
Stochastic Methods in Optimization and Machine Learning

Fengpei Li

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

© 2021

Fengpei Li

All Rights Reserved

Abstract
Stochastic Methods in Optimization and Machine Learning

Fengpei Li

Stochastic methods are indispensable to the modeling, analysis and design of complex systems

involving randomness. In this thesis, we show how simulation techniques and simulation-based

computational methods can be applied to a wide spectrum of applied domains including engineer-

ing, optimization and machine learning. Moreover, we show how analytical tools in statistics and

computer science including empirical processes, probably approximately correct learning, and hy-

pothesis testing can be used in these contexts to provide new theoretical results. In particular, we

apply these techniques and present how our results can create new methodologies or improve upon

existing state-of-the-art in three areas: decision making under uncertainty (chance-constrained

programming, stochastic programming), machine learning (covariate shift, reinforcement learn-

ing) and estimation problems arising from optimization (gradient estimate of composite functions)

or stochastic systems (solution of stochastic PDE).

The work in the above three areas will be organized into six chapters, where each area contains

two chapters. In Chapter 2, we study how to obtain feasible solutions for chance-constrained pro-

gramming using data-driven, sampling-based scenario optimization (SO) approach. When the data

size is insufficient to statistically support a desired level of feasibility guarantee, we explore how

to leverage parametric information, distributionally robust optimization and Monte Carlo simula-

tion to obtain a feasible solution of chance-constrained programming in small-sample situations.

In Chapter 3, We investigate the feasibility of sample average approximation (SAA) for general

stochastic optimization problems, including two-stage stochastic programming without the rela-

tively complete recourse. We utilize results from the Vapnik-Chervonenkis (VC) dimension and

Probably Approximately Correct learning to provide a general framework. In Chapter 4, we de-

sign a robust importance re-weighting method for estimation/learning problem in the covariate

shift setting that improves the best-know rate. In Chapter 5, we develop a model-free reinforce-

ment learning approach to solve constrained Markov decision processes (MDP). We propose a

two-stage procedure that generates policies with simultaneous guarantees on near-optimality and

feasibility. In Chapter 6, we use multilevel Monte Carlo to construct unbiased estimators for ex-

pectations of random parabolic PDE. We obtain estimators with finite variance and finite expected

computational cost, but bypassing the curse of dimensionality. In Chapter 7, we introduce unbiased

gradient simulation algorithms for solving stochastic composition optimization (SCO) problems.

We show that the unbiased gradients generated by our algorithms have finite variance and finite

expected computational cost.

2

Table of Contents

Acknowledgments . viii

Dedication . viii

Chapter 1: Introduction . 1

Chapter 2: Parametric Scenario Optimization under Limited Data: A Distributionally Ro-
bust Optimization View . 5

2.1 Introduction . 6

2.2 From Data-Driven DRO to Scenario Optimization 13

2.2.1 Overview of Data-Driven DRO . 13

2.2.2 Monte Carlo Sampling for DRO . 14

2.2.3 Constructing Uncertainty Sets . 18

2.3 Bounding Functions and Generating Distributions 21

2.3.1 Neyman-Pearson Connections and A Least Powerful Null Hypothesis . . . 22

2.3.2 Nonparametric DRO . 24

2.3.3 Parametric DRO . 28

2.3.4 Choice of Statistical Distance . 30

2.4 Improving Generating Distributions . 31

2.4.1 A Framework to Reduce Divergence Ball Size by Incorporating Parametric
Information . 31

i

2.4.2 Mixture as Generating Distribution . 33

2.4.3 Mixing with a Proposed Distribution . 35

2.4.4 Enlarging Mixture Variability . 39

2.4.5 Numerical Demonstrations . 40

2.5 Procedural Description . 41

2.6 Numerical Experiments . 43

2.6.1 Single Linear Chance Constraint Problem 44

2.6.2 Joint Linear Chance Constraint Problem 47

2.6.3 Non-Linear Chance Constrained Problems 48

2.7 Conclusion . 50

2.8 Supplementary A: Regularity Conditions to Verify Assumption 1 51

2.9 Supplementary B: Alternate Bounds Using j2 Distance 52

2.10 Supplementary C: Proofs and Other Technical Results 53

Chapter 3: General Feasibility Bounds for Sample Average Approximation via Vapnik-
Chervonenkis Dimension . 69

3.1 Introduction . 69

3.2 Review of Related Results . 72

3.3 Framework and Main Results . 74

3.3.1 Main Result . 76

3.4 Examples and Special Structures . 78

3.4.1 Two-Stage Stochastic Programming . 79

3.4.2 Two-Stage Stochastic Integer Programming 85

3.4.3 Chain-Constrained Domain . 89

ii

3.4.4 Finite Feasible Region . 91

Chapter 4: Robust Importance Weighting for Covariate Shift 93

4.1 Introduction . 93

4.2 Background and Motivation . 96

4.2.1 Preliminaries and Existing Approaches . 96

4.2.2 Motivation . 98

4.3 Robust Estimator . 101

4.4 Empirical Risk Minimization . 103

4.5 Experiments . 107

4.5.1 Toy Dataset Regression . 107

4.5.2 Real World Dataset for ERM . 107

4.5.3 Simulated Dataset for Estimation . 109

4.6 Conclusion . 110

4.7 Supplementary . 110

4.7.1 Preliminaries . 111

4.7.2 Learning Theory Estimates . 112

4.7.3 Main Proofs . 115

Chapter 5: Constrained Reinforcement Learning via Policy Splitting 122

5.1 Introduction . 122

5.2 Problem Setting . 125

5.3 Lagrangian with Reduced Policy Space . 126

5.4 Policy Mixing and Dual &-Learning . 128

iii

5.5 Discussion and Implementation . 135

5.6 Numerical Experiments . 138

5.6.1 Environment Description and Setup . 138

5.6.2 Algorithm Performances . 140

5.7 Conclusion . 142

Chapter 6: Unbiased Sampling of Multidimensional Partial Differential Equations with
Random Input . 143

6.1 Introduction . 143

6.1.1 Background and review of related results 145

6.1.2 Contribution . 146

6.2 Preliminaries . 147

6.2.1 Notations and assumptions . 147

6.2.2 Definitions . 149

6.3 Construction of the unbiased estimator . 150

6.3.1 Probabilistic representation of D(G, C) . 150

6.3.2 Multilevel Monte Carlo . 151

6.3.3 Bias removal via additional randomization 153

6.4 Main results . 155

6.4.1 Unbiasedness . 155

6.4.2 Variance and computational cost . 158

6.4.3 Main theorem . 160

6.5 Simulation . 161

6.6 Supplementary: Proofs . 163

iv

6.6.1 Proof of Lemma 19 . 163

6.6.2 Proof of Lemma 20 . 165

6.6.3 Definitions and supporting lemmas . 165

6.6.4 Proof of Lemma 13 . 167

6.6.5 Proof of Lemma 14 . 169

6.7 Supplementary Material . 174

6.8 Proof of Lemma 4.3 . 175

6.9 Proof of Supporting Lemmas . 181

Chapter 7: Unbiased Gradient Simulation for Stochastic Composition Optimization 191

7.1 Introduction . 191

7.1.1 Contributions . 193

7.1.2 Related work . 194

7.1.3 Organization . 195

7.2 Problem Description and Algorithms . 196

7.2.1 Problem description and Notations . 196

7.2.2 Unbiased stochastic gradient simulation 199

7.2.3 Optimization Algorithms . 200

7.3 Examples . 202

7.3.1 Conditional Random Fields (CRF) . 203

7.3.2 Softmax optimization . 204

7.3.3 Cox’s partial likelihood . 205

7.4 Theory . 206

v

7.4.1 Definitions, Assumptions and Lemmas . 206

7.4.2 Properties of the Unbiased Gradient Simulation Algorithm 208

7.4.3 Convergence of the Simulated Gradient Descent Algorithm 217

7.4.4 Lipschitz Continuity of the Simulated Variance Reduced Gradient 218

7.4.5 Convergence of the Simulated Variance Reduced Gradient Algorithm . . . 221

7.4.6 Convergence of the Stochastically Controlled Simulated Gradient Algorithm 225

7.5 Numerical Experiments . 229

7.5.1 Cox’s partial likelihood . 230

7.5.2 Conditional Random Fields . 233

7.6 Conclusion and Future Work. 233

7.7 Supplementary A:Proof of Lemma 32 . 236

7.8 Supplementary B: Proof of Lemma 33 . 237

7.9 Supplementary C: Proof of Lemma 34 . 238

7.10 Supplementary D: Proof of Lemma 35 . 239

7.11 Supplementary E: Proof of Lemma 37 . 241

7.12 Supplementary F: Proof of Lemma 38 . 243

7.13 Supplementary G: Proof of Lemma 40 . 246

7.14 Supplementary H: Proof of Lemma 42 . 252

References . 272

vi

554

Acknowledgements

I want to thank my advisor Henry Lam and co-advisor Jose Blanchet for their guidance, patience

and inspiration. It has been a wonderful journey and I feel extremely fortunate to have worked

with them.

I also thank my collaborators Garud Iyengar, Donald Goldfarb, Chaoxu Zhou, Xiaoou Li,

Haoxian Chen and Siddharth Prusty for the opportunities to accomplish exciting work together.

I want to thank Jing Dong, Adam Elmachtoub and Garud Iyengar for serving on my committee.

I want to thank many IEOR students before me and after me, for their friendship. I especially

want to thank the PhD students in our cohort, for their encouragement and for the great times we

had. Some of you have become my closest friends and I wish all of you the best.

I also want to give a special thanks to a few people I’ve known since high school, who help me

grow as a person and a friend.

Finally, I thank my parents, Wei Li, Shu Li and my grandparents Jingxiu Li, Shijie Jiang. My

deepest gratitude to all of you.

vii

To my parents.

viii

Chapter 1: Introduction

Stochastic methods are indispensable to the modeling, analysis and design of complex systems

involving randomness. In this thesis, we show how simulation techniques and simulation-based

computational methods can be applied to a wide spectrum of applied domains including engineer-

ing, optimization and machine learning. Moreover, we show how analytical tools in statistics and

computer science including empirical processes, probably approximately correct learning, and hy-

pothesis testing can be used in these contexts to provide new theoretical results. In particular, we

apply these techniques and present how our results can create new methodologies or improve upon

existing state-of-the-art in three areas: decision making under uncertainty (chance-constrained pro-

gramming in Chapter 2,stochastic programming in Chapter 3), machine learning (covariate shift

in Chapter 4, reinforcement learning in Chapter 5) and unbiased estimation arising from optimiza-

tion (gradient estimate of composite functions in Chapter 7) or stochastic systems (solution of

stochastic PDE in Chapter 6). Most of the materials in this thesis are published or submitted works

contained in [1, 2, 3, 4, 5, 6, 7].

The work in the above three areas will be organized into six chapters, where each area contains

two chapters. Chapter 2 and 3 are topics on decision making under uncertainty. Chapter 2 is on

how to solve the chance-constrained problem using scenario generation approach but with only

limited data. We investigated a systematic approach to use simulated Monte Carlo samples in lieu

of real data, under a parametric distribution, and maintain a rigorous certificate of feasibility just

as solutions obtained from real data. Our approach makes use of a distributionally robust opti-

mization (DRO) formulation that translates the data size requirement into a Monte Carlo sample

size requirement drawn from what we call a generating distribution. We show that, while the op-

timal choice of this generating distribution is the one eliciting the data or the baseline distribution

in a nonparametric divergence-based DRO, it is not necessarily so in the parametric case. Cor-

1

respondingly, we develop procedures to obtain generating distributions that improve upon these

basic choices. Chapter 3 investigates the feasibility of sample average approximation (SAA) for

general stochastic optimization problems, including two-stage stochastic programming without the

relatively complete recourse assumption. In this chapter, we introduce a new framework based on

the Vapnik-Chervonenkis (VC) dimension and Probably Approximately Correct learning to study

the feasibility of SAA solutions which includes, but is not limited to two-stage stochastic program-

ming. Following [8, 9], we focus on showing the exponential decrease of the portion of infeasible

solutions as sample size grows. As a key contribution, we show how our framework produces fea-

sibility bounds that are both general and explicit. In particular, for solutions of SAA, we provide

feasibility bounds with explicit and computable constants, with no requirement on the geometric

or distributional properties of (3.1) and with no specific regularity conditions on the objective

function (i.e., Lipschitz continuity or the existence of certain moment generating function as in

[9, 8]). Moreover, the analysis itself also does not hinge on the specific type of the problem (i.e.,

not limited to two-stage stochastic programming) and is widely applicable in both scenarios where

some of the best-known results on SAA feasibility have been presented, and other scenarios where

no similar results have been established.

Chapter 4 and 5 show how applied probability techniques can be used on topics in machine

learning. Chapter 4 address how to design robust version of importance sampling weight under

the context of Kernel Mean Matching (KMM) and covariate shift. In many learning problems,

the training and testing data follow different distributions and a particularly common situation is

the covariate shift. To correct for sampling biases, most approaches, including the popular kernel

mean matching (KMM), focus on estimating the importance weights between the two distribu-

tions. Reweighting-based methods, however, are exposed to high variance when the distributional

discrepancy is large and the weights are poorly estimated. On the other hand, the alternate ap-

proach of using nonparametric regression (NR) incurs high bias when the training size is limited.

In this chapter, we propose and analyze a new estimator that systematically integrates the residuals

of NR with KMM reweighting, based on a control-variate perspective. The proposed estimator can

2

be shown to either strictly outperform or match the best-known existing rates for both KMM and

NR, and thus is a robust combination of both estimators. Chapter 5 explores how efficient simu-

lation can speed up the finding of optimal policy for reinforcement learning problem. We develop

a model-free reinforcement learning approach to solve constrained Markov decision processes,

where the objective and budget constraints are in the form of infinite-horizon discounted expec-

tations, and the rewards and costs are learned sequentially from data. We propose a two-stage

procedure where we first search over deterministic policies, followed by an aggregation with a

mixture parameter search, that generates policies with simultaneous guarantees on near-optimality

and feasibility. We also numerically illustrate our approach by applying it to an online advertising

problem. Applications of Reinforcement Learning (RL) in online advertising with recommenda-

tion systems have been a topic of major research interests ([10, 11, 12]). However, despite their

tremendous success, most RL-methods are not designed to learn optimal policies under constraints,

yet they appear ubiquitously when facing budget or safety considerations. A standard framework

for studying RL under constraints is the Constrained Markov Decision Process (CMDP), where

the objective is to maximize the long-run return, with constraints on one or several types of long-

run costs. In this chapter, we consider the case where both the objective and the constraint are in

the form of an infinite-horizon cumulative discounted expectation, whereas the returns, costs and

transitions are revealed from sequential data. The goal is to design an efficient methodology for the

constrained problem by assimilating classical optimality properties of CMDP into RL, in order to

efficiently use established RL approaches and obtain policies that enjoy both near-optimality and

feasibility.

Chapter 6 and 7 are estimation problems. They show how to construct unbiased estimator from

biased estimators, with finite variance and computational cost, under the context of gradient esti-

mate of composite optimization problem, as well as solutions of random partial differential equa-

tions. Partial differential equations (PDEs) are important tools for modeling physical or financial

systems. However, intrinsic variability of the system or measurement errors bring uncertainty into

the model and are commonly represented by random input data. In Chapter 6, we use multilevel

3

Monte Carlo to construct unbiased estimators for expectations of random parabolic PDE. Building

on previous works of Giles (2008) and Li et al.(2018), we obtain estimators with finite variance

and finite expected computational cost, but bypassing the curse of dimensionality. Regarding error

analysis in the random PDE, we combine rough path theory with numerical stochastic analysis

in a novel way. In Chapter 7, We introduce unbiased gradient simulation algorithms for solving

stochastic composition optimization (SCO) problems. We show that the unbiased gradients gener-

ated by our algorithms have finite variance and finite expected computational cost. Therefore, the

unbiased gradients can be directly used to solve SCO problems by applying the Stochastic Gra-

dient Descent method (SGD). We also show how to combine unbiased gradient simulation with

variance reduction techniques such as stochastic variance reduced gradient (SVRG) or stochas-

tically controlled stochastic gradient (SCSG) to achieve state-of-the-art theoretical convergence

rates as well as practical performances. Finally, we illustrate the effectiveness of our algorithms

through experiments on datasets arising from statistics and machine learning, specifically, Cox’s

partial likelihood model and conditional random field models.

4

Chapter 2: Parametric Scenario Optimization under Limited Data: A

Distributionally Robust Optimization View

We consider optimization problems with uncertain constraints that need to be satisfied proba-

bilistically. When sufficient data are available, a common method to obtain feasible solutions for

such problems is to impose sampled constraints, following the so-called scenario optimization ap-

proach. However, when the data size is small, the sampled constraints may not statistically support

a feasibility guarantee on the obtained solution. This chapter studies how to leverage parametric

information and the power of Monte Carlo simulation to obtain feasible solutions for small-data

situations. Our approach makes use of a distributionally robust optimization (DRO) formulation

that translates the data size requirement into a Monte Carlo sample size requirement drawn from

what we call a generating distribution. We show that, while the optimal choice of this generating

distribution is the one eliciting the data or the baseline distribution in a nonparametric divergence-

based DRO, it is not necessarily so in the parametric case. Correspondingly, we develop procedures

to obtain generating distributions that improve upon these basic choices. We support our findings

with several numerical examples.

It is also worth noting that there are other possible ways to approach this problem. For example,

the requirement of uncertainty set of DRO to include the true distribution is usually considered to

restrictive. However, to establish a theorem that would work in any black-box situation where

the feasible set Xb is not specified or in most general form, we use this restrictive assumption

to avoid case-by-case analysis. Also, the problem can also be efficiently solved by empirical

process/learning theory concepts such as VC-dimension or Radamacher complexity, if we assume

these types of structure on Xb , but we again consider the most general form here. So the set-

up here is most appropriate for the setting where insufficient data is still considered adequate to

5

characterize the parametric distribution. The main difficulty, when considering a black-box version

of Xb , is to transfer the feasibility under a sampling distribution, to the (unknown) true distribution.

2.1 Introduction

We consider optimization problems in the form

min
G2X✓R3

2
)

G,

s.t. P(G 2 Xb) � 1 � n ,
(2.1)

where P is a probability measure governing the random variable b (independent of decision variable

G) on some space Y and Xb ✓ X ✓ R3 is a set depending on b. Problem (2.1) enforces a solution

G to satisfy G 2 Xb with high probability, namely at least 1 � n . This problem is often known as

a probabilistically constrained or chance-constrained program (CCP) [13]. It provides a natural

framework for decision-making under stochastic resource capacity or risk tolerance, and has been

applied in various domains such as production planning [14], inventory management [15], reservoir

design [16, 17], communications [18], and ranking and selection [19].

We focus on the situations where P is unknown, but some i.i.d. data, say b1, . . . , b=, are avail-

able. One common approach to handle (2.1) in these situations is to use the so-called scenario

optimization (SO) or constraint sampling [20, 21]. This replaces the unknown constraint in (2.1)

with G 2 Xb8 , 8 = 1, . . . , =, namely, by considering

min
G2X✓R3

2
)

G,

s.t. G 2 Xb8 , 8 = 1, . . . , =.

(2.2)

Note that CCP (2.1) is generally difficult to solve even when the set Xb is convex for any

given b and the distribution P is known [13]. Thus, the sampled problem (2.2) offers a tractable

approximation for the difficult CCP even in non-data-driven situations, assuming the capability to

generate these samples.

6

Our goal is to find a good feasible solution for (2.1) by solving (2.2) under the availability of

i.i.d. data described above. Intuitively, as the sample size = increases, the number of constraints

in (2.2) increases and one expects them to sufficiently populate the safety set {b : G 2 Xb}, thus

ultimately give rise to a feasible solution for (2.1). To make this more precise, we first mention that

because of the statistical noise from the data, one must settle for finding a solution that is feasible

with a high confidence. More specifically, define, for any given solution G,

+ (G, P) = P(G 8 Xb)

to be the violation probability of G under probability measure P that generates b. Obviously, G is

feasible for (2.1) if and only if

+ (G, P)  n . (2.3)

We would like to obtain a solution, say Ĝ, from the data such that

P30C0 (+ (Ĝ, P)  n) � 1 � U, (2.4)

where P30C0 is the distribution that generates the i.i.d. data b8, 8 = 1, . . . , = (each sampled from P),

and 1�U is a given confidence level (e.g., U = 5%). In other words, we want Ĝ to satisfy the chance

constraint in (2.1) with the prescribed confidence rigorously. On the other hand, the optimality Ĝ

is mostly studied empirically and we do not discuss it in detail here.

Under the convexity of Xb and mild additional assumptions (namely, that every instance of (2.2)

has a feasible region with nonempty interior and a unique optimal solution), the seminal work [22]

provides a tight estimate on the required data size = to guarantee (2.4). They show that a solution

Ĝ obtained by solving (2.2) satisfies

P30C0 (+ (Ĝ, P) > n) 
3�1’
8=0

✓
=

8

◆
n
8 (1 � n)=�8, (2.5)

with equality held for the class of “fully-supported" optimization problems [22]. Thus, suppose

7

we have a sample size = large enough such that

⌫(n , 3, =) =
3�1’
8=0

✓
=

8

◆
n
8 (1 � n)=�8  U, (2.6)

then from (2.5) we have P30C0 (+ (Ĝ, P) > n)  U or (2.4).

However, in small-sample situations in which the data size = is not large enough to support

(2.6), the feasibility guarantee described above may not hold. It can be shown [22] that the mini-

mum = that achieves (2.4) is linear in 3 and reciprocal in n , thus may impose challenges especially

in high-dimensional and low-tolerance problems. Similar dependence on the key problem param-

eters also appears in other related methods such as [23], which uses the Vapnik-Chervonenkis

dimension to infer required sample sizes, the sampling-and-discarding approach in [20], and the

closely related approach using sample average approximation in [24]. Several recent lines of tech-

niques have been suggested to overcome these challenges and reduce sample size requirements,

including the use of support rank and solution-dependent support constraints [25, 26], regulariza-

tion [27], and sequential approaches [28, 29, 30, 31].

In this Chapter, we offer a different path to alleviate the data size requirement than the above

methods, when P possesses known parametric structures. Namely, we assume P 2 {P\}\2⇥ for

some parametric family of distribution, where P\ satisfies two basic requirements: It is estimat-

able, i.e., the unknown quantity or parameter \ can be estimated from data, and simulatable, i.e.,

given \, samples from P\ can be drawn using Monte Carlo methods. Under these presumptions,

our approach turns the CCP (2.1), with an unknown parameter, into a CCP that has a definite pa-

rameter and a suitably re-adjusted tolerance level, which then allows us to generate enough Monte

Carlo samples and consequently utilize the guarantee provided from (2.5). On a high level, this

approach replaces the data size requirement in using (2.2) (or, in fact, any of its variant methods)

with a Monte Carlo size requirement, the latter potentially more available given cheap modern

computational power. Our methodological contributions consist of the development of procedures,

related statistical results on their sample size requirement translations, and also showing some key

8

differences between parametric and nonparametric regimes.

Our approach starts with a distributionally robust optimization (DRO) to incorporate the data-

driven parametric uncertainty. The latter is a framework for decision-making under modeling un-

certainty on the underlying probability distributions in stochastic problems. It advocates the search

for decisions over the worst case, among all distributions contained in a so-called uncertainty set

or ambiguity set (e.g., [32, 33, 34]). In CCP, this entails a worst-case chance constraint over this

set (e.g., [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]). When the uncertainty set covers the

true distribution with a high confidence (i.e., the set is a confidence region), then feasibility for the

distributionally robust CCP converts into a confidence guarantee on the feasibility for the original

CCP. We follow this viewpoint and utilize uncertainty sets in the form of a neighborhood ball sur-

rounding a baseline distribution, where the ball size is measured by a statistical distance (e.g., [47,

48, 49, 50, 51, 52, 53, 41, 54, 55, 56, 57, 58, 59]). In the parametric case, a suitable choice of this

distance (such as the q-divergence that we focus on) allows easy and meaningful calibration of the

ball size from the data, so that the resulting DRO provides a provable feasibility conversion to the

CCP.

Our next step is to combine this DRO with Monte Carlo sampling and scenario approximation.

The definition of DRO means that there are many possible candidate distributions that can govern

the truth, whereas the statistical guarantee for SO assumes a specific distribution that generates the

data or Monte Carlo samples. To resolve this discrepancy, we select a generating distribution that

draws the Monte Carlo samples, and develop a translation of the guarantee from a fixed distribution

into one on the DRO. We highlight the benefits in using SO to handle this DRO, as opposed to

other potential methods. While there exist many good results on tractable reformulations of DRO

for chance constraints (e.g., [35, 37, 46, 38, 43]), the reformulation tightness typically relies on

using moment-based uncertainty sets and particular forms of the safety condition. Compared to

moments, divergence-based uncertainty sets can be calibrated with data to consistently shrink to

the true distribution. Importantly, in the parametric case, the calibration of divergence-based sets is

especially convenient, and achieves a tight convergence rate by using maximum likelihood theory

9

that efficiently captures parametric information. Our condition for applying SO to this DRO is at

the same level of generality as applying SO to an unambiguous CCP, which, as mentioned before,

only requires the convexity of Xb and mild conditions.

To exploit the full capability of our approach, we investigate the optimal choice of the gen-

erating distribution in relation to the target DRO, in the sense of requiring the least Monte Carlo

size. We show that, if there is no ambiguity on the distribution (i.e., a standard CCP), or when the

uncertainty set of a DRO is constructed via a divergence ball in the nonparametric space, the best

generating distribution is, in a certain sense, the true or the baseline distribution at the center of the

ball. However, if there is parametric information, the optimal choice of the generating distribution

can deviate from the baseline distribution in a divergence-based DRO. We derive these results by

casting the problem of selecting a generating distribution into a hypothesis testing problem, which

connects the sampling efficiency of the generating distribution with the power of the test and the

Neyman-Pearson lemma [60]. The results on DRO in particular combine this Neyman-Pearson

machinery with the established DRO reformulation of chance constraints in [39, 41], with the dis-

crepancy between the best generating distribution and the baseline distribution in the parametric

case stemming from the removal of the extremal distributions in the corresponding nonparamet-

ric uncertainty set. These connections among hypothesis testing, SO and DRO are, to our best

knowledge, the first of its kind in the literature.

Finally, given the non-optimality of the baseline distribution of a divergence-based DRO in

generating Monte Carlo samples, we further develop procedures to search over generating distri-

butions that improve upon this baseline. On a high level, this can be achieved by increasing the

sampling variability to incorporate the uncertainty of the distributional parameters (one may intuit

this from the perspective of a posterior distribution in a Bayesian framework), which is imple-

mented by utilizing suitable mixture distributions. We provide several classes of mixture distribu-

tions to attain such a variability enlargement, and study descent-type algorithms to search for good

distributions in these classes. In the experiments, we show our methods can be combined with SO

or other SO-based methods including FAST [28] to solve a variety of optimization problems and

10

data distributions, some of which are not amenable to RO, especially when the objective function

is non-linear or the feasible sets are jointly chance-constrained. Furthermore, we also demonstrate

how to search for more judicious choices of generating distributions that can significantly reduce

the required number of Monte Carlo samples.

We conclude this introduction by briefly discussing a few other lines of related literature. The

first is the so-called robust Monte Carlo or robust simulation that, like us, also considers using

Monte Carlo sampling together with DRO [61, 62, 63, 64, 65, 66]. However, this literature fo-

cuses on approximating DRO with stochasticity in the objective function, and does not study the

chance constraint feasibility and SO that constitute our main focus. We also contrast our work with

[53] that also considers likelihood theory and utilizes simulation in tackling uncertain constraints.

