Burkholder inequality and a careful control of joint moments of b at different locations (Lemma

7.3.3). We remark that the proof of the tightness may not fit to the regime of classical functional

martingale CLT result (e.g. [Bro71, Section 6]), see Remark 7.3.4 for more discussion.

To present our results, let us first introduce our scaling. Fix 𝐼, 𝐽 ∈ Z≥1 and positive 𝛽1, 𝛽2 such that

𝛽1 ≠ 𝛽2 , we scale the parameter 𝑞, 𝛼 in the way that

𝑞 = 𝑒
𝛽1−𝛽2

𝐿 ,
1 + 𝛼𝑞𝐽
1 + 𝛼 = 𝑒−

𝐽𝛽2
𝐿 , 𝐿 →∞. (7.1.13)

It is straightforward that as 𝐿 →∞, 𝛼 and 𝑞 always satisfy one of the conditions given in Corollary

7.1.4, thus 𝐿 (𝐽)𝛼 is indeed stochastic.

Theorem 7.1.6. Define 𝔮 = 𝑒𝛽1−𝛽2 and fix 𝐴, 𝐵 > 0, consider two monotone Lipschitz functions

𝜒 and 𝜓. Suppose that the boundary for the SHS6V model is chosen in the way that as 𝐿 → ∞,

1
𝐿
𝐻 (𝐿𝑥, 0) → 𝜒(𝑥) and 1

𝐿
𝐻 (0, 𝐿𝑦) → 𝜓(𝑦) uniformly in probability for 𝑥 ∈ [0, 𝐴] and 𝑦 ∈

[0, 𝐵], then as 𝐿 →∞,

1
𝐿

sup
𝑥∈[0,𝐴]×[0,𝐵]

|𝐻 (𝐿𝑥, 𝐿𝑦) − 𝐿h(𝑥, 𝑦) |
𝑝
→ 0,

where
𝑝
→ means the convergence in probability. 𝔮h(𝑥,𝑦) is the unique solution to the telegraph

equation
𝜕2

𝜕𝑥𝜕𝑦
𝔮h(𝑥,𝑦) + 𝐽𝛽2

𝜕

𝜕𝑥
𝔮h(𝑥,𝑦) + 𝐼 𝛽1

𝜕

𝜕𝑦
𝔮h(𝑥,𝑦) = 0, (7.1.14)

with the boundary condition specified by 𝔮h(𝑥,0) = 𝔮𝜒(𝑥) and 𝔮h(0,y) = 𝔮𝜓(𝑦) .

We remark that there is a typo in [BG19, Eq. 69] about the boundary condition, 𝔮h(𝑥,0) , 𝔮h(0,𝑦)

should equal 𝔮𝜒(𝑥) and 𝔮𝜓(𝑦) , instead of 𝜒(𝑥) and 𝜓(𝑦).
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Having established the law of large number for the height function, we proceed to show the func-

tional central limit theorem. As a convention, we endow the space 𝐶 (R2
≥0) with the topology of

uniform convergence over compact subsets and use “⇒ ” to denote the weak convergence. Recall

that we linearly extend 𝐻 (𝑥, 𝑦) for non-integer 𝑥, 𝑦, so 𝐻 (𝑥, 𝑦) ∈ 𝐶 (R2
≥0).

Theorem 7.1.7. Assuming further that 𝜒(𝑥) and 𝜓(𝑦) are piecewise 𝐶1-smooth, we have the weak

convergence as 𝐿 →∞,

√
𝐿

(
𝑞𝐻 (𝐿𝑥,𝐿𝑦) − E

[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

] )
⇒ 𝜑(𝑥, 𝑦) in 𝐶 (R2

≥0),

where 𝜑(𝑥, 𝑦) is a random continuous function which solves the stochastic telegraph equation

𝜑𝑥𝑦 + 𝐼 𝛽1𝜑𝑦 + 𝐽𝛽2𝜑𝑥 = [ ·
√︃
(𝛽1 + 𝛽2)𝔮h

𝑥𝔮
h
𝑦 + 𝐽 (𝛽2 − 𝛽1)𝛽2𝔮h𝔮h

𝑥 + 𝐼 (𝛽1 − 𝛽2)𝛽1𝔮h𝔮h
𝑦 , (7.1.15)

Here, 𝔮h
𝑥 := 𝜕𝑥 (𝔮h(𝑥,𝑦)) and 𝔮h

𝑦 := 𝜕𝑦 (𝔮h(𝑥,𝑦)), the boundary of 𝜑 is given by zero.

Remark 7.1.8. By (7.1.4), it is clear that 𝜑 is a Gaussian field with covariance function

Cov
(
𝜑(𝑋1, 𝑌1), 𝜑(𝑋2, 𝑌2)

)
=

∫ 𝑋1∧𝑌1

0

∫ 𝑋2∧𝑌2

0
R𝐼𝐽 (𝑋1, 𝑌1, 𝑥, 𝑦)R𝐼𝐽 (𝑋2, 𝑌2, 𝑥, 𝑦)

×
(
(𝛽1 + 𝛽2)𝔮h

𝑥𝔮
h
𝑦 + 𝐽 (𝛽2 − 𝛽1)𝛽2𝔮

h𝔮h
𝑥 + 𝐼 (𝛽1 − 𝛽2)𝛽1𝔮

h𝔮h
𝑦

)
𝑑𝑥𝑑𝑦,

where R𝐼𝐽 is the Riemann function in (7.1.3) with 𝛽1 and 𝛽2 replaced by 𝐼 𝛽1 and 𝐽𝛽2 respectively,

i.e.

R𝐼𝐽 (𝑋,𝑌 ; 𝑥, 𝑦) = 1
2𝜋i

∮
−𝐼 𝛽1

𝐽𝛽2 − 𝐼 𝛽1
(𝑧 + 𝐼 𝛽1) (𝑧 + 𝐽𝛽2)

exp
[
(𝐼 𝛽1−𝐽𝛽2)

(
−(𝑋−𝑥) 𝑧

𝑧 + 𝐽𝛽2
+(𝑌−𝑦) 𝑧

𝑧 + 𝐼 𝛽1

)]
𝑑𝑧,

(7.1.16)

As a corollary of the previous results, we have the following.
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Corollary 7.1.9. As 𝐿 →∞,

𝐻 (𝐿𝑥, 𝐿𝑦) − E
[
𝐻 (𝐿𝑥, 𝐿𝑦)

]
√
𝐿

⇒ 𝜙(𝑥, 𝑦) in 𝐶 (R2
≥0),

𝜙(𝑥, 𝑦) is a Gaussian field given by 𝜙(𝑥, 𝑦) := 𝜑(𝑥,𝑦)
𝔮h(𝑥,𝑦) log 𝔮 , which solves

𝜙𝑥𝑦 + 𝐼 𝛽1𝜙𝑦 + 𝐽𝛽2𝜙𝑥 + (𝛽1 − 𝛽2) (𝜙𝑦h𝑥 + 𝜙𝑥h𝑦) = [ ·
√︃
(𝛽1 + 𝛽2)h𝑥h𝑦 − 𝐽𝛽2h𝑥 + 𝐼 𝛽1h𝑦 . (7.1.17)

The rest of the paper is organized as follows. In Section 7.2, we first establish an identity

(Lemma 7.2.1), which gives an alternative way to apply fusion. Then, we prove our four point re-

lation (Theorem 7.2.3 and Theorem 7.2.5). We also discuss some properties of our scaling (Lemma

7.2.4). In Section 7.3, we first use the four point relation to prove the law of large numbers (The-

orem 7.1.6) and the finite dimensional version of the CLT (Proposition 7.3.1). Then we establish

the tightness (Proposition 7.3.2) and improve our CLT to the functional level (Theorem 7.1.7).
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7.2 Four point relation

In this section, we prove the four point relation (7.1.11) and (7.1.12) that mentioned in Section

7.1.3. To begin with, we present a lemma that allows us to reverse the spectral parameters upside

down when we decompose the general 𝐽 vertex into a column of 𝐽 = 1 vertices, see Figure 7.4 for

visualization. The key for our proof is an identity that allows us to switch a pair of vertices with

different spectral parameters, see Figure 7.5. We do not find such identity in the literature. It seems

to us that this identity does not follow directly from the Yang-Baxter equation.
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Define the stochastic matrix Λ̃,

Λ̃(ℎ, (ℎ1, . . . , ℎ𝐽)) :=


1

𝑍𝐽 (ℎ)
∏
ℎ𝑖=1

𝑞𝐽−𝑖 if ℎ =
∑𝐽
𝑖=1 ℎ𝑖

0 else

and

�̃�
⊗𝑞𝐽
𝛼 (𝑣, ℎ1, . . . , ℎ𝐽 ; 𝑣′, ℎ′1, . . . , ℎ

′
𝐽) :=

∑︁
𝑣0,𝑣1,...,𝑣𝐽
𝑣0=𝑣,𝑣𝐽=𝑣

′

𝐽∏
𝑖=1

𝐿
(1)
𝛼𝑞𝐽−𝑖
(𝑣𝑖−1, ℎ𝑖; 𝑣𝑖, ℎ′𝑖).

Note that comparing with the expression of Λ and 𝐿⊗𝑞𝐽𝛼 , the term 𝑞𝑖−1 is replaced by 𝑞𝐽−𝑖, which

corresponds to reversing the spectral parameters upside down.

Lemma 7.2.1. For fixed ℎ, 𝑣, ℎ′, 𝑣′, the following identity holds,

∑︁
(ℎ1,...,ℎ𝐽 )∈{0,1}𝐽
(ℎ′1,...,ℎ

′
𝐽
)∈{0,1}𝐽

Λ(ℎ; ℎ1, ℎ2, . . . ℎ𝐽)𝐿
⊗𝑞𝐽
𝛼 (𝑣, ℎ1, . . . , ℎ𝐽 ; 𝑣′, ℎ′1, . . . , ℎ

′
𝐽) Ξ(ℎ′1, . . . , ℎ

′
𝐽 ; ℎ
′)

=
∑︁

(ℎ1,...,ℎ𝐽 )∈{0,1}𝐽
(ℎ′1,...,ℎ

′
𝐽
)∈{0,1}𝐽

Λ̃(ℎ; ℎ1, ℎ2, . . . ℎ𝐽) �̃�
⊗𝑞𝐽
𝛼 (𝑣, ℎ1, . . . , ℎ𝐽 ; 𝑣′, ℎ′1, . . . , ℎ

′
𝐽) Ξ(ℎ′1, . . . , ℎ

′
𝐽 ; ℎ
′).

(7.2.1)

Consequently, we have alternate expression for the general 𝐽 vertex weight

𝐿
(𝐽)
𝛼 (𝑣, ℎ; 𝑣′, ℎ′) =

∑︁
(ℎ1,...,ℎ𝐽 )∈{0,1}𝐽
(ℎ′1,...,ℎ

′
𝐽
)∈{0,1}𝐽

Λ̃(ℎ; ℎ1, ℎ2, . . . ℎ𝐽) �̃�
⊗𝑞𝐽
𝛼 (𝑣, ℎ1, . . . , ℎ𝐽 ; 𝑣′, ℎ′1, . . . , ℎ

′
𝐽) Ξ(ℎ′1, . . . , ℎ

′
𝐽 ; ℎ
′).

(7.2.2)

Proof. By Lemma 7.1.3, it is clear that (7.2.1) implies (7.2.2). It suffices to prove (7.2.1), which

says, graphically

When 𝐽 = 1, the proof is trivial. When 𝐽 = 2, the identity (7.2.1) reduces to Figure 7.5. Since

ℎ, ℎ′ ∈ {0, 1, 2}, there are nine cases in total. One can verify each case directly and here, we only
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Figure 7.4: Pictorial representation of the identity (7.2.1). The weight (wt) of a diagram is given
by a summation of products of L-matrices over ℎ1, . . . , ℎ𝐽 , with condition ℎ1 + · · · + ℎ𝐽 = ℎ and
ℎ′1 + · · · + ℎ

′
𝐽
= ℎ′. Each product on the left (resp. right) hand side in the summation is reweighted

by Λ(ℎ; ℎ1, . . . , ℎ𝐽) (resp. Λ̃(ℎ; ℎ1, . . . , ℎ𝐽)).
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Figure 7.5: Identity (7.2.1) when 𝐽 = 2.

show our verification for ℎ = 1 and ℎ′ = 1, in which case the computation is more involved. The

LHS in Figure 7.5 equals

Λ
(
1; (1, 0)

) (
𝐿
(1)
𝛼 (𝑣, 1; 𝑣, 1)𝐿 (1)𝛼𝑞 (𝑣, 0; 𝑣, 0) + 𝐿 (1)𝛼 (𝑣, 1; 𝑣 + 1, 0)𝐿 (1)𝛼𝑞 (𝑣 + 1, 0; 𝑣, 1)

)
+ Λ

(
1; (0, 1)

) (
𝐿
(1)
𝛼 (𝑣, 0; 𝑣 − 1, 1)𝐿 (1)𝛼𝑞 (𝑣 − 1, 1; 𝑣, 0) + 𝐿 (1)𝛼 (𝑣, 0; 𝑣, 0)𝐿 (1)𝛼𝑞 (𝑣, 1; 𝑣, 1)

)
=

1
1 + 𝑞

(𝛼 + a𝑞𝑣
1 + 𝛼

1 + 𝛼𝑞𝑣+1
1 + 𝛼𝑞 + 1 − a𝑞𝑣

1 + 𝛼
𝛼𝑞(1 − 𝑞𝑣+1)

1 + 𝛼𝑞

)
+ 𝑞

1 + 𝑞

(𝛼(1 − 𝑞𝑣)
1 + 𝛼

1 − a𝑞𝑣−1

1 + 𝛼𝑞 + 1 + 𝛼𝑞𝑣
1 + 𝛼

𝛼𝑞 + a𝑞𝑣
1 + 𝛼𝑞

)
(7.2.3)

and the RHS equals

Λ̃
(
1; (1, 0)

) (
𝐿
(1)
𝛼𝑞 (𝑣, 1; 𝑣, 1)𝐿 (1)𝛼 (𝑣, 0; 𝑣, 0) + 𝐿 (1)𝛼𝑞 (𝑣, 1; 𝑣 + 1, 0)𝐿 (1)𝛼 (𝑣 + 1, 0; 𝑣, 1)

)
+ Λ̃

(
1; (0, 1)

) (
𝐿
(1)
𝛼𝑞 (𝑣, 0; 𝑣 − 1, 1)𝐿 (1)𝛼 (𝑣 − 1, 1; 𝑣, 0) + 𝐿 (1)𝛼𝑞 (𝑣, 0; 𝑣, 0)𝐿 (1)𝛼 (𝑣, 1; 𝑣, 1)

)
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=
𝑞

1 + 𝑞

(𝛼𝑞 + a𝑞𝑣
1 + 𝛼𝑞

1 + 𝛼𝑞𝑣
1 + 𝛼 +

1 − a𝑞𝑣
1 + 𝛼𝑞

𝛼(1 − 𝑞𝑣+1)
1 + 𝛼

)
+ 1

1 + 𝑞

(𝛼𝑞(1 − 𝑞𝑣)
1 + 𝛼𝑞

1 − a𝑞𝑣−1

1 + 𝛼 + 1 + 𝛼𝑞𝑣+1
1 + 𝛼𝑞

𝛼 + a𝑞𝑣
1 + 𝛼

)
(7.2.4)

It is not hard to see directly that the RHS of (7.2.3) and (7.2.4) are both the sum of the following

four terms (divided by a common denominator (1 + 𝑞) (1 + 𝛼) (1 + 𝛼𝑞))

𝑞(𝛼𝑞+a𝑞𝑣) (1+𝛼𝑞𝑣), 𝑞𝛼(1−a𝑞𝑣) (1−𝑞𝑣+1), 𝛼𝑞(1−𝑞𝑣) (1−a𝑞𝑣−1), (1+𝛼𝑞𝑣+1) (𝛼+a𝑞𝑣).

For the verification of other ℎ, ℎ′ ∈ {0, 1, 2}, we omit the details of our computation.

For general 𝐽, we look at the column of vertices on the LHS of the equation illustrated in Figure

7.4. From bottom to top, we label the vertices from 1 to 𝐽. Sequentially for 𝑖 = 1, . . . , 𝐽 − 1, we

apply the 𝐽 = 2 identity (that we just verified) for the vertex 𝑖 and 𝑖 + 1 in that column. Then, the

spectral parameters of the vertices (looking from bottom to top) change from (𝛼, 𝛼𝑞, . . . , 𝛼𝑞𝐽−1)

to (𝛼𝑞, 𝛼𝑞2, . . . , 𝛼𝑞𝐽−1, 𝛼), note that the vertex with spectral parameter 𝛼 moves from bottom to

top. The Λ also changes accordingly. Then we apply the 𝐽 = 2 identity for 𝑖 = 1, . . . , 𝐽 − 2 to

move the spectral parameter 𝛼𝑞 to the second top place. If we keep implementing this procedure,

finally we get a column of vertices with spectral parameters (𝛼𝑞𝐽−1, 𝛼𝑞𝐽−2, . . . , 𝛼). The left input

lines are weighted by Λ̃. �

Remark 7.2.2. It turns out that following the same argument, the identities (7.2.1), (7.2.2) also

hold when we replace the stochastic matrix Λ̃ with

Λ𝜎
(
ℎ, (ℎ1, . . . , ℎ𝐽)

)
:=


1

𝑍𝐽 (ℎ)
∏
ℎ𝑖=1

𝑞𝜎(𝑖)−1 if ℎ =
∑𝐽
𝑖=1 ℎ𝑖,

0 else,
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and replace �̃�⊗𝑞𝐽𝛼 (𝑣, ℎ1, . . . , ℎ𝐽 ; 𝑣′, ℎ′1, . . . , ℎ
′
𝐽
) with

𝐿
⊗𝑞𝐽
𝜎,𝛼 (𝑣, ℎ1, . . . , ℎ𝐽 ; 𝑣′, ℎ′1, . . . , ℎ

′
𝐽) :=

∑︁
𝑣0,𝑣1,...,𝑣𝐽
𝑣0=𝑣,𝑣𝐽=𝑣

′

𝐽∏
𝑖=1

𝐿
(1)
𝛼𝑞𝜎 (𝑖)−1 (𝑣𝑖−1, ℎ𝑖; 𝑣𝑖, ℎ′𝑖).

where 𝜎 is an arbitrary permutation of {1, 2, . . . , 𝐽}. We do not include this generalization in the

lemma since we are not going to use it.

Theorem 7.2.3. Consider the SHS6V model associated with the height function 𝐻, define for

𝑥, 𝑦 ∈ Z≥0,

b (𝑥 + 1, 𝑦 + 1) = 𝑞𝐻 (𝑥+1,𝑦+1) − 𝛼 + a
1 + 𝛼𝑞

𝐻 (𝑥,𝑦+1) − 1 + 𝛼𝑞𝐽
1 + 𝛼 𝑞𝐻 (𝑥+1,𝑦) + a + 𝛼𝑞

𝐽

1 + 𝛼 𝑞𝐻 (𝑥,𝑦) , (7.2.5)

then we have,

E
[
b (𝑥 + 1, 𝑦 + 1)

��F (𝑥, 𝑦)] = 0, (7.2.6)

where F (𝑥, 𝑦) = 𝜎
(
𝐻 (𝑖, 𝑗) : 𝑖 ≤ 𝑥 or 𝑗 ≤ 𝑦

)
.

Proof. Since our model is homogeneous, i.e. every vertex is assigned with the same L-matrix, we

suppress the dependence on 𝑥, 𝑦 in our notation and denote by

b := b (𝑥+1, 𝑦+1), H := 𝐻 (𝑥, 𝑦), ℎ := 𝐻 (𝑥, 𝑦+1)−𝐻 (𝑥, 𝑦), 𝑣 := 𝐻 (𝑥, 𝑦)−𝐻 (𝑥+1, 𝑦).

In addition, we let

F := 𝜎
(
𝐻 (𝑥, 𝑦), 𝐻 (𝑥, 𝑦 + 1), 𝐻 (𝑥 + 1, 𝑦)

)
= 𝜎

(
H, ℎ, 𝑣

)
.

By the sequential update rule specified in Definition 7.1.5, 𝐻 (𝑥 + 1, 𝑦 + 1) only depends on the

information of H, ℎ, 𝑣, so

E
[
b
��F (𝑥, 𝑦)] = E[b��F ]

.

340



To prove (7.2.6), it suffices to show that

E
[
b
��F ]

= 0. (7.2.7)

We prove this identity in two steps:

Step 1 (𝐽 = 1): We assume 𝐽 = 1, in which case the vertex weight (7.1.8) reduces to the weights

in Definition 7.1.1. Let us verify (7.2.7) directly,

E
[
b
��F ]

= E
[
𝑞𝐻 (𝑥+1,𝑦+1) − 𝛼 + a

1 + 𝛼𝑞
𝐻 (𝑥,𝑦+1) − 1 + 𝛼𝑞

1 + 𝛼 𝑞𝐻 (𝑥+1,𝑦) + a + 𝛼𝑞
1 + 𝛼 𝑞𝐻 (𝑥,𝑦)

��F ]
,

= E
[
𝑞𝐻 (𝑥+1,𝑦+1)

��F ]
− 𝛼 + a

1 + 𝛼𝑞
𝐻 (𝑥,𝑦+1) − 1 + 𝛼𝑞

1 + 𝛼 𝑞𝐻 (𝑥+1,𝑦) + a + 𝛼𝑞
1 + 𝛼 𝑞𝐻 (𝑥,𝑦) ,

= E
[
𝑞𝐻 (𝑥+1,𝑦+1)

��F ]
− 𝛼 + a

1 + 𝛼𝑞
H+ℎ − 1 + 𝛼𝑞

1 + 𝛼 𝑞H−𝑣 + a + 𝛼𝑞
1 + 𝛼 𝑞H.

Since 𝐽 = 1, ℎ is either 0 or 1, we discuss them respectively.

