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Abstract
Subjective Beliefs and Asset Prices

Renxuan Wang

Asset prices are forward looking. Therefore, expectations play a central role in shaping

asset prices. In this dissertation, I challenge the rational expectation assumption that has

been influential in the field of asset pricing over the past few decades. Different from

previous approaches, which typically build on behavioral theories originated from

psychology literature, my approach takes data on subjective beliefs seriously and proposes

empirically grounded models of subjective beliefs to evaluate the merits of the rational

expectation assumption. Specifically, this dissertation research: 1). collects and analyzes

data on investors’ actual subjective return expectations; 2). builds models of subjective

expectation formation; 3). derives and tests the models’ implications for asset prices. I

document the results of the research in two chapters.

In summary, the dissertation shows that investors do not hold full-information rational

expectations. On the other hand, their subjective expectations are not necessarily

irrational. Rather, they are bounded by the information environment investors face and

reflect investors’ personal experiences and preferences. The deviation from fully-rational

expectations can explain asset pricing anomalies such as cross-sectional anomalies in the

U.S. stock market.

In the first chapter, I provide a framework to rationalize the evidence of extrapolative

return expectations, which is often interpreted as investors being irrational. I first



document that subjective return expectations of Wall Street (sell-side, buy-side) analysts

are contrarian and counter-cyclical. I then highlight the identification problem investors

face when they form return expectations using imperfect predictors through Kalman

Filters. Investors differ in how they impose subjective priors, the same way rational agents

differ in different macro-finance models. Estimating the priors using surveys, I find Wall

Street and Main Street (CFOs, pension funds) both believe persistent cash flows drive

asset prices but disagree on how fundamental news relates to future returns. These results

support models featuring heterogeneous agents with persistent subjective growth

expectations.

In the second chapter, I propose and test a unifying hypothesis to explain both

cross-sectional return anomalies and subjective return expectation errors: some investors

falsely ignore the dynamics of discount rates when forming return expectations. Consistent

with the hypothesis: 1) stocks’ expected cash flow growth and idiosyncratic volatility

explain significant cross-sectional variation of analysts’ return forecast errors; 2). a measure

of mispricing at the firm level strongly predicts stock returns, even among stocks in the

S&P500 and at long horizon; 3). a tradable mispricing factor explains the CAPM alphas of

12 leading anomalies including investment, profitability, beta, idiosyncratic volatility and

cash flow duration.
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Chapter 1: Subjective Return Expectations

This chapter studies how investors form subjective return expectations. Return expec-

tation is a key input in investors’ investment decisions, which ultimately drive asset prices.

Furthermore, the parameters governing how investors form return expectations reflect their

perceptions of risk and uncertainty, which are central in financial economics. Yet, despite its

importance, our understanding towards how return expectations are formed is surprisingly

limited.1

Instead of investors’ actual (subjective) return expectations, the literature has devoted

much effort in studying objective return expectations. Objective return expectations are

statistical measures of what would have been a good proxy for future returns ex-post, from

the point of view of an econometrician who analyzes historical data.2 The key finding is that

future returns are predictable in-sample by fundamental-price ratios, such as dividend-price

or earnings-price ratios. The finding motivates macro-finance models featuring fully rational

agents (Campbell and Cochrane (1999) and Bansal and Yaron (2004)).3 In these models,

agents rationally hold counter-cyclical return expectations as they require higher (lower) risk

premium to hold stocks during recessions (expansions).

However, objective return expectations can differ from investors’ actual (subjective) re-

turn expectations. Indeed, direct survey evidence shows that return expectations among a

number of investors appear exclusively extrapolative and even pro-cyclical.4 The evidence

further motivates a new class of models featuring irrational extrapolative agents (Barberis
1Noticing the lack of studies in finance and macroeconomics on subjective expectations, Brunnermeier

et al. (2021), and Manski (2018) call for more research in this area.
2The literature is often referred to as the return predictability literature, which is large. See Cochrane

(2011a) and Koijen and Van Nieuwerburgh (2011) for reviews.
3More specifically, the rational agent assumption means that investors know the true parameter values

and the objective probability distributions that govern the data generating process of the environment.
4See for example Vissing-Jorgensen (2003), Greenwood and Shleifer (2014), Andonov and Rauh (2020).
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et al. (2015a), Adam, Marcet, and Beutel (2017), Hirshleifer, Li, and Yu (2015), and Choi

and Mertens (2019)),5 These models show promise in capturing key empirical moments of

both asset prices and subjective beliefs.

These new models also motivate two open questions. First, in reality, who hold contrarian

beliefs to accommodate demand from extrapolative agents, if any one? Second, and more

importantly, why would investors hold extrapolative beliefs in light of the evidence of return

predictability?

This paper addresses these questions. At a high level, the results in this paper demon-

strate that subjective return expectations can appear extrapolative or contrarian, and nei-

ther expectation needs to be irrational. Instead, different return expectations could all be

a result of investors optimally learning from past information. They are different because

investors are bounded by the information environment and their own personal preference

and/or experiences.

I start by documenting new facts about subjective return expectations. Wall Street ana-

lysts, which include sell-side and buy-side analysts, hold contrarian and counter-cyclical re-

turn expectations. Together with existing evidence of extrapolative return expectations, the

new evidence suggests Wall Street and Main Street (retail investors, CFOs, pension funds)

persistently disagreeing with each other. These new results provide a micro-foundation for

contrarian investors in models like Barberis et al. (2015a) and paint a more complete picture

of who hold what expectations in real world.

Subsequently, I propose a return expectation formation framework to understand these

facts together with evidence of return predictability. The framework has two key elements.

First, Bayesian investors face a predictive system with imperfect predictors, such as com-

monly used dividend-price or earning-price ratios. Second, different investors form and up-

date their return expectations based on Kalman Filter. Such return expectation formation

process means investors are minimizing their perceived forecast errors using past informa-
5More specifically, extrapolation means that agents’ return expectations are positive related to past

realized returns and/or past cash flow news.
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tion. This is a realistic setting consistent with the task facing econometricians, who have

information for past data.6

I demonstrate through simulations that the return expectation formation framework can

generate the observed heterogeneous expectation dynamics, including those of extrapolative,

contrarian, pro- and counter- cyclical patterns. The main reason that optimizing investors

agree to disagree is that they encounter a parameter identification issue known to researchers

in the return predictability literature.7 Intuitively, the issue arises because one observable

change in return predictors such as dividend-price ratio can be theoretically driven by two

latent economic forces, namely expected return and/or expected future cash flow growth.

Consequently, a Bayesian investor needs to impose subjective priors on certain parameters

that govern these latent processes in order to form a unique return expectation. I find that

analytically, investors need to impose prior beliefs on a). relative importance of cash flow

news in driving valuations compared to discount rate news b). correlation between cash flow

news and expected return news. Moderate differences in the two priors beliefs can result in

different return expectations.8

Similar to the way different investors have their own subjective prior beliefs, leading

macro-finance models also make different assumptions regarding these two unidentifiable

parameters. For example, in Campbell and Cochrane (1999), the rational representative

agent believes cash flow process is i.i.d. while their expected return process is persistent

due to their habit utility function. Such an assumption implies discount rate shocks and

cash flow shocks are perfectly negatively correlated. On the other hand, in models featuring
6The setting with imperfect predictor is a realistic one and has been considered in studies of objective

return expectations. Pástor and Stambaugh (2009) studies exactly this setting of predictive system with
imperfect predictors. More generally, the imperfect predictor assumption is rooted in the weak out-of-sample
predictive power of most return predictors, such as dividend-price ratio and the small R-squared found in
most of the return predictive regressions that employ different predictors. For related discussions, see Welch
and Goyal (2008) and Ang and Bekaert (2007).

7Papers that discuss this identification issue include Cochrane (2008), Koijen and Van Nieuwerburgh
(2011), Pástor and Stambaugh (2009), and Rytchkov (2012).

8Interestingly, academic researchers are still debating about the objective values of these parameters. The
debate about the persistence parameter centers around the predictability of cash flows, see Bansal, Kiku,
and Yaron (2012) and Beeler (2012). For a discussion on the correlation between discount rate and cash flow
shocks, see Lochstoer and Tetlock (2020).
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persistent long-run risks, agents hold objective (Bansal and Yaron (2004)) or subjective

beliefs (Collin-Dufresne, Johannes, and Lochstoer (2016)) that cash flow process contains

a persistent component. In these models, the correlation between expected cash flow news

and expected return news depends on the relative magnitude of the representative agent’s

inter-temporal elasticity of substitution (IES) and relative risk aversion.9

Building on the expectation formation framework, I use survey data to identify these

unobservable prior beliefs to distinguish asset pricing models. My main estimation results

are as follows. First, both Wall Street (sell-side analysts) and Main Street (CFOs, pension

funds) believe cash flow process as more persistent than discount rate process. Moreover,

expected cash flow process is the main economic force driving asset price variations. Second,

Wall-Street believes positive cash flow news leads to lower future returns while Main-Street

believes the opposite. These results support models featuring heterogeneous agents with

persistent expected fundamental process.

Why do different investors have different sets of prior beliefs in the first place? The

literature suggests personal experiences as a key variable that drives subjective beliefs about

economic variables (Malmendier and Nagel (2016)) and risk appetite (Malmendier and Nagel

(2011)). These two channels echo the two prior beliefs highlighted in the expectation forma-

tion framework proposed in this paper. Taking advantage of the breadth of sell-side analysts

survey, I find that more experienced analysts are indeed more contrarian. This result fur-

ther supports models featuring agents learning from experiences, such as Collin-Dufresne,

Johannes, and Lochstoer (2017) and Nagel and Xu (2019a).10

The rest of the paper is organized as follows. I document new facts about subjective return

expectations in Section 1.1; I present and demonstrate the expectation formation framework
9More specifically, when an agent has a high IES (e.g. IES >1) relative to risk aversion, she prefers to

consume less in light of higher expected growth, leading to a lower expected return. On the other hand,
when her IES is small relative to risk aversion (IES <1), she prefers to consume more now facing positive
growth news, leading to her to believe risk premium is higher and positively related to expected growth
news.

10In Collin-Dufresne, Johannes, and Lochstoer (2016), subjective expected consumption growth is depen-
dent on the number of years an agent learns about the endowment process. In Nagel and Xu (2019a), the
subjective expected consumption growth is related to an agent’s experienced payouts.
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in Section 1.2; I estimate prior beliefs governing the expectation formation process in Section

1.3 before conclude in 1.4.

Related Literature

This paper relates to three strands of literature. First, this paper is related to the liter-

ature that uses survey data to study empirical properties of subjective return expectations.

Vissing-Jorgensen (2003), Greenwood and Shleifer (2014) study surveys conducted for CFOs,

retail investors and consumers, and recently, Andonov and Rauh (2020) studies return ex-

pectations of pension funds. This paper contributes to the literature by studying surveys on

sell-side analysts. Sell-side analysts play an important role in financial markets, and they

conduct research as their profession, including publishing price targets. The frequency as

well as the number of responses in analyst return expectation data also exceed other surveys

studied in the literature.

Second, the theoretical return expectation framework proposed in this paper contributes

to a growing literature that models subjective expectation formation. More specifically, it is

most related to studies that model agents as econometrician who learns from past information

to form their expectations. In Branch and Evans (2010), agents form their future price

expectation by linearly projecting past information to future prices.11 In their framework,

the agents are not using the full information available, especially the information in distant

past. Furthermore, the agents form expectations by minimizing squared forecast errors in an

overly parsimonious linear model. In contrast, the agents in the framework developed in this

paper use all information and form expectation using the Kalman Filter. Another closely

related paper is Adam, Marcet, and Beutel (2017), which develop an expectation formation

framework in which agents learn from past price movements to form expectations about

future capital gains. Agents in their setting form extrapolative return expectations, which is

consistent with survey evidence. The framework proposed in the current paper can generates
11Their framework is a form of constant-gain adaptive learning, which comes from a large macroeconomics

literature about learning, summarized in Evans and Honkapohja (2012)
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heterogeneous return expectation dynamics, not only extrapolative return expectations, and

allows agents to observe the same information. Additionally, in the current framework agent

can use different predictors, such as past dividend price ratios, as opposed to only past

returns.

Within the literature on expectation formation, this paper also relates to studies that

emphasize personal experiences and cognitive biases in shaping investors’ beliefs. In par-

ticular, Nagel and Xu (2019a) propose a model where agents have fading memories when

forming expectations about unconditional mean consumption growth and show it can match

important asset pricing moments and lead to return expectations that closes to a constant.

Bordalo, Gennaioli, and Shleifer (2018) develop a diagnostic expectation formation frame-

work, in which agents suffer from Kahneman and Tversky’s representativeness heuristic. The

current paper finds experiences of analysts matter for expectation formation, thus confirms

the findings that personal experiences matter for expectation formation. On the other hand,

the agents considered in this paper are forming expectation through Kalman Filter, using

all available information in the past. The main deviation from full rational expectation is

that agents do not conduct Bayesian analysis to find optimal priors in sample, as in Pástor

and Stambaugh (2009).

Finally, the paper also contributes to the literature that tries to explain asset pricing

puzzles by allowing agents to deviate from rational expectation. Specifically, this paper uses

subjective return expectations to differentiate asset pricing models featuring alternative in-

vestor beliefs. O and Myers (2020) also uses sell-side analysts’ earnings and CFO’s return

expectations to test asset pricing models. Their approach uses the decomposition of price

to earnings/dividend ratios. The tests conducted in this paper makes use of the expecta-

tion formation framework to uncover a richer set of moments, such as correlation between

(subjective) discount rate and cash flow news, in addition to variance decomposition of price

earnings ratio. This allows me to make finer distinction between asset pricing models.
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1.1 Heterogeneous Return Expectations and the Contrarian Wall Street Ana-

lysts

In this section, I document new facts to extend our understanding about subjective return

expectations. First, I assemble a comprehensive set of return expectations and demonstrate

that the market structure of return expectations form clusters within Wall Street (sell-

side, buy-side) and Main Street (CFOs, consumers). Expectations are negatively correlated

between the two clusters and Wall Street expectations are more inline with measures of

objective return expectations. Second, I zoom in on sell-side analysts’ and establish that

they have contrarian return expectations on the market, firm and analyst level.

1.1.1 Data Sources and Measuring Wall-Street Analysts Return Expectations

Table 1.1 summarizes the data sources. While other subjective return expectations have

been studied in the literature12, the current paper document new facts about buy-side and

sell-side analyst return expectations, which I briefly describe in this subsection. More details

about data sources are provided in Appendix A.2.

The buy-side return expectation is from the asset management firm Grantham, Mayo&

van Otterloo (GMO), which publishes a 7-year asset class forecasts each quarter on their

website.13 The reason to use GMO’s return expectations are two-folds. First, seldom do

any of the buy-side firms publish their return expectations and GMO is the only one that

has a long-term historical account of return forecasts available since the second quarter of

2000. Second, GMO runs a large asset allocation fund and return expectations are important

for these funds. Tower (2010) document that GMO’s return expectations actually predict

the returns in Vanguard mutual funds which have different asset classes and styles. Their

expected returns for equities are available on their website since 2017. For pre-2017 data, I

hand-collected the data from the internet.
12Examples include Greenwood and Shleifer (2014), Ben-David, Graham, and Harvey (2013), Vissing-

Jorgensen (2003), and Adam, Matveev, and Nagel (2021a).
13https://www.gmo.com/americas/research-library/
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Table 1.1: Data Sources for Subjective and Objective Return Expectations

Measures of Subjective Return Expectation
Who Source

Sell-Side Analysts I/B/E/S detailed unadjusted price targets

Buy-Side Analysts Grantham, Mayo & Van Oterlook (GMO) 7-year Asset Class Forecasts

Institutional Investors (Pension) Shiller Survey/Yale University

Survey of Professional Forecasters the Federal Reserve

CFOs Duke University CFO Global Business Outlook

Retail Investors Shiller Survey/Yale University

Consumers University of Michigan Consumer Surveys

Proxies for Objective Return Expectations
Proxy Source

S&P500 Price Dividend Ratios GlobalX and CRSP

PE ratio Prof. Robert Shiller’s Website

Consumption-Wealth Ratio Prof. Martin Lettau’s Website

Notes: The sample period is 2002-01-01 to 2018-12-31, which all data are available. Appendix
A.2 provides more details about the data sources. Appendix A.3 describes how index level
price dividend ratios are constructed.
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Aggregate (S&P500-level and firm-level) sell-side analysts return expectations are con-

structed using individual analyst price targets. The expected returns are computed by

dividing individual analyst’s price targets by the daily closing price on the day the estimates

was issued and subtracted by 1,14 or

µAi,f,d =
PA,12
i,f,d

Pf,d
− 1

where PA,12
i,f,d is the price target of analyst i for firm f , issued at day d and Pf,d is the closing

price of the firm f . The superscript “A” denotes the 12-month ahead estimates.15

Firm-level return expectations are simple averages of analyst-level return expectation

and market-level return expectations are market-cap weighted firm-level return expectations.

Details of how these expectations are constructed are in Appendix B.5.

The data set of sell-side analysts price targets has comprehensive coverage, which include

forecasts of about 2700 analysts from 236 brokerage firms at a point in time on average. I

detail the coverage and the summary statistics in Appendix A.1.2.

1.1.2 Heterogeneous Return Expectations: Wall-Street vs Main-Street

Table 1.2a shows correlations among surveys of different parties. The correlation matrix

clearly displays a two-cluster structure: Wall Street vs. Main-Street. Sell-Side analysts, buy-

side analysts, professional forecasters at the Fed form a Wall-Street cluster, whose return

expectations are positively correlated with each other. On the other hand, retail investors,

CFOs and consumers form another cluster, which are conventionally thought of as Main

Street investors. The latter cluster were consistent with results in Greenwood and Shleifer

(2014). On the other hand, correlations of return expectations between these two clusters

are negative, with consumers and buy-side analysts have a -69% at one extreme.
14The same formula is used in Brav and Lehavy (2003a) and Da and Schaumburg (2011)
15Notice this methodology ensures there is no mechanical relation between mean estimated expected

returns and the level of prices. On each issuing date the analyst has the freedom to pick her own price target
since she observes the prices. 12-month ahead estimates are the most commonly issued horizon. The other
horizons, although available, have much poorer coverage.
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The last row of Table 1.2a reports how different subjective return expectations react

to past 6 month returns. Wall Street appears to have a contrarian view and Main Street

extrapolates. While the extrapolative expectations have been documented before sell-side

analysts’ contrarian expectations have not been documented in the literature, to the best of

my knowledge. To show this results are robust, I provide detailed analysis in Section 1.1.3.

Panel 1.2b shows correlations between subjective return expectations and proxies for ob-

jective return expectations considered in the literature. Wall Street analysts’ expectations

are negatively (positively) correlated with price-fundamental ratios (CAY), which means

they are counter-cyclical. In particular, for a commonly used objective return expecta-

tion (Cochrane (2011a)), which is the fitted value of future returns regressed on CAY and

log(P/D) ratios, the Wall Street and Main Street return expectations are positively and

negatively correlated with high magnitude.
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Table 1.2: Heterogeneous Subjective Return Expectations

(a) Correlations Between Different Subjective Expectations

ER.analyst ER.buy.side Prof.Forecaster Shiller.institutional Shiller.retail ER.CFO ER.consumer(pct)
ER.analyst 1.00
ER.buy.side 0.41∗∗∗ 1.00

Prof.Forecaster 0.45∗∗∗ 0.53∗∗∗ 1.00
Shiller.institutional 0.21∗ 0.26∗∗ 0.50∗∗∗ 1.00

Shiller.retail 0.00 -0.20 0.30∗∗ 0.33∗∗ 1.00
ER.CFO -0.27∗∗ -0.06 0.35∗∗∗ 0.20∗ 0.68∗∗∗ 1.00

ER.consumer(pct) -0.68∗∗∗ -0.69∗∗∗ -0.31∗∗ -0.37∗∗∗ 0.04 0.38∗∗∗ 1.00
past.6m.cum.ret -0.65∗∗∗ -0.09 -0.11 0.00 0.08 0.48∗∗∗ 0.37∗∗∗

(b) Correlation Between Analyst Expectations and Proxies of Objective Returns Expecta-
tions

ER.Analyst ER.Buy.Side ER.CFO ER.Consumer
ER.Analyst 1.00
ER.Buy.Side 0.43∗∗∗ 1.00
ER.CFO -0.34∗∗∗ -0.13 1.00

ER.Consumer -0.68∗∗∗ -0.69∗∗∗ 0.38∗∗∗ 1.00
ER.Rational 0.61∗∗∗ 0.58∗∗∗ -0.20 -0.73∗∗∗

CAY 0.54∗∗∗ 0.45∗∗∗ 0.08 -0.55∗∗∗
log(P/D) -0.23∗ -0.36∗∗∗ 0.63∗∗∗ 0.52∗∗∗
CAPE -0.51∗∗∗ -0.81∗∗∗ 0.42∗∗∗ 0.90∗∗∗

GS10.pct 0.28∗∗ 0.19 0.51∗∗∗ 0.08

Notes: “ER.Rational” is fitted values of regressing future 12-month returns on CAY and log(P/D) from 1970-2019. “*”,
“**” and “***” represent significant level at 10%, 5% and 1%, respectively. Data are based on quarterly series.
“ER.consumer(pct)” represents return expectations from Michigan Survey for households asking "percent chance” their
investment would increase next year. More details about these surveys are in Appendix A.2.
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Figure 1.1: Market Structure for Return Expectations
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Different return expectations within each cluster are also loading differently on past

returns and fundamental/price ratios as well as risk-free rate. For example, buy-side analysts

are more related to objective return expectations and are less driven by past returns, while

sell-side analysts are more influenced by past returns and risk-free rate. Since fundamental-

price ratios are much more persistent than past realized returns, sell-side analysts’ return

expectations should be more volatile than buy-side analysts’. Similar patterns can be found

between CFOs and consumers.

Figure 1.1 visualizes these rich expectation dynamics. Indeed, sell-side analysts’ return

expectations are more volatile than that of buy-side analysts the CFOs. Furthermore, the

persistent disagreement between consumers and sell-side analysts also stands out.

1.1.3 Contrarian Return Expectations of Sell-side Analysts

I demonstrate the contrarian feature of sell-side analysts’ return expectations is a robust

finding. I run the time-series regression of aggregate analyst return expectations, µAm,t, on

two-month lagged cumulative k−month past market returns, Rm,t−2,t−k, and other (lagged)

control variables, Xt−2 in the regression: 16

µAm,t = a+ bRm,t−2,t−k + cXt−2 + et (1.1)

A negative coefficient b would mean analysts expect the market to have a negative ex-

pected return when the market has yielded a positive return in the past, i.e. contrarian

expectation. Since the dependent variables are persistent, I use Newey-West standard errors

with 12-month lag to correct for auto-correlations. For control variables, I include the 10-

year U.S. treasury yields, price dividend ratios as well as analyst aggregate long-term growth
16The independent variables are lagged by two months when entering into the regression to prevent the

estimates of b from being contaminated by stale analysts forecasts. When constructing individual analyst
return expectations, the analyst price targets are at most 2 months old by construction. Therefore, lagging 2
months when running the predictive regression makes sure all future return expectations are out-of-sample.
As an example, when using the past 6-month cumulative returns at the end of June 2005 to predict analyst’s
aggregate return expectations end of August 2005, the oldest analyst return expectation is constructed using
price targets and stock price in early July 2005.
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measure to proxy for expected future earnings growth.

Panel (b) in Table 1.3 shows the estimation results for regression 1.1. Panel (a) shows the

empirical distribution of the key variables in the regression to help interpret the magnitude

of the coefficients. The coefficients on past returns are negative across all of the specifica-

tions and are significant both statistically and economically. In Column 1, for one standard

deviation (percent) increase in the past 6 month cumulative returns, the next month analyst

return expectations decrease by 1.7% (0.16%), with a t-stat of 3.8. Since the monthly volatil-

ity of analyst return expectation is only 3.5% the estimate means the economic magnitude

of the contrarian effects is also large.

The contrarian effect does not only apply to short-term past realized returns. Column

2 and 3 in the table shows that the past 36 month returns have almost the same predictive

power as the 6 month cumulative returns. In fact, one standard deviation increase in past 36

month returns decreases the future analyst return expectation by 1.8%, on top of the past

6 month returns. Furthermore, past 6-month cumulative returns and 36-month cumulative

returns together explain up to 41% of the time-variation in monthly analyst return expecta-

tions. This high R-squared further demonstrate the economic magnitude of the contrarian

effect. Results from Column 2 and 3 also raise the question of which horizon of past returns

matter most to analyst future return expectation. I investigate this question in Appendix

A.4.1.

The contrarian results are not much affected when including other control variables, as

shown in Column (4). The 10-year treasury yield is the only variable that has a (marginal)

significance in predicting analyst’s return expectations. To understand the magnitude of

the coefficient on treasury yield, consider as a benchmark, analysts believe risk-free rate is a

constant and risk-free rate is a part of the expected future return. In this case, the coefficient

should be 1. Therefore, a estimated coefficient of 0.843 means analysts expect a persistence

in risk-free rate process.

The contrarian effect are not a result of aggregation, nor staleness of the analyst forecasts.
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Table 1.3: Aggregate Analyst Return Expectations and Past Returns

(a) Summary Statistics: Monthly Aggregate Expectation Data (SP500 firms)

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
ER.analyst 208 0.142 0.037 0.087 0.115 0.160 0.270
tot.ret.1m 208 0.006 0.041 −0.168 −0.015 0.031 0.109
past.6m.cum.ret 208 0.031 0.111 −0.427 −0.010 0.089 0.388
past.36m.cum.ret 208 0.156 0.302 −0.434 −0.108 0.371 0.858
GS10 208 0.033 0.011 0.015 0.023 0.042 0.053
log(P/D) 208 3.946 0.152 3.289 3.875 4.031 4.305
LTG 208 0.115 0.014 0.081 0.105 0.122 0.153
avg.nr.firms.ER.analyst 208 490.178 7.076 459 486 495 500

(b) Monthly Regression: Aggregate Analyst Return Expectations on Past Returns

Dependent variable:
Aggregate Analyst Return Expectations

(1) (2) (3) (4)
past 6m cum.ret −0.163∗∗∗ −0.125∗∗∗ −0.115∗∗∗

(0.043) (0.033) (0.038)

past 36m cum.ret −0.062∗∗∗ −0.049∗∗∗ −0.038∗∗
(0.022) (0.015) (0.018)

GS10 0.867∗
(0.497)

Log(P/D) −0.015
(0.042)

Analyst LTG Estimate 0.382
(0.370)

Constant 0.146∗∗∗ 0.151∗∗∗ 0.152∗∗∗ 0.135
(0.006) (0.009) (0.006) (0.129)

Observations 206 206 206 206
R2 0.266 0.284 0.428 0.516
Adjusted R2 0.263 0.281 0.422 0.504
Residual Std. Error 0.030 (df = 204) 0.030 (df = 204) 0.027 (df = 203) 0.025 (df = 200)
F Statistic 74.001∗∗∗ (df = 1; 204) 81.031∗∗∗ (df = 1; 204) 75.862∗∗∗ (df = 2; 203) 42.706∗∗∗ (df = 5; 200)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
SEs are Newey-West with 12 month lag

Notes: In Panel (b) Time-series regression of aggregate analyst return expectations, µAm,t, on
past returns. I include (2-month lagged) 6-month past cumulative returns, Rm,t−2,t−6 and
(2-month lagged) 36-month past cumulative returns, Rm,t−2,t−36 and other 2-month lagged
control variables. “lag.2m” denotes the variables are lagged by 2 months before entering the
regressions. Sample period: 2002-03-01 to 2018-12-31, a total of 202 months. ER.analyst:
value-weighted analyst return expectation for the SP500 index; tot.ret.1m: one-month total
return on SP500 index; past.6m.cum.ret: 6-month cumulative returns on the SP500 index;
past.36m.cum.ret: 36-month cumulative returns on the SP500 index; GS10: yield on 10-year
constant maturity treasury; Log(P/D): log price dividend ratio of SP500 index; LTG: value-
weighted analyst long-term growth expectation for the SP500 index; avg.nr.firms.ER.analyst:
average monthly number of firms that have analyst return expectations in the SP500 index.
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Appendix A.4.1 and A.4.3 show that the contrarian results hold at firm level and at analyst

level, respectively. Remarkably, the magnitude of the contrarian effects are similar at each

level. Furthermore, the results on the analyst level are based on analysts whoever issues

their forecasts for the first-time ever, thus eliminating concerns that the contrarian effect is

simply a result of stale analyst forecasts. Appendix A.1.3 provides detailed analysis on the

timing and frequencies of analysts’ price target forecasts.

1.2 A Framework for Subjective Return Expectation Formation

I propose an expectation formation framework to understand the subjective return ex-

pectation dynamics observed in the data. I start by describing the environment faced by

investors in this framework. I present the subjective return expectation dynamics in this en-

vironment for an investor who minimizes his/her perspective forecast errors through Kalman

Filter, and show through simulation the framework can generated the rich patterns observed.

Subsequently, I use a simplified system (where investors only consider dividend yield and

returns) to demonstrate the parameter identification problem faced by investors. Finally, I

identify the prior beliefs investors need to impose for arriving at unique expectations.