The study [53] focuses on the nonparametric regime and uses the empirical likelihood to construct

uncertainty sets. Unlike our work, there is no parametric information there that can be leveraged

to overcome sample size requirements in SO. Moreover, the simulation used in [53] is for cali-

brating the uncertainty set, instead of drawing sample constraints. Next, [67] considers a scenario

approach to distributionally robust CCP with an uncertainty set based on the Prohorov distance.

Like [23], [67] utilizes the Vapnik-Chervonenkis dimension in studying feasibility, in contrast to

the convexity-based argument in [22] that we utilize. More importantly, we aim to optimize the

efficiency of Monte Carlo sampling in handling limited-data CCP, thus motivating us to study the

choice of distance, calibration schemes, and selection of generating distributions that are different

from [67]. Finally, a preliminary conference version of this work has appeared in [68], which

contains a basic introduction of our framework, without detailed investigation of the optimality of

generating distributions, improvement strategies, and extensive numerical demonstrations.

To summarize, our main contributions of this Chapter are:

1. We propose a framework to obtain good feasible solutions in data-driven CCPs in small-

sample situations, where the data size is insufficient to support the use of SO with valid

statistical guarantees. Focusing on the parametric regime, our framework operates by setting

up a DRO, with an uncertainty set constructed from parameter estimates using the data, that

11

can in turn be tackled by using SO with Monte Carlo samples. In doing so, our framework

effectively leverages the parametric information to convert the SO requirement on the data

size into a requirement on the Monte Carlo size, the latter can be much more abundant

given cheap modern computational power. The overview of this framework and the DRO

construction are in Sections 2.2.1 and 2.2.3.

2. We investigate and present the Monte Carlo size requirements needed to give statistically

feasible solutions to the divergence-based DRO used in our framework. This relies on devel-

oping an implementable mechanism to connect the sample size requirement for SO, which

attempts to solve a CCP with a fixed underlying distribution, to the sample size requirement

needed to solve a DRO, by selecting a suitable generating distribution to draw the Monte

Carlo samples. This contribution is presented in Section 2.2.2.

3. We study the optimality of generating distributions, in a sense of minimizing the Monte

Carlo effort that we will describe precisely. In particular, we show that the optimal gen-

erating distributions for an unambiguous CCP, and for a distributionally robust CCP with

nonparametric divergence-based uncertainty sets, are simply their respective natural choices,

namely the original underlying distribution and the baseline distribution (i.e., center of the

divergence ball). In contrast, the optimal generating distribution for a distributionally robust

CCP in the parametric case is more delicate, and the baseline distribution there can be read-

ily dominated by other generating distributions. These results are derived by bridging the

Neyman-Pearson lemma in statistical hypothesis testing with SO and DRO, which appears

to be the first of its kind in the literature as far as we know. This contribution is presented in

Section 2.3.

4. Motivated by the non-optimality of the baseline distribution, we propose several approaches

to construct generating distributions that dominate the baseline distributions for parametric

DRO, by using mixture schemes that, on a high level, enlarge the variability of the gener-

ating distributions. We show how to use descent-type search procedures to construct these

12

distributions. This contribution is presented in Section 2.4.

Lastly, we also present in full detail our implementation algorithms in Section 2.5, numerically

demonstrate our approach and compare with other methods in Section 5.6, and conclude in Section

2.7.

2.2 From Data-Driven DRO to Scenario Optimization

This section introduces our overall framework. Recall our goal as to find a good (good in the

sense that we still try to solve for a version of SO instead of only focusing on feasibility) feasible

solution Ĝ for (2.1), and suppose that we have an i.i.d. data size = possibly less than the requirement

shown in (2.6). As discussed in the introduction, we first formulate a DRO that incorporates the

parametric estimation noise and subsequently allows us to resort to Monte Carlo sampling to obtain

a feasible solution for (2.1). In the following, Section 2.2.1 first describes the basic guarantees from

DRO. Section 2.2.2 investigates Monte Carlo sampling that provides guarantees on DRO. Section

2.2.3 discusses the choice of the uncertainty set.

2.2.1 Overview of Data-Driven DRO

For concreteness, suppose the unknown true distribution P 2 P, the class of possible probabil-

ity distributions for b (to be specified later). Given the observed data b1, ..., b=, the basic steps in

our data-driven DRO are:

• Step 1: Find a data-driven uncertainty set U30C0 = U30C0 (b1, . . . , b=) ✓ P such that

P30C0 (P 2 U30C0) � 1 � U, (2.7)

where P30C0 denotes the measure generating the data b8, 8 = 1, . . . , =.

13

• Step 2: Given U30C0, set up the distributionally robust CCP:

min
G2X✓R3

2
)

G,

s.t. min

Q2U30C0

Q(G 2 Xb) � 1 � n ,
(2.8)

where the probability measure Q is the decision variable in the minimization in the con-

straint.

• Step 3: Find a solution Ĝ feasible for (2.8).

It is straightforward to see that Ĝ obtained from the above procedure is feasible for (2.1) with

confidence at least 1 � U: If P 2 U30C0, then any Ĝ feasible for (2.8) satisfies

P(Ĝ 2 Xb) � min

Q2U30C0

Q(Ĝ 2 Xb) � 1 � n

Thus

P30C0 (P(Ĝ 2 Xb) � 1 � n) � P30C0 (P 2 U30C0) � 1 � U, (2.9)

which gives our conclusion.

2.2.2 Monte Carlo Sampling for DRO

To use the above procedure, we need to provide a way to construct the depicted U30C0 and to

find a (confidently) feasible solution for (2.8). We postpone the set construction to the next subsec-

tion and focus on finding a feasible solution here. We resort to SO, via Monte Carlo sampling, to

handle (2.8). Note that, unlike in the standard SO discussed in the introduction, the distribution Q

here can be any candidate within the set U30C0. Thus, let us select a generating distribution, called

P0 (which can depend on the data), to generate Monte Carlo samples b"⇠
8

, 8 = 1, . . . , # , and solve

min
G2X✓R3

2
)

G,

s.t. G 2 X
b
"⇠

8

, 8 = 1, . . . , # .

(2.10)

14

For convenience, denote, for any n , V > 0,

#4G02C (n , V, 3) = min

(
= :

3�1’
8=0

✓
=

8

◆
n
8 (1 � n)=�8  V

)
. (2.11)

From the result of [22] discussed in the introduction, using #4G02C (n , V, 3) or more Monte Carlo

samples from P0 in (2.10) would give a solution Ĝ"⇠ that satisfies+ (Ĝ"⇠ , P0)  n with confidence

level 1 � V. This is not exactly the distributionally robust feasibility statement for problem (2.8).

To address this discrepancy, we consider, conditional on the data b1, . . . , b=,

max
Q2U30C0

+ (Ĝ"⇠ ,Q)

s.t. + (Ĝ"⇠ , P0)  X.
(2.12)

This optimization problem serves to translate a guarantee on the violation probability under P0 to

any Q in U30C0. If we can bound the optimal value in (2.12), then we can trace back the level of

X that is required to ensure a chance constraint validity of tolerance level n . However, the event

involved in defining + (Ĝ"⇠ , P0) and + (Ĝ"⇠ ,Q), namely {b : Ĝ
"⇠ 8 Xb}, can be challenging to

handle in general. Thus, we relax (2.12) to

max
Q2U30C0 ,�⇢Y

Q(�)

s.t. P0(�)  X.
(2.13)

where the decision variables now include the set � in addition to the probability measure Q. Con-

ditional on the data b1, . . . , b=, the optimal value of optimization problem (2.13), which we denote

" (P0,U30C0, X), is clearly an upper bound for that of (2.12). In fact, it is also clear from (2.13)

that " (P0,U30C0, X) is non-decreasing in X > 0 and

max

Q2U30C0

+ (Ĝ"⇠ ,Q)  " (P0,U30C0,+ (Ĝ"⇠ , P0)), (2.14)

15

by simply taking � = {b : Ĝ
"⇠ 8 Xb} and X = + (Ĝ"⇠ , P0) in (2.13). We have the following

guarantee:

Theorem 2.2.1. Given P0, U30C0 and n > 0, suppose there exists Xn > 0 small enough such that

" (P0,U30C0, Xn)  n , (2.15)

then if we solve (2.10) with #4G02C (Xn , V, 3) number of samples drawn from P0, the obtained solu-

tion Ĝ"⇠ would be feasible for (2.8) with confidence at least 1 � V. Furthermore, if

P30C0 (P 2 U30C0) � 1 � U, (2.16)

where P30C0 is the measure governing the real-data generation under the true distribution P, then

the obtained solution Ĝ"⇠ would be feasible for (2.1) with confidence at least 1 � U � V.

Proof. By results in [22], we know that by solving (2.10) with #4G02C (Xn , V, 3) number of samples

from P0, the obtained solution Ĝ"⇠ would satisfy

P"⇠,0(+ (Ĝ"⇠ , P0) > Xn)  V (2.17)

where P"⇠,0 is the measure with respect to the Monte Carlo samples drawn from P0. Moreover,

based on the monotonicity property of " (·) and (2.14), we have

+ (Ĝ"⇠ , P0)  Xn =) max

Q2U30C0

+ (Ĝ"⇠ ,Q)  " (P0,U30C0, Xn). (2.18)

Thus (2.15) implies that

P30C0

✓
max

Q2U30C0

+ (Ĝ"⇠ ,Q) > n
◆
 P30C0 (+ (Ĝ"⇠ , P0) > Xn)  V

and hence Ĝ"⇠ is feasible for (2.8) with confidence at least 1 � V. Furthermore, if P 2 U30C0, then

16

a Ĝ"⇠ feasible for (2.8) is also feasible for (2.1) since max

Q2U30C0

+ (Ĝ"⇠ ,Q) � + (Ĝ"⇠ , P) and hence

max

Q2U30C0

+ (Ĝ"⇠ ,Q)  n =) + (Ĝ"⇠ , P)  n . (2.19)

Thus, if we denote ⌅ = {b1, ..., b=, b
"⇠

1
, ..., b

"⇠

#
} to be entire sequence consisting of real data and

the generated Monte Carlo samples, it then follows that

{⌅ : + (Ĝ"⇠ , P) > n} ✓ {⌅ : P 8 U30C0} [{⌅ : + (Ĝ"⇠ , P0) > Xn }. (2.20)

It now follows by (2.16) and (2.17) that Ĝ"⇠ is feasible for (2.1) with probability at least 1 � U �

V. ⇤

Theorem 2.2.1 can be cast in terms of asymptotic instead of finite-sample guarantees by fol-

lowing the same line of arguments. We summarize it as the following corollary.

Corollary 2.2.1.1. In Theorem 2.2.1, if the condition P30C0 (P 2 U30C0) � 1 � U is substituted by

the asymptotic condition

lim inf

=!1
P30C0 (P 2 U30C0) � 1 � U, (2.21)

then the feasibility of Ĝ"⇠ in the last conclusion of Theorem 2.2.1 holds with confidence asymptot-

ically tending to at least 1 � U � V.

To summarize, in the presence of data insufficiency, if we choose U30C0 to satisfy the confi-

dence property (2.7), and are able to evaluate the bounding function " (P0,U30C0, X) that translates

the violation probability under P0 to a worst-case violation probability over U30C0, then we can run

SO with #4G02C (Xn , V, 3) Monte Carlo samples from P0 to obtain a solution for (2.1) with confi-

dence 1 � U � V.

We also note that the above scheme still holds if the #4G02C (n , V, 3) in (2.11) is replaced by the

sample size requirements of other variants of SO (e.g., FAST [28]) that are potentially smaller. This

works as long as we stay with the same SO-based procedure in using the Monte Carlo samples. For

17

clarity, throughout most of our exposition we will focus on the sample size requirement depicted

in (2.11), but we will discuss other variants in our implementation and numerical sections.

Finally, let us take a step back and justify why we use SO to tackle (2.8), as opposed to other

potential means. Indeed, as pointed out in the introduction, there exist many good results on

tractable reformulations of DRO. As will be discussed in detail in the next subsection, in the present

context we will choose an uncertainty set that can leverage parametric information efficiently. Sets

based on the neighborhoods of distributions measured by q-divergences are particularly attractive

choices, as they can be calibrated easily (both the ball center and the size) in a way that efficiently

uses parametric information. The dependence on the parameter dimension in particular is reflected

in the degree of freedom in the j2-distribution used in the calibrating the ball size, which shrinks to

zero at a canonical rate as the data size increases. Other sets, such as moment-based ones, though

possibly amenable to tight tractable reformulations, do not enjoy these statistical properties in the

parametric context. Thus, in view of tackling q-divergence-based DRO, SO appears to be a natural

choice, and we have set up a framework to utilize it under conditions at the same level of generality

as required for the unambiguous counterpart. Sections 2.3 and 2.4 will study this framework

in further depth and enhance its efficiency. We caution, however, that the conservativeness in

our proposed uncertainty set (which affects the optimality of the obtained solution) relies on the

dimensionality of the distributional parameters. Our approach is expected to work well when this

dimension is moderate, but not in high-dimensional problems where other approaches could be

better choices.

2.2.3 Constructing Uncertainty Sets

In this section we discuss the construction of the uncertainty set U30C0, using the q-divergence

approach [47]. We assume the true distribution P of b lies in a parametric family. We denote

the true parameter as \CAD4. To highlight the parametric dependence, we call the true distribution

P\CAD4 2 P?0A0 = {P\}\2⇥⇢R⇡ indexed by \, where ⇡ is the dimension of parameter space. Given

18

data b1, b2, ..., b=, we want to construct an uncertainty set U30C0 satisfying

lim

=!1
P30C0 (P\CAD4 2 U30C0) = 1 � U (2.22)

so that Corollary 2.2.1.1 applies. To do so, we first estimate \CAD4 from the data. There are various

approaches to do so; here we apply the common maximum likelihood estimator (MLE) \̂=, and set

U30C0 to be

U30C0 =

(
Q 2 P?0A0 : 3q (P\̂= ,Q) 

q
00(1)j2

1�U,⇡
2=

)
, (2.23)

where j2

1�U,⇡ is the 1�U quantile of j2

⇡
, the j2-distribution with degree of freedom ⇡, and 3q (·, ·)

is the q-divergence between two probability measures, i.e., given a convex function q : R+ ! R+,

with q(1) = 0, a distance between two probability measures P1 and P2 defined as

3q (P1, P2) =
π
Y
q

✓
3P2

3P1

◆
P1(3H), (2.24)

assuming P2 is absolutely continuous with respect to P1 with Radon-Nikodym derivative 3P2

3P1

on Y.

Moreover, we assume that q is twice continuously differentiable with q00(1) < 0, and if necessary

set the continuation of q to R� as q(G) = +1 for G < 0. In (2.23), we call the center P
\̂=

of the

divergence ball, the baseline distribution.

To guarantee desirable asymptotic properties of our uncertainty set, we make the following

assumption:

Assumption 1. Let \CAD4 2 ⇥ be the true parameter and let \̂= be the MLE of \CAD4 estimated from

= i.i.d. data points. Then, as =!1, \̂= satisfies consistency and asymptotic normality condition:

\̂=

P�! \CAD4 and
p
=(\̂= � \CAD4)

D�! N(0,I�1(\CAD4)), (2.25)

where I(\) is the Fisher information for the parametric family P?0A0 with well-defined inverse

that is continuous in the domain \ 2 ⇥.

19

Assumption 1 of MLE estimator is known to hold under various regularity conditions [69, 70].

We list a set of such conditions in supplementary section 2.8.

Under Assumption 1, it can be shown [71, 69] that U30C0 in (2.23) satisfies the confidence

guarantee (2.22). Furthermore, since we can identify each P\ in P30C0 with \, we can equivalently

view U30C0 as a subset of \ 2 ⇥, and write it as

U30C0 ,

(
\ 2 ⇥ : 3q (P\̂ , P\) 

q
00(1)j2

1�U,⇡
2=

)
. (2.26)

For convenience, we shall use the two definitions of U30C0 interchangeably depending on the con-

text. It is also known that the asymptotic confidence properties of (2.23) or (2.26) are the same

among different choices within the q-divergence class. These can be seen via a second order

expansion of the q-divergences. Moreover, they are asymptotically equivalent to

(
\ 2 ⇥ : (\ � \̂=))I(\̂=) (\ � \̂=) 

j
2

1�U,⇡
=

)
, (2.27)

where I(\̂=) is the estimated Fisher information, under the regularity conditions above [71, 72,

69]. In other words, under Assumption 1, both (2.26) and (2.27) satisfy

lim

=!1
P30C0 (\CAD4 2 U30C0) = 1 � U. (2.28)

Note that the convergence rate of (2.22) or (2.28) depends on the higher-order properties of

the parametric model, which in turn can depend on the parameter dimension. Different from the

sample size requirements in SO, this convergence rate is a consequence of MLE properties. Some

details on finite-sample behaviors of MLE can be found in [73].

The U30C0 discussed above is a set over the parametric class of distributions (or parameter val-

ues). Considering tractability, DRO over nonparametric space could be easier to handle than para-

metric, which suggests a relaxation of the parametric constraint to estimate the bounding function

" . This also raises the question of whether one can possibly contain U30C0 in a nonparametric

20

ball with a shrunk radius and subsequently obtain a better " . These would be the main topics of

Sections 2.3 and 2.4.

2.3 Bounding Functions and Generating Distributions

Given the uncertainty set U30C0 in (2.26), we turn to the choice of the generating measure P0

and the bounding function " (P0,U30C0, X) which, as we recall, is the optimal value of optimization

problem (2.13). In the discussed parametric setup, the latter becomes

max
\2U30C0 ,�⇢Y

P\ (�)

s.t. P0(�)  X.
(2.29)

From Theorem 2.2.1 and the fact that " (P0,U30C0, X) is non-decreasing in X, we want to choose

P0 that minimizes " (P0,U30C0, X) so that we can take the maximum Xn and subsequently achieve

overall confident feasibility with the least Monte Carlo sample size. Note that " (P0,U30C0, X) is

a multi-input function depending on both P0 and X, and so a priori it is not clear that a uniform

minimizer P0 can exist across all values of X so that the described task is well-defined. It turns

out that this is possible in some cases, which we shall investigate in detail. In the following, we

discuss results along this line at three levels: The unambiguous case, namely when U30C0 in (2.29)

is a singleton (Section 2.3.1), the case where U30C0 is nonparametric (Section 2.3.2), and the case

where U30C0 is parametric (Section 2.3.3). The first two cases pave the way to the last one, which is

most important to our development and also motivates Section 2.4. With these results in hand, we

also discuss the possibility of using other statistical distances in our framework in Section 2.3.4.

21

2.3.1 Neyman-Pearson Connections and A Least Powerful Null Hypothesis

We first consider, for a given \1 2 U30C0, the optimization problem

max
�⇢Y

P\1
(�)

s.t. P0(�)  X.
(2.30)

This problem can be viewed as choosing a most powerful decision rule in a statistical hypothesis

test. More precisely, one can think of � as a rejection region for a simple test with null hypothesis

P0 and alternate hypothesis P\1
. Subject to a tolerance of X Type-I error, optimization problem

(2.30) looks for a decision rule that maximizes the power of the test. By the Neyman-Pearson

lemma [60], under mild regularity conditions on the parametric family, the optimal set �¢
0,\1,X

of

(2.30) takes the form

�
¢

0,\1,X
= {b 2 Y :

3P\1

3P0

(b) > ¢
0,\1,X

}, (2.31)

with ¢
0,\1,X

chosen so that P0(�¢
0,\1,X

) = X. Also, then, the optimal value of (2.30) is P\1
(�¢

0,\1,X
).

Generalizing the above analysis to all \ 2 U30C0, we conclude that

" (P0,U30C0, X) = sup

\2U30C0

P\ (�¢0,\,X), (2.32)

is the optimal value of (2.29). These observations will be useful for deriving our subsequent results.

Our goal is to choose P0 to minimize (2.32). To start our analysis, let us first consider the

extreme case where the uncertainty set U30C0 consists of only one point Q. In this case, we look

for P0 that minimizes " (P0, {Q}, X), the optimal value of

max
�⇢Y

Q(�)

s.t. P0(�)  X.
(2.33)

That is, for a given measure Q, we seek for the maximum discrepancy between Q and P0 over

all P0-measure sets that have X or less content. This is similar to minimizing the total variation

22

distance between Q and P0, and hints that the optimal choice of P0 is Q. The following theorem,

utilizing the Neyman-Pearson lemma depicted above, confirms this intuition. We remark that the

assumptions of the theorem can be relaxed by using more general versions of the lemma, but the

presented version suffices for most purposes and also the subsequent examples we will give.

Theorem 2.3.1. Given a measure Q with continuous density on X, among all P0 such that 3Q
3P0

exists and is continuous and positive almost surely, the minimum " (P0, {Q}, X) is obtained by

choosing P0 = Q, giving " (P0, {Q}, X) = X.

Proof. Under the assumptions, by the Neyman-Pearson lemma, for a fixed measure P0, the set

achieving the optimal value of (2.33) takes the form �
¢ = {b 2 Y :

3Q
3P0

(b) >
¢} for some

¢ � 0 with P0(�¢) = X. It then follows that

" (P0, {Q}, X) � X = Q(�¢) � P0(�¢) =
π
3Q
3P

0

(b)> ¢
(3Q
3P0

� 1)3P0(b).

Under the absolute continuity assumption, we define

6() =
π
3Q
3P

0

(b)>
(3Q
3P0

� 1)3P0(b),

which can be seen to be a non-increasing function for � 1 and a non-decreasing function for

  1. To see this, take 1 � 2, and we have

6(2) = 6(1) +
π
 1� 3Q

3P
0

(b)> 2

(3Q
3P0

� 1)3P0(b).

Thus, when 1 � 2 � 1, we have 6(2) � 6(1) because

π
 1� 3Q

3P
0

(b)> 2

(3Q
3P0

� 1)3P0(b) � (2 � 1)P0(1 �
3Q

3P0

(b) > 2) � 0,

23

while when 1 � 1 � 2, we have 6(2)  6(1) because

π
 1� 3Q

3P
0

(b)> 2

(3Q
3P0

� 1)3P0(b)  (1 � 1)P0(1 �
3Q

3P0

(b) > 2)  0.

Then, to identify the minimum of 6(), we either decrease from 1 to 0 which gives

lim inf

 !0

6() =
π

(3Q
3P0

� 1)3P0(b) = 0, (2.34)

by using the dominated convergence theorem (e.g., by considering the set {1 > 3Q/3P0(b) > })

or we increase from 1 to1 which gives

lim inf

 !1
6() � 0. (2.35)

by Fatou’s lemma. Observations (2.34) and (2.35) suggest that 6() � 0 for all � 0 and imply

that 6(¢) � 0. Thus, we must have " (P0, {Q}, X) � X. Note that this holds for any P0. Now,

since choosing P0 = Q gives " (Q, {Q}, X) = X, an optimal choice of P0 is Q. ⇤

Theorem 2.3.1 shows that under mild regularity conditions, in terms of choosing the generating

distribution P0 and minimizing " (P0, {Q}, X), we cannot do better than simply choosing Q itself.

This means that if we had known the true distribution was Q, and without additional knowledge

of the event of interest, the safest choice (in the minimax sense) for sampling would be Q, a quite

intuitive result. In the language of hypothesis testing, given the simple alternate hypothesis Q,

the null hypothesis P0 that provides the least power for the test, i.e., makes it most difficult to

distinguish between the two hypotheses, is Q.

2.3.2 Nonparametric DRO

Building on the discussion in Section 2.3.1, we now consider the choice of generating distri-

bution P0 to minimize the bounding function obtained from (2.29). Before so, we first discuss the

24

nonparametric case, where the analog of (2.29) is in the form:

max
3q (P \̂ ,Q)_,�⇢Y

Q(�)

s.t. P0(�)  X.
(2.36)

for some ball radius _ > 0, where the decision variables are Q in the space of all distributions

absolutely continuous with respect to P
\̂
, and �.

We show that the above setting can be effectively reduced to the unambiguous case, i.e., whenQ

lies in a singleton discussed in Section 2.3.1. This comes from an established equivalence between

a distributionally robust chance constraint and an unambiguous chance constraint evaluated by

the center of the divergence ball, when the event � is fixed [41, 39]. In particular, suppose the

stochasticity space is Y = R: , and P
\̂

admits a density ?
\̂
. Theorem 1 in [39] shows that for any

�,

max
3q (P \̂ ,Q)_

Q(�)  n () P
\̂
(�)  n0, (2.37)

where n0 = n0(n , _, q) > 0 can be explicitly determined by n , _ and q as

n
0(n , _, q) = max

8>>><
>>>:

1 � inf

I>0,I+cI✓q
<(q⇤)I0+I<(q⇤)

⇢
q
⇤(I0 + I) � I0 � nI + _
q
⇤(I0 + I) � q⇤(I0)

�
, 0

9>>>=
>>>;

(2.38)

with q
⇤(C) = sup

G
{CG � 6(G)} being the conjugate function of q and <(q⇤) = sup{< 2 R :

q
⇤ is a finite constant on (�1,<]}, <(q⇤) = inf{< 2 R : q

⇤(<) = +1}, ✓q = limG!+1 q(G)/G,

and c = �1 if !41{[?
\̂
= 0]} = 0, 0 if !41{[?

\̂
= 0]} > 0 and !41{[?

\̂
= 0] \ �} = 0, and 1

otherwise, where !41{·} is the Lebesgue measure on R: .

The above equivalence can be used to obtain the following result.

Theorem 2.3.2. Suppose Y = R: and P
\̂

admits a density. Among all P0 such that 3P \̂
3P0

exists and is

continuous, positive almost surely, an optimal choice of P0 that minimizes " (P0, {Q : 3q (P\̂ ,Q) 

25

_}, X), namely the optimal value of (2.36), is the center of the q-divergence ball P
\̂
. Moreover, this

gives " (P0, {Q : 3q (P\̂ ,Q)  _}, X) = n
0(�1) (X, _, q), where n0(�1) (·, _, q) is the inverse of the

function n0 = n0(n , _, q) defined in (2.38) with respect to n , given by

n
0(�1) (G, _, q) , min{n � 0 : n

0(n , _, q) � G} (2.39)

Proof. From Theorem 1 in [39], we know that, for any � ⇢ Y and 0  n  1, (2.37) holds. We

can rewrite the optimal value of problem (2.36) in the form:

min
n�0

n

s.t. max
3q (P \̂ ,Q)_

Q(�)  n for all � ⇢ Y such that P0(�)  X,
(2.40)

which, according to (2.37), has the same optimal value as

min
n�0

n

s.t. P
\̂
(�)  n0 for all � ⇢ Y such that P0(�)  X.

(2.41)

Since, fixing q and _, n0 is a non-decreasing function of n , we see that minimizing n is equivalent

to minimizing n0. Denoting a¢ as the optimal value of the optimization problem

max
�⇢Y

P
\̂
(�)

s.t. P0(�)  X,
(2.42)

then the optimal value of (2.41) is n0(�1) (a⇤, _, q). Moreover, this is achievable by setting P0 = P
\̂

that gives the optimal value a⇤ = X to (2.42) by Theorem 2.3.1.

⇤

An implication of Theorem 2.3.2 is that, by noting that a parametric divergence ball lies inside a

corresponding nonparametric ball, we can compute a bound for " to obtain a required Monte Carlo

26

size, drawn from the baseline P
\̂
, to get a feasible solution for the distributionally robust CCP (2.8)

and subsequently the CCP (2.1). More precisely, recall the bounding function " (P0,U30C0, X) =

" (P0, {Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0}, X) with _ = q
00(1)j2

1�U,⇡/(2=), given by (2.29), as the

optimal value of

max
3q (P \̂ ,Q)_,Q2P?0A0 ,�⇢Y

Q(�)

s.t. P0(�)  X.
(2.43)

We have:

Corollary 2.3.2.1. Given a data size =, suppose Y = R: and P
\̂

admits a density, where \̂ is the

MLE under Assumption 1. If we choose Xn = n0(n , q00(1)j2

1�U,⇡/(2=), q) and draw #4G02C (Xn , V, 3)

Monte Carlo samples from the generating distribution P
\̂

to construct the sampled problem (2.10),

then the obtained solution will be feasible for (2.1) with asymptotic confidence level at least 1 �

U � V.