If ℎ = 0, i.e. 𝐻 (𝑥, 𝑦 + 1) = H, by Definition 7.1.1,

P
(
𝐻 (𝑥 + 1, 𝑦 + 1) = H − 𝑣

)
=

1 + 𝛼𝑞𝑣
1 + 𝛼 ; P

(
𝐻 (𝑥 + 1, 𝑦 + 1) = H − 𝑣 + 1

)
=
𝛼(1 − 𝑞𝑣)

1 + 𝛼 . (7.2.8)

Hence,

E
[
b
��F ]

=
1 + 𝛼𝑞𝑣
1 + 𝛼 𝑞H−𝑣 + 𝛼(1 − 𝑞

𝑣)
1 + 𝛼 𝑞H−𝑣+1 − 𝛼 + a

1 + 𝛼𝑞
H − 1 + 𝛼𝑞

1 + 𝛼 𝑞H−𝑣 + a + 𝛼𝑞
1 + 𝛼 𝑞H = 0.

If ℎ = 1, i.e. 𝐻 (𝑥, 𝑦 + 1) = H + 1, we have

P
(
𝐻 (𝑥 + 1, 𝑦 + 1) = H − 𝑣

)
=

1 − a𝑞𝑣
1 + 𝛼 ; P

(
𝐻 (𝑥 + 1, 𝑦 + 1) = H − 𝑣 + 1

)
=
𝛼 + a𝑞𝑣
1 + 𝛼 , (7.2.9)

which yields

E
[
b
��F ]

=
1 − a𝑞𝑣
1 + 𝛼 𝑞H−𝑣 + 𝛼 + a𝑞

𝑣

1 + 𝛼 𝑞H−𝑣+1 − 𝛼 + a
1 + 𝛼𝑞

H+1 − 1 + 𝛼𝑞
1 + 𝛼 𝑞H−𝑣 + a + 𝛼𝑞

1 + 𝛼 𝑞H = 0.
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Step 2 (General 𝐽): Using fusion, we decompose the general 𝐽 vertex with input (𝑣, ℎ) into a col-

umn of 𝐽 = 1 vertices with input (𝑣, ℎ1, . . . , ℎ𝐽), where (ℎ1, . . . ℎ𝐽) is weighted by Λ(ℎ; ℎ1, . . . , ℎ𝐽),

see Figure 7.6. Define 𝐻𝑖, 𝐻′𝑖 , 𝑖 = 0, 1, . . . , 𝐽 in the way that

𝐻0 = 𝐻 (𝑥, 𝑦), 𝐻′0 = 𝐻 (𝑥 + 1, 𝑦), (7.2.10)

𝐻𝑖 = 𝐻0 +
𝑖∑︁
𝑗=1

ℎ 𝑗 , 𝐻′𝑖 = 𝐻
′
0 +

𝑖∑︁
𝑗=1

ℎ′𝑗 . (7.2.11)

Since ℎ = ℎ1 + · · · + ℎ𝐽 , 𝐻𝐽 = 𝐻 (𝑥, 𝑦 + 1). Furthermore, 𝐻′
𝐽
= 𝐻 (𝑥 + 1, 𝑦 + 1) in law. It suffices to

Figure 7.6: Given 𝐻 (𝑥, 𝑦) = 𝐻0, 𝐻 (𝑥 + 1, 𝑦) = 𝐻′0, 𝐻 (𝑥, 𝑦 + 1) = 𝐻𝐽 . By fusion (the spectral
parameters have been reversed upside down thanks to Lemma 7.2.1), we have the distributional
identity 𝐻 (𝑥+1, 𝑦+1) = 𝐻′

𝐽
. The advantage of utilizing fusion is that we can apply 𝐽 = 1 version of

(7.2.6) to each vertex in the column, where the heights around the 𝑖-th vertex are 𝐻𝑖−1, 𝐻
′
𝑖−1, 𝐻𝑖, 𝐻

′
𝑖
.

The horizontal input (ℎ1, . . . , ℎ𝐽) is weighted by Λ̃(ℎ; ℎ1, . . . , ℎ𝐽).

prove

E
[
𝑞𝐻

′
𝐽 − 𝛼 + a

1 + 𝛼𝑞
𝐻𝐽 − 1 + 𝛼𝑞𝐽

1 + 𝛼 𝑞𝐻
′
0 + a + 𝛼𝑞

𝐽

1 + 𝛼 𝑞𝐻0
��F ]

= 0
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This is equivalent to

E
[
𝑞𝐻

′
𝐽 − 𝛼 + a

1 + 𝛼𝑞
𝐻𝐽

��F ]
= E

[1 + 𝛼𝑞𝐽
1 + 𝛼 𝑞𝐻

′
0 − a + 𝛼𝑞

𝐽

1 + 𝛼 𝑞𝐻0
��F ]

. (7.2.12)

We define the sigma algebra F𝑖 = 𝜎
(
𝐻𝑖, 𝐻

′
𝑖
, 𝐻𝑖+1

)
for 𝑖 = 0, 1, . . . , 𝐽 − 1. Since all the vertices are

of horizontal spin 1/2 now, using the 𝐽 = 1 version of (7.2.6) (proved in Step 1) for the 𝑖-th vertex

(with the spectral parameter 𝛼𝑞𝐽−𝑖) looking from the bottom, we have

E
[
𝑞𝐻

′
𝑖 − a + 𝛼𝑞

𝐽−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻𝑖 − 1 + 𝛼𝑞𝐽+1−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻

′
𝑖−1 + a + 𝛼𝑞

𝐽+1−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻𝑖−1

��F ]
= E

[
E
[
𝑞𝐻

′
𝑖 − a + 𝛼𝑞

𝐽−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻𝑖 − 1 + 𝛼𝑞𝐽+1−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻

′
𝑖−1 + a + 𝛼𝑞

𝐽+1−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻𝑖−1

��F𝑖−1

] ���F ]
= 0.

In other words,

E
[
𝑞𝐻

′
𝑖 − a + 𝛼𝑞

𝐽−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻𝑖

��F ]
=

1 + 𝛼𝑞𝐽+1−𝑖
1 + 𝛼𝑞𝐽−𝑖

E
[
𝑞𝐻

′
𝑖−1 − a + 𝛼𝑞

𝐽+1−𝑖

1 + 𝛼𝑞𝐽+1−𝑖
𝑞𝐻𝑖−1

��F ]
.

Iterating the above equation from 𝑖 = 𝐽 to 𝑖 = 1, one concludes the desired (7.2.12). �

To prove relation (7.1.12), we need the following fact which says that under our scaling (7.1.13),

it is unlikely that a vertex will change the direction of lines entering into it. More specifically, if a

vertex has 𝑖 vertical input lines and 𝑗 horizontal input lines, with probability going to 1, it produces

𝑖 vertical and 𝑗 horizontal output lines.

We use O(𝑎) to denote some quantity bounded by a constant times 𝑎, when the scaling parameter

𝐿 is large.

Lemma 7.2.4. For any fixed 𝑖1, 𝑖2 ∈ {0, 1, . . . , 𝐼} and 𝑗1, 𝑗2 ∈ {0, 1, . . . , 𝐽}, as 𝐿 →∞

𝐿
(𝐽)
𝛼 (𝑖1, 𝑗1; 𝑖2, 𝑗2) = 1{𝑖1=𝑖2, 𝑗1= 𝑗2} + O(𝐿−1).
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Proof. Via Lemma 7.1.3, it suffices to show that for every 𝑖 ∈ {0, 1, . . . , 𝐽 − 1}

𝐿
(1)
𝛼𝑞𝑖
(𝑖1, 𝑗1; 𝑖2, 𝑗2) = 1{𝑖1=𝑖2, 𝑗1= 𝑗2} + O(𝐿−1). (7.2.13)

Indeed, by direct computation, under our scaling,

𝐿
(1)
𝛼𝑞𝑖
(𝑚, 0;𝑚, 0) = 1 + 𝛼𝑞𝑚+𝑖

1 + 𝛼𝑞𝑖 = 1 − 𝛽2𝑚

𝐿
+ O(𝐿−2), 𝐿

(1)
𝛼𝑞𝑖
(𝑚, 0;𝑚 − 1, 1) = 𝛽2𝑚

𝐿
+ O(𝐿−2),

𝐿
(1)
𝛼𝑞𝑖
(𝑚, 1;𝑚, 1) = 𝛼𝑞𝑖 + a𝑞𝑚

1 + 𝛼𝑞𝑖 = 1 + 𝛽1(𝑚 − 𝐼)
𝐿

+ O(𝐿−2), 𝐿
(1)
𝛼𝑞𝑖
(𝑚, 1;𝑚 + 1, 0) = 𝛽1(𝐼 − 𝑚)

𝐿
+ O(𝐿−2),

which implies (7.2.13). �

Theorem 7.2.5. Define

Δ𝑥 := 𝑞𝐻 (𝑥+1,𝑦) − 𝑞𝐻 (𝑥,𝑦) , Δ𝑦 := 𝑞𝐻 (𝑥,𝑦+1) − 𝑞𝐻 (𝑥,𝑦) .

Fix 𝐴, 𝐵 > 0, under scaling (7.1.13), for any 𝑥 ∈ [0, 𝐿𝐴] ∩ Z and 𝑦 ∈ [0, 𝐿𝐵] ∩ Z and 𝐿 > 1,

E
[
b (𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)]
= 𝐿−1(𝛽1 + 𝛽2)Δ𝑥Δ𝑦 + 𝐽𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞

𝐻 (𝑥,𝑦)Δ𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞
𝐻 (𝑥,𝑦)Δ𝑦 + R(𝑥, 𝑦),

where R(𝑥, 𝑦) is a random field with the uniform upper bound

|R(𝑥, 𝑦) | ≤ 𝐶𝐿−4, (7.2.14)

for all 𝑥 ∈ [0, 𝐿𝐴] ∩ Z and 𝑦 ∈ [0, 𝐿𝐵] ∩ Z, 𝐶 is some constant that only depends on 𝐴, 𝐵.

Proof. We only need to show that the random field R(𝑥, 𝑦) defined via

R(𝑥, 𝑦) = E
[
b (𝑥+1, 𝑦+1)2

��F (𝑥, 𝑦)]−𝐿−1(𝛽1+𝛽2)Δ𝑥Δ𝑦−𝐽𝐿−2(𝛽2−𝛽1)𝛽2𝑞
𝐻 (𝑥,𝑦)Δ𝑥−𝐼𝐿−2(𝛽1−𝛽2)𝛽1𝑞

𝐻 (𝑥,𝑦)Δ𝑦
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satisfies (7.2.14). Using same notation as in the proof of Theorem 7.2.3,

b := b (𝑥 + 1, 𝑦 + 1), F := 𝜎
(
H, ℎ, 𝑣

)
,

and

H := 𝐻 (𝑥, 𝑦), ℎ := 𝐻 (𝑥, 𝑦 + 1) − 𝐻 (𝑥, 𝑦), 𝑣 := 𝐻 (𝑥, 𝑦) − 𝐻 (𝑥 + 1, 𝑦).

It is clear that E
[
b (𝑥 + 1, 𝑦 + 1)2 |F (𝑥, 𝑦)

]
= E

[
b2 |F

]
. Our proof is divided into two steps.

Step 1 (𝐽 = 1): When 𝐽 = 1, ℎ ∈ {0, 1}. We discuss the ℎ = 0 and ℎ = 1 case separately.

If ℎ = 0,

E
[
b2��F ]

= E
[(
𝑞𝐻 (𝑥+1,𝑦+1) − 𝛼 + a

1 + 𝛼𝑞
H − 1 + 𝛼𝑞

1 + 𝛼 𝑞H−𝑣 + a + 𝛼𝑞
1 + 𝛼 𝑞H

)2��F ]
Referring to (7.2.8), we have (recall a = 𝑞−𝐼)

E
[
b2��F ]

=
1 + 𝛼𝑞𝑣
1 + 𝛼

(
𝑞H−𝑣 − 𝛼 + a

1 + 𝛼𝑞
H − 1 + 𝛼𝑞

1 + 𝛼 𝑞H−𝑣 + a + 𝛼𝑞
1 + 𝛼 𝑞H

)2

+ 𝛼(1 − 𝑞
𝑣)

1 + 𝛼

(
𝑞H−𝑣+1 − 𝛼 + a

1 + 𝛼𝑞
H − 1 + 𝛼𝑞

1 + 𝛼 𝑞H−𝑣 + a + 𝛼𝑞
1 + 𝛼 𝑞H

)2

=
𝛼(𝑞 − 1)2𝑞−2𝑣 (1 − 𝑞𝑣) (1 + 𝛼𝑞𝑣)

(1 + 𝛼)2
𝑞2H, (7.2.15)

The second equality in the above display follows from a straightforward calculation.

Let b =
1+𝛼𝑞
1+𝛼 and rewrite (7.2.15) as

E
[
b2��F ]

= (1 − )
¯
𝑞−2𝑣 (𝑞𝑣 − 1)

(
− b + 𝑞 + (-

¯
1)𝑞𝑣

)
𝑞2H (7.2.16)

Referring to scaling (7.1.13), we see that 𝑞H = 𝑒
𝛽1−𝛽2

𝐿
H is bounded, since for 𝑥 ∈ [0, 𝐿𝐴] and

𝑦 ∈ [0, 𝐿𝐵] |H| = |𝐻 (𝑥, 𝑦) | ≤ 𝐿 (𝐴 + 𝐵). In addition,

𝑞 = 1 + 𝛽1 − 𝛽2
𝐿

+ O(𝐿−2), b = 1 − 𝛽2
𝐿
+ O(𝐿−2) (7.2.17)

345



Using the expansion of 𝑞 and b in (7.2.17), we have

E
[
b2��F ]

= 𝑞2H𝛽2(𝛽2 − 𝛽1)2𝑣𝐿−3 + O(𝐿−4). (7.2.18)

When ℎ = 0, Δ𝑦 = 𝑞𝐻 (𝑥,𝑦+1) − 𝑞𝐻 (𝑥,𝑦) = 0. Under scaling (7.1.13),

Δ𝑥 = 𝑞
𝐻 (𝑥+1,𝑦) − 𝑞𝐻 (𝑥,𝑦) = 𝑞H(𝑞−𝑣 − 1) = 𝑞H 𝑣(𝛽2 − 𝛽1)

𝐿
+ O(𝐿−2).

Thereby,

𝐿−1(𝛽1 + 𝛽2)Δ𝑥Δ𝑦 + 𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞
HΔ𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞

HΔ𝑦

= 𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞
HΔ𝑥 ,

= 𝑞2H𝛽2(𝛽2 − 𝛽1)2𝑣𝐿−3 + O(𝐿−4). (7.2.19)

It follows from (7.2.18) and (7.2.19) (note that 𝐽 = 1)

R(𝑥, 𝑦) = E
[
b2��F ]

−
(
𝐿−1(𝛽1 + 𝛽2)Δ𝑥Δ𝑦 + 𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞

HΔ𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞
HΔ𝑦

)
= O(𝐿−4).

If ℎ = 1, 𝐻 (𝑥 + 1, 𝑦 + 1) is distributed as (7.2.9), then (recall a = 𝑞−𝐼)

E
[
b2��F ]

=
1 − a𝑞𝑣
1 + 𝛼

(
𝑞H−𝑣 − 𝛼 + a

1 + 𝛼𝑞
H+1 − 1 + 𝛼𝑞

1 + 𝛼 𝑞H−𝑣 + a + 𝛼𝑞
1 + 𝛼 𝑞H

)2
,

+ 𝛼 + a𝑞
𝑣

1 + 𝛼

(
𝑞H+1−𝑣 − 𝛼 + a

1 + 𝛼𝑞
H+1 − 1 + 𝛼𝑞

1 + 𝛼 𝑞H−𝑣 + a + 𝛼𝑞
1 + 𝛼 𝑞H

)2
,

=
(𝑞 − 1)2𝑞−2(𝐼+𝑣) (𝑞𝐼 − 𝑞𝑣) (𝛼𝑞𝐼 + 𝑞𝑣)

(1 + 𝛼)2
𝑞2H

Rewrite the RHS above as (recall b =
1+𝛼𝑞
1+𝛼 )

E
[
b2��F ]

= (𝑞 − )
¯
𝑞−2(𝐼+𝑣) (𝑞𝐼 − 𝑞𝑣)

(
(−1 + )

¯
𝑞𝐼 + 𝑞𝑣 (𝑞 − )

¯

)
𝑞2H
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Using the expansion in (7.2.17), we deduce

E
[
b2��F ]

= 𝑞2H(𝐼 − 𝑣) (𝛽2 − 𝛽1)2𝛽1𝐿
−3 + O(𝐿−4). (7.2.20)

When ℎ = 1,

Δ𝑥 = 𝑞
H(𝛽2 − 𝛽1)𝑣𝐿−1 + O(𝐿−2) Δ𝑦 = 𝑞

H(𝛽1 − 𝛽2)𝐿−1 + O(𝐿−2),

which yields

𝐿−1(𝛽1 + 𝛽2)Δ𝑥Δ𝑦 + 𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞
HΔ𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞

HΔ𝑦

= 𝑞2H(𝐼 − 𝑣) (𝛽2 − 𝛽1)2𝛽1𝐿
−3 + O(𝐿−4). (7.2.21)

Combining (7.2.20) and (7.2.21) yields

R(𝑥, 𝑦) = E
[
b2��F ]

−
(
𝐿−1(𝛽1 + 𝛽2)Δ𝑥Δ𝑦 + 𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞

HΔ𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞
HΔ𝑦

)
= O(𝐿−4).

This concludes (7.2.14).

Step 2 (general 𝐽): Similar as what we did in Theorem 7.2.3, we apply fusion (see Figure 7.6).

Recall 𝐻𝑖, 𝐻′𝑖 from (7.2.10) and (7.2.11) and define

b𝑖 := 𝑞𝐻
′
𝑖 − a + 𝛼𝑞

𝐽−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻𝑖 − 1 + 𝛼𝑞𝐽−𝑖+1

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻

′
𝑖−1 + a + 𝛼𝑞

𝐽+1−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻𝑖−1 ,

= 𝑞𝐻
′
𝑖 − a + 𝛼𝑞

𝐽−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻𝑖 − 1 + 𝛼𝑞𝐽−𝑖+1

1 + 𝛼𝑞𝐽−𝑖
(
𝑞𝐻

′
𝑖−1 − a + 𝛼𝑞

𝐽+1−𝑖

1 + 𝛼𝑞𝐽+1−𝑖
𝑞𝐻𝑖−1

)
.

By straightforward calculation,

𝐽∑︁
𝑖=1

1 + 𝛼𝑞𝐽−𝑖
1 + 𝛼 b𝑖 =

𝐽∑︁
𝑖=1

(
1 + 𝛼𝑞𝐽−𝑖

1 + 𝛼

(
𝑞𝐻

′
𝑖 − a + 𝛼𝑞

𝐽−𝑖

1 + 𝛼𝑞𝐽−𝑖
𝑞𝐻𝑖

)
− 1 + 𝛼𝑞𝐽−𝑖+1

1 + 𝛼

(
𝑞𝐻

′
𝑖−1 − a + 𝛼𝑞

𝐽+1−𝑖

1 + 𝛼𝑞𝐽+1−𝑖
𝑞𝐻𝑖−1

))
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= 𝑞𝐻
′
𝐽 − a + 𝛼

1 + 𝛼𝑞
𝐻𝐽 − 1 + 𝛼𝑞𝐽

1 + 𝛼

(
𝑞𝐻

′
0 − a + 𝛼𝑞

𝐽

1 + 𝛼𝑞𝐽
𝑞𝐻0

)
= b, (7.2.22)

where the second equality follows from the telescoping property of the summation.

By Theorem 7.2.3, b𝑖 are martingale increments, so E
[
b𝑖b 𝑗 |F

]
= 0 for 𝑖 ≠ 𝑗 . It follows from

(7.2.22) that

E
[
b2��F ]

= E
[ 𝐽∑︁
𝑖=1

(1 + 𝛼𝑞𝐽−𝑖
1 + 𝛼 b𝑖

)2��F ]
=

𝐽∑︁
𝑖=1

(1 + 𝛼𝑞𝐽−𝑖
1 + 𝛼

)2
E
[
b2
𝑖

��F ]
. (7.2.23)

Using the 𝐽 = 1 version of (7.2.16) proved in Step 1 for the 𝑖-th vertex counting from bottom (here,

though the spectral parameter changes from 𝛼 to 𝛼𝑞𝑖, it does not matter under our scaling)

E
[
b2
𝑖

��F𝑖−1

]
= 𝐿−1(𝛽1 + 𝛽2)Δ𝑖𝑥Δ𝑖𝑦 + 𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞

HΔ𝑖𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞
HΔ𝑖𝑦 + R𝑖 (𝑥, 𝑦)

(7.2.24)

where Δ𝑖𝑥 = 𝑞
𝐻 ′
𝑖−1 − 𝑞𝐻𝑖−1 and Δ𝑖𝑦 = 𝑞

𝐻𝑖 − 𝑞𝐻𝑖−1 and, also recall that F𝑖 = 𝜎
(
𝐻𝑖, 𝐻𝑖+1, 𝐻′𝑖

)
. By Step

1, there exists constant 𝐶 only depending on 𝐴, 𝐵 such that

sup
𝑖∈{1,...,𝐽}

(𝑥,𝑦)∈[0,𝐿𝐴]×[0,𝐿𝐵]

|R𝑖 (𝑥, 𝑦) | ≤ 𝐶𝐿−4. (7.2.25)

By conditioning, E
[
b2
𝑖

��F ]
= E

[
E
[
b2
𝑖
|F𝑖−1

] ��F ]
(note that here we are not using the tower property

but instead the sequential update rule). Using (7.2.23) and (7.2.24), we get

E
[
b2��F ]

=

𝐽∑︁
𝑖=1

(1 + 𝛼𝑞𝐽−𝑖
1 + 𝛼

)2
E
[
𝐿−1(𝛽1 + 𝛽2)Δ𝑖𝑥Δ𝑖𝑦 + 𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞

HΔ𝑖𝑥

+ 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞
HΔ𝑖𝑦 + R𝑖 (𝑥, 𝑦)

��F ]
.
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Note that under our scaling, lim𝐿→∞
1+𝛼𝑞𝐽−𝑖

1+𝛼 = 1, along with (7.2.25),

E
[
b2��F ]

=

𝐽∑︁
𝑖=1
E
[
𝐿−1(𝛽1 + 𝛽2)Δ𝑖𝑥Δ𝑖𝑦 + 𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞

HΔ𝑖𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞
HΔ𝑖𝑦

��F ]
+ O(𝐿−4).