1.2.1 The Environment

There are three types of shocks εd, εg and εµ, which represent news about current dividend,

expected future cash flow growth and discount rates, respectively. They follow multivariate

normal distribution


εd,t+1

εµ,t+1

εg,t+1

 ∼ N

0,


σ2
d σµd σgd

σµd σ2
µ σµg

σgd σµg σ2
g



 (1.2)

Dividend growth in the next quarter, ∆dt contains a potentially persistent component gt:
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∆dt+1 = gt + εd,t+1 (1.3)

gt+1 = Eg(1− φ) + φgt + εg,t+1 (1.4)

Furthermore, let µt = Et(rt+1) be the discount rate process and it follows an autoregressive

process

µt+1 = (1− β)Er + βµt + εµ,t+1 (1.5)

Besides, there exist a vector of return predictors such as price earnings ratios, whose

values are correlated with the three shocks. Denote their values as xt, they follow

xt+1 = (I − A)Ex + Axt + εx,t+1 (1.6)

xt can be used to predict future returns because of its correlations with εµ,t+1 via



εd,t+1

εµ,t+1

εg,t+1

εx,t+1


∼ N


0,



σ2
d σµd σgd σ′dx

σµd σ2
µ σµg σ′µx

σgd σµg σ2
g σ′gx

σdx σµx σgx σ2
x




(1.7)

This environment is consistent with the literature of return predictability, where re-

searchers aim to construct proxies for objective expected returns ( Van Binsbergen and

Koijen (2010), Pástor and Stambaugh (2009)). Although simple, the setup encapsulates

asset pricing models featuring either or both persistent cash flow or discount rate process.
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1.2.2 Investors’ Subjective Return Expectation Formation Process

Investors do not observe the news directly and neither do they know the exact values of

the parameters that govern the data generating process described in (1.5), (1.6) and (1.7).

Instead, they observe changes in predictors such as fundamental-price ratios and past returns

and estimate the news and parameter values from available information. Based on their own

estimates, they update their subjective return expectations through Kalman Filter, or:

ẼRt|t = ẼRt|t−1 + m̃t ∗ (rt − ẼRt|t−1) + ñt ∗ εx,t (1.8)

where ẼRt|t = Ẽ(rt|Ft) is the subjective return expectation and Ft denotes the agent’s

information set, which contains values of all past predictors and past realized returns up

to and including time t; “̃.” means that the expectation depends on agent’s own subjective

beliefs; εx,t is the innovation in predictors defined (1.6). m̃t and ñt are functions of both

parameters in the system (1.3) to (1.7) and values of realized returns and εx,t. The time

subscript in m̃t and ñt capture the fact that agents can learn over time and adjust their

expectation formation process over time. See Appendix A.7 for detailed derivation to arrive

at Equation (1.8) and expressions for mt and nt as well as their steady-state values.

The return expectation in (1.8) connects investors’ subjective returns expectations to

past realized returns and return predictors through agents’ optimization process. Thus,

this framework rationalizes why the observed pattern that return expectations from surveys

are related to past returns and fundamental-price ratios: from the perspective of investors,

they are simply trying to project the most accurate return expectations based on news in

εt = (εd,t, εµ,t, εg,t, εx,t)′.17

The simple expectation formation framework can generate the heterogeneous return ex-

pectations dynamics similar to the one we observed empirically in Figure 1.1. I confirm
17In Appendix (A.6), I demonstrate in Figure (A.7) that it is advantageous for investors to use realized

returns to forecast future returns, even though past return as a standalone predictor does not forecast future
returns in linear predictive regressions. In fact, in studies such as Van Binsbergen and Koijen (2010), past
returns are used together with dividend yields to predict future returns.
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Figure 1.2: Different Return Expectations vs. Predictors and Past Returns (Simulated Data)

Note: Simulated return expectations are based on Equation (1.8). ẼRDR

t denotes the (an-
nualized) return expectation of an investor who believes that asset prices are 97%
driven by discount rate variations; ẼRCF

t denotes the (annualized) return expectation
of an investor who believes asset prices are 99% driven by expected cash flow growth
variations; xt ∗ 4 are the dividend yields times 4; orange bars represent the cumulative
past 6 months returns. Dividend yields and past returns are simulated based on mo-
ments calibrated to historical data. More details of the simulations are in Appendix
A.6.
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the framework’s ability through simulation in Figure 1.2. In this figure, two investors form

different return expectations following (1.8), even though they observe the same information

-past realized returns and dividend yields, and both investors try to minimize their forecast

errors. I explain how and why this framework can generate such return expectations next in

Section 1.2.3.

1.2.3 Understanding Return Expectation Formation Process: A Simple One-Predictor Sys-

tem

Why Do Subjective Return Expectations Differ?

The reason behind persistent disagreement in investors’ subjective return expectations

is that investors face a parameter identification problem when predictors for future returns

are not perfect. Intuitively, when the magnitude of return predictability is small, as found

in the literature,18 different interpretations of the data may persist. The expectation for-

mation framework provides an analytical base to understand why and how these differences

persist. In this framework, imperfect predictors mean that agents believe none of shocks in

predictors xt , εx,t has a correlation with εµ,t of absolute value of 1 and the corresponding

persistent parameter in A equals β. This leads to a parameter identification problem. Below,

I demonstrate the parameter identification problem using a simple example of investors only

considering dividend yield as a predictor.

In this case, investors observe both the dividend yields and past returns to extract shocks

to expected returns εµ in order to update their return expectations. Assuming investors

understand the present value relationship, their perceived system becomes
18Typically the R2 in regressions of future returns on predictors are small. Typically, when the future

returns are of short horizon, such as one year, the R2 of these regressions are smaller than 10%. Furthermore,
as discussed in Welch and Goyal (2008) the out-of-sample predictive powers of these predictors are also poor.
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rt+1 = µt + εd,t+1 − ρκµεµ,t+1 + ρκgεg,t+1 (1.9)

dpt+1 = (1− φ)Bdp + φdpt + κµ(β − φ)µt + κµεµ,t+1 − κgεg,t+1 (1.10)
εd,t+1

εµ,t+1

εg,t+1

 ∼ N

0,


σ2
d σµd σgd

σµd σ2
µ σµg

σgd σµg σ2
g



 (1.11)

where κµ = 1
1−ρβ and κg = 1

1−ρφ and ρ=0.94 and Bdp is a constant.

The system in Equation (1.9) and (1.10) present a parameter identification problem

because investors need to separate three shocks, εd,t, εµ,t and εg,t from two observables in the

data, namely innovations in realized returns (ut+1) and dividend to price ratios (vt+1), or

ut+1 = εd,t+1 − ρκµεµ,t+1 + ρκgεg,t+1 (1.12)

vt+1 = κµεµ,t+1 − κgεg,t+1 (1.13)

As a result of this parameter identification issue, different investors can persistently disagree

on what their subjective value of expected return shocks are and how the expected return

process evolves. Since these are not uniquely pinned down by the data, prior beliefs about

parameter values in the system is necessary to form a unique return expectation. I discuss

in the next subsection what prior beliefs need to be set subjectively by investors.

The parameter identification problem outlined here has been discussed in the literature,

because researchers who try to forecast future returns using Kalman Filters also face the

same issue.19 To avoid/solve this problem, the literature either simply impose a value to the

unidentified parameters or conduct Bayesian analysis to examine what values of prior beliefs

are the most accurate in terms of fitting the historical data.20 Essentially, these exercises
19See for example: Cochrane (2008), Pástor and Stambaugh (2009), Koijen and Van Nieuwerburgh (2011),

and Rytchkov (2012).
20As an example, Van Binsbergen and Koijen (2010) assume the parameter σgd to be zero and Pástor and
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are researchers trying to impose priors to uniquely pin down their return expectations.

Adding to the system more predictors will not completely resolve the problem, because

other predictors are also imperfect and introduce more noises. As an example, adding CAY

theoretically introduces shocks to payout ratio and leverage process. Even though aggre-

gate consumption is correlated to aggregate dividend, the portion of consumption that paid

out to shareholders as dividend can vary over time. This new shock means the parameter

identification problem persists.

What Drives Differences in Return Expectations?

I show that the two prior beliefs investors hold drive their return expectations: 1). how

important is expected cash flows news for driving asset valuation when compared to discount

rate news; 2). whether positive cash flow news means negative or positive for future returns.

Quantitatively, when investors believe asset prices are mostly driven by fundamentals, their

return expectations are much easier to appear as extrapolative than contrarian, and vice

versa. I explain these results below and more analysis can be found in Appendix A.8.

To understand intuitively why these two particular priors can lead to pro- and counter-

cyclical return expectations, consider extracting the latent expected return process from the

dividend-price ratio alone, through

dpt = Bdp + 1
1− ρβµt −

1
1− ρφgt (1.14)

From the point of view of an econometrician, to identify the process µt from gt, she needs to

specify 1). how persistent the expected return process is compared to the cash flow process

and 2). how the shocks to these two processes are correlated. In the case that one believes

most of price-dividend moves are due to a shocks to expected cash flow growth, because the

cash flow process is much more persistent (φ > β), she would more likely believe a positive

Stambaugh (2009) finds that when econometricians impose the correlations between ut+1 and vt+1 to be
strongly negative, dividend yields have be better performance when forecasting future returns.
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change in dividend price ratio to be a result of lowered expected future cash flow growth.

On top of that, if she also believes negative cash flows shocks are typically associated with

negative future returns, she would lower her return expectations. In this case, her return

expectations are negatively related to positive changes in dividend price ratio, therefore

appearing to be pro-cyclical.

Figure 1.3: Prior Beliefs, Parameter Space and Return Expectation

Note: Grey shaded area represents the parameter space for (ρd,µ, ρg,µ) in which an investor
appear to be contrarian, or m̃ < 0; white area within closed space in each graph are parameter
space in which an investor would appear extrapolative. Each subplot in has a fixed level of
(relative) discount rate volatility, defined asWµ = κµσµ

σv,t
. Area within closed loops are feasible

parameter space for (ρd,µ, ρg,µ,Wµ) that satisfies the condition that correlation matrix of
(ρd,µ, ρv,d, ρv,µ) needs to be semi-positive definite. This constraint puts bounds on the value
of ρd,µ, through ρdµ ∈ [−√1− ρvµ,

√1− ρvµ].

Figure 1.3 demonstrates how different priors would impact investors’ subjective return ex-
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pectations. More specifically, the figure plots the possible value pairs of priors on parameters

(ρd,µ, ρg,µ,Wµ) in order for a forecaster to appear contrarian/extrapolative.21 Wµ := κµσµ
σv

denotes the volatility of discount rate shocks (numerator) as proportion to the shocks to

dividend yields. The area within the closed lines are the feasible parameter space for the

parameters (ρd,µ, ρg,µ,Wµ) and the shaded area within each of the feasible area is the pa-

rameter space in which an investor will appear to be contrarian,22while the white area in

each closed loop is the parameter space in which an investor will appear extrapolative. Each

subplot in Figure 1.3 has a fixed level of (relative) discount rate volatility (Wµ).

The figure provides the following insights. First, investors will mostly likely appear

extrapolative when they interpret (expected) cash flow news as positively related to future

returns. Within each subplot, the upper right corner, where ρgµ and ρdµ take on higher values

are regions in which investors expectations would appear extrapolative. This is intuitive, as

investors are essentially extrapolating from current cash flow news for future returns, if cash

flow news is important to them.

Second, the more an investor considers expected cash flow to be important for asset prices,

the less likely the investor will appear to be a contrarian. Quantitatively, when expected

future cash flows is the dominant force, for example as in the the top-left panel (Wµ = 0.1),

as long as ρgµ > 0.15, investors would appear to be extrapolative, no matter how negative

the value of ρdµ they believe in. On the other hand, when the forecaster believe discount rate

is more important (bottom-right plot), all investors who believe that ρgµ < 0.1 will appear

contrarian (gray area).

Finally, the figure also shows how the expectations framework can accommodate rich
21Notice Wµ is not the same as the discount rate variation as percentage of total dividend yield variance.

However, they are positively related to each other, up to scaling by the persistent parameters. Appendix
A.8 provides more detailed discussion on this subject.

22Following the condition that

ρ2
dµ − 2ρvµρvdρdµ + (1− ρ2

vd)(1− ρ2
vµ) ≤ 0

and
ρv,d ≈ 0
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dynamics in return expectations. Even in the case where all investors believe asset prices

are driven by fundamentals (top-left panel of Figure 1.3), some could appear contrarian

while the others extrapolative, because of their different beliefs in ρg,µ, for example. For

more technical discussion about how these parameters related to return expectations, see

Appendix A.8. Next, I use survey data to back out prior beliefs of different investors, as

these parameters are important for differentiating asset pricing models.

1.3 Identify Prior Subjective Beliefs From Survey Data

Using subjective return expectation data, the framework allows for the identification

of investors’ prior beliefs, which are crucial assumptions in asset pricing models. First,

I describe how to estimate the prior beliefs in this framework. Subsequently, I apply the

estimation methodology to selected survey data and discuss the implications of the estimates

to asset pricing theories. Finally, I discuss what makes the prior beliefs different by providing

evidence that personal experiences of sell-side analysts impact their return expectations.

1.3.1 Estimation Framework

Thanks to the observable surveys, or Equation (1.17) below, all parameters governing in-

vestors’ return expectation process are identifiable, including those in the variance-covariance

matrix in (1.2). We have the following systems of equations:

r̂t+1 = µ̂t + ε∆d,t+1 − ρκµ(β)εµ,t+1 + ρκg(φg)εg,t+1 (1.15)

d̂pt+1 = φgd̂pt + κµ(β − φg)µ̃t + κµεµ,t+1 − κgεg,t+1 (1.16)

µ̂At+1 = βµ̂At + L(β)εµ,t+1 (1.17)

x̂t+1 = Ax̂t + εx,t+1 (1.18)
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where the ”̂.” denotes that variables are demeaned and the shocks follow multivariate normal

as in 1.19: 

εd,t+1

εµ,t+1

εg,t+1

εx,t+1


∼ N


0,



σ2
d σµd σgd σ′dx

σµd σ2
µ σµg σ′µx

σgd σµg σ2
g σ′gx

σdx σµx σgx σ2
x




(1.19)

which allows me to estimate the system based on maximum-llikelihood, where κµ(β) = 1
1−ρβ

, κg(φg) = 1
1−ρφg and L(β) = ∑3

k=0 β
k. µ̂At+1 is the observed (demeaned) 12-month return

expectations (and the superscript “A” denotes it’s annual), which is the quarterly return

expectations µ̂t rolling forward, following the dynamics of µ̂t. The return expectations follow

Equation (1.17), because the demeaned quarterly return expectations follow

µ̂t+1 = βµ̂t + εµ,t+1

Since the main interests are in the covariance matrix and the persistent parameters, I use

demeaned returns and expectation data, r̂t+1 and µ̂At+1. More details about the estimate

procedure is documented in A.9.

1.3.2 Estimation Results

Parameter Estimates

Table 1.4 presents the parameter estimates based on return expectations of sell-side

analysts, pension funds (“Shiller Institutional”) and CFOs.23 I chose these three series to

apply the estimation framework for the following reasons. First, these series show relatively

distinct correlations among each other as shown in Table 1.2a. Second, these three series are

based on surveys with similar questions, so there are less scaling issues.24

23See Appendix A.2 for more details about how these data are constructed.
24The buy-side analyst surveys are based on a different forecasting horizon (7 years) while the data on

households with the question of “What do you think is the percent chance that this one thousand dollar
investment will increase in value in the year ahead, so that it is worth more than one thousand dollars one
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Table 1.4: Parameter Estimates Return Expectation Dynamics

Investor Sell-Side Analyst Shiller Institutional CFO
Panel A: Estimates of Structural Parameters
φ 0.929 0.920 0.918

(0.03) (0.018) (0.024)
β 0.478 0.674 0.604

(0.058) (0.09) (0.166)
σd 0.022 0.021 0.021

(0.002) (0.002) (0.002)
σµ 0.014 0.010 0.005

(0.002) (0.002) (0.001)
σg 0.008 0.012 0.012

(0.002) (0.002) (0.002)
ρd,µ -0.474 -0.0152 0.156

(0.201) (0.059) (0.354)
ρd,g -0.00222 0.121 0.127

(0.308) (0.059) (0.42)
ρg,µ -0.552 0.349 0.675

(0.134) (0.07) (0.165)
Panel B: Implied Parameters
Wµ 0.304 0.326 0.152
m̃ -0.103 0.173 0.059
ñ 0.029 0.167 0.019
κµ 1.816 2.731 2.316
κg 7.883 7.377 7.303
ρv,µ 0.756 -0.028 -0.575√
Q 0.010 0.012 0.005
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As analyzed in the previous section, the key parameters are first, the persistent param-

eters (φ and β), which impact the relative importance of discount rate news compared to

cash flow news (Wµ); second, the correlations between cash flows and expected returns (ρg,µ,

ρd,µ). Differences in these values are crucial for how return expectations would appear.

First, all three types of investors believe cash flow process is persistent, in fact, more

persistent than the discount rate process. In particular, sell-side analysts believe the cash

flow process has a persistent parameter of 0.93, the highest among the three, although the

differences are small among them. The persistence of the return expectations, however, differ

significantly across participants.25 Sell-side analysts return expectations (0.478) are much

less persistent and more volatile than those of the CFOs (0.604). In fact, judging from the

standard errors of the parameter estimate σµ, we can’t reject the null hypothesis that CFOs’

return expectations are different from a constant, consistent with the results of O and Myers

(2020). This leads to beliefs that discount rate news are less important in driving valuations

in valuation ratios than cash flow news, i.e. Wµ < 0.5, which means that all of the three types

of investors would be placed on the two left panels in Figure 1.3. Among different investors,

CFOs’ estimates for discount rates importance is the least among the three, making them

the most prone to extrapolation.

Second, the three investor types have very different estimates on how cash flow news

impact future returns, especially about what news about expected cash flow growth means

for future returns (ρg,µ). Sell-side analysts, in particular, would revise down their return

expectations in light of positive news about cash flows (ρg,µ = −0.552 and ρd,µ = 0− 0.474)

while CFOs hold opposing beliefs (ρg,µ = 0.675, ρd,µ = 0.156). Pension funds’ views are in

between the two. The parameter estimates of ρv,µ are consistent with the correlations in

Table 1.2. Sell-side analysts return expectations are counter-cyclical (ρvµ > 0) while those

of CFO’s are pro-cyclical (ρvµ < 0); pension funds’ return expectations are little correlated

year from now?” Instead, data on pensions, sell-side analysts and CFO’s are all based on question of the
percent increase in prices of stocks.

25Notice that this parameter estimate is close to auto-correlation parameter estimates from a simple OLS
regression.

28



with dividend yields. Relating the finding to Figure 1.3: CFOs’ beliefs would place them

into the upper right corner in the top-left panel while sell-side analysts would be on the

lower-left grey area in the bottom-left panel.

In addition, the volatility parameters of the unexpected cash flow shocks, σd are large

and similar for different participants at around 2% per quarter. This is reasonable because

the main difference between the return series and the price dividend ratio series is due to

the unexpected cash flow shocks. As a result, investors should be able to almost identify the

value of the unexpected cash flow shock volatility from the two series.

Subjective Variance Decomposition of Returns and Dividend-Price Ratios

The estimates also shed light on investors’ beliefs about why returns and prices move,

which are of great interests for researchers. Therefore, I compute variance decomposition of

price-dividend ratios and returns and present the results for the three types of investors in

Table 1.5 and 1.6, respectively.

Table 1.5: Variance Decomposition for Dividend to Price Ratios

µt gt −2Cov(µt, gt) Var(dp)
Sell-side Analyst

Variance 0.37% 2.01% -0.34% 2.03%
Portion of Returns 18.21% 98.73% -16.93% 100.00%

Institutional
Variance 0.73% 3.15% -1.84% 2.03%

Portion of Returns 35.85% 154.80% -90.65% 100.00%

CFO
Variance 0.10% 2.69% -0.75% 2.03%

Portion of Returns 4.71% 132.23% -36.94% 100.00%
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Table 1.6: Variance Decomposition for Quarterly Unexpected Returns

εd εµ εg −2Cov(εµ, εg) −2Cov(εd, εµ) 2Cov(εd, εg) rt+1 − µt
Sell-side Analyst

Variance 0.04% 0.05% 0.36% 0.16% 0.05% 0.01% 0.60%
Portion of Returns 7.33% 9.00% 59.15% 26.03% 7.96% 1.82% 100.00%

Shiller Institutional
Variance 0.04% 0.06% 0.62% -0.13% 0.00% 0.05% 0.60%

Portion of Returns 6.58% 10.10% 102.62% -21.91% 0.17% 8.16% 100.00%

CFO
Variance 0.04% 0.01% 0.64% -0.12% -0.01% 0.05% 0.60%

Portion of Returns 6.60% 2.10% 106.30% -19.89% -1.26% 8.52% 100.00%

Consistent with the magnitude of Wµ, market participants believe variations in future

cash flows are the dominant force in driving returns and asset prices, instead of discount

rates, as shown in Table 1.5.26 This is mainly due to the higher persistence of the cash

flow expectation processes, as opposed to the volatility of the shocks, as evident by the fact

that shocks to cash flows take up a smaller portion of variance of returns (Table 1.6). I

show in Section A.10 that such decomposition is robust when using analysts’ own cash flow

expectations directly, instead of the implied cash flow expectation in the estimation.

In fact, as shown in Table 1.5, all of the market participants think that the level of

expected returns and cash flow expectations are positively correlated, i.e. people believe

a higher expected future fundamental growth is accompanied by higher expected return.

This positive correlation holds also for the short-term shocks to expectations, or Cov(εµ, εg),

with the exception of sell-side analysts, who believe that these two shocks are negatively

correlated at the quarterly frequency.
26In fact, this view is consistent with the argument put forward by Bordalo et al. (2020), which shows

that a lot of stock market puzzles are driven by biased expectations about market fundamentals.
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Which Predictors Are Important For Return Expectations?

I find that Shiller’s CAPE ratio seem to be the most influential predictors from the

perspective of investors, although investors interpret it differently.

Table 1.7: Correlations Between Innovations in Predictors and Different News

Investor Sell-Side Analyst Shiller Institutional CFO
Panel A: Correlation between Innovations in Predictors and Expected Returns
ρCAY,µ 0.395 0.018 -0.334

(0.132) (0.089) (0.112)
ρCAPE,µ -0.866 -0.076 0.614

(0.031) (0.109) (0.091)
ρEg ,µ -0.045 -0.055 0.114

(0.161) (0.082) (0.122)
Panel B: Correlation between Innovations in Predictors and Expected Cash Flow Growth
ρCAY,g -0.210 -0.257 -0.295

(0.147) (0.138) (0.148)
ρCAPE,g 0.834 0.820 0.900

(0.046) (0.048) (0.024)
ρEg ,g 0.445 0.296 0.299

(0.145) (0.142) (0.142)

Table 1.7 shows how different market participants interpret the signals from different

well-known predictors. Following the logic of the present value relation, investors could

interpret positive shock to price to fundamental ratios as a sign of either a higher future

expected cash flow or lower future returns or both.

Panel A shows the correlation between the shocks to different predictors and shocks to

expected returns. Shiller’s CAPE ratio is an important predictor considered by both sell-side

analysts and CFOs, albeit of different sign. Next, for sell-side analysts, the consumption-

wealth ratio or CAY, is a positive predictor for future returns, while for CFOs and consumers,

this measure is a negative predictor. Relatively speaking, Analyst’s earnings growth forecasts

are less important in forming return expectations.27

Panel B shows the correlation between shocks to different predictors and expected future

cash flows. Contrasting with results on expected returns, people seem to interpret predictors
27Notice that although the sign is negative, the correlation between earnings growth expectation shocks

and discount rate shocks are not significantly different from zero for sell-side analysts, which might seem to
contradict the result from the model estimation on ρg,µ. I discuss further this point further in Section A.10.
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similarly. In particular, higher CAPE ratio and lower CAY are interpreted as signs of higher

future cash flows while higher expected future earnings growth from analysts are signs of

higher future cash flow growth, as expected.

These results are a confirmation of the model assumption: that different people might

interpret the same predictor as being a different signal for future returns. Due to the parame-

ter identification problem, this persistent difference in attitude towards predictors ultimately

result in the differences in return expectations dynamics.

1.3.3 Discussions

Implications for Equilibrium Asset Pricing Theories

The empirical estimates of investors’ subjective beliefs provide new moments on investors’

beliefs to distinguish asset pricing models. Below, I discuss how these estimates are related

to asset pricing models.

First, all three types of investors believe expected future cash flow is more persistent

and the dominant force driving asset prices and returns. This evidence is at odds with

models where rational agents believe expected cash flows are i.i.d. (Campbell and Cochrane

(1999),Barberis et al. (2015a)).28 On the other hand, the results support models in which

agents believe there exists a persistent component in cash flow process. This includes the

long-run risk models (Bansal and Yaron (2004) and Pohl, Schmedders, and Wilms (2021))

and models featuring agents learning about fundamentals (Collin-Dufresne, Johannes, and

Lochstoer (2016) and Nagel and Xu (2019a)). Additionally, the variance decomposition

results reveal that the three types of investors all seem to over-estimate how much cash flow

variation contribute to the variation in asset prices when compared to objective measures

of return expectations, which show discount rate variation should contribute most to asset
28In Barberis et al. (2015a), the rational agents hold contrarian return expectations to accommodate the

extrapolative demand of irrational traders. In a way, the finding that expectations of sell-side analysts
are contrarian and counter-cyclical provides a micro foundation for who are the rational contrarian, who
understand cash flows are i.i.d..
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price variation.29

Second, different types of investors hold heterogeneous beliefs regarding how cash flow

news impacts future returns. This finding provides support for models featuring hetero-

geneous agents in a long-run risk environment (Pohl, Schmedders, and Wilms (2021)) or

parameter learning (Collin-Dufresne, Johannes, and Lochstoer (2017)). Of course, this re-

sults do not rule out the possibility that a subset of investors with a particular prior is driving

the asset prices, which would support models such as Adam, Marcet, and Beutel (2017) or

Nagel and Xu (2019a).

Why would different investors form different priors in the first place? Models featuring

parameter learning , such as Collin-Dufresne, Johannes, and Lochstoer (2017), emphasizes

the micro-founded channel of personal experiences. Differences in personal experiences could

lead to different risk appetite (Malmendier and Nagel (2011)) or different subjective beliefs

about future economic variables (Malmendier and Nagel (2016)). Based on the current

expectation formation framework, these two channels would lead to different return expec-

tations in terms of being more or less contrarian, for example. I test this hypothesis next,

taking advantage of the breadth of analyst expectation data.

What Drives Differences in Prior Beliefs? The Role of Personal Experience

Using surveys on individual analysts, I find that more experienced analysts tend to be

more contrarian. The results highlight individual experiences as one potential channel that

drives differences in analysts’ prior beliefs, and further supports models featuring parameter

learning.

I run the following regression

µai,f,t = αt + αf + bRf,t−6 + cXi,f,t + βRf,t−6 ∗Xi,f,t + εi,f,t (1.20)
29In Cochrane (2011a) and Koijen and Van Nieuwerburgh (2011), discount rate variations contribute to

more than 100% of dividend price ratio variation. See Table A.14b for a direction comparison in this sample
between subjective and objective variance decomposition.
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where µai,f,t is the analyst-level return expectations or their deviations from the consensus;

Rf,t−6 is the (one-month-lagged) past 6 month return of firm f ; αt and αf are time and firm

fixed effects; Xi,f,t are analyst individual-level variables such as personal experiences, at the

time the analyst is issuing the expected return for firm f .

The parameter estimates of interests is β, which measures how much more contrarian an

analyst is, when the analyst’s personal experience variables Xi,f,t increases by one unit. The

contrarian magnitude is measured in terms of deviation from consensus return expectation,

compared with other analysts issuing the return expectation for the same firm during the

same month.

When selecting personal experience variables, I consider the literature has documented

that people learn from personal experiences (Malmendier and Nagel (2011), Malmendier

and Nagel (2016)) and information rigidity or sticky expectation (Mankiw and Reis (2002),

Bouchaud et al. (2019)), I use the number of months an analyst experience recession, the

number of years of experience as an analyst as well as the number of stocks an analyst covers.

To that end, I construct a comprehensive analyst-level data set on return and earnings

expectations, which I document in more details in Appendix A.5.

Table 1.8 shows the estimates for Equation (1.20), in which the interacting variable with

past returns is number of years of experience an analyst has up to the time of issuance. 30

The left two columns consider the deviation from consensus as dependent variable while the

right two columns use expected returns. Within each group of the same dependent variables,

the right column regression excludes the recession months defined by NBER.

Across different specifications, the estimates on β are significantly negative. Since the

standard deviation of the analyst number of years variable is about 7 years, the β estimate

in Column (1) can be interpreted as an older analyst with 1 year of more experience in

the industry would be lower than the consensus by 7.2% compared to the young analyst
30In unreported tables, I also consider interacting with the number of firms covered as well as the number

of months in recession. These two variables do not show up statistically significant when interacting with
past returns.
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Table 1.8: Analyst No. of years in the industry and return expectations

Dependent variable:
Deviation From Consensus Expected Returns
(1) (2) (3) (4)

No Yrs Experience −0.042 −0.050 −0.009 −0.006
(0.053) (0.053) (0.053) (0.052)

No Firms Covered by Analyst 0.022∗∗ 0.022∗∗ 0.028∗∗∗ 0.029∗∗∗
(0.009) (0.009) (0.009) (0.009)

No Months Recession 0.026 0.029∗ 0.021 0.022
(0.017) (0.017) (0.017) (0.017)

Past 6m log.ret 0.132 0.469∗ −3.853∗∗∗ −3.321∗∗∗
(0.250) (0.256) (0.522) (0.524)

Past 6m log.ret x No Yrs Experience −0.072∗∗∗ −0.095∗∗∗ −0.135∗∗∗ −0.217∗∗∗
(0.022) (0.024) (0.036) (0.034)

Including Recession Months Yes No Yes No
Firm-Fixed Effects? No No Yes Yes
Month-Fixed Effects? Yes Yes Yes Yes
Observations 1,280,473 1,054,913 1,332,314 1,096,782
R2 0.024 0.017 0.353 0.392
Adjusted R2 0.024 0.017 0.348 0.387
Residual Std. Error 27.697 (df = 1280264) 24.545 (df = 1054743) 29.265 (df = 1323792) 25.821 (df = 1088634)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: “Deviation from Consensus” is the difference between the analyst’s own expected
return, subtracted the firm-level mean consensus expected return from the week before
the issuance of the analyst’s own expected returns. “no.yrs.experience” measures at
the time an analyst issues an expected return for stock f , the number of years since
he/she first issues an forecasts (EPS/Price Target)
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when issuing for the same firm during the same fiscal quarter, given the same level of past 6

months cumulative returns. These results are consistent with the hypothesis that analysts

learn from the markets and adapt their expectations over time.