Proof. Note that a parametric divergence ball lies inside a corresponding nonparametric ball in the

sense that

{Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0} ✓ {Q : 3q (P\̂ ,Q)  _}

Thus, by the definition of " , we have

" (P0, {Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0}, X)  " (P0, {Q : 3q (P\̂ ,Q)  _}, X)

In particular,

" (P
\̂
, {Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0}, X)  " (P

\̂
, {Q : 3q (P\̂ ,Q)  _}, X) = n0

�1(X, _, q)

where the equality follows from Theorem 2.3.2. Thus, if we choose Xn such that n0�1(Xn , _, q) 

n , or Xn = n
0(n , _, q), where _ = q

00(1)j2

1�U,⇡/(2=) as presented in (2.23), and the generating

distribution as P
\̂
, then Corollary 2.2.1.1 guarantees that running SO on #4G02C (Xn , V, 3) Monte

Carlo samples gives a feasible solution for (2.1) with confidence asymptotically at least 1 � U �

27

V. ⇤

Corollary 2.3.2.1 thus provides an implementable procedure to handle (2.1) through (2.8).

2.3.3 Parametric DRO

Next we discuss further the choice of generating distributions in parametric DRO beyond P
\̂
.

While the ball center P
\̂

is a valid choice, the equivalence relation (2.37) does not apply when the

divergence ball is in a parametric class, and the optimal choice of the generating distribution may

no longer be P
\̂
, as shown in the next result.

Theorem 2.3.3. In terms of selecting a generating distribution P0 to minimize " (P0, {Q : 3q (P\̂ ,Q) 

_,Q 2 P?0A0}, X), the optimal value of (2.43), the choice P
\̂

can be strictly dominated by other

distributions.

Intuitively, Theorem 2.3.3 arises because the extreme distribution that achieves the equivalence

relation (2.37) may not be in the considered parametric family. It implies more flexibility in choos-

ing the generating measure P0, in the sense of requiring less Monte Carlo samples than using P
\̂
.

From the standpoint of hypothesis testing in Section 2.3.1, the imposed minimax problem

(2.43) in searching for the best P0 can be viewed as finding a simple null hypothesis that is uni-

formly least powerful across the uncertainty set. This question is related and appears more general

than finding the least favorable or powerful prior in testing against composite null hypothesis [60].

In the latter context, given a set ⇥1, one aims to find a distribution `¢(3\0) such that �(`¢)  �(`)

for all distributions `(3\0) on ⇥0, where �(`) is the optimal value of

max
\12⇥1

P\1
(�)

s.t.
π
⇥0

P\0
(�)`(3\0)  X.

(2.44)

The distribution `(3\0) is interpreted as a prior on a composite null hypothesis parametrized by

\0, and `⇤(3\0) is the least favorable prior. The difference between (2.44) and our formulation

(2.43) lies in the restriction to measures of the form P0 =
Ø
⇥0

P\0
`(3\0) for the former, leading

28

to a smaller search space than ours. This mixture-type P0 and the Bayesian connection will partly

motivate our investigation in Section 2.4.

To prove Theorem 2.3.3, we present a counter example and also some related discussion.

Consider the uncertainty set U30C0 = {P\ , : �1  \  1} within Gaussian location family

on R with P\ (3H) = 1p
2c

4
� (H�\)2

2 . This can be thought of, e.g., as an uncertainty set based on the

j
2-distance, the latter defined between two probability measures P1 and P2 as

j
2(P1, P2) =

π
Y
(3P2

3P1

� 1)2P1(3H). (2.45)

Note that the j2-distance is in the family of q-divergences, by choosing q = (G � 1)2. We aim to

find a generating distribution P0 to minimize " (P, {P\ : \ 2 U30C0}, X), the optimal value of

max
\2U30C0 ,�⇢R

P\ (�)

s.t. P0(�)  X.
(2.46)

We consider several symmetric distributions as P0 (symmetry is reasonably conjectured as a good

property since an imbalanced shift might increase the power for the alternative hypothesis on one

side and the worst case overall). We list these symmetric distributions in increasing variability:

P1

0
(3H) = 1

p
2c

4
� H

2

2

P2

0
(3H) = 1

p
2c · 2

4
� H

2

2·2

P3

0
(3H) = 1

2

p
2c

✓
4
� (H�1)2

2 + 4�
(H+1)2

2

◆
.

(2.47)

Given 0  \  1, it can be shown by the Neyman-Pearson lemma that the rejection region �¢ (i.e.

the set giving the optimal value of (2.46) for a given \) for P1

0
has the form {H : H > 21}, for P2

0
the

form {H : H � 2\  22} and for P3

0
the form {H :

4
\H

4
H+4�H > 23}, for some 21, 22 and 23. Let X = 0.05

29

be the tolerance level, it can be shown through numerical verification that

" (P1

0
, {P\ : \ 2 U30C0}, 0.05) = 0.2595

" (P2

0
, {P\ : \ 2 U30C0}, 0.05) = 0.1160

" (P3

0
, {P\ : \ 2 U30C0}, 0.05) = 0.0995.

(2.48)

Thus, the natural choice P
\̂
= P1

0
based on relaxing to nonparametric DRO yields a bounding

function " (·) that is outperformed by P2

0
or P3

0
. Later in Section 2.4 we will see numerically how

P2

0
and P3

0
can lead to a smaller sample size requirements.

Although Theorem 2.3.3 reveals room to search for the best generating distribution, the in-

volved optimization, or even just finding an improved distribution over P
\̂
, appears to be nontriv-

ial. In particular, the maximization problem in (2.43) depends on the computation of �¢ for each

alternative of \ 2 U30C0. Section 2.4 discusses some approaches to search for improvements. We

conclude the current section with some discussion on the choice of statistical distances used in the

uncertainty set.

2.3.4 Choice of Statistical Distance

We have chosen to use q-divergence to construct our uncertainty set U30C0, and we have seen

how this allows us to effectively translate sample size requirements from the data to Monte Carlo.

Note that another common type of distance is the Wasserstein distance (e.g., [56, 57, 59]). If one

can translate the violation probability under a generating distribution into the worst-case violation

probability over a Wasserstein ball, then the same line of arguments in Section 2.2 applies to using

SO on this DRO. Presuming that the size of a parametric Wasserstein-based confidence region

can be properly calibrated from data, it is conceivable that the above can give rise to an alternate

solution route. It is known (Theorem 3 in [57]), under suitable regularity conditions, that one can

equate a Wasserstein-ambiguous probability sup

3, (Q,P
\̂
)_
Q(b 2 �), where 3, denotes a Wasserstein

distance of order 1 and cost function 2, and � is an event, to P
\̂
(2(b, �)  1/a⇤) where a⇤ � 0

is a dual multiplier for the associated optimization problem, and 2(b, �) denotes the cost-induced

30

distance between a point b and a set �. Thus, " (P0, {Q : 3, (P
\̂
,Q)  _}, X) can be written as

max
�⇢Y

P
\̂
(2(b, �)  1/a⇤)

s.t. P0(�)  X.
(2.49)

Compared to the evaluation of " (P0, {Q : 3q (P\̂ ,Q)  _}, X) in Theorem 2.3.2, the tightening

of the tolerance level from n to n
0 is now replaced by the set inflation from � to the (1/a⇤)-

neighborhood of � given by {b : 2(b, �)  1/a⇤}. Note that, regardless of the distance used, one

could reduce the conservativeness of our analysis by focusing on � in the form {G 8 Xb}, but this

would require looking at the specific form of the safety set Xb .

2.4 Improving Generating Distributions

This section discusses some approaches to search for better generating distributions beyond

the baseline distribution in a divergence ball of DRO. Section 2.4.1 first states a general result to

create better generating distributions. Section 2.4.2 then specializes to using a mixture distribution

on \ to exploit this result. Sections 2.4.3 and 2.4.4 then provide two specific ways to construct

these mixtures. Finally, Section 2.4.5 demonstrates some numerical comparisons in using these

new mixing generating distributions and also simply using the baseline.

2.4.1 A Framework to Reduce Divergence Ball Size by Incorporating Parametric Information

The reason why the best choice of generating distribution P0 is not the baseline of the diver-

gence ball, P
\̂
, in minimizing " (P0, {Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0}, X) is that the equivalence

relation (2.37) does not hold when Q is restricted to a parametric class. In some sense the reduc-

tion to the unambiguous chance constraint in the right hand side of (2.37) is over-conservative as

it does not account for parametric information. Suppose we would still like to use the analyti-

cally tractable relation (2.37), but at the same time be less conservative. Then, one approach is

to find a new baseline distribution, say P̃, such that the parametrically restricted divergence ball

31

{Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0} lies inside a new nonparametric divergence ball at the center P̃,

namely {Q : 3q (P̃,Q)  _̃}. If we can obtain a nonparametric ball size _̃ such that _̃ < _ and the

set inclusion holds, then this new ball is also a valid uncertainty set, and, when simply setting the

generating distribution as P0 = P̃ and applying Theorem 2.3.2, we have a smaller upper bound for

" (P0, {Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0}, X) than n0�1(X, _, q) obtained from using Theorem 2.3.2

directly with the parametric constraint relaxed.

To above mechanism can be executed as follows. Let U30C0 = {Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0}.

For any P0, let

D30C0 (P0, q) , sup

Q2U30C0

3q (P0,Q). (2.50)

Then we clearly have

U30C0 ✓ {Q : 3q (P0,Q)  D30C0 (P0, q)}, (2.51)

since the right-hand-side set includes distributions outside of the parametric family as well.

Our goal is to find P0 to minimize D30C0 (P0, q) or any upper bound of D30C0 (P0, q) so that it

is smaller than the ball size _ appearing in the original parametric divergence ball U30C0. We state

the implication of this as follows:

Theorem 2.4.1. Suppose Y = R: and P
\̂

admits a density. Consider the parametric divergence

ball U30C0 = {Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0}. Suppose we can find P0 such that D30C0 (P0, q)

defined in (2.50) satisfies D30C0 (P0, q) < _. Then we have

min

P1

" (P1, {Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0}, X)  min

P1

" (P1, {Q : 3q (P\̂ ,Q)  D30C0 (P0, q)}, X)

 min

P1

" (P1, {Q : 3q (P\̂ ,Q)  _}, X) (2.52)

and

min

P1

" (P1, {Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0}, X)  n0
�1(X,D30C0 (P0, q), q)  n0�1(X, _, q) (2.53)

32

where n0�1(n , _, q) is defined in (2.39).

Proof. By the definition of D30C0 (P0, q), (2.51) holds. Together with the condition D30C0 (P0, q) <

_, we have the set inclusions

{Q : 3q (P\̂ ,Q)  _,Q 2 P?0A0} ✓ {Q : 3q (P0,Q)  D30C0 (P0, q)} ✓ {Q : 3q (P\̂ ,Q)  _}

(2.54)

The inequalities (2.52) then follow from the definition of " . The inequalities (2.53) in turn follow

immediately from Theorem 2.3.2. ⇤

Theorem 2.4.1 stipulates that choosing P0 depicted in the theorem as the generating distribu-

tion, and setting n0�1(X,D30C0 (P0, q), q) as an upper bound for " (P0, {Q : 3q (P\̂ ,Q)  _,Q 2

P?0A0}, X) to obtain the required Monte Carlo size #4G02C (Xn , V, 3) implied by Corollary 2.2.1.1,

will give a lighter Monte Carlo requirement than using the bound n0�1(X, _, q) directly obtained

by relaxing the parametric constraint and using P
\̂

as the generating distribution as in Corollary

2.3.2.1.

2.4.2 Mixture as Generating Distribution

Since optimization (2.50) can be difficult to solve generally, we focus on finding improved

generating distribution P0 so that the implication of Theorem 2.4.1 holds, instead of fully optimiz-

ing (2.50). In this and the next subsections, we design a search space P0 for P0 that allows the

construction of tractable procedures to achieve such improvements, while at the same time ensures

the obtained P0 are amenable to Monte Carlo simulation.

From now on we will focus on j
2-distance as our choice of q for convenience (as will be

seen). Suppose that P\ has density ?(H; \). We then set P0 to be the collection of distributions

with densities in the form

?0(H) =
π
⇥
?(H; \)`(3\), (2.55)

for some probability measure ` on ⇥. This class of distributions is easy to sample assuming ?(H; \)

33

and ` are, as one can first sample \ ⇠ `(3\) and then b ⇠ P\ given \.

Searching for the best ?0(H) requires minimizing D30C0 (P0) over P0 2 P0 (where for conve-

nience we denote D30C0 (P0) as D30C0 (P0, q) with q representing the j2-distance). We first use

(2.45) to write

D30C0 (P0) = sup

\2U30C0

π
Y

⇣
?(H; \)
?0(H)

� 1

⌘
2

?0(H)3H

= sup

\2U30C0

π
Y

(?(H; \))2

?0(H)
3H � 1

= sup

\2U30C0

π
Y

(?(H; \))2Ø
⇥ ?(H; \0)`(3\0)

3H � 1. (2.56)

Denoting P(⇥) as the space of probability measures on ⇥, we define the function ! : P(⇥)⇥⇥!

R to be

! (`, \) ,
π
Y

(?(H; \))2Ø
⇥ ?(H; \0)`(3\0)

3H, (2.57)

assuming the integral is well-defined for P(⇥) ⇥ ⇥ and further define

; (`) , sup

\2U30C0

! (`, \). (2.58)

Thus (2.56) can be written as D30C0 (P0) = ; (`) � 1, and minimizing D30C0 (P0) is equivalent to

solving

min

`2P(⇥)
; (`) = min

`2P(⇥)
max

\2U30C0

! (`, \). (2.59)

Optimization (2.59) has the following convexity property:

Lemma 1. The outer minimization in problem (2.59) is convex.

Lemma 1 can be proved by direct verification, which is shown in Supplementary 2.10. Note

also that, if ` is the point mass X\ for \ 2 ⇥, then the mixture distribution would recover the

parametric distribution P\ . Hence the proposed family P0 includes {P\}\2⇥, and in particular the

original baseline distribution P
\̂
. Although the outer minimization of (2.59) is a convex problem,

computing ; (`) involves a non-convex optimization and is difficult in general. Our approach is

34

to search for a descent direction for the convex function ; (·) from X
\̂
. In the following, we will

study two types of search directions, each using its own version of Danskin’s Theorem [74, 75].

To proceed, we introduce the following definition:

Definition 1. Define ⇥⇤(`) to be the set of optimal points for the maximization problem in ; (`) =

sup

\2U30C0

! (`, \) given ` 2 P(⇥) :

⇥⇤(`) = argmax
\2U30C0

! (`, \) (2.60)

It can be shown that ⇥⇤(`) is non-empty and ⇥⇤(`) ✓ U30C0 because U30C0 is compact and

! (`, \) is continuous in \.

2.4.3 Mixing with a Proposed Distribution

We consider mixing distributions in the form (1� C)X
\̂
+ C`?A>? for some proposed distribution

`?A>?, and look for a descent direction by varying C from 0 to 1. We have the following result that

is a consequence of Danskin’s Theorem that involves a one-sided derivative. We provide proofs

both for this theorem and our following result in Supplementary 2.10.

Theorem 2.4.2. Fix any `1, `2 2 P(⇥) and \ 2 ⇥. Under the assumptions that k(C) = ! ((1 �

C)`1 + C`2, \) is well defined for 0  C  1, we know that the function 6(H, C)

6(H, C) : Y ⇥ [0, 1] , (?(H; \))2

(1 � C)
Ø
⇥ ?(H; \0)`1(3\0) + C

Ø
⇥ ?(H; \0)`2(3\0)

is integrable for C 2 [0, 1]. If we further assume that there exists a integrable function 60(H) such

that ���� (?(H; \))
2 ·

Ø
⇥ ?(H; \

0) (`1 � `2) (3\0)
(
Ø
⇥ ?(H; \0) ((1 � C)`1 + C`2) (3\0))2

����  60(H),

35

then we have the right derivative of k(C) at C = 0 given by

k
+(0) = sup

\2⇥⇤ (`1)
lim

C#0

! ((1 � C)`1 + C`2, \) � ! (`1, \)
C

= sup

\2⇥⇤ (`1)

π
Y

(?(H; \))2 ·
Ø
⇥ ?(H; \

0) (`1 � `2) (3\0)
(
Ø
⇥ ?(H; \0)`1(3\0))2

3H. (2.61)

The quantity k+(0) is the directional derivative of ! (`1) in the direction `2 � `1. Thus, to

improve on D30C0 (P\̂), we can propose a mixing distribution `?A>? (3\0), and substitute `1 = X
\̂

and `2 = `?A>? in (2.61) to check if

sup

\2⇥⇤ (X
\̂
)

π
Y

(?(H; \))2 ·
Ø
⇥ ?(H; \

0) (X
\̂
� `?A>?) (3\0)

?(H; \̂)2

3H < 0, (2.62)

which indicates a strict descent for ; (·) from X
\̂

to `?A>?. In this case, it follows from the convexity

of ; (·) that we can find some 0 < C  1 such that ; ((1 � C)X
\̂
+ C`?A>?) < ; (X\̂), so that

?C (H) =
π
⇥
?(H; \0) ((1 � C)X

\̂
+ C`?A>?) (3\0), (2.63)

gives rise to D30C0 (P0) < D30C0 (P\̂). Finding such a C can be done by a bisection search or

enumerating D30C0 (P0) on ?C over a grid of C. Note that the above can be implemented only if

(2.62) can be verified and also if D30C0 (P0) is computable. We will show that both properties are

satisfied for the case of multivariate Gaussian when `?A>? is properly chosen. In particular, we will

identify general sufficient conditions for `?A>? to guarantee (2.62), and also find `?A>? such that

the maximization involved in computing D30C0 (P0) in (2.56) can be reduced to a one-dimensional

problem.

Consider a multivariate Gaussian distribution with unknown mean ⇥ ⇢ R⇡ in an open convex

set with density

?(H; \) = 1p
(2c)⇡ |⌃|

· 4� 1

2
(H�\)|⌃�1 (H�\)

, (2.64)

where ⌃ is a fixed positive semi-definite covariance matrix. Direct verification (in Supplementary

36

2.10) shows that

U30C0 ,

(
\ 2 ⇥ : j

2(P
\̂
, P\) 

j
2

1�U,⇡
=

)
=

(
\ 2 ⇥ : 4

(\�\̂)|⌃�1 (\�\̂) � 1 
j

2

1�U,⇡
=

)

=

(
\ : \̂ + ⌃

1

2 E, for kEk2
2
 log(1 +

j
2

1�U,⇡
=

)
)
,

(2.65)

and thus

⇥⇤(X
\̂
) =argmax

\2U30C0

4
(\�\̂)|⌃�1 (\�\̂) =

�
\ : \̂ + ⌃

1

2 E, for kEk2
2
= log(1 +

j
2

1�U,⇡
=

)

. (2.66)

We propose the following `?A>?. First, we call a distribution on ⇥ symmetrical around \ 2 ⇥ if

its probability density or mass function has the same value for any \1, \2 2 ⇥ such that \ = \1+\2

2
.

Proposition 1. Let `?A>? (3\0) be any symmetrical distribution around \̂. Given \ 2 ⇥⇤(X
\̂
), we

define .\ = (\ � \̂)|⌃�1(\0 � \̂) with \0 ⇠ `?A>? (3\0). Suppose there exists an integrable random

variable . under the measure `?A>? such that 42.\  . for all \ 2 ⇥⇤(X
\̂
). If, for each \ 2 ⇥⇤(X

\̂
),

.\ does not equal to 0 with probability 1, then (2.62) holds and the mixture distribution produced

by `?A>? (3\) would result in a descent direction on D30C0 (P\̂).

One can check that any Gaussian distribution with mean \̂ satisfies the conditions of Propo-

sition 1, and so does any `?A>? (3\0) that is discrete, symmetrical around \̂, whose outcome di-

rections \0 � \ constitute a basis of R⇡ . Alternately, we also consider the following continuous

`?A>?. We set \0 ⇠ \̂ +
q

j
2

1�U,⇡
=

· ⌃1/2
[where [is a random vector uniformly distributed on the

surface of the ⇡-dimension unit ball. Note that this \0 can be efficiently simulated by sampling ⇡

independent standard Gaussian random variables and scaling their norm to unit length to obtain [.

While this `?A>? can be readily checked to satisfy the conditions in Proposition 1, we also provide

an alternate proof on the validity of this `?A>? in achieving a descent direction in Lemma 5 in the

Supplementary, as results proven therein provide important reference to calculations in numerical

experiments regarding `?A>?.

37

Next, we discuss the computation of D30C0 (P0) for a given P0. First, we call a random variable

. on Y ⇢ R: rotationally invariant if .D=&|. for any rotational matrix & 2 R:⇥: . Using this

notion, the following shows how one can reduce the ⇡-dimensional maximization problem in the

definition of D30C0 (P0) into a one-dimensional problem.

Proposition 2. Given a nominal distribution . ⇠ P0 and a multivariate Gaussian family with

known covariance ⌃ denoted P\ = N(\,⌃). If the nominal distribution . ⇠ P0 satisfies the

condition that the random variable / = ⌃�1/2(. � \̂) is rotationally invariant, then for any \1, \2

satisfying (\1 � \̂)|⌃�1(\1 � \̂) = (\2 � \̂)|⌃�1(\2 � \̂), we have

j
2(P0, P\1

) = j2(P0, P\2
). (2.67)

Thus, for D30C0 (P0) = max
\2U30C0

j
2(P0, P\) with U30C0 = {\ 2 ⇥ : (\ � \̂)|⌃�1(\ � \̂)  _} as

in (6.79), we have

D30C0 (P0) = max

0C1

j
2(P0, P(1�C)\̂+C\¢), (2.68)

given any \¢ satisfying (\¢ � \̂)|⌃�1(\¢ � \̂) = _.

Proposition 3. Given 0  C  1 and `?A>? (3\) = \̂ +
q

j
2

1�U,⇡
=

· ⌃1/2
[, where [is a random vector

uniformly distributed on the surface of the ⇡-dimension unit ball, the nominal measure PC with

density

?C (H) =
π
⇥
?(H; \0) ((1 � C)X

\̂
+ C`?A>?) (3\0) = (1 � C)P

\̂
+ C

π
⇥
?(H; \0)`?A>? (3\0),

satisfies the conditions in Proposition 2.

Therefore, in computing D30C0 (P0) derived from the proposed distribution `?A>? (3\) = \̂ +q
j

2

1�U,⇡
=

·⌃1/2
[, using Propositions 2 and 3 we can change the domain of the involved maximization

from ⇥ ⇢ R⇡ into R, leading to a substantial reduction in the search space and a tractable problem.

38

2.4.4 Enlarging Mixture Variability

Our next proposal is to consider a continuous mixing distribution `A (3\0) on ⇥ where A � 0

controls the variability of the distribution, so that A = 0 corresponds to X
\̂
. Here, we can parametrize

the density of the generating distribution as

?A (H) =
π
⇥
?(H; \0)`A (3\0), (2.69)

and our search direction is along A starting from A = 0. We propose two possible ways to define

`A (3\0). First is to let `1

A
(3\0) follow the distribution of \0 ⇠ \̂ +⌃ 1

2 · [p
A

where [p
A

is the uniform

distribution inside the ⇡-dimensional unit ball with radius
p
A. Second is to let `2

A
(3\0) follow

N(\̂, A⌃). The second approach in particular can be intuited as the posterior distribution of the

parameter from a Bayesian perspective. In both cases, we notice that letting A = 0 would recover

the original baseline distribution ?(H; \̂).

To analyze these schemes, we abuse notation slightly and now define ! : R+ ⇥ ⇥! R to be

! (A, \) ,
π
Y

(?(H; \))2

?A (H)
3H, (2.70)

and

; (A) , sup

\2U30C0

! (A, \). (2.71)

We show that increasing A to positive values would produce a descent direction for ; (A) at A = 0,

when the underlying distribution is Gaussian. Recall that in this case ⇥⇤(X
\̂
) can be expressed by

(2.66). As ; (A) is not necessarily convex in this situation, we use a generalized version of Danskin’s

Theorem [76] for non-convex problems to get the following result:

Theorem 2.4.3. With ; (A) and ! (A, \) defined in (2.70) and (2.71), and ?(H; \) multivariate Gaus-

39

sian with mean \ and known positive definite covariance ⌃, we have

;
+(0) = lim

A#0

; (A) � ; (0)
A

= (1 +
j

2

1�U,⇡
=

) · lim

A#0

1

A

⇣
1 � inf

\2⇥⇤ (X
\̂
)
E\ 0⇠`A [42(\�\̂)|⌃�1 (\ 0�\̂)]

⌘
(2.72)

The proof is in Supplementary 2.10. With Theorem 2.4.3, we can show that both `1

A
and `2

A

proposed above are valid choices to produce descent directions. Moreover, we can also show that

they allow tractable computation of D30C0 (P0). These are depicted as follows.

Corollary 2.4.3.1. Under the assumptions in Theorem 2.4.3, ;+(0) < 0 for both `1

A
and `2

A
.

Corollary 2.4.3.2. Given A � 0 and `?A>? being `1

A
(3\) or `2

A
(3\), the nominal measure PA with

density given by (2.69) satisfies the conditions in Proposition 2.

The proofs of Corollary 2.4.3.1 and Corollary 2.4.3.2 are in Supplementary 2.10.

2.4.5 Numerical Demonstrations

To confirm our findings in Section 2.4.3 and 2.4.4, we perform several numerical experiments.

Consider P\ to be multivariate Gaussian N(\, �⇡) with : = ⇡ = 10. We set n = U = 0.05 while

V = 0.01 and data size = = 10 or 5. Notice in this case, the dimension ⇡ is high but the available

sample = is low and we would actually need #4G02C = 371 data points to perform standard SO.

Based on our discussion, we compare three choices of `?A>?:

• `1 = X
\̂
, the point mass at \̂.

• `2 ⇠ \̂ +
q

j
2

1�U,⇡
=

· [, where [is the uniform random vector on the surface of a ⇡-dimension

unit ball, discussed in Section 2.4.3.

• `3 ⇠ N(\̂, �⇡/=), the Gaussian distribution with mean \̂ and covariance matrix �⇡/=, dis-

cussed in Section 2.4.4.

For `1, `2 and `3, the calculation of D30C0 (P0) is tractable. We leave the details in the Supplemen-

tary as remarks following Lemma 5 and summarize the results in Table 2.1 and 2.2. We use # to

40

denote the number of Monte Carlo samples needed. Moreover, we use both algorithms Extended

SO and Extended FAST discussed in Section 5 for demonstration. As we can see, the decrease

in # under a better sampling distribution can be considerable, down to less than a third compared

to using the baseline in some cases. Mixing with a proposed uniform distribution (`2) appears to

reduce # more than applying a Gaussian mixture (`3). As a side note, we also observe Extended

FAST requires significantly less sample size than Extended SO in this example.

Table 2.1: Comparisons among choices of P0 for 10 dimensional multivariate Gaussian when = = 5.

D30C0 (P0) Xn # for Extended SO # for Extended FAST

`1(X\̂) 37.9161 6.5766 ⇥ 10
�5 285601 70221

`2 11.0368 2.2454 ⇥ 10
�4 83649 20707

`3 14.7391 1.6850 ⇥ 10
�4 111465 27528

Table 2.2: Comparisons among choices of P0 for 10 dimensional multivariate Gaussian when = = 10.