(7.2.26)

It is clear that
𝐽∑︁
𝑖=1

Δ𝑖𝑦 =

𝐽∑︁
𝑖=1

(
𝑞𝐻𝑖 − 𝑞𝐻𝑖−1

)
= 𝑞𝐻𝐽 − 𝑞𝐻0 = Δ𝑦 .

Furthermore, by Lemma 7.2.4,

P
(
∃ 𝑖 such that Δ𝑖𝑥 ≠ Δ𝑥

��F )
= 1 − O(𝐿−1).

Hence, we can simplify (7.2.26) and get

E
[
b2��F ]

=

𝐽∑︁
𝑖=1
E
[
𝐿−1(𝛽1 + 𝛽2)Δ𝑥Δ𝑖𝑦 + 𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞

HΔ𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞
HΔ𝑖𝑦

��F ]
+ O(𝐿−4),

= E
[
𝐿−1(𝛽1 + 𝛽2)Δ𝑥Δ𝑦 + 𝐽𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞

HΔ𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞
HΔ𝑦

��F ]
+ O(𝐿−4),

= 𝐿−1(𝛽1 + 𝛽2)Δ𝑥Δ𝑦 + 𝐽𝐿−2(𝛽2 − 𝛽1)𝛽2𝑞
HΔ𝑥 + 𝐼𝐿−2(𝛽1 − 𝛽2)𝛽1𝑞

HΔ𝑦 + O(𝐿−4).

The last line is because Δ𝑥 and Δ𝑦 and H are measurable with respect to F . �

Remark 7.2.6. The identity (7.1.10) which holds for stochastic six vertex model no long works

for the SHS6V model. For example, consider 𝐼 = 2 and 𝐽 = 1. For an arbitrary vertex (𝑥, 𝑦), if

there exists three parameters 𝛾1, 𝛾2, 𝛾3 such that (7.1.10) is true. When ℎ = 0, referring to (7.2.15),

we have

E
[
b (𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)] = 𝛼(𝑞 − 1)2𝑞−2𝑣 (1 − 𝑞𝑣) (1 + 𝛼𝑞𝑣)
(1 + 𝛼)2

𝑞2H
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Since Δ𝑦 = 0, the right hand side of (7.1.10) reduces to

𝛾1Δ𝑥Δ𝑦 + 𝛾2Δ𝑥𝑞
H + 𝛾3Δ𝑦𝑞

H = 𝛾2Δ𝑥𝑞
H = 𝛾2(𝑞−𝑣 − 1)𝑞2H

So for all 𝑣 ∈ {0, 1, . . . , 𝐼},

𝛼(𝑞 − 1)2𝑞−𝑣 (𝑞−𝑣 − 1) (1 + 𝛼𝑞𝑣)
(1 + 𝛼)2

𝑞2H = 𝛾2(𝑞−𝑣 − 1)𝑞2H

Canceling the factor (𝑞−𝑣 − 1)𝑞2H on both sides, we get

𝛼(𝑞 − 1)2𝑞−𝑣 (1 + 𝛼𝑞𝑣)
(1 + 𝛼)2

= 𝛾2

Since 𝛾2 does not depend on 𝑣, so the previous equation could not hold for 𝑣 = 1, 2 simultaneously.

The following corollary is a direct consequence of Theorem 7.2.5.

Corollary 7.2.7. Fix 𝐴, 𝐵 > 0, there exists constant𝐶 s.t. for every 𝑥 ∈ [0, 𝐿𝐴]∩Z, 𝑦 ∈ [0, 𝐿𝐵]∩Z

and 𝐿 > 1

E
[
b (𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)] ≤ 𝐶𝐿−3.

Proof. It is clear that there exists 𝐶 such that for any 𝑥 ∈ [0, 𝐿𝐴] ∩ Z and 𝑦 ∈ [0, 𝐿𝐵] ∩ Z,

|Δ𝑥 | =
���𝑞𝐻 (𝑥+1,𝑦) − 𝑞𝐻 (𝑥,𝑦) ��� = 𝑞𝐻 (𝑥,𝑦) ���𝑒 (𝛽1−𝛽2)ℎ

𝐿 − 1
��� ≤ 𝐶𝐿−1.

Similarly, |Δ𝑦 | ≤ 𝐶𝐿−1. Referring to Theorem 7.2.5 (note that 𝑞𝐻 (𝑥,𝑦) is bounded), the corollary

follows. �

7.3 Proof of the main results

Having established the four point relation, we move on proving Theorem 7.1.6 and Theorem 7.1.7.

Corollary 7.1.9 follows from a straightforward argument once we proved Theorem 7.1.7. For the
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ensuing discussion, we will usually write 𝐶 for constants, we might not generally specify when

irrelevant terms are being absorbed into the constants. We might also write for example𝐶 (𝑛) when

we want to specify which parameter the constant depends on.

Proof of Theorem 7.1.6. Given Theorem 7.2.3, our proof is akin to [BG19, Theorem 5.1]. We

provide the detail for the sake of completeness. Recall 𝔮 = 𝑞
1
𝐿 , to prove 1

𝐿
𝐻 (𝐿𝑥, 𝐿𝑦) → h(𝑥, 𝑦)

uniformly in probability for 𝑥 ∈ [0, 𝐴] and 𝑦 ∈ [0, 𝐵], it suffices to show that 𝑞𝐻 (𝐿𝑥,𝐿𝑦) → 𝔮h(𝑥,𝑦)

uniformly in probability. To this end, we write

𝑞𝐻 (𝐿𝑥,𝐿𝑦) = E
[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

]
+ 𝑞𝐻 (𝐿𝑥,𝐿𝑦) − E

[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

]
.

It suffices to show that as 𝐿 →∞,

(i). E[𝑞𝐻 (𝐿𝑥,𝐿𝑦)] → 𝔮h(𝑥,𝑦) uniformly for (𝑥, 𝑦) ∈ [0, 𝐴] × [0, 𝐵],

(ii). 𝑞𝐻 (𝐿𝑥,𝐿𝑦) − E[𝑞𝐻 (𝐿𝑥,𝐿𝑦)] → 0 uniformly in probability for (𝑥, 𝑦) ∈ [0, 𝐴] × [0, 𝐵].

We first demonstrate (i). By Theorem 7.2.3,

E
[
𝑞𝐻 (𝑥+1,𝑦+1)

]
− 𝑏1E

[
𝑞𝐻 (𝑥,𝑦+1)

]
− 𝑏2E

[
𝑞𝐻 (𝑥+1,𝑦)

]
+ (𝑏1 + 𝑏2 − 1)E

[
𝑞𝐻 (𝑥,𝑦)

]
= 0,

where 𝑏1 = 𝛼+a
1+𝛼 , 𝑏2 =

1+𝛼𝑞𝐽
1+𝛼 . Summing this equation over 𝑥 = 0, 1, . . . , 𝐿𝑋 − 1 and 𝑦 =

0, 1, . . . 𝐿𝑌 − 1 yields

− (1 − 𝑏1)
𝐿𝑋−1∑︁
𝑥=1
E
[
𝑞𝐻 (𝑥,0)

]
− (1 − 𝑏2)

𝐿𝑌−1∑︁
𝑦=1
E
[
𝑞𝐻 (0,𝑦)

]
+ (1 − 𝑏1)

𝐿𝑋−1∑︁
𝑥=1
E
[
𝑞𝐻 (𝑥,𝐿𝑌 )

]
+ (1 − 𝑏2)

𝐿𝑌−1∑︁
𝑦=1
E
[
𝑞𝐻 (𝐿𝑋,𝑦)

]
+ (𝑏1 + 𝑏2 − 1)E

[
𝑞𝐻 (0,0)

]
− 𝑏2E

[
𝑞𝐻 (𝐿𝑋,0)

]
− 𝑏1E

[
𝑞𝐻 (0,𝐿𝑌 )

]
+ E

[
𝑞𝐻 (𝐿𝑋,𝐿𝑌 )

]
= 0

(7.3.1)

Since 𝐻 is Lipschitz, the sequence of deterministic functions E[𝑞𝐻 (𝐿·,𝐿·)] = E[𝔮 1
𝐿
𝐻 (𝐿·,𝐿·)] ∈

𝐶 ( [0, 𝐴] × [0, 𝐵]) is uniformly bounded and equi-continuous. By Arzela-Ascoli Theorem, it has
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a limit point 𝔮ℎ̃.

Under scaling (7.1.13), when 𝐿 →∞,

𝑏1 = 1 − 𝛽1𝐼𝐿
−1 + O(𝐿−2), 𝑏2 = 1 − 𝛽2𝐽𝐿

−1 + O(𝐿−2). (7.3.2)

Combining this with (7.3.1) and taking the 𝐿 →∞ limit, 𝔮h̃ satisfies the integral equation

− 𝐼 𝛽1

∫ 𝑋

0
𝔮h̃(𝑥,0)𝑑𝑥 − 𝐽𝛽2

∫ 𝑌

0
𝔮h̃(0,𝑦) + 𝐼 𝛽1

∫ 𝑋

0
𝔮𝐻 (𝑥,𝑌 )𝑑𝑥 + 𝐽𝛽2

∫ 𝑌

0
𝔮𝐻 (𝑋,𝑦)𝑑𝑦

+ 𝔮h̃(0,0) − 𝔮h̃(𝑋,0) − 𝔮h̃(0,𝑌 ) + 𝔮h̃(𝑋,𝑌 ) = 0

In other words, any limit point 𝔮h̃ of E
[
𝔮

1
𝐿
𝐻 (𝐿𝑥,𝐿𝑦)] as 𝐿 →∞ satisfies the telegraph equation

𝜕2

𝜕𝑥𝜕𝑦
𝔮h̃(𝑥,𝑦) + 𝐼 𝛽1

𝜕

𝜕𝑦
𝔮h̃(𝑥,𝑦) + 𝐽𝛽2

𝜕

𝜕𝑥
𝔮h̃(𝑥,𝑦) = 0.

By our assumption on the boundary, we also know that 𝔮h̃(𝑥,0) = 𝔮𝜒(𝑥) and 𝔮h̃(0,𝑦) = 𝔮𝜓(𝑦) . This

implies that h̃ = h, which concludes (i).

To verify (ii), we denote by 𝑈 (𝑥, 𝑦) = 𝑞𝐻 (𝑥,𝑦) − E
[
𝑞𝐻 (𝑥,𝑦)

]
. Using Theorem 7.2.3, 𝑞𝐻 (𝑥,𝑦) and

E
[
𝑞𝐻 (𝑥,𝑦)

]
satisfy the discrete telegraph equation (7.1.5) with 𝑔 given by b and 0 respectively,

hence by linearity,

𝑈 (𝑥 + 1, 𝑦 + 1) − 𝑏1𝑈 (𝑥, 𝑦 + 1) − 𝑏2𝑈 (𝑥 + 1, 𝑦) + (𝑏1 + 𝑏2 − 1)𝑈 (𝑥, 𝑦) = b (𝑥 + 1, 𝑦 + 1).

Summing over 𝑥 = 0, 1, . . . , 𝐿𝑋−1 and 𝑦 = 0, 1, . . . 𝐿𝑌−1, along with the fact𝑈 (𝑥, 0) = 𝑈 (0, 𝑦) =

0 yields

𝑈 (𝐿𝑋, 𝐿𝑌 ) + (1 − 𝑏1)
𝐿𝑋−1∑︁
𝑥=1

𝑈 (𝑥, 𝐿𝑌 ) + (1 − 𝑏2)
𝐿𝑌−1∑︁
𝑦=1

𝑈 (𝐿𝑋, 𝑦) =
𝐿𝑋∑︁
𝑥=1

𝐿𝑌∑︁
𝑦=1

b (𝑥, 𝑦). (7.3.3)
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Since b (𝑥, 𝑦) is a martingale increment, using Corollary 7.2.7

E

[( 𝐿𝐴∑︁
𝑥=1

𝐿𝐵∑︁
𝑦=1

b (𝑥, 𝑦)
)2

]
=

𝐿𝐴∑︁
𝑥=1

𝐿𝐵∑︁
𝑦=1
E
[
b (𝑥, 𝑦)2

]
≤ 𝐶𝐴𝐵𝐿−1.

Applying Doob’s 𝐿𝑝 maximal inequality, it is clear that

sup
(𝑋,𝑌 )∈[0,𝐴]×[0,𝐵]

��� 𝐿𝑋∑︁
𝑥=1

𝐿𝑌∑︁
𝑦=1

b (𝑥, 𝑦)
��� 𝑝
→ 0. (7.3.4)

Observing that𝑈 (𝐿·, 𝐿·) are uniformly bounded and uniformly Lipschitz on [0, 𝐴]×[0, 𝐵]. There-

fore, their law are tight, any subsequential limit𝑈 has continuous trajectories must solve the 𝐿 = ∞

version of (7.3.3), which reads (the right hand side is zero by (7.3.4))

𝑈 (𝑋,𝑌 ) + 𝐼 𝛽1

∫ 𝑋

0
𝑈 (𝑥,𝑌 )𝑑𝑥 + 𝐽𝛽2

∫ 𝑌

0
𝑈 (𝑋, 𝑦)𝑑𝑦 = 0.

According to [BG19, Prop 4.1], the only solution to the above equation is given by 𝑈 = 0, which

implies (ii). �

We move on proving the functional CLT for the SHS6V model. The proof of Theorem 1.7 is

composed of showing the finite dimensional weak convergence and demonstrating the tightness,

which is formulated into the following two propositions.

Denote by

𝑈𝐿 (𝑥, 𝑦) :=
√
𝐿

(
𝑞𝐻 (𝐿𝑥,𝐿𝑦) − E

[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

] )
=
√
𝐿𝑈 (𝐿𝑥, 𝐿𝑦).

Proposition 7.3.1 (finite dimensional convergence). With the same setup as in Theorem 1.7, we

have the weak convergence in finite dimension as 𝐿 →∞,

𝑈𝐿 (𝑥, 𝑦) ⇒ 𝜑(𝑥, 𝑦).

Recall that we linearly interpolate 𝐻 (𝑥, 𝑦) for non-integer 𝑥, 𝑦, thus 𝐻 is a function in 𝐶 (R2
≥0), so
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is𝑈𝐿 (𝑥, 𝑦).

Proposition 7.3.2 (tightness). For each fixed 𝐴, 𝐵 > 0 and 𝑛 ∈ N, there is a constant 𝐶 (only

depends on 𝑛, 𝐴, 𝐵) such that for all 𝐿 > 1 and (𝑋1, 𝑌1), (𝑋2, 𝑌2) ∈ [0, 𝐿𝐴] × [0, 𝐿𝐵],

E

[(
𝑈𝐿 (𝑋1, 𝑌1) −𝑈𝐿 (𝑋2, 𝑌2)

)2𝑛
]
≤ 𝐶

(
|𝑋1 − 𝑋2 | + |𝑌1 − 𝑌2 |

)𝑛
. (7.3.5)

Consequently, the sequence of random function𝑈𝐿 (·, ·) ∈ 𝐶 (R2
≥0) is tight.

Proof of Theorem 7.1.7. The proof is a direct combination of Proposition 7.3.1 and Proposition

7.3.2. �

We first prove the finite dimensional weak convergence.

Proof of Proposition 7.3.1. Recall that in the proof of Theorem 7.1.6, we set 𝑈 (𝑥, 𝑦) = 𝑞𝐻 (𝑥,𝑦) −

E[𝑞𝐻 (𝑥,𝑦)]. As shown earlier, we have

𝑈 (𝑥 + 1, 𝑦 + 1) − 𝑏1𝑈 (𝑥, 𝑦 + 1) − 𝑏2𝑈 (𝑥 + 1, 𝑦) + (𝑏1 + 𝑏2 − 1)𝑈 (𝑥, 𝑦) = b (𝑥 + 1, 𝑦 + 1)

Furthermore, since 𝐻 (𝑥, 0) and 𝐻 (0, 𝑦) are deterministic, we have 𝑈 (𝑥, 0) = 𝑈 (𝑦, 0) = 0. By

(7.1.6), one has

𝑈 (𝑋,𝑌 ) =
𝑋∑︁
𝑥=1

𝑌∑︁
𝑦=1
R𝑑 (𝑋,𝑌 ; 𝑥, 𝑦)b (𝑥, 𝑦). (7.3.6)

Here R𝑑 is defined through (7.1.7) with 𝑏1 = 𝛼+a
1+𝛼 , 𝑏2 =

1+𝛼𝑞𝐽
1+𝛼 .

We need to show that 𝑈𝐿 (·, ·) =
√
𝐿𝑈 (𝐿·, 𝐿·) converges weakly to 𝜑(·, ·) (given by (7.1.15)) in

finite dimension. As in the proof of [BG19, Theorem 6.1], we use the martingale central limit

theorem [HH14, Section 3] for the martingale (note that𝑈𝐿 (𝑋,𝑌 ) = 𝑀𝐿 (𝐿2𝑋𝑌 ))

(
𝑀𝐿 (𝑡) :=

𝑡∑︁
𝑖=1

√
𝐿R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥(𝑖), 𝑦(𝑖))b (𝑥(𝑖), 𝑦(𝑖)), 1 ≤ 𝑡 ≤ 𝐿2𝑋𝑌

)
(7.3.7)
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where we linearly order points in [1, 𝐿𝑋] × [1, 𝐿𝑌 ] by sequentially tracing the diagonals 𝑥 + 𝑦 =

const

(𝑥(1), 𝑦(1)) := (1, 1), (𝑥(2), 𝑦(2)) := (2, 1), (𝑥(3), 𝑦(3)) := (1, 2), (𝑥(4), 𝑦(4)) := (3, 1) . . .

(7.3.8)

Note that we will only deal with the one point convergence 𝑀𝐿 (𝐿2𝑋𝑌 ) ⇒ 𝜑(𝑋,𝑌 ) for simplic-

ity, the finite dimensional convergence can be proved by invoking multi-dimensional version of

martingale CLT (see [ST19, Theorem 3.1]) for a multi-dimensional version of the martingale in

(7.3.7).

The key for the proof is to study the conditional variance of 𝑀𝐿 (𝑡) at 𝑡 = 𝐿2𝑋𝑌 . We show that as

𝐿 →∞, it converges to the variance of 𝜑 (7.1.15) in probability. In other words, we need to prove

𝐿

𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2E

[
b (𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)]
𝑝
→

∫ 𝑋

0

∫ 𝑌

0
R𝐼𝐽 (𝑋,𝑌, 𝑥, 𝑦)2

(
(𝛽1 + 𝛽2)𝔮h

𝑥𝔮
h
𝑦 + 𝐽 (𝛽2 − 𝛽1)𝛽2𝔮

h𝔮h
𝑥 + 𝐼 (𝛽1 − 𝛽2)𝛽1𝔮

h𝔮h
𝑦

)
𝑑𝑥𝑑𝑦.

(7.3.9)

where the RHS above is the variance of 𝜑(𝑋,𝑌 ), see Remark 7.1.8.

To prove this convergence, we first use Theorem 7.2.5,

𝐿

𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2E

[
b (𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)]
=

𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2×(

(𝛽1 + 𝛽2)Δ𝑥Δ𝑦 + 𝐽𝐿−1(𝛽2 − 𝛽1)𝛽2𝑞
𝐻 (𝑥,𝑦)Δ𝑥 + 𝐼𝐿−1(𝛽1 − 𝛽2)𝛽1𝑞

𝐻 (𝑥,𝑦)Δ𝑦
)

+ 𝐿
𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2R(𝑥, 𝑦).

By (7.2.14), sup𝑥∈[0,𝐿𝐴],𝑦∈[0,𝐿𝐵] |R(𝑥, 𝑦) | ≤ 𝐶𝐿−4, together with the fact R𝑑 is uniformly bounded
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in [0, 𝐿𝐴] × [0, 𝐿𝐵], we have almost surely,

𝐿

𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2R(𝑥, 𝑦) → 0

uniformly in (𝑥, 𝑦) ∈ [0, 𝐿𝐴] × [0, 𝐿𝐵]. As a result, to demonstrate (7.3.9), it suffices to prove

that as 𝐿 →∞

𝐿−1
𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2𝑞𝐻 (𝑥,𝑦)Δ𝑥

𝑝
→

∫ 𝑋

0

∫ 𝑌

0
R𝐼𝐽 (𝑋,𝑌, 𝑥, 𝑦)2𝔮h

𝑥𝔮
h𝑑𝑥𝑑𝑦

(7.3.10)

𝐿−1
𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2𝑞𝐻 (𝑥,𝑦)Δ𝑦

𝑝
→

∫ 𝑋

0

∫ 𝑌

0
R𝐼𝐽 (𝑋,𝑌, 𝑥, 𝑦)2𝔮h

𝑦𝔮
h𝑑𝑥𝑑𝑦

(7.3.11)

𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2Δ𝑥Δ𝑦

𝑝
→

∫ 𝑋

0

∫ 𝑌

0
R𝐼𝐽 (𝑋,𝑌, 𝑥, 𝑦)2𝔮h

𝑥𝔮
h
𝑦𝑑𝑥𝑑𝑦

(7.3.12)

To demonstrate these approximations, as in the proof of [BG19, Theorem 6.1], we split the the

interval [0, 𝐿𝑋] × [0, 𝐿𝑌 ] into squares such as [𝐿𝑋0, 𝐿(𝑋0 + \)] × [𝐿𝑌0, 𝐿(𝑌0 + \)] (where \ is

small) and apply the discrete to continuous approximation in each square.