1.4 Conclusion

Investors’ subjective return expectations play a central role in their decision process

and asset pricing. Recent evidence of extrapolative return expectations based on surveys

seems to paint some investors as irrational. The results presented in this paper show that

return expectations are not always extrapolative. Furthermore, through analyzing investors’

expectation formation process, I find that even if they form extrpolative return expectations,

their expectation formation process does not need to be irrational. The disagreement between

return expectations of Wall Street and Main Street mirror discussions held within academia:

the key parameters that lead to differences in return expectations are assumed to take on

different values in prominent maco-finance models.

The paper aims to advance our understanding towards subjective return expectations

on four fronts, all of which leave open more questions that worth investigation. First, the

contrarian and counter-cyclical return expectations of both sell-side and buy-side analysts

show that more work need to be done in collecting subjective return expectations. The

expectations of buy-side analysts I collect is only one of many funds. Dahlquist and Ibert

(2021) made progress on this front by collecting large set of return expectations from asset

management companies.

Second, the theoretical expectation formation framework developed here does not show

implications for equilibrium pricing. What would be the equilibrium asset pricing implica-

tions when agents are forming expectations based on the framework developed here, espe-

cially when taking seriously the parameter estimates shown in Section 1.3, is a natural next

question.

Third, the parameter estimates based on the framework suggest there is at least a subset
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of investors who underestimate how volatile and dynamic discount rate process is, when

compared to the objective variance decomposition results. Does that mean there is system-

atic misvaluation by investors in their investment process? As a start, Renxuan (2020a)

explores the idea that investors underestimate dynamics of discount rates and find that this

mispricing can explain many of asset pricing anomalies in the cross-section.

Fourth, the evidence of analysts’ personal experience driving differences in subjective

beliefs is consistent with the literature on expectation formation, and the framework pro-

posed here further shows they could be linked to either beliefs about future fundamental or

preferences. This calls for further studies based on micro-level evidence to understand the

distinction between and importance of these two channels.
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Chapter 2: Asset Prices When Investors Ignore Discount Rate

Dynamics

Many studies in the asset pricing literature document stock return predictability in the

cross section: several firm-level characteristics, such as profitability ratios, idiosyncratic re-

turn volatility, asset growth and cash flow duration, significantly predict future returns.

Trading strategies taking advantage of the predictability evidence result in higher returns

after adjusting for their market risk (alpha), a phenomenon known as cross-sectional anoma-

lies. These anomalies are not only at odds with leading theories such as the Capital Asset

Pricing Model (CAPM), but can also lead to significant inefficiencies in the real economy.1

Yet, despite years of effort, we are still in search of a unified explanation for why these

anomalies arise and persist.

Recent development in asset pricing calls for researchers to take data on subjective beliefs

seriously when interpreting asset prices.2 Such development helps to guide and discipline

the search for explanations but at the same time further raises the bar for newly proposed

ones: they should not only be able to explain empirical moments on prices or returns but

also data on investors’ subjective beliefs.3

This paper proposes and tests a hypothesis about how investors’ form subjective return

expectation. The key assumption of the hypothesis is that some investors falsely ignore the

dynamics of discount rates when forming their return expectations. I term the hypothesis
1The point about the real economy was discussed extensively in Binsbergen and Opp (2019).
2See the recent review article of Brunnermeier et al. (2021) for a summary.
3Most of the actions along this line of inquiry has been on aggregate asset prices, instead of the cross-

section. Partial list of models that proposes new belief formation process that deviating from rational
expectation assumption to understand aggregate asset prices: Hirshleifer, Li, and Yu (2015), Barberis et
al. (2015b), Adam, Marcet, and Beutel (2017), and Bordalo, Gennaioli, and Shleifer (2018) and Collin-
Dufresne, Johannes, and Lochstoer (2016) Nagel and Xu (2019b). For the cross-section, existing study
include Bouchaud et al. (2019) and Bordalo et al. (2019), which focus on subjective earnings expectations
and explain the anomalies on profitability and analysts’ long-term growth forecasts, respectively.
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the “Constant Discount Rate” (CDR) hypothesis.

In sum, I find that a). data on analysts’ return expectations and firm fundamentals

are consistent with the prediction of the CDR hypothesis; b). a tradable factor constructed

based on the hypothesis can explain the CAPM alphas of 12 leading cross-sectional anomalies.

Thus, the CDR hypothesis can serve as a unifying explanation for cross-sectional anomalies

that is also consistent with data on investors’ subjective beliefs.

Evidence of how investors actually form return expectations in practice lends support to

the CDR hypothesis. As an example, bond yields, which are a common proxy for expected

returns, are solved using bond prices based on the constant discount rate assumption. Fur-

thermore, when estimating the Implied Cost of Capital (ICC) of stocks, which are often

used as a proxy for expected returns in practice and in academic literature (Pástor, Sinha,

and Swaminathan (2008) and Gebhardt, Lee, and Swaminathan (2001)), investors apply the

same heuristic and assume constant discount rates.4 Renxuan (2020b) estimates subjective

decomposition of returns and asset prices based on surveys of investor return expectations

and finds sell-side analysts, CFOs and pension funds all underestimate the dynamics of

discount rates in driving asset prices. These results make the CDR hypothesis seem more

plausible.

At a deeper level, the CDR hypothesis is motivated by a large literature on heuristic,

which refers to the mental processes of people looking for solutions that are practical or sat-

isfactory, rather than optimal, when facing complex problems. The literature starts from the

seminal work of Simon (1956) and suggests that people may trade off accuracy for efficiency

and simplicity.5 Naturally, one would expect investors to use heuristics when making invest-

ment decisions. After all, financial markets are extremely complex and dynamic, and not
4Damodaran (2012), Koller, Goedhart, Wessels, et al. (2010) are textbooks on stock valuation. Most of

the treatment of the Discounted Cash Flow Models assume constant discount rates.
5See Gigerenzer and Gaissmaier (2011) for a review on the literature. Notice that such a “accuracy-effort

trade-off” heuristic in psychology literature is distinct from the “representativeness” and “conservatism”
heuristics proposed Tversky and Kahneman (1974), which can generate over- and under- reaction in financial
markets, respectively (Barberis, Shleifer, and Vishny (1998)). Yet, despite its prominence in psychology
literature, the finance literature has largely ignored its application in financial markets, compared to how
the work of Tversky and Kahneman (1974) has been applied.
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all investors have the time or ability to solve complicated mathematical problems. Indeed,

ignoring the dynamics of discount rates greatly simplifies investors’ valuation process.6 How-

ever, applying such a heuristic also biases investors’ return expectations because discount

rates do vary over time (Cochrane (2011b)). The results found in the paper support the

view that cross-sectional asset pricing anomalies are simply a result of approximation errors

from investors’ heuristic decision-making process, a form of bounded rationality.

How exactly the CDR assumption leads to cross-sectional asset pricing anomalies is not

obvious, so I start by developing a framework to formalize the hypothesis and understand how

the CDR assumption could lead to biases in expectation and mispricing. Intuitively, investors

with the CDR assumption overestimate the impact of cash flow news has on stock prices,

because they fail to understand a dynamic discount rate will offset part of the impact cash

flow news has on stock prices.7 As a realistic scenario, when Tesla, Inc (TSLA) announces

that it is to develop a new battery business, it opens up a new revenue stream which might

lead to higher cash flow growth in the future. As a result, TSLA’s stock price should go up

because of the positive cash flow news. However, with the new battery business, TSLA’s

balance sheet also becomes riskier and the market requires a higher premium to hold it, which

lowers the stock price. On the other hand, investors with the CDR belief will interpret the

lowered stock price as cheap, or high expected return, because they fail to take into account

the interaction between dynamic discount rates and cash flows.

The CDR assumption leads to biases of different degrees across stocks because the biases

are incurred at each payout period and stocks are long-term assets with different payout

horizons. As a result, two firm-level fundamental characteristics, namely expected cash flow

growth and volatility, which proxy for stocks’ cash flow duration or convexity, respectively,

would drive cross-sectional differences in return expectation biases. Furthermore, any firm

characteristics that forecast firm future cash flow growth and/or volatility would forecast
6See Ang and Liu (2004) for a more comprehensive valuation model, which takes into account the time-

variation of discount rates. As they show, allowing time-variation in discount rate leads to much more
complicated valuation formula.

7Empirically, these two shocks are positively correlated on the stock level.
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return expectation biases of investors with CDR beliefs.

In the presence of investors who hold CDR beliefs (the CDR investors), equilibrium as-

set prices could exhibit cross-sectional anomalies. Intuitively, investors holding CDR beliefs

incur return expectation biases, which leads them to buy too much/little of certain stocks,

causing over/under valuation compared to the CAPM benchmark. Since the most overval-

ued stocks (high cash flow growth and uncertainty) also exhibit high-degree of comovement

in their asset payoffs (Ball, Sadka, and Sadka (2009), Herskovic et al. (2016)), rational arbi-

trageurs who are averse to taking systematic risk do not trade aggresively against the CDR

investors.8 As a result, mispricing persists in equilibrium.9

Subsequently, I test the implications of the CDR hypothesis using data on investors’

subjective beliefs, firm fundamentals and asset prices and find supporting evidence. First,

CDR investors’ return expectation biases should be higher for stocks with higher expected

cash flow growth and cash flow volatility. Using sell-side analysts return expectations, I find

that analysts’ long-term growth expectations and idiosyncratic volatility, which proxy for

stocks’ expected cash flow growth and cash flow volatility, respectively, strongly positively

predict future analysts’ return forecast errors. Furthermore, these two characteristics alone

explain 34% of cross-sectional variations of average log forecast errors among all stocks. In

addition, the biases in analysts return forecasts are mostly positive, consistent with the CDR

hypothesis.

Second, a measure of mispricing on the firm-level based on the hypothesis strongly pre-

dicts future stock returns. Roughly speaking, the measure is the difference between the

CDR implied expected return subtracted by a version of expected return implied by the

conditional CAPM. For the former, I chose the ICC model developed by Pástor, Sinha, and
8This potentially could be due to their high exposure to aggregate discount rate shocks: stocks with

higher cash flow duration are more exposed to aggregate discount rate shocks. More detailed discussion on
this channel can be found in Santos and Veronesi (2010) and Lettau and Wachter (2007a).

9The mechanism is similar to the one disussed in Kozak, Nagel, and Santosh (2018), except here the cash
flow growth and uncertainty are the key factors that drive the co-movement in asset fundamentals, while in
their setting the characteristics are not explicitly specified.
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Swaminathan (2008) (henceforth PSS) as a measure.10 For the latter, I use a measure of

dynamic beta times a constant.11 Consistent with the CDR hypothesis, the measure nega-

tively predicts future stock returns and the economic magnitude of the predictability is large:

the stocks with the highest overvaluation significantly underperforms those with the least

overvaluation even within the S&P 500 universe (FF-5 alpha of 6% with a t-stat of 3.53)

and the underperformance persists after 5 years.

Third, a tradable factor mimicking portfolio based on the CDR hypothesis explains the

CAPM-alphas of 12 prominent cross-sectional anomalies (9 out of 11 in Stambaugh and Yuan

(2017)). The set of anomalies include the most robust persistent ones found in the literature,

such as investment, profitability, beta, idiosyncratic volatility and cash flow duration. These

characteristics all forecast future expected cash flow growth and/or idiosyncratic volatility

with the signs consistent with the CDR hypothesis.

After the literature review, the rest of the paper is organized as follows. First, I develop a

theoretical framework to formalize the CDR hypothesis and to guide empirical analysis in 2.1.

This section provides an expression for return expectation bias under CDR (Section 2.1.3)

and stocks’ average CAPM-alpha (Section 2.1.4). Next, I empirically test the hypothesis

in Section 2.2. This section starts with implications on subjective beliefs (Section 2.2.1),

followed by implications on asset prices (2.2.2). I conclude in Section 2.3.

Related Literature

This paper contributes to literature that aims to explain asset pricing anomalies by

relaxing the rational expectation assumptions of agents. This literature typically uses non

Bayesian expectations grounded in psychology to explain the behavioral biases of irrational
10The main reason for using this model instead of other ICC models is that PSS is more applied in the

finance literature, see for example, Chen, Da, and Zhao (2013). I do examine other models in the Appendix,
which includes the model of Gebhardt, Lee, and Swaminathan (2001) and find similar results for the main
tests.

11The beta is pre-estimated CAPM betas of Welch (2019). The constant is the average market return
subtracted by an adjustment due to market-level bias caused by the CDR assumption. The resulting measure
of mispricing uses analysts earnings forecasts, stock prices, payout ratios.
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market participants. For example, investors overreact or underreact to news, which can

lead to return reversal and momentum (Daniel, Hirshleifer, and Subrahmanyam (1998),

Barberis, Shleifer, and Vishny (1998), Hong and Stein (1999)). Furthermore, Bordalo et al.

(2019) and Bouchaud et al. (2019) propose “diagnostic expectation” and “sticky expectation”

dynamics, respectively, and they use them to explain the abnormal returns of analysts’

long-term-growth-estimates-sorted portfolios and profitability-sorted portfolios, respectively.

Most recently, Barberis, Jin, and Wang (2020) try to use prospect theory to explain cross

section anomalies. The current paper contributes to the literature by proposing a new type

of investor belief that deviate from rational expectation, namely the CDR heuristic. Such a

belief has never been studied in the literature. Furthermore, I show the CDR heuristic can

be a ubiquitous channel through which many anomalies can occur.

This paper also contributes to the literature that tries to understand how investors

form their subjective return expectations. One strand of the literature studies investor sur-

veys, such as Greenwood and Shleifer (2014), Adam, Marcet, and Beutel (2017) and Adam,

Matveev, and Nagel (2021b). The key findings are that investors’ subjective return expec-

tations deviate from the rational expectations typically assumed in workhorse asset pricing

models. As an example, the results in Greenwood and Shleifer (2014) show that return

expectations from CFOs and retail investors are strongly pro-cyclical, a result which is the

opposite of the counter-cyclical “risk premium” in models such as Campbell and Cochrane

(1995). The other strand of the literature uses fund flows to infer the asset pricing models

investors use, for example, Berk and Van Binsbergen (2016) and Barber, Huang, and Odean

(2016), although Jegadeesh and Mangipudi (2020) disputes the validity of their results. This

paper contributes to the literature by using asset pricing moments to infer what kind of

expected return models investors could use. The empirical results in the current paper sup-

port the hypothesis that the expected return models investors use fail to take into account

the dynamic nature of future returns and therefore restrict the set of potential candidate

(subjective) return expectation models.
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Finally, the paper also contributes to the recent literature that aims to explain a wide

set of anomalies using a small number of factors. Recent examples include Fama and French

(2016), Hou, Xue, and Zhang (2015), Stambaugh and Yuan (2017), Daniel, Hirshleifer, and

Sun (2019). The current paper contributes to the literature by showing that investors’

constant discount rate assumption can be an important force in driving many asset pricing

anomalies, both theoretically and empirically. Instead of extracting a small number of factors

from a larger set of anomalies, as in Fama and French (2016) and Stambaugh and Yuan

(2017), this paper starts from a single expectation dynamic and constructs the factor using

expectations data.

2.1 The Constant Discount Rate (CDR) Hypothesis

In this section, I develop the CDR hypothesis and derive its implications for subjective

beliefs and asset prices to guide the empirical analysis. I start with a stylized example to

provide intuition on how the CDR assumption can lead to biases in return expectations. I

then extend the simple example into a more realistic setting and derive an analytical expres-

sion of the biases, which is a function of firms’ fundamental characteristics. Subsequently, I

show how biases in return expectations can lead to mispricing in equilibrium and derive an

expression of a stock’s CAPM-alpha, which is a function of the expectation bias.

2.1.1 The CDR Investors’ Investment Process

An investor who holds the CDR beliefs (the CDR investor) forms her expectations as

follows. First, she looks at a stock’s multiple, such as price-dividend or price-earnings ratio.

Additionally, she also projects the firm’s fundamentals, including expected future cash flows

as well as the uncertainty of the cash flows. Finally, she forms her return expectations

by combining the two pieces of information she gathered: she evaluates what the current

expected return is given the multiple and projected cash flows based on a present value

model. Crucially, the model she uses does not assume discount rate would vary over time,
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which ultimately leads to return expectation biases.

The setting is supported by how investors form return expectations in practice. As shown

in Mukhlynina and Nyborg (2016), practitioners mostly use price multiples and projected

future cash flows to infer future returns of stocks. The logic is that given a projected future

cash flow growth, one stock should have a higher expected returns if its prices are low. The

process can be justified by the famous Campbell-Shiller decomposition, which states that

the (log) price dividend ratios of different stocks differ because of either different expected

future cash flow growth, expected future returns or both. 12

2.1.2 A Stylized Example: the Three-period Case

A stock is expected to pay risky dividends for two periods after paying $1 at period 0.

The (log) dividend is expected to grow at a stochastic rate of gt, t = 1, 2. and the discount

rate used to price the stock for the two cash flows are µ0 and µ1, respectively. Figure 2.1

illustrates this example. While time 0 discount rate is known to investors, the discount rate

at time 1, µ1, is stochastic. This is because the risk of the stock and the market may change

in period 1, and the discount rate should reflect the uncertainty. More importantly, discount

rate shocks are correlated with cash flow shocks and follow a bi-variate normal distribution

in this example. The fair price of the stock at time 0, after the dividend payout, should be

P0 = P
(1)
0

[
1 + E0(C1)exp

(
−E(µ) + 1

2σ
2
µ − ρσµσg

)]
, where P (1)

0 is the present value of the

period 1 cash flow.13 On the other hand, the CDR Investors, who ignore the discount rate

volatility, would interpret the price through P0 = P
(1)
0 [1 + E0(C1)exp (−µ̃1)], where µ̃1 is

12Although this decomposition provides an intuitive framework to understand asset prices, it is a heuristic
based on a first-order Taylor approximation that ignores the discount rate volatility. In fact, the discount
rate volatility does not impact prices in this framework.

13More specifically,

P0 = e−µ0E0(eg1) + E0(e−µ0−µ1C2)

= e−µ0eE(g)+ 1
2σ

2
g + e−µ0+2E(g)+σ2

ge−E(µ)+ 1
2σ

2
µ−ρσµσg

=: P (1)
0

[
1 + E0(C1)exp

(
−E(µ) + 1

2σ
2
µ − ρσµσg

)]
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Figure 2.1: A two-period example

their subjective belief on how the market is discounting the stock.14 Consequently, the CDR

heuristic leads to a bias of b = σµ(−1
2σµ + ρσg).15

Empirically, the biases in return expectations b are positive on average. According to

Vuolteenaho (2002), discount rate shocks are positively correlated with cash flow shocks at

the firm level, and the magnitude of cash flow shocks are much larger than discount rate

shocks. In particular, based on his estimates,16 the CDR investors should have a bias (per

year) of b = 0.14× (−1
2 × 0.14 + 0.47× 0.29) = 0.0092 for a typical stock, which means that

the CDR investors would on average consider the prices as too cheap and consequently buy

more of the stock, creating overpricing.

2.1.3 Biases in the Infinite-period Case

A more realistic setting is to consider stocks paying out in infinite periods. In this

case, firm-specific fundamental characteristics, namely cash flow growth and uncertainty,
14More specifically,

P0 = e−µ0E0(C1) + e−µ0−µ̃1E0(C2)

= e−µ0E0(C1) + e−µ0+2E(g)+σ2
ge−µ̃1

=: P (1)
0 [1 + E0(C1)exp (−µ̃1)]

15In the infinite-period, dynamic case, the unconditional bias becomes bi ={
1− exp

[
σiµ(σiµ − ρiσic)

]}
exp(gi + 1

2 (σic)2) for stock i. I discuss this more in detail in 2.1.4.
16More specifically, see Table III and Panel B of Vuolteenaho (2002).

46



drive biases in return expectations in the cross section. Appendix B.1 derive the analytical

expressions for the biases in this general setting.

Intuitively, this is because investors incur these biases each period as in the three-period

case, and stocks differ in the timing (duration) and uncertainty (convexity) of their future

cash flows, which means the single period biases are compounded to a different degree across

stocks. Stocks with higher cash flow growth have higher cash flow duration, because most of

their cash flows are further into the future and therefore have longer payout horizon. As for

convexity, higher cash flow volatility means a stock’s price will be a more convex function

of the discount rate.17 In the bond valuation context, the same level of bias in the discount

rate will translate into a larger misvaluation for bonds with higher duration and/or higher

convexity. Since stocks’ cash flow growth and uncertainty exhibit large heterogeneity in the

cross-section, the cross-sectional differences in misvaluations due to the CDR assumption

are likely large.1819

I confirm the intuition by considering a more general framework in Appendix B.1. The

analysis shows that the biases in return expressions can be analytically linked to firm-level

fundamental characteristics including expected cash flow growth and cash flow (idiosyncratic)

volatility. More specifically, the unconditional bias bi, where i denote the stock, is given by

bi = δiexp(gi + 1
2(σic)2) (2.1)

and gi and σic are expected growth and volatility of the cash flow growth, respectively. δi is
17See Dechow, Sloan, and Soliman (2004a), Weber (2018) and Gormsen and Lazarus (2019) for related

discussions about the duration channel. Notice here the convexity goes to the other direction compared to
the conventional bond convexity because here the convexity is measuring stock price’s relationship with its
cash flows volatility. See Pástor and Veronesi (2006) for a discussion on how cash flow uncertainty impacts
stock valuations.

18For example, TSLA’s long-term cash flows are a magnitude faster and more uncertain than those of
Coca-Cola: Sell-side analysts’ long-term growth expectation for TSLA is at 74% as of May 2020, compared
to 2.93% for Coca-Cola. Furthermore, it is reasonble to think that the cash flows of TSLA is much more
uncertain than Coca-Cola.

19In this example, the shocks are i.i.d. over time. In a more realistic case when discount rate shocks
are persistent, the biases are likely to be larger. Intuitively, when CDR investors ignore the discount rate
dynamics, they are also ignoring the long and persistent effects that the volatility may imply.
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defined as

δi = 1− exp
[
σiµ(σiµ − ρiσic)

]
(2.2)

which also depends on volatility of stock’s discount rates (σiµ) and correlations between the

discount rate and cash flows (ρi).

Based on previous estimates in the literature, including those of Vuolteenaho (2002), δi

should be positive, which means CDR investors’ return expectation biases are on average

positive and should increase with both expected cash flow growth and cash flow volatility. I

provide more discussions about the signs and the magnitude of the biases in Appendix 2.2.1.

Moreover, I verify empirically the signs and magnitude of biases based on both analysts’

return expectations and price implied measures of constant discount rate and confirm they

are positive in Section 2.2.1 and 2.2.2, respectively.

2.1.4 Biased Return Expectations and Equilibrium Asset Prices

When some investors hold CDR beliefs and make their investment decisions based on

their own return expectations, a stock’s CAPM-alpha should depend on the bias in CDR

investors’ return expectation as well as the share of the CDR investor in the economy.

Intuitively, a positive bias in return expectations should lead an investor to buy more of a

stock, causing over-valuation and low CAPM-alpha. More CDR investors would exacerbate

the misvaluation in equilibrium.

More formal analysis in Appendix B.2 confirms this intuition. There, I study a multi-

asset economy in which some investors with biased return expectations (CDR investors) trade

with risk-averse rational investors (arbitrageurs). The setting is similar to the one studied

in Kozak, Nagel, and Santosh (2018).20 More specifically, the unconditional CAPM-alpha of

stock i in the model is given by
20In Kozak, Nagel, and Santosh (2018), they study a model where the covariance matrix of the payoffs

of assets are driven by several principle components. In my model, these biases are linked to firm-level
fundamental characteristics, which are the driving force behind comovement in fundamental payoffs.
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αi = θ(−bi + βibM) (2.3)

where θ is the share of CDR investors and bi is the return expectation bias that potentially

equal to the one defined in (2.1).21 The βi are commonly defined CAPM beta and bM is the

aggregate bias CDR investors hold on the market level. So the expected return on the stock

i is

E(Ri
t+1)−Rf = αi + βi

[
E(RM

t+1)−Rf

]
(2.4)

2.1.5 Testable Implications

The theoretical analysis yields two sets of testable implications under the CDR hypothesis

for investors’ subjective beliefs and asset prices.

The expression in Equation (2.1) and (2.2) leads to testable implications on investor

beliefs. First, if the CDR is true, CDR investors’ unconditional return expectation biases

across different firms should be largely explained by proxies of stocks’ expected cash flow

growth and cash flow volatility. Second, if the term δi is positive, which is also empirically

testable, the biases should increase with expected cash flow growth and volatility.

Equation (2.3) and (2.4) suggest that if one can measure the bias bi on the stock level

based on CDR, she can test the CDR based directly using asset prices and returns. First,

the measure of CDR-induced bias should also be positive and related to expected cash flow

growth and cash flow volatility. Second, the measure for the bias or an ex-ante measure of

CAPM-alpha according to (2.3) should predict stocks’ realized CAPM-alpha. Finally, if the

CDR is true, CAPM-alphas of all assets should be explained by a factor mimicking portfolio

that is based on the ex-ante measure of CAPM-alpha. In fact, the loading on the portfolio

should equal to 1.

I examine the extent to which these implications are true in Section 2.2.
21The model developed in Appendix B.2 is a general one, which could be due to any form of return

expectation bias. When the bias is measured empirically based on the logic of the CDR, the asset pricing
test will be a test of the CDR hypothesis, which is what I do in the next sections.
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2.2 Evaluating The Constant Discount Rate Hypothesis

In this section, I test the CDR hypothesis empirically, guided by the theoretical framework

developed in the previous section. I start by testing the implications on investors’ subjective

beliefs based on sell-side anaylsts’ return expectation data. Next, I develop a measure of

mispricing due to the CDR assumption and use it to test implications for asset pricing.

2.2.1 Testing Implications on Subjective Beliefs

Measuring Subjective Return Expectation Biases Using Sell-Side Analysts’ Price

Targets

The CDR hypothesis does not make prediction about who are the CDR investors. I

test the implications of CDR hypothesis using sell-side analysts’ return expectations data.

Renxuan (2020b) find that sell-side analysts do underestimate the volatility of discount

rates on the aggregate. Furthermore, survey evidence from Mukhlynina and Nyborg (2016)

shows that sell-side analysts do consider the commonly used Discounted Dividend Model

(DDM) as the main approach they use for valuation. Additionally, sell-side analysts’ return

expectations have comprehensive coverage on the firm-level, which is unique when compared

to surveys on CFOs or households, for example.

The firm-level return expectation biases are defined as 12-month realized price returns

on a particular stock, minus the sell-side analysts’ ex-ante firm-level consensus return ex-

pectations at the end of each calendar quarter. The sell-side analysts’ return expectations

are defined as price targets divided by current prices subtracted by 1. Details about the

data set as well as the construction are documented in Appendix B.5. Firm-level average

return expectation biases are computed as the time-series average over the entire history of

firm-level biases.
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Figure 2.2: Distribution of average firm-level analyst forecast errors of 12-month ahead
returns
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Notes: The top and bottom panel plot the empirical probability distribution function
(P.D.F.) and cumulative distribution function (C.D.F.) of average sell-side analysts’ return
forecast errors, respectively. Dark bar in the middle represents the median while the gray
bar with cross represents the mean. x-axis is the value of the average biases while y-axis
denotes probability in percentage point. The forecast errors are constructed based on sell-
side analysts’ 12 month price targets subtracted by realized average returns. More details
about how the return expectations are computed are documented in Appendix B.5. Firm
level forecast errors are averaged over time to arrive at average forecast error per firm. The
sample period is from 1999-Q2 to 2018-Q4.
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The Sign and Magnitude of Subjective Return Expectation Biases Analysis in

the simple example of Section 2.1.2 makes clear that the sign and magnitude of the return

expectation biases are crucial for the predictions of the CDR hypothesis. Therefore I verify

the sign before proceeding to test other implications.

Figure 2.2 plots the empirical distribution of the average firm-level return expectation

bias of sell-side analysts, together with the mean and median (bars in the middle). Subjective

return expectations of sell-side analysts are on average positive at firm level and right skewed.

The empirical results are consistent with the findings in the literature, which have pre-

viously documented the positive biases of sell-side analysts.22 The literature has mostly

attributed the positive bias to analysts’ own incentive, such as their own career concerns

(Hong and Kubik (2003)). The CDR hypothesis provides an alternative interpretation to

such a positive bias: analysts have a higher return forecasts because they ignore discount

rate dynamics, which might be a honest mistake.