D30C0 (P0) Xn # for Extended SO # for Extended FAST

`1(X\̂) 5.2383 4.6857 ⇥ 10
�4 40081 10026

`2 3.3139 7.3298 ⇥ 10
�4 25621 6481

`3 3.7926 6.4275 ⇥ 10
�4 29219 7363

2.5 Procedural Description

This section presents our procedures to find solutions for CCP (2.1) using SO-based methods,

when the direct use of data b1, ..., b= from P is possibly insufficient to achieve feasibility with a

given confidence. Algorithm 1, which we call “Extended SO", first presents the basic and most

easily applicable procedure arising from Corollary 2.3.2.1. Notice that, given an overall target

confidence level, say 2, we have flexibility in choosing U and V such that U + V = 2. In our

experiments, we simply choose U = V = 2

2
. However, if the required confidence level is high, it is

more beneficial to choose a relatively small V, since the required Monte Carlo sample size depends

only logarithmically on V (i.e., the required sample size for SO is of order log
1

V
) [22]. On the other

41

hand, as the confidence level 1� U grows higher, the size of uncertainty set U30C0 would grow and

cause the tolerance level n for the SO (under the baseline P0) to decrease. Here, the dependence of

Monte Carlo sample size on n is less favorable, typically of order 1

n
[22].

Algorithm 1 Extended SO to obtain a feasible solution Ĝ for (2.1) with asymptotic confidence
1 � U � V

1: Inputs: data points b1, . . . , b=, a q-divergence, parametric information P?0A0 = {P\}\2⇥⇢R⇡ .

2: Find the MLE \̂ from the data b1, . . . , b= for parameter \.

3: Set _ q
00(1)j2

1�U,⇡
2=

where j2

1�U,⇡ is the 1 � U quantile of a j2

⇡
distribution.

4: Set Xn n
0(n , _, q) where n0 is defined in (2.38).

5: Set # #4G02C (Xn , V, 3) where #4G02C is defined in (2.11).

6: Generate b"⇠
1

, ..., b
"⇠

#
from P

\̂
to construct (2.10) and obtain a solution Ĝ.

There are several variants of Algorithm 1. First, we have discussed the use of plain SO and that

the required sample size is (2.11), while on the other hand, as mentioned at the end of Section 2.2.2,

we can use other variants of SO such as FAST that requires a smaller sample size for either the data

or the Monte Carlo samples we generate. In the case of FAST, we would have #4G02C (n , V, 3) =

203 + 1

n
log

1

V
, as suggested by [28]. Thus, a variant of Algorithm 1 is to replace #4G02C with this

latter quantity, and replace (2.10) with the FAST procedure in [28] for the last step of Algorithm 1

(we call this algorithm “Extended FAST" which will also be used in the next section).

The explicit expression for n0(n , _, q) for different q, n and _ can be found in [39]. For example,

if we choose q = (G � 1)2 which corresponds to the j
2-distance, then for n < 1/2, we have

n
0 = max{0, n �

p
_

2+4_(n�n2)�(1�2n)_
2_+2

}. We can also replace n0(n , _, q) by any Xn that achieves

" (P
\̂
, {Q : 3q (P\̂ ,Q)  _}, Xn)  n . In Supplementary 2.9, we derive a self-contained easy upper

bound for " (P
\̂
, {Q : 3q (P\̂ ,Q)  _}, X) in the case of j2-distance and use it to find such a Xn .

This easy computation of Xn will also be used in our numerics in the next section.

Section 2.4.1 has investigated some proposals to improve the generating distributions. Algo-

rithm 2 depicts these proposals in a general form. The main difference of Algorithm 2 compared

to Algorithm 1 is the introduction of D30C0 (P0, q) that one can attempt to minimize over a class

42

of generating distribution P0 or evaluate for trial-and-error choices of P0, so that at the end we

have D30C0 (P0, q) < q
00(1)j2

1�U,⇡/(2=). As discussed in Section 2.4.1, using this P0 allows us to

obtain a smaller Monte Carlo size requirement than simple relaxation of the parametric constraint.

Sections 2.4.3 and 2.4.4 describe the possibilities of achieving such a reduction, in the case of

Gaussian underlying distributions and using j2-distance. Note that, just like in Algorithm 1, we

can consider other variants such as incorporating FAST and using alternate bounds for " instead

of n0, by undertaking the same modifications as in Algorithm 1.

Algorithm 2 Extended SO with improved generating distribution to obtain a feasible solution Ĝ for
(2.1) with asymptotic confidence 1 � U � V

1: Inputs: data points b1, . . . , b=, a q-divergence, parametric information P?0A0 = {P\}\2⇥⇢R⇡ .

2: Find the MLE \̂ from the data b1, . . . , b= for parameter \.

3: Set _ q
00(1)j2

1�U,⇡
2=

where j2

1�U,⇡ is the 1 � U quantile of a j2

⇡
distribution.

4: Obtain P0 by minimizing D30C0 (P0, q) defined in (2.50) over a class of distributions or simple

trial-and-error search so that D30C0 (P0, q) < _.

5: Set Xn n
0(n ,D30C0 (P0, q), q) where n0 is defined in (2.38).

6: Set # #4G02C (Xn , V, 3) where #4G02C is defined in (2.11).

7: Generate b"⇠
1

, ..., b
"⇠

#
from P0 to construct (2.10) and obtain a solution Ĝ.

2.6 Numerical Experiments

This section presents some numerical examples to support our theoretical findings and illustrate

the performance of our proposed procedures for data-driven CCPs. We focus on Algorithm 1

(Extended SO) and its FAST variant discussed in Section 2.5 (Extended FAST). We consider both

single and joint CCPs (i.e., one and multiple inequalities respectively in the safety condition of the

probability) as well as quadratic optimization problems. Moreover, we compare numerically with

methods of robust optimization (RO) in [77, 78]. The experimental outputs that we report include:

• Under each setting, we repeat the experiment 1000 times with new data generated each

time. For the solution Ĝ obtained in each trial from a given algorithm, we evaluate the

43

violation probability+ (Ĝ, P) under the true probability measure P (under \CAD4) either through

exact calculation or Monte Carlo simulation with sample size 10000. Moreover, using the

empirical distribution for the violation probabilities, we report n̂ as the average violation

probability + (Ĝ, P) as well as &95, the 95-percentile. Finally, we report and compare “ 5E0;”,

the average objective value for the optimization problem across all 1000 runs.

• We fix U = 0.05 and V = 0.01 across different values of n and 3. However, when we

compare our methods with robust optimization approaches, we set U = 0.05 and V = 0.001,

since RO approaches essentially guarantee V = 0. On the other hand, the sample size chosen

for FAST is taken with default values #1 = 203 in stage 1 and #2 = log V�log(⌫#1
,3

n
)

log(1�n) in stage

2 as discussed in [28].

• For given n and 3, we denote #4G02C as the required sample size if we can directly sample

from P and use standard SO. We denote = as the available data size (= < #4G02C) and # as

the Monte Carlo size needed for the our DRO-based methods. In DRO-based methods, we

fix our generating distribution P0 as P
\̂

and use the j2-distance across the experiments.

2.6.1 Single Linear Chance Constraint Problem

We first consider a single linear CCP

min
G2X✓R3

2
)

G

s.t. P((0 + b))G  1) � 1 � n , G � 0

(2.73)

where G 2 R3 is the decision variable, 0, 2 2 R3 and 1 2 R are fixed and b 2 R3 is a ran-

dom vector following some parametric distribution. We fix 0 = [5, 5, ..., 5] 2 R3 , 1 = 5 and

2 = [�1,�1, ...,�1] 2 R3 and the problem would have a non-empty feasible region with high

probability for b considered here. Moreover, a robustly feasible point for FAST [28] is chosen to

be Ḡ = 0 2 R3 and an explicit U30C0 is constructed as (2.27) for our DRO.

44

Multivariate Gaussian

We conduct experiments when b ⇠ N(\,⌃) with fixed but a priori randomly generated positive

definite covariance matrix ⌃ 2 R3⇥3 and unknown \ 2 R3 . Due to the normality of b, for any given

\, we can reformulate the chance constraint exactly as a second-order cone constraint, which can

be robustified straightforwardly in the ambiguous chance constraint case. The underlying true

parameter is taken to be \CAD4 = 0 2 R3 and the results are summarized in Table 2.3 and 2.4.

Table 2.3: Single linear CCP under Gaussian with unknown mean for different n and 3.

n = 0.1 n = 0.1 n = 0.1 n = 0.05 n = 0.05 n = 0.05

3 = 5 3 = 10 3 = 20 3 = 5 3 = 10 3 = 20

= 50 80 200 50 80 200
#4G02C 113 183 312 229 371 631
449 743 1016 1443 2349 3118
n̂ 0.0050 0.0041 0.0041 0.0015 0.0015 0.0014
&95 0.0136 0.0103 0.0088 0.0045 0.0037 0.0031
5E0; -0.7577 -0.7447 -0.7360 -0.7353 -0.7243 -0.7128

Table 2.4: Comparisons for single linear CCP under Gaussian: n = 0.05, 3 = 10 and V = 0.001.

RO Extended SO Extended FAST

= 80 80 80
#4G02C NA 447 447
NA 2887 1079
n̂ 0.0180 0.0011 0.00069
&95 0.0272 0.0029 0.0019
5E0; -0.8008 -0.7212 -0.7093

Exponential Distribution

We conduct experiment when each coordinate b8 of b 2 R3 independently follows exponential

distribution with rate _8. Since b is no longer Gaussian and the domain of the moment generating

45

moment function for exponential distribution depends on _ = (_1, . . . , _3), for convenience we

use RO constructed from a convex approximation using Chebyshev’s inequality:

P_
⇣
b
)

G �
3’
8=1

G8

_8

> n
�1/2

p
+0A (b)G)

⌘
 n

which, combined with U30C0 as in (2.27), reduces the ambiguous chance constraint into a robust

conic quadratic constraint

n
�1/2

vut
3’
8=1

(G8
_8

)2 + 0)G + n�1/2
3’
8=1

G8

_8

� 1  0, 8_ :

3’
8=1

(1 � _8
_̂8

)2 
j

2

1�U,3
=

,

The above can be tractably reformulated as in Section 5 of [77] on problems in the form of 5(b),

with ⌦ = (min8 (_̂8) (1 �
j

2

1�U,3
=

))�1 where _̂8 represents the MLE estimate of _8. Finally, the under-

lying true parameters are taken as _8 = 1,88, and results are summarized in Table 2.5.

Table 2.5: Comparisons for single linear CCP under Exponential: n = 0.05, 3 = 10 and V = 0.001.

RO Extended SO Extended FAST

= 80 80 80
#4G02C NA 447 447
NA 2887 1079
n̂ 0.0045 0.0047 0.0016
&95 0.0094 0.0100 0.0050
5E0; -0.6978 -0.6981 -0.6701

From the results of the experiments, we can see the vast majority of solutions produced by

three methods satisfy statistical feasibility. In fact, all methods are conservative with respect to the

violation probability n , although some are more conservative than the other. In particular, when

b is Gaussian, RO takes advantage of an exact formulation to produce less conservative solution

with lower objective value (closer to the optimal value). This can be seen in Table 4, where

n̂ = 0.018 5E0; = �0.80 for RO and n̂ = 0.0011 5E0; = �0.72 only for Extended SO. When b

is no longer Gaussian, RO appears to produce similar-quality solutions as Extended SO in terms

46

of feasibility or optimality. For example in Table 5, we have n̂ = 0.0045 5E0; = �0.6978 for RO

and n̂ = 0.0047 5E0; = �0.6981 for Extended SO. Note that while the validity of RO depends

crucially on the applicability and accuracy of convex approximation, the validity of Extended SO

or Extended FAST is not restricted by the distributions of b, and they also do not require intensive,

case-specific analysis as RO. In general, we observe consistent performances of our methods in

both experiments.

2.6.2 Joint Linear Chance Constraint Problem

Next, we consider a joint chance-constrained linear problem:

min
G2X✓R3

2
)

G

s.t. P((� + ⌅)G  1) � 1 � n , G � 0

(2.74)

where G 2 R3 is the decision variable, � 2 R<⇥3 , 2 2 R3 and 1 2 R< are fixed and ⌅ 2 R<⇥3

is a random matrix following some parametric distribution. We set 2, each row of � and 1 to be

the same as in the single linear CCP. We treat ⌅ 2 R<⇥3 as a matrix concatenated from a random

vector b 2 R<3 ⇠ N(\,⌃) with fixed but a priori randomly generated positive definite covariance

matrix ⌃ 2 R<3⇥<3 and unknown \ 2 R<3 . To solve RO, we use Bonferroni’s inequality as in [79]

to first divide the violation probability n uniformly across < individual chance constraints and then

follow the procedure as in single linear CCP. The results are summarized in Table 2.6.

Table 2.6: Comparisons for Joint linear CCP under Gaussian: n = 0.05, < = 3, 3 = 10 and V = 0.001.

RO Extended SO Extended FAST

= 80 80 80
#4G02C NA 291 291
NA 2388 1214
n̂ 0.0003 0.0012 0.0226
&95 0.0007 0.0033 0.0564
5E0; -0.6448 -0.6626 -0.6466

47

In this joint linear example, Extended FAST provides the least conservative solution in terms

of the achieved tolerance level (n̂ = 0.0226, which is closer to 0.05, compared to 0.0003 in RO and

0.0012 in Extended SO), and Extended SO is the least conservative in terms of the objective value

(5E0; = �0.6626 compared to �0.6448 in RO and �0.6466 in Extended FAST). RO appears to be

the most conservative in terms of both the achieved tolerance level and objective value. Note that

this occurs even though the underlying randomness is Gaussian, which allows exact reformulation

in the single chance constraint case. The conservative performance here is likely (and unsurpris-

ingly) due to the crude Bonferroni’s correction. Note that other alternatives to using Bonferroni, if

one considers tractable reformulation, would be to use moment-based DRO where tractability can

be achieved (e.g., [43]). However, it is unclear if using moment-based DRO would be more or less

conservative than using Bonferroni correction along with exact reformulation for the individual-

ized constraints, which could comprise an interesting comparison for a future study. Nonetheless,

our Extended SO/FAST, being purely sampled-based, avoids the additional conservativeness com-

ing from the Bonferroni correction. However, we note that a large number of Monte Carlo samples

are required due to the large size of U30C0 in this high-dimensional problem.

2.6.3 Non-Linear Chance Constrained Problems

In this section, we conduct numerical experiments for non-linear CCP. We consider two ex-

amples. First is a quadratic objective with joint linear chance constraints, and second is a linear

objective with a quadratic chance constraint, similar as the QM problem considered in [80].

Quadratic Objective with Joint Linear Chance Constraint

We adopt the same setup (thus the robust feasibility condition remains the same) as in (2.74)

except we modify the objective with a quadratic term

min
G2X✓R3

1

2

G
)

�G + 2)G

s.t. P((� + ⌅)G  1) � 1 � n , G � 0

(2.75)

48

for a fixed but a priori randomly generated positive definite matrix �. We use n = 0.05. Results

are summarized in Table 2.7. As we can see, feasibility in terms of violation probability is satisfied

by all methods, though RO suffers from higher conservativeness compared to Extended SO/FAST

in terms of the objective value (5E0; = �0.48 compared to �0.5547 and �0.5476 for Extended

SO and FAST respectively). Like the previous example, this could be attributed to the Bonferroni

correction used in the RO. Extended FAST gives the least conservative solution in terms of the

tolerance level (n̂ = 0.0096), using only one third of the samples compared to Extended SO (3888

vs 1384). On the other hand, Extended SO gives the least conservative solution in terms of the

objective value (5E0; = �0.5547).

Table 2.7: Comparisons for quadratic objective with joint linear chance constraint under Gaussian: n = 0.05,
< = 5, 3 = 10 and V = 0.001.

RO Extended SO Extended FAST

= 200 200 200
#4G02C NA 447 447
NA 3888 1384
n̂ 0 0.0006 0.0096
&95 0 0.0017 0.0253
5E0; -0.4800 -0.5547 -0.5476

Linear Objective with Quadratic Chance Constraint

We consider the following setup:

min
G2X✓R3

2
)

G

s.t. P(G)⌅G + 0)G  1) � 1 � n , G � 0

(2.76)

We set ⌅ = 1

<

Õ
<

8=1
b8b

)

8
and b8 2 R3 ⇠ N(\,⌃) are i.i.d. with unknown \. We set \CAD4 = 0 2 R3

and consequently <⌅ follows a Wishart distribution W(⌃,<) with < degrees of freedom and

covariance matrix ⌃ under P. We use n = 0.05. The RO formulation for this problem is not

readily available while our sampling-based methods are still directly applicable. We thus focus on

49

evaluating the performance of Extended FAST under different hyper-parameters. The results are

summarized in Table 2.8. As we can see, the high dimensions of the problem do not affect the

sample size requirement of Extended FAST dramatically, as it increases moderately form # = 154

when 3 = 5 to # = 334 when 3 = 10 and to # = 422 when 3 = 15. Moreover, the average optimal

value 5E0; is around �0.85 and feasibility is satisfied (n̂ all within 0.05), showing the consistent

effectiveness of our method.

Table 2.8: Linear objective with quadratic chance constraint for different n , < and 3.

n = 0.1, 3 = 5,< = 5 n = 0.05, 3 = 10,< = 10 n = 0.05, 3 = 15,< = 15

= 80 200 300
#4G02C 113 371 504
154 334 422
n̂ 0.0092 0.0050 0.0048
&95 0.0263 0.0133 0.0128
5E0; -0.8393 -0.8576 -0.8672

2.7 Conclusion

We consider data-driven chance constrained problems with limited data. In such situation, stan-

dard approaches in SO may not be able to generate statistically feasible solutions. We investigate

an approach that uses divergence-based DRO to efficiently incorporate parametric information

through a data-driven uncertainty set, and subsequently uses Monte Carlo sampling to generate

enough samples to handle the distributionally robust chance constraint. In this way our framework

translates the data size requirement in SO into a Monte Carlo requirement, the latter could be much

more abundant thanks to cheap modern computational power.

To exploit the full capability of our framework, we have investigated the optimality of the gen-

erating distribution in drawing the Monte Carlo samples in the sense of minimizing its required

sample size. We have shown that, while the optimal choice is the baseline distribution in the

unambiguous and nonparametric DRO cases, this natural choice can be dominated by other distri-

50

butions in the parametric DRO case. We proved this by connecting the Neyman-Pearson lemma in

statistical hypothesis testing to DRO and SO, which comprises the first such results of its kind as

far as we know. We then studied several ways to find better generating distributions by searching

for mixtures that enhance distributional variability. Lastly, we showed some numerical results to

demonstrate how our approach can give rise to feasible solutions in a wide range of settings where

other methods such as RO cannot be utilized directly or give more conservative solutions.

2.8 Supplementary A: Regularity Conditions to Verify Assumption 1

We consider the following conditions:

(C1) ?(G, \1) = ?(G, \2) for all G implies \1 = \2.

(C2) \CAD4 is an inner point of ⇥ ✓ R⇡ .

(C3) The support of distribution {G : ?(G, \) > 0} does not depend on \.

(C4) There exists a measurable function !1(G) such that E\CAD4!2

1
< 1 and

| log ?(G, \1) � log ?(G, \2) |  !1(G)k\1 � \2k2 (2.77)

for all \1, \2 in a neighborhood of \CAD4.

(C5) � (\CAD4) is non-singular.

(C6) The density family {P\}\2⇥ is differentiable in quadratic mean at \CAD4, i.e., there exists a

measurable function !2(G) : X ! '
⇡ such that for any ⌘ 2 R⇡ that converges to 0,

π �p
?(G, \CAD4 + ⌘) �

p
?(G, \CAD4) �

1

2

⌘
)

!2(G)
p
?(G, \CAD4)

�
2

3G = >(k⌘k2
2
). (2.78)

The consistency and asymptotic normality of MLE in Assumption 1 is guaranteed under con-

ditions (C1)-(C6). See [69, 70].

51

2.9 Supplementary B: Alternate Bounds Using j2 Distance

Consider the j2-based uncertainty set U30C0 = {Q 2 P?0A0 : j
2(P

\̂
,Q)  _}. Here we provide

an alternate upper bound for the function " (P0,U30C0, X), which we call "̃ (P0,U30C0, X). That is,

we find "̃ (P0,U30C0, X) that satisfies

sup

Q2U30C0

Q(b 2 �)  "̃ (P0,U30C0, X), for all � such that P0(�)  X.

For any Q absolutely continuous with respect to P0, we have

sup

Q2U30C0

Q(b 2 �) = P0(b 2 �) +
⇣

sup

Q2U30C0

Q(b 2 �) � P0(b 2 �)
⌘

= P0(b 2 �) + sup

Q2U30C0

π
1{b 2 �}

� 3Q
3P0

� 1

�
3P0(b)

 P0(b 2 �) + sup

Q2U30C0

⇣ π
1{b 2 �}3P0(b)

⌘
1/2

·
⇣ π � 3Q

3P0

� 1

�
2

3P0(b)
⌘

1/2

 X + X1/2 · (sup

Q2U30C0

j
2(P0,Q))1/2

, (2.79)

where the fourth line follows from the Cauchy-Schwarz inequality. Thus, we can set

"̃ (P0,U30C0, X) = X + X1/2 · (sup

Q2U30C0

j
2(P0,Q))1/2 = X + X1/2 · (D30C0 (P0))1/2

,

which is non-decreasing in X. By (2.15), we can choose Xn such that Xn + X1/2
n

(D30C0 (P0))1/2  n ,

or equivalently,

Xn  n +
D30C0 (P0)

2

�
r
n · D30C0 (P0) +

1

4

(D30C0 (P0))2
, (2.80)

by solving the quadratic equation. In the case where we relax the parametric constraint completely,

we have D30C0 (P0) = _. Compared to the bound obtained from Theorem 2.3.2 and Corollary

2.3.2.1, (2.80) is less tight, but the gap can be shown to asymptotically vanish when n ,
j

2

1�U,⇡
=
! 0.

52

2.10 Supplementary C: Proofs and Other Technical Results

Proof of Lemma 1. First, by definition P(⇥) is a convex set and, for any `1, `2 2 P(⇥) and

0 < C < 1, we have

(1 � C)`1 + C`2 2 P(⇥).

Next, fixing \ 2 U30C0, the function ! (·, \) is convex since:

! ((1 � C)`1 + C`2, \) =
π
Y

(?(H; \))2Ø
⇥ ?(H; \0) ((1 � C)`1 + C`2) (3\0)

3H

=
π
Y

(?(H; \))2

(1 � C)
Ø
⇥ ?(H; \0)`1(3\0) + C

Ø
⇥ ?(H; \0)`2(3\0)

3H

(1 � C)
π
Y

(?(H; \))2Ø
⇥ ?(H; \0)`1(3\0)

3H + C
π
Y

(?(H; \))2Ø
⇥ ?(H; \0)`2(3\0)

3H

=(1 � C)! (`1, \) + C! (`2, \)

for any 0 < C < 1 where the inequality follows from the convexity of the function 1/G for G > 0.

Thus, as the supremum of convex functions, ; (`) , sup

\2U30C0

! (`, \) is also convex. ⇤

We provide a version of Danskin’ Theorem needed to prove Theorem 2.4.2. Alternately, one

can also resort to a generalized version in [76] by verifying the conditions there. Here we opt

for the former and provide a self-contained proof, which mostly relies on the techniques from

Proposition 4.5.1 of [75] but with some slight modification to handle issues regarding the domain

of the involved function. We have:

Lemma 2. Fix probability measures `1, `2 2 P(⇥). Suppose C: # 0 is a positive sequence such

that (1 � C:)`1 + C: `2 2 P(⇥) for all : and \: 2 ⇥⇤((1 � C:)`1 + C: `2) is a sequence such that

\: ! \0 for some \0 2 U30C0, then we have

lim sup

:!1

! ((1 � C:)`1 + C: `2, \:) � ! (`1, \:)
C:

 lim

C#0

! ((1 � C)`1 + C`2, \0) � ! (`1, \0)
C

,

if we assume ! ((1 � C)`1 + C`2, \) is jointly continuous in 0  C  1 and \ 2 ⇥.

53

Proof. It is known that if 5 : I! R is a convex function with I being an open interval containing

some point G, we then have the following results [75]:

5
+(G) = lim

C#0

5 (G + C) � 5 (G)
C

= inf

C>0

5 (G + C) � 5 (G)
C

, (2.81)

5
�(G) = lim

C#0

5 (G) � 5 (G � C)
C

= sup

C>0

5 (G) � 5 (G � C)
C

, (2.82)

and

5
+(G) � 5

�(G). (2.83)

In other words, these limits exist and satisfy the above relations for convex functions. Thus, if we

define 5: (C) = ! ((1 � C:)`1 + C: `2 + C (`2 � `1), \:), it follows from the convexity of P(⇥) and

! (·, \:) that 5: (C) is convex and well-defined for �C:  C  1 � C: . Using the above results in

(2.81), (5.21) and (2.83), we then have

! ((1 � C:)`1 + C: `2, \:) � ! (`1, \:)
C:

=
5: (0) � 5: (�C:)

C:

 sup

C>0

5: (0) � 5: (�C)
C

= 5
�
:
(0)  5

+
:
(0) = inf

C>0

5: (C) � 5: (0)
C

.

(2.84)

On the other hand, if we define 50(C) = ! ((1 � C)`1 + C`2, \0), it also follows that 50(C) is convex

and well-defined for 0  C  1. It follows from the convexity of 50(·) as well as (2.81) that

lim

C#0

! ((1 � C)`1 + C`2, \0) � ! (`1, \0)
C

= lim

C#0

50(C) � 50(0)
C

= inf

C>0

50(C) � 50(0)
C

= 5
+
0
(0). (2.85)

Then, it again follows from the convexity of 50(·) that, given any g > 0, we can find some [> 0

such that
50(B) � 50(0)

B

 5
+
0
(0) + g, (2.86)

54

for all 0 < B < [. It then follows from definitions and (2.86) that

! ((1 � B)`1 + B`2, \0) � ! (`1, \0)
B

=
! ((`1 + B(`2 � `1), \0) � ! (`1, \0)

B

=
50(B) � 50(0)

B

 5
+
0
(0) + g, (2.87)

for all 0 < B < [. Fixing one such B, since the function ! ((1 � C)`1 + C`2, \) is jointly continuous

in 0  C  1 and \ 2 ⇥, and the sequence satisfies \: ! \0, we have

lim

:!1

5: (B) � 5: (0)
B

= lim

:!1

! ((1 � C:)`1 + C: `2 + B(`2 � `1), \:) � ! ((1 � C:)`1 + C: `2, \:)
B

=
! ((`1 + B(`2 � `1), \0) � ! (`1, \0)

B

=
50(B) � 50(0)

B

 5
+
0
(0) + 2g,

as long as we make [> B > 0 small enough so that [ 1 � C: for all : . Then, for : large enough,

we have

inf

C>0

5: (C) � 5: (0)
C

 5: (B) � 5: (0)
B

 5
+
0
(0) + 2g. (2.88)

Combining (2.84), (2.85) and (2.88), we have that, for : large enough,

! ((1 � C:)`1 + C: `2, \:) � ! (`1, \:)
C:

 lim

C#0

! ((1 � C)`1 + C`2, \0) � ! (`1, \0)
C

+ 2g.

Finally, since g is arbitrary, we conclude that

lim sup

:!1

! ((1 � C:)`1 + C: `2, \:) � ! (`1, \:)
C:

 lim

C#0

! ((1 � C)`1 + C`2, \0) � ! (`1, \0)
C

.

⇤

We now prove the following version of Danskins’ Theorem:

Theorem 2.10.1. Fix `1, `2 2 P(U30C0). Suppose C: # 0 is a positive sequence such that (1 �

C:)`1 + C: `2 2 P(⇥) for all : and ! ((1 � C)`1 + C`2, \) is jointly continuous in 0  C  1 and

\ 2 ⇥. Then, if we let k(C) = ; ((1 � C)`1 + C`2) for 0  C  1 with ; (·) = sup

\2U30C0

! (·, \) defined as

55

(2.58), we have

k
+(0) = sup

\2⇥⇤ (`1)
lim

C#0

! ((1 � C)`1 + C`2, \) � ! (`1, \)
C

(2.89)

Proof. For any \0 2 ⇥⇤(`1) and \C 2 ⇥⇤((1 � C)`1 + C`2), we have

k(C) � k(0)
C

=
; ((1 � C)`1 + C`2) � ; (`1)

C

=
! ((1 � C)`1 + C`2, \C) � !̃ (`1, \0)

C

� ! ((1 � C)`1 + C`2, \0) � ! (`1, \0)
C

.