We first demonstrate (7.3.10), for 𝑥 ∈ [𝐿𝑋0, 𝐿(𝑋0 + \)] and 𝑦 ∈ [𝐿𝑌0, 𝐿(𝑌0 + \)], it is not hard to

see that R𝑑 (𝐿𝑋, 𝐿𝑌, 𝐿𝑥, 𝐿𝑦) → R𝐼𝐽 (𝑋,𝑌, 𝑥, 𝑦) uniformly for 0 ≤ 𝑥 ≤ 𝑋 ≤ 𝐴 and 0 ≤ 𝑦 ≤ 𝑌 ≤ 𝐵

(see [ST19, Eq 2.9] for 𝐼 = 𝐽 = 1 case). Thus,

R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥, 𝑦) = R𝐼𝐽 (𝑋,𝑌, 𝑋0, 𝑌0) + O(\) + 𝑜(1), 𝑞𝐻 (𝐿𝑋,𝐿𝑌 ) = 𝔮h(𝑋0,𝑌0) + O(\) + 𝑜(1).

(7.3.13)
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where 𝑜(1) represents the term converging to zero as 𝐿 →∞. Using these expansions, we have

𝐿−1
∑︁

𝑥∈[𝐿𝑋0,𝐿 (𝑋0+\)]
𝑦∈[𝐿𝑌0,𝐿 (𝑌0+\)]

R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2𝑞𝐻 (𝑥,𝑦)Δ𝑥

= 𝐿−1R𝐼𝐽 (𝑋,𝑌, 𝑋0, 𝑌0)2𝔮h(𝑋0,𝑌0) ×
( ∑︁
𝑦∈[𝐿𝑌0,𝐿 (𝑌0+\)]

(
𝑞𝐻 (𝐿 (𝑋0+\),𝑦) − 𝑞𝐻 (𝐿𝑋0,𝑦) ) ) + O(\3) + \2𝑜(1)

(7.3.14)

Using law of large number proved in Theorem 7.1.6, uniformly for 𝑦′ ∈ [𝑌0, 𝑌0 + \]

𝑞𝐻 (𝐿 (𝑋0+\),𝐿𝑦′) − 𝑞𝐻 (𝐿𝑋0,𝐿𝑦
′) = 𝔮h(𝑋0+\,𝑦′) − 𝔮h(𝑋0,𝑦

′) + 𝑜(1).

Consequently, it follows from (7.3.14)

𝐿−1
∑︁

𝑥∈[𝐿𝑋0,𝐿 (𝑋0+\)]
𝑦∈[𝐿𝑌0,𝐿 (𝑌0+\)]

R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2𝑞𝐻 (𝑥,𝑦)Δ𝑥

= 𝐿−1R𝐼𝐽 (𝑋,𝑌, 𝑋0, 𝑌0)2𝔮h(𝑋0,𝑌0)
∫ 𝑌0+\

𝑌0

(
𝔮h(𝑋0+\,𝑦) − 𝔮h(𝑋0,𝑦)

)
𝑑𝑦 + \𝑜(1) + O(\3) + \2𝑜(1),

= 𝐿−1R𝐼𝐽 (𝑋,𝑌, 𝑋0, 𝑌0)2𝔮h(𝑋0,𝑌0)𝔮h(𝑋0,𝑌0)
𝑥 \2 + \𝑜(1) + O(\3) + \2𝑜(1). (7.3.15)

Note that in the last line, we used the property that the solution 𝔮h to the (7.1.14) is piecewise 𝐶1

(since we assume additionally the boundary 𝜒 and 𝜓 are smooth). By (7.3.15),

𝐿−1
𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2𝑞𝐻 (𝑥,𝑦)Δ𝑥

=
∑︁

0≤𝑖 ≤𝑋/\

∑︁
0≤ 𝑗≤𝑌/\

R𝐼𝐽 (𝑋,𝑌, \𝑖, \ 𝑗)2𝔮h(\𝑖,\ 𝑗)𝔮h(\𝑖,\ 𝑗)
𝑥 \2 + (1 + \−1)𝑜(1) + O(\). (7.3.16)

By first letting 𝐿 → ∞ then \ → 0, we conclude the desired (7.3.10). The approximation for

(7.3.11) is similar, we omit the detail.
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Things become more involved for (7.3.12), note that

𝐿 (𝑋0+\)∑︁
𝑥=𝐿𝑋0

𝐿 (𝑌0+\)∑︁
𝑦=𝐿𝑌0

R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2Δ𝑥Δ𝑦

= R𝑑 (𝐿𝑋, 𝐿𝑌, 𝐿𝑋0, 𝑌0)
( 𝐿 (𝑋0+\)∑︁
𝑥=𝐿𝑋0

𝐿 (𝑌0+\)∑︁
𝑦=𝐿𝑌0

Δ𝑥Δ𝑦

)
+ O(\3),

= 𝐿−2(log 𝔮)2R𝐼𝐽 (𝑋,𝑌, 𝑋0, 𝑌0)𝔮2h(𝑋0,𝑌0)
( 𝐿 (𝑋0+\)∑︁
𝑥=𝐿𝑋0

𝐿 (𝑌0+\)∑︁
𝑦=𝐿𝑌0

∇𝑥𝐻 (𝑥, 𝑦)∇𝑦𝐻 (𝑥, 𝑦)
)
+ 𝑜(1)O(\2) + O(\3),

(7.3.17)

where we denote by ∇𝑥𝐻 (𝑥, 𝑦) := 𝐻 (𝑥 + 1, 𝑦) − 𝐻 (𝑥, 𝑦),∇𝑦𝐻 (𝑥, 𝑦) := 𝐻 (𝑥, 𝑦 + 1) − 𝐻 (𝑥, 𝑦). In

the last equality, we used the approximation in (7.3.13) and

Δ𝑥 = 𝑞
𝐻 (𝑥+1,𝑦) − 𝑞𝐻 (𝑥,𝑦) = 𝐿−1∇𝑥𝐻 (𝑥, 𝑦)𝔮h(𝑋0,𝑌0) log 𝔮 + 𝐿−1𝑜(1),

Δ𝑦 = 𝑞
𝐻 (𝑥,𝑦+1) − 𝑞𝐻 (𝑥,𝑦) = 𝐿−1∇𝑦𝐻 (𝑥, 𝑦)𝔮h(𝑋0,𝑌0) log 𝔮 + 𝐿−1𝑜(1).

Note that −∇𝑥𝐻 (𝑥, 𝑦),∇𝑦𝐻 (𝑥, 𝑦) indicate the number of lines entering into the vertex (𝑥, 𝑦) from

bottom and left.

For a vertex associated with four tuple (𝑖1, 𝑗1; 𝑖2, 𝑗2), we say this vertex is unusual if 𝑖1 ≠ 𝑖2 or

𝑗1 ≠ 𝑖2. Let � denote the square [𝐿𝑋0, 𝐿𝑋0 + 𝐿\] × [𝐿𝑌0, 𝐿𝑌0 + 𝐿\] and suppose that there are

respectively 𝑛 and 𝑚 lines entering inside � from bottom and left. Let C be the number of unusual

vertices in the square. If C = 0, it is clear that

𝐿 (𝑋0+\)∑︁
𝑥=𝐿𝑋0

𝐿 (𝑌0+\)∑︁
𝑦=𝐿𝑌0

∇𝑥𝐻 (𝑥, 𝑦)∇𝑦𝐻 (𝑥, 𝑦) = −𝑛𝑚.

Each unusual vertex might change the LHS summation at most by 2𝐼𝐽\𝐿. As an analogue of

[BG19, Eq. 93], ��� 𝐿 (𝑋0+\)∑︁
𝑥=𝐿𝑋0

𝐿 (𝑌0+\)∑︁
𝑦=𝐿𝑌0

∇𝑥𝐻 (𝑥, 𝑦)∇𝑦𝐻 (𝑥, 𝑦) + 𝑛𝑚
��� ≤ 𝐼𝐽\𝐿 · C.
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It follows from Lemma 7.2.4 that the probability that a vertex is unusual is upper bounded by

𝐶𝐿−1, where 𝐶 is a constant. Thus,

��� 𝐿 (𝑋0+\)∑︁
𝑥=𝐿𝑋0

𝐿 (𝑌0+\)∑︁
𝑦=𝐿𝑌0

∇𝑥𝐻 (𝑥, 𝑦)∇𝑦𝐻 (𝑥, 𝑦) + 𝑛𝑚
��� ≤ const · \3𝐿2, (7.3.18)

with high probability as 𝐿 →∞. Noting that

𝐻
(
𝐿 (𝑋0 + \), 𝐿𝑌0

)
− 𝐻 (𝐿𝑋0, 𝐿𝑌0) = −𝑛, 𝐻

(
𝐿𝑋0, 𝐿(𝑌0 + 𝑌 )

)
− 𝐻 (𝐿𝑋0, 𝐿𝑌0) = 𝑚.

Combining (7.3.17) and (7.3.18) (together with Theorem 7.2.3) yields

𝐿 (𝑋0+\)∑︁
𝑥=𝐿𝑋0

𝐿 (𝑌0+\)∑︁
𝑦=𝐿𝑌0

R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥 + 1, 𝑦 + 1)2Δ𝑥Δ𝑦

= 𝐿−2(log 𝔮)2R𝐼𝐽 (𝑋,𝑌, 𝑋0, 𝑌0)𝔮2h(𝑋0,𝑌0) (𝐻 (𝐿 (𝑋0 + \), 𝐿𝑌0) − 𝐻 (𝐿𝑋0, 𝐿𝑌0)
) (
𝐻 (𝐿𝑋0, 𝐿(𝑌0 + \)

)
− 𝐻 (𝐿𝑋0, 𝐿𝑌0)

)
+ 𝑜(1)O(\2) + O(\3)

= R𝐼𝐽 (𝑋,𝑌, 𝑋0, 𝑌0) (log 𝔮)2𝔮2h(𝑋0,𝑌0) (h(𝑋0 + \,𝑌0) − h(𝑋0, 𝑌0)
) (

h(𝑋0, 𝑌0 + \) − h(𝑋0, 𝑌0)
)
+ 𝑜(1)O(\2) + O(\3)

Using similar approximation as in (7.3.16), by first letting 𝐿 → ∞ then \ → 0, we demonstrate

(7.3.12). Having proved (7.3.10)-(7.3.12), we simply obtain the desired (7.3.9).

We conclude the theorem using martingale CLT [HH14, Section 3]. Recall that

𝑀𝐿 (𝑡) =
√
𝐿

𝑡∑︁
𝑖=1
R𝑑

(
𝐿𝑋, 𝐿𝑌, 𝑥(𝑖), 𝑦(𝑖)

)
b
(
𝑥(𝑖), 𝑦(𝑖)

)
, 𝑡 ∈ [1, 𝐿2𝑋𝑌 ],

We want to show𝑈𝐿 (𝑋,𝑌 ) = 𝑀𝐿 (𝐿2𝑋𝑌 ) → 𝜑(𝑋,𝑌 ) in law as 𝐿 →∞. By Theorem 7.2.3, 𝑀𝐿 (𝑡)

is a martingale with respect to the its own filtration. The proof of Theorem 7.1.7 reduces to verify

the following conditions for martingale CLT:
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(i). The conditional covariance of 𝑀𝐿 (𝑡) at 𝑡 = 𝐿2𝑋𝑌 , which equals

𝐿

𝐿𝑋−1∑︁
𝑥=0

𝐿𝑌−1∑︁
𝑦=0
R𝑑 (𝐿𝑋, 𝐿𝑌 ; 𝑥 + 1, 𝑦 + 1)2E

[
b (𝑥 + 1, 𝑦 + 1)2

��F (𝑥, 𝑦)] ,
has the same 𝐿 →∞ behavior as its unconditional variance, in the sense that their ratio tends

to 1 in probability.

(ii). The Lindeberg’s condition, i.e. lim𝐿→∞
∑𝐿2𝑋𝑌
𝑖=1 E

[
(𝑀𝐿 (𝑖)−𝑀𝐿 (𝑖−1))21{(𝑀𝐿 (𝑖)−𝑀𝐿 (𝑖−1))2>𝜖}

]
=

0.

Using Corollary 7.2.7, it is clear that the conditional variance on the LHS of (7.3.9) is uniformly

bounded. By the convergence in (7.3.9) together with dominated convergence theorem, we know

that both the conditional and unconditional variance of 𝑀𝐿 (𝑡) at 𝑡 = 𝐿2𝑋𝑌 converge to the RHS of

(7.3.9) (which equals to variance of 𝜑(𝑋,𝑌 ) given in Remark 7.1.8), this concludes (i).

The Lindeberg’s condition (ii) follows directly from how b is defined: By straightforward compu-

tation, there exists constant𝐶 such that |b (𝑥+1, 𝑦+1) | ≤ 𝐶𝐿−1 for all 𝑥 ∈ [0, 𝐿𝐴] and 𝑦 ∈ [0, 𝐿𝐵].

In addition, R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥, 𝑦) is uniformly bounded. So when 𝐿 is large enough,

{(
𝑀𝐿 (𝑖) − 𝑀𝐿 (𝑖 − 1)

)2
> 𝜖

}
=

{
𝐿R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥(𝑖), 𝑦(𝑖))2b (𝑥(𝑖), 𝑦(𝑖))2 > 𝜖

}
= ∅,

which implies that for every 𝑖 ∈ [1, 𝐿2𝑋𝑌 ],

E
[
(𝑀𝐿 (𝑖) − 𝑀𝐿 (𝑖 − 1))21{(𝑀𝐿 (𝑖)−𝑀𝐿 (𝑖−1))2>𝜖}

]
= 0.

Having verified (i) and (ii), we conclude our proof using the martingale central limit theorem. �

We move on proving Proposition 7.3.2. Before presenting our proof, we require the following

result.
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Lemma 7.3.3. Fixed 𝐴, 𝐵 ≥ 0 and 𝑛, ℓ1, . . . ℓ𝑛 ∈ N, there exists constant 𝐶 (only depends on

𝐴, 𝐵, 𝑛) such that for all 𝐿 > 1 and arbitrary distinct points (𝑥𝑖, 𝑦𝑖) ∈ [1, 𝐿𝐴]×[1, 𝐿𝐵], 𝑖 = 1, . . . 𝑛,

E
[ 𝑛∏
𝑖=1
|b (𝑥𝑖, 𝑦𝑖) |ℓ𝑖

]
≤ 𝐶𝐿−

∑𝑛
𝑖=1 (ℓ𝑖+1) .

Proof. It suffices to prove that for (𝑥, 𝑦) ∈ [0, 𝐿𝐴 − 1] × [0, 𝐿𝐵 − 1],

E
[
|b (𝑥 + 1, 𝑦 + 1) |ℓ

��F (𝑥, 𝑦)] ≤ 𝐶𝐿−ℓ−1. (7.3.19)

We first finish the proof of the lemma by assuming (7.3.19). Consider the ordering (7.3.8) of integer

points in [1, 𝐿𝐴] × [1, 𝐿𝐵], without loss of generality, we assume (𝑥𝑖, 𝑦𝑖) = (𝑥(𝑠𝑖), 𝑦(𝑠𝑖)) so that

𝑠1 < · · · < 𝑠𝑛. Recall that F (𝑥, 𝑦) = 𝜎
(
𝐻 (𝑖, 𝑗) : 𝑖 ≤ 𝑥 or 𝑗 ≤ 𝑦

)
, so b (𝑥𝑖, 𝑦𝑖) ∈ F (𝑥𝑛 − 1, 𝑦𝑛 − 1)

for 𝑖 = 1, . . . , 𝑛 − 1. By (7.3.19) and conditioning,

E
[ 𝑛∏
𝑖=1
|b (𝑥𝑖, 𝑦𝑖) |ℓ𝑖

]
= E

[ 𝑛−1∏
𝑖=1
|b (𝑥𝑖, 𝑦𝑖) |ℓ𝑖

]
E
[
|b (𝑥𝑛, 𝑦𝑛) |ℓ𝑛

��F (𝑥𝑛 − 1, 𝑦𝑛 − 1)
]

≤ 𝐶𝐿−ℓ𝑛−1E
[ 𝑛−1∏
𝑖=1
|b (𝑥𝑖, 𝑦𝑖) |ℓ𝑖

]
.

Iterating the above inequality, we conclude the lemma.

We move on showing (7.3.19). Denote 𝑣, 𝑣′ to be the vertical input and output for the vertex (𝑥, 𝑦)

and ℎ to be the horizontal input, i.e.

𝑣 := 𝐻 (𝑥, 𝑦) − 𝐻 (𝑥 + 1, 𝑦), 𝑣′ := 𝐻 (𝑥, 𝑦 + 1) − 𝐻 (𝑥 + 1, 𝑦 + 1), ℎ := 𝐻 (𝑥, 𝑦 + 1) − 𝐻 (𝑥, 𝑦).

It is evident that we can rewrite b (𝑥 + 1, 𝑦 + 1) in (7.2.5) as

b (𝑥 + 1, 𝑦 + 1) = 𝑞𝐻 (𝑥,𝑦)
(
𝑞ℎ−𝑣

′ − 𝑏1𝑞
ℎ − 𝑏2𝑞

−𝑣 + 𝑏1 + 𝑏2 − 1
)
, (7.3.20)

recall 𝑏1 = 𝛼+a
1+𝛼 and 𝑏2 =

1+𝛼𝑞𝐽
1+𝛼 . Since 𝑞 = 𝔮

1
𝐿 where 𝔮 is fixed, so for (𝑥, 𝑦) ∈ [0, 𝐿𝐴] × [0, 𝐿𝐵],
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there exists 𝐶 such that 1
𝐶
≤ 𝑞𝐻 (𝑥,𝑦) ≤ 𝐶. In addition, by (7.3.2),

𝑞ℎ−𝑣
′ − 𝑏1𝑞

ℎ − 𝑏2𝑞
−𝑣 + 𝑏1 + 𝑏2 − 1 = 𝑞ℎ−𝑣

′ − 𝑞ℎ − 𝑞−𝑣 + 1 + (1 − 𝑏1) (𝑞ℎ − 1) + (1 − 𝑏2) (𝑞−𝑣 − 1)

= ln 𝔮(𝑣 − 𝑣′)𝐿−1 + O(𝐿−2)

Referring to (7.3.20), we conclude that for fixed 𝐴 and 𝐵 there exists a constant 𝐶 such that for

arbitrary 𝐿 > 1, (𝑥, 𝑦) ∈ [0, 𝐿𝐴] × [0, 𝐿𝐵],

|b (𝑥 + 1, 𝑦 + 1) | ≤ 𝐶𝐿−2 if (ℎ, 𝑣) = (ℎ′, 𝑣′)

|b (𝑥 + 1, 𝑦 + 1) | ≤ 𝐶𝐿−1 if (ℎ, 𝑣) ≠ (ℎ′, 𝑣′)
(7.3.21)

Note that

E
[
|b (𝑥 + 1, 𝑦 + 1) |ℓ

��F (𝑥, 𝑦)] = E[ |b (𝑥 + 1, 𝑦 + 1) |ℓ
��𝜎(𝐻 (𝑥, 𝑦), ℎ, 𝑣)]

=
∑︁

(ℎ′,𝑣′):ℎ′+𝑣′=ℎ+𝑣
𝐿
(𝐽)
𝛼 (ℎ, 𝑣; ℎ′, 𝑣′) |b (𝑥 + 1, 𝑦 + 1) |ℓ (7.3.22)

Using Lemma 7.2.4 and (7.3.21), we know that for each term in the summation: Either (ℎ′, 𝑣′) ≠

(ℎ, 𝑣), which implies 𝐿 (𝐽)𝛼 (ℎ, 𝑣; ℎ′, 𝑣′) ≤ 𝐶𝐿−1 and |b (𝑥+1, 𝑦+1) | ≤ 𝐶𝐿−1; Either (ℎ, 𝑣) = (ℎ′, 𝑣′),

which yields |b (𝑥 + 1, 𝑦 + 1) | ≤ 𝐶𝐿−2. Hence, the absolute value for each term in the summation

(7.3.22) is upper bounded by 𝐶𝐿−ℓ−1. As the summation is finite, we conclude (7.3.19). �

Proof of Proposition 7.3.2. Using the Kolmogorov-Chentsov criterion, the tightness of 𝑈𝐿 (·, ·)

follows directly from (7.3.5). To prove (7.3.5), it suffices to show that there exists constant 𝐶

such that for 𝑋 ∈ [0, 𝐿𝐴] and 0 ≤ 𝑌1 ≤ 𝑌2 ≤ 𝐿𝐵,

E
[(
𝑈𝐿 (𝑋,𝑌1) −𝑈𝐿 (𝑋,𝑌2)

)2𝑛]
≤ 𝐶 |𝑌1 − 𝑌2 |𝑛, (7.3.23)

Since we linearly interpolate 𝐻 (𝑋,𝑌 ) for non-integer 𝑋,𝑌 and 𝑈𝐿 (𝑋,𝑌 ) is expressed in terms of
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𝐻 (𝐿𝑋, 𝐿𝑌 ), we can assume 𝑌2 − 𝑌1 ≥ 𝐿−1. Referring to (7.3.6), we know that

𝑈𝐿 (𝑋,𝑌 ) =
√
𝐿

𝐿𝑋∑︁
𝑥=1

𝐿𝑌∑︁
𝑦=1
R𝑑 (𝐿𝑋, 𝐿𝑌, 𝑥, 𝑦)b (𝑥, 𝑦), (7.3.24)

which implies

𝑈𝐿 (𝑋,𝑌2) −𝑈𝐿 (𝑋,𝑌1) =
𝐿𝑋∑︁
𝑥=1

𝐿𝑌1∑︁
𝑦=1

√
𝐿
(
R𝑑 (𝐿𝑋, 𝐿𝑌1, 𝑥, 𝑦) − R𝑑 (𝐿𝑋, 𝐿𝑌2, 𝑥, 𝑦)

)
b (𝑥, 𝑦)

+
𝐿𝑋∑︁
𝑥=1

𝐿𝑌2∑︁
𝑦=𝐿𝑌1+1

√
𝐿R𝑑 (𝐿𝑋, 𝐿𝑌2, 𝑥, 𝑦)b (𝑥, 𝑦)

Taking the 𝑛-th power of both sides in the above display and apply the inequality (𝑎 + 𝑏)2𝑛 ≤

22𝑛−1(𝑎2𝑛 + 𝑏2𝑛) to the RHS, we have

E
[ (
𝑈𝐿 (𝑋,𝑌2) −𝑈𝐿 (𝑋,𝑌1)

)2𝑛
]
≤ 22𝑛−1E

[( 𝐿𝑋∑︁
𝑥=1

𝐿𝑌1∑︁
𝑦=1

√
𝐿
(
R𝑑 (𝐿𝑋, 𝐿𝑌1, 𝑥, 𝑦) − R𝑑 (𝐿𝑋, 𝐿𝑌2, 𝑥, 𝑦)

)
b (𝑥, 𝑦)

)2𝑛]
+ 22𝑛−1E

[( 𝐿𝑋∑︁
𝑥=1

𝐿𝑌2∑︁
𝑦=𝐿𝑌1+1

√
𝐿R𝑑 (𝐿𝑋, 𝐿𝑌2, 𝑥, 𝑦)b (𝑥, 𝑦)

)2𝑛]
(7.3.25)

Denote the first and second term above (without the constant multiplier) by M1 and M2 respec-

tively. We proceed to upper bound M1 and M2 respectively.