The Cross-Sectional Variation in Return Expectation Biases and Firm Charac-

teristics

The CDR hypothesis predicts that the CDR investors’ cross-sectional variations of un-

conditional return expectation biases should be driven by expected cash flow growth and

volatility. Furthermore, given the positive signs of the return expectation biases, the biases

should increase with these measures of these two characteristics.

I test the hypothesis by regressing average firm-level sell-side analysts’ return forecast

errors on analysts’ long-term growth estimates and idiosyncratic volatility, which are proxies

for the expected cash flow growth and volatility, respectively. Table 2.1 presents the regres-

sion results for both the entire stock universe with analyst return expectation coverage and

the S&P 500 universe. I also contrast the results with regressions using four other firm-level

characteristics know to be related to stock average returns and volatility.
22Papers which document large positive bias of analyst price targets include Brav and Lehavy (2003b) and

Engelberg, McLean, and Pontiff (2019a).
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The results support the CDR hypothesis. First, as Column (1) shows, both expected cash

flow growth and volatility are strongly positively correlated with average return expectation

errors. Analysts’ biases are more positive if a stock has higher long-term growth expectation

and/or higher idiosyncratic volatility. Furthermore, the two characteristics alone explain 34%

of the cross-sectional variation, as indicated by the R2 of the regression. As a benchmark,

when using four other characteristics to explain average return forecast errors (Column (2)),

the R2s are much lower. The results are robust across different universes (Column (3)

and (4)) and also hold for panel predictive regressions using quarterly data (see Internet

Appendix).

2.2.2 Testing Implications on Asset Prices and Returns

Measuring CDR-induced Misvaluation

I propose an intuitive measure for the bias b̂it that an CDR investor would incur. The mea-

sure is the difference between the Implied-Cost-Capital developed (ICC) by Pástor, Sinha,

and Swaminathan (2008) Π̂i
t, and the product of dynamic beta β̂it developed by Welch (2019)

and a constant that equal to average market excess return (Ê(Rm
t )), or

b̂it = Π̂i
t − β̂itÊ(Rm

t ) (2.5)

The ICC captures the essence of the return expectation of a CDR investor: it is computed

using price and projected cash flows based on a present value formula that ignores the

volatility of the discount rate. The second term in Equation (2.5) is a proxy for the “true”

dynamic expected return. What a true expected return is has still been hotly debated in

the literature. Here I take a stand similar to that of Binsbergen and Opp (2019).23

Equipped with a measure of bias, I follow Equation (2.3) to construct a measure of

misvaluation for individual stocks, α̂it. The misvaluation measure takes the following form:
23I also test the hypothesis using other proxies of true expected returns, but the results do not vary

qualitatively.
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Table 2.1: The cross-sectional determinants of average firm-level forecast errors of sell-side
analysts

Dependent variable:
average log forecast errors

(1) (2) (3) (4)
CF growth 0.285∗∗∗ 0.347∗∗∗

(0.010) (0.031)

I-Vol 0.520∗∗∗ 0.510∗∗∗
(0.019) (0.040)

Investment 0.038∗∗∗ 0.139∗∗∗
(0.005) (0.031)

Proftability −0.002∗∗ −0.001
(0.001) (0.001)

Beta 0.125∗∗∗ 0.284∗∗∗
(0.017) (0.026)

B/M −0.057∗∗∗ 0.027
(0.013) (0.024)

universe all all SP500 SP500
Observations 4,691 3,945 814 1,005
R2 0.336 0.045 0.323 0.152
Adjusted R2 0.336 0.044 0.321 0.149
Residual Std. Error 0.291 (df = 4688) 0.347 (df = 3940) 0.217 (df = 811) 0.247 (df = 1000)
F Statistic 1,186.115∗∗∗ (df = 2; 4688) 46.029∗∗∗ (df = 4; 3940) 193.568∗∗∗ (df = 2; 811) 44.940∗∗∗ (df = 4; 1000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes: “Average log forecast errors” are the log of sell-side analysts’ 12-month return forecast
errors defined in Section 2.2.1. Independent variables are time-series average at the firm level
based on quarerly data. “CF growth” is the average analyst long-term growth estimates;
“I-Vol” are idiosyncratic return volatility measured using 60 days of daily returns and Fama-
French 3 factor model; “Inestment” are change in total assets from the fiscal year ending in
year t-2 to the fiscal year ending in t-1, divided by t-2 total assets at the end of each June
using NYSE breakpoints; ““beta” are measured using the last 5 years of monthly returns;
“B/M” are book-to-market ratio defined as in Fama and French (2015). The sample period
is from 1999-Q2 to 2018-Q4.
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α̂it = −b̂it + β̂it b̂
M
t (2.6)

= −
[
Π̂i
t − β̂itÊ(Rm

t )
]

+ β̂it

[
Π̂m
t − Ê(Rm

t )
]

(2.7)

= −Π̂i
t + β̂it

[
Ê(Rm

t )− b̂Mt
]

(2.8)

Equation (2.8) can be estimated empirically. I follow closely the procedure developed

by Pástor, Sinha, and Swaminathan (2008) to estimate Πi
t.24 Appendix B.6 details the

procedure I use to estimate the ICC.25I estimate the dynamic βit using the methodology

proposed by Welch (2019).26I fix Ê(Rm
t ) = 0.064, which is the average of market returns in

the post-war sample and b̂Mt =-2.3%, which is the calibration provided by Hughes, Liu, and

Liu (2009).27

Summary Statistics of the Misvaluation Measure I use I/B/E/S summary file for

analyst earnings and price targets forecasts, COMPUSTAT annual for balance sheet variables

and CRSP for shares outstanding, share adjustment as well as price and return related

variables. More detailed descriptions of the data sources are in B.4.

Compared to the mostly commonly used CRSP-COMPUSTAT universe, the universe

used here cover only about 40% of the number of firms and has larger firms. This is be-

cause analysts typically only cover larger firms and the results presented are not concerning

microcaps.

Estimating firm-level misvaluation requires 6 firm-level variables, 1 industry-level variable
24To examine that the results are robust, I consider alternative models developed in the literature, such

as Gebhardt, Lee, and Swaminathan (2001) and find similar results.
25One concern with using these models are that the analyst estimates are not unbiased. However, as shown

in Hou, Dijk, and Zhang (2012) and Wang (2015), compared to statistical models proposed in Hou, Dijk,
and Zhang (2012), the analysts are not worse than statistical modes when predicting future cash flows in
the same universe that have analyst coverage, especially for large cap stocks, where analysts are better in
accuracy.

26Welch (2019) shows that empirically, his measure is superior than other estimates in some dimensions,
including better performance in capturing the future realized beta.

27See Appendix B.1.3 for more detailed discussion on the sign and magnitude of market-level bias.

55



and 1 aggregate variable. The firm-level variables are: 3 analyst’s consensus forecasts for a

firm’s earnings of current fiscal year (FY1), the next fiscal year (FY2) and the fiscal year

thereafter (FY3); 1 analyst’s consensus long-term forecast (LTG); 1 payout ratio, which is

based on the firm’s previous year total dividend to firm’s net income and market β. The

industry-level variable is the average LTG based on 48 Fama-French industry classification.

The aggregate variable is the long-term average of gdp growth, which ranges from 7% to

6% over the 35 years in the sample. Based on these 5 inputs, I compute the implied cost of

capital Πi,t and the entire term structure of a firm’s payout ratio PBi,t+s. More details on

the estimation procedure is documented in Appendix (B.6).

One important point to note is that the estimation of firm-level misvaluation αi does

not include any anomaly variables that I will try to explain, except for βi. However, βi is

mechanically positively related to αi (since
[
Ê(Rm

t )− (−b̂m)
]
>0 in my estimation), while

the misvaluation factor, is able to explain the “low-beta” anomaly. Therefore, the result

that misvaluation factor being able to explain the anomaly returns of characteristics sorted

portfolios can not be attributed to mechanically using these underlying characteristics when

constructing the misvaluation measure.

Implied cost of capital Πi are highly persistent, with an AR(1) coefficient of 0.92 based

on quarterly data. I study the persistence of misvaluation αit in more detail in Section 2.2.2.

Table B.2 presents the summary statistics for firm-level quarterly estimates of Πi
t, together

with variables that are used to construct it. The statistics are inline with those presented

in Chen, Da, and Zhao (2013), which also estimates the ICC based on Pástor, Sinha, and

Swaminathan (2008).

Magnitude of Misvaluation Table 2.2a shows the empirical distribution of the 7246

average firm-level misvaluations, or ∑T
t+1 α̂

i
t/T , which are the empirical estimate for E(α̂it).

First, all the misvaluation has a negative sign. This is reasonable because when ignoring

the volatility of the discount rates, investors actually underestimates on average the discount
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rate and therefore over price stocks. In fact, this results are consistent with the calibration

results from Ang and Liu (2004), in which they find the average misvaluation among value-

growth portfolios to be about -15%.

The CDR implied misvaluation has a cross-sectional standard deviation of more than 7%

per year. Notice that the statistics presented in Table (2.2) potentially underestimate the

magnitude of the cross-sectional dispersion of misvaluation of dynamically sorted portfolios.

As shown in the second row of Table 2.2a, the average time-series quarterly variation on

the firm-level misvaluation is 2.3%, which translates to 4.6% per year. When constructing

dynamically rebalanced portfolio annually, one would expect the spreads in ex-ante misval-

uation spreads to go up substantively 28.

To provide an intuition for the time series as well as cross-sectional variations of misvalu-

ations, Figure 2.3 plots the time series variation of α̂it for three firms. Besides the variations,

the figure also shows the persistent nature of misvaluation.

Misvaluation and Firm Characteristics Under CDR, misvaluation αi equals to the

average CAPM-alpha of the stock. The CDR thus links a firm’s CAPM-alpha directly to its

characteristics through the relationship between misvaluation and characteristics.

To understand what drives the variation in misvaluation, note a stock’s misvaluation or

αi , under CDR, can be decomposed as follows:

αi = βibm − bi

Table 2.2b shows that the cross-sectional variation in misvaluation is mainly driven the

variation in biases bi due to CDR. The standard errors of the bias is more than three times

that of the expected return based on conditional CAPM.

The biases can be further decomposed into two separate components as
28for example 5.5% + 4.6%*2 = 14.7% when using the inter-quartile range and time-series standard errors

as an indication.
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bi = δi × λi (2.9)

δi = 1− exp
[
σiµ(σiµ − ρiσic)

]
λi = exp(gi + 1

2(σic)2)

As discussed before, the sign of the bias depends on δi, which is hard to estimate. However,

λi involves only fundamental expectation variables that are commonly measured based on

analysts’ growth forecasts. I use analysts’ long-term growth estimates to estimates gi and

its 36 month volatility to estimate σic. Since we observe estimates for bi and λi, I back out

the values of δi using (2.9).

Table 2.2c shows that the cross-sectional variation in biases bi is mainly driven by λi, or

characteristics related to expected fundamentals. Compared to to δi, λi has two times much

the standard errors (9.5% vs. 4.7%).

These empirical results helps to understand cross-sectional relationship between firm

characteristics and CAPM alphas. Under CDR, the CAPM-alpha comes entirely from mis-

valuation, which in turn is mostly driven by gi and σic, via λi. As a result, through the CDR

channel, certain characteristics can predict future returns or CAPM alphas only because

these characteristics can predict future fundamental growth or fundamental volatility.

The sign of δi determines the relationship between fundamental characteristics and future

CAPM alpha. Figure 2.4 shows the empirical distribution of δi. The figure confirms the

previous conjecture that δi is mostly positive, as a result of a dominant cash flow news

and positive correlation between cash flow and discount rate news on the firm level. This

result also leads to a prediction of the CDR hypothesis with respect to the sign when using

characteristics to forecast future CAPM-alphas: firm characteristics that positively predict

future cash flow growth and/or volatility in the cross-section will predict negatively the

CAPM-alphas.
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Table 2.2: Empirical Distributions of Key Variables for Mis-valuation (αi)

The table presents the empirical distributions of the measure of misvaluation defined
in Equation (2.6) and its consisting variables. Data are quarterly firm-level data from
1986-01 to 2018-12. Empirical distributions are summarized based on average variable
values over the entire time series for each firm. “ts.sd(αit) is the standard deviation
of the quarterly misvaluation measure for each firm over its entire history. “N” is the
number of firms. E(bit) is calculated based on Π̂i

t − β̂it0.064 and E(λit) is estimated
based on (2.9) using analysts’ long-term growth estimates for gi and its 36 months (with
minimum 12 months) volatility to estimate σic . E(δit) is calculated by dividing bit by
λit. The sample is winsorized at 0.5% and 0.95%. Rank correlations are Spearman
rank correlations calculated using quarterly firm-level data based on the whole sample.

(a) Empirical Distribution of E(α̂it)

variable mean std min p25 median p75 max N
E(αit) -0.165 0.072 -0.739 -0.181 -0.149 -0.126 -0.070 7246.000
ts.sd(αit) 0.023 0.018 0.000 0.012 0.019 0.029 0.188 7246.000

(b) Empirical Distribution of E(β̂itλ̂) and E(b̂i)

variable mean std min p25 median p75 max N
βiE(Rm) 0.063 0.023 -0.007 0.047 0.062 0.078 0.172 7246.000
E(bit) 0.080 0.071 -0.059 0.040 0.064 0.098 0.633 7246.000

(c) Empirical Distribution of Variables in E(b̂i)

variable mean std min p25 median p75 max N
E(λit) 1.160 0.095 1.065 1.112 1.137 1.174 2.058 7246.000
E(δit) 0.065 0.047 -0.055 0.036 0.056 0.084 0.328 7246.000
E(git) 0.143 0.071 0.063 0.104 0.126 0.158 0.707 7246.000
E(σic,t) 0.047 0.042 0.000 0.021 0.034 0.058 0.389 7246.000

(d) Rank Correlation Between α̂it and Consist-
ing Variables

cor(αit, µit) cor(αit, bit) cor(αit, λit)
-0.319 -0.601 -0.962

(e) Rank Correlation Between bit and Consist-
ing Variables

cov(bit, λit) cov(bit, git) cov(bit, σic,t)
0.747 0.776 0.034
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Figure 2.3: Evolution of αit of specific firms

The figure plots the quarterly time series of misvalution measure α̂it of three companies.
“AA” : Alcoa Corporation; “AMZN”: Amazon.com Inc; “BA”: Boeing CO.
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Figure 2.4: Probability Distribution Function (Top Panel) and Cumulative Distribution
Function of E(δit)

E(δit) is the firm-level time-series average of δit, which calculated by dividing bit by λit. The
sample is winsorized at 0.5% and 0.95%.
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Misvaluation Sorted Portfolios

I test the first asset pricing implication of CDR, namely, the misvaluation measure α̂i

should positively predict a stock’s CAPM-alpha. Furthermore, the average spreads in average

realized CAPM-alphas should be close to the magnitude suggested by the spreads in ex-ante

misvaluation measures.

To test this hypothesis, I follow the convention in the asset pricing literature (for example

Fama and French (2015)) to sort stocks into quantile portfolios based on the misvaluation

measure α̂i. I form portfolios at the end of June each year, using the available information

up to that point29. I rebalance every month based on firms’ market capitalization (value-

weight) every month30. Effectively, the holding period of the trading strategy is 12 month.

Table 2.3 presents the results.

Table 2.3 presents the detailed results with respect to the portfolios sorted based on

msivaluation measure. These results support the hypothesis that investors do use constant

discount rate in practice which leads to misvaluation.

First, the results in Panel A shows stocks which are most overvalued due to CDR have

significant lower realized CAPM-alphas . The difference in realized CAPM-alphas between

the least overvalued (“High”) and most overvalued portfolios are 0.8% per month (9.6%

per year). The spread in CAPM-alphas are statistically significant with a t-stat of 5. As

shown in Panel B, since the spreads in the rational expected returns (µi) are moderate, most

overvalued portfolios end up having a lower average returns than less overvalued stocks,

which amounts to 0.8% per month (8.4% per year). In fact, the return spreads also have a

Fama-French 5 factor alpha of 0.69% per month (8.28% per year), with a t-statistics over 5.

Second, the magnitude of the spreads between the misvaluations of high and low portfolios

are very close to those of the realized CAPM-alpha spreads. This is consistent with the
29For the measure, the variables used are at latest available more than 2 weeks before being used to

construct the ICC measures.
30I also presents the portfolio sorts using equal weights in B.7.1, which shows a larger spreads in CAPM-

alpha.
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prediction of CDR, that CAPM alpha should equal to misvaluation. As shown in Panel A,

the firm-level average misvaluation within each portfolio (“Avg. α̂it”) has a spreads between

high and low of 0.77% compared to the realized CAPM-alpha of 0.80%. Furthermore, Panel

C shows that what drives the misvaluation spread is consistent with what was analyzed in

Section (2.2.2). The biases due to CDR, or bi drive the difference in α̂i. And λi appear to

have a bigger role in explaining bi than δi, which are positive across all portfolios. Finally,

among characteristics that consists of λi, growth expectation seems to be more important

than growth volatility (σic) in driving the spreads of misvaluation across portfolios.

Additionally, notice the realized CAPM alphas of the portfolios are negative, except for

the portfolio with the highest αi. This might seem puzzling because the value-weighted

CAPM-alphas should add up to zero , by construction. The reason for this result is two-

folds. First, stocks with higher analyst coverage have on average lower returns, as shown in

Hong, Lim, and Stein (2000) and Diether, Malloy, and Scherbina (2002). Stocks with a valid

misvaluation measure need to have substantial analyst coverage, which is a dynamic universe

smaller than the CRSP universe used to construct market excess returns. More specifically,

to have a valid measure of misvaluation, I require the firm to have valid analyst forecasts

for short-term (1 and 2 fiscal-year ahead) and long-term earnings. Second, stocks with a

higher αi are significantly larger than those with lower values, which further exacerbates the

asymmetry among CAPM-alphas. More details about this point is presented in Appendix

B.4, Table B.1.

The results in Table (2.3) also highlights two important questions to be addressed.

First, as shown in Panel A, the spread in the values of misvaluation across portfolios, does

not seem to converge fast after the portfolio formation. From 12 months to 60 months after

the formation of the portfolio, only narrows by 0.12% per month, or 1.44% per year. This

means that the mispricing is highly persistent. A persistent effect means the misvaluation

has a larger economic significance since it has implication for the long-run asset returns. I

explore this further in Section (2.2.2) next.
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Second, most overvalued portfolios tend to be smaller firms, as shown in Panel C. This

result is intuitive as bigger companies receive more attention and attract more analysts

to analyze. Prices should be more efficient and the probability of being misvalued should

decrease. However, it does beg the question of whether and to what extent the misvaluation

still present in the large caps. Cross-sectional phenomenon that only hold in small caps

carry less economic significance for asset pricing theories, especially in recent years when

large caps dominate the market. I therefore further investigate this issue in Section 2.2.2.

The Persistence of Misvaluation I demonstrate the economic significance of misvalua-

tion due to CDR by showing that the misvaluation has persistent impact on asset prices.

First, α̂it is a persistent variable. The pooled panel regression based on annual data shows

α̂it has an AR(1) coefficient of 0.948 (standard errors 0.006, clustered by firm and year). This

means that the misvaluation measure has a half life of more than 13 years.

Consistent with the highly persistent measure α̂it, the turnover of the trading strategy

constructed based on misvaluation has low turnover. Table 2.4a shows that the average

portfolio turnover for the long and short side only amounts to 2% or less than 24% annually.

Compared to the trading strategies analyzed in Novy-Marx and Velikov (2015), the 2%

turnover would place the misvaluation trading strategy into the lowest turnover category, on

par with profitability and only less than portfolios sorted based on size. This result means

that transaction costs will unlikely render the CAPM alpha to zero.

Investors do not counteract the misvaluation effect quickly and stocks in the most over-

(under-) valued portfolios under- (out-) perform even after 5 years after portfolio formation.

Table 2.4b shows the returns of the trading strategy based on misvaluation for different

holding periods. As shown in the table, the High-Low portfolio’s CAPM-alpha still show

up to be highly significant even for holding periods exceeding 60 months. The reduction in

the return spreads as well as statistically significance amounts to 0.21% per month, from 12

months to 60 months holding period. This magnitude is also inline with the decay of the
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Table 2.3: Pre-estimated Mis-valuation (α̂it) Sorted Portfolios and Realized Average Stock
Returns (1986-06 to 2019-12)

The table presents the statistics related to portfolios sorted based on misvaluation measure created in (2.6).
All numbers are expressed in percentages unless otherwise stated. Returns and alphas are based on monthly
frequency.
Stocks are sorted into quantile portfolios based on the misvaluation measure α̂i at the end of June each
year, using the available information up to that point. Portfolios are rebalanced every month based on firms’
market capitalization (value-weight). “Low” denote the portfolio with lowest α̂it. “High-Low” are excess
returns of a portfolio that goes long on stocks with the highest α̂it and short those with the lowest α̂it.
Panel A presents the average misvaluation after the portfolio formation for the next 12 months, 60 months
as well as the average values for firms in the portfolio through the firm’s lives.
Panel B presents statistics related to portfolio returns. “mean ex.ret” are monthly returns over 3 month
treasury rates; “SE” are standard errors which are shown in brackets. ”SR” are monthly Sharpe Ratios.
“FF-5 alpha” denote Fama-French 5 factor alphas. “num_stocks” are average number of stocks included in
the portfolio over time.
Panel C presents characteristics (value-weighted) associated each of the portfolio. gi and σic are average
portfolio analysts long-term growth expectation (LTG) as well as 36-month rolling volatility of the LTG.

Low 2 3 4 High High - Low
Panel A: Ex-ante Misvaluation vs. Realized Portfolio CAPM Alpha

Ex-ante Misvaluation
Nxt. 12m α̂it -1.98 -1.31 -1.18 -1.05 -1.01 0.98
Nxt. 60m α̂it -1.91 -1.28 -1.17 -1.07 -1.05 0.86
Avg. α̂it -1.80 -1.24 -1.14 -1.05 -1.03 0.77

Realized Portfolio Realized Portfolio CAPM Alpha
CAPM alpha -0.80 -0.39 -0.26 -0.09 0.01 0.80
SE CAPM alpha (0.14) (0.10) (0.09) (0.06) (0.06) (0.16)

Panel B: Realized Portfolio Return Statistics
mean ex.ret -0.03 0.27 0.33 0.48 0.66 0.70
SE ex.ret (6.12) (4.93) (4.56) (4.24) (4.85) (3.29)
SR -0.01 0.05 0.07 0.11 0.14 0.21

FF-5 alpha -0.63 -0.34 -0.41 -0.23 0.06 0.69
SE FF-5 alpha (0.11) (0.09) (0.08) (0.06) (0.06) (0.13)

Panel C: Portfolio Characteristics
Mkt.Cap (Million) 15379.69 33550.85 38340.65 47129.95 88655.92 73276.23
bi 14.32 7.29 5.51 3.85 1.41 -12.91
µi 7.14 6.22 6.26 6.29 7.59 0.45
πi 21.46 13.51 11.77 10.14 9.00 -12.46
λi 125.02 114.65 112.63 110.77 109.54 -15.48
δi 10.92 6.30 4.85 3.45 1.27 -9.65
σic 5.71 3.27 2.73 2.44 2.90 -2.80
gi 21.46 13.51 11.77 10.14 9.00 -12.46
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spreads in misvaluation measure it self, which amounts to 0.12% from 12 to 60 months.

For value-weighted portfolios, the persistence mainly comes from the continuing under-

performace of stocks which are mostly over-valued due to CDR. While for the equally

weighted portfolios, both long and short side continue to out- and under- perform. This

result means there might exist an interaction between size and misvaluation measure. I

investigate this in the next subsection.

Misvaluation In Different Size Segments of the Market I show that the misvaluation

due to CDR also presents within the universe consists of the largest companies. Since a few

large companies take up dominant share of the stock market, the finding that misvaluation

presents in this part of the market means the channel of mispricing suggested by CDR is

economically important.

Table 2.5 shows results of conducting an independent 3 by 3 double sort based on a

stock’s size and misvaluation. The CAPM alphas for the spread between most and least

over-valued portfolio within the smallest companies is 1.08% per month (12.96% per year).

However, even within the largest segment of the stock market, where the average market

cap is more than 26 billion, the spread in CAPM-alpha is still 0.63% per month (7.56% per

year), with a t-statistics of close to 5.

To further examine the economic significance of the CDR channel of misvaluation, I

conduct the same portfolio sorting exercise within the SP500 universe, which contains the

biggest U.S. companies and accounts for about 80% of all U.S. market capitalization available,

as of Sep. 2020. Table 2.6 shows that even within this universe, the spread in CAPM alpha

between the most and least overvalued stocks are 0.39% per month (4.68% per year). In

fact, the FF-5 alpha is higher, at 0.53% per month, thanks to the fact that the returns load

strongly negatively on the SMB factor.

Finally, portfolio characteristics in both Table 2.6 and 2.5 show that the spreads in

misvaluations are in line with those of realized portfolio CAPM alphas, consistent with the
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Table 2.4: The Persistence of Misvaluation

The table demonstrates the persistence of misvaluation and its persistent effect in asset
prices. The pooled panel regression based on annual data shows α̂it has an AR(1) coefficient
of 0.948 (standard errors 0.006, clustered by firm and year).
Panel (a) calculates the portfolio’s annualized turnover, or monthly turnover multiplied by
12. Panel (b) calculates the CAPM-alphas, value and equal weighted, of portfolios sorted
based on α̂it at the end of June, starting from 1986-06 and ending in 2018-12. The CAPM-
alphas are calculated by regressing the excess returns of the portfolios on market returns
based on the universe of stocks that have estimated α̂it. The reason for using this universe
is to take into account the negative CAPM-alphas of stocks with higher analyst coverage.

(a) Portfolio Turnover: Misvaluation Sorted Portfolios

Portfolio short-side 2 3 4 long-side avg.long.short
ann.turnover 28.56% 36.44% 31.80% 27.43% 19.28% 23.92%

(b) Holding Period Returns of Misvaluation Sorted Portfolios

portfolio holding periods (in month)
12 24 36 48 60 72

Panel A: CAPM-alpha’s of value-weighted portfolios
low αi -0.612 -0.524 -0.524 -0.593 -0.461 -0.568
[t-stat] [-4.212] [-3.356] [-3.323] [-3.663] [-3.399] [-3.529]

high αi 0.147 0.092 0.082 0.096 0.071 0.071
[t-stat] [2.775] [1.793] [1.782] [2.262] [1.603] [1.841]

High - Low 0.760 0.616 0.606 0.689 0.531 0.638
[t-stat] [4.646] [3.573] [3.543] [3.964] [3.56] [3.755]

Panel B: CAPM-alpha’s of equal-weighted portfolios
low αi -0.626 -0.588 -0.642 -0.639 -0.627 -0.632
[t-stat] [-2.877] [-2.719] [-2.964] [-2.943] [-2.931] [-2.91]

high αi 0.384 0.368 0.352 0.355 0.343 0.351
[t-stat] [3.376] [3.215] [3.263] [3.293] [3.278] [3.395]

High - Low 0.984 0.929 0.954 0.969 0.930 0.943
[t-stat] [5.827] [5.47] [5.569] [5.638] [5.773] [5.524]
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prediction of the CDR. For example, for the SP500 universe, the model predicts the CAPM

alpha would amounts to about 5% per year, while the realized CAPM alphas is at 4.68%

per year.
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Table 2.5: Mean Excess Returns of Size and Misvaluation Sorted Portfolio (Value Weighted, 1986-06-01 to 2018-12-31)

This table shows the returns and characteristics for 3 by 3 portfolios independently sorted based on misvaluation measure
α̂it in (2.6) and market capitalization from June previous year. All returns, alphas and their standard errors are monthly
and expressed in percentages. “1_1” denote the portfolio with lowest market capitalization from June in the previous
year and lowest αit , respectively, while “3_1” denotes portfolios with the highest market capitalizationand lowest αit.
Portfolios are value weighted each month. “SE” are standard errors which are shown in brackets. “mean ex.ret” are monthly
returns over 3 month treasury rates; ”SR” are monthly Sharpe Ratios. “FF-5 alpha” denote Fama-French 5 factor alphas.
“num_stocks” are average number of stocks included in the portfolio over time. Post portfolio formation average characteris-
tics: “nxt.12m.alpha” the average misvaluation measure 12 month after portfolio formation, “pi” the implied cost of capital,
“mu” is the average beta times 0.064, “LTG” analyst’s long-term growth estimates, “sd(LTG)” 36 month rolling volatility of LTG.

stats 1_1 1_2 1_3 high-low.small 2_1 2_2 2_3 high-low.mid 3_1 3_2 3_3 high-low.large
mean ex.ret 0.33 0.92 1.41 1.08 0.08 0.58 1.07 0.99 0.05 0.36 0.6 0.56
SE ex.ret (6.86) (6.26) (7) (2.48) (6.48) (5.54) (5.81) (2.09) (5.48) (4.35) (4.57) (2.68)

SR 0.05 0.15 0.2 0.43 0.01 0.1 0.18 0.48 0.01 0.08 0.13 0.21

CAPM beta 1.26 1.14 1.25 -0.01 1.28 1.1 1.17 -0.12 1.14 0.94 1.02 -0.12
SE CAPM beta (0.05) (0.04) (0.05) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.01) (0.03)
CAPM alpha -0.44 0.22 0.64 1.08 -0.73 -0.1 0.36 1.07 -0.65 -0.22 -0.02 0.63

SE CAPM alpha (0.21) (0.19) (0.22) (0.13) (0.16) (0.14) (0.14) (0.1) (0.11) (0.07) (0.04) (0.13)

FF-5 alpha -0.39 0.15 0.56 0.95 -0.74 -0.23 0.25 0.97 -0.39 -0.39 0 0.39
SE FF-5 alpha (0.1) (0.09) (0.13) (0.13) (0.08) (0.06) (0.07) (0.1) (0.1) (0.07) (0.04) (0.12)

num_stocks 429.1 208.07 134.39 225.19 281.74 256.84 116.49 274.87 372.7
ME (million) 219.77 245.87 264.56 912.54 972.94 1024.18 26798.68 46560.25 79038.81
nxt.12m.alpha -0.19 -0.14 -0.13 -0.21 -0.14 -0.13 -0.2 -0.14 -0.12

pi 0.17 0.12 0.1 0.18 0.12 0.1 0.17 0.12 0.09
mu 0.06 0.06 0.07 0.07 0.06 0.07 0.07 0.06 0.07
LTG 0.22 0.17 0.16 0.22 0.16 0.15 0.18 0.14 0.13

sd(LTG) 0.06 0.05 0.05 0.06 0.04 0.04 0.04 0.03 0.03
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Table 2.6: Misvaluation (αi) Sorted Portfolios and Realized Average Stock Returns for SP500
Firms (1986-06 to 2018-12)

The table presents the statistics related to portfolios sorted based on misvaluation measure created
in (2.6) for firms in SP500 universe. All numbers are expressed in percentages unless otherwise
stated. Returns and alphas are based on monthly frequency. Stocks are sorted into quantile
portfolios based on the misvaluation measure α̂i at the end of June each year, using the avail-
able information up to that point. Portfolios are rebalanced every month based on firms’ market
capitalization (value-weight). “Low” denote the portfolio with lowest α̂it. “High-Low” are excess
returns of a portfolio that goes long on stocks with the highest α̂it and short those with the lowest
α̂it. “fwd_12m_alpha” are the average misvaluation measure 12 months after portfolio formation.
“CAPM alpha” are calculated by regressing portfolio excess returns to returns to the universe of
S&P500 stocks that have the estimates of α̂it available.

stats Low 2 3 4 High High - Low
mean ex.ret 0.2 0.39 0.47 0.56 0.65 0.45
SE ex.ret (4.78) (4.53) (4.26) (4.34) (5.13) (2.97)

SR 0.04 0.09 0.11 0.13 0.13 0.15

CAPM beta 0.99 0.96 0.91 0.94 1.11 0.11
SE CAPM beta (0.02) (0.02) (0.02) (0.02) (0.02) (0.03)
CAPM alpha -0.29 -0.08 0.02 0.1 0.1 0.39

SE CAPM alpha (0.1) (0.08) (0.07) (0.07) (0.08) (0.15)

FF-5 alpha -0.42 -0.4 -0.24 -0.2 0.11 0.53
SE FF-5 alpha (0.1) (0.09) (0.08) (0.07) (0.09) (0.15)

ME 43818.98 42726.38 54376.9 60586.93 110437.88
fwd_12m_alpha -0.17 -0.14 -0.12 -0.12 -0.12

Explaining Cross-sectional Anomalies Using Factor-Mimicking Portfolio

Second, a factor-mimicking portfolio constructed based on misvaluation measure should

be able to explain completely the CAPM-alphas of portfolios that sorted on characteristics

that predict future misvaluation. Under CDR, the only reason for these characteristics

based anomalies to generate CAPM-alphas is investors use constant discount rate, which

cause them to overvalue stocks associated with these characteristics.
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Choosing Anomalies When choosing cross-sectional anomalies, I consider portfolios sorted

on profitability, asset growth, market beta, (idiosyncratic) volatility, cash flow duration. Fur-

thermore, I also consider the anomalies that were included to construct the two mispricing

factors in Stambaugh and Yuan (2017). I chose these anomalies because they have generated

significant interests both in the academic literature and in practice. The strong interests

could come from both their significance for academic theories (for example market beta,

volatility) and persistent, robust empirical performance31. I provide some more background

behind choosing these anomalies below.