Thus, by taking C # 0 and taking the supremum over all \0 2 ⇥⇤(`1), we have

k
+(0) � sup

\2⇥⇤ (`1)
lim

C#0

! ((1 � C)`1 + C`2, \) � ! (`1, \)
C

. (2.90)

Notice that the existence of the several limits above follows from the convexity of related functions.

To prove the reverse inequality, we consider a sequence {C: } with 0 < C: < 1 and C: # 0. Then,

we pick another sequence {\: } ✓ U30C0 with \: 2 ⇥⇤((1 � C:)`1 + C: `2) for all : . Since U30C0

is compact, there exist a subsequence of {\: } converge to some \0 2 U30C0. Without loss of

generality, we drop the subsequence and simply assume \: ! \0. We first show \0 2 ⇥⇤(`1). To

do this, pick any \̃0 2 ⇥⇤(`1). Since ! ((1 � C)`1 + C`2, \) is jointly continous in C and \, we have

! (`1, \0) = lim

:!1
! ((1 � C:)`1 + C: `2, \:) � lim

:!1
! ((1 � C:)`1 + C: `2, \̃0) = ! (`1, \̃0),

where the inequality follows from the definition of \: . Now, since \̃0 2 ⇥⇤(`1) and ! (`1, \0) �

! (`1, \̃0), we must have

! (`1, \0) = ! (`1, \̃0) and \0 2 ⇥⇤(`1).

56

Now, using the definition of ⇥⇤(`1), we can write

k
+(0) = inf

0<C

k(C) � k(0)
C

 k(C:) � k(0)
C:

=
; ((1 � C:)`1 + C: `2) � ; (`1)

C:

=
! ((1 � C:)`1 + C: `2, \:) � ! (`1, \0)

C:

 ! ((1 � C:)`1 + C: `2, \:) � ! (`1, \:)
C:

. (2.91)

Now we use Lemma 2 to conclude that

k
+(0)  lim sup

:!1

! ((1 � C:)`1 + C: `2, \:) � ! (`1, \:)
C:

 lim

C#0

! ((1 � C)`1 + C`2, \0) � ! (`1, \0)
C

 sup

\2⇥⇤ (`1)
lim

C#0

! ((1 � C)`1 + C`2, \) � ! (`1, \)
C

(2.92)

Finally, we combine (2.90) and (2.92) to conclude the proof

k
+(0) = sup

\2⇥⇤ (`1)
lim

C#0

! ((1 � C)`1 + C`2, \) � ! (`1, \)
C

⇤

Proof of Theorem 2.4.2. The result can be obtained from Leibniz’s integral rule (i.e. differentiation

under the integral sign). See, for example, Theorem 2.27 in [81]. ⇤

Next we prove Proposition 1. For convenience, we note that (2.64) can be written in a compact

form for exponential family [72]:

?(H; \) = 4hC (H),\i�� (\)+: (H) , (2.93)

where h0, 1i = 0
|
1 represents the usual inner product in the Euclidean space, and C (·), � (·) and

57

: (·) are known functions. In particular, we have

� (\) = \
|⌃�1

\

2

(2.94)

To facilitate the calculation, we first introduce two lemmas involving the exponential paramet-

ric family based on [72].

Lemma 3. Pick \1, \2 2 ⇥. If 2\2 � \1 2 ⇥, then we have

π
Y

(?(H; \2))2

?(H; \1)
3H = 4� (2\2�\1)�(2� (\2)�� (\1))

.

In particular, if � (\) = \
|⌃�1

\

2
, then

Ø
Y

(?(H;\2))2
?(H;\1) 3H = 4

(\2�\1)|⌃�1 (\2�\1) .

Proof. It follows from (2.93) that

π
Y

(?(H; \2))2

?(H; \1)
3H =4<C (H),2\2�\1>�(2� (\2)�� (\1))+: (H)

3H

=4� (2\2�\1)�(2� (\2)�� (\1)) ·
π
Y
?(H; 2\2 � \1)3H

=4� (2\2�\1)�(2� (\2)�� (\1))
.

⇤

Lemma 4. Pick \1,\2 and \3 2 ⇥. If 2\2 � 2\1 + \3 2 ⇥, then we have

π
Y

(?(H; \2))2
?(H; \3)

(?(H; \1))2

3H = 4� (2\2�2\1+\3)�2� (\2)+2� (\1)�� (\3)
.

In particular, if � (\) = \
|⌃�1

\

2
, then

Ø
Y

(?(H;\2))2?(H;\3)
(?(H;\1))2 3H = 4(\2�\1)|⌃�1 (\2�\1)+2(\2�\1)⌃�1 (\3�\1) .

Proof. The proof follows from the same techniques as in Lemma 3. ⇤

58

Then (6.79) follows from (2.26), (2.94) and Lemma 3 so that

U30C0 ,

(
\ 2 ⇥ : j

2(P
\̂
, P\) 

j
2

1�U,⇡
=

)
=

(
\ 2 ⇥ : 4

� (2\�\̂)�(2� (\)�� (\̂)) � 1 
j

2

1�U,⇡
=

)

=

(
\ 2 ⇥ : 4

(\�\̂)|⌃�1 (\�\̂) � 1 
j

2

1�U,⇡
=

)

=

(
\ : \̂ + ⌃

1

2 E, for all kEk2
2
 log(1 +

j
2

1�U,⇡
=

)
)
,

and (2.66) follows. We now prove Proposition 1:

Proof of Proposition 1. Following Theorem 2.4.2, Lemma 3 and Lemma 4, we have

sup

\2⇥⇤ (X
\̂
)

π
Y

(?(H; \))2 ·
Ø
⇥ ?(H; \

0) (X
\̂
� `?A>?) (3\0)

(
Ø
⇥ ?(H; \0)X\̂ (3\0))2

3H

= sup

\2⇥⇤ (X
\̂
)

✓ π
Y

(?(H; \))2

?(H; \̂)
3H �

π
Y

(?(H; \))2 ·
Ø
⇥ ?(H; \

0) (`?A>?) (3\0)
(?(H; \̂))2

3H

◆

= sup

\2⇥⇤ (X
\̂
)

✓ π
Y

(?(H; \))2

?(H; \̂)
3H �

π
⇥

π
Y

(?(H; \))2 · ?(H; \0)
(?(H; \̂))2

3H · `?A>? (3\0)
◆

= sup

\2⇥⇤ (X
\̂
)

✓
4
(\�\̂)|⌃�1 (\�\̂) �

π
⇥
4
(\�\̂)|⌃�1 (\�\̂)+2(\�\̂)|⌃�1 (\ 0�\̂)

`?A>? (3\0)
◆

=(1 +
j

2

1�U,⇡
=

) · sup

\2⇥⇤ (X
\̂
)

⇣
1 � E\ 0⇠`?A>? [42(\�\̂)|⌃�1 (\ 0�\̂)]

⌘

=(1 +
j

2

1�U,⇡
=

) ·
⇣
1 � inf

\2⇥⇤ (X
\̂
)
E\ 0⇠`?A>? [42(\�\̂)|⌃�1 (\ 0�\̂)]

⌘
. (2.95)

Notice the second equality follows from Fubini’s theorem. The third equality follows from Lemma

3 and Lemma 4. The fourth equality follows from (2.66). Now, following the last line (2.95), for

the search of descent direction, it is sufficient to prove

inf

\2⇥⇤ (X
\̂
)
E\ 0⇠`?A>? [42(\�\̂)|⌃�1 (\ 0�\̂)] > 1.

59

However, since `?A>? (3\0) is a symmetrical distribution around \̂, we know that

E\ 0⇠`?A>? [2(\ � \̂)|⌃�1(\0 � \̂)] = 0.

for any \ 2 ⇥⇤(X
\̂
). Then, it follows from Jensen’s inequality that

inf

\2⇥⇤ (X
\̂
)
E\ 0⇠`?A>? [42(\�\̂)|⌃�1 (\ 0�\̂)] � 1.

Now suppose for the sake of contradiction that

inf

\2⇥⇤ (X
\̂
)
E\ 0⇠`?A>? [42(\�\̂)|⌃�1 (\ 0�\̂)] = 1.

Then, let {\: }: ✓ ⇥⇤(X
\̂
) be a subsequence such that E\ 0⇠`?A>? [42(\:�\̂)|⌃�1 (\ 0�\̂)] ! 1. Due to the

compactness of ⇥⇤(X
\̂
), we can find a subsequence of {\: }: converging to some \0 2 ⇥⇤(X\̂). For

convenience we drop the subsequence and suppose \: ! \0. Then the existence of . allows us to

use dominated convergence theorem:

E[42.\
0] = E\ 0⇠`?A>? [42(\0�\̂)|⌃�1 (\ 0�\̂)] = lim

:!1
E\ 0⇠`?A>? [42(\:�\̂)|⌃�1 (\ 0�\̂)] = 1.

However, Jensen’s inequality would indicate that E[42.\
0] = 1 if and only P(.\0

= 0) = 1, which

contradicts our assumption. Thus, we know that

inf

\2⇥⇤ (X
\̂
)
E\ 0⇠`?A>? [42(\�\̂)|⌃�1 (\ 0�\̂)] > 1,

as claimed. ⇤

60

Proof of Proposition 2. First we prove (2.67). Letting 2 = 1

(2c)⇡ |⌃| , we know that

j
2(P0, P\) =

π
?

2(H; \)
?0(H)

3H � 1

=2
π

4
�(H�\)) ⌃�1 (H�\)

?0(H)
3H � 1

=24�k⌃
�1/2 (\�\̂)k2

2

π
4
�(H�\̂)) ⌃�1 (H�\̂) · 4�2(H�\̂)) ⌃�1 (\̂�\)

?0(H)
3H � 1

=2 |⌃1/2 |4�k⌃�1/2 (\�\̂)k2
2

π
4
�I) I · 4�2I

) ⌃�1/2 (\̂�\)

?0(⌃1/2
I + \̂)

3I � 1

=2 |⌃|4�k⌃�1/2 (\�\̂)k2
2

π
4
�I) I · 4�2I

) ⌃�1/2 (\̂�\)

?/ (I)
3I � 1 (2.96)

where we denote ?/ (·) to be the density function of random variable / = ⌃�1/2(. � \̂) with

. ⇠ P0 and the last two lines follow from a change of variable I = ⌃�1/2(H � \̂). Now, since

k⌃�1/2(\1 � \̂)k2
2
= k⌃�1/2(\2 � \̂)k2

2
= A for some A by assumption, it follows from (2.96) that

j
2(P0, P\1

) = j2(P0, P\2
) if we can show

π
4
�I) I · 4�2I

) ⌃�1/2 (\̂�\1)

?/ (I)
3I =

π
4
�I) I · 4�2I

) ⌃�1/2 (\̂�\2)

?/ (I)
3I.

However, since ?/ (I) and 4�I) I are both rotationally invariant functions (i.e. 5 (I) = 5 (&|I) for

all I and rotational matrix &, with |& | = 1), it can be shown that
Ø

4
�I) I ·4�2I

)
a

?/ (I) 3I holds the same

value for any a such that kak2
2
= A. Notice the rotational invariance of ?/ (I) follows from the

rotational invariance of / . This proves (2.67). To prove (2.68), notice that for any \ 2 U30C0, we

can find some 0  C  1 such that

(((1 � C)\̂ + C\¢) � \̂)|⌃�1(((1 � C)\̂ + C\¢) � \̂) = (\ � \̂)|⌃�1(\ � \̂)

and hence j2(P0, P((1�C)\̂+C\⇤)) = j2(P0, P\) by (2.67). ⇤

61

Proof of Proposition 3. To check that . ⇠ PC with density

?C (H) =
π
⇥
?(H; \0) ((1 � C)X

\̂
+ C`?A>?) (3\0) = (1 � C)P

\̂
+

π
⇥
?(H; \0)`?A>? (3\0),

leads to rotationally invariant / = ⌃�1/2(. � \̂), simply notice that

.

D=(1 �*C) (\̂ + -1) +*C (\̂ +

s
j

2

1�U,⇡
=

· ⌃1/2
[+ -2),

where *C is an independent Bernoulli variable with success rate C, [is a random vector uniformly

distributed on the surface of the ⇡-dimensional unit ball and -1, -2 are independent N(0,⌃).

Then, it follows that

⌃�1/2(. � \̂)D=(1 �*C)/1 +*C (

s
j

2

1�U,⇡
=

[+ /2)

where /1, /2 are now independent N(0, �⇡). Consequently, the rotational invariance of / now

follows from the rotational invariance of /1, /2, [and their independence. ⇤

Following the comments after Proposition 1, we show that \ ⇠ `?A>? with \ D= \̂ +
q

j
2

1�U,⇡
=

·

⌃1/2 · [provides a descent direction, with an alternate proof using the following lemma and the

last line of (2.95).

Lemma 5. Fixing \1 2 ⇥⇤(X\̂), we have

E\2⇠`?A>? [42(\1�\̂)) ⌃�1 (\2�\̂)] > 1,

for \2 ⇠ `?A>? (3\) where \2

D= \̂ +
q

j
2

1�U,⇡
=

· ⌃1/2 · [with [following the uniform distribution on

the surface of the ⇡-dimensional unit ball.

Proof of Lemma 5. Let D1 2 R⇡ denote an arbitary point on the surface of ⇡ dimensional unit ball

(kD1k2
2
= 1) and let [= [[1, [2, ..., [⇡] be the random vector in R⇡ uniformly distributed on the

62

surface of ⇡ dimensional unit ball. Then we claim that `
)

1
[+1

2
⇠ ⌫4C0(⇡�1

2
,
⇡�1

2
).

To show this, assume without loss of generality that D1 = [1, 0, ..., 0] 2 R⇡ . Then for any C 2

[�1, 1], it follows that P(D)
1
[2 3C) is proportional to the infinitesimal surface area on the ball cor-

responding to [1 2 3C, which is in turn proportional to the product of the sub-dimension ⇡ � 2 sur-

face area on the belt G2

2
+G2

3
+...+G2

⇡
= 1�C2 with the infinitesimal width of this belt. Specifically, the

sub-dimension ⇡�2 surface area around the belt is proportional to (
p

1 � C2)⇡�2. This follows from

the fact that points of the form [0,
p

1 � C2, 0, ..., 0], [0, 0,
p

1 � C2, 0, ..., 0], ..., [0, 0, ..., 0,
p

1 � C2]

are on this belt. Also, the width of this belt, according to the Pythagorean theorem, is 3C ·q
(3
p

1�C2
3C

)2 + 1 = 3Cp
1�C2

. Thus,

P(D)
1
[2 3C) / (

p
1 � C2)⇡�2

p
1 � C2

3C = (1 � C2) ⇡�3

2 3C.

Now, we can substitute C+1

2
= B with B 2 [0, 1] to get

P(
D
)

1
[+ 1

2

2 3B) / (B) ⇡�1

2
�1(1 � B) ⇡�1

2
�1
3B,

which can only be the density function for ⌫4C0(⇡�1

2
,
⇡�1

2
). It now follows from [82] that D

)

1
[+1

2

has moment generating function

" (C) ,E[4C·
D
)

1
[+1

2]

=1�1(
⇡ � 1

2

,⇡ � 1, C) = 4(C/2)0�1(;
⇡

2

,

C
2

16

) � 4C/2(1 + 2C2) > 4(C/2) . (2.97)

for some 2 > 0 where 1�1(·, ·, ·) and 0�1(; , ·, ·) are the confluent hypergeometric function with

identity 1�1(0, 20, G) = 4G/2
0
�1(; 0 + 1/2, G2/16) (see [83]),

0�1(;U, C) ,
1’
:=0

C
:

(U): :!

and 1�1(U, V, C) ,
1’
:=0

(U): C:
(V): :!

,

with (W): = �(W+:)
�(W) being the Pochhammer symbol [82]. To conclude the proof, denote d= =

63

q
log(1 + j

2

1�U,⇡
=

) ·
q

j
2

1�U,⇡
=

and use (6.79), (2.66) and (2.97) to write

E\2⇠`?A>? [42(\1�\̂)) ⌃�1 (\2�\̂)]

=Ea⇠[[42d=·`)
1
a] = E

-⇠⌫4C0(⇡�1

2
,
⇡�1

2
) [4

2d=·(2-�1)] = " (4d=)/42d= � (1 + 162d
2

=
) > 1.

⇤

Remark 1. Following Lemma 5, we discuss the numerical calculations of D(P0) following Propo-

sition 3. We use U30C0 = {P\ : k\ � \̂k2
2
 j

2

1�U,⇡
=

} where ?(H; \) = (2c)�⇡2 4� 1

2
k (H�\)k2

2 . Then,

for `1, the nominal ?0(H) is simply ?(H; \̂) and D30C0 (P0) = D30C0 (P\̂) = max
\2U 4

k\�\̂k2
2 � 1 =

4

j
2

1�U,⇡
= � 1 according to (6.79) and Lemma 3. For `2, it can be shown that the nominal P0 follows

N(\̂, (1+1

=
)·�⇡), and a direct computation would show that D30C0 (P0) = max

\2U((=+1)2
=(=+2))

3

2 4

=

=+2
k\�\̂k2

2�

1 = ((=+1)2
=(=+2))

3

2 4

=

=+2

j
2

1�U,⇡
= � 1. Finally, for `3, assume w.l.o.g that \̂ = 0. Then we use the derivation

in Lemma 5 that `
)

1
[+1

2
⇠ ⌫4C0(⇡�1

2
,
⇡�1

2
) for any D1 on the ⇡-dimensional unit ball surface to

show that, for any E 2 R⇡ ,

E[[4[
)
E] = 4�kEk21�1(

⇡ � 1

2

,⇡ � 1, 2kEk2), (2.98)

and consequently

?0(H) = (2c)�
⇡

2

1
�1(

3 � 1

2

, 3 � 1, 2(
j

2

1�U,⇡
=

)1/2kHk2)4�
1

2
(kHk2+

j
2

1�U,⇡
=

)2
.

64

Then, to calculate D30C0 (P0), we note that

D30C0 (P0) + 1 = max

k\k2
2

j

2

1�U,⇡
=

π
?

2(H; \)
?0(H)

3H

= max

k\k2
2

j

2

1�U,⇡
=

(2c)�⇡2 4� 1

2
kHk2

2

4
�k\k2

2
+2\

)
H+

j
2

1�U,⇡
2=

+(
j

2

1�U,⇡
=

)
1

2 kHk2

1�1(3�1

2
, 3 � 1, 2(j

2

1�U,⇡
=

) 1

2 kHk2)

= max

k\k2
2

j

2

1�U,⇡
=

E
.⇠N(0,�⇡)


4
�k\k2

2
+2\

)
.+

j
2

1�U,⇡
2=

+(
j

2

1�U,⇡
=

)
1

2 k. k2

1�1(3�1

2
, 3 � 1, 2(j

2

1�U,⇡
=

) 1

2 k. k2)

�
. (2.99)

Furthermore, through either direct verification or analysis similar to those in Lemma 5, we note

that . ⇠ N(0, �⇡) shares the same distribution of ![where ! 2 R+ and [2 R⇡ are two indepen-

dent random variables with ! being the norm of N(0, �⇡) bearing density 5! (;) = 1{;�0}
2

1�⇡
2

�(⇡
2
) ;
3�1
4
� ;2

2

and [being the random vector on the ⇡-dimensional unit ball surface. Thus, it follows from (2.99)

that (2.99) equals

max

k\k2
2

j

2

1�U,⇡
=

E!


E[


4
�k\k2

2
+2!\

)
[+

j
2

1�U,⇡
2=

+(
j

2

1�U,⇡
=

)
1

2 !

1�1(3�1

2
, 3 � 1, 2(j

2

1�U,⇡
=

) 1

2 !)

����!
� �

= max

k\k2
2

j

2

1�U,⇡
=

E!


4
�k\k2

2
+
j

2

1�U,⇡
2=

+(
j

2

1�U,⇡
=

)
1

2 !�2!k\k2 1�1(⇡�1

2
,⇡ � 1, 4!k\k2)

1�1(⇡�1

2
,⇡ � 1, 2(j

2

1�U,⇡
=

) 1

2 !)

�

= max

k\k2
2

j

2

1�U,⇡
=

E!


4
�k\k2

2
+
j

2

1�U,⇡
2=

0�1(; ⇡
2
, !

2k\k2
2
)

0�1(; ⇡
2
, !

2(j
2

1�U,⇡
4=

)

�

= max

C
j

2

1�U,⇡
=

4
�C+

j
2

1�U,⇡
2=

π
;�0

0�1(; ⇡
2
, ;

2
C)

0�1(; ⇡
2
, ;

2(j
2

1�U,⇡
4=

)

2
1�⇡

2

�(⇡
2
)
;
3�1
4
� ;2

2 3;

which is numerically tractable.

Proof of Theorem 2.4.3. It follows from routine calculation that we can find a compact neighbor-

hood of A around 0 such that rA ! (A, \) exists and is continuous. Thus we can use the main theorem

65

in [76] to show that

lim

A#0

; (A) � ; (0)
A

= sup

\2⇥⇤ (X
\̂
)

π
Y
�
(?(H; \))2 · lim

A#0
?A (H)�?(H;\̂)

A

(?(H; \̂0))2

3H

= sup

\2⇥⇤ (X
\̂
)
lim

A#0

1

A

π
Y

(?(H; \))2(?(H; \̂) � ?A (H))
(?(H; \̂0))2

3H

= sup

\2⇥⇤ (X
\̂
)
lim

A#0

1

A

π
Y

(?(H; \))2

?(H; \̂0)
�

(?(H; \))2

Ø
\
02⇥ ?(H; \

0)`A (3\0)
(?(H; \̂0))2

3H

=(1 +
j

2

1�U,⇡
=

) · lim

A#0

1

A

⇣
1 � inf

\2⇥⇤ (X
\̂
)
E\ 0⇠`A [42(\�\̂)|⌃�1 (\ 0�\̂)]

⌘
.

⇤

To prove Corollary 2.4.3.1, we present two technical Lemmas 6 and 7.

Lemma 6. For any \ 2 ⇥⇤(X
\̂
), lim

A#0
1

A

⇣
1 � E

\
0⇠`1

A

[42(\�\̂)|⌃�1 (\ 0�\̂)]
⌘

is a fixed negative value.

Proof of Lemma 6. For any \ 2 ⇥⇤(X
\̂
), we have k⌃�1/2(\ � \̂)k2 =

q
log(1 + j

2

1�U,⇡
=

). Denote

d= =
q

log(1 + j
2

1�U,⇡
=

). Furthermore, under \0 ⇠ `
1

A
(3\0), we have ⌃�1/2(\0 � \̂) ⇠ [

p
A
, the

uniform distribution inside the ⇡-dimensional unit ball with radius
p
A, which can be viewed as

the product of two independent random variables

[
p
A
⇠ * · ',

where * is the uniform distribution on the surface of the ⇡-dimensional unit ball and ' is the

norm of the random vector ranged from 0 to
p
A. For any 0  B 

p
A , since [p

A
follows a uniform

distribution inside a ⇡-dimensional unit ball, and the volume of a ⇡-dimensional ball with radius

B is proportional to B⇡ , then 5' (B), the density of ', must satisfy

5' (B) ⇠
3B
⇡

3B

⇠ B⇡�1
,

66

which is equivalent to saying

5' (B) =
⇡

(
p
A)⇡

B
⇡�1

, for 0  B 
p
A .

Thus, we have that E['2] = 21A for some 21 > 0. Now we let D1 = [1, 0, ..., 0] 2 R⇡ . We utilize

the proof in Lemma 5 as well as the independence of ',* to show that

E
\
0⇠`1

A

[42(\�\̂)|⌃�1 (\ 0�\̂)] =E*,' [42d=·'·D|
1
*]

=E' [E[42d=·'·D|
1
* |']]

=E' [" (4d=')/42d=']

�E[1 + 162d
2

=
'

2] � 1 + 162d
2

=
21A .

Now it follows that

lim

A#0

1

A

⇣
1 � E

\
0⇠`1

A

[42(\�\̂)|⌃�1 (\ 0�\̂)]
⌘
 �162d

2

=
21.

⇤

Lemma 7. For any \ 2 ⇥⇤(X
\̂
), lim

A#0
1

A

⇣
1 � E

\
0⇠`2

A

[42(\�\̂)|⌃�1 (\ 0�\̂)]
⌘

is a fixed negative value.

Proof of Lemma 7. For any \ 2 ⇥⇤(X
\̂
), we have k⌃�1/2(\ � \̂)k2 =

q
log(1 + j

2

1�U,⇡
=

). Denote

d= =
q

log(1 + j
2

1�U,⇡
=

). Furthermore, under \0 ⇠ `
2

A
(3\0), we have ⌃�1/2(\0 � \̂) ⇠ N(0, A �⇡).

Using the moment generating function for Gaussian random variables, we have

E
\
0⇠`2

A

[42(\�\̂)|⌃�1 (\ 0�\̂)] = 4(2A ·(\�\̂)|⌃�1 (\ 0�\̂)) = 42Ad
2

= � 1 + 2Ad
2

=
.

Now it follows that

lim

A#0

1

A

⇣
1 � E

\
0⇠`1

A

[42(\�\̂)|⌃�1 (\ 0�\̂)]
⌘
 �2d

2

=
.

⇤

67

Proof of Corollary 2.4.3.1. Lemmas 6 and 7 combined with (2.72) indicate that increasing A to

positive value would produce a descent direction for ; (A) at A = 0. ⇤

Proof of Corollary 2.4.3.2. We proceed the proof as in Proposition 3. The proof for the case of

`
1

A
(3\) is entirely similar. For the proof of the case `2

A
(3\), we simply notice that if . ⇠ PC , then

.

D=(1 �*C) (\̂ + -1) +*C (\̂ +
p
A-2 + -3),

where *C is an independent Bernoulli variable with success rate C and -1, -2, -3 are independent

N(0,⌃). Then, it follows that

⌃�1/2(. � \̂)D=(1 �*C)/1 +*C (
p
A/2 + /3)

where /1, /2, /3 are now independent N(0, �⇡). Consequently, the rotational invariance of / now

follows from the rotational invariance of /1, /2, /3 and their independence.

⇤

68

Chapter 3: General Feasibility Bounds for Sample Average Approximation

via Vapnik-Chervonenkis Dimension

We investigate the feasibility of sample average approximation (SAA) for general stochastic

optimization problems, including two-stage stochastic programming without the relatively com-

plete recourse assumption. Instead of analyzing problems with specific structures, we utilize re-

sults from the Vapnik-Chervonenkis (VC) dimension and Probably Approximately Correct learn-

ing to provide a general framework that offers explicit feasibility bounds for SAA solutions under

minimal structural or distributional assumption. We show that, as long as the hypothesis class

formed by the feasbible region has a finite VC dimension, the infeasibility of SAA solutions de-

creases exponentially with computable rates and explicitly identifiable accompanying constants.

We demonstrate how our bounds apply more generally and competitively compared to existing

results.

The results here presented are new within the SAA feasibility domain. But similar results using

VC-dimension have been applied to different contexts such as [67].

3.1 Introduction

Consider the stochastic optimization problem

inf

G2X
� (G) , E[5 (b, G)], (3.1)

where X (typically X ✓ R= or R=�? ⇥ Z? for mixed-integer decision sets) is a non-empty set for

decision variable and b : ⌦! ⌅ ✓ 'A is some random vector on the probability space (⌦, F , P).