For M1, since b (𝑥, 𝑦) is a martingale increment, by Burkholder–Davis–Gundy inequality, we have

M1 ≤ 𝐶 (𝑛)𝐿𝑛E
[( 𝐿𝑋∑︁

𝑥=1

𝐿𝑌1∑︁
𝑦=1

(
R𝑑 (𝐿𝑋, 𝐿𝑌1, 𝑥, 𝑦) − R𝑑 (𝐿𝑋, 𝐿𝑌2, 𝑥, 𝑦)

)2
b (𝑥, 𝑦)2

)𝑛]
,

where the constant 𝐶 (𝑛) only depends on 𝑛. Under scaling (7.3.2), there exists a constant 𝐶 such

that for 𝐿 > 1, 𝑋 ∈ [0, 𝐿𝐴] and 𝑌1, 𝑌2 ∈ [0, 𝐿𝐵] (one can see this from the expression of R𝑑 in

(7.1.7)), ��R𝑑 (𝐿𝑋, 𝐿𝑌1, 𝑥, 𝑦) − R𝑑 (𝐿𝑋, 𝐿𝑌2, 𝑥, 𝑦)
�� ≤ 𝐶 |𝑌1 − 𝑌2 |,
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this implies

M1 ≤ 𝐶 (𝑛) |𝑌1 − 𝑌2 |2𝑛 · 𝐿𝑛E
[( 𝐿𝑋∑︁

𝑥=1

𝐿𝑌1∑︁
𝑦=1

b (𝑥, 𝑦)2
)𝑛]

. (7.3.26)

We claim that for all 𝐿 > 1, the term 𝐿𝑛E
[ ( ∑𝐿𝑋

𝑥=1
∑𝐿𝑌1
𝑦=1 b (𝑥, 𝑦)

2)𝑛] is uniformly upper bounded for

(𝑥, 𝑦) ∈ [0, 𝐿𝐴] × [0, 𝐿𝐵]. To see this, we expand the 𝑛-th power of the double summation in the

expectation above. It is not hard to see that there exists a constant 𝐶 such that

𝐿𝑛E

[( 𝐿𝑋∑︁
𝑥=1

𝐿𝑌1∑︁
𝑦=1

b (𝑥, 𝑦)2
)𝑛]
≤ 𝐶𝐿𝑛

∑︁
_`𝑛

∑︁
(𝑥𝑖 ,𝑦𝑖)∈[1,𝐿𝑋]×[1,𝐿𝑌1]

𝑖=1,...,ℓ(_),(𝑥𝑖 ,𝑦𝑖) are distinct

E
[ ℓ(_)∏
𝑖=1

b (𝑥𝑖, 𝑦𝑖)2_𝑖
]

Here, the summation above is taken over the partition _ of 𝑛, that is to say, _ = (_1 ≥ · · · ≥

_𝑠) ∈ Z𝑠≥1 with
∑𝑠
𝑖=1 _𝑖 = 𝑛, ℓ(_) = 𝑠 is the length of the partition _. We want to upper bound

the right hand side in the above display. By Lemma 7.3.3, we know that the E
[∏ℓ(_)

𝑖=1 b (𝑥𝑖, 𝑦𝑖)
2_𝑖

]
can be upper bounded by a constant times 𝐿−2𝑛−ℓ(_) . In addition, it is clear that #

{
(𝑥𝑖, 𝑦𝑖) ∈

[1, 𝐿𝑋] × [1, 𝐿𝑌1], 𝑖 = 1, . . . , ℓ(_), (𝑥𝑖, 𝑦𝑖) are distinct
}
≤ (𝐿2𝑋𝑌1)ℓ(_) (#𝐴 denotes the number of

elements in the set 𝐴). Consequently

𝐿𝑛E

[( 𝐿𝑋∑︁
𝑥=1

𝐿𝑌1∑︁
𝑦=1

b (𝑥, 𝑦)2
)𝑛]
≤ 𝐶𝐿𝑛

∑︁
_`𝑛
(𝐿2𝑋𝑌1)ℓ(_)𝐿−2𝑛−ℓ(_) ≤ 𝐶.

Inserting the above upper bound into (7.3.26) implies

M1 ≤ 𝐶 (𝑛) |𝑌2 − 𝑌1 |2𝑛. (7.3.27)

We proceed to upper bound M2. Again, using Burkholder-Davis-Gundy inequality, one obtains

M2 ≤ 𝐶 (𝑛)𝐿𝑛E
[( 𝐿𝑋∑︁

𝑥=1

𝐿𝑌2∑︁
𝑦=𝐿𝑌1+1

R𝑑 (𝐿𝑋, 𝐿𝑌2, 𝑥, 𝑦)2b (𝑥, 𝑦)2
)𝑛]

.

Expanding the 𝑛-th power for the double summation and upper bounding the square of R𝑑 by a
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constant,

M2 ≤ 𝐶 (𝑛)𝐿𝑛
∑︁
_`𝑛

∑︁
(𝑥𝑖 ,𝑦𝑖)∈[1,𝐿𝑋]×(𝐿𝑌1,𝐿𝑌2]
𝑖=1,...,ℓ(_),(𝑥𝑖 ,𝑦𝑖) are distinct

E
[ ℓ(_)∏
𝑖=1

b (𝑥𝑖, 𝑦𝑖)2_𝑖
]
.

Using Lemma 7.3.3 and by similar argument for upper bounding M1, we have

M2 ≤ 𝐶 (𝑛)𝐿𝑛
∑︁
_`𝑛
(𝐿2𝑋 (𝑌2 − 𝑌1))ℓ(_)𝐿−2𝑛−ℓ(_) ≤ 𝐶 (𝑛)𝐿ℓ(_)−𝑛 (𝑌2 − 𝑌1)ℓ(_) ≤ 𝐶 (𝑛) |𝑌2 − 𝑌1 |𝑛

(7.3.28)

The last inequality in the above display is due to our assumption 𝑌2 − 𝑌1 ≥ 𝐿−1.

Referring to (7.3.25), we have

E
[ (
𝑈𝐿 (𝑋,𝑌2) −𝑈𝐿 (𝑋,𝑌1)

)2𝑛
]
≤ 22𝑛−1(M1 +M2).

Combining (7.3.27) with (7.3.28), we conclude (7.3.23). �

Remark 7.3.4. It is worth remarking that the classical theory for martingale functional CLT, e.g.

[Bro71, Section 6], might not be helpful for proving our tightness. In order to get the tightness, the

classical theory requires𝑈𝐿 (𝑋,𝑌 ) to be a martingale in (𝑋,𝑌 ) in order to control (using martingale

inequalities) the modulus

sup
|𝑋1−𝑋2 |+|𝑌1−𝑌2 |≤𝛿

|𝑈𝐿 (𝑋1, 𝑌1) −𝑈𝐿 (𝑋2, 𝑌2) |,

for small 𝛿 > 0, and then apply the Arzela-Ascoli. See [Bil13, Theorem 7.3]. In our case, though

b (𝑥, 𝑦) is a martingale increment, 𝑈𝐿 (𝑋,𝑌 ) fails to be a martingale due to dependence of R𝑑 on

𝑋,𝑌 in (7.3.24).

Proof of Corollary 7.1.9. It suffices to prove the weak convergence for arbitrary interval [0, 𝐴] ×
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[0, 𝐵]. Note that𝑈 (𝑥, 𝑦) = 𝑞𝐻 (𝑥,𝑦) − E
[
𝑞𝐻 (𝑥,𝑦)

]
, then

𝐻 (𝐿𝑥, 𝐿𝑦) = 𝐿 log𝔮
(
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

)
= 𝐿 log𝔮 E

[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

]
+ 𝐿 log𝔮

(
1 + 𝑈 (𝐿𝑥, 𝐿𝑦)
E
[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

] ) . (7.3.29)

Since 𝐻 (𝑥, 𝑦) is Lipschitz and 𝑞 = 𝔮
1
𝐿 (where 𝔮 is fixed), there exists constant 𝐶 such that for

(𝑥, 𝑦) ∈ [0, 𝐿𝐴] × [0, 𝐿𝐵],

1
𝐶
≤ 𝑞𝐻 (𝐿𝑥,𝐿𝑦) ≤ 𝐶, 1

𝐶
≤ E

[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

]
≤ 𝐶.

For the second term on the right hand side of (7.3.29), we taylor expand the function log𝔮(1 + 𝑥)

around 𝑥 = 0,

𝐻 (𝐿𝑥, 𝐿𝑦) = 𝐿 log𝔮 E
[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

]
+ 𝐿𝑈 (𝐿𝑥, 𝐿𝑦)

log 𝔮 · E
[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

] + 𝐿𝑟𝐿 (𝑥, 𝑦),
where |𝑟𝐿 (𝑥, 𝑦) | ≤ 𝐶𝑈 (𝐿𝑥, 𝐿𝑦)2/

(
E[𝑞𝐻 (𝐿𝑥,𝐿𝑦)]

)2 ≤ 𝐶𝑈 (𝐿𝑥, 𝐿𝑦)2. Consequently, since E
[
𝑈 (𝐿𝑥, 𝐿𝑦)

]
=

0,
𝐻 (𝐿𝑥, 𝐿𝑦) − E

[
𝐻 (𝐿𝑥, 𝐿𝑦)

]
√
𝐿

=

√
𝐿𝑈 (𝐿𝑥, 𝐿𝑦)

E
[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

]
log 𝔮

+
√
𝐿

(
𝑟𝐿 (𝑥, 𝑦) − E

[
𝑟𝐿 (𝑥, 𝑦)

] )
.

By Proposition 7.3.2, we know that 𝑈𝐿 (·, ·) =
√
𝐿𝑈 (𝐿·, 𝐿·) is tight. Thus, for any fixed 𝐴, 𝐵 > 0,

as 𝐿 →∞,

sup
𝑥∈[0,𝐴]×[0,𝐵]

𝐿
1
2𝑈 (𝐿𝑥, 𝐿𝑦)2 → 0 in probability.

Since |𝑟𝐿 (𝑥, 𝑦) | ≤ 𝐶𝑈 (𝐿𝑥, 𝐿𝑦)2,

sup
(𝑥,𝑦)∈[0,𝐴]×[0,𝐵]

√
𝐿

���𝑟𝐿 (𝑥, 𝑦) − E[𝑟𝐿 (𝑥, 𝑦)] ���→ 0 in probability.

366



Therefore, we have the weak convergence in 𝐶 ( [0, 𝐴] × [0, 𝐵]),

lim
𝐿→∞

𝐻 (𝐿𝑥, 𝐿𝑦) − E
[
𝐻 (𝐿𝑥, 𝐿𝑦)

]
√
𝐿

= lim
𝐿→∞

√
𝐿𝑈 (𝐿𝑥, 𝐿𝑦)

E
[
𝑞𝐻 (𝐿𝑥,𝐿𝑦)

]
log 𝔮

=
𝜑(𝑥, 𝑦)

𝔮h(𝑥,𝑦) log 𝔮
.

To get the second equality above, we apply Theorem 7.1.6 and Theorem 7.1.7 to the denominator

and numerator respectively. By straightforward computation, 𝜙(𝑥, 𝑦) := 𝜑(𝑥,𝑦)
𝔮h(𝑥,𝑦) log 𝔮 solves (7.1.17),

which concludes the corollary. �

367



Bibliography

[AAR00] George E Andrews, Richard Askey, and Ranjan Roy. Special functions, volume 71.

Cambridge university press, 2000.

[AB16] Amol Aggarwal and Alexei Borodin. Phase transitions in the ASEP and stochastic

six-vertex model. arXiv:1607.08684, to appear in Annals of Probability, 2016.

[ACQ11] Gideon Amir, Ivan Corwin, and Jeremy Quastel. Probability distribution of the free

energy of the continuum directed random polymer in 1+ 1 dimensions. Communi-

cations on pure and applied mathematics, 64(4):466–537, 2011.

[Agg17] Amol Aggarwal. Convergence of the stochastic six-vertex model to the ASEP.

Mathematical Physics, Analysis and Geometry, 20(2):3, 2017.

[Agg18a] Amol Aggarwal. Current fluctuations of the stationary ASEP and six-vertex model.

Duke Mathematical Journal, 167(2):269–384, 2018.

[Agg18b] Amol Aggarwal. Dynamical stochastic higher spin vertex models. Selecta Mathe-

matica, 24(3):2659–2735, 2018.

[AGZ10] Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random

matrices, volume 118. Cambridge university press, 2010.

[AS48] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with

formulas, graphs, and mathematical tables, volume 55. US Government printing

office, 1948.

[Bax16] Rodney J Baxter. Exactly solved models in statistical mechanics. Elsevier, 2016.

[BBC16] Alexei Borodin, Alexey Bufetov, and Ivan Corwin. Directed random polymers via

nested contour integrals. Annals of Physics, 368:191–247, 2016.

368



[BBC20] Guillaume Barraquand, Alexei Borodin, and Ivan Corwin. Half-space Macdonald

processes. Forum of Mathematics, Pi, 8, 2020.

[BBCS18] Jinho Baik, Guillaume Barraquand, Ivan Corwin, and Toufic Suidan. Pfaffian Schur

processes and last passage percolation in a half-quadrant. The Annals of Probability,

46(6):3015–3089, 2018.

[BBCW18] Guillaume Barraquand, Alexei Borodin, Ivan Corwin, and Michael Wheeler.

Stochastic six-vertex model in a half-quadrant and half-line open asymmetric sim-

ple exclusion process. Duke Mathematical Journal, 167(13):2457–2529, 2018.

[BC95] Lorenzo Bertini and Nicoletta Cancrini. The stochastic heat equation: Feynman-

Kac formula and intermittence. Journal of statistical Physics, 78(5-6):1377–1401,

1995.

[BC14a] A. Borodin and I. Corwin. Macdonald processes. Probability Theory and Related

Fields, 158(1-2):225–400, 2014.

[BC14b] A. Borodin and I. Corwin. Moments and Lyapunov exponents for the parabolic

Anderson model. Ann. Appl. Probab., 24(3):1172–1198, 2014.

[BC16] R. M. Balan and D. Conus. Intermittency for the wave and heat equations with

fractional noise in time. Ann. Probab., 44(2):1488–1534, 2016.

[BCG16] Alexei Borodin, Ivan Corwin, and Vadim Gorin. Stochastic six-vertex model. Duke

Mathematical Journal, 165(3):563–624, 2016.

[BCPS15] Alexei Borodin, Ivan Corwin, Leonid Petrov, and Tomohiro Sasamoto. Spectral

theory for interacting particle systems solvable by coordinate Bethe ansatz. Com-

munications in Mathematical Physics, 339(3):1167–1245, 2015.

369



[BCPS19] Alexei Borodin, Ivan Corwin, Leonid Petrov, and Tomohiro Sasamoto. Correction

to: Spectral theory for interacting particle systems solvable by coordinate bethe

ansatz. Communications in Mathematical Physics, 370(3):1069–1072, 2019.

[BCS14] Alexei Borodin, Ivan Corwin, and Tomohiro Sasamoto. From duality to determi-

nants for q-TASEP and ASEP. The Annals of Probability, 42(6):2314–2382, 2014.

[BDM08] Amarjit Budhiraja, Paul Dupuis, and Vasileios Maroulas. Large deviations for in-

finite dimensional stochastic dynamical systems. Ann Probab, pages 1390–1420,

2008.

[BDSG+15] Lorenzo Bertini, Alberto De Sole, Davide Gabrielli, Giovanni Jona-Lasinio, and

Claudio Landim. Macroscopic fluctuation theory. Rev Modern Phys, 87(2):593,

2015.

[BFO20] Dan Betea, Patrik L Ferrari, and Alessandra Occelli. Stationary half-space last

passage percolation. Communications in Mathematical Physics, pages 1–47, 2020.

[BG97] L. Bertini and G. Giacomin. Stochastic Burgers and KPZ equations from particle

systems. Comm. Math. Phys., 183(3):571–607, 1997.

[BG16] Alexei Borodin and Vadim Gorin. Moments match between the KPZ equation and

the Airy point process. SIGMA. Symmetry, Integrability and Geometry: Methods

and Applications, 12:102, 2016.

[BG18] Alexei Borodin and Vadim Gorin. A stochastic telegraph equation from the six-

vertex model. arXiv preprint arXiv:1803.09137, 2018.

[BG19] Alexei Borodin and Vadim Gorin. A stochastic telegraph equation from the six-

vertex model. The Annals of Probability, 47(6):4137–4194, 2019.

[BGS17] Riddhipratim Basu, Shirshendu Ganguly, and Allan Sly. Upper tail large deviations

in first passage percolation. arXiv preprint arXiv:1712.01255, 2017.

370



[BGS19] Riddhipratim Basu, Shirshendu Ganguly, and Allan Sly. Delocalization of polymers

in lower tail large deviation. Commun Math Phys, 370(3):781–806, 2019.

[Bil13] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons,

2013.

[BKD20] Guillaume Barraquand, Alexandre Krajenbrink, and Pierre Le Doussal. Half-space

stationary kardar-parisi-zhang equation. arXiv preprint arXiv:2003.03809, 2020.

[BL19] Jinho Baik and Zhipeng Liu. Multipoint distribution of periodic TASEP. Journal

of the American Mathematical Society, 2019.

[Bor17] Alexei Borodin. On a family of symmetric rational functions. Advances in Mathe-

matics, 306:973–1018, 2017.

[Bor18] Alexei Borodin. Stochastic higher spin six vertex model and Macdonald measures.

Journal of Mathematical Physics, 59(2):023301, 2018.

[BP18] Alexei Borodin and Leonid Petrov. Higher spin six vertex model and symmetric

rational functions. Selecta Mathematica, 24(2):751–874, 2018.

[BR01] Jinho Baik and Eric M Rains. The asymptotics of monotone subsequences of invo-

lutions. Duke Mathematical Journal, 109(2):205–281, 2001.

[Bro71] Bruce M Brown. Martingale central limit theorems. The Annals of Mathematical

Statistics, 42(1):59–66, 1971.

[BS15a] Vladimir Belitsky and Gunter M Schütz. Quantum algebra symmetry of the asep

with second-class particles. Journal of statistical physics, 161(4):821–842, 2015.

[BS15b] Vladimir Belitsky and Gunter M Schütz. Self-duality for the two-component asym-

metric simple exclusion process. Journal of mathematical physics, 56(8):083302,

2015.

371



[CC19] Mattia Cafasso and Tom Claeys. A Riemann-Hilbert approach to the lower tail of

the KPZ equation. arXiv preprint arXiv:1910.02493, 2019.

[CD15] L. Chen and R. C. Dalang. Moments and growth indices for the nonlinear stochastic

heat equation with rough initial conditions. Ann. Probab., 43(6):3006–3051, 11

2015.

[CD19] S. Cerrai and A. Debussche. Large deviations for the two-dimensional stochastic

Navier-Stokes equation with vanishing noise correlation. Ann. Inst. Henri Poincaré

Probab. Stat., 55(1):211–236, 2019.

[CG20a] Ivan Corwin and Promit Ghosal. KPZ equation tails for general initial data. Elec-

tronic Journal of Probability, 25, 2020.

[CG20b] Ivan Corwin and Promit Ghosal. Lower tail of the KPZ equation. Duke Mathemat-

ical Journal, 169(7):1329–1395, 2020.

[CGH19] I. Corwin, P. Ghosal, and A. Hammond. KPZ equation correlations in time. arXiv

preprint arXiv:1907.09317, 2019.

[CGK+18] Ivan Corwin, Promit Ghosal, Alexandre Krajenbrink, Pierre Le Doussal, and Li-

Cheng Tsai. Coulomb-gas electrostatics controls large fluctuations of the Kardar-

Parisi-Zhang equation. Physical review letters, 121(6):060201, 2018.

[CGRS16] Gioia Carinci, Cristian Giardinà, Frank Redig, and Tomohiro Sasamoto. A gener-

alized asymmetric exclusion process with 𝑈𝑞 (𝑠𝑙2) stochastic duality. Probability

Theory and Related Fields, 166(3-4):887–933, 2016.

[CGST20] Ivan Corwin, Promit Ghosal, Hao Shen, and Li-Cheng Tsai. Stochastic PDE limit

of the six vertex model. Communications in Mathematical Physics, pages 1–94,

2020.

372



[CH08] Richard Courant and David Hilbert. Methods of Mathematical Physics: Partial

Differential Equations. John Wiley & Sons, 2008.

[CH16] I. Corwin and A. Hammond. KPZ line ensemble. Probability Theory and Related

Fields, 166(1-2):67–185, 2016.

[Che15] Xia Chen. Precise intermittency for the parabolic Anderson equation with an (1+1)-

dimensional time–space white noise. Annales de l’IHP Probabilités et statistiques,

51(4):1486–1499, 2015.

[Che17] L. Chen. Nonlinear stochastic time-fractional diffusion equations on R: moments,

Hölder regularity and intermittency. Trans. Amer. Math. Soc., 369(12):8497–8535,

2017.

[CHKN18] L. Chen, Y. Hu, K. Kalbasi, and D. Nualart. Intermittency for the stochastic heat

equation driven by a rough time fractional Gaussian noise. Probab. Theory Related

Fields, 171(1-2):431–457, 2018.

[CHN16] Le Chen, Yaozhong Hu, and David Nualart. Regularity and strict positivity of

densities for the nonlinear stochastic heat equation. arXiv:1611.03909, 2016.