First, the beta (for example Fama and French (1992)) and (idiosyncratic) volatility (for

example Haugen and Heins (1975) and Ang et al. (2006)) anomalies generated much interests

mainly because it directly speaks to the failure of CAPM and the breaks the commonly

believed positive risk-reward relationship in financial market. An extensive and continuing

effort has been proposed to explain the low risk anomalies (for example Black (1992), Frazzini

and Pedersen (2014) Schneider, Wagner, and Zechner (2020)).

Furthermore, I include the anomalies based on profitability (Novy-Marx (2013), Fama

and French (2015), Hou, Xue, and Zhang (2015)) and asset growth (Cooper, Gulen, and

Schill (2008), Fama and French (2015), Hou, Xue, and Zhang (2015)), which predicts future

returns with positive and negative sign, respectively, because they are are shown by recent

literature to be able to summarize to a large degree the average returns of the cross-section,

as shown in Fama and French (2016) and Hou, Xue, and Zhang (2015). Various theories

have been proposed to explain these anomalies, both behavioral and rational (for example

Bouchaud et al. (2019) for behavioral and Hou, Xue, and Zhang (2015) for rational).

Finally, I chose the cash flow duration factor (Dechow, Sloan, and Soliman (2004b),

Weber (2018) and Gonçalves (2019)), which negatively predicts future stock returns, because

of it is related directly to the future cash growth and has theoretical significance due to

the theories related to the term structure of equity (see for example Lettau and Wachter
31I do not include the well-known “value” and “size” anomalies here because for the sample I consider

(post 1986-06), it does not have a significant CAPM-alpha.
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(2007b) and Croce, Lettau, and Ludvigson (2014)), which is important for linking the macro-

finance theories to explain the time-series of aggregate stock returns to the cross-section (for

exampleSantos and Veronesi (2010) Binsbergen and Koijen (2015)).

In order to show that the CDR hypothesis is indeed an important channel through which

mispricing occur, I also consider the two mispricing factors constructed by Stambaugh and

Yuan (2017). The two factors are constructed based on 11 anomalies and are shown in their

paper to have strong power to explain the factors constructed in the literature. I examine

the explanation power of the misvaluation factor on the two composite factors as well as the

11 consisting anomalies underlying these two factors.

Constructing the Misvaluation Factor To explain the anomaly portfolio returns, I

first construct a factor-mimicking portfolio of misvaluation. I follow a similar procedure as

employed by Fama and French (2015). First, I conduct 3 by 3 independent sort based on

market capitalization and α̂it. Within each of the size tercile, which are of small, medium

and large-cap stocks, I subtract the returns of stocks with the highest α̂it by the stocks with

the lowest α̂it to obtain the returns of long-short portfolio. More specifically, the Constant

Discount Rate (CDR) factor is

CDRt = 1
3(Rhigh,small

t +Rhigh,mid
t +Rhigh,big

t )

− 1
3(Rlow,small

t +Rlow,mid
t +Rlow,big

t ) (2.10)

I show the return statistics of the factor together with its cumulative returns in Table

2.7 and 2.5, respectively. The factor has a volatility of 6.3% annually, with a mean realized

return of 10.8%. The realized return mainly comes from the short leg, which contains stocks

most overvalued.

The cumulative return graph shows that the strong performance of the CDR factor is

not concentrated in a specific period over the past 33 years, confirming the results in the

previous section that the misvaluation effect is persistent.
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Figure 2.5: Cumulative Returns of CDR Factor (In Log Scale)

−1

0

1

2

3

1990 2000 2010 2020
Date

lo
g 

cu
m

ul
at

iv
e 

ex
ce

ss
 r

et
ur

ns

portfolio high minus low high alpha low alpha

Notes: Sample period is 1986-07-01 to 2018-12-31. Stocks are sorted independently into 3 by
3 tarciles based on market capitalization and α̂it at the end of each June. The portfolios are
rebalanced each month based on market capitalization. the CDR factor is the “high minus
low” and constructed by

CDRt = 1
3R

high
t − 1

3R
low
t

where Rhigh
t = 1

3(Rhigh,small
t +Rhigh,mid

t +Rhigh,big
t − 3Rf

t ) and Rlow
t = 1

3(Rlow,small
t +Rlow,mid

t +
Rlow,big
t − 3Rf

t ).
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Table 2.7: Return Statistics CDR Factor

Notes: Sample period is 1986-07-01 to 2018-12-31. Stocks are sorted independently into 3
by 3 tarciles based on market capitalization previous June and α̂it at the end of each June.
The portfolios are rebalanced each month based on market capitalization. the CDR factor
is constructed by

CDRt = 1
3R

high
t − 1

3R
low
t

where Rhigh
t = 1

3(Rhigh,small
t +Rhigh,mid

t +Rhigh,big
t − 3Rf

t ) and Rlow
t = 1

3(Rlow,small
t +Rlow,mid

t +
Rlow,big
t − 3Rf

t ).

CDR low α̂ high α̂
Annulized Return 0.108 -0.004 0.110

Annualized Std. Dev. 0.063 0.208 0.190
Annualized Sharpe 1.704 -0.021 0.578

Explaining Five Prominent Anomalies The Constant Discount Rate Hypothesis pre-

dicts that the CAPM alphas of individual assets should be completely consumed by the CDR

factor. To test this hypothesis, I construct long short anomaly portfolios based on the five

characteristics and regress the return of the portfolios on the market excess return and CDR

factor defined in (2.10):

Ri
t = αi + CDRtβ

i
CDR + (Rm

t −Rf )βim + εit (2.11)

The constant discount rate hypothesis predicts that all the alphas are jointly zero or

HCDR
0 : αi = 0 ∀i = 1, ..N

I test the hypothesis using the GRS tests. I also examine the alphas of single anomaly

portfolios.

To eliminate the errors due to replication, I download the anomaly portfolios from official

sources. More specifically, I download portfolios sorted based on beta, variance and residual

variance sorted portfolios directly from Ken French’s website32and the cash flow duration
32Beta are measured using the last 5 years of monthly returns; variances are historical variance based on
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Table 2.8: Anomalies Portfolio Alpha/Beta Before/After Controlling for CDR Factor

Sample period is 1986-07-01 to 2018-12-31. In Panel A, the GRS test statistics are presented,
which test the null hypothesis that all αis in Equation 2.11 are jointly zero under the CAPM
or the model where market factor together with CDR factors are included. Panel B presents
the tests for individual assets in Equation 2.11. Panel B1: the long short anomaly portfolios
are regressed on market excess returns over 3 month treasuries. Panel B2: long short anomaly
portfolios are regressed on (value-weighted) market excess returns and CDR factor defined
in Equation (2.10). “beta” are measured using the last 5 years of monthly returns; “prof”
are operating profitability defined in Fama and French (2015); “res.var” are measured using
60 days of daily returns and Fama-French 3 factor model; “asset.growth” are the change in
total assets from the fiscal year ending in year t-2 to the fiscal year ending in t-1, divided
by t-2 total assets at the end of each June using NYSE breakpoints; “cf.dur” are cash flow
duration measure defined in Weber (2018), a composite measure based on sales and book values.
Except for the “cf.dur”, all other portfolios are downloaded from Ken French’s website and
are long-short (value-weghted) portfolios constructed by subtracting portfolio with the lowest
decile of beta, var, res.var, asset growth by the highest decile and subtracting the highest
profitability portfolio by the lowest profitability portfolio. Decile portfolios of “cf.dur” are down-
loaded on Michael Weber’s website and the portfolio ends on 2014-06-30 and are equally weighted.

Panel A: GRS. Test Ressults
Model CAPM Mkt + CDR
GRS-stat 5.422 1.003
P-value 0.000 0.416

Panel B: Tests on Single Anomaly Portfolios
Predicting Volatility of Growth Predicting Future Growth
beta res.var prof asset.growth cf.dur

Panel B1: CAPM alpha of anomaly portfolios

CAPM Alpha (%) 0.565 1.246 0.721 0.488 1.261
t-statistics [2.288] [3.777] [3.593] [2.909] [4.124]

CAPM Beta -1.046 -0.971 -0.456 -0.177 -0.432
t-statistics [-18.8] [-13.063] [-10.077] [-4.688] [-6.471]

Panel B2: CAPM alpha of anomaly portfolios after controlling for CDR factor

CAPM Alpha (%) -0.129 -0.114 0.174 0.085 0.296
t-statistics [-0.484] [-0.337] [0.799] [0.466] [0.926]

CAPM Beta -0.983 -0.849 -0.406 -0.141 -0.345
t-statistics [-18.013] [-12.243] [-9.137] [-3.759] [-5.393]

Loading on CER 0.748 1.467 0.590 0.434 1.036
t-statistics [5.706] [8.807] [5.522] [4.815] [6.804]
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sorted portfolios from Michael Weber’s website33

The GRS test results in Panel A of Table 2.8 show we can not reject the hypothesis: the

CDR factor explains the CAPM-alphas of all five anomaly portfolios. More specifically, the

GRS test statistics based on the CDR factor is just above 1, which has a p-value of 0.42,

compared to the GRS test statistics of 5.4 under CAPM, which confirms these portfolios

have high CAPM-alphas.

Examining the tests on each of the five single anomalies, Table 2.8 shows that all of the

standalone portfolio’s CAPM-alphas become statistically insignificant from zero after the

inclusion of CDR factor. Furthermore, all of the anomalies load strongly on the CDR factor,

with point estimates on loadings equal to 0.43 at the least (asset growth).

The magnitude of the reduction is large, especially for the idiosyncratic variance and

cash flow duration factor, which amount to 1.36% and 0.96% per month based on the point

estimates, as shown in Panel B of Table 2.8. This large reduction in CAPM-alphas is

confirmed by these anomaly portfolio’s large loadings on the CDR factor, which are 1.47

and 1.04 for the residual variance and cash flow duration factor, respectively. The strong

explanation power of the CDR factor on these two particular anomalies makes intuitive sense

since residual variances closely mimics the cash flow growth volatility (σic) in the model while

cash flow duration aims to predict the future cash flow growth (gi).

Misvaluation Factor and Mispricing Factors in Stambaugh and Yuan (2017) I

show that the explanation power of the mispricing channel suggested by the CDR hypothesis

goes beyond the five anomalies analyzed before. Stambaugh and Yuan (2017) constructs two

mispricing factors based on 11 cross-sectional anomalies. They show that these 2 factors have

superior performance compared to factor models constructed by Fama and French (2015)

and Hou, Xue, and Zhang (2015) in summarizing the cross-section of average stock returns.

I therefore examine to what extent the single misvaluation factor can explain the CAPM-

the past 60 days of daily returns and residual variances are measured using 60 days of daily returns and
Fama-French 3 factor model.

33The details of the measure is described in Weber (2018).
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alphas of the misvaluation factor as well as the underlying 11 anomalies, 9 of which have not

been included in the 5 anomalies examined earlier.

Figure 2.6 shows the CAPM-alpha together with its the standard errors of the estimates

before and after including a CDR factor, for the total of 14 anomalies considered (11 of them

form the basis for the 2 mispricing factors in Stambaugh and Yuan (2017)) together with

the two mispricing factors. For all the 14 standalone anomalies as well as the two mispricing

factors (“SY1” and “SY2”), the misvaluation factor constructed in this paper reduces their

CAPM-alphas. In fact, for all but the momentum and distress factor, the CAPM-alphas

become insignificant after regressing on the misvaluation factor. As a result, the CAPM-

alphas of the first mispricing factor (SY1) is completely explained by the misvaluation factor.

The second mispricing factor still remains unexplained by the CDR, mainly due to the

momentum and distress factor. This makes sense as the misvaluation factor is a persistent,

long-term factor, while the momentum and distress has been shown to have high turnover

and mainly generate anomalous returns in the short term.
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Figure 2.6: CAPM Alpha of Long-Short Anomaly Portfolios Before/After Controlling for CDR Factor
The figure plots the CAPM-alphas of the 2 mispricing factors constructed in Stambaugh and Yuan (2017) together 11 anomalies that are used to construct the factors, together
with the duration, beta, and residual variance anomalies, before and after regressing on the CDR factor.
Sample period is 1986-07-01 to 2016-12-31. “CAPM” is the intercept when regressing long short anomaly portfolios on market excess returns over 3 month treasuries. “CAPM
+ CDR” is the intercept when regressing long short anomaly portfolios on (value-weighted) market excess returns and CDR factor defined in Equation (2.10). Two standard
deviations above and below the estimates are indicated.
Long-short anomaly portfolio returns whose labels are in capital letters are downloaded from Robert Stambaugh’s webiste. ”beta”, “inv”, “ivol”, “prof” are downloaded from
Ken French’s website and “dur” is downloaded from Michael Weber’s website. “ACCURAL” is the accrual anomaly of Sloan (1996); “beta” are measured using the last 5 years
of monthly returns; “prof” are operating profitability defined in Fama and French (2015); “ivol” are measured using 60 days of daily returns and Fama-French 3 factor model;
“inv” are the change in total assets (asset growth) as in Fama and French (2015) and Cooper, Gulen, and Schill (2008); “cf.dur” are cash flow duration measure defined in
Weber (2018), a composite measure based on sales and book values. “COMPOSITE_ISSUE”: composite equity issuance of Daniel and Titman (2006); “STOCK_ISSUE”: the
equity issuance measure of Loughran and Ritter (1995); “DISTRESS” : the distress risk measures of Campbell, Hilscher, and Szilagyi (2008); “OSCORE”: Ohlson’s O-score
Ohlson (1980); “NOA” Net Operating Asset defined in Hirshleifer et al. (2004); “MOMENTUM”: momentum variable defined in Jegadeesh and Titman (1993); “INVASSET”:
investment to assets defined in Titman, Wei, and Xie (2013); “SY1” the “MGMT” factor constructed in Stambaugh and Yuan (2017), which include Net stock issues, composite
equity issues, accruals, net operating assets, asset growth, investment to assets; “SY2” the “PERF” factor i n Stambaugh and Yuan (2017), which includes distress, O-score,
Momentum, profitability, return on assets.
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Firm Characteristics and Misvaluation

Finally, the CDR also implies that characteristics that predict future anomalous returns

(CAPM-alphas) should also predict future misvaluation (αit), with the same sign. Since the

cross-sectional variation in misvaluation is mostly driven by λi, these characteristics should

forecast either expected future fundamental growth (git) or fundamental volatility (σic,t) or

both, with an opposite sign as they predict future CAPM-alphas.

To test the first hypothesis, I run the following predictive panel regressions with date

fixed effects:

yit = a+B′X i
t−1 + ft + εi,t

whereX i
t−1 are a vector of characteristics include market beta, volatility, idiosyncratic volatil-

ity, profitability, asset growth, cash flow duration and ft are date fixed-effects. yit are either

the firm’s future misvluation α̂it, analyst’s long-term growth estimates git or the future volatil-

ity of analysts’ long-term growth estimates, σic,t.

When predicting future misvaluation, the CDR hypothesis predicts that the predictive

coefficients are all negative and significant, except for profitability, which should be positive

and significant. This is because except for profitability, all the other characteristics positive

predict firms’ future CAPM-alphas.

Panel (a) and first column of Panel (b) of Table 2.9 confirm the prediction of the CDR

hypothesis. All of the characteristics show up to have significant predictive power for fu-

ture misvaluation, and the coefficients have signs correspond exactly to their CAPM-alphas.

Quantitatively, the R-squared is high, at more than 21%. Comparing across different charac-

teristics, beta and residual variances show up to have the strongest predictive power, followed

by asset growth, profitability and cash flow duration.

I use expected growth and growth volatility as dependent variables in the regression

and present the results in the Panel (b) of Table 2.9. These results show that the five

characteristics generally can predict both the growth level and volatility, even though these
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Table 2.9: Misvaluation and Firm Characteristics

Data are quarterly firm-level data from 1985-Q1 to 2018-Q4. Misvaluation captures the under- over- valuation
following CDR, as defined in Equation (2.6). In Panel (a), Spearman rank correlations are calculated. In
Panel (b), results from panel regression with date fixed effects

yit = a+B′Xi
t−1 + ft + εi,t

are presented, with standard errors clustered at firm-quarter level. Both dependent and independent
variables are transformed into cross-sectional percentiles to avoid outliers and for the ease of interpretation.
Expected growth and growth volatility are defined as analyst long-term growth expectation and 36-month
rolling volatility of long-term growth expectation, respectively, both downloaded from IBES data base.
“beta” are from Welch (2019) downloaded from Ivo Welch’s website; “residual variances” are constructed
using 60 days of daily returns (with minimum of 20 days) and Fama-French 3 factor model; “asset.growth”
are the change in total assets from the fiscal year ending in year t-2 to the fiscal year ending in t-1,
divided by t-2 total assets at the end of each June using NYSE breakpoints; “cf.dur” are cash flow duration
measure defined in Gonçalves (2019), downloaded from Andrei Goncalves’ webiste; ”Op.Prof” are firms’
operating profitability defined in Fama and French (2015). Both financials and utilities are excluded from
the panel regressions and each firm needs to have a minimum of two years available in COMPUSTAT.

(a) Pair-wise Rank Correlation Misvaluation and Firm Character-
istics

lag.asset.growth lag.op.prof. lag.res.var lag.beta lag.cf.dur
-0.155 0.116 -0.288 -0.401 -0.102

(b) Panel Regressions: Future misvaluation, expected growth, growth volatil-
ity on firm characteristics

Dependent variable:
misvaluation expected.growth growth.vol

(1) (2) (3)
lag.beta −0.248∗∗∗ 0.077∗∗∗ 0.121∗∗∗

(0.013) (0.013) (0.015)

lag.asset.growth −0.071∗∗∗ 0.079∗∗∗ 0.062∗∗∗
(0.007) (0.008) (0.009)

lag.op.prof. 0.042∗∗∗ −0.037∗∗∗ −0.160∗∗∗
(0.009) (0.010) (0.012)

lag.res.var −0.273∗∗∗ 0.268∗∗∗ 0.236∗∗∗
(0.010) (0.010) (0.014)

lag.cf.dur −0.046∗∗∗ 0.040∗∗∗ 0.051∗∗∗
(0.010) (0.010) (0.011)

Observations 108,790 108,790 77,466
R2 0.218 0.119 0.146
Adjusted R2 0.216 0.117 0.145
Residual Std. Error 0.245 (df = 108615) 0.260 (df = 108615) 0.262 (df = 77312)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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two variables are moderately correlated (24% correlation in the pooled sample). One notable

characteristics is profitability, which predicts future misvaluation mainly due to its ability

to forecast negatively a firm’s future growth volatility. For a firm’s operating profitability to

increase by 1 percent in ranking in the cross-section, its future growth volatility decreases

by 16% while expected growth only decrease by 3.7%. This result is intuitive: profitable

firms typically have stable cash flows and are unlikely to incur high cash flow volatility in

the future. Similar pattern holds for low beta firms.

2.3 Conclusion

This paper proposes and tests a unifying hypothesis to explain cross-sectional asset pric-

ing anomalies: some investors falsely ignore the dynamics of discount rates when forming

return expectations. The empirical findings in this paper show the potential impact of the

mispricing due to the constant discount rate assumption is economically significant and many

prominent asset pricing anomalies can be explained. Besides, data on analysts’ return fore-

casts and firms’ fundamentals are consistent with the predictions of the CDR hypothesis

too. The results are also consistent with the aggregate time-series estimates provided by

Renxuan (2020b), which shows that a large set of investors underestimate the importance

of discount rate in driving the dynamic of asset prices on the market levell.

The results presented in this paper also have implications for the investment community.

In particular, these results provide useful suggestions to those who employ conventional

Discounted Cash Flow (DCF) models to value stocks: they could improve the accuracy of

their expected returns by adjusting their estimates using the misvaluation measure developed

in this paper.

The paper assumes that biases subjective return expectation would directly translate

into over/under investments by the CDR investors through their own portfolio optimiza-

tion model. This assumption is not warranted. A natural next step is to examine closely

how subjective expectations are translated into changes in investors’ investment decisions,
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extending the methods and data considered in Koijen and Yogo (2019).

Another potential venue of research is to connect the CDR expectation to other subjec-

tive expectation formation process proposed in the literature, such as the ones proposed in

Bordalo et al. (2019) or Bouchaud et al. (2019), both of which concern expectations for fun-

damentals. Are these expectation formation processes consistent with each other or mutually

exclusive?

Finally, further examination on the impact of misvaluation on real economy is also promis-

ing. Dessaint et al. (2021) find evidence supporting the idea that investors’ using CAPM

distort the prices in M&A markets. If the channel of misvaluation suggested in this paper

is valid and long lasting, those firms who receive much higher valuation than it should due

to CDR, should have a lower cost of equity capital, which could ultimately impact its real

activities. A logical next step is to estimate the model proposed in Binsbergen and Opp

(2019) to evaluate the loss of efficiency due to the misvaluation.
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Appendix A: Appendix for Chapter 1: "Subjective Return

Expectations"

A.1 More Details About Sell-Side Analysts Return Expectations Data

A.1.1 Measuring Analyst Return Expectations Using Analyst Price Targets

Firm- and market- level analyst return expectation are constructed using a bottom-up

approach based on analyst-level return expectations per analyst issuance.

I collect single issuance of price targets from individual analyst’s 12-month1 price targets

for individual firms from IBES unadjusted data base and match it with the closing price

from CRSP on the date the price target is issued2 to compute return expectation with price

targets for individual firms. The expected returns are computed by dividing analyst’s price

targets by the daily closing price on the day the estimates was issued and subtracted by 13,

or

µAi,f,d =
PA,12
i,f,d

Pf,d
− 1

where PA,12
i,f,d is the price target of analyst i for firm f , issued at day d. The superscript

12 denotes the 12-month ahead estimates. Notice this methodology ensures there is no

mechanical relation between mean estimated expected returns and the level of prices. On

each issuing date the analyst has the freedom to pick her own price target since she observes

the prices.

Firm-level return expectations are constructed together with the stop file provided by

IBES to ensure individual estimates are not stale. IBES keeps track of the activeness of the
1Other horizons are available, though the coverage is poor.
2In case the issuance date is a weekend, the last Friday prices are used; In case the issuance is a holiday,

the previous business day closing prices are used.
3The same formula is used in Brav and Lehavy (2003a) and Da and Schaumburg (2011)
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individual estimates and provides a stop file for price targets4. I merge the point-in-time

analyst-level expected return file with the stop-file on price targets to exclude estimates

that analysts and IBES have confirmed to be no longer valid. Furthermore, to avoid stale

estimates, I further restrict the estimates to be no older than 90 days when entering mean

consensus estimates 5

I construct weekly firm-level consensus expected returns by taking the mean of all active

analyst-level forecasts, although using median makes no discernible difference for the main

results. I drop analyst-level estimates that are greater than 5 standard deviation away from

the mean estimates and I winsorize the entire analyst-level data base by 1% and 99% before

calculating firm-level consensus. I take the mean of the available expected return estimates

for each firm by the end of Saturday each week, or

µAf,w =
∑
i

µAi,f,w/If

where If is the number of analyst for firm f at week w. For most of the application of the

paper, I use firm-level return estimates based on monthly data, which is the consensus data

on the last Saturday before each calendar month end.

Market level aggregate return expectations are constructed based on the SP500 universe.

The aggregate market level return expectations for SP500 index is the firm market-cap (Mf,t)

weighted average of firm-level return expectations at the end of the month t, or

µAm,t =
∑
f

Mf,t−1∑
f Mf,t−1

µAf,t

4According to IBES, this stop-file “includes stops applied to estimates that are no longer active. This
can result from several events, e.g. an estimator places a stock on a restricted list due to an underwriting
relationship or the estimator no longer covers the company. Prior to June 1993, actual stop dates did not
exist in the archive files used to create the Detail History. An algorithm was developed to determine the
date when an estimate became invalid if, for example, a merger between companies occurred or an analyst
stopped working for a firm, etc. Estimate that are not updated or confirmed for a total of 210 days, the
estimate is stopped.”

5Engelberg, McLean, and Pontiff (2019b) allows the estimates to be at most 12 month old, in case the
estimates are not covered by the stop-file, although the choice makes little difference for the main results, as
verified in the Appendix.
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In the Appendix, I also examined the results based on equal-weighted index. The results do

not change qualitatively.

Additionally, the firm-level 12-month forward earnings to price ratio is constructed based

on IBES analyst 1 fiscal year and 2 fiscal year ahead EPS estimates. Analyst level detailed

unadjusted EPS estimates are multiplied with the number of shares outstanding at the

date when analyst issued the EPS estimates to get total earnings. Subsequently, firm-level

earnings estimates for 12-month ahead are linearly interpolation between the 1 year and 2

year ahead median earnings estimates for the firm at each month end. This methodology is

consistent with how CRSP constructing their indices and is also used in O and Myers (2020)

A.1.2 Summary Statistics

The data set on analyst target prices has good and stable coverage for a large number of

firms, especially when compared to surveys from CFOs and others that were studied in the

literature. The coverage for SP500 is significantly better than the smaller firms, which is the

reason why I choose SP500 universe as the venue for most of the empirical tests. Table A.1

shows the summary statistics for the variables used in this paper.

Panels (a) and (b) show the coverage of return expectations for the SP500 firms and

all other firms. The number of analysts who filled survey far exceeds those of CFO (From

Duke University), or retail investors (Shiller Individual), which has 390 and 81 respondents,

respectively6. At a point in time, there are about 2700 analysts from 236 brokerage firms

in the universe, among which 1410 analysts from 144 firms at a point in time cover SP500

firms, or 2.6 analysts per firm. The coverage deteriorates as the firm size becomes smaller,

as shown in Panel (b), the number of analysts peer firm reduces to only 0.71 for the entire

COMPUSTAT universe. For this reason, I use the SP500 universe as the main data set for

analysis. On the other hand, the median analyst in the data set covers 35 firms, with a

standard deviation of 22 firms. This is consistent with the practice of an analyst covering a
6These numbers are as reported in Table 1 of Adam, Matveev, and Nagel (2021a).
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sector.