For each realization of b 2 ⌅, 5 (b, ·) : R= ! R[{+1} is a function taking values on the extended

real line. Assume for each G 2 X, 5 (·, G) : ⌅! R [{+1} is measurable. We also assume the set

69

{G : G 2 X and � (G) < +1} is non-empty.

The class of problems under (3.1) are difficult to evaluate in general, especially for high-

dimensional b. As a popular tractable approximation, the sample average approximation (SAA)

method [84] solves the sampling-based counterpart of (3.1):

inf

G2X
�̂# (G) ,

1

#

#’
8=1

5 (b8, G), (3.2)

where b [#] , (b1, b2, ..., b#) are IID samples drawn from P. The optimal solution of SAA depends

on the realization of b [#] and shall be denoted G¢(b [#]). Theoretical properties and numerical

performances of SAA have been extensively studied in, e.g., [85, 84, 86], and its applications

in stochastic optimization and chance-constrained programming can be found in, e.g., [87, 88,

89]. Most of these studies assume the condition � (G) < +1 for G 2 X, which is referred to

as the relatively complete recourse condition in the context of two-stage stochastic programming.

As an important class of (3.1), two-stage stochastic programing has applications in transportation

planning [90, 91], disaster management [92], water recourse management [93] and inventory man-

agement [94]. However, in many real-word applications, relatively complete recourse assumption

becomes restrictive and there has been a growing literature studying two-stage stochastic program-

ming without this assumption, i.e. � (G) = 1 for some G 2 X (see [9, 95, 8]). In such a situation,

the solution of SAA G
¢(b [#]) may not be feasible for the original problem (3.1) and it would be

desirable to quantify the level of feasibility of the SAA solution.

Indeed, as nicely discussed in [9, 8], the feasibility issue of SAA arises when 5 (b, ·) maps to

the extended real line. Following the notation of [8], let dom 5b = {G : 5 (b, G) < +1}. Then by

solving (3.2) we would obtain an optimal solution G¢(b [#]) 2 dom �̂# ,
—

18# dom 5b8
where

dom �̂# is the feasible region for SAA. However, G¢(b [#]) might not be feasible for the original

problem (3.1), i.e., G¢(b [#]) 8 dom � , {G : � (G) < +1}, meaning it has a positive violation

70

probability + (G¢(b[#])) > 0 where

+ (G) , P(b : G 8 dom 5b). (3.3)

We can also extend the definition of + (·) to include set input instead of point input, by letting

+ (X) , P(b : X * dom 5b). (3.4)

In this chapter, we introduce a new framework based on the Vapnik-Chervonenkis (VC) di-

mension to study the feasibility of SAA solutions which includes, but is not limited to two-stage

stochastic programming. Following [8, 9], we focus on showing the exponential decrease of

+ (G¢(b [#])) as # grows. Specifically, letting P# denote the IID sampling measure governing

the generation of vector b [#] (notice the feasibility of G¢(b [#]) is random depending on b [#]), we

derive exponential bounds for + (G¢(b [#])) under P# . As a key contribution, we show how our

framework produces feasibility bounds that are both general and explicit. In particular, for solu-

tions of SAA, we provide feasibility bounds with explicit and computable constants, with no re-

quirement on the geometric or distributional properties of (3.1) (i.e., whether it is convex or linear,

its optimal set has intersection with the boundary of dom �, X is finite or functions { 5 (b, ·)}b2⌅

has a chain-constrained domain, as utilized in [9, 8]), and with no specific regularity conditions

on 5 (b, G) (i.e., Lipschitz continuity or the existence of certain moment generating function as in

[9, 8]). Moreover, the analysis itself also does not hinge on the specific type of the problem (i.e.,

not limited to two-stage stochastic programming) and is widely applicable in both scenarios where

some of the best-known results on SAA feasibility have been presented, and other scenarios where

no similar results have been established. Furthermore, the feasibility result under this framework is

not restricted to the optimal solution of SAA, but any generic point within the SAA feasible region

with probability 1. Consequently, when the SAA problem is non-convex and solvable only up to

local optimum, or when approximate algorithms are required, our results on feasibility guarantee

would still hold. Finally, we show that the generality of this framework does not come at a cost of

71

worse sample complexity since the bounds under our framework are comparable to, if not better

than the known ones.

The chapter is organized as follows. In Section 3.2, we review the recent papers with closely

related results [9, 8]. In Section 3.3, we present our framework and general results. In Section

3.4, we specialize to examples of practical interests including two-stage stochastic programming.

Moreover, we compare with known results to demonstrate the strengths of our framework.

3.2 Review of Related Results

We discuss the existing results on SAA feasibility in [9, 8]. A considerable part of [9] discusses

how to solve a so-called “padded", modified version of SAA to obtain a complete feasible solution

(i.e. + (G) = 0) with high confidence, which is somewhat different from the perspectives of this

chapter and [8]. In particular, we consider the feasibility for SAA in its original form and do not

restrict our attention to complete feasible solutions. However, [9] also discusses several results of

P# (+ (G¢(b [#])) > U)  X, (3.5)

referred to as high recourse likeihood solution by the authors. These results are of the same type

as ours and [8]. In particular, [9] presents these bounds in two cases, one of them being when X is

finite and another being under the context of two-stage stochastic programming. We shall discuss

in detail in Section 4 when we compare different results. On the other hand, the feasibility results

in [8] are more general but can be summarized into three different scenarios.

• Scenario 1: In the presence of the so-called chain-constrained domain of order < (to be

explained later) on dom 5b , [8] shows

P# (+ (G¢(b [#])) > U) 
<�1’
:=0

✓
#

:

◆
U
: (1 � U)#�:

 exp

⇢
� (#U � < + 1)2

2#U

�
,

72

where the second inequality is shown in both [20] and [8].

• Scenario 2: In the context of convexity, meaning X is closed and convex and the set of

optimal solutions X¢ is non-empty and convex, and 5 (b, ·) is convex for all b 2 ⌅, along

with additional regularity conditions on 5 (b, ·) and X, [8] shows that for X¢ in the interior

of dom �,

P# (+ (G¢(b [#])) > 0)  ⇠4�#V,

where ⇠ and V are unknown constants.

• Scenario 3: In the context of convexity, if dom 5b is a chain-constrained domain as in Sce-

nario 1, along with the additional regularity conditions, [8] shows that for X¢ which may

have non-empty intersection with the boundary of dom �,

P# (+ (G¢(b [#])) > U)  ⇠4�#V +
|J |�1’
:=0

✓
#

:

◆
U
: (1 � U)#�:

 ⇠4�#V + exp
⇢
� (#U � |J | + 1)2

2#U

�

where ⇠ and V are again unknown constants as in Scenario 2 and � is the index set of active

constraints at X¢ with the boundary of dom �. Notice it is shown in [22] that |J | is bounded

by =, the dimension of the decision variable, which yields a useful upper bound regardless

of the behavior of J (Also note that in this case the order of the chain-constrained domain

does not play an explicit role in the bound).

In all scenarios, a desirable exponential decrease of + (·) as # grows can be shown. However,

there are several potential limitations. First, there exist hidden constants in the feasibility bound:

In Scenarios 2 and 3, which are of importance in stochastic convex programming, the rates of

exponential decrease are governed by unknown constants V and ⇠. Second, the dependence of

the bound on <, the order of the chain-constrained structure which, as also mentioned in [9], can

become potentially restrictive as < can be large in many cases. Furthermore, even though it is

73

motivated from practical examples in [8], the chain-constrained structure can be difficult to verify

in general. The feasibility bound in Scenario 3 is less dependent on the chain order <, where the

optimal solution of (3.1) intersects the boundary of dom �, but the chain-constrained structure is

still required for analysis. It is thus desirable to generalize the feasibility results beyond the chain-

constrained domain. Finally, note that while an explicit bound is presented in Scenario 1, it is a

feasibility bound on the entire dom �̂# instead of just G¢(b [#]), and is under the chain-constrained

domain assumption.

3.3 Framework and Main Results

In this section we introduce our framework and main results. In particular, our framework is

based on the Vapnik-Chervonenkis (VC) dimension of a collection of subsets on ⌅. This approach

gives bounds for any generic point in dom �̂# , the feasible region of the SAA, which in particular

implies bounds for G¢(b [#]). Note that our guarantee is still for a point, not for the entire set

dom �̂# which could lead to conservative estimates at an unnecessary cost, since we are interested

in the feasibility of the SAA solution, not the entire region. In particular, instead of looking at

dom 5b = {G : 5 (b, G) < +1} ✓ X, we investigate

�G = {b : 5 (b, G) < +1} ✓ ⌅ for G 2 X (3.6)

and

� , {�G}G2X .

We consider the VC dimension of the class of subsets �. The VC dimension is commonly used

to describe the complexity of a collection of sets or functions [96, 97, 98], which is also known as

the “hypothesis space" in machine learning. The concept applies to a class of subsets � (see [99]),

and can be generalized to binary functions and beyond. To define the VC dimension of a class of

subsets � in RA , first note that a set of points {G1, ..., G3} ✓ RA is shattered by � if any subset of

{G1, ..., G3} can be picked out by some subset ⇠ 2 � (i.e., for any subset ⇡ ✓ {G1, ..., G3}, there

74

is some ⇠ 2 � such that ⇡ ✓ ⇠ and ({G1, ..., G3} \ ⇡) \ ⇠ = ;). The VC dimension of � is the

maximal cardinality of the sets it can shatter, denoted by + (�). For example, some well-known

results on the VC dimensions of classes of sets are

• Positive intervals: if � =
��
G 2 R : G 2 [0, 1] for some 0  0  1

|0  1  0

, we have

+ (�) = 2.

• Affine hyperplanes (Perceptrons): if � =
��
G 2 R3 : 0

)
G+1 � 0 for 0 2 R3 and 1 2 R

|0 2

R3 , 1 2 R

, we have + (�) = 3 + 1.

• Convex sets: if � =
�
⇠ : ⇠ ✓ R3 and ⇠ is convex

, we have +⇠ (�) = +1.

An important concept in computational learning theory tightly related to the VC dimension is

Probably Approximately Correct (PAC) learning. In this context, the VC dimension of � can be

used in PAC learning to derive bounds on the sample complexity needed to achieve a desired level

of accuracy between “in-sample-error" and “generalization error" within class � (see, e.g. [96,

100, 97]). As it turns out, these types of result directly transfer towards the sample complexity

needed for desired level of feasibility for any generic point in dom �̂# .

We note, as we shall see in later sections, the ⌅ in (3.6) can be reparametrized and does not have

to be viewed in RA for fixed A defined in (3.1). For illustration, consider the following example.

Suppose G 2 X ✓ R and b is a random vector defined on RA for some A > 0. Let 6(·) : RA ! R

be a given function. Then, suppose 5 (b, G) < 1 if and only if 6(b) · G � 1. Then, {�G}G in (3.6)

could be defined as

�G = {b : 6(b) · G � 1} ✓ RA ,8G 2 X.

On the other hand, if we define random variable b0 = 6(b) on R, then we can alternatively define

�
0
G
= {b0 : b

0 · G � 1} ✓ R,8G 2 X.

Typically {�G}G and {�0
G
}G would have different VC dimensions, even though for any G, �G and

75

�
0
G

are equivalent with probability 1:

P
�
{l 2 ⌦ : b (l) 2 �G}4{l 2 ⌦ : b

0(l) 2 �0
G
}
�
= 0,

where �4⌫ = (�\⌫)[(⌫\�) is the symmetric difference operator on sets. Consequently, instead

of fixing a canonical representation of b in (3.1), we sometimes utilize this flexibility to change

representations for the convenience of our analysis.

3.3.1 Main Result

We now present our main theorem on SAA feasibility and its proof.

Theorem 3.3.1. Let � , {�G}G2X be the class of subsets defined in (3.6) and suppose � has finite

VC dimension 3, i.e., + (�) = 3 < +1. Moreover, let b [#] = {b1, ..., b# } be IID samples from P

(consequently b [#] ⇠ P#). Then, if

� 4

U

✓
3 log

�12

U

�
+ log

�2
X

� ◆
, (3.7)

we have

P# (+ (G¢(b [#])) > U)  X

for any 0 < X, U < 1.

Proof. Under the assumption 3 < +1, it follows from Theorem 8.4.1 of [96] that, when # �
4

U

✓
3 log

�
12

U

�
+ log

�
2

X

� ◆
,

sup

G2dom �̂#

P(5 (b, G) = +1)  U. (3.8)

with probability at least 1 � X under P# . Thus, if we let XU = {G 2 X : + (G)  U}, then from (3.8)

we know that dom �̂# ✓ XU with probability (under P#) is at least 1 � X, which can be translated

to

P#

sup

G2dom �̂#

+ (G) > U
!
 X.

76

Since G¢(b [#]) 2 dom �̂# by definition, we have + (G¢(b [#]))  sup
G2dom �̂#

+ (G) and conse-

quently

P# (+ (G¢(b [#])) > U)  X.

⇤

Remark 2. First, in the proof of Theorem 5.1, the sample complexity in (3.7) comes from Theorem

8.4.1 of [96] and provides a $ (3
n

log(1

n
) + 1

n
log(1

X
)) bound. It is worth noting that a better sample

complexity of $ (3
n
+ 1

n
log(1

X
)) can be achieved by recent breakthroughs of [101, 102]. We choose

to present the result from Theorem 8.4.1 in [96] because it is more concise and explicit. However,

under our framework, a better bound is indeed obtainable. Second, as shown in the proof, the

feasibility result of the theorem holds not just for the solution of SAA, but also for any generic point

within the feasible region of SAA. In other words, Theorem 5.1 holds for any algorithm that can

output a solution G¢(b [#]) (not necessarily the optimal solution of the SAA) in the feasible region

of SAA with probability 1. This observation is particularly important when the considered SAA

problem is non-convex and solvable only up to local optimum, or when approximate algorithms

are required.

There are several advantages when applying Theorem 5.1 to bounding the feasibility of SAA

solutions: 1) It does not rely on any strong assumptions on the structures of (3.1) and (3.2). As we

shall see in an example later, even when the chain-constrained domain condition in [8] becomes

restrictive, analysis based on VC dimension would remain effective. 2) Our bound is explicit and

computable with no hidden constants. 3) One might argue the generality of Theorem 5.1 would

come at a cost of higher sample complexity compared to analyses with more specific conditions.

However, as we shall see, this is not necessarily the case when we compare bounds even within the

chain-constrained context.

Next, while Theorem 5.1 is a result on sample complexity, it is straightforward to convert it

into an asymptotic rate of convergence of feasibility with sample size # . The portion of infeasible

SAA solutions still decreases exponentially as in [8], and the rate of which can now also be made

77

explicit. We summarize it into a corollary.

Corollary 3.3.1.1. Under the same condition of Theorem 5.1,

P# (+ (G¢(b [#])) > U)  2 exp

✓
�#U

4

◆ ✓
12

U

◆
3

.

We also note that direct comparisons on sample complexity in special cases are also possible

(only when the rate of convergence is known, which only applies to Scenario 1 in [8]), because it

is shown in [28] that a relatively tight sufficient condition for

<�1’
:=0

✓
#

:

◆
U
8 (1 � U)#�8  X,

is

� 4

4 � 1

1

U

✓
< � 1 + log

�1
X

� ◆
, (3.9)

which provides a tight bound on sample complexity and whom we shall make use of later. Finally,

we note that the VC dimension has also been used in [23] in analyzing constraint sampling, but in

the context of solving Markov decision problems.

3.4 Examples and Special Structures

In this section we apply Theorem 5.1 in several problems of considerable practical interests

and compare with established results. Throughout the proofs, we use the following definitions and

Theorem 1.1 from [99]:

Theorem 3.4.1 (Theorem 1.1 from [99]). Given classes of subsets C1, ⇠2, ..., C< with +9 =

+ (C9) < 1, define

u<
9=1

C9 ,{\<
9=1
⇠9 : ⇠9 2 C9 , 9 = 1, ...,<}

t<
9=1

C9 ,{[<
9=1
⇠9 : ⇠9 2 C9 , 9 = 1, ...,<},

78

and let + =
Õ
<

9=1
+9 . Then,

max(+ (u<
9=1

C9),+ (t<
9=1

C9)) 
4

(4 � 1) log 2

+ log(4

log 2

<).

We also use a key result from [103] on the upper bound of VC dimension for sets determined

by finite-dimensional function spaces. For a concise proof, one can also see Lemma 2.6.15 in

[104].

Theorem 3.4.2. Given arbitrary space S, let G be a finite-dimensional vector space of functions

6(·) : S ! R. Then, the classes of sets:

� = {{B 2 S : 6(B) � 0}}62G

has VC dimension at most dim G.

According to Theorem 3.4.2, U = {{(H, I) : H
)
G  I}}

G2R3 has VC dimension at most 3 (in

fact, it is equal to 3; see [23] or [103]).

Finally, we use the notation [·] in the following way. For a positive integer @, [@] denotes the

set {1, ..., @}. Moreover, given a vector E 2 R@, [E] 9 denotes the 9-th component of E, for 9 2 [@].

3.4.1 Two-Stage Stochastic Programming

One of the main motivating examples in studying SAA feasibility, mentioned in both [9, 8], is

the two-stage stochastic programming problem without relatively complete recourse. In [8], the

form of 5 (b, G) in (3.1) is defined as follows:

5 (b, G) , inf

H

6(b, H)

s.t. ,bH +)bG = ⌘b ,

H � 0,

(3.10)

79

where 6(b, ·) is convex, finite everywhere 8b, almost surely. Furthermore, [8] assumes that there

are only finitely many distinct values for,b or)b , i.e., |{,b}| = ? and |{)b}| = @ where {?, @} ✓

Z+. By Farkas’ lemma, {H � 0 : ,bH +)bG = ⌘b} is non-empty if and only if 0) (⌘b �)bG) � 0 for

all 0 such that 0), � 0. Consequently, as shown in [8], we have

dom 5b = {G : 0
)

8 9
):G  0)8 9 ⌘b ,,b = ,8, 9 2 �8,)b =): }, (3.11)

where {08 9 } 92�8 is the set of non-equivalent extreme rays of polyhedral cone C8 = {0 : 0
)
,8 � 0}

and �8 is the index set for these extreme rays of C8. This allows [8] to use the chain-constrained

structure. Here, a chain-constrained domain is defined as follows:

Definition 1. A collection of functions { 5 (b, ·)}b2⌅ has chain-constrained domain of order < if

there exist < chains {*b

:
}b2⌅ and

dom 5b =
<Ÿ
:=1

*
b

:

where a collection of sets {*l}l2� is a chain if for any l1,l2 2 �, we have either *l1
✓ *l2

or

*l2
✓ *l1

.

It is shown in [8] that dom 5b in (3.11) is a chain-constrained domain of order < = @
Õ
?

8=1
|�8 |.

Consequently, Scenario 1 in [8] can be applied to show that

P# (+ (G¢(b [#])) > 1 � U) 
<�1’
:=0

✓
#

:

◆
U
: (1 � U)#�: ,

which has a sample complexity

4

4 � 1

1

U

�
< � 1 + log

�1
X

� �
(3.12)

for achieving P# (+ (G¢(b [#])) > 1 � U)  X according to (3.9).

Notice a necessary assumption made in [8] is that only finitely many distinct values for ,b or

)b are allowed, i.e., |{,b}| = ? and |{)b}| = @ where {?, @} ✓ Z+. However, using Theorem 5.1,

80

we can get a different sample complexity and concentration bounds, even when cardinalities of

|{,b}| and |{)b}| are infinite. We first address (3.10) in its original form.

Corollary 3.4.2.1. Consider (3.10). Let b [#] = {b1, ..., b# } be IID samples from P (consequently

b
[#] ⇠ P#), and G¢(b [#]) be the SAA solution. Then, if

� 4

U

✓⇣
4

(4 � 1) log 2

|� | (= + 1) log

� 4

log 2

· |� |
� ⌘

log

�12

U

�
+ log

�2
X

� ◆
, (3.13)

where |� | = max
82[@] |�8 |, we have

P# (+ (G¢(b [#])) > U)  X.

for any 0 < X, U < 1. Equivalently, in terms of convergence rate, we have

P# (+ (G¢(b [#])) > U)  2 exp

✓
�#U

4

◆ ✓
12

U

◆ � 4

(4�1) log 2
|� | (=+1) log

⇣
4

log 2
·|� |

⌘�
. (3.14)

Proof. Define � (·) : ⌅! [?] as the indexing function such that � (b) = 8 when,b = ,8. We then

observe � , {�G}G2X defined in (3.6) becomes

�G = {b : 0
)

� (b) 9)bG  0
)

� (b) 9 ⌘b ,8 9 2 �� (b) }

where {08 9 } 92�8 is the set of non-equivalent extreme rays of polyhedral cone {0 : 0
)
,8 � 0}.

Define |� | = max
82[@] |�8 | and for all b 2 ⌅, let {(Hb 9 , Ib 9)} 92|� | be

H
)

b 9
=

8>>>><
>>>>:
0
)

� (b) 9)b , for 1  9  |�
� (b) |

0, for |�
� (b) | < 9  |� |

Ib 9 =

8>>>><
>>>>:
0
)

� (b) 9 ⌘b , for 1  9  |�
� (b) |

0, for |�
� (b) | < 9  |� |.

81

Then, define H)
b
= (H)

b1
, H
)

b2
, ..., H

)

b |� |) 2 R
|� |= and Ib = (Ib1, Ib2, ..., Ib |� |) 2 R|� |. Moreover, for

9 2 [|� |], define E 9 (·) : R= ! R|� |= to be

E 9 (G) =

8>>>><
>>>>:
[G]8, for (9 � 1)= + 1  8  9=

0, otherwise.

Then, we can redefine

�G =
|� |Ÿ
9=1

{(Hb , Ib) : H
)

b
E 9 (G)  [Ib] 9 }.

Given 9 2 [|� |], let 4 9 2 R|� | be the vector with 1 in the 9-th component and 0 otherwise. Define a

class of function G = {6(G,2) (·)}(G,2)2R=⇥R on R|� | (=+1) such that, given (H, I) 2 R|� |= ⇥ R|� |,

6(G,2) ((H, I)) = [H, I])
2666664
�E 9 (G)

2 · 4 9

3777775
.

It is straightforward to check G is a finite-dimensional vector space of functions with dim G  =+1.

Then, according to Theorem 3.4.2, the VC dimension of

{{(H, I) 2 R|� |= ⇥ R|� | : 6G,2 ((H, I)) � 0}}(G,2)2R=⇥R

is at most = + 1. Consequently, as a smaller collection of sets, the VC dimension of

{{(H, I) 2 R|� |= ⇥ R|� | : 6G,1((H, I)) � 0}}G2X

is also at most = + 1. Thus, for each 9 2 [|� |], the VC dimension of U9 = {{(Hb , Ib) : H
)

b
E 9 (G) 

[Ib] 9 }}G2X is at most = + 1. Finally, it follows from Theorem 3.4.1 that

+ (�)  + (u|� |
9=1

U9) 
4

(4 � 1) log 2

|� | (= + 1) log

✓
4

log 2

· |� |
◆
.

82

The corresponding sample complexity and convergence rate follow from Theorem 5.1. ⇤

Note that 3.4.2.1 does not require any convexity assumption on 6b nor distributional assump-

tions on the random variables ,b and)b . Furthermore, if |{,b}| and |{)b}| are infinite, our result

still holds. This is because the same proof can be applied as long as |� | = maxb2⌅{ # of extreme rays for the cone {0 :

0
)
,b � 0}} is finite. However, it is known that the number of non-equivalent extreme rays of a

polyhedral cone {0 : 0
)
, � 0} is finite and can be bounded by a term of $ (< b

=
1

2
c

1
) involving only

<1 and =1 for , 2 R<1⇥=1 (see [105, 106, 107]). Thus, |� | < +1 regardless of the cardinalities

of {,b} ✓ R<1⇥=1 . Notice we can view <1 to be deterministic, as long as <1 is bounded almost

surely. We summarize this into another Corollary.

Corollary 3.4.2.2. Consider (3.10). Let b [#] = {b1, ..., b# } be IID samples from P (consequently

b
[#] ⇠ P#), and G¢(b [#]) be the SAA solution. If |{,b}| and |{)b}| are infinite but <1 is bounded

where {,b} ✓ R<1⇥=1 , then the result of 3.4.2.1 still holds.

Proof. For {,b} ✓ R<1⇥=1 , it is known that |� | < +1 where

|� | = max

b2⌅
{ # of extreme rays for the cone {0 : 0

)

,b � 0}}.

Then, let Ab be the set of non-equivalent extreme rays of polyhedral cone {0 : 0
)
,b � 0}.

Observe � , {�G}G2X defined in (3.6) becomes

�G = {b : 0
)

)bG  0) ⌘b ,80 2 Ab}.

For all b 2 ⌅, since |Ab |  |� |, we can label the elements in Ab by {0b 9 } 92[|�b |] . Then, define

{(Hb 9 , Ib 9)} 92|� | as

H
)

b 9
=

8>>>><
>>>>:
0
)

b 9
)b , for 1  9  |Ab |

0, for |Ab | < 9  |� |

83

Ib 9 =

8>>>><
>>>>:
0
)

b 9
⌘b , for 1  9  |Ab |

0, for |Ab | < 9  |� |.

The rest of proof follows exactly as in Corollary 3.4.2.1. ⇤

Compared with our bound (3.13), the chain-constrained bound (3.12) relies on the order of

the chain < = @

Õ
?

8=1
|�8 |. If the cardinality of the support of ,b or)b gets large (i.e., @? � =),

or potentially infinite (for continuous random variable), then the bound in (3.12) with a sample

complexity of $ (@? |� |
U

+ 1

U
log(1

X
)) becomes loose or even inapplicable due to the term @?. On

the other hand, our VC bound (3.13) with a sample complexity $ (|� |=
U

log |� | log(1

U
) + 1

U
log(1

X
))

maintains the same dependence on the dimension = regardless of the cardinality of the support

for ,b or)b . Moreover, if we use the PAC bound from [101, 102] as mentioned in Remark 2,

the bound would be improved to $ (|� |=
U

log |� | + 1

U
log(1

X
)). Finally, in both bounds, the term |� |

appears. However, as mentioned previously, an explicit bound for |� | of $ (< b
=
1

2
c

1
) can be obtained

by <1, =1 where {,b} ✓ R<1⇥=1 but we omit it here as it is not essential for our comparison.

Finally, the bound in Scenario 3 of [8] also applies to (3.10) and is not limited by the order of the

chain-structure. However, the bound there is not explicitly computable since the V term is hidden.

The dependence on the order of the chain < is also addressed in [9]. Using ideas similar to

the scenario approximation of chance-constrained problems in [108, 24, 22] as well as properties

of linear programming (e.g. existence of basic optimal solutions), [9] is able to provide a sample

complexity for two-stage stochastic linear programming independent of the cardinalities of {,b}

or the order of the chain. However, the derivation of our bound in (3.13) does not depend on the

linearity of the optimization problem and hence is not limited to two-stage stochastic programming

with linear recourse. In particular, in [9], the first stage X is defined by linear constraints �G = 1

for some � 2 R<⇥= and the second stage problem bears a linear objective @(b)) H. In contrast, our

bound is valid for general X in the first stage and 6(b, H) in the second-stage problem in (3.10).

That being said, the bound derived in [9] has notable strengths in the linear case, in terms of the

dependence on problem parameters, gained via a more efficient exploitation of the linear structure.

84

Specifically, the sample complexity in [9] is (adapted to the notation in this chapter)

$

✓
1

U

⇣
==1

�
log(<1

=1 + 1

) + 1

�
+ =

�
log(<

=

+ 2) + log(1

U

) + 1

�
+ log(1

X

)
⌘◆
, (3.15)

which has better dependence on <1, =1, as the dependence on |� | in (3.13) is$ (< b
=
1

2
c

1
) in the worst

case. Nonetheless, (3.13) has a similar dependence on = to the bound in (3.15), and does not depend

on < in (3.15) at all. Omitting the dependence on these problem size parameters (e.g., constants

based on =,<,<1, =1 and |� |), the bound derived in [9] is of order $ (1

U
log(1

X
) + 1

U
log(1

U
)), which

of the same order as the bound (3.13). Moreover, (3.13) can be slightly improved to be of order

$ (1

U
log(1

X
) + 1

U
) bound based on Remark 2.