[CHN19] L. Chen, Y. Hu, and D. Nualart. Nonlinear stochastic time-fractional slow and fast

diffusion equations on R𝑑 . Stochastic Process. Appl., 129(12):5073–5112, 2019.

[CJK13] Daniel Conus, Mathew Joseph, and Davar Khoshnevisan. On the chaotic character

of the stochastic heat equation, before the onset of intermittency. The Annals of

Probability, 41(3B):2225–2260, 2013.

[CJKS13] Daniel Conus, Mathew Joseph, Davar Khoshnevisan, and Shang-Yuan Shiu. On the

chaotic character of the stochastic heat equation, II. Probability Theory and Related

Fields, 156(3-4):483–533, 2013.

373



[CM94] R. A. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermit-

tency. Mem. Amer. Math. Soc., 108(518):viii+125, 1994.

[CM97] Fabien Chenal and Annie Millet. Uniform large deviations for parabolic SPDEs

and applications. Stochastic Process Appl, 72(2):161–186, 1997.

[Com17] F. Comets. Directed polymers in random environments, volume 2175 of Lecture

Notes in Mathematics. Springer, Cham, 2017. Lecture notes from the 46th Proba-

bility Summer School held in Saint-Flour, 2016.

[Cor12] Ivan Corwin. The Kardar–Parisi–Zhang equation and universality class. Random

matrices: Theory and applications, 1(01):1130001, 2012.

[Cor18] Ivan Corwin. Exactly solving the KPZ equation. arXiv:1804.05721, 2018.

[CP] Ivan Corwin and Leonid Petrov. Personal communication.

[CP16] Ivan Corwin and Leonid Petrov. Stochastic higher spin vertex models on the line.

Communications in Mathematical Physics, 343(2):651–700, 2016.

[CP19] Ivan Corwin and Leonid Petrov. Correction to: Stochastic higher spin vertex models

on the line. Communications in Mathematical Physics, 371(1):353–355, 2019.

[CS18] Ivan Corwin and Hao Shen. Open ASEP in the weakly asymmetric regime. Com-

munications on Pure and Applied Mathematics, 71(10):2065–2128, 2018.

[CS19] Ivan Corwin and Hao Shen. Some recent progress in singular stochastic PDEs. Bull

Amer Math Soc, 57:409–454, 2019.

[CST18] Ivan Corwin, Hao Shen, and Li-Cheng Tsai. ASEP(𝑞, 𝑗) converges to the

KPZ equation. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques,

54(2):995–1012, 2018.

374



[CT17] Ivan Corwin and Li-Cheng Tsai. KPZ equation limit of higher-spin exclusion pro-

cesses. The Annals of Probability, 45(3):1771–1798, 2017.

[CW17] Ajay Chandra and Hendrik Weber. Stochastic PDEs, regularity structures, and in-

teracting particle systems. Annales de la faculté des sciences de Toulouse Mathé-

matiques, 26(4):847–909, 2017.

[DL98] Bernard Derrida and Joel L Lebowitz. Exact large deviation function in the asym-

metric exclusion process. Physical review letters, 80(2):209, 1998.

[DNKDT19] Jacopo De Nardis, Alexandre Krajenbrink, Pierre Le Doussal, and Thimothée

Thiery. Delta-Bose gas on a half-line and the KPZ equation: boundary bound states

and unbinding transitions. arXiv preprint arXiv:1911.06133, 2019.

[DOV18] Duncan Dauvergne, Janosch Ortmann, and Bálint Virág. The directed landscape.

arXiv preprint arXiv:1812.00309, 2018.

[DR20] Evgeni Dimitrov and Mark Rychnovsky. Gue corners process in boundary-weighed

six-vertex models. arXiv preprint arXiv:2005.06836, 2020.

[DS01] Jean-Dominique Deuschel and Daniel W Stroock. Large deviations, volume 342.

American Mathematical Soc., 2001.

[DT16] Amir Dembo and Li-Cheng Tsai. Weakly asymmetric non-simple exclusion process

and the Kardar–Parisi–Zhang equation. Communications in Mathematical Physics,

341(1):219–261, 2016.

[DT19] S. Das and L.-C. Tsai. Fractional moments of the stochastic heat equation. arXiv

preprint arXiv:1910.09271, 2019.

[DZ94] Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications.

Applications of Mathematics (New York), 38, 1994.

375



[EK04] Vlad Elgart and Alex Kamenev. Rare event statistics in reaction-diffusion systems.

Phys Rev E, 70(4):041106, 2004.

[Eva98] Lawrence C Evans. Partial differential equations. Graduate studies in mathematics,

19(2), 1998.

[Fer04] Patrik L Ferrari. Polynuclear growth on a flat substrate and edge scaling of GOE

eigenvalues. Communications in mathematical physics, 252(1-3):77–109, 2004.

[FGV01] G Falkovich, K Gawedzki, and Massimo Vergassola. Particles and fields in fluid

turbulence. Rev Modern Phys, 73(4):913, 2001.

[FK09] M. Foondun and D. Khoshnevisan. Intermittence and nonlinear parabolic stochastic

partial differential equations. Electron. J. Probab., 14:no. 21, 548–568, 2009.

[FKLM96] G Falkovich, I Kolokolov, V Lebedev, and A Migdal. Instantons and intermittency.

Physical Review E, 54(5):4896, 1996.

[Flo14] Gregorio R Moreno Flores. On the (strict) positivity of solutions of the stochastic

heat equation. Ann Probab, 42(4):1635–1643, 2014.

[Fog98] Hans C Fogedby. Soliton approach to the noisy burgers equation: Steepest descent

method. Phys Rev E, 57(5):4943, 1998.

[FS10] Patrik L Ferrari and Herbert Spohn. Random growth models. arXiv:1003.0881,

2010.

[GGS15] Tobias Grafke, Rainer Grauer, and Tobias Schäfer. The instanton method and its nu-

merical implementation in fluid mechanics. J Phys A: Math Theor, 48(33):333001,

2015.

[GH19] Máté Gerencsér and Martin Hairer. Singular SPDEs in domains with boundaries.

Probability Theory and Related Fields, 173(3-4):697–758, 2019.

376



[Gho17] Promit Ghosal. Hall-Littlewood-PushTASEP and its KPZ limit. arXiv preprint

arXiv:1701.07308, 2017.

[Gho18] Promit Ghosal. Moments of the SHE under delta initial measure. arXiv preprint

arXiv:1808.04353, 2018.

[GIP15] M. Gubinelli, P. Imkeller, and N. Perkowski. Paracontrolled distributions and sin-

gular PDEs. Forum Math. Pi, 3:e6, 75, 2015.

[GJ14] Patrícia Gonçalves and Milton Jara. Nonlinear fluctuations of weakly asymmet-

ric interacting particle systems. Archive for Rational Mechanics and Analysis,

212(2):597–644, 2014.

[GKM07] Jürgen Gärtner, Wolfgang König, and Stanislav Molchanov. Geometric characteri-

zation of intermittency in the parabolic Anderson model. The Annals of Probability,

35(2):439–499, 2007.

[GL20] Promit Ghosal and Yier Lin. Lyapunov exponents of the SHE for general initial

data. arXiv preprint arXiv:2007.06505, 2020.

[GLD12] Thomas Gueudré and Pierre Le Doussal. Directed polymer near a hard wall and

KPZ equation in the half-space. EPL (Europhysics Letters), 100(2):26006, 2012.

[GM90] J. Gärtner and S. A. Molchanov. Parabolic problems for the Anderson model. I.

Intermittency and related topics. Comm. Math. Phys., 132(3):613–655, 1990.

[GP17] M. Gubinelli and N. Perkowski. KPZ reloaded. Comm. Math. Phys., 349(1):165–

269, 2017.

[GP18] Massimiliano Gubinelli and Nicolas Perkowski. Energy solutions of KPZ are

unique. Journal of the American Mathematical Society, 31(2):427–471, 2018.

377



[GPS20] Patricia Gonçalves, Nicolas Perkowski, and Marielle Simon. Derivation of the

stochastic burgers equation with dirichlet boundary conditions from the wasep. An-

nales Henri Lebesgue, 3:87–167, 2020.

[GS92] Leh-Hun Gwa and Herbert Spohn. Six-vertex model, roughened surfaces, and an

asymmetric spin Hamiltonian. Physical review letters, 68(6):725, 1992.

[Hai13] M. Hairer. Solving the KPZ equation. Ann. of Math. (2), 178(2):559–664, 2013.

[Hai14] Martin Hairer. A theory of regularity structures. Inventiones mathematicae,

198(2):269–504, 2014.

[HH14] Peter Hall and Christopher C Heyde. Martingale limit theory and its application.

Academic press, 2014.

[HHF85] D. A. Huse, C. L. Henley, and D. S. Fisher. Huse, henley, and fisher respond. Phys.

Rev. Lett., 55:2924–2924, Dec 1985.

[HHNT15] Y. Hu, J. Huang, D. Nualart, and S. Tindel. Stochastic heat equations with general

multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J.

Probab., 20:no. 55, 50, 2015.

[HL66] BI Halperin and Melvin Lax. Impurity-band tails in the high-density limit. i. mini-

mum counting methods. Phys Rev, 148(2):722, 1966.

[HL18] Yaozhong Hu and Khoa Lê. Asymptotics of the density of parabolic Anderson

random fields. arXiv:1801.03386, 2018.

[HLDM+18a] A. K. Hartmann, P. Le Doussal, S. N. Majumdar, A. Rosso, and G. Schehr. High-

precision simulation of the height distribution for the KPZ equation. Europhys.

Lett., 121(6):67004, mar 2018.

378



[HLDM+18b] Alexander K Hartmann, Pierre Le Doussal, Satya N Majumdar, Alberto Rosso, and

Gregory Schehr. High-precision simulation of the height distribution for the KPZ

equation. EPL (Europhysics Letters), 121(6):67004, 2018.

[HMS19] Alexander K Hartmann, Baruch Meerson, and Pavel Sasorov. Optimal paths of

nonequilibrium stochastic fields: The kardar-parisi-zhang interface as a test case.

Physical Review Research, 1(3):032043, 2019.

[HW15a] M. Hairer and H. Weber. Large deviations for white-noise driven, nonlinear stochas-

tic PDEs in two and three dimensions. Ann. Fac. Sci. Toulouse Math. (6), 24(1):55–

92, 2015.

[HW15b] Martin Hairer and Hendrik Weber. Large deviations for white-noise driven, non-

linear stochastic PDEs in two and three dimensions. Annales de la Faculté des

sciences de Toulouse: Mathématiques, 24(1):55–92, 2015.

[IMS20] Takashi Imamura, Matteo Mucciconi, and Tomohiro Sasamoto. Stationary stochas-

tic Higher Spin Six Vertex Model and q-Whittaker measure. Probability Theory

and Related Fields, pages 1–120, 2020.

[JKM16] M. Janas, A. Kamenev, and B. Meerson. Dynamical phase transition in large-

deviation statistics of the Kardar-Parisi-Zhang equation. Phys. Rev. E, 94:032133,

Sep 2016.

[Kar85] Mehran Kardar. Depinning by quenched randomness. Physical review letters,

55(21):2235, 1985.

[Kar87] Mehran Kardar. Replica bethe ansatz studies of two-dimensional interfaces with

quenched random impurities. Nuclear Physics B, 290:582–602, 1987.

[Kho14] D. Khoshnevisan. Analysis of stochastic partial differential equations, volume 119

of CBMS Regional Conference Series in Mathematics. Published for the Confer-

379



ence Board of the Mathematical Sciences, Washington, DC; by the American Math-

ematical Society, Providence, RI, 2014.

[Kim19] Yujin H Kim. The lower tail of the half-space KPZ equation. arXiv preprint

arXiv:1905.07703, 2019.

[KK07] IV Kolokolov and SE Korshunov. Optimal fluctuation approach to a directed poly-

mer in a random medium. Physical Review B, 75(14):140201, 2007.

[KK09] IV Kolokolov and SE Korshunov. Explicit solution of the optimal fluctuation prob-

lem for an elastic string in a random medium. Physical Review E, 80(3):031107,

2009.

[KKX17] Davar Khoshnevisan, Kunwoo Kim, and Yimin Xiao. Intermittency and multi-

fractality: A case study via parabolic stochastic pdes. The Annals of Probability,

45(6A):3697–3751, 2017.

[KLD17] Alexandre Krajenbrink and Pierre Le Doussal. Exact short-time height distribu-

tion in the one-dimensional Kardar–Parisi–Zhang equation with Brownian initial

condition. Phys Rev E, 96(2):020102, 2017.

[KLD18a] Alexandre Krajenbrink and Pierre Le Doussal. Large fluctuations of the KPZ equa-

tion in a half-space. SciPost Phys, 5:032, 2018.

[KLD18b] Alexandre Krajenbrink and Pierre Le Doussal. Simple derivation of the (_𝐻)5/2

tail for the 1D KPZ equation. Journal of Statistical Mechanics: Theory and Exper-

iment, 2018(6):063210, 2018.

[KLD19] A. Krajenbrink and P. Le Doussal. Linear statistics and pushed coulomb gas at

the edge of 𝛽 -random matrices: Four paths to large deviations. Europhys. Lett.,

125(2):20009, feb 2019.

380



[KLD20] Alexandre Krajenbrink and Pierre Le Doussal. Replica Bethe Ansatz solution to

the Kardar-Parisi-Zhang equation on the half-line. SciPost Phys., 8, 2020.

[KLDP18] Alexandre Krajenbrink, Pierre Le Doussal, and Sylvain Prolhac. Systematic time

expansion for the Kardar–Parisi–Zhang equation, linear statistics of the GUE at the

edge and trapped fermions. Nucl Phys B, 936:239–305, 2018.

[KMHH92] Joachim Krug, Paul Meakin, and Timothy Halpin-Healy. Amplitude universality

for driven interfaces and directed polymers in random media. Physical Review A,

45(2):638, 1992.

[KMS16] Alex Kamenev, Baruch Meerson, and Pavel V Sasorov. Short-time height distribu-

tion in the one-dimensional kardar-parisi-zhang equation: Starting from a parabola.

Physical Review E, 94(3):032108, 2016.

[KPZ86] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang. Dynamic scaling of growing

interfaces. Physical Review Letters, 56(9):889, 1986.

[KR87] Anatol N Kirillov and N Yu Reshetikhin. Exact solution of the integrable XXZ

Heisenberg model with arbitrary spin. I. The ground state and the excitation spec-

trum. Journal of Physics A: Mathematical and General, 20(6):1565, 1987.

[Kra19] Alexandre Krajenbrink. Beyond the typical fluctuations: a journey to the large

deviations in the Kardar-Parisi-Zhang growth model. PhD thesis, PSL Research

University, 2019.

[KRS81] PP Kulish, N Yu Reshetikhin, and EK Sklyanin. Yang-baxter equation and repre-

sentation theory: I. Letters in Mathematical Physics, 5(5):393–403, 1981.

[Kua] Jeffrey Kuan. Personal communication.

381



[Kua16] Jeffrey Kuan. Stochastic duality of ASEP with two particle types via symmetry of

quantum groups of rank two. Journal of Physics A: Mathematical and Theoretical,

49(11):115002, 2016.

[Kua17] Jeffrey Kuan. A multi-species asep and-tazrp with stochastic duality. International

Mathematics Research Notices, 2018(17):5378–5416, 2017.

[Kua18] Jeffrey Kuan. An Algebraic Construction of Duality Functions for the Stochastic

𝑈𝑞 (𝐴1
𝑛) Vertex Model and Its Degenerations. Communications in Mathematical

Physics, 359(1):121–187, 2018.

[Lab17] Cyril Labbé. Weakly asymmetric bridges and the KPZ equation. Communications

in Mathematical Physics, 353(3):1261–1298, 2017.

[LDMRS16] Pierre Le Doussal, Satya N. Majumdar, Alberto Rosso, and Grégory Schehr. Exact

short-time height distribution in the one-dimensional kardar-parisi-zhang equation

and edge fermions at high temperature. Phys. Rev. Lett., 117:070403, Aug 2016.

[LDMS16] Pierre Le Doussal, Satya N Majumdar, and Grégory Schehr. Large deviations for

the height in 1D Kardar-Parisi-Zhang growth at late times. EPL (Europhysics Let-

ters), 113(6):60004, 2016.

[Le 19] P. Le Doussal. Large deviations for the KPZ equation from the KP equation. arXiv

e-prints, October 2019.

[Led96] Michel Ledoux. Isoperimetry and gaussian analysis. In Lectures on probability

theory and statistics, pages 165–294. Springer, 1996.

[Lie74] Elliott H Lieb. Residual entropy of square ice. Matematika, 18(4):64–84, 1974.

[Lif68] IM Lifshitz. Theory of fluctuating levels in disordered systems. Sov Phys JETP,

26(462):012110–9, 1968.

382



[Lig12] Thomas M Liggett. Interacting particle systems, volume 276. Springer Science &

Business Media, 2012.

[Lig13] Thomas M Liggett. Stochastic interacting systems: contact, voter and exclusion

processes, volume 324. Springer Science & Business Media, 2013.

[Lin19] Yier Lin. Markov Duality for Stochastic Six Vertex Model. Electronic Communi-

cations in Probability, 24(67):1–17, 2019.

[Lin20a] Yier Lin. KPZ equation limit of stochastic higher spin six vertex model. Mathe-

matical Physics, Analysis and Geometry, 23(1):1, 2020.

[Lin20b] Yier Lin. Lyapunov exponents of the half-line SHE. arXiv preprint

arXiv:2007.10212, 2020.

[Lin20c] Yier Lin. The stochastic telegraph equation limit of the stochastic higher spin six

vertex model. Electronic Journal of Probability, 25, 2020.

[LT21] Yier Lin and Li-Cheng Tsai. Short time large deviations of the KPZ equation.

Communications in Mathematical Physics, pages 1–35, 2021.

[Man14] Vladimir V Mangazeev. On the Yang–Baxter equation for the six-vertex model.

Nuclear Physics B, 882:70–96, 2014.

[MKV16] Baruch Meerson, Eytan Katzav, and Arkady Vilenkin. Large deviations of surface

height in the Kardar-Parisi-Zhang equation. Physical review letters, 116(7):070601,

2016.

[MN08] Carl Mueller and David Nualart. Regularity of the density for the stochastic heat

equation. Electron J Probab, 13:2248–2258, 2008.

[Mol96] S. Molchanov. Reaction-diffusion equations in the random media: localization and

intermittency. In Nonlinear stochastic PDEs (Minneapolis, MN, 1994), volume 77

of IMA Vol. Math. Appl., pages 81–109. Springer, New York, 1996.

383



[MQR16] Konstantin Matetski, Jeremy Quastel, and Daniel Remenik. The KPZ fixed point.

arXiv preprint arXiv:1701.00018, 2016.

[MS11] Baruch Meerson and Pavel V Sasorov. Negative velocity fluctuations of pulled

reaction fronts. Phys Rev E, 84(3):030101, 2011.

[MS17] Baruch Meerson and Johannes Schmidt. Height distribution tails in the Kardar–

Parisi–Zhang equation with Brownian initial conditions. Journal of Statistical Me-

chanics: Theory and Experiment, 2017(10):103207, 2017.

[Mue91] Carl Mueller. On the support of solutions to the heat equation with noise. Stochas-

tics: An International Journal of Probability and Stochastic Processes, 37(4):225–

245, 1991.

[MV18] Baruch Meerson and Arkady Vilenkin. Large fluctuations of a Kardar-Parisi-Zhang

interface on a half line. Physical Review E, 98(3):032145, 2018.

[Nua06] David Nualart. The Malliavin calculus and related topics, volume 1995. Springer,

2006.

[Olv97] Frank Olver. Asymptotics and special functions. CRC Press, 1997.

[OP17] Daniel Orr and Leonid Petrov. Stochastic higher spin six vertex model and q-

TASEPs. Advances in Mathematics, 317:473–525, 2017.

[Par19a] Shalin Parekh. Positive random walks and an identity for half-space SPDEs. arXiv

preprint arXiv:1901.09449, 2019.

[Par19b] Shalin Parekh. The KPZ limit of ASEP with boundary. Communications in Math-

ematical Physics, 365(2):569–649, 2019.

[Pau35] Linus Pauling. The structure and entropy of ice and of other crystals with some

randomness of atomic arrangement. Journal of the American Chemical Society,

57(12):2680–2684, 1935.

384



[QS15] Jeremy Quastel and Herbert Spohn. The one-dimensional KPZ equation and its

universality class. J Stat Phys, 160(4):965–984, 2015.

[Qua11] Jeremy Quastel. Introduction to KPZ. Current developments in mathematics,

2011(1), 2011.

[Rai00] Eric M Rains. Correlation functions for symmetrized increasing subsequences.

arXiv preprint math/0006097, 2000.

[Sch97] Gunter M Schütz. Duality relations for asymmetric exclusion processes. Journal

of statistical physics, 86(5-6):1265–1287, 1997.

[SI04] T Sasamoto and T Imamura. Fluctuations of the one-dimensional polynuclear

growth model in half-space. Journal of statistical physics, 115(3-4):749–803, 2004.

[SMP17] Pavel Sasorov, Baruch Meerson, and Sylvain Prolhac. Large deviations of sur-

face height in the 1+ 1-dimensional Kardar–Parisi–Zhang equation: exact long-

time results for _𝐻 < 0. Journal of Statistical Mechanics: Theory and Experiment,

2017(6):063203, 2017.

[Spo12] Herbert Spohn. KPZ scaling theory and the semidiscrete directed polymer model.

Random Matrix Theory, Interacting Particle Systems and Integrable Systems, 65,

2012.

[ST19] Hao Shen and Li-Cheng Tsai. Stochastic telegraph equation limit for the

stochastic six vertex model. Proceedings of the American Mathematical Society,

147(6):2685–2705, 2019.

[Tsa18] Li-Cheng Tsai. Exact lower tail large deviations of the KPZ equation. arXiv

preprint arXiv:1809.03410, 2018.

[TW94] Craig A Tracy and Harold Widom. Level-spacing distributions and the Airy kernel.

Communications in Mathematical Physics, 159(1):151–174, 1994.