For SP500 firms, analysts revise their forecasts on average every 20 days, with a standard

deviation of about 16 days. Notice that when constructing the sample, I exclude all estimates

that are older than 60 days. In Appendix A.1.3, I describe the timing of the issuance in more

detail. The existing surveys on CFOs and retail investors, are all in quarterly frequency.

Figure A.1: Coverage statistics SP500 over time
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Figure A.1 and Figure A.2 show the coverage of analyst return expectations data is stable

over time for both the S&P 500 and the CRSP-COMPUSTAT universe, respectively. For

the SP500 firms, the number of analysts submitting price targets goes from around 1200

before 2008 to about 1500 in the last decade. The average number of firms covered stays

very close to 500 over time. Figure A.2 shows coverage over time for all firms with analyst

price targets, which shows stable coverage as well.
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Figure A.2: Coverage statistics all firms over time
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Table A.1: Summary Statistics

(a) Coverage Statistics SP500

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max
nr.brokerage.firms 143.353 15.717 100 135.8 152 181
nr.analysts 1,334.926 151.938 1,076 1,167.8 1,461.8 1,580
nr.covered.firms 496.162 6.601 479 493.8 500.2 508
avg.days.since.last.revise 20.141 1.173 17.600 19.347 20.776 22.112
std.days.since.last.revise 16.374 0.852 14.633 15.697 16.953 18.422
avg.nr.analysts.per.firm 2.689 0.289 2.174 2.398 2.929 3.167

(b) Coverage Statistics All

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max
nr.brokerage.firms 230.338 27.148 125 228.8 241.2 271
nr.analysts 2,495.632 195.426 2,028 2,354.5 2,669 2,851
nr.covered.firms 3,360.691 209.747 2,713 3,282.8 3,514.2 3,652
avg.days.since.last.revise 20.017 1.033 17.523 19.393 20.481 23.032
std.days.since.last.revise 15.928 0.661 14.602 15.479 16.364 17.625
avg.nr.analysts.per.firm 0.744 0.061 0.632 0.699 0.804 0.855

(c) SP500 Firm-level Analyst Expectation Data

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
ER.analyst 101,985 0.135 0.110 −0.107 0.066 0.185 0.549
fwd.12m.E/P 103,575 0.065 0.031 −0.038 0.048 0.080 0.162
LTG 99,094 0.115 0.080 −0.114 0.074 0.149 0.462

(d) Other SP500 firm-level data

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
tot.ret 103,676 0.008 0.085 −0.255 −0.037 0.054 0.266
mcap(in bil.) 103,693 27.927 51.410 0.083 6.570 26.041 1,099.436
ann.earnings(in bil.) 103,084 1.553 3.264 −53.557 0.322 1.465 56.518
ROE 102,099 0.183 0.233 −0.701 0.089 0.233 1.504
B/M 102,360 0.483 0.415 −0.034 0.211 0.629 2.440

Notes: The sample period is from 2002-01-01 to 2018-12-31. Monthly and quarterly data
are measured at calendar month and quarter end, respectively. “ER.analyst” denotes the
analyst return expectations; “fwd.12m.E/P” denotes forward 12 month earnings expectation,
constructed using 1 and 2 fiscal year ahead earnings expectation, divided by the market cap;
“LTG” are analyst long-term growth expectation; “ann.earnings” are annual actual earnings;
“ROE” is actual annual earnings divided by total book value; “B/M” are book to market
ratio.
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The distributional statistics in Panel (c) of Table A.1 show that the average analyst

return expectation for firms in SP500 universe is 13.4%. This is much higher than the

realized average total return of about 9.6% per year, as shown in Panel (d). The positive

bias documented here is consistent with those in the previous literature, such as Engelberg,

McLean, and Pontiff (2019b) and Brav and Lehavy (2003a). Besides, the analyst earnings

forecasts statistics are similar to those documented in Bordalo et al. (2019) and O and Myers

(2020).

A.1.3 The Timing of Analyst’s Price Target Issuance

I describe in more detail the timing of analyst’s issuance of price targets. First, I examine

the frequency at which an analyst issues a price target. Second, I investigate whether

analysts issue more price targets during firms earnings announcement month.The results

in this section show that the median analyst issues a new price target every 16 days. For

analysts that issues a price target less infrequently, they tend to issue new estimates during

earnings announcement month, and particularly on or one day after earnings.

How Frequent an Analyst Issues a Price Targets

On average, a median analyst issues a new price target every 16 days for a particular firm

he/she covers. Only 2% of these estimates are the same as price targets issued previously.

Figure A.3 plots the empirical distribution of the number of days between an analyst’s

newly issued price target and his/her previous issuance on the same firm. On average, a me-

dian analyst issues a new price target every 16 days, with a mean of 20 days. Furthermore,

about 75% of the analysts would issue a new estimate each month, or within 30 days. Com-

bining this information together with Figure A.4, those analysts who issues less frequently,

say those who issue an new estimate every 60 days, will typically issue during the earnings

month each quarter.

Another question is that, among these frequent updates, how many incidences analysts
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Figure A.3: Empirical Distribution (Upper: PDF, Lower: CDF) of the No. of days between
two subsequent issuance of price targets by the same analyst for the same firm
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function.
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would maintain, or issue the same price targets as previous price targets? Table A.2 shows

that only about 2% of all issued price targets are the same as the previous one. This

percentage is much lower for return expectation. Over time, this percentage is also stable,

varying at about 1% standard deviation per quarter.

Table A.2: Summary Statistics: Percentage of Analysts Who Issues the Same Price Target
Each Quarter

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
prop.maintain.PTG 68 0.023 0.011 0.004 0.015 0.030 0.053
prop.maintain.ER 68 0.0004 0.001 0.000 0.000 0.0002 0.011

Note: “prop.maintain.PTG” is calculated as follows. First, for each analyst issued price
target for a particular firm, the previous issuance for the same firm was compared,
if available. Subsequently, for each calendar quarter, count the number of incidences
where the current issuance is equal to the previous quarter and the number that they are
not equal. “prop.maintain.PTG” is the proportion of the former (same price target)
divided by the total number of analyst issuance. “prop.maintain.ER” is the same
proportion but calculated using expected returns, instead of price target estimates.

Price Targets Issuance and Firm Quarterly Earnings Announcements

Analysts are more likely to announce their price targets during the first month of each

quarter, during which more firms announce their quarterly earnings. During firms’ an-

nouncement months, analysts typically announce new price targets on or shortly following

the announcement day.

Figure A.4 plots the number of announced price targets by all analysts in the sample of

SP500 firms for the whole sample. The total price targets announced during Jan., Apr. Jul.

and Oct. are about 48% of all announced, higher than the 33% if they are announced evenly

through out the year. This is similar to the seasonal pattern of earnings announcements.

In fact, The seasonal pattern of firms’ earnings announcements are much more dramatic

compared to the announcements of analysts’ price targets. As shown in Figure A.5, the

number of earnings announcements are almost 8 times than those in Q2, Q3 and Q4. This
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Figure A.4: Number of Price Targets Announced by Month, SP500 Universe
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suggests that analysts’ price targets change are not only driven by firms’ earnings.

Figure A.5: Number of Earnings Announcements By Month, SP500 Universe
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Note: Sample starts from 2002-01-01 to 2018-12-31. The No. of firms that report earnings
count all firms that ever are in the SP500 index throughout the sample period and
therefore can exceed 500.

During the month that firms do announce, about 50% of all new price target issuance is

concentrated on or one day after the earnings day. The distribution of the number of days

between announcement of price targets and the earnings announcement day is summarized

in Table A.3.
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Table A.3: Summary Distribution: Days Between Announcement of Price Targets and Near-
est Earnings Announcements Within Each Month

Statistic N Mean Median St. Dev. Min Pctl(25) Pctl(75) Max
days.after.earnings 282,806 −1.580 1 7.790 −30 −2 1 30

A.2 Details on the Sources of Return Expectation Data

As an overview, for analyst earnings and return forecast data, I use the IBES unadjusted

file. Firm fundamentals, SP500 membership data are fro m COMPUSTAT and daily pricing

data are from CRSP. CFO return expectation data are from Duke University CFO Global

Business Outlook that are available on their website7. Retail investor return expectations are

based on Robert Shiller’s surveys8 as well as the consumer survey conducted by University

of Michigan9.

For objective measures of expected returns, I construct aggregate price dividend ratio

using the total returns and price returns on SP500 index. I document the detail of the

construction in Appendix A.3. For the aggregate price to earning data, I used the data

kindly provided by Prof. Robert Shiller on his website. The consumption-wealth ratio,

or CAY is downloaded from Prof. Martin Lettau’s website, which is constructed based on

Lettau and Ludvigson (2004).Below are more details about these data sources.

Shiller Survey asks participants about their expected percentage increase on the Dow-

Jones index over different horizons in the future. The participants consist of two groups,

one retail investor, which is randomly selected U.S. wealthy individuals and the other is

institution, or “the investment managers section of the Money Market Directory of Pension

Funds and Their Investment Managers”. I use the data set which aggregates the raw data and

report the “the percent of the population expecting an increase in the Dow in the coming
7https://www.cfosurvey.org/
8Available on Yale University’s website: https://som.yale.edu/faculty-research-centers/centers-

initiatives/international-center-for-finance/data/stock-market-confidence-indices/united-states-stock-
market-confidence-indices

9Available on https://data.sca.isr.umich.edu/data-archive/mine.php

104



year” from July 2001 to Dec 2020, during which the data was collected monthly and the

moving average of the 6 month data are published. I also consider a data set that used and

made public by Adam, Marcet, and Beutel (2017), which uses the raw averages of expected

price growth from Shillar Survey, but only available from 2001-Q1 to 2012-Q4.

The Michigan survey asks about 500 households in the U.S. “What do you think is

the percent chance that this one thousand dollar investment will increase in value in the

year ahead, so that it is worth more than one thousand dollars one year from now?” and

calculates the average across all responses. The survey is conducted monthly. I use data

that starts from August, 2002 and end in December, 2018. I mainly use quarterly data at

the end of each calendar quarter, to be consistent with the other survey data.

GMO 7-year Asset Class Forecasts is produced quarterly by GMO, which consists of

return forecasts for 7-year ahead for different segments of equity and bond markets, including

but not limited to U.S. large caps, international small caps or emerging market bonds. The

data after 2017 are available directly on their website. For pre-2017 data, I hand-collected

the data from the internet. This is possible because the company publishes the return

forecasts dating back from the second quarter of 2000 and the publication is in the form of

a standalone imagine, as shown in Figure A.6. On websites of advisers or consultants, they

have cached historical figures of these snapshots. However, I was not able to collect the full

history of their return forecasts, in quarterly frequency.
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Figure A.6: A Snapshot of One GMO 7-year Asset Class Forecasts

Table A.4: Summary Statistics Subjective Quarterly Expectations

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
ER.analyst 70 0.143 0.037 0.095 0.114 0.161 0.270
LTG.analyst 70 0.115 0.015 0.084 0.105 0.122 0.153
ER.CFO 69 0.056 0.014 0.022 0.046 0.065 0.091
ER.Shiller.12m 46 0.051 0.021 0.018 0.036 0.068 0.108
ER.GMO.7y 70 −0.0002 0.025 −0 −0.02 0.01 0
Shiller.Inst.Pct.Up 70 77.917 5.689 62.810 74.797 81.385 92.520
Shiller.Ind.Pct.Up 70 77.293 8.486 61.270 71.978 84.220 95.280
Michigan.Pct.Up 66 53.117 6.290 36.500 48.000 57.400 63.600
ER.SPF.Pct.10y 70 6.735 0.796 5.337 6.152 7.437 7.683
No.IPO 70 42.914 22.122 1 31 61.8 85
Equity.Net.Issuance 70 −0.048 0.033 −0.150 −0.071 −0.031 0.033
tot.ret.qtrly.SP500 70 0.020 0.078 −0.219 −0.013 0.063 0.159
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Table A.5: Summary Statistics Quarterly Subjective Expectations

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
ER.analyst 70 0.143 0.037 0.095 0.114 0.161 0.270
ER.CFO 69 0.056 0.014 0.022 0.046 0.065 0.091
ER.consumer(raw) 66 53.117 6.290 36.500 48.000 57.400 63.600
ER.consumer(proj) 66 0.041 0.023 0.002 0.025 0.060 0.102
ER.buy.side 70 −0.0002 0.025 −0 −0.02 0.01 0
No.IPOs 70 42.914 22.122 1 31 61.8 85
past.6m.cum.ret 70 0.031 0.115 −0.316 −0.015 0.090 0.325

Table A.6: Correlations Between Different Subjective Expectations

ER.analyst LTG.analyst ER.CFO ER.Shiller.12m ER.GMO.7y Shiller.Inst.Pct.Up Shiller.Ind.Pct.Up Michigan.Pct.Up ER.SPF.Pct.10y No.IPO Equity.Net.Issuance tot.ret.qtrly.SP500
ER.analyst 1.00
LTG.analyst 0.26∗∗ 1.00
ER.CFO -0.27∗∗ 0.29∗∗ 1.00

ER.Shiller.12m 0.00 0.19 0.68∗∗∗ 1.00
ER.GMO.7y 0.41∗∗∗ -0.39∗∗∗ -0.06 -0.20 1.00

Shiller.Inst.Pct.Up 0.21∗ 0.03 0.20∗ 0.33∗∗ 0.26∗∗ 1.00
Shiller.Ind.Pct.Up 0.37∗∗∗ 0.20∗ 0.47∗∗∗ 0.65∗∗∗ 0.34∗∗∗ 0.57∗∗∗ 1.00
Michigan.Pct.Up -0.68∗∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.04 -0.69∗∗∗ -0.37∗∗∗ -0.27∗∗ 1.00
ER.SPF.Pct.10y 0.45∗∗∗ 0.21∗ 0.35∗∗∗ 0.30∗∗ 0.53∗∗∗ 0.50∗∗∗ 0.81∗∗∗ -0.31∗∗ 1.00

No.IPO -0.59∗∗∗ 0.11 0.20∗ -0.22 -0.31∗∗∗ -0.22∗ -0.24∗ 0.66∗∗∗ -0.12 1.00
Equity.Net.Issuance -0.01 0.05 0.45∗∗∗ 0.49∗∗∗ 0.01 0.16 0.29∗∗ -0.12 0.04 -0.27∗∗ 1.00
tot.ret.qtrly.SP500 -0.60∗∗∗ -0.18 0.44∗∗∗ 0.16 0.06 -0.05 0.03 0.15 -0.05 0.29∗∗ 0.32∗∗∗ 1.00
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A.3 Constructing Index-level Price Dividend Ratio

I follow Adam, Marcet, and Beutel (2017) to construct index level price dividend ratios

on monthly frequency. Monthly data on the level of the S&P500 index denoted as P SP
t , as

well as the monthly holding returns on the index without dividend, or RND
t are from CRSP.

The monthly total returns on S&P500 index including dividend, or RD
t are from Global

Insight10.

The monthly total dividend is

Dt = ( 1 +RD
t

1 +RND
t

− 1)P SP
t

and the annual dividend is the sum of total dividend in the last 12 month

DA
t =

11∑
i=0

Dt−i

and the log price dividend ratio used in this study is

pdt = log(PDt) = log( Pt
DA
t

)

Notice, since the return expectation from analysts are based on analyst’s forecasts of

Price of the stock instead of returns, the index return expectations by analysts correspond

to

EA
t−1(RND

t ) = EA
t (P

SP
t+1
P SP
t

− 1)

where the superscript on the expectation operator denote the analyst expectation.
10CRSP computes itself a value-weighted total returns including dividends and without dividend. However,

upon examine the monthly implied dividend series, I found outliers. For example the November 2014 monthly
dividend is almost 3 times the magnitude than that of the dividend in any other months in 2013 or 2014.
Therefore, I used the global insights total returns. The implied dividend series does not have the irregular
pattern throughout the entire sample from 1970 to 2019.
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A.4 Detailed Analysis on Sell-Side Analysts’ Contrarian Return Expectations

A.4.1 Contrarian Effects Across Different Horizons

Results from Column 2 and 3 of Table 1.3 also raise the question of which horizon of

past returns matter most to analyst future return expectation. To investigate this question,

I follow Greenwood and Shleifer (2014) to estimate the nonlinear regression of the form

µAm,t = a+ b
k∑
j=0

ωjRm,t−2,t−j + et (A.1)

where ωj = λj∑k

i=0 λ
i
is the weight on past returns and λ measures how quickly past return

die out in analysts’ memory. A value of λ equal to 1 implies the returns of different horizons

are equally important in influencing analyst future expectation while a value smaller than

one means more recent past returns are more important than distant ones.

For the empirical implementation, I run the regression A.1 using monthly data based

on cumulative quarterly returns that range from one-quarter (returns that are lagged by 3

to 6 months) to 12-quarters, so 16 regressors in total. I correct for the auto-correlations

in the return expectations by using Newey-West standard errors with 12 month lags. The

non-linear least squares estimates are presented in Table A.7.

The estimates of λ is 0.904, which shows that although analysts pay more attention to

recent past returns. Compared to the result found in Greenwood and Shleifer (2014), who

estimates the average value of λ to be 0.56 based on a host of other subjective expectations,

distant returns have much more important impact for analysts. This estimate can also be

contrasted with Malmendier and Nagel (2011), who find that distant but salient past history

play a role in investor market participation decisions.
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Table A.7: Analyst Return Expectations and Past Returns of Different Horizons

a b λ
Estimate 0.152 -0.845 0.866

Std. Error (0.009) (0.372) (0.064)

Notes: Nonlinear least squares monthly time-series regressions of analyst return expecta-
tions of market returns for the next year on cumulative quarterly returns that range
from one-quarter (returns that are lagged by 3 to 6 months) to 12-quarters:

µAm,t = a+ b
k∑
j=0

ωjRm,t−2,t−j + et (A.2)

where ωj = λj∑k

i=0 λ
i
. Newey-West standard errors with twelve-month lags are shown in

brackets. Sample starts from 2002-01-01 and ends in 2018-12-31, a total of 204 months.

A.4.2 Firm-level Results

The results in Table 1.3 show the analyst’s contrarian views are present at the market

level, which is a value-weighted average of firm-level variables. At the firm level, lower

past returns are typically associated with an increase in valuation ratio, such as book to

market ratio. An extensive literature has documented a positive relation between valuation

ratios and future stock returns. This raises the question of whether the negative relationship

between past returns and analyst expectations is merely an effect of analysts using firm’s

valuation ratios as a determinant in forming their expectation.

To answer this question, I run firm-level analyst return expectation on past returns to-

gether with a host of firm-level characteristics, including valuation ratios as control variables

µAi,t = αi + bRi,t−2,t−6 + cXi,t−2 + ei,t (A.3)

Since the paper focuses on the time-variation of analyst return expectation, I include a

firm-effect in the panel regression.

First, the results show that analysts also hold strong contrarian view at the firm-level.

In fact, when only including past 6-month returns (Column 1), the coefficient on analyst
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contrarian view has an estimate of -0.11, very close to the results on the aggregate, shown

in Table 1.3.

Second, the coefficient on past returns changes very little when including other control

variables, as shown in Column 3 and 4. Firm’s valuation ratios such as book to market ratio

does predict analyst’s return expectation, as shown in Column 2, although the economic

magnitude is much smaller, when compared to past returns.

Interestingly, Column 5 also show that analyst’s own forecasts on future earnings, both

one-year ahead and long-term, have a strong correlation with their own return expectation.

This is consistent with the results documented in Da, Hong, and Lee (2016). Furthermore,

the higher a firm’s investment, the higher analysts would expect its future expected returns

to be. To the best of my knowledge, there are not other prior literature documenting the

effect of investment on subjective return expectation. However, this is not the focus of the

current paper so I will not explore further.

In sum, the pattern that past returns are strong predictors for analyst’s return expecta-

tions are robust at the firm level and are not due to analysts using firm’s valuation ratios to

make forecasts on firms’ future returns.

A.4.3 Concerns with Stale Estimates? Return Expectations of Analyst First-time Issuance

One concern regarding the conclusion that analysts holding contrarian views is that

analysts’ stale price targets might be driving the negative relation between past returns and

future analyst return expectation. To illustrate the concern more clearly, consider an extreme

case where analysts never change their price targets. As prices go up, the expected returns

go down mechanically and the contrarian conclusion follows. Although this might still be

due to analyst intentionally holding slow-moving return expectations and thus appear to be

contrarian, or come from analyst’s limited attention or simply being lazy.

To eliminate such concerns, I show that the contrarian results are robust to a sample
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Table A.8: Cross-Sectional Determinants of Analyst Return Expectations

Dependent variable:
Analyst Return Expecations

(1) (2) (3) (4)
lag.2m.cum.6m.ret −0.111∗∗∗ −0.102∗∗∗ −0.094∗∗∗

(0.011) (0.010) (0.010)

lag.2m.CF/P −0.014
(0.012)

lag.2m.B/M 0.024∗∗∗ 0.013∗∗∗ 0.014∗∗∗
(0.005) (0.004) (0.004)

lag.2m.fwd.12m.E/P 0.519∗∗∗
(0.074)

lag.2m.LTG 0.351∗∗∗
(0.025)

lag.2m.Prof −0.021∗∗∗
(0.006)

lag.2m.Inv 0.097∗∗∗
(0.014)

Constant 0.139∗∗∗ 0.123∗∗∗ 0.133∗∗∗ 0.059∗∗∗
(0.003) (0.003) (0.004) (0.007)

Observations 99,716 91,202 92,735 86,184
R2 0.049 0.012 0.052 0.138
Adjusted R2 0.049 0.012 0.052 0.138
Residual Std. Error 0.105 (df = 99714) 0.108 (df = 91199) 0.105 (df = 92732) 0.099 (df = 86177)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Firm-level analyst return expectation regressed on past returns together with other
of firm-level characteristics together with control variables in Xi,t−2

µAi,t = αi + bRi,t−2,t−6 + cXi,t−2 + ei,t

with a firm fixed effect αi. Sample is based on SP500 firms from 2002-01-01 to 2018-
12-31. Standard errors are clustered by firm and month. “lag.2m” means variables
are lagged by 2 months. “cum.6m.ret” cumulative total returns for the firm in the
past 6 months; “CF/P” Cash flow to market cap; “B/M”: book to market ratio;
“fwd.12m.E/P” analysts 1-year ahead forward earnings divided by market cap; “LTG”
analyst long-term growth estimates; “Prof” Operating profitability defined as in Fama
and French (2006); “Inv” annual asset changes divided by assets, as dfined in Fama
and French (2006). Firm-level variables are winsorized at 1% and 99% over the entire
sample.
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containing only return expectations based on each analyst’s first-time issuance ever for a

particular firm in the entire IBES data base. Because the first-time issuance is always

fresh and there is no potential staleness due to aggregation process, such results mean the

negative correlation between analyst return expectations and past returns are mainly driven

by analyst’s contrarian views instead of staleness of analyst forecasts.

Table A.9 shows the results for the following regression

µAj,i,t = a+ bRi,t−1,t−6 + cXi,t−1 + ej,t (A.4)

where j denotes an analyst and i denotes a firms. In particular, µAi,j,t is the first estimate a

particular analyst ever issued for a particular firm for both the EPS and price targets data

bases11. Notice the analyst’s issuance are recorded on the day of the issuance within each

month and subsequently pushed to the end of the month to run on monthly data. Therefore,

to avoid look-ahead bias, I require the independent variables to enter the regression with a

one-month lag, so the predictive regression is entirely out of sample. I calculate standard

errors by clustering by firm and month.

Results in Table A.9 show that the contrarian results documented at the aggregate and

firm level also hold for the analyst level regression. Coefficients on the past returns are

statistically negative for both the entire IBES and the SP500 universe. Furthermore, the

magnitude of the coefficients across all specifications is very similar to those in the aggregate

level and firm level regression, ranging from -0.12 to -0.17. Other firm-level controls do not

drive away the contrarian effect.

In sum, these results confirm the staleness and other mechanical reasons are not the force

driving the negative coefficients, and supports the conclusion that analysts’ hold contrarian

return expectations.
11EPS forecasts go back much further than price target data, which start to have good quality data from

early 1980 and 2000, respectively. The reason for considering also EPS data base is to avoid cases in which
an analysts have potentially stale price target estimates but are not reported in the price target data base.
More details regarding how the two data bases are merged, see A.5.

113



Table A.9: Analyst-level first-time-issued return expectations vs. past past returns

Dependent variable:
Analyst First Ever Issued Return Expectation For A Firm

(1) (2) (3) (4)
past 6m.ret −0.166∗∗∗ −0.148∗∗∗ −0.126∗∗∗ −0.125∗∗∗

(0.022) (0.020) (0.022) (0.023)

B/M −0.013 −0.006
(0.015) (0.015)

Inv 0.207∗∗∗ 0.222∗∗∗
(0.037) (0.042)

OpIB −0.220∗∗∗ −0.033∗∗
(0.017) (0.014)

Constant 0.251∗∗∗ 0.272∗∗∗ 0.155∗∗∗ 0.154∗∗∗
(0.009) (0.013) (0.007) (0.012)

Universe All IBES All IBES SP500 SP500
Observations 9,282 8,310 2,887 2,795
R2 0.032 0.107 0.029 0.052
Adjusted R2 0.032 0.107 0.029 0.051
Residual Std. Error 0.335 (df = 9280) 0.299 (df = 8305) 0.189 (df = 2885) 0.187 (df = 2790)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
SEs are clustered by firm and month

Note: Sample period: 2002-01-01 to 2018-12-31. An analyst’s first ever issued return expec-
tation is regressed on the firm-level monthly variables including (lagged 1-month) cumulative
past 6 month returns and other control variables. Analyst first-ever return expectation is
based on analyst’s first price targets ever issued in both EPS and price targets data in
I/B/E/S data base. “lag.1m” denotes the variables are lagged by 1 month. “B/M”, “Inv”
and “OpIB” are book to market, investment and operating profitability variables defined as
in Fama and French (2006). Independent variables are winsorized at 1% and 99%.
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A.5 Merging Analyst Price Target Forecasts with EPS Forecasts

I construct an analyst-level historical coverage data set based on detailed analyst EPS

and price target forecast data. For each analyst, before each date the analyst issues a price

target, I trace all of the EPS and price target he/she has ever issued in the past. This set of

firms are defined his/her coverage12.

The EPS forecasts is the longest available analyst survey and has the best coverage,

which goes back to 1980-01-01. The I/B/E/S database identify an analyst through a unique

“analyst code”, which I use to merge between the price target file and the EPS forecast file.

I first create a EPS-based coverage list in which all the firms for which an analyst has

ever issued an EPS forecasts are included. The first ever announced EPS estimate of an

analyst is considered as the start of the analyst’s career. Additionally, the first and the

last (or current) date on which he/she issues an eps estimate for a firm, is recorded as the

start/end of his/her coverage for that particular firm. A similar coverage list is created for

the price target data set. Empirically, the price target coverage is a subset of the coverage

of EPS forecast for most of the analysts.

I make several filters to get rid of potential erroneous observations. First, I only include

analyst’s 1-, 2- fiscal year and 1-fiscal quarter ahead forecasts to make the EPS coverage

list. The reason is that these periods are the most commonly surveyed horizons and are less

prone to errors. Second, if an analyst stops appearing in the EPS file and reappears after

36-month, I count the restarting date as the analyst’s career start. This is because only very

few observations (6% of all observations) actually do reappear after 3 years. Analysts do

update the forecasts quite often. The reason for not updating is mostly because of erroneous

analyst identification code. Third, I delete analysts who cover more than 200 firms. The

average number of firms covered by an analyst in the EPS data base is about 41 with a
12Admittedly, this coverage might not be complete. An analyst might be covering other firms and has not

issued any EPS or price targets in the past for those firms. However, this potential under-estimation will not
affect the results on the impact of past experience on the future price target forecasts, if the under-estimation
is systematically correlated with the past experienced returns/earnings of the covered firms.
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median of 33. Analysts who cover more than 200 firms are highly unusual, which amounts

to less than 0.1% of all observations.

Table A.10: Summary statistics analyst-level historical coverage

Statistic N Mean Median St. Dev. Min Pctl(25) Pctl(75) Max
no.firms.covered 14,352 18.224 10 22.099 1 3 26 189
no.firms.w.eps 14,352 17.160 9 21.782 0 2 24 186
no.firms.w.ptg 14,352 12.663 6 15.745 1 2 18 168
no.firms.w.eps.only 14,352 5.562 1 13.042 0 0 5 170
no.firms.w.ptg.only 14,352 1.065 0 3.911 0 0 1 122
no.firms.w.both 14,352 11.598 5 15.133 0 1 16 167
no.months.analyst.career 14,352 82.932 51.567 85.366 0.000 15.633 126.067 462.433

Note: Analyst-level historical coverage data set for analysts who issues at least 1 price
target (ptg) during the entire sample period from 1999-01-01 to 2020-02-01. Analyst-
level detailed unadjusted EPS data set is from 1980-01-01 to 2020-02-02 and price
target data set is from 1999-01-01 to 2020-02-01. “no.firms.covered” is the number of
unique firms that an analyst issues at least one price target and/or eps forecasts for.
“no.months.analyst.career” is the number of months from the first ever price target or
eps to the last time the analyst issues a ptg or eps.

The EPS-based coverage list is merged with analyst-level price target issuance to obtain

the coverage history for each individual analyst that ever issues at least one price target.