3.4.2 Two-Stage Stochastic Integer Programming

The SAA method has also been applied in two-stage stochastic programming with (mixed)

integer recourse [109, 110, 111, 112]. We consider the following two-stage stochastic integer

programming where X ✓ R=�? ⇥ Z? contains integer components in the first stage (3.1) and the

second stage is a mixed integer program (MIP):

5 (b, G) , inf

H

6(b, H, H0)

s.t. ,bH +,0

b
H0 +)bG = ⌘b ,

H 2 R=0+ , H0 2 Z ✓ Z?
0

+ ,

(3.16)

for some =0, ?0 2 Z+. Here 6(b, H, H0) can be a general function as in (3.10), although for much

of the theoretical and practical interest (also applicability), it is assumed to be in linear programs

where 6(b, H, H0) = @(b)) H+@0(b)) H0. Moreover, most literature also assumes relatively complete

recourse by fixing a deterministic recourse matrix (i.e., ,b = , and ,0

b
= ,0 with probability 1)

such that {H 2 R=0+ ⇥ Z
?
0

+ : [, |,0]H = C} is non-empty for all C. Consequently, the feasibility of

SAA solution for two-stage stochastic integer programming without relatively complete recourse

has rarely been considered. In fact, due to the general non-convex and discontinuous nature of MIP,

85

specialized approximate/iterative algorithms are usually required and the solutions are no longer

guaranteed to be optimal. However, even without relatively complete recourse, as mentioned in

Remark 2, as long as the solutions output from such algorithms are within the SAA feasible region

with probability 1, the feasibility result from Theorem 5.1 still holds. Notice we have assumed the

set {G : G 2 X and � (G) < +1} is non-empty throughout the chapter (see the beginning of the

introduction) and the SAA feasible region is non-empty with probability 1 under this assumption.

Under this setting, it is possible to provide a feasibility bound for (3.16) when |Z| < 1.

This condition is satisfied when H0 is restricted to be binary as in [112] (i.e., H0 2 {0, 1}?0). On

the other hand, if the solutions are polynomially bounded by the size of data (e.g., integer linear

programming [113]), then it is also possible to only consider solving (3.16) in a finite, although

possibly large bounded set Z ✓ Z?
0

+ .

Corollary 3.4.2.3. Consider (3.16). Suppose |Z| < 1 and |� | < 1 where

|� | = max

b2⌅
{ # of extreme rays for the cone {0 : 0

)

,b � 0}}.

Then, let b [#] = {b1, ..., b# } be IID samples from P (consequently b [#] ⇠ P#), and G¢(b [#]) be the

SAA solution, or any output within the SAA feasibility region with probability 1. Then, if

� 4

U

✓
3 log

�12

U

�
+ log

�2
X

� ◆
, (3.17)

where

3 =
⇣

4

(4 � 1) log 2

⌘
2

|Z||� | (= + 2) log(4 |� |
log 2

) log(4 |Z|
log 2

),

then we have P# (+ (G¢(b [#])) > U)  X, for any 0 < X, U < 1. Equivalently, in terms of conver-

gence rate, we have

P# (+ (G¢(b [#])) > U)  2 exp

✓
�#U

4

◆ ✓
12

U

◆
3

. (3.18)

Proof. Let Ab be the set of non-equivalent extreme rays of polyhedral cone {0 : 0
)
,b � 0}.

86

Using Farkas’ lemma, we can construct � , {�G}G2X defined in (3.6) as

�G =
ÿ
H02Z

{b : 0
) ()bG +,0

b
H0)  0) ⌘b ,80 2 Ab},

for (G, H0) 2 X ⇥ Z. For all b 2 ⌅, since |Ab |  |� |, we can label the elements in Ab by

{0b 9 } 92[|�b |] . Then, define {(Hb 9 , Ib 9 ,Fb 9)} 92|� | as

H
)

b 9
=

8>>>><
>>>>:
0
)

b 9
)b , for 1  9  |Ab |

0, for |Ab | < 9  |� |

Ib 9 =

8>>>><
>>>>:
0
)

b 9
⌘b , for 1  9  |Ab |

0, for |Ab | < 9  |� |

F
)

b 9
=

8>>>><
>>>>:
0
)

b 9
,

0

b
, for 1  9  |Ab |

0, for |Ab | < 9  |� |.

Define H)
b
= (H)

b1
, H
)

b2
, ..., H

)

b |� |) 2 R
|� |=, Ib = (Ib1, Ib2, ..., Ib |� |) 2 R|� | and F)

b
= (F)

b1
,F

)

b2
, ...,F

)

b |� |) 2

R|� |?
0. Moreover, for 9 2 [|� |], define E 9 (·) : R= ! R|� |=, D 9 : Z?

0 ! Z|� |?0 to be

E 9 (G) =

8>>>><
>>>>:
[G]8, for (9 � 1)= + 1  8  9=

0, otherwise

D 9 (G) =

8>>>><
>>>>:
[H0]8, for (9 � 1)?0 + 1  8  9 ?0

0, otherwise.

Then, we can redefine

�G =
ÿ
H02Z

|� |Ÿ
9=1

{(Hb , Ib ,Fb) : H
)

b
E 9 (G) + F)b D 9 (H0)  [Ib] 9 }. (3.19)

87

Given 9 2 [|� |] and H0 2 Z, let 4 9 2 R|� | be the vector with 1 in the 9-th component and 0

otherwise. Define a class of function G = {6(G,21,22) (·)}(G,21,22)2R=⇥R⇥R on R|� | (=+1+?0) such that,

given (H, I,F) 2 R|� |= ⇥ R|� | ⇥ R|� |?0,

6(G,21,22) ((H, I,F)) = [H, I,F])

2666666664

�E 9 (G)

21 · 4 9

�22 · D 9 (H0)

3777777775
.

It is straightforward to check G is a finite-dimensional vector space of functions with dim G  =+2.

Then, according to Theorem 3.4.2, the VC dimension of

{{(H, I,F) 2 R|� |= ⇥ R|� | ⇥ R|� |?0 : 6(G,21,22) ((H, I,F)) � 0}}(G,21,22)2R=⇥R⇥R

is at most = + 2. Consequently, as a smaller collection of sets, the VC dimension of

{{(H, I,F) 2 R|� |= ⇥ R|� | ⇥ R|� |?0 : 6(G,1,1) ((H, I,F)) � 0}}G2X

is also at most = + 2. Thus, for each 9 2 [|� |], the VC dimension of

UH0

9
= {{(Hb , Ib ,Fb) : H

)

b
E 9 (G) + F)b D 9 (H0)  [Ib] 9 }}G2X

is at most = + 2. Consequently, given H0 2 Z, it follows from Theorem 3.4.1 that

+ (u|� |
9=1

UH0

9
)  4

(4 � 1) log 2

|� | (= + 2) log(4

log 2

|� |)

and

+

⇣
t
H02Z

⇣
u|� |
9=1

UH0

9

⌘⌘


⇣
4

(4 � 1) log 2

⌘
2

|Z||� | (= + 2) log(4 |� |
log 2

) log(4 |Z|
log 2

).

88

Thus, for �G defined in (3.19), we have + ({�G}G2X)  3 where

3 =
⇣

4

(4 � 1) log 2

⌘
2

|Z||� | (= + 2) log(4 |� |
log 2

) log(4 |Z|
log 2

).

The rest of the proof follows as in 3.4.2.1. ⇤

As we can see, the portion of infeasible SAA solutions (not necessarily optimal) still decreases

exponentially as the sample size # increases, although it is worth noting that the rate now depends

on |Z| as well.

3.4.3 Chain-Constrained Domain

We have seen that Theorem 5.1 can be used to analyze example (3.10) without using the chain-

constrained structure. However, it is worth noting that Theorem 5.1 still offers an explicit bound

on the feasibility of G¢(b [#]) based solely on the chain-constrained structure, although at a slightly

worse sample complexity than [8]. In particular, the VC dimension of any chain-constrained do-

main can be directly bounded as follows.

Lemma 8. If dom 5b has a chain-constrained domain of order <, then the VC dimension of � =

{�G}G2X in (3.6) satisfies

+ (�)  4

(4 � 1) log 2

< log

� 4

log 2

· <
�
⇠ $ (< log<).

Proof. Under the assumption we have dom 5b =
—
<

:=1
*
b

:
where each *b

:
2 {*b

0

:
}b 02⌅ is a chain

living on X ✓ R= indexed by b 2 RA . Now, for : 2 [<], define ,G

:
= {b : G 2 *b

:
}, we have from

(3.6) that �G = {b : G 2 dom 5b} = {b : G 2 —
<

:=1
*
b

:
} =

—
<

:=1
,
G

:
. We show, for each : 2 [<],

{,G

:
}G2X is a chain as well. Suppose this is not the case, then there exist G1, G2 2 X such that

,
G1

:
* ,G2

:
and ,G2

:
* ,G1

:
. This implies there exist b1 2 ,G1

:
and b2 2 ,G2

:
such that b1 8 ,G2

:

and b2 8 ,G1

:
. This further implies G1 2 *b1

:
, G2 8 *b1

:
and G2 2 *b2

:
, G1 8 *b2

:
. Consequently,

neither*b1

:
✓ *b2

:
nor*b2

:
✓ *b1

:
can be true, contradicting the assumption that {*b

:
}b2⌅ is a chain.

89

Thus, {,G

:
}G2X is a chain on ⌅ for each : 2 [<] and �G is a chain-constrained domain of order <.

On the other hand, the VC dimension of a class of sets which are a chain {*l}l2� is at most 1

because it cannot shatter any two points. In particular, if {G1, G2} are two points living on the same

space as {*l}l2� , the shattering of {G1, G2} requires G1 2 *l1
, G2 8 *l1 and G2 2 *l2

, G1 8 *l2

for some *l1
,*

l2 2 {*l}l2� . If this were to happen, then neither *l1 ✓ *
l2 nor *l2 ✓

*
l1 could be true, contradicting the definition of a chain. Then, if {U: }:2[<] are the < chains

consisting of a chain-constrained domain U of order < where each * 2 U is of the form * =
—
<

:=1
: for some: 2 U: , it again follows from Theorem 1.1 in [99] that

+ (U)  + (u<
:=1

U:) 
4

(4 � 1) log 2

< log(4

log 2

· <),

where u<
:=1

U: ,
⇢—

<

:=1
*: : *: 2 U: , : 2 [<]

�
. The result follows now from the fact that �G is

a chain of order <. ⇤

Lemma 8 combined with Theorem 5.1 can provide an explicit sample complexity for feasibility.

Corollary 3.4.2.4. If dom 5b has a chain-constrained domain of order <, then Theorem 5.1 guar-

antees that for

� 4

U

✓⇣
4

(4 � 1) log 2

< log

� 4

log 2

· <
� ⌘

log

�12

U

�
+ log

�2
X

� ◆
, (3.20)

we have

P# (+ (G¢(b [#])) > U)  X.

for any 0 < X, U < 1.

Corollary 3.4.2.4 provides a sample complexity$ (<
U

log< log(1

U
)+ 1

U
log(1

X
)) for chain-constrained

domains, or$ (<
U

log<+ 1

U
log(1

X
)) using PAC bounds from [101, 102], while Scenario 1 in [8] pro-

vides a $ (<
U
+ 1

U
log(1

X
)) bound according to (3.9). As we can see, the more refined analysis on the

chain-constrained structure in [8] leads to a better rate over Corollary 3.4.2.4 by log factors. How-

90

ever, the generality offered by Theorem 5.1 is still evident, since its applicability in most situations

either does not hinge on the chain-constrained domain or can be improved by reparametrizations

of b.

3.4.4 Finite Feasible Region

In this subsection, we apply Theorem 5.1 in the case where the decision set X is finite.

Corollary 3.4.2.5. Suppose |X| < +1 and let b [#] = {b1, ..., b# } be IID samples from P (conse-

quently b [#] ⇠ P#). Then, if

� 4

U

⇣
log

2
|X| · log

�12

U

�
+ log

�2
X

� ⌘
, (3.21)

we have

P# (+ (G¢(b [#])) > U)  X

for any 0 < X, U < 1.

Proof. Let � , {�G}G2X be the class of subsets defined in (3.6). It follows that |� |  |X| < +1.

It is known that if |� | < +1, then +⇠ (�)  log
2
|� | (by definition of VC dimension or see [96]).

The result then follows from Theorem 5.1. ⇤

Note that since the VC dimension of a finite hypothesis class is bounded by the logarithm of its

cardinality, we get the results in Corollary 3.4.2.5 for free. Section 4 of [9] also discusses the case

of finite feasible region X, with a slightly different focus. In particular, with assumptions on the

moment generating functions, [9] proves exponential convergence of a X-optimal set towards an n-

optimal set using large deviations (LD) theory. The rate of convergence also depends on constants

from the LD analysis. A more direct analysis on the feasibility of SAA solution G¢(b [#]) which

does not rely on distributional assumptions of 5 (b, G) is also availble from Lemma 9 of [9] which

states:

P# (�̂# (G) < +1)  (1 � [)# , for G 2 X �= 5 40 (3.22)

91

where X �= 5 40 = {G : G 2 X and + (G) > 0} and [= min{+ (G) : G 2 X �= 5 40}. Building on (3.22),

we can deduce the following direct bound regarding G¢(b [#]):

P# (+ (G¢(b [#])) > [) = P# (G¢(b [#]) 2 X �= 5 40)

 P#
� ÿ
G2X� = 5 40

{�̂# (G) < +1}
�


’

G2X� = 5 40
P# (�̂# (G) < +1)  |X �= 5 40 | (1 � [)# , (3.23)

which leads to a$ (1

[
log(|X|)+1

[
log(1

V
)) sample complexity, comparable to the$ (1

[
log(1

[
) log

2
(|X|)+

1

[
log(1

V
)) complexity in (3.21). Moreover, if we utilize the PAC bound from Remark 2, the bound

in (3.21) could be improved to $ (1

[
log

2
(|X|) + 1

[
log(1

V
)) which is of the same order as (3.23).

92

Chapter 4: Robust Importance Weighting for Covariate Shift

In many learning problems, the training and testing data follow different distributions and a par-

ticularly common situation is the covariate shift. To correct for sampling biases, most approaches,

including the popular kernel mean matching (KMM), focus on estimating the importance weights

between the two distributions. Reweighting-based methods, however, are exposed to high variance

when the distributional discrepancy is large and the weights are poorly estimated. On the other

hand, the alternate approach of using nonparametric regression (NR) incurs high bias when the

training size is limited. In this Chapter, we propose and analyze a new estimator that systemati-

cally integrates the residuals of NR with KMM reweighting, based on a control-variate perspective.

The proposed estimator can be shown to either strictly outperform or match the best-known ex-

isting rates for both KMM and NR, and thus is a robust combination of both estimators. The

experiments shows the estimator works well in practice.

4.1 Introduction

Traditional machine learning implicitly assumes training and test data are drawn from the same

distribution. However, mismatches between training and test distributions occur frequently in re-

ality. For example, in clinical trials the patients used for prognostic factor identification may not

come from the target population due to sample selection bias [114, 115]; incoming signals used

for natural language and image processing, bioinformatics or econometric analyses change in dis-

tribution over time and seasonality [116, 117, 118, 119, 120, 121, 122]; patterns for engineering

controls fluctuate due to the non-stationarity of environments [123, 124].

Many such problems are investigated under the covariate shift assumption [125]. Namely,

in a supervised learning setting with covariate - and label . , the marginal distribution of - in

93

the training set %CA (G), shifts away from the marginal distribution of the test set %C4 (G), while

the conditional distribution %(H |G) remains invariant in both sets. Because test labels are either

too costly to obtain or unobserved, it could be uneconomical or impossible to build predictive

models only on the test set. In this case, one is obliged to utilize the invariance of conditional

probability to adapt or transfer knowledge from the training set, termed as transfer learning [126]

or domain adaptation [121, 127]. Intuitively, to correct for covariate shift (i.e., cancel the bias from

the training set), one can reweight the training data by assigning more weights to observations

where the test data locate more often. Indeed, the key to many approaches addressing covariate

shift is the estimation of importance sampling weights, or the Radon-Nikodym derivative (RND)

of 3%C4/3%CA between %C4 and %CA [128, 129, 130, 131, 132, 133, 134, 119, 123]. Among them is

the popular kernel mean matching (KMM) [114, 119], which estimates the importance weights by

matching means in a reproducing kernel Hilbert space (RKHS) and can be implemented efficiently

by quadratic programming (QP).

Despite the demonstrated efficiency in many covariate shift problems [128, 119, 115], KMM

can suffer from high variance, due to several reasons. The first one regards the RKHS assumption.

As pointed out in [135], under a more realistic assumption from learning theory [136], when the

true regression function does not lie in the RKHS but a general range space indexed by a smooth-

ness parameter \ > 0, KMM degrades to sub-canonical rate O(=�
\

2\+4

CA
+=�

\

2\+4

C4
) from the parametric

rate O(=�
1

2

CA
+=�

1

2

C4
). Second, if the discrepancy between the training and testing distributions is large

(e.g., test samples concentrate on regions where few training samples are located), the RND be-

comes unstable and leads to high resulting variance [137], partially due to an induced sparsity as

most weights shrink towards zero while the non-zero ones surge to huge values. This is an in-

trinsic challenge for reweighting methods that occurs even if the RND is known in closed-form.

One way to bypass it is to identify model misspecification [138], but as mentioned in [139], the

cross-validation for model selection needed in many related methods often requires the importance

weights to cancel biases and the necessity for reweighting remains.

In this Chapter we propose a method to reduce the variance of KMM in covariate shift prob-

94

lems. Our method relies on an estimated regression function and the application of the importance

weighting on the residuals of the regression. Intuitively, the residuals have smaller magnitudes

than the original loss values, and the resulting reweighted estimator is thus less sensitive to the

variances of weights. Then, we cancel the bias incurred by the use of residuals by a judicious

compensation through the estimated regression function evaluated on the test set.

Our method shares similarities with the Doubly Robust (DR) estimator in causal inference

problems [140]. However, different from DR, we do not require semi-parametric estimates of the

baseline prediction (corresponding to our regression function g) and conditional probability (cor-

responding to our importance weight) to both converge at rates $ (=U) for U > 1/4. In particular,

we specialize our method by using a nonparametric regression (NR) function constructed from

regularized least square in RKHS [136, 141, 142], also known as the Tikhonov regularized learn-

ing algorithm [143]. We show that our new estimator achieves the rate O(=�
\

2\+2

CA
+ =�

\

2\+2

C4
), which

is superior to the best-known rate of KMM in [135], with the same computational complexity of

KMM. Although the gap to the parametric rate is yet to be closed, the new estimator certainly

seems to be a step towards the right direction. To put into perspective, we also compare with an

alternate approach in [135] which constructs an NR function using the training set and then pre-

dicts by evaluating on the test set. Such an approach leads to a better dependence on the test size

but worse dependence on the training size than KMM. Our estimator, which can be viewed as an

ensemble of KMM and NR, achieves a convergence rate that is either superior or matches both

of these methods, thus in a sense robust against both estimators. In fact, we show our estimator

can be motivated both from a variance reduction perspective on KMM using control variates [144,

145] and a bias reduction perspective on NR.

Another noticable feature of the new estimator relates to data aggregation in empirical risk

minimization (ERM). Specifically, when KMM is applied in learning algorithms or ERMs, the

resulting optimal solution is typically a finite-dimensional span of the training data mapped into

feature space [146]. The optimal solution of our estimator, on the other hand, depends on both the

training and testing data, thus highlighting a different and more efficient information leveraging

95

that utilizes both data sets simultaneously.

The Chapter is organized as follows. Section 2 reviews the background on KMM and NR that

motivates our estimator. Section 3 presents the details of our estimator and studies its convergence

property. Section 4 generalizes our method to ERM. Section 5 demonstrates experimental results.

4.2 Background and Motivation

Denote %CA to be the probability measure for training variables -CA and %C4 for test variables

-
C4.

Assumption 2. %CA (3H |x) = %C4 (3H |x).

Assumption 3. The Radon-Nikodym derivative V(x) , 3%C4

3%CA

(x) exists and is bounded by ⌫ < 1.

Assumption 4. The covariate space X is compact and the label space Y ✓ [0, 1]. Furthermore,

there exists a kernel (·, ·) : X ⇥X ! R which induces an RKHS H and a canonical feature map

�(·) : X ! H such that (x, x0) = h�(x),�(x0)iH and k�(x)kH  ' for some 0 < ' < 1.

Assumption 2 is the covariate shift assumption which states the conditional distribution %(3H |x)

remains invariant while the marginal %CA (x) and %C4 (x) differ. Assumptions 3 and 4 are common

for establishing theoretical results. Specifically, Assumption 3 can be satisfied by restricting the

support of %C4 and %CA on a compact set, although ⌫ could be potentially large.

4.2.1 Preliminaries and Existing Approaches

Given =CA labelled training data {(xCA
9
, y
CA

9
)}=CA
9=1

and =C4 unlabelled test data {xC4
8
}=C4
8=1

(i.e., {HC4
8
}=C4
8=1

are unavailable), the goal is to estimate a = E[.C4]. The KMM estimator [114, 115] is

+ "" =
1

=CA

=CA’
9=1

V̂(xCA
9
)HCA

9
,

96

where V̂(xCA
9
) are solutions of a QP that attempts to match the means of training and test sets in the

feature space using weights ˆ#:

min

#̂

n
!̂ (ˆ#) ,

�� 1

=CA

=CA’
9=1

V̂ 9�(xCA
9
) � 1

=C4

=C4’
8=1

�(xC4
8
)
��2

H

o

s.t. 0  V̂ 9  ⌫,81  9  =CA .

(4.1)

Notice we write V̂ 9 as V̂(xCA
9
) in + "" informally to highlight V̂ 9 as estimates of V(xCA

9
). The

fact that (4.1) is a QP can be verified by the kernel trick, as in [115]. Indeed, define matrix

 8 9 = (xCA
8
, x

CA

9
) and ^ 9 , =CA

=C4

Õ
=C4

8=1
 (xCA

9
, x

C4

8
), optimization (4.1) is equivalent to

min

#̂

1

=
2

CA

#̂
)

Q#̂ � 2

=
2

CA

+
)

#̂,

s.t. 0  V̂ 9  ⌫,81  9  =CA .
(4.2)

In practice, a constraint
�� 1

=CA

Õ
=CA

9=1
V̂ 9 � 1

��  n for a tolerance n > 0 is included to regularize the

ˆ# towards the RND. As in [135], we omit them to simplify analysis. On the other hand, the NR

estimator

+#' =
1

=C4

=C4’
8=1

6̂(xC4
8
),

is based on 6̂(·), some estimate of the regression function 6(x) , E[. |x]. Notice the conditional

expectation is taken regardless of x ⇠ %CA or %C4. Here, we consider a 6̂(·) that is estimated

nonparametrically by regularized least square in RKHS:

6̂W,30C0 (·) = argmin

5 2H

� 1

<

<’
9=1

(5 (xCA
9
) � HCA

9
)2 + Wk 5 k2H

, (4.3)

where W is a regularization term to be chosen and the subscript 30C0 represents {(xCA
9
, H
CA

9
)}<
9=1

.

Using the representation theorem [146], optimization problem (4.3) can be solved in closed form

97

with 6̂W,30C0 (x) =
Õ
<

9=1
U
A46

9
 (xCA

9
, x) where

"
A46 = (Q + WO)�1

y
CA

, (4.4)

and y
CA = [HCA

1
, ..., H

CA

<
].

4.2.2 Motivation

Depending on properties of 6(·), [135] proves different rates of KMM. The most notable case

is when 6 8 H but rather 6(·) 2 '0=64(T
\

2\+4

), where T is the integral operator (T 5) (G0) =Ø

X (G0, G) 5 (G)%CA (3G) on ↵2

%CA

. Here, one can imagine \ as a smoothness parameter in measuring

the space of functions 6(·) lives in. The higher \ is, the more smooth 6 is. In the extreme cases that

\ !1, we know that '0=64(T 1/2

✓ H . In this case, [135] characterize 6 with the approximation

error

A2(6, �) , inf

k 5 kH�
k6 � 5 k↵2

%CA

 ⇠�� \2 , (4.5)

and the rates of KMM drops to sub-canonical |+ "" � a | = O(=�
\

2\+4

CA
+ =�

\

2\+4

C4
), as opposed to

O(=�
1

2

CA
+ =�

1

2

C4
) when 6 2 H . As shown in Lemma 4 in the Supplementary and Theorem 4.1

of [136]), (4.5) is almost equivalent to 6(·) 2 '0=64(T
\

2\+4

): 6(·) 2 '0=64(T

\

2\+4

) implies

(4.5) while (4.5) leads to 6(·) 2 '0=64(T
\

2\+4
�n

) for any n > 0. We adopt the characterization

6(·) 2 '0=64(T
\

2\+4

) as our analysis is based on related learning theory estimates. In particular,

our proofs rely on these estimates and are different from [135]. For example, in (4.3), W is used

as a free parameter for controlling k 5 kH , whereas [135] uses the parameter � in (4.5). Although

the two approaches are equivalent from an optimization viewpoint, with W being the Lagrange dual

variable, the former approach turns out to be more suitable to our analysis.

Correspondingly, the convergence rate for +#' when 6(·) 2 '0=64(T
\

2\+4

) is also shown in

[135] as |+#' � a | = O(=�
1

2

C4
+ =�

3\

12\+16

CA
), with 6̂ taken as 6̂W,30C0 in (4.3) and W chosen optimally.

The rate of + "" is usually better than +#' due to labelling cost (i.e. =CA < =C4). However, in

practice the performance of + "" is not always better than +#'. This could be partially explained

98

by the hidden dependence of + "" on potentially large ⌫, but more importantly, without variance

reduction, KMM is subject to the negative effects of unstable importance sampling weights (i.e.

the #̂). On the other hand, the training of 6̂ requires labels hence can only be done on training set.

Consequently, without reweighting, when estimating the test quantity a, the rate of +#' suffers

from the bias.

This motivates the search for a robust estimator which does not require prior knowledge on

the performance of + "" or +#' and can, through a combination, reach or even surpass the

best performance among both. For simplicity, we use the mean squared error (MSE) criterion

MSE(+) = Var(+) + (Bias(+))2 and assume an additive model . = 6(-) +E where E ⇠ N(0,f2)

is independent with - and other errors. Under this framework, we motivate a remedy from two

perspectives:

Variance Reduction for KMM: Consider an idealized KMM with + "" , 1

=CA

Õ
=CA

9=1
V(xCA

9
)HCA

9

and V(·) being the true RND. Since

E[V(-CA).CA] = Ex⇠%CA (V(x)6(x)) = Ex⇠%C4 [6(x)] = a,

+ "" is unbiased and the only source of MSE becomes the variance. It then follows from standard

control variates that, given an estimator + and a zero-mean random variable , , we can set C¢ =

Cov(+ ,,)
Var(,) and use + � C¢, to obtain

min

C

Var(+ � C,) = (1 � corr2(+ ,,))Var(+)  Var(+),

without altering the mean of + . Thus we can use

, =
1

=CA

=CA’
9=1

V(xCA
9
) (6̂(xCA

9
)) � 1

=C4

=C4’
8=1

6̂(xC4
8
)

99

with C¢ = Cov(+ "" ,,)
Var(,) . To calculate C¢, suppose -C4 and -CA are independent, then we have

Cov(+ "" ,,) = 1

=CA

Cov(V(-CA).CA , V(-CA)6̂(-CA))

=
1

=CA

Cov(V(-CA)6(-CA), V(-CA)6̂(-CA))

⇡ 1

=CA

Var(V(-CA)6̂(-CA)),

if 6̂ is close enough to 6. On the other hand, in the usual case where =C4 � =CA ,

Var(,) = 1

=CA

Var(V(-CA)6̂(-CA)) + 1

=C4

Var(6̂(-C4))

⇡ 1

=CA

Var(V(-CA)6̂(-CA)).