385



[TW96] Craig A Tracy and Harold Widom. On orthogonal and symplectic matrix ensem-

bles. Communications in Mathematical Physics, 177(3):727–754, 1996.

[TW08] Craig A Tracy and Harold Widom. Integral formulas for the asymmetric simple ex-

clusion process. Communications in Mathematical Physics, 279(3):815–844, 2008.

[TW09] Craig A Tracy and Harold Widom. The distributions of random matrix theory and

their applications. In New trends in mathematical physics, pages 753–765. Springer,

2009.

[Wal86] John B Walsh. An introduction to stochastic partial differential equations. In École

d’Été de Probabilités de Saint Flour XIV-1984, pages 265–439. Springer, 1986.

[Wu18] Xuan Wu. Intermediate disorder regime for half-space directed polymers. arXiv

preprint arXiv:1804.09815, 2018.

[ZL66] J Zittartz and JS Langer. Theory of bound states in a random potential. Phys Rev,

148(2):741, 1966.

386



Appendix A: Basic facts of Airy function

In this section, we review some basic properties of the Airy function. As a notation convention,

we say 𝑓 (𝑥) ∼ 𝑔(𝑥) as 𝑥 → 𝑎 (where 𝑎 can be ±∞) if lim𝑥→𝑎
𝑓 (𝑥)
𝑔(𝑥) = 1.

Lemma A.0.1. We have the following asymptotics for Airy function

Ai(𝑥) ∼
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Proof. See Eq 10.4.59-10.4.62 of [AS48]. �

Lemma A.0.2. We have
∫ ∞
−∞Ai(𝑥)𝑑𝑥 = 1 and

∫ 0
−∞Ai(𝑥)𝑑𝑥 = 1/3.

Proof. See page 431 of [Olv97]. �

Lemma A.0.3. There exists constant 𝐶 such that

1
𝐶 (𝑥 + 1) 𝑒

− 4
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0
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Proof. This is Eq 2.8 and Eq 2.9 of [DT19]. �

387



Appendix B: Estimate of the Pfaffian Kernel entries

In this section, we provide various bounds for the entries in the GOE Pfaffian kernel.

Lemma B.0.1. There exists a constant 𝐶 > 0 such that

(i)
exp(− 2

3 𝑥
3
2 )

𝐶 (1+𝑥)
1
4
≤ 𝐾12(𝑥, 𝑥) ≤

𝐶 exp(− 2
3 𝑥

3
2 )

(1+𝑥)
1
4

∀ 𝑥 ≥ 0,

(ii) 0 ≤ 𝐾12(𝑥, 𝑥) ≤ 𝐶
√

1 − 𝑥 ∀ 𝑥 ≤ 0.

Proof. We first prove (i). By setting 𝑥 = 𝑦 in (4.2.2), we get

𝐾12(𝑥, 𝑥) =
∫ ∞

0
Ai(𝑥 + _)2𝑑_ + 1

2
Ai(𝑥)

∫ 𝑥

−∞
Ai(_)𝑑_. (B.0.1)

For the second term in the above display, by Lemma A.0.1 and Lemma A.0.2, we have as 𝑥 → +∞

Ai(𝑥)
∫ 𝑥

−∞
Ai(_)𝑑_ ∼ 𝑒−

2
3 𝑥

3
2

2
√
𝜋𝑥

1
4

Combining this with the first inequality of Lemma A.0.3, which controls the first term on the right

hand side, the upper bound in (i) naturally follows. To prove the lower bound of (i), due to the

above displayed asymptotic and the non-negativity of
∫ ∞
0 Ai(𝑥 + _)2𝑑_, there exists constant 𝑀

and 𝐶 such that for 𝑥 > 𝑀 ,

𝐾12(𝑥, 𝑥) ≥ 𝐶−1𝑥−
1
4 exp(−2

3
𝑥

3
2 ).

To conclude the lower bound in (i), it suffices to show that the minimum of 𝐾12(𝑥, 𝑥) is positive

over [0, 𝑀] (𝐾12(𝑥, 𝑥) is continuous, so admits a minimum). Due to Eq. (B.0.1) and Lemma A.0.2,

we can rewrite 𝐾12(𝑥, 𝑥) =
∫ ∞
0 Ai(𝑥+_)2𝑑_+ 1

3Ai(𝑥) + 1
2Ai(𝑥)

∫ 𝑥

0 Ai(_)𝑑_. Since Ai(𝑥) is positive

for 𝑥 ≥ 0, this implies 𝐾12(𝑥, 𝑥) > 0 for all 𝑥 > 0, which completes the proof of the lower bound.
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We move on proving (ii). The lower bound follows directly since 𝐾12(𝑥, 𝑥) is the first order corre-

lation function of a Pfaffian point process, thus is negative. For the upper bound, by the asymptotic

of Ai(𝑥) at −∞, there exists constant 𝐶 such that for all 𝑥 ≤ 0,����Ai(𝑥)
∫ 𝑥

−∞
Ai(_)𝑑_

���� ≤ 𝐶 (1 + |𝑥 |)− 1
4 .

The result then follows from the second inequality of Lemma A.0.3 and (B.0.1). �

Recall that we defined 𝐹𝛼,𝛽 (𝑥) = 𝐶
(
𝑒−𝛼𝑥

3
2 1{𝑥≥0} + (1 − 𝑥)𝛽1{𝑥<0}

)
.

Lemma B.0.2. There exists a constant 𝐶, such that for all 𝑥, 𝑦 ∈ R, we have the following upper

bounds for the Pfaffian kernel entries:

(a) |𝐾11(𝑥, 𝑦) | ≤ 𝐶
(
𝐹2

3 ,
5
4
(𝑥) ∧ 𝐹2

3 ,
3
4
(𝑥)𝐹2

3 ,
3
4
(𝑦)

)
(b) |𝐾12(𝑥, 𝑦) | ≤ 𝐶

(
𝐹2

3 ,
3
4
(𝑥) ∧ 𝐹0, 34

(𝑦)
)

(c) |𝐾22(𝑥, 𝑦) | ≤ 𝐶𝐹0, 34
(𝑥)

Proof. For (a), it suffices to show that |𝐾11(𝑥, 𝑦) | ≤ 𝐶𝐹2
3 ,

5
4
(𝑥) and |𝐾11(𝑥, 𝑦) | ≤ 𝐶𝐹2

3 ,
3
4
(𝑥)𝐹2

3 ,
3
4
(𝑦).

Recall the expression of 𝐾11(𝑥, 𝑦) from (4.2.1). Using integration by parts for the right hand

side of (4.2.1), we get 𝐾11(𝑥, 𝑦) = Ai(𝑥)Ai(𝑦) − 2
∫ ∞
0 Ai(𝑦 + _)Ai′(𝑥 + _)𝑑_. This implies that

|𝐾11(𝑥, 𝑦) | ≤ |Ai(𝑥)Ai(𝑦) | + 2
∫ ∞
0 |Ai(𝑦 + _)Ai′(𝑥 + _) |𝑑_. Since |Ai(𝑥) | is a bounded function,

there exists constant 𝐶 such that

|𝐾11(𝑥, 𝑦) | ≤ 𝐶 |Ai(𝑥) | + 𝐶
∫ ∞

0
|Ai′(𝑥 + _) |𝑑_ = 𝐶 + 𝐶

∫ ∞

𝑥

|Ai′(_) |𝑑_.

To obtain the upper bound for |Ai(𝑥) | and
∫ ∞
𝑥
|Ai(_) |𝑑_, it suffices to look at their behavior as

𝑥 → ±∞. The asymptotic Ai′(𝑥) at ±∞ is specified in Lemma A.0.1. Therefore,

∫ ∞

𝑥

|Ai′(_) |𝑑_ ≤ 𝐶𝑒− 2
3 𝑥

3
2
, if 𝑥 ≥ 0;

∫ ∞

𝑥

|Ai′(_) |𝑑_ ≤ 𝐶 (1 − 𝑥) 5
4 if 𝑥 ≤ 0.
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This implies that |𝐾11(𝑥, 𝑦) | ≤ 𝐶𝐹2
3 ,

5
4
(𝑥). In addition, since

𝐾11(𝑥, 𝑦) =
∫ ∞

0
Ai(𝑥 + _)Ai′(𝑦 + _)𝑑_ −

∫ ∞

0
Ai′(𝑥 + _)Ai(𝑦 + _)𝑑_ = 𝐴1 − 𝐴2

By Cauchy Schwartz inequality,

𝐴2
1 ≤

∫ ∞

0
Ai(𝑥 + _)2𝑑_

∫ ∞

0
Ai′(𝑦 + _)2𝑑_ =

∫ ∞

𝑥

Ai(_)2𝑑_
∫ ∞

𝑦

Ai′(_)2𝑑_.

By Lemma A.0.1, Ai(𝑥)2 decays asymptotically as exp(−4
3𝑥

3
2 ) as 𝑥 → +∞ and is asymptotically

upper bounded by |𝑥 |− 1
2 as 𝑥 → −∞. This implies that

∫ ∞
𝑥

Ai(_)2𝑑_ ≤ 𝐶𝐹4
3 ,

1
2
(𝑥). Similarly,

Ai′(𝑦)2 decays asymptotically as exp(−4
3 𝑦

3
2 ) and is asymptotically upper bounded by |𝑦 | 12 , we get∫ ∞

𝑦
Ai′(_)2𝑑_ ≤ 𝐶𝐹4

3 ,
3
2
(𝑦). As a result,

|𝐴1 | ≤
( ∫ ∞

𝑥

Ai(_)2𝑑_
) 1

2
( ∫ ∞

𝑦

Ai′(_)2𝑑_
) 1

2 ≤ 𝐶𝐹2
3 ,

1
4
(𝑥)𝐹2

3 ,
3
4
(𝑦) ≤ 𝐶𝐹2

3 ,
3
4
(𝑥)𝐹2

3 ,
3
4
(𝑦).

For the second inequality above, we use the property that
√︁
𝐹𝛼,𝛽 = 𝐹𝛼/2,𝛽/2 and for the third

inequality, 𝐹𝛼,𝛽 (𝑥) is increasing in 𝛽. Interchanging the role of 𝑥 and 𝑦, we also have |𝐴2 | ≤

𝐶𝐹2
3 ,

3
4
(𝑥)𝐹2

3 ,
3
4
(𝑦). Therefore, the same upper bound holds for |𝐾11(𝑥, 𝑦) | and we conclude the

proof of (a).

We move on showing (b). We will prove |𝐾12(𝑥, 𝑦) | ≤ 𝐶𝐹2
3 ,

3
4
(𝑥) and |𝐾12(𝑥, 𝑦) | ≤ 𝐶𝐹0, 34

(𝑦)

respectively. Recall 𝐾12(𝑥, 𝑦) from (4.2.2). Note that both |Ai(𝑦 + _) | and |
∫ 𝑦

−∞Ai(_)𝑑_ | are

bounded function of 𝑦 (see Lemma A.0.2), by using triangle inequality,

|𝐾12(𝑥, 𝑦) | ≤
1
2

∫ ∞

0
|Ai(𝑥 + _)Ai(𝑦 + _) |𝑑_ + 1

2
|Ai(𝑥) | ·

��� ∫ 𝑦

−∞
Ai(_)𝑑_

��� ≤ 𝐶 ∫ ∞

𝑥

|Ai(_) |𝑑_ + 𝐶 |Ai(𝑥) |.

By the asymptotic of Ai(𝑥) at±∞, (use the similar approach as in part (a)), we see that |𝐾12(𝑥, 𝑦) | ≤

𝐶𝐹2
3 ,

3
4
(𝑥).We proceed to obtain a different upper bound for 𝐾12. Referring to the right hand side of

the first inequality in the above display and upper bounding |Ai(𝑥 + _) | and | 12Ai(𝑥)
∫ 𝑦

−∞Ai(_)𝑑_ |

390



by a constant, we find that

|𝐾12(𝑥, 𝑦) | ≤ 𝐶
∫ ∞

0
|Ai(𝑦 + _) |𝑑_ + 𝐶 ≤ 𝐶𝐹0, 34

(𝑦).

This concludes our proof of (b).

Finally, let us demonstrate (c). Recall from (4.2.3) that

𝐾22(𝑥, 𝑦) =
1
4

∫ ∞

0
Ai(𝑥 + _)

( ∫ ∞

_

Ai(𝑦 + `)𝑑`
)
𝑑_ − 1

4

∫ ∞

0
Ai(𝑦 + _)

( ∫ ∞

_

Ai(𝑥 + `)𝑑`
)
𝑑_

− 1
4

∫ ∞

0
Ai(𝑥 + _)𝑑_ + 1

4

∫ ∞

0
Ai(𝑦 + _)𝑑_ − sgn(𝑥 − 𝑦)

4
(B.0.2)

and recall that sgn is the sign function. By Fubini’s theorem,

∫ ∞

0
Ai(𝑦 + _)

( ∫ ∞

_

Ai(𝑥 + `)𝑑`
)
𝑑_ =

( ∫ ∞

0
Ai(𝑥 + _)𝑑_

) ( ∫ ∞

0
Ai(𝑦 + _)𝑑_

)
−

∫ ∞

0
Ai(𝑥 + _)

( ∫ ∞

_

Ai(𝑦 + `)𝑑`
)
𝑑_

Replacing the term
∫ ∞
0 Ai(𝑦 + _)

( ∫ ∞
_

Ai(𝑥 + `)𝑑`
)
𝑑_ in (B.0.2) with the right hand side in the

above display,

𝐾22(𝑥, 𝑦) =
1
2

∫ ∞

0
Ai(𝑥 + _)

( ∫ ∞

_

Ai(𝑦 + `)𝑑`
)
𝑑_ − 1

4

( ∫ ∞

0
Ai(𝑥 + _)𝑑_

) ( ∫ ∞

0
Ai(𝑦 + _)𝑑_

)
− 1

4

∫ ∞

0
Ai(𝑥 + _)𝑑_ + 1

4

∫ ∞

0
Ai(𝑦 + _)𝑑_ − sgn(𝑥 − 𝑦)

4
.

We know that
�� ∫ ∞

0 Ai(𝑥 + _)𝑑_
��, �� ∫ ∞0 Ai(𝑦 + _)𝑑_

�� can upper bounded by a constant. Applying

triangle inequality to the above display,

|𝐾22(𝑥, 𝑦) | ≤ 𝐶
∫ ∞

0
|Ai(𝑥 + _) |𝑑_ + 𝐶.

Using the asymptotic of Ai(𝑥) at ±∞ in Lemma A.0.1, we find that |𝐾22(𝑥, 𝑦) | ≤ 𝐶𝐹0, 34
(𝑥), thus

conclude (c). �
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Appendix C: Stationary distribution of the SHS6V model

In this section, we provide a one parameter family of stationary distribution for the unfused

SHS6V model. It is worth to remark that in the recent work of [IMS20], a translation-invariant

Gibbs measure was obtained (using the idea from [Agg18a]) for the space-time inhomogeneous

SHS6V model on the full lattice, see Proposition 4.5 of [IMS20]. However, It is not obvious that

the dynamic of SHS6V model under this Gibbs measure coincides with the one of the bi-infinite

SHS6V model specified in Lemma 6.2.1. This being the case, we choose to proceed without

relying on the result from [IMS20].

We start with a well-known combinatoric lemma.

Lemma C.0.1 (q-binomial formula). Set a = 𝑞−𝐼 as usual, the following identity holds for all

𝑞 ∈ C,
𝐼∑︁
𝑛=0

(a; 𝑞)𝑛
(𝑞; 𝑞)𝑛

𝑧𝑛 =
(a𝑧; 𝑞)∞
(𝑧; 𝑞)∞

.

Proof. According to 𝑞-binomial theorem [AAR00],

∞∑︁
𝑛=0

(a; 𝑞)𝑛
(𝑞; 𝑞)𝑛

𝑧𝑛 =
(a𝑧; 𝑞)∞
(𝑧; 𝑞)∞

.

When a = 𝑞−𝐼 , (a, 𝑞)𝑛 = 0 for 𝑛 > 𝐼. Therefore,

𝐼∑︁
𝑛=0

(a; 𝑞)𝑛
(𝑞; 𝑞)𝑛

𝑧𝑛 =

∞∑︁
𝑛=0

(a; 𝑞)𝑛
(𝑞; 𝑞)𝑛

𝑧𝑛 =
(a𝑧; 𝑞)∞
(𝑧; 𝑞)∞

.

�
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Lemma C.0.2. Fix 𝑞 > 1, a = 𝑞−𝐼 and 𝜌 ∈ (0, 𝐼), define a probability measure 𝜋𝜌 on {0, 1, . . . , 𝐼}:

𝜋𝜌 (𝑖) =
(𝜒, 𝑞)∞
(𝜒a, 𝑞)∞

(a, 𝑞)𝑖
(𝑞, 𝑞)𝑖

𝜒𝑖, 𝑖 ∈ {0, 1, . . . , 𝐼}, (C.0.1)

where 𝜒 is the unique negative real number satisfying

𝐼∑︁
𝑖=1

𝜒

𝜒 − 𝑞𝑖 = 𝜌. (C.0.2)

Furthermore, we have

E
[
𝜋𝜌

]
= 𝜌, Var

[
𝜋𝜌

]
= 𝜌 −

𝐼∑︁
𝑖=1

𝜒2

(𝑞𝑖 − 𝜒)2
.

Proof. We first show that 𝜋𝜌 is indeed a probability measure. It is clear that 𝜋𝜌 (𝑖) ≥ 0 for all

𝑖 ∈ {0, 1, . . . , 𝐼}. By Lemma C.0.1,

𝐼∑︁
𝑖=0

𝜋𝜌 (𝑖) =
(𝜒, 𝑞)∞
(𝜒a, 𝑞)∞

𝐼∑︁
𝑖=0

(a, 𝑞)𝑖
(𝑞, 𝑞)𝑖

𝜒𝑖 =
(𝜒, 𝑞)∞
(𝜒a, 𝑞)∞

(a𝜒, 𝑞)∞
(𝜒, 𝑞)∞

= 1.

Next, we compute the expectation and the variance of 𝜋𝜌. Using again Lemma C.0.1, the moment

generating function is given by

Λ(𝑧) = (𝜒, 𝑞)∞(𝜒a, 𝑞)∞

𝐼∑︁
𝑖=0

(a, 𝑞)𝑖
(𝑞, 𝑞)𝑖

𝜒𝑖𝑧𝑖 =
(𝜒, 𝑞)∞
(𝜒a, 𝑞)∞

(a𝜒𝑧, 𝑞)∞
(𝜒𝑧, 𝑞)∞

=
(𝜒, 𝑞)∞
(𝜒a, 𝑞)∞

𝐼∏
𝑖=1
(1 − a𝑞𝑖−1𝜒𝑧). (C.0.3)

It is clear that

E
[
𝜋𝜌

]
= Λ′(1),

Var
[
𝜋𝜌

]
= Λ′′(1) + Λ′(1) − Λ′(1)2.
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Via (C.0.3), one has

Λ′(𝑧) = (𝜒, 𝑞)∞(𝜒a, 𝑞)∞

( 𝐼∏
𝑖=1
(1 − a𝑞𝑖−1𝜒𝑧)

) ( 𝐼∑︁
𝑖=1

−a𝑞𝑖−1𝜒

1 − a𝑞𝑖−1𝜒𝑧

)
,

Λ′′(𝑧) = (𝜒, 𝑞)∞(𝜒a, 𝑞)∞

( 𝐼∏
𝑖=1
(1 − a𝑞𝑖−1𝜒𝑧)

) [( 𝐼∑︁
𝑖=1

−a𝑞𝑖−1𝜒

1 − a𝑞𝑖−1𝜒𝑧

)2
−

𝐼∑︁
𝑖=1

(a𝑞𝑖−1𝜒)2
(1 − a𝑞𝑖−1𝜒𝑧)2

]
Note that

(𝜒, 𝑞)∞
(𝜒a, 𝑞)∞

𝐼∏
𝑖=1
(1 − a𝑞𝑖−1𝜒) = 1,

combining this with (C.0.2) yields

Λ′(1) = 𝜌, Λ′′(1) = 𝜌2 −
𝐼∑︁
𝑖=1

𝜒2

(𝑞𝑖 − 𝜒)2
,

which concludes the lemma. �

Theorem C.0.3. For 𝜌 ∈ (0, 𝐼), the product measure
⊗

𝜋𝜌 is stationary for the unfused SHS6V

model ®[(𝑡) (Definition 6.2.3).

Proof. It suffices to show that if ®[(𝑡) ∼
⊗

𝜋𝜌, then ®[(𝑡 + 1) ∼
⊗

𝜋𝜌.