Table A.11 summarizes the analyst-by-analyst coverage data set. The data set contains

more than 14 thousand analysts. The average number of firms an analyst covers is about 18

firms, consistent with industry standard of about 10 to 30 names per analyst. The coverage

is skewed to the left, with a median analyst only covers 10 firms.

Typically, an analyst submit more EPS forecasts than price targets for firms he/she

covers. Among the 18 firms that an average analyst covers, more than 16 has an eps forecasts

and only 1 firm has only price targets but no eps forecasts. The less price target forecasts

as compared to EPS is consistent with the facts documented in previous literature, such as

Da, Hong, and Lee (2016).

This data set contains the point-in-time data for all the firms an analyst has ever issued

EPS or price target forecasts, before he/she issues a new price targets. Furthermore, it also
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has the first-ever issuance the analyst ever makes for either EPS or price targets, which I

use to construct the number of years experience variable. This data is the basis for studying

the impact of experience on analyst’s return expectations.

This heterogeneity in the duration of career is helpful for the analysis on analyst’s past

experience. A median analyst typically last for about 4 years between his/her first issuance

and last, with a standard deviation of about 7 years. Notice that there are some veterans

who go on to have a career spanning almost four decade. One such analyst that I am able to

trace online is Chuck Cerankosky from Northcoast Research, who have started his career at

Rouston Research in 1979 and is still active. Notice that this sample only include the analysts

who ever issues a price target. Compared to analysts who ever issues an EPS estimate only

but not necessarily a price target, whose median career span is about 31 months, the analysts

in this sample have substantially longer professional career.

Table A.11: Summary Statistics: Analyst Coverage History

(a) Point-in-time coverage statistics

Statistic N Mean Median St. Dev. Min Pctl(25) Pctl(75) Max
Coverage.eps.forecasts.per.analyst 55,093 13.084 12 9.407 1 5 19 116
Coverage.price.targets.per.analyst 55,093 9.110 7 7.496 1 3 14 81
Overlap.coverage.per.analyst 55,093 8.294 6 7.142 1 2 13 73

(b) No. firms covered over an analyst’s career

Statistic N Mean Median St. Dev. Min Pctl(25) Pctl(75) Max
No.firms.covered.EPS.analyst.career 12,058 18.639 11 21.625 1 3 26 184
No.firms.covered.PTG.analyst.career 12,058 13.048 7 15.062 1 2 19 127
Total.No.months.analyst.career 12,058 75.905 47.417 78.798 0.000 17.500 109.933 459.267

Note: “Coverage.eps.forecasts.per.analyst” ( “Coverage.price.targets.per.analyst”) is the
number of unique firms an analyst issues at least one EPS (price target) forecast
in a given calendar year; “Overlap.firms.per.analyst” is the number of firms an ana-
lyst issues at least one EPS forecast and one price target forecast in a given calendar
year. “No.firms.covered.EPS.analyst.career” (No.firms.covered.PTG.analyst.career) is
the unique number of firms an analyst has issued at least one EPS (price target)
forecast over his/her career; “Total.No.months.analyst.career” is the total number of
months between the first and the last time an analyst ever issues an EPS/Price Target
forecasts in the data base.
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The analyst-level point-in-time coverage data is then merged with daily stock returns from

CRSP as well as quarterly firm-level earnings data to obtain the analyst-level experienced

returns and earnings variables used in the analysis.

Table A.12 shows that the sample summary statistics 13. A typical analyst would cover

6 firms and has an career length of a bit more than 4 years, or 50 months. Both number of

firms covered and the career length has a large standard deviation, amounting to 22 firms

and 84 months, respectively.

Table A.12: Summary statistics analyst-level historical coverage

Statistic N Mean Median St. Dev. Min Pctl(25) Pctl(75) Max
no.firms.covered 14,352 18.224 10 22.099 1 3 26 189
no.firms.w.eps 14,352 17.160 9 21.782 0 2 24 186
no.firms.w.ptg 14,352 12.663 6 15.745 1 2 18 168
no.firms.w.eps.only 14,352 5.562 1 13.042 0 0 5 170
no.firms.w.ptg.only 14,352 1.065 0 3.911 0 0 1 122
no.firms.w.both 14,352 11.598 5 15.133 0 1 16 167
no.months.analyst.career 14,352 82.932 51.567 85.366 0.000 15.633 126.067 462.433

Note: Analyst-level historical coverage data set for analysts who issue at least 1 price tar-
get (ptg) during the entire sample period from 1999-01-01 to 2020-02-01. Analyst-level
detailed unadjusted EPS data set is from 1980-01-01 to 2020-02-02 and price tar-
get data set is from 1999-01-01 to 2020-02-01. “no.firms.covered” is the number of
unique firms that an analyst issues at least one price target and/or eps forecasts for.
“no.months.analyst.career” is the number of months from the first ever price target or
eps to the last time the analyst issues a ptg or eps.

A.6 Simulating Return Expectations

To show that the model proposed has the ability to capture the key empirical moments

for both return predictability as well as the heterogeneous return expectation dynamics, I

conduct simulation exercises.

I first simulate 500 quarters of data based on the system from 1.3 to 1.7. Panel A in

Figure A.7 shows the simulated data over time, which plots the predictor xt as dividend
13In Appendix A.5, I document in more details how the data set is constructed
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price ratio against true expected return and realized returns.

Panel B of Table A.7 demonstrate the rational of using realized returns. In this sample,

when combining realized returns with the observable predictor through Kalman Filter, the

projected return out-of-sample is a much more accurate estimate for true expected returns

compared to simple predictive regression using xt. Of course, this result is based on the

correct prior beliefs on the covariance structure. In fact, this technique of using Kalman

filter to improve return forecasts are empirically verified in Van Binsbergen and Koijen

(2010) and Pástor and Stambaugh (2009).

Figure 1.2 shows subjective return expectations generated from simulated data. These are

annual series from 150th quarter onward in the simulation. ẼRDR

t denotes the (annualized)

return expectation formed based on the prior that W̃ µ
t = 0.9687, β̃=0.9 and Ẽr = 0.03, where

W̃ µ
t = κµσµ

σv,t
is defined in Section 1.2.3; ẼRCF

t denotes the (annualized) return expectation

data based on the prior that W̃ µ
t = 0.01 β̃=0.96 and Ẽr = 0.02. The other parameters in

these two expectation series are calibrated to match moments of actual historical data of

dividend yield and realized returns.

Figure 1.2 shows the model can match closely the heterogeneous return expectations

graph 1.1 observed in the data, for a set of selected parameter values. As shown in the figure,

even though the underlying data are the same, two forecasters can reach very different return

expectation through the expectation formation model of 1.8, because of their different prior

beliefs on how cash flows and discount rate interact and how important are cash flow process

in driving asset prices.

A.7 Deriving Subjective Return Expectation Dynamics

I derive the expectation formation dynamics described in Equation (1.8). I further provide

expressions for the steady-state parameters used in Section 1.2.3.

Investors infer the value of the unobservable expected returns µt based on information
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Figure A.7: Returns, Predictors and Return Expectation in Simulated Data

Note: In Panel A, 500 quarters of data are simulated based on the system in 1.3 to 1.7.
Observable parameters are calibrated based on actual data actual quarterly data on
returns and dividend yield: a = 0.97, Er = 0.02, Ex = 0.029, σr = 0.08, ρrv = ρuv =
−0.89. Additional parameters are chosen based on results from Pástor and Stambaugh
(2009): β = 0.9, σu = 0.78, σw = 0.0078, ρuw=-0.71 and ρvw = 0.5198.
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set Ft they observe from time 1 through time t

Ft = (z1,z2, ..., zt)

zt = (rt, x′t)′

Their prior belief, which is based on F0, is that the shocks follow multivariate normal:


ut+1

vt+1

εµ,t+1

 |F0 ∼ N




0

0

0

 ,

σuu σuv σuµ

σuv σvv σvµ

σuµ σvµ σµµ



 (A.5)

where ut and vt are observable shocks to the returns and predictor vector xt, respectively.

εµ,t is shock to the unobservable expected return process defined in Equation (1.5).14 Since

they also believe that the dynamics of expected returns, predictors follow (1.5) and (1.6),

respectively, they consistently believe that


rt+1

xt+1

µt+1

 |F0 ∼ N




Er

Ex

Er

 ,

Vrr Vrx Vrµ

Vrx Vxx Vxµ

Vrµ Vxµ Vµµ



 (A.6)

where the parameters in the variance-covariance matrix is a function of the parameters in

(A.5) and the persistent parameters.

The investors use Kalman Filter to form their expectations. For convenience, denote

at = Ẽ(µt|Ft−1) bt = Ẽ(µt|Ft) ft = Ẽ(zt|Ft−1)

as the conditional subjective expectations based on different information set. Furthermore,
14Notice here the shocks are following multivariate normal but the parameter values governing the variance-

covariance matrix already are subject to investors’ own prior beliefs.
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let

Pt = Ṽ ar(µt|Ft−1), Qt = Ṽ ar(µt|Ft), Rt = V̂ ar(zt|µt, Dt−1)

St = V̂ ar(zt|Ft−1), Gt = Ĉov(z, µt|Ft−1)

be the subjective conditional variances that investors obtain after observing data.

Applying the updating algorithm of Kalman Filter,15 we have

Pt = β2Qt−1 + σµµ (A.7)

St =

Qt−1 + σuu σuv

σuv σvv

 (A.8)

Gt =

βQt−1 + σuµ

σvµ

 (A.9)

Rt = St −GtP
−1
t G′t (A.10)

Qt = Pt(Pt +G′tR
−1
t Gt)−1Pt (A.11)

at = (1− β)Er + βbt−1 (A.12)

ft =

 bt−1

(I − A)Ex + Axt−1

 (A.13)

So the updated return expectation is

bt = at +G′tS
−1
t (zt − ft)

= at +mt(rt − bt−1) + n′t
[
xt − Ẽt(xt|Dt−1)

]
= at +mtut + n′tvt (A.14)

15The internet appendix of Pástor and Stambaugh (2009) provides a similar derivation. See Durbin and
Koopman (2012) for a more general treatment of Kalman filters and the state-space model in general.
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and we arrive at Equation (1.8), since

ẼRt|t := bt

and

ẼRt|t−1 := at.

The parameters that govern the dynamics, mt and nt are dependent on the subjective

prior beliefs of parameter values in (A.6). To see this, understand that the Kalman Filtering

process from Equation (A.7) to (A.14) are recursive relations starting from t = 2, which

depends on values of parameters in t = 1 when investors need to start from

a1 = Er

P1 = Vµµ

f1 = Ez

S1 = Vzz

G1 = Vzµ

R1 = S1 −G1P
−1
1 G′1

Q1 = P1(P1 +G′1R
−1
1 G1)−1P1

b1 = a1 +G′1S
−1
1 (z1 − f1)

These values are based on the prior belief parameters and as analyzed in Section 1.2.3, not

all of the parameters are identifiable through historical data, leaving room for heterogeneous

expectation dynamics.

We know that (
mt n′t

)
= Cov(z′t, µt|Ft−1)V ar(zt|Ft−1)−1

which is a function of Qt defined in (A.11). The steady-state value of Qt, computed from
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(A.11), is

Q =

√
λ2

1 − 4λ2 − λ1

2
λ1 = (1− β2)V ar(u|v) + 2βCov(u, εµ|v)− V ar(εµ|v)

λ2 = Cov(u, εµ|v)2 − V ar(u|v)V ar(εµ|v)

so the steady-state values of the mt and nt are

m = [βQ+ Cov(u, µ|v)] [Q+ V ar(u|v)]−1 (A.15)

n = (σµv −mσuv)σ−1
vv (A.16)

A.8 Understanding What Drives Differences in Return Expectations

I provide a more technical analysis to support the intuitive explanations in Section 1.2.3.

Furthermore, I provide more details about how I make the plot of Figure 1.3.

The two prior beliefs can lead to either contrarian/extrapolative return expectations. To

understand how, note that return expectations defined in (1.8) in the steady-state depend

on the past returns through

m̃ = [βQ+ Cov(ut, εµ,t|v)] /[Q+ V ar(ut|vt)]

where Q is the steady-state variance of Ẽ(rt|Ft).16 An investor will only appear to be

contrarian if and only if m̃ < 0 or

Cov(ut, εµ,t|vt) < −βQ
16The expressions of Q is given in Appendix A.7
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This condition is equivalent to

ρdµ < −
βQ

σdσµ
+ σv − ρuvσu

σd
ρvµ (A.17)

≈ − βQ

σdσµ
+ 1.58ρvµ (A.18)

where the approximation (A.18) is due to the fact that investors will have a fairly accurate

estimates from the data about (σv − ρuvσu)/σd.17

This condition (A.18) shows whether an investor appears contrarian depends largely on

the value of ρvµ: if ρvµ is very large and positive, investors will likely be a contrarian because

a large set of values of ρdµ would lead to a negative m̃.

Furthermore, based on the present value ration in Equation 1.13, the value of ρvµ is given

by:18

ρvµ = κµσµ
σv
− ρgµ

κgσg
σv

(A.19)

where σv is the volatility of the dividend price ratio. This condition shows that the value of

ρvµ depends on 1). Wµ := κµσµ
σv

, or how investors interpret the importance of discount rate

news and 2). ρµ,g: how they interpret expected cash flow news for future returns.

Notice thatWµ := κµσµ
σv

does not equal exactly to the conventional variance decomposition

of dividend price ratio, or

Vµ,dp = V ar(µt)
V ar(dpt)

= 1− φ2

1− β2
1

∆ + 1
W 2
µ

(A.20)

17This is because ρuv is easy to measure empirically so we have ρuv ≈ ρr,dp = −0.89, which leads to
(σv − ρuvσu)/σd = 1.58 and the last approximation obtains.

18Multiply both sides of the equation and taking expectation
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where

∆ :=
κ2
µ(β − φ)2

1− β2

the Equation (A.20) are obtained by taking unconditional variance on Equation (1.14) and

(1.5) for the denominator and numerator, respectively.

Equation (A.20) shows that althoughWµ and the Vµ,dp are not the same,Wµ does increase

with Vµ,dp if the persistent parameters are held to be constant.

A.9 Estimating Expectation Formation Process

I estimate the system from (1.15) to (1.19) in three steps. First, I estimate the shocks

εµ,t, εg,t and εd,t and parameters in the predictive system as captured in equation (1.15),

(1.16) and (1.17) together with the parameters in the (1.2). To estimate this, I write the

system into a State-Space Form and estimate the parameters using Kalman Filter based on

maximum-llikelihood function. I write down the state-space form of the system in Section

A.9.1. Second, the parameters in Equation (1.18) are estimated separately by Ordinary-

Least-Squares together with the residuals. Finally, the correlations between innovations in

predictors xt and εµ,t, εg,t and εd,t are using these estimated series. 19

A.9.1 A Simplified System With Return Expectations

r̂t+1 = 1
L(β) µ̂

A
t+1 + ε∆d,t+1 − ρκµ(β)εµ,t+1 + ρκg(φg)εg,t+1 (A.21)

d̂pt+1 = φgd̂pt + κµ(β − φg)
L(β) µ̂At+1 + κµεµ,t+1 − κgεg,t+1 (A.22)

µ̂At+1 = βµ̂At + L(β)εµ,t+1 (A.23)

19These estimates are consistent estimates of the parameters. Potentially, I can use these estimates to
re-estimate the entire system all together using Maximum-likelihood. The resulting estimates are similar to
the three-step approach estimated here. Details of the estimation is provided in A.9.
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where

L(β) =
3∑

k=0
βk

κµ(β) = 1
1− ρβ

κg(φg) = 1
1− ρφg

Bdp,µ(β, φg) = κµ(β − φg)

and 
ε∆d,t+1

εµ,t+1

εg,t+1

 ∼ N

0,


σ2
d σµd σgd

σµd σ2
µ σµg

σgd σµg σ2
g



 (A.24)

This system A.21 to A.24 is a linear system of underlying shocks and non-linear with respect

to parameters

θ = (φg, β, σd, σµ, σg, σµd, σgd, σµg)′

Given the normality assumption in A.24, the system can be estimated by Maximum-

likelihood Estimation. I write the system into state-space form.

The observable vector is

yt+1 =


r̂t+1

d̂pt+1

µ̂At+1


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and the latent processes

αt =



µt+1

µt

d̂pt+1

d̂pt

εd,t+1

εµ,t+1

εg,t+1


The dynamics of the measurement equations are captured by


r̂t+1

d̂pt+1

µ̂At+1

 =


0

0

0

+


0 1

L(β) 0 0 1 −ρκµ ρκg

0 0 1 0 0 0 0

1 0 0 0 0 0 0





µt+1

µt

d̂pt+1

d̂pt

εd,t+1

εµ,t+1

εg,t+1



+


0

0

0



Z =


0 1

L(β) 0 0 1 −ρκµ ρκg

0 0 1 0 0 0 0

1 0 0 0 0 0 0



d =


0

0

0



ηt =


0

0

0


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H = 03×3

and the state-equation is characterized by



µt+1

µt

d̂pt+1

d̂pt

εd,t+1

εµ,t+1

εg,t+1



=



0

0

0

0

0

0

0



+



β 0 0 0 0 0 0

1 0 0 0 0 0 0
Bdp,µ(β,φg)

L(β) 0 φg 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





µ̂At

µ̂At−1

dpt

dpt−1

εd,t

εµ,t

εg,t



+



0 L(β) 0

0 0 0

0 κµ(β) −κg(φg)

0 0 0

1 0 0

0 1 0

0 0 1




εd,t+1

εµ,t+1

εg,t+1



T =



β 0 0 0 0 0 0

1 0 0 0 0 0 0
Bdp,µ(β,φg)

L(β) 0 φg 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



c =



0

0

0

0

0

0

0


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and

εt =


εd,t+1

εµ,t+1

εg,t+1



R =



0 L(β) 0

0 0 0

0 κµ(β) −κg(φg)

0 0 0

1 0 0

0 1 0

0 0 1



Q =


σ2
d σµd σgd

σµd σ2
µ σµg

σgd σµg σ2
g


where Σx has been pre-estimated using the OLS residuals. The system has an initial

state vector

α1|0 = (I7 − T )−1c

vec(P1|0) = (I49 − T ⊗ T )−1vec(RQR′)

A.9.2 A Simplified System With Dividend Expectations

∆d̂t+1 = 1
L(φg)

ĝAt+1 + ε∆d,t+1 (A.25)

d̂pt+1 = βd̂pt + Bdp,g(β, φg)
L(φg)

ĝAt+1 + κµεµ,t+1 − κgεg,t+1 (A.26)

ĝAt+1 = φgĝ
A
t + L(φg)εg,t+1 (A.27)
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where

L(φg) =
3∑

k=0
φkg

κµ(β) = 1
1− ρβ

κg(φg) = 1
1− ρφg

Bdp,µ(β, φg) = κg(β − φg)

and 
ε∆d,t+1

εµ,t+1

εg,t+1

 ∼ N

0,


σ2
d σµd σgd

σµd σ2
µ σµg

σgd σµg σ2
g



 (A.28)

This system A.25 to A.28 is a linear system of underlying shocks and non-linear with respect

to parameters

θ = (φg, β, σd, σµ, σg, σµd, σgd, σµg)′

Given the normality assumption in A.28, the system can be estimated by Maximum-

likelihood Estimation. I write the system into state-space form.

The observable vector is

yt+1 =


∆d̂t+1

d̂pt+1

ĝAt+1


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and the latent processes

αt =



ĝAt+1

ĝAt

d̂pt+1

d̂pt

εd,t+1

εµ,t+1

εg,t+1


The dynamics of the measurement equations are captured by


∆d̂t+1

d̂pt+1

ĝAt+1

 =


0

0

0

+


0 1

L(φg) 0 0 1 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0





ĝAt+1

ĝAt

d̂pt+1

d̂pt

εd,t+1

εµ,t+1

εg,t+1



+


0

0

0



Z =


0 1

L(φg) 0 0 1 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0



d =


0

0

0



ηt =


0

0

0


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H = 03×3

and the state-equation is characterized by



ĝAt+1

ĝAt

d̂pt+1

d̂pt

εd,t+1

εµ,t+1

εg,t+1



=



0

0

0

0

0

0

0



+



φg 0 0 0 0 0 0

1 0 0 0 0 0 0
κg(β−φg)
L(φg) 0 β 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





ĝAt

ĝAt−1

d̂pt

d̂pt−1

εd,t

εµ,t

εg,t



+



0 0 L(φg)

0 0 0

0 κµ(β) −κg(φg)

0 0 0

1 0 0

0 1 0

0 0 1




εd,t+1

εµ,t+1

εg,t+1



T =



φg 0 0 0 0 0 0

1 0 0 0 0 0 0
κg(β−φg)
L(φg) 0 β 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



c =



0

0

0

0

0

0

0


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and

εt =


εd,t+1

εµ,t+1

εg,t+1



R =



0 0 L(φg)

0 0 0

0 κµ(β) −κg(φg)

0 0 0

1 0 0

0 1 0

0 0 1



Q =


σ2
d σµd σgd

σµd σ2
µ σµg

σgd σµg σ2
g


where Σx has been pre-estimated using the OLS residuals. The system has an initial

state vector

α1|0 = (I7 − T )−1c

vec(P1|0) = (I49 − T ⊗ T )−1vec(RQR′)

A.10 Consistency in Analysts’ Return and Cash Flow Expectations

In the estimation framework presented in the previous section, the cash flow expectation

is backed out through the present value relation based on return expectation and valuation

ratio similar to the the VAR framework developed by Campbell (1991). Inherently, this

framework assumes that subjective return and cash flow expectations of market participants

are consistent with the present value model and the mean-reverting expectation dynamics.

To see if analysts’ own expectations are indeed consistent, I compare analysts’ own cash flow
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expectations, which is observable, with the implied cash flow expectations based on return

expectations.

In summary, I find that directly observed analysts’ cash flow expectations are broadly

consistent with the implied cash flow expectations based on return expectations and price

fundamental ratios, although there exists finer nuances in the observed expectation dynamics

directly reported by analysts.

Table A.13 shows the correlations between various directly observed cash flow expec-

tations (shocks) with implied expectations (shocks). First, implied cash flow expectations

(shocks) are strongly, although imperfectly correlated with analysts’ own cash flow expec-

tations (shocks). In particular, as shown in Table A.13a and A.13b, the implied dividend

growth expectations and analysts’ earnings growth expectations are 82% correlated and the

shocks are about 50% correlated. The imperfect correlation could potentially be due to three

reasons: first, measurement errors on the expectations series; second, the expectations on

returns or cash flows are more complicated than a simple AR(1) process, for example, it

contains a term structure of cash flow expectations; third, analysts’ expectations processes

are not perfectly consistent. As a result of the imperfect correlation, the correlation between

the shocks on return expectations and cash flow expectations are less strong than estimated

through the model, as shown in Table A.13b. Finally, the multi-variable regression results

in Table A.13c shows that the implied cash flow expectations are correlated by more than

one observed cash flow expectation measure, including earnings and dividend expectations.

Table A.14a shows the variance decomposition based on directly used cash flow and re-

turn expectations measures by regressing the expectation measures on the dividend price

ratio. The coefficients on the dividend price ratio from the regression can be interpreted

directly as the variance explained by the expectation measure. Despite the implied cash

flow growth expectations being imperfectly correlated with a particular observed cash flow

expectations, the results show that cash flow expectations alone explains 99% of price div-

idend ratio variation, while return expectations only explain about 10%. These results are
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Table A.13: Correlations Between Implied Dividend Growth Expectation and Analysts’ Cash
Flow Expectations

(a) Pair-wise correlations between implied and directly reported cash flow expectations

g Analyst.Div.Growth Analyst.E.Growth Analyst.Payout LTG Actual.Div.Growth
g 1.00

Analyst.Div.Growth 0.79∗∗∗ 1.00
Analyst.E.Growth 0.82∗∗∗ 0.81∗∗∗ 1.00
Analyst.Payout -0.03 -0.06 -0.20 1.00

LTG 0.51∗∗∗ 0.46∗∗∗ 0.54∗∗∗ 0.11 1.00
Actual.Div.Growth 0.67∗∗∗ 0.82∗∗∗ 0.73∗∗∗ -0.30∗∗ 0.37∗∗∗ 1.00

(b) Pair-wise correlations between implied and directly reported cash flow expectation shocks

implied.shock.ER implied.shock.g implied.shock.d shock.analyst.earnings shock.analyst.div.growth shock.analyst.LTG
implied.shock.ER 1.00
implied.shock.g -0.54∗∗∗ 1.00
implied.shock.d -0.38∗∗∗ -0.11 1.00

shock.analyst.earnings -0.04 0.50∗∗∗ -0.24∗ 1.00
shock.analyst.div.growth -0.15 0.47∗∗∗ -0.06 0.80∗∗∗ 1.00

shock.analyst.LTG -0.19 0.36∗∗∗ 0.00 0.51∗∗∗ 0.51∗∗∗ 1.00

(c) Linear Regressions With Multiple Regressors

Dependent variable:
g

(1) (2) (3)
Analyst.Div.Growth 0.618∗∗∗ 0.268∗∗

(0.079) (0.132)

Analyst.E.Growth 0.738∗∗∗ 0.479∗∗∗
(0.158) (0.125)

Analyst.Payout 0.312 0.223
(0.195) (0.216)

LTG 0.496 0.477
(1.852) (1.398)

Constant −0.073∗∗∗ −0.252 −0.219
(0.025) (0.190) (0.190)

Observations 62 62 62
R2 0.626 0.689 0.728
Adjusted R2 0.619 0.673 0.708
Residual Std. Error 0.076 (df = 60) 0.070 (df = 58) 0.066 (df = 57)
F Statistic 100.284∗∗∗ (df = 1; 60) 42.768∗∗∗ (df = 3; 58) 38.058∗∗∗ (df = 4; 57)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: g is the implied cash flow expectation from the model estimation. All statistics are
calculated from the sample between 2003-Q1 to 2019-Q4, where all series have data
available.
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consistent with the findings presented in the previous section, confirming the model are

broadly consistent with the data. The small and insignificant coefficient on analyst’s long-

term growth expectation is also interesting, which means that most of the variation of price

dividend ratios, from analyst’s own perspective, is due to short-term cash flow expectations,

consistent with the findings of O and Myers (2020). In their framework, O and Myers (2020),

however, they use the CFO expectations as the measure for return expectations. As shown

in the right-most column of Table A.14a, such assumption can result in different conclusions

regarding how return expectations are related to prices and cash flow expectations, which is

demonstrated by the different signs of the regression coefficients between analyst and CFO

return expectations.

Finally, Table A.14b shows that variance decomposition using the subjective expectations

based on directly observed cash flow expectations are very different from that using the VAR

framework based on dividend price ratio employed in Cochrane (2011a). The implied long-

run coefficient on log(D/P) in the return equation from this framework is 0.678, which means

that based on the same sample period, an econometrician would conclude that discount rate

variation is the main driver behind the variation of price dividend ratio, instead of short-term

cash flow growth. These results highlight the difference between the subjective expectations

and objective expectation, when making inference on variance decomposition of fundamental

to price ratios.

Overall, the results in this section show that analysts’ expectations about future returns

and cash flows are broadly consistent with the simple present value model described above.

However, the reported expectation data might have nuances that is not captured by the

simple mean-reverting process that worth further research. Potentially, there might be a

term structure on both return and cash flow expectations that are not considered in the

current model. However, this is outside the scope of the current paper so I leave to future

researchers.
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Table A.14: Variance Decomposition of Log Dividend Price Ratios

(a) Variance Decomposition Subjective Expectations Analysts

Dependent variable:
Div.Growth.1y LTG ER.Analyst ER.CFO

(1) (2) (3) (4)
log(DP) 0.992∗∗∗ 0.049 0.098∗∗∗ −0.063∗∗∗

(0.214) (0.031) (0.032) (0.021)

Adjusted R2 0.615 0.209 0.183 0.403

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) Variance Decomposition VAR as in Cochrane (2011a)

Dependent variable:
Next.Year.Excess.Ret Next.Qtr.Log(DP)

(1) (2)
Log(DP) 0.362∗∗∗ 0.839∗∗∗

(0.128) (0.101)

Implied Long Run Coefficent 0.678

Adjusted R2 0.088 0.700

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix B: Appendix for Chapter 2: "Asset Prices When

Investors Ignore Discount Rate Dynamics"

B.1 The Return Expectation Biases Due to CDR Assumption

I demonstrate why assuming a constant discount rate could result in a bias in return

expectations and analyze how the bias is related to firm-level characteristics.

B.1.1 The Setup

We start by considering a general discounted cash flow model with potentially time-

varying discount rates and expected cash flows. Let V0 be the be the value of an equity

that pays ct, t = 1, 2, ...,∞ into the future. Further denote Mt as the expected return, or

discount rate known at the beginning of period t, for the cash flow to be paid on t+ 1. For

the convenience of exposition, let µt = log(Mt). We have

V0 = E0

[ ∞∑
t=0

(
t∏

s=0
e−µs)ct+1

]

=
∞∑
t=0

E0

[
(
t∏

s=0
e−µs)ct+1

]
(B.1)

If one ignores the dynamics of discount rate and instead assumes a constant discount

rate, πt = log(Πt), he/she would valuate the stock using

Ṽ0 = E0

[ ∞∑
t=0

e−tπ0ct+1

]

=
∞∑
t=0

[
e−tπ0E0 (ct+1)

]
(B.2)

Equation (B.2) represents the valuation formula taught in a typical undergraduate or MBA
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class: first project future cash flows to obtain E0 (ct+1) and subsequently apply a discount

rates, either using weighted average cost of capital (WACC) or a CAPM model to obtain a

value for πt. This valuation formula is also a log version of the commonly used Discounted

Cash Flow Models (DCF) as in popular valuation textbooks, such as Damodaran (2012).