Thus, C¢ ⇡ 1 which gives our estimator

+' =
1

=CA

=CA’
9=1

V(xCA
9
) (HCA

9
� 6̂(xCA

9
)) + 1

=C4

=C4’
8=1

6̂(xC4
8
).

Bias Reduction for NR: Consider the NR estimator +#' , 1

=C4

Õ
=C4

8=1
6̂(xC4

8
). Assuming again the

common case where =C4 � =CA , we have

Var(+#') =
1

=C4

Var(6̂(-C4)) ⇡ 0,

and the main source of MSE is bias Ex⇠%C4 [6(x) � 6̂(x)]. If we add , = 1

=CA

Õ
=CA

9=1
V(xCA

9
) (HCA

9
�

6̂(xCA
9
)) to +#', we eliminate the bias which gives the same estimator

+' =
1

=CA

=CA’
9=1

V(xCA
9
) (HCA

9
� 6̂(xCA

9
)) + 1

=C4

=C4’
8=1

6̂(xC4
8
).

100

4.3 Robust Estimator

We construct a new estimator +' (d) that can be shown to perform robustly against both KMM

and NR estimators discussed above. In our construction, we split the training set with a proportion

d 2 [0, 1], i.e., divide {^CA ,_ CA}30C0 , {(xCA
9
, H
CA

9
)}=CA
9=1

into

{^CA
 ""

,_
CA

 ""
}30C0 , {(xCA

9
, H
CA

9
)}bd=CA c
9=1

,

and

{^CA
#'

,_
CA

#'
}30C0 , {(xCA

9
, H
CA

9
)}=CA
9=bd=CA c+1

,

where {^CA
 ""

, ^
C4}30C0 , {{xCA

9
}bd=CA c
9=1

, {xC4
8
}=C4
8=1

} is used to solve for the weight ˆ# in (4.1) and

{^CA
#'

,_
CA

#'
}30C0 is used to train an NR function 6̂(·) = 6̂W,30C0 (·) for some W as in (4.3). Finally,

we define our estimator +' (d) as

+' (d) ,
1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
) (HCA

9
� 6̂(xCA

9
))

+ 1

=C4

=C4’
8=1

6̂(xC4
8
). (4.6)

First, we remark the parameter d controlling the splitting of data serves mainly for theoretical

considerations. In practice, the data can be used for both purposes simultaneously. Second, as

mentioned, many 6̂ other than (4.3) could be considered for control variate. However, aside from

the availability of closed-form expression (4.4), 6̂W,30C0 is connected to the learning theory estimates

[136]. Thus, for establishing a theoretical bound, we focus on 6̂ = 6̂W,30C0 for now.

Our main result is the convergence analysis with respect to =CA and =C4 which rigorously justified

the previous intuition. In particular, we show that +' either surpasses or achieves the better rate

between + "" and +#'. In all theorems that follow, the big-O notations can be interpreted either

as 1�X high probability bound or a bound on expectation. The proofs are left in the Supplementary.

Theorem 4.3.1. Under Assumptions 2-4, if we assume 6 2 '0=64(T
\

2\+4

), the convergence rate

101

of +' (d) satisfies

|+' (d) � a | = O(=�
\

2\+2

CA
+ =�

\

2\+2

C4
), (4.7)

when 6̂ is taken to be 6̂W,30C0 in (4.6) with W = =�
\+2

\+1 and = , min(=CA , =C4).

Under the same setting of Theorem 4.3.1, if we choose W = =�1, we have

|+' (d) � a | = O(=�
\

2\+4

CA
+ =�

\

2\+4

C4
) (4.8)

and if we choose W = =�1

CA
,

|+' (d) � a | = O(=�
\

2\+4

CA
+ =�

1

2

C4
). (4.9)

We remark several implications. First, although not achieving canonical, (4.7) is an improve-

ment over the best-known O(=�
\

2\+4

CA
+=�

\

2\+4

C4
) rate of+ "" when 6 2 '0=64(T

\

2\+4

), especially for

small \, suggesting that +' is more suitable than + "" when 6 is irregular. Indeed, \ is a smooth-

ness parameter that measures the regularity of 6. When \ increases, functions in '0=64(T
\

2\+4

)

get smoother and '0=64(T
\
2

2\
2
+4

) ✓ '0=64(T

\
1

2\
1
+4

) for 0 < \1 < \2, with the limiting case that

\ ! 1, \

2\+4
! 1/2 and '0=64(T

1

2

) ✓ H (i.e. 6 2 H) for universal kernels by Mercer’s

theorem.

Second, as in Theorem 4 of [135], the optimal tuning of W that leads to (4.7) depends on the

unknown parameter \, which may not be adaptive in practice. However, if one simply choose

W = =�1, +' still achieves a rate no worse than + "" as depicted in (4.8).

Third, also in Theorem 4 of [135], the rate of+#' is O(=�
1

2

C4
+=�

3\

12\+16

CA
) when 6 2 '0=64(T

\

2\+4

),

which is better on =C4 but not =CA . Since usually =CA < =C4, the rate of + "" generally excels.

Indeed, in this case the rate of +#' beats + "" only if lim=!1 =
6\+8

3\+6

C4
/=CA ! 0. However, if so, +'

can still achieve O(=�
\

2\+4

CA
+ =�

1

2

C4
) rate in (4.9) which is better than +#', by simply taking W = =�1

CA
,

i.e., regularizing the training process more when the test set is small. Moreover, as \ ! 1, our

estimator +' recovers the canonical rate =�
1

2

CA
as opposed to =�

1

4

CA
in +#'.

102

Thus, in summary, when 6 2 '0=64(T
\

2\+4

), our estimator +' outperforms both + "" and

+#' across the relative sizes of =CA and =C4. The outperformance over + "" is strict when W

is chosen dependent on \, and the performance is matched when W is chosen robustly without

knowledge of \.

For completeness, we consider two other characterizations of 6 discussed in [135]: one is

6 2 H and the other is A1(6, �) , infk 5 kH� k6 � 5 k  ⇠ (log �)�B for some ⇠, B > 0 (e.g.,

6 2 �B (X) with (·, ·) being the Gaussian kernel, where �B is the Sobolev space with integer B).

The two assumptions are, in a sense, more extreme (being optimistic or pessimistic). The next two

results show that the rates of +' in these situations match the existing ones for + "" (the rates for

+#' are not discussed in [135] under these assumptions).

Proposition 4. Under Assumptions 2-4, if 6 2 H , the convergence rate of+' (d) satisfies |+' (d)�

a | = O(=�
1

2

CA
+ =�

1

2

C4
), when 6̂ is taken to be 6̂W,30C0 for W > 0 in (4.6).

Proposition 5. Under Assumptions 2-4, if A1(6, �) , infk 5 kH� k6 � 5 k  ⇠ (log �)�B for some

⇠, B > 0, the convergence rate of +' (d) satisfies |+' (d) � a | = O
⇣
log

=CA=C4

=CA+=C4

⌘�B
, when 6̂ is taken

to be 6̂W,30C0 for W > 0 in (4.6).

4.4 Empirical Risk Minimization

The robust estimator can handle empirical risk minimization (ERM). Given loss function ;0(G, H; \) :

X ⇥ R! R given \ in D, we optimize over

min

\2D
E[;0(-C4,.C4; \)] = min

\2D
Ex⇠%C4 [; (x; \)],

where ; (x; \) , E
. |x [;0(x,. ; \)] to find

\
¢ , argmin

\2D
Ex⇠%C4 [; (-C4; \)] .

103

In practice, usually a regularization term ⌦[\] on \ is added. For example, the KMM in [114]

considers

min

\2D

1

=CA

=CA’
9=1

V̂(xCA
9
);0(xCA

9
, H
CA

9
; \) + _⌦[\] . (4.10)

We can carry out a similar modification for +':

min

\2D

1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
) (;0(xCA

9
, H
CA

9
; \) � ;̂ (xCA

9
; \))

+ 1

=C4

=C4’
8=1

;̂ (xC4
8

; \) + _⌦[\], (4.11)

with ˆ# based on {^CA
 ""

, ^
C4} and ;̂ (G; \) being an estimate of ; (G; \) based on {^CA

#'
,_

CA

#'
}. For

later reference, we note that a similar modification can also be used on +#':

min

\2D

1

=C4

=C4’
8=1

;̂ (xC4
8

; \) + _⌦[\] . (4.12)

We discuss two classical learning problems by (4.11).

Penalized Least Square Regression: Consider a regression problem with ;0(x, H; \) = (H �

h\,�(x)iH)2, ⌦[\] = k\k2H and H 2 [0, 1]. We have

; (x; \) = E[.2 |x] � 26(x)h\,�(x)iH + h\,�(x)i2H ,

and a candidate for ;̂ (x, \) is to substitute 6 with 6̂W,30C0. Then, (4.11) becomes

min

\2D

bd=CA c’
9=1

�
2V(xCA

9
)

bd=CAc
(HCA

9
� 6̂(xCA

9
))h\,�(xCA

9
)iH

+ 1

=C4

=C4’
8=1

(6̂(xC4
8
) � h\,�(x)iH)2 + _k\k2H ,

104

by adding and removing the components not involving \. Furthermore, it simplifies to the QP:

min

"2R bd=CA c+=C4

�2
)

1
QC>C"

bd=CAc
+ _")QC>C"

+
(2�QC>C"))

3
(2�QC>C")

=C4

, (4.13)

by the representation theorem [146]. Here (QC>C)8 9 = (xC>C
8
, x

C>C

9
) and 3 = diag(3) where xC>C

8
= x

CA

8
,

(F1)8 = V(xCA
8
) (HCA

8
� 6̂(xCA

8
)), (F2)8 = 0, (F3)8 = 0 for 1  8  bd=CAc and x

C>C

8
= x

C4

8�bd=CA c ,

(F1)8 = 0, (F2)8 = 6̂(xC4
8�bd=CA c), (F3)8 = 1 for bd=CAc + 1  8  bd=CAc + =C4. Notice (4.13) has a

closed-form solution

"̂ = (3QC>C + _=C4 O)�1(=C4

bd=CAc 1

+2).

Penalized Logistic Regression: Consider a binary classification problem with H 2 {0, 1}, ⌦[\] =

k\k2H and �;0(x, H; \) = H log(1

1+exp h\,�(x)iH) + (1 � H) log(exp h\,�(x)iH
1+exp h\,�(x)iH). Thus, we have

�; (x; \) = �6(x)h\,�(x)iH + log(exp h\,�(x)iH
1 + exp h\,�(x)iH

),

and we can again substitute 6 with 6̂W,30C0. Then, (4.11) becomes

min

\2D

bd=CA c’
9=1

V(xCA
9
)

bd=CAc
(HCA

9
� 6̂(xCA

9
))h\,�(xCA

9
)iH

+ 1

=C4

=C4’
8=1

�6̂(xC4
8
)h\,�(xC4

8
)iH + _k\k2H

+ log(
exp h\,�(xC4

8
)iH

1 + exp h\,�(xC4
8
)iH

).

which again simplifies to, by [146], the convex program:

min

"2R bd=CA c+=C4

)

1
QC>C"

bd=CAc
�
)

2
QC>C"

=C4

+ _")QC>C"

+
Õ
=C4

8=1
log(exp (QC>C") bd=CA c+8

1+exp (QC>C") bd=CA c+8
)

=C4

. (4.14)

105

Both (4.13) and (4.14) can be optimized efficiently by standard solvers. Notably, derived from

(4.11), an optimal solution is in the form \̂ =
Õ
8=1
Û8 (xC>C

8
, x) which spans on both training and

test data. In contrast, the solution of (4.10) or (4.12) only spans on one of them. For example, as

shown in [114], the penalized least square solution for (4.10) is \̂ =
Õ
8=1
Û8 (xCA

8
, x) where

"̂ = (Q + =C4_ diag(ˆ#)�1)�1
y
CA

(we use "̂ = (diag(ˆ#)Q + =C4_O)�1 diag(ˆ#)yCA in experiments to avoid invertibility issues caused

by the sparsity of ˆ#), so only the training data are in the span of the feature space that constitutes

\̂. The aggregation of both sets suggests a more effective utilization of data . We conclude with

a theorem on ERM similar to Corollary 8.9 in [115], which guarantees the convergence of the

solution of (4.11) in a simple setting.

Theorem 4.4.1. Assume ; (G; \) and ;̂ (G; \) 2 H can be expressed as h�(G), \iH + 5 (G; \) with

| |\ | |H  ⇠ and ;0(G, H; \) 2 H as h⌥(G, H),⇤iH + 5 (G; \) with | |⇤| |H  ⇠. Denote this class of

loss functions G and further assume ; (G; \) are continuous, bounded by ⇡ and !-Lipschitz on \

uniformly over G for (\, G) in a compact set D ⇥ X. Then, the ERM with

+' (\) ,
1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
) (;0(xCA

9
, H
CA

9
; \) � ;̂ (xCA

9
; \))

+ 1

=C4

=C4’
8=1

;̂ (xC4
8

; \)

and \̂' , argmin
\2D +' (\) satisfies

E[;0(-C4,.C4; \̂')]  E[;0(-C4,.C4; \¢)] + O(=�
1

2

CA
+ =�

1

2

C4
).

106

4.5 Experiments

4.5.1 Toy Dataset Regression

We first present a toy example to provide comparison with KMM. The data is generated as

the polynomial regression example in [125, 114], where %CA ⇠ N(0.5, 0.52), %C4 ⇠ N(0, 0.32)

are Gaussian distributions. The labels are generated according to H = �G + G3 and observed with

Gaussian noise N(0, 0.32). We sample 500 points in both training and test data and fit a linear

model using ordinary least square (OLS), KMM and our robust estimator, respectively. On the

population level, the best linear fit is H = �0.73G (i.e. U0,V0
EG⇠%C4 (. � (U0G + V0))2 is U0 =

�0.73, V0 = 0). For simplicity, we set the intercept V0 = 0 as known and compare the fitted slopes

for different estimators. We use a degree-3 polynomial kernel and set W in 6̂W,30C0 to the default

value =�1

CA
. The tolerance n for ˆ# is set similarly as in [114] with a slight tuning to avoid an overly

sparse solution. The slope is fitted without regularization. In Figure 1(a), the red curve is the

true polynomial regression function and the purple line is the best linear fit. The blue circle is the

training data and the orange cross is the test data. For three different approaches, as well as an

additional density-ratio-based method in [125], the fitted slope over 20 trials are summarized in

Figure 1(b). The average value is plotted in Figure 1(a) with black (KMM), green (robust) and

yellow (OLS) respectively. As we see, the robust estimator outperforms the two other methods,

achieving higher accuracy than KMM and unweighted OLS and recovering the slope closest to the

best one in the vast majority of trials.

4.5.2 Real World Dataset for ERM

Next, we test our approach in ERM on a real world dataset, the breast cancer dataset from

the UCI Archive. We consider the second biased sampling scheme in [114] where the sampling

bias operates jointly across multiple features. In particular, after randomly splitting the training

and test sets based on different proportions, the training set is further subsampled with probability

of selecting x8 in the training set proportional to exp(�f1kx8 � x̄k) for some f1 > 0 and the

107

(a)

(b)

Figure 4.1: (a): Linear fit with OLS, KMM and robust estimator; (b): Boxplot on slope estimation

training sample mean x̄. Since this is a binary classification problem and we are interested in

comparing different approaches, we experiment with both the penalized least square regression

and the penalized logistic regression for training sets of several sizes, i.e., the proportions of the

training data are 0.3, 0.5, and 0.7 respectively, with respect to the total data. We used a Gaussian

kernel exp(�f2kx8 � x 9 k) for some f2 > 0. The tolerance n for ˆ# is set exactly as in [114].

For both experiments, we choose parameters W = =
�1

CA
as default, _ = 5 by cross-validation and

f1 = �1/100, f2 =
p

0.5. Finally, we used the fitted parameters (i.e., optimal solution \̂ in ERM)

to predict the labels on the test set and compare with the hidden real ones. The summary of test

error comparison is shown in Figure 2 where we use the term unweighted to denote the case for

(4.12), KMM for (4.10) and Robust for (4.11). The robust estimator gives the lowest test error in

108

(a) (b)

Figure 4.2: Classification performance for (a): penalized least square regression; (b) penalized logistic
regression

5 cases out of 6 and follows KMM closely in the exceptional case, confirming our finding on its

improvement over the traditional methods.

4.5.3 Simulated Dataset for Estimation

To test the performace of robust estimator on an estimation problem, we simulate data from two

ten-dimensional Gaussian distributions with different, randomly generated means and covariance

matrices as training and test sets. The target value is a = Ex⇠%C4 [6(x)] for an artificially constructed

regression function 6(G) = sin(21kxk2
2
)+(1 + exp()

2
x))�1 with random 21,2 and labels are observed

with Gaussian noise. The Gaussian kernel exp(�fkx8 � x 9 k) for f > 0 and a tolerance n for ˆ#

are set with exactly the same parameters as in [115] with f =
p

5, ⌫ = 1000 and n =
p
=CA�1p
=CA

.

We also experiment with a different 6̂ by substituting 6̂W,30C0 for a naive linear OLS fit with a lasso

regularization term _ > 0. At each iteration, we use the sample mean from 10
6 data points (without

adding noise) as the true mean and calculate the average MSE over 100 estimations for +', + ""

and +#' respectively. As shown in Table 1, the performances of +' are again consistently on

par with the best case scenarios, even when the form of 6̂W,30C0 is replaced with a naive OLS fit,

suggesting the robust estimator still works well under other forms of control variate functions.

Moreover, we see that the robust estimator exhibits satisfactory performance even when the usual

assumption =CA < =C4 is violated.

109

Table 4.1: Average MSE for Estimation

Hyperparameters MSE
(_, =CA , =C4) +#' + "" +'

(0.1, 50, 500) 0.9970 0.9489 0.9134
(0.1, 500, 500) 1.0006 0.9294 0.9340

(0.1, 500, 50) 1.0021 0.9245 0.9242
(10, 50, 500) 0.9962 0.9493 0.9467
(10, 500, 500) 0.9964 0.9294 0.9288
(10, 500, 50) 0.9965 0.9245 0.9293

4.6 Conclusion

Motivated from variance and bias reduction, we introduced a new robust estimator for covari-

ate shift problems which leads to improved accuracy over both KMM and NR in different settings.

From a practical standpoint, the control variates and data aggregation enable the estimation/training

process to be more stable and data-efficient at no expense of significant computational complexity

increase. From an analytical standpoint, when the regression function lies in range spaces outside

of RKHS, a promising progress is made to improve upon the well-known rate gap of KMM to-

wards the parametric. For future work, note the canonical rate is still not achieved and it remains

unclear the suitable tools for further improvement, if possible at all. Moreover, outside the KMM

context with the regularized empirical regression function in RKHS, establishing the eligibility

and effectiveness of other reweighting method coupled with different regression functions from

learning schemes requires rigorous analysis.

4.7 Supplementary

Throughout the proofs, ⌘(·) 2 H is assumed to be an unspecified function in the RKHS. Also,

we use E- [·] to denote expectation over the randomness of - while fixing others and E|- [·] as

the conditional expectation E[·|-]. Moreover we remark that all results involving 6̂W,30C0 can be

interpreted either as a high probability bound or a bound on expectation over E30C0 (i.e., if we train

110

6̂
W,^

CA

'
,_
CA

'

using ^
CA

#'
,_

CA

#'
, then E30C0 means E^CA

'
,_
CA

'

). The same interpretation applies for the

results with Big-O notations. Finally, constants ⇠2,⇠
0
2
, ⇠3, ⇠0

3
and ⇠00

3
as well as similar constants

introduced later which depend on ', 6(·) or X (for 1� X high probability bound) will sometimes be

denoted by a common ⇠ during the proofs for ease of presentation.

4.7.1 Preliminaries

Lemma 9. Under Assumption 3, for any 5 2 H , we have

k 5 k1 = sup

G2X
|h 5 (·),�(·, G)iH |  'k 5 kH . (4.15)

and consequently k 5 k↵2

%CA

 'k 5 kH as well.

Lemma 10 (Azuma-Hoeffding). Let -1, ..., -= be independent and identically distributed random

variables with 0  -  ⌫, then

%(|1
=

=’
8=1

x8 � E[-] | > n)  24
� 2=n

2

⌫
2
. (4.16)

Under the same assumption of Lemma 10, with probability at least 1 � X,

|1
=

=’
8=1

x8 � E[-] |  ⌫
r

1

2=

log

2

X

. (4.17)

Moreover, an important (1�X)-probability bound we shall use later for !̂ (# |xCA
1
,...,x

CA

=CA

)) follows

from [135] (see also [115] and [147]):

!̂ (# |xCA
1
,...,x

CA

=CA

)) =
���� 1

=CA

=CA’
9=1

V(xCA
9
)�(xCA

9
) � 1

=C4

=C4’
8=1

�(xC4
8
)
����
H


r

2 log

2

X

'

s✓
⌫

2

=CA

+ 1

=C4

◆
. (4.18)

111

4.7.2 Learning Theory Estimates

To adopt the more realistic assumption as in [135, 136] that the true regression function 6(·) 8

H but rather 6(·) 2 '0=64(T
\

2\+4

), we need results from learning theory.

First, define Z , \

2\+4
for some \ > 0 so that 0 < Z < 1/2. Given 6(·) 2 '0=64(T Z

) and <

training sample {(x 9 , H 9)}<
9=1

(sampled from %CA)), we define 6W (·) 2 H : X ! R to be

6W (·) = argmin

5 2H

⇢
k 5 � 6k2

↵2

%CA

+ Wk 5 k2H
�

(4.19)

where k 5 � 6k↵2

%CA

=
p
Ex⇠%CA (5 (x) � 6(x))2 denotes the ↵2 norm under %CA . On the other hand,

6̂W,30C0 (·) 2 H is defined in (3)

6̂W,30C0 (·) = argmin

5 2H

⇢
1

<

<’
9=1

(5 (x 9) � H 9)2 + Wk 5 k2H
�
.

Moreover, following the notations in Section 4.5 of [136], given Banach space (↵2

%CA

, k · k↵2

%CA

)

and our kernel-induced Hilbert subspace (H , k · kH), we define a K̃-functional: ↵2

%CA

⇥ (0,1) ! R

to be

K̃(;, W) , inf

5 2H
{k; � 5 k↵2

%CA

+ Wk 5 kH}

for ; (·) 2 ↵2

%CA

and C > 0. For 0 < A < 1, the interpolation space (↵2

%CA

,H)A consists of all the

elements ; (·) 2 ↵2

%CA

such that

k;kA , sup

W>0

K̃(;, W)
W
A

< 1. (4.20)

Lemma 11. Define K : ↵2

%CA

⇥ (0,1) ! R to be

K(;, W) , inf

5 2H
{k; � 5 k2

↵2

%CA

+ Wk 5 k2H}. (4.21)

112

Then for any ; (·) 2 (↵2

%CA

,H)A , we have

sup

W>0

K(;, W)
W
A


✓
sup

W>0

K̃(;,pW)
(pW)A

◆
2

= k;k2
A
< 1. (4.22)

Proof. It follows from
p
0 + 1 

p
0 +
p
1, 80, 1 � 0 that

p
K(;, W)  K̃(;,pW). (4.23)

Thus, for any ; (·) 2 (↵2

%CA

,H)A , we have

sup

W>0

K(;, W)
W
A


✓
sup

W>0

K̃(;,pW)
(pW)A

◆
2

= k;k2
A
< 1. (4.24)

⇤

On the other hand, assuming 6(·) 2 '0=64(T
\

2\+4

), it follows from the proof of Theorem 4.1

in [136] that

6(·) 2 (↵2

%CA
,H+) \

\+2

(4.25)

where H+ is a closed subspace of H spanned by eigenfunctions of the kernel (e.g., H+ = H

when %CA is non-degenerate, see Remark 4.18 of [136]). Indeed, the next lemma shows we can

measure smoothness through interpolation space just as range space.

Lemma 12. Assuming %CA is non-degenerate on X. Then if 6 2 '0=64(T
\

2\+4

), we have 6 2

(↵2

%CA

,H) \

\+2

. On the other hand, if 6 2 (↵2

%CA

,H) \

\+2

, then 6 2 '0=64(T
\

2\+4
�n

) for all n > 0.

Proof. The proof follows from Theorem 4.1, Corollary 4.17 and Remark 4.18 of [136]. ⇤

Now we are ready to adopt some common assumptions and theoretical results from learning

theory in RKHS. They can be found in [136, 142, 141, 135]. First, given 6(·) 2 '0=64(T Z

) and <

training sample {(x 9 , H 9)}<
9=1

(sampled from %CA)), it follows from Lemma 3 of [141] (see as well

113

Remark 3.3 and Corollary 3.2 in [142]) that

k6W � 6k↵2

%CA

 ⇠2W
Z

. (4.26)

Second, it follows from Theorem 3.1 in [142] as well as [141, 148] that

k6W � 6̂W,30C0k↵2

%CA

 ⇠0
2
(W�1/2

<
�1/2 + W�1

<
�3/4), (4.27)

and, by the triangle inequality,

k6 � 6̂W,30C0k↵2

%CA

 ⇠3(WZ + W�1/2
<
�1/2 + W�1

<
�3/4). (4.28)

Notice here that by choosing W = <
� 3

4(1+Z) , we recover Corollary 3.2 of [142]. Finally it follows

from Theorem 1 of [141], we have

k6W � 6̂W,30C0kH  ⇠03W
�1
<
�1/2

, (4.29)

with ⇠0
3
= 6' log

2

X
. In fact, if we define f2 , Ex⇠%CAE. |x (6(x) � .)2, then Theorem 3 of [141]

stated that

k6W � 6̂W,30C0kH  ⇠003 ((
p
f

2 + k6W � 6k↵2

%CA

)W�1
<
�1/2 + W�1

<
�1). (4.30)

114

4.7.3 Main Proofs

Proof of Theorem 1 and Corollary 1. If 6 2 '0=64(T
\

2\+4

) (i.e. Z = \

2\+4
) and we set ⌘(·) = 6W (·)

and 6̂ = 6̂
W,^

CA

'
,_
CA

'

for some W > 0, then

+' (d) � a

=
1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
) (HCA

9
� 6(xCA

9
)) + 1

bd=CAc

bd=CA c’
9=1

(V̂(xCA
9
) � V(xCA

9
)) (6(xCA

9
) � ⌘(xCA

9
))

+ 1

bd=CAc

bd=CA c’
9=1

(V̂(xCA
9
) � V(xCA

9
)) (⌘(xCA

9
) � 6̂(xCA

9
))

+ 1

bd=CAc

bd=CA c’
9=1

V(xCA
9
) (6(xCA

9
) � 6̂(xCA

9
)) + 1

=C4

=C4’
8=1

6̂(xC4
8
) � a. (4.31)

To bound terms in (4.31), we first use Corollary 4.7.1 to conclude that with probability at least

1 � X,

| 1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
) (HCA

9
� 6(xCA

9
)) | ⌫

s
1

bd=CAc
log

2

X

= O(=�1/2
CA

). (4.32)

We hold on our discussion for the second term. For the third term, since ⌘, 6̂ 2 H ,

���� 1

bd=CAc

bd=CA c’
9=1

(V̂(xCA
9
) � V(xCA

9
)) (⌘(xCA

9
) � 6̂(xCA

9
))

����

=
���� 1

bd=CAc

bd=CA c’
9=1

(V̂(xCA
9
) � V(xCA

9
))

⌦
⌘ � 6̂,�(xCA

9
)
↵
H

����

=
����
⌧
⌘ � 6̂, 1