Recall that 𝐾 (𝑡, 𝑦) = 𝑁 (𝑡, 𝑦) − 𝑁 (𝑡 + 1, 𝑦) records the number of particles (either zero or one)

that move across location 𝑦 at time 𝑡. We first show that 𝐾 (𝑡, 𝑦) ∼ Ber ( 𝛼(𝑡)𝜒
𝛼(𝑡)𝜒+1 ) (recall that

𝛼(𝑡) = 𝛼𝑞mod𝐽 (𝑡)). To this end, referring to (6.2.4),

𝐾 (𝑡, 𝑦) =
𝑦∑︁

𝑦′=−∞

𝑦∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡)) − 𝐵(𝑡, 𝑧, [𝑧 (𝑡))

)
𝐵(𝑡, 𝑦′, [𝑦′ (𝑡)), (C.0.4)

Recalling from (6.2.1), 𝐵(𝑡, 𝑦, [) ∼ Ber
(𝛼(𝑡) (1−𝑞[)

1+𝛼(𝑡)
)
, 𝐵′(𝑡, 𝑦, [) ∼ Ber

(𝛼(𝑡)+a𝑞[
1+𝛼(𝑡)

)
. Since the random

variables 𝐵, 𝐵′ are all independent,

E

[ 𝑦∏
𝑧=𝑦′+1

(
𝐵′(𝑡, 𝑧, [𝑧 (𝑡))−𝐵(𝑡, 𝑧, [𝑧 (𝑡)

)
𝐵(𝑡, 𝑦′, [𝑦′ (𝑡))

����F (𝑡)] =
𝛼(𝑡) (1 − 𝑞[𝑦′ (𝑡))

1 + 𝛼(𝑡)

𝑦∏
𝑧=𝑦′+1

(𝛼(𝑡) + a)𝑞[𝑧 (𝑡)
1 + 𝛼(𝑡)
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Therefore, by tower property

E
[
𝐾 (𝑡, 𝑦)

]
=

𝑦∑︁
𝑦′=−∞

E

[ 𝑦∏
𝑧=𝑦′+1

𝛼(𝑡) (1 − 𝑞[𝑦′ (𝑡))
1 + 𝛼(𝑡)

𝑦∏
𝑧=𝑦′+1

(𝛼(𝑡) + a)𝑞[𝑧 (𝑡)
1 + 𝛼(𝑡)

]
,

=

𝑦∑︁
𝑦′=−∞

𝛼(𝑡)
1 + 𝛼(𝑡)

(
𝛼(𝑡) + a
1 + 𝛼(𝑡)

) 𝑦−𝑦′ (
E
[
𝑞[𝑦 (𝑡)

] ) 𝑦−𝑦′ (1 − E[𝑞[𝑦 (𝑡)]). (C.0.5)

As [𝑦 (𝑡) ∼ 𝜋𝜌, we obtain using Lemma C.0.1

E
[
𝑞[𝑦 (𝑡)

]
=
(𝜒, 𝑞)∞
(𝜒a, 𝑞)∞

∞∑︁
𝑖=0

(a, 𝑞)𝑖
(𝑞, 𝑞)𝑖

(𝜒𝑞)𝑖 = (𝜒a𝑞; 𝑞)∞
(𝜒𝑞; 𝑞)∞

(𝜒; 𝑞)∞
(𝜒a; 𝑞)∞

=
1 − 𝜒
1 − 𝜒a .

Inserting the value of E
[
𝑞[𝑦 (𝑡)

]
into (C.0.5) yields that

E
[
𝐾 (𝑡, 𝑦)

]
=

𝑦∑︁
𝑦′=−∞

𝛼(𝑡)
1 + 𝛼(𝑡)

(
(𝛼(𝑡) + a) (1 − 𝜒)
(1 + 𝛼(𝑡)) (1 − 𝜒a)

) 𝑦−𝑦′ (
1 − 1 − 𝜒

1 − 𝜒a

)
=

𝛼(𝑡)𝜒
𝛼(𝑡)𝜒 + 1

.

Since 𝐾 (𝑡, 𝑦) ∈ {0, 1}, we conclude that

𝐾 (𝑡, 𝑦) ∼ Ber ( 𝛼(𝑡)𝜒
𝛼(𝑡)𝜒 + 1

). (C.0.6)

The next step is to show that the marginal of ®[(𝑡 + 1) is distributed as 𝜋𝜌 for each coordinate.

Referring to (C.0.4), it is straightforward that the following recursion holds

𝐾 (𝑡, 𝑦) =𝐵(𝑡, 𝑦, [𝑦 (𝑡)) +
(
𝐵′(𝑡, 𝑦, [𝑦 (𝑡)) − 𝐵(𝑡, 𝑦, [𝑦 (𝑡))

)
𝐾 (𝑡, 𝑦 − 1) (C.0.7)

Therefore,

[𝑦 (𝑡) − [𝑦 (𝑡 + 1) = 𝑁 (𝑡, 𝑦) − 𝑁 (𝑡, 𝑦 − 1) + 𝑁 (𝑡 + 1, 𝑦 − 1) − 𝑁 (𝑡 + 1, 𝑦),

= 𝐾 (𝑡, 𝑦) − 𝐾 (𝑡, 𝑦 − 1),

= 𝐾 (𝑡, 𝑦 − 1)
(
𝐵′(𝑡, 𝑦, [𝑦 (𝑡)) − 𝐵(𝑡, 𝑦, [𝑦 (𝑡)) − 1

)
+ 𝐵(𝑡, 𝑦, [𝑦 (𝑡)).
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For the second equality above, we used 𝐾 (𝑡, 𝑦) = 𝑁 (𝑡, 𝑦) − 𝑁 (𝑡 + 1, 𝑦). Therefore,

[𝑦 (𝑡 + 1) =


[𝑦 (𝑡) − 𝐵(𝑡, 𝑦, [𝑦 (𝑡)), 𝐾 (𝑡, 𝑦 − 1) = 0,

[𝑦 (𝑡) + 1 − 𝐵′(𝑡, 𝑦, [𝑦 (𝑡)), 𝐾 (𝑡, 𝑦 − 1) = 1.
(C.0.8)

Due to (C.0.4), we see that 𝐾 (𝑡, 𝑦−1) ∈ 𝜎
(
𝐵(𝑡, 𝑧, [), 𝐵′(𝑡, 𝑧, [), [𝑧 (𝑡) : 𝑧 ≤ 𝑦−1, [ ∈ {0, 1, . . . , 𝐼}

)
.

Note that we have assumed ®[(𝑡) ∼
⊗

𝜋𝜌, which implies the independence between [𝑦 (𝑡) and [𝑧 (𝑡)

for 𝑧 ≠ 𝑦. Therefore, [𝑦 (𝑡) and 𝐾 (𝑡, 𝑦 − 1) are independent. Using (C.0.8) we get

P
(
[𝑦 (𝑡 + 1) = 𝑖

)
= P

(
𝐾 (𝑡, 𝑦 − 1) = 0

)
P
(
[𝑦 (𝑡) − 𝐵(𝑡, 𝑦, [𝑦 (𝑡)) = 𝑖

)
+ P

(
𝐾 (𝑡, 𝑦 − 1) = 1

)
P
(
[𝑦 (𝑡) − 𝐵′(𝑡, 𝑦, [𝑦 (𝑡)) = 𝑖 − 1

)
By 𝐾 (𝑡, 𝑦 − 1) ∼ Ber ( 𝛼(𝑡)𝜒

𝛼(𝑡)𝜒+1 ) and [𝑦 (𝑡) ∼ 𝜋𝜌, one readily has

P
(
[𝑦 (𝑡 + 1) = 𝑖

)
=

1
1 + 𝛼(𝑡)𝜒

[
𝜋𝜌 (𝑖)

1 + 𝛼(𝑡)𝑞𝑖
1 + 𝛼(𝑡) + 𝜋𝜌 (𝑖 + 1)𝛼(𝑡) (1 − 𝑞

𝑖+1)
1 + 𝛼(𝑡)

]
+ 𝛼(𝑡)𝜒

1 + 𝛼(𝑡)𝜒

[
𝜋𝜌 (𝑖)

𝛼(𝑡) + a𝑞𝑖
1 + 𝛼(𝑡) + 𝜋𝜌 (𝑖 − 1) 1 − a𝑞

𝑖−1

1 + 𝛼(𝑡)

]
= 𝜋𝜌 (𝑖).

To conclude Theorem C.0.3, it suffices to show the independence among [𝑦 (𝑡 + 1) for different

value of 𝑦. It is enough to show that

[𝑦 (𝑡 + 1) is independent with {[𝑦+1(𝑡 + 1), [𝑦+2(𝑡 + 1), . . . } for all 𝑦 ∈ Z. (C.0.9)

We need the following lemma.

Lemma C.0.4. For all 𝑦 ∈ Z, [𝑦 (𝑡 + 1) is independent with 𝐾 (𝑡, 𝑦).
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Let us first see how this lemma leads to (C.0.9). We have via (C.0.4),

𝐾 (𝑡, 𝑦) ∈ 𝜎
(
𝐵(𝑡, 𝑧, [), 𝐵′(𝑡, 𝑧, [), [𝑧 (𝑡) : 𝑧 ≤ 𝑦, [ ∈ {0, 1, . . . , 𝐼}

)
.

Combining this with (C.0.8),

[𝑦 (𝑡 + 1) ∈ 𝜎
(
𝐵(𝑡, 𝑧, [), 𝐵′(𝑡, 𝑧, [), [𝑧 (𝑡) : 𝑧 ≤ 𝑦, [ ∈ {0, 1, . . . , 𝐼}

)
.

Since [𝑖 (𝑡) are all independent for different 𝑖, one has

(
𝐵(𝑡, 𝑧, [), 𝐵′(𝑡, 𝑧, [), [𝑧 (𝑡) : 𝑧 ≤ 𝑦, [ ∈ {0, 1, . . . , 𝐼}

)
is independent with ([𝑦+1(𝑡), [𝑦+2(𝑡), . . . ).

We achieve (
𝐾 (𝑡, 𝑦), [𝑦 (𝑡 + 1)

)
is independent with

(
[𝑦+1(𝑡), [𝑦+2(𝑡), . . .

)
.

Using Lemma C.0.4, we conclude

[𝑦 (𝑡 + 1) is independent with
(
𝐾 (𝑡, 𝑦), [𝑦+1(𝑡), [𝑦+2(𝑡), . . .

)
.

Therefore,

[𝑦 (𝑡 + 1) is independent with 𝜎
(
𝐾 (𝑡, 𝑦), [𝑧 (𝑡), 𝐵(𝑡, 𝑧, [), 𝐵′(𝑡, 𝑧, [) : 𝑧 ≥ 𝑦 + 1, [ ∈ {0, 1, . . . , 𝐼}

)
.

(C.0.10)

On the other hand, by (C.0.7) and (C.0.8), we conclude for all 𝑦 ∈ Z

(
[𝑦+1(𝑡+1), [𝑦+2(𝑡+1), . . .

)
∈ 𝜎

(
𝐾 (𝑡, 𝑦), 𝐵(𝑡, 𝑧, [), 𝐵′(𝑡, 𝑧, [), [𝑧 (𝑡) : 𝑧 ≥ 𝑦+1, [ ∈ {0, 1, . . . , 𝐼}

)
.

(C.0.11)

Combining (C.0.10) and (C.0.11), we find that for all 𝑦 ∈ Z

[𝑦 (𝑡 + 1) is independent with
(
[𝑦+1(𝑡 + 1), [𝑦+2(𝑡 + 1), . . .

)
,
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which concludes (C.0.9). �

Proof of Lemma C.0.4. As 𝐾 (𝑡, 𝑦) ∈ {0, 1}, it suffices to show that for all 𝑗 ∈ {0, 1, . . . , 𝐼}, one

has

P
(
[𝑦 (𝑡 + 1) = 𝑗 , 𝐾 (𝑡, 𝑦) = 1

)
= P

(
[𝑦 (𝑡 + 1) = 𝑗

)
P
(
𝐾 (𝑡, 𝑦) = 1

)
Due to (C.0.7),

𝐾 (𝑡, 𝑦) =


𝐵(𝑡, 𝑦, [𝑦 (𝑡)), 𝐾 (𝑡, 𝑦 − 1) = 0,

𝐵′(𝑡, 𝑦, [𝑦 (𝑡)), 𝐾 (𝑡, 𝑦 − 1) = 1.

Together with (C.0.8), we obtain that if 𝐾 (𝑡, 𝑦 − 1) = 0,

(
[𝑦 (𝑡 + 1), 𝐾 (𝑡, 𝑦)

)
= ( 𝑗 , 1) is equivalent to

(
[𝑦 (𝑡), 𝐵(𝑡, 𝑦, [𝑦 (𝑡))

)
= ( 𝑗 + 1, 1).

If 𝐾 (𝑡, 𝑦 − 1) = 1,

(
[𝑦 (𝑡 + 1), 𝐾 (𝑡, 𝑦)

)
= ( 𝑗 , 1) is equivalent to

(
[𝑦 (𝑡), 𝐵(𝑡, 𝑦, [𝑦 (𝑡))

)
= ( 𝑗 , 1).

The discussion above yields (using the independence between [𝑦 (𝑡) and 𝐾 (𝑡, 𝑦 − 1))

P
(
[𝑦 (𝑡 + 1) = 𝑗 , 𝐾 (𝑡, 𝑦) = 1

)
,

= P
(
𝐾 (𝑡, 𝑦 − 1) = 0

)
P
(
[𝑦 (𝑡) = 𝑗 + 1, 𝐵(𝑡, 𝑦, [𝑦 (𝑡)) = 1

)
+ P

(
𝐾 (𝑡, 𝑦 − 1) = 1

)
P
(
[𝑦 (𝑡) = 𝑗 , 𝐵′(𝑡, 𝑦, [𝑦 (𝑡)) = 1

)
,

=
1

1 + 𝛼(𝑡)𝜒
𝛼(𝑡) (1 − 𝑞 𝑗+1)

1 + 𝛼(𝑡) 𝜋𝜌 ( 𝑗 + 1) + 𝛼(𝑡)𝜒
1 + 𝛼(𝑡)𝜒

𝛼(𝑡) + a𝑞 𝑗
1 + 𝛼(𝑡) 𝜋𝜌 ( 𝑗),

=
𝛼(𝑡)𝜒𝜋𝜌 ( 𝑗)
𝛼(𝑡)𝜒 + 1

= P
(
[𝑦+1(𝑡 + 1) = 𝑗

)
P
(
𝐾 (𝑡, 𝑦) = 1

)
,

which concludes Lemma C.0.4. �

Remark C.0.5. Since ®𝑔(𝑡) = ®[(𝐽𝑡), it is clear that for all 𝜌 ∈ (0, 𝐼),
⊗

𝜋𝜌 is also stationary for

the fused SHS6V model ®𝑔(𝑡).
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Appendix D: KPZ scaling theory

The KPZ scaling theory has been developed in a landmark contribution by [KMHH92]. The

scaling theory is a physics approach which makes prediction for the non-universal coefficients of

the KPZ equation. In this appendix, we show how the coefficients of the KPZ equation (6.1.11)

arise from the microscopic observables of the fused SHS6V model using the KPZ scaling theory.

Recall that Theorem 6.1.6 reads

√
𝜖
(
𝑁 f
𝜖 (𝜖−2𝑡, 𝜖−1𝑥 + 𝜖−2`𝜖 𝑡) − 𝜌(𝜖−1𝑥 + 𝜖−2`𝜖 𝑡) − 𝑡 log_𝜖

)
⇒H(𝑡, 𝑥) in 𝐶 ( [0,∞), 𝐶 (R)) as 𝜖 ↓ 0.

Here, 𝑁 f
𝜖 (𝑡, 𝑥) is the fused height function andH(𝑡, 𝑥) solves the KPZ equation

H(𝑡, 𝑥) = 𝛼1
2
𝜕2
𝑥H(𝑡, 𝑥) −

𝛼2
2

(
𝜕𝑥H(𝑡, 𝑥)

)2 + √𝛼3b (𝑡, 𝑥),

where

𝛼1 = 𝛼2 = 𝐽𝑉∗ =
𝐽
(
(𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 2)

)
𝐼2(1 − 𝑏)

,

𝛼3 = 𝐽𝐷∗ =
𝜌(𝐼 − 𝜌)

𝐼
·
𝐽
(
(𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 2)

)
𝐼2(1 − 𝑏)

.

The first step in the KPZ scaling theory is to derive the stationary distribution of the fused SHS6V

model, which is exactly what we did in Appendix C (see Remark C.0.5). Under stationary distri-

bution
⊗

𝜋𝜌, we proceed to define two natural quantity of the models

• The average steady state current 𝑗 (𝜌) is defined as

𝑗 (𝜌) = 𝜖− 1
2
(〈
𝑁 f(𝑡, 𝑥) − 𝑁 f(𝑡, 𝑥 + 1)

〉
𝜌
− 𝜌`

)
, (D.0.1)
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where 〈·〉𝜌 means that we are taking the expectation under stationary distribution
⊗

𝜋𝜌 and

` is given in (6.1.9). Note that under stationary distribution, the average steady state current

𝑗 (𝜌) depends neither on space or time. Let us explain the meaning of (D.0.1). Note that

𝑁 f(𝑡, 𝑥) − 𝑁 f(𝑡 + 1, 𝑥) records the number of particles in the fused SHS6V model that move

across location 𝑥 at time 𝑡, we subtract 𝜌` here because we are in a frame of reference that

moves to right with speed 𝜌`.

• The integrated covariance is defined as

𝐴(𝜌) := lim
𝑟→∞

1
2𝑟

〈
𝑁 f(𝑡, 𝑥 + 𝑟) − 𝑁 f(𝑡, 𝑥 − 𝑟) −

〈
𝑁 f(𝑡, 𝑥 + 𝑟) − 𝑁 f(𝑡, 𝑥 − 𝑟)

〉
𝜌

〉
𝜌

.

The KPZ scaling theory (equation (12) and (15) of [KMHH92]) predicts that

(𝑖) 𝛼2 = − lim
𝜖↓0

𝑗 ′′𝜖 (𝜌), (𝑖𝑖) 𝛼3
𝛼1

= lim
𝜖↓0

𝐴𝜖 (𝜌),

where 𝐴𝜖 (𝜌) and 𝑗𝜖 (𝜌) depend on 𝜖 under weakly asymmetry scaling (6.5.30).

Let us first verify (𝑖𝑖), note that under stationary distribution, 𝑁 f
𝜖 (𝑡, 𝑥+𝑟)−𝑁 f

𝜖 (𝑡, 𝑥−𝑟) is the sum of

2𝑟 i.i.d. random variable with distribution 𝜋𝜌, which implies 𝐴𝜖 (𝜌) = Var
[
𝜋𝜌

]
. By Lemma C.0.2,

we know that

Var
[
𝜋𝜌

]
= 𝜌 −

𝐼∑︁
𝑖=1

𝜒2

(𝑞𝑖 − 𝜒)2
,

where 𝜒 is the unique negative solution of

𝐼∑︁
𝑖=1

𝜒

𝜒 − 𝑞𝑖 = 𝜌. (D.0.2)

Under weakly asymmetric scaling, one has 𝑞 = 𝑒
√
𝜖 , which yields lim𝜖↓0 𝜒𝜖 =

𝜌

𝜌−𝐼 . Therefore,

lim
𝜖↓0

𝐴𝜖 (𝜌) = lim
𝜖↓0

Var
[
𝜋𝜌

]
=
𝜌(𝐼 − 𝜌)

𝐼
.
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This matches with the value of 𝛼3
𝛼1

.

We proceed to verify (𝑖). First, note that by 𝑁 f(𝑡, 𝑥) = 𝑁 (𝐽𝑡, 𝑥),

𝑁 f(𝑡, 𝑥) − 𝑁 f(𝑡 + 1, 𝑥) = 𝑁 (𝐽𝑡, 𝑥) − 𝑁 ((𝐽 + 1)𝑡, 𝑥) =
(𝐽+1)𝑡−1∑︁
𝑠=𝐽𝑡

𝐾 (𝑠, 𝑥),

where 𝐾 (𝑠, 𝑥) = 𝑁 (𝑠, 𝑥) − 𝑁 (𝑠 + 1, 𝑥). We have shown in (C.0.6) that 𝐾 (𝑠, 𝑥) ∼ Ber ( 𝛼(𝑠)𝜒
1+𝛼(𝑠)𝜒 ),

where 𝛼(𝑠) = 𝛼𝑞mod𝐽 (𝑠) . Therefore,

E
[
𝑁 f(𝑡, 𝑥) − 𝑁 f(𝑡 + 1, 𝑥)

]
= E

[ (𝐽+1)𝑡−1∑︁
𝑠=𝐽𝑡

𝐾 (𝑠, 𝑥)
]
=

𝐽−1∑︁
𝑘=0

𝛼𝑞𝑘 𝜒

1 + 𝛼𝑞𝑘 𝜒
,

which yields

𝑗 (𝜌) = 𝜖− 1
2

( 𝐽−1∑︁
𝑘=0

𝛼𝑞𝑘 𝜒

1 + 𝛼𝑞𝑘 𝜒
− 𝜌`

)
.

We proceed to taylor expand 𝑗𝜖 (𝜌) around 𝜖 = 0. Note that 𝜒 is implicitly defined through (D.0.2),

we expand 𝜒𝜖 around 𝜖 = 0

𝜒𝜖 =
𝜌

𝜌 − 𝐼 +
(𝐼 + 1)𝜌
2(𝜌 − 𝐼)

√
𝜖 + O(𝜖).

Note that 𝛼 depends on 𝜖 through 𝛼𝜖 = 1−𝑏
𝑏−𝑒

√
𝜖
. Via straightforward calculation, one has

𝛼𝑞𝑘 𝜒

1 + 𝛼𝑞𝑘 𝜒
=

𝛼𝜖𝑒
𝑘
√
𝜖 𝜒𝜖

1 + 𝛼𝜖𝑒𝑘
√
𝜖 𝜒𝜖

=
𝜌

𝐼
+ (𝐼𝜌 − 𝜌

2) ((2𝑘 + 𝐼 + 1)𝑏 + 1 − 𝐼 − 2𝑘)
2(𝑏 − 1)𝐼2

√
𝜖 + O(𝜖),

which implies

𝐽−1∑︁
𝑘=0

𝛼𝑞𝑘 𝜒

1 + 𝛼𝑞𝑘 𝜒
=
𝐽𝜌

𝐼
+
𝐽 (𝐼𝜌 − 𝜌2)

(
(𝐼 + 𝐽)𝑏 − (𝐼 + 𝐽 − 2)

)
2(𝑏 − 1)𝐼2

√
𝜖 + O(𝜖).
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Referring to the expression of ` in (6.1.9), one has the asymptotic expansion

`𝜖 =
𝐽

𝐼
+ 𝐽 (𝐼 − 2𝜌) (2 + (𝑏 − 1) (𝐼 + 𝐽))

2(𝑏 − 1)𝐼2
√
𝜖 + O(𝜖).

Consequently,

𝑗𝜖 (𝜌) = 𝜖−
1
2

( 𝐽−1∑︁
𝑘=0

𝛼𝑞𝑘 𝜒

1 + 𝛼𝑞𝑘 𝜒
− 𝜌`

)
=
𝜌2𝐽 (𝑏(𝐼 + 𝐽) − (𝐼 + 𝐽 − 2)

2(𝑏 − 1)𝐼2
+ O(𝜖 1

2 ).

We have

lim
𝜖↓0
− 𝑗 ′′𝜖 (𝜌) =

𝐽 (𝑏(𝐼 + 𝐽) − (𝐼 + 𝐽 − 2))
(1 − 𝑏)𝐼2

,

which coincides with the value of 𝛼2.
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