To understand the implication of the constant discount rate assumption more precisely,

I follow Hughes, Liu, and Liu (2009) to assume the dynamics of the discount rates µt and ct:

µt = rf + βtλ (B.3)

βt = β̄ + σβεβ,t (B.4)

ct+1 = ctexp
[
g + σc(ρεβ,t+1 +

√
1− ρ2εc,t+1)

]
(B.5) εβ,t

εc,t+1

 ∼ N

0,

1 0

0 1




The discount rate dynamics specified in (B.3) is different from a constant discount rate

for two reasons. First, it has own volatility, which leads to uncertainty in prices with respect

to discount rate itself. More specifically, this dynamics in this particular specification is due

to the conditional βt 1. The volatility of the risk premium is therefore

σµ := λσβ.

This specification is consistent with a version of the conditional CAPM model2. If investors

ignore the dynamics of βt and instead use a static CAPM, he/she would use πt = β̄λ instead.

Second, the discount rate is correlated with stochastic discount cash flows, which impacts

the prices through ρ. 3.
1The analytical difference to be presented is invariant if the risk premium λ is stochastic, as shown in

Hughes, Liu, and Liu (2009).
2See for example Jagannathan and Wang (1996) for conditional CAPM.
3Notice that here the discount rates have a simple term-structure. In the case of discount rates have a

term structure. µt follow the same dynamics with respect to the horizon t. This makes the analysis less
complicated. In a fully specified model such as those of Ang and Liu (2004), discount rates also have a
potential term structure. Besides, the discount rate shocks are i.i.d., Ang and Liu (2004) also consider cases
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The cash flow process, as specified in Equation (B.5), has a constant growth g and

an interaction with the discount rates, through ρ. Notice that the cash flow shocks are

permanent growth shocks, while the discount rate shocks are temporary. This is reasonable

as in general cash flows grow at a positive rate in the long run while discount rate should

be stationary in the long run. The specifications also means that we can interpret a firm’s

discount rate volatility as mainly due to its systematic risk through βt, while the cash flow

shocks are mostly idiosyncratic, which drives most of the idiosyncratic volatility in stock

returns.

B.1.2 The Biases

Under the specifications in Equation (B.3) through to (B.5), the rational “fair-value” of

the equity should be valued, according to (B.1) at

V0 = c0
exp(g + 1

2σ
2
c )

exp(µ0)
{

1− exp
[
−
(
rf + λβ̄ − g

)
− 1

2(ρσc − σµ)2 − 1
2(1− ρ2)σ2

c

]} (B.6)

On the other hand, an investor who values the stock using a constant discount rate, or (B.2),

would arrive at

Ṽ0 = c0
exp(g + 1

2σ
2
c )

exp(π0)− exp(g + 1
2σ

2
c )

(B.7)

To understand the impact of dynamic discount rate in valuating a stock, considering

the case where µt = µ̄, Equation B.6 becomes the familiar Gordon-Growth formula with

uncertain cash flows

A0 = c0

exp(µ0 − g − 1
2σc)− 1 (B.8)

which makes clear the impact of discount rates being stochastic: it adds the volatility of

the discount rates, σµ and the interaction between discount rates and cash flow ρ into the

where the discount rate and cash flow processes are persistent. For the sake of simplicity, the current paper
only uses the simple case with analytical solutions.
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valuation formula.

By equating Equation (B.6) and (B.7), we have the relationship between the two expected

returns:

Π0 = M0 − exp
{
µ0 −

[(
rf + λβ̄ − g

)
− 1

2(ρσc − σ2
µ)− 1

2(1− ρ2)σ2
c

]}
+ exp(g + 1

2σ
2
c ) (B.9)

The equation also implies that Π0 will equalM0 if µ0 = µ̄. The formula provides an analytical

expression for the bias, bt,

bit = −M i
te
−∆i + exp(gi + 1

2(σic)2)

where

∆i =
(
rf + λβ̄i − gi

)
− 1

2(ρσic − (σiµ)2)− 1
2(1− (ρi)2)(σiµ)2

and I added the superscript i, which runs across different firms, to stress that the biases

are related to the characteristics of different firms. The biases are dynamic because it

depends on the realization of the discount rate M i
t . Besides, the bias is related to firm-

level fundamental characteristics, such as expected growth and volatility of the growth.

Confirming our intuition, the bias is higher for firms with higher growth rates and uncertainty.

We are more interested in the unconditional expectation of the bias, which is given by

bi = E(bit) = δiexp(gi + 1
2(σic)2) (B.10)

where

δi = 1− exp
[
σiµ(σiµ − ρiσic)

]
(B.11)
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B.1.3 A Discussion: The Sign and Magnitude of the Biases

Equation (B.10) relates the bias to firm-specific characteristics, and therefore will have

implication for the cross-section. However, is the channel suggested by the CDR important

enough to have any impact on the cross-section of stock returns and is it plausible to explain

any cross-sectional anomalies? I discuss the plausibility of the channel based on empirical

findings in the literature before examining the data in Section (2.2.2).

Analytically, the relationship between bi and characteristics depends on the sign of δi. In

the case that δi > 0 (< 0), we have bi > 0 (<0). Furthermore, bi depends on fundamentals

of the firm such as expected growth rates gi and σic.

The sign of δi potentially differs on the market and firm-level. On the market level, δi

has been shown to be negative, leading to a negative market-level bias bm and the magni-

tude of the bias has been estimated in the literature. This negative bias is mainly due to

the fact that discount rate dominates (for example Cochrane (2011b)) on the market level

and that aggregate cash flows and discount rate news are weakly negatively correlated (for

example Lochstoer and Tetlock (2020), Campbell (1990)). In fact, the negative bm is directly

supported by the empirical literature on implied cost of capital, which assumes a constant

expected returns in the model. Claus and Thomas (2001) and Pástor, Sinha, and Swami-

nathan (2008) estimates that the market level implied risk premium (Πm
t -Rf ) is around 3%

or less using the constant discount rate assumption, significantly less than estimates of mar-

ket premium, which are typically above 5%.4 Hughes, Liu, and Liu (2009) calibrates the

magnitude of bm and shows that the magnitude is at -2.3%.5 Given the robustness of these

empirical findings, in my empirical tests, I directly use bm = −0.023 and show my results

are not sensitive to different choice of bm.
4Avdis and Wachter (2017) is the latest in the literature estimating the market risk premium. Their

estimate for the market risk premium in the U.S. is at 5.1%, lower than the ones in the previous literature,
which typically was above 6%. However, this estimate is still more than 2% above those based on the
constant discount rate assumption.

5Their calibration is based on the parameter sets of σc = 0.15, g = 0.05, σµ = 0.14 and ρ = −0.1, which
translates into a bm = −0.023
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On the firm level, which is the focus of this paper, the sign of δi is likely positive, although

the magnitude is unclear. This is because cash flow news likely dominates on the firm level

and the shocks between discount rate and cash flows are positive, as shown in Vuolteenaho

(2002) and Cohen, Polk, and Vuolteenaho (2009), for example. Compare to the market

level evidence, no direct estimates are provided in the literature for the firm level biases

δi.6 Therefore, I empirically verify the sign and magnitude of different components of bi in

Section (2.2.2).

Depending on the sign of δi on the firm level, the bias relates to a firm’s fundamental

characteristics, gi and σic. In the case of a positive δi, firms with higher future cash flow

growth and/or cash flow volatility have higher biases.

B.2 Biased Return Expectations and Equilibrium Asset prices: A More Formal

Analysis

I study a multi-asset economy in which some investors with biased return expectations

(CDR investors) trade with risk-averse rational investors (arbitrageurs). CDR investors take

up θ ∈ (0, 1) share of the economy, so arbitrageurs are left with 1−θ. Both of these investors

live for two periods and they invest in the first period into the risky securities and risk-free

rate rf to maximize their terminal wealth. There are N risky assets, each of which pays a

dividend of Di
t for asset i in the next period. The number of shares outstanding of these

risky assets are x∗ = (x1, x2, ..., xN)′ and risk free assets are in unlimited supply.

Both CDR investors and arbitrageurs have the same utility function with the same risk-

aversion coefficient, γ. The key difference is that the CDR investors have a subjective return

expectations, Ẽ(.) that are biased, or

Ẽt(Ri
t+1) = Et(Ri

t+1) + bit (B.12)
6Gode and Mohanram (2003) regress firm-level cost of capital on firm characeteristics and found the

estimated implied cost of capital are positively related to analysts LTG estimates, leverage, earnings volatility,
using data from 1984-1998. They consider three different ICC models. Their results support a positive firm-
level δi.
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In particular, the CDR investors solve the problem

maxω
N∑
i=1

ωiP i
t

[
Ẽt(Ri

t+1)−Rf

]
− γ

2ω
′Σtω (B.13)

where

Ri
t+1 = P i

t+1 +Di
t+1

P i
t

While the arbitrageurs solve the problem

maxy
N∑
i=1

yiP i
t

[
Et(Ri

t+1)−Rf

]
− γ

2y
′Σty (B.14)

Denote ω∗ = (ω1, ω2, ..., ωN)′ and y∗ = (y1, y2, ..., yN)′ the optimal demand of the CDR

investors and the arbitrageurs, respectively. Market clears and we have

θω∗ + (1− θ)y∗ = x∗ (B.15)

The equilibrium asset prices and expected returns are outlined in Proposition B.1.

Proposition B.1. In the multi-asset economy featuring biased investors and arbitrageurs,

whose return expectations are governed by Equation (B.12), and solve optimization problems

in (B.13) and (B.14), respectively. With market clearing conditions (B.15), the equilibrium

asset price for asset i is

P i
t = 1

1 +Rf − θbit

[
Et(P i

t+1 +Di
t+1)− γei′Σtx

∗
]

(B.16)

where ei is a vector of zeros with 1 on the ith entry. The expected return of asset i is

Et(Ri
t+1)−Rf = θ(−bit + βitb

M
t ) + βit

[
Et(RM

t+1)−Rf

]
(B.17)

where bMt = ∑N
i=1

xiP i∑
j
xjP j

bit is the market-level expectation bias of CDR investors, βit =
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Covt(Rit,RMt )
V art(RMt ) the CAPM-beta in its usual definition and RM

t = ∑N
i=1

xiP i∑
j
xjP j

Ri
t is the value-

weighted market-returns.

Proof. See Appendix B.3.

Results in Proposition B.1 confirm the earlier intuition about how biases in the return

expectation could cause mispricing in equilibrium. As shown in Equation (B.16), the more

CDR investors in the economy, i.e. the higher value of θ, the more serious the mispricing

potentially becomes. Furthermore, fixing the share of CDR investor, the higher the bias the

CDR investors have for the return expectation of an asset, the higher its price and the lower

its expected return, as shown in Equation (B.17). This is intuitive as the CDR investors will

demand more of such an asset, leading to a lower expected returns.

Equation (B.17) reveals that the return expectation bias on the asset level as well as

market level together contribute to the non-zero CAPM-alpha. This is intuitive as the CDR

investors irrational demand on the asset level would also lead to an equilibrium impact on

the market level.

B.3 A Proof of Proposition B.1

Solving the first-order-condition of (B.13) and (B.14), we have the optimal demands given

by

ω∗ = 1
γ

Σ−1
t [E(Pt+1 +Dt+1) +BtPt − Pt(1 +Rf )] (B.18)

where Bt is a diagonal matrix with biases bit being on the ith row and ith column, and

y∗ = 1
γ

Σ−1
t [E(Pt+1 +Dt+1)− Pt(1 +Rf )] (B.19)

respectively.
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Market clearing conditions imply that

θω∗ + (1− θ)y∗ = x∗

or

θ
1
γ

Σ−1
t [E(Pt+1 +Dt+1) +BtPt − Pt(1 +Rf )] + (1− θ) 1

γ
Σ−1
t [Et(Pt+1 +Dt+1)− Pt(1 +Rf )] = x∗

θBtPt + Et(Pt+1 +Dt+1)− Pt(1 +Rf ) = γΣx∗

[(1 +Rf )I − θBt]Pt = Et(Pt+1 +Dt+1)− γΣtx
∗

which leads to

P i
t = 1

1 +Rf − θbi
[
Et(P i

t+1 +Di
t+1)− γei′Σtx

∗
]

which is Equation (B.16) of Proposition (B.1).

The expected returns follow

Et(Ri
t+1)−Rf = −θbit + γ

1
P i
t

e′iΣtx
∗

= −θbit + γ
1
P i
t

e′iCovt(Pt+1 +Dt+1, Pt+1 +Dt+1)x∗

= −θbit + γCovt(Ri
t+1, Pt+1 +Dt+1)x∗

= −θbit + γCovt(Ri
t+1, (Pt+1 +Dt+1)′x∗)

= −θbit + γCovt(Ri
t+1, R

M
t+1)P ′tx∗ (B.20)

Now define the market-cap weight for asset i as

ωiM = xiP i
t∑

j xjP
j
t
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and pre-multiply Equation (B.20) by the weights and sum over different assets to obtain

RM
t+1 −Rf = −θbMt + γV art(RM

t+1)P ′tx∗

which gives

γV art(RM
t+1)P ′tx∗ = RM

t+1 −Rf + θbMt

P ′tx
∗ = Et(RM

t+1 −Rf )
γV art(RM

t+1) (B.21)

Substituting Equation (B.21) into (B.20) and we have

Et(Ri
t+1)−Rf = −θbit + γCovt(Ri

t+1, R
M
t+1)Et(R

M
t+1 −Rf )

γV art(RM
t+1)

= θ(−bit + βitb
M
t ) + βit

[
Et(RM

t+1)−Rf

]

the last equation is the Equation (B.17) in Proposition (B.1).

B.4 Detailed Data Descriptions

In sum, the estimation of firm-level equity requires 5 firm-level variables, 1 industry-level

variable and 1 aggregate variable. The firm-level variables are:3 analyst’s consensus forecasts

for a firm’s earnings of current fiscal year (FY1), the next fiscal year (FY2) and the fiscal

year thereafter (FY3); 1 analyst’s consensus long-term forecast (LTG); 1 payout ratio, which

is based on the firm’s previous year total dividend to firm’s net income. The industry-level

variable is the average LTG based on 48 Fama-French industry classification. The aggregate

variable is the long-term average of gdp growth, which goes down from 7% to 6% over the

35 years in the sample. Based on these 5 inputs, I compute the implied cost of capital qi,t

and the entire term structure of a firm’s payout ratio PBi,t+s based on (B.22), which is a

function of the last year’s payout ratio and aggregate gdp growth rate and the qi,t.
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In the IBES monthly summary history file, I use analyst EPS estimates for fiscal year 1,

fiscal year 2 and fiscal year 3 (fpi = 1, 2, 3) and the long-term growth estimates to take full

advantage of the term structure of analyst forecast7. Furthermore, I require both fiscal year

1 and fiscal year 2 consensus to be based on no less than 3 analyst estimates available and

at least 2 estimates for FY3 estimates8 in order to be included in the sample. I only use the

latest monthly consensus estimates within each calendar quarter: March, June, September

and December to obtain firm-quarter consensus estimates. In addition, the firms included in

the sample need to be a US firm whose reporting currency is in US dollars. For the base case,

I consider the median estimates as the consensus estimate, but my results do not change

when using the mean estimates. The EPS estimates are multiplied by shares outstanding

from daily CRSP data as of the date the EPS estimates were announced to obtain estimates

for total dollar earnings. In addition, I also adjust for stock splits for the shares outstanding

data. To merge the IBES data base with the CRSP data base, I first match them by 8-digit

historical CUSIP. Additionally, I match firms whose ticker and/or company names are the

same and those who have the same 6-digit historical CUSIP. In terms of timing, I match the

quarterly IBES data with the monthly CRSP-COMPUSTAT merged by calendar quarter.

In all asset pricing tests, I require the analyst estimates from the IBES summary file to be

announced at least 1 quarter before the date returns are observed. Since the IBES summary

file’s statistical period is in the middle of each month, this means that the analyst expectation

information is lagged about 3 month and 2 weeks.

To compute the payout ratio, I collect the common dividends (DVC), net income (IB-

COM) as well as firms historical industry SIC code from COMPUSTAT. If a firm’s net

income is negative, I replace it with 6% of asset value (AT). I winsorize the payout ratio so

that they ar also between 0 and 1. For other fundamental data and the price related variables

I use the CRSP-COMPUSTAT Merged (Annual) . I include common shares (share codes 10
7Further horizons are available, but the coverage is much poorer
8The reason for using 2 FY3 estimates is because the coverage for FY3 is considerably poorer. My results

are actually stronger when requiring 3 FY3 estimates, but the average number of firms covered will be only
60% of the sample in the base case.
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and 11) in the CRSP database traded on NYSE/AMEX, and NASDAQ exchanges with the

beginning-of-month prices above \$1. I follow the convention in the literature (for example

Fama and French (2015)), lagging the annual fundamental information of each firm for at

least 6 month and assume information on all the firms’ fundamental data are observed by

end of June each year when forming portfolios based on fundamental variables. Annual and

monthly stock returns, as well as market prices gross and net of dividends are obtained from

CRSP and are adjusted for stock delistings. The market capitalization (ME) of a stock is its

price times the number of shares outstanding, adjusted for stock splits, using the cumulative

adjustment factor provided by CRSP, which is also used to compute a firms total expected

earnings and actual earnings.

B.5 Measuring Analyst Return Expectations Using Analyst Price Targets

Firm- level analyst return expectation are constructed using a bottom-up approach based

on analyst-level return expectations per analyst issuance.

I collect single issuance of price targets from individual analyst’s 12-month9 price targets

for individual firms from IBES unadjusted data base and match it with the closing price

from CRSP on the date the price target is issued10 to compute return expectation with price

targets for individual firms. The expected returns are computed by dividing analyst’s price

targets by the daily closing price on the day the estimates was issued and subtracted by 111,

or

µAi,f,d =
PA,12
i,f,d

Pf,d
− 1

where PA,12
i,f,d is the price target of analyst i for firm f , issued at day d. The superscript

12 denotes the 12-month ahead estimates. Notice this methodology ensures there is no

mechanical relation between mean estimated expected returns and the level of prices. On
9Other horizons are available, though the coverage is poor.

10In case the issuance date is a weekend, the last Friday prices are used; In case the issuance is a holiday,
the previous business day closing prices are used.

11The same formula is used in Brav and Lehavy (2003a) and Da and Schaumburg (2011)
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Table B.1: Returns and Alphas of the Universe with Available Estimates of Misvaluation
(Analyst’s Forecasts)

Sample period 1985-07 to 2018-12. Monthly value-weighted excess returns of the universe
with available firm misvaluation measure α̂it , or “vw.mkt.rf.analyst” are regressed on a
constant (Column 1), value-weighted excess returns of market based on CRSP universe
(Column 2) and Fama-French five factor returns downloaded from Ken French’s webiste
(Column 3).

Dependent variable:
vw.mkt.rf.analyst

avg.ex.ret CAPM.alpha FF5.alpha
(1) (2) (3)

mkt.rf 1.016∗∗∗ 1.028∗∗∗
(0.005) (0.006)

smb 0.001
(0.009)

hml 0.041∗∗∗
(0.011)

cma 0.0003
(0.016)

rmw 0.028∗∗
(0.011)

Constant 0.005∗∗ −0.001∗∗∗ −0.002∗∗∗
(0.002) (0.0002) (0.0002)

Observations 402 402 402
R2 0.000 0.989 0.990
Adjusted R2 0.000 0.989 0.990
Residual Std. Error 0.045 (df = 401) 0.005 (df = 400) 0.005 (df = 396)
F Statistic 35,728.420∗∗∗ (df = 1; 400) 7,837.528∗∗∗ (df = 5; 396)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

151



each issuing date the analyst has the freedom to pick her own price target since she observes

the prices.

Firm-level return expectations are constructed together with the stop file provided by

IBES to ensure individual estimates are not stale. IBES keeps track of the activeness of the

individual estimates and provides a stop file for price targets12. I merge the point-in-time

analyst-level expected return file with the stop-file on price targets to exclude estimates

that analysts and IBES have confirmed to be no longer valid. Furthermore, to avoid stale

estimates, I further restrict the estimates to be no older than 90 days when entering mean

consensus estimates 13

I construct weekly firm-level consensus expected returns by taking the mean of all active

analyst-level forecasts, although using median makes no discernible difference for the main

results. I drop analyst-level estimates that are greater than 5 standard deviation away from

the mean estimates and I winsorize the entire analyst-level data base by 1% and 99% before

calculating firm-level consensus. I take the mean of the available expected return estimates

for each firm by the end of Saturday each week, or

µAf,w =
∑
i

µAi,f,w/If

where If is the number of analyst for firm f at week w. For most of the application of the

paper, I use firm-level return estimates based on monthly data, which is the consensus data

on the last Saturday before each calendar month end.
12According to IBES, this stop-file “includes stops applied to estimates that are no longer active. This

can result from several events, e.g. an estimator places a stock on a restricted list due to an underwriting
relationship or the estimator no longer covers the company. Prior to June 1993, actual stop dates did not
exist in the archive files used to create the Detail History. An algorithm was developed to determine the
date when an estimate became invalid if, for example, a merger between companies occurred or an analyst
stopped working for a firm, etc. Estimate that are not updated or confirmed for a total of 210 days, the
estimate is stopped.”

13Engelberg, McLean, and Pontiff (2019a) allows the estimates to be at most 12 month old, in case the
estimates are not covered by the stop-file, although the choice makes little difference for the main results, as
verified in the Appendix.
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B.6 Estimating Implied-Cost-Capital

Methodology: The ICC Model of Pástor, Sinha, and Swaminathan (2008)

I follow the ICC model of Pástor, Sinha, and Swaminathan (2008) in estimating the

implied cost of capital. Chen, Da, and Zhao (2013) details the way they calculate the ICC

model in the cross section and I therefore follow the procedure outlined in their Appendix

to estimate the ICC on the stock level.

1. Collect firm-level analyst earnings projections from IBES monthly summary file. In-

clude firm-level earnings projections at the end of March, June, September and De-

cember for the current fiscal year (the next annual reporting date), the next fiscal year

and the long-term-growth forecast (LTG);

2. Estimate firm-level Implied-Cost-Capital (ICC) model. This involves assuming a firm-

level long-term growth rate as well as a plow-back rate (or 1- payout rate):

(a) Assuming

Pt =
15∑
k=1

FEt+k(1− bt+k)
(1 + qt)k

+ FEt+16

qt(1 + qt)15 = f(ct, qt) (B.22)

where Pt is the stock price, FEt+k is the earnings forecast k years ahead, bt+k is

the plowback rate (1− payout), and qt is the ICC.

(b) Estimate FEt+k :

i. FEt+1 and FEt+2 are proxied by the current fiscal year and the next fiscal

year IBES analyst summary file data. FEt+3 = FEt+2(1 + LTGt)

A. Assuming the individual firm-level earnings growth rates to revert to in-

153



dustry growth forecast (LTGInd
t ) by year t+ 16:

gt+k = gt+k−1 × exp[log(LTGind
t+3/LTGt+3)/13]

∀4 ≤ k ≤ 15

g16 = gGDPt ,

FEt+k = FEt+k−1(1 + gt+k) ∀4 ≤ k ≤ 16

gGDPt is the GDP growth rate using an expanding rolling window since

1947

(c) Estimate bt+k :

i. bt+1 and bt+2 are estimated from the most recent net payout ratio for each

firm. The net payout ratio ratio of common dividends (DVC in compustat)

to net income (item IBCOM). If net income is negative, replace it by 6% of

assets14.

ii. bt+k,3 ≤ k ≤ 16 is assumed to

bt+k = bt+k−1 −
bt+2 − bsst

15 (B.23)

where bsst = gGDPt /qt

(d) The qt is then backed out numerically by solving Eq. (B.22) and (B.23) together

numerically. When there exists multiple roots, choose the root that is closest

to the risk-free rate. Exclude any stock whose price is below $1. Winsorize the
14Notice that about 50% of the firms do not pay dividend in the last year. As a result, the first two years

of plowback ratio is 1. This does not mean that the projected earnings for the first two years have no impact
on the estimation of the implied cost of capital qt. Since FEt+k are first calculated using the first two to
three years of earnings projections together with the firm and industry level LTG, as long as any path during
the first 15 years contain a non-zero payout ratio, the first three years of projections will have an impact on
the estimation of the ICC.
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sample at 1% and 99%. Notice that by assuming the steady-state plowback ratio,

we implicitly impose the constraint that

qt ≥ gGDPt

since in steady-state, the plowback ratio can not exceed 1.

Summary Statistics of ICC and Input Variables

B.7 Robustness Checks

B.7.1 Equal-Weighted Portfolio Sorts
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Table B.2: Summary Statistics

(a) Empirical distributions of variables

statistic Pi b_1_2 pb_7 EP_1 EP_2 EP_3 LTG g_ind
1 mean 0.130 0.990 0.848 0.070 0.095 0.114 0.169 0.168
2 std 0.058 0.057 0.073 0.113 0.151 0.187 0.089 0.055
3 std cs 0.056 0.055 0.072 0.111 0.149 0.184 0.086 0.047
4 std ts 0.030 0.031 0.042 0.065 0.065 0.076 0.054 0.026
5 min 0.068 0.589 0.603 -0.153 0.004 0.014 0.040 0.048
6 p25 0.094 1 0.807 0.033 0.045 0.054 0.110 0.130
7 median 0.116 1 0.848 0.053 0.066 0.076 0.150 0.159
8 p75 0.144 1 0.896 0.076 0.090 0.104 0.200 0.195
9 max 0.428 1 0.993 0.876 1.216 1.512 0.500 0.351

(b) AR(1) coefficients

variable Pi b_1_2 pb_7 EP_1 EP_2 EP_3 LTG g_ind
1 AR(1) 0.920 0.943 0.882 0.897 0.950 0.956 0.893 0.946
2 std 0.005 0.009 0.004 0.008 0.005 0.005 0.005 0.010

(c) Correlations between variables

Pi pb_7 b_1_2 EP_1 EP_2 EP_3 LTG g_ind
Pi 1 -0.746 0.023 0.611 0.747 0.784 0.409 0.336

pb_7 1 0.461 -0.352 -0.417 -0.434 -0.351 -0.284
b_1_2 1 -0.006 0.006 0.010 0.079 0.102
EP_1 1 0.873 0.821 -0.136 -0.107
EP_2 1 0.970 -0.070 -0.063
EP_3 1 -0.030 -0.042
LTG 1 0.511
g_ind 1

Note: Statistics are calculated over the whole sample. Firm-level variables are winsorized
at 1% and 99% for the whole sample. Variable definitions: “Pi”: implied constant discount
rate (ICC); “b_1_2” is the plow-back ratio from the last year; “pb_7” is the implied plow
back ratio in Year 7. “Ek/P”, k = 1, 2, 3 are the fiscal year k earnings consensus estimates
divided by the current market capitalization; “LTG”: long-term growth forecasts; “g_ind”
industry long-term growth estimates where industries are defined based on 48 Fama-French
classification. In Panel B.2a, “std” denotes the standard deviations for the variables over
the entire sample, “std cs” and “std ts” are the average cross-sectional standard deviation
over time and the time-series standard deviation over different firms, respectively. AR(1)
coefficients are estimated by regressing the current value of the variable on its respective one-
quarter lagged value based on the whole sample. Standard errors for the AR(1) coefficients
are clustered by firm-quarter.
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Table B.3: Pre-estimated Mis-valuation (α̂it) Sorted Portfolios and Realized Average Stock
Returns (1986-06 to 2018-12, value-weighted)

All returns, alphas and their standard errors are expressed in percentages. Stocks are into
quantile portfolios based on the misvaluation measure α̂i at the end of June each year, using
the available information up to that point. Portfolios are rebalanced with equal weights every
month. “Low” denote the portfolio with lowest α̂it. “High-Low” are excess returns of a port-
folio that goes long on stocks with the highest α̂it and short those with the lowest α̂it. “SE”
are standard errors which are shown in brackets. “Mean ex.ret” are monthly returns over 3
month treasury rates; ”SR” are monthly Sharpe Ratios. “FF-5 alpha” denote Fama-French 5
factor alphas. “num_stocks” are average number of stocks included in the portfolio over time.
“Ex-Ante Misvaluation” are value-weighted portfolio α̂it measured at each end of June. Their
standard errors are measured using Newey-West methods based on 4 lagbs (“SE (NW-4)”).

stats Low 2 3 4 High High - Low
Ex-Ante Misvaluation -1.8 -0.88 -0.67 -0.5 -0.3 1.5

SE (NW-4) (0.19) (0.32) (0.21) (0.18) (0.15) (0.12)

CAPM alpha -0.63 -0.26 0.07 0.2 0.38 0.98
SE CAPM alpha (0.22) (0.19) (0.13) (0.11) (0.11) (0.17)

mean ex.ret 0.19 0.48 0.76 0.87 1.12 0.94
SE ex.ret (7.22) (6.28) (5.56) (5.23) (5.91) (3.31)

SR 0.03 0.08 0.14 0.17 0.19 0.28

CAPM beta 1.33 1.15 1.12 1.09 1.24 -0.08
SE CAPM beta (0.05) (0.04) (0.03) (0.02) (0.03) (0.04)

FF-5 alpha -0.49 -0.29 -0.05 0.07 0.33 0.79
SE FF-5 alpha (0.15) (0.14) (0.07) (0.06) (0.08) (0.14)

num_stocks 456.68 453.78 456.09 456.09 453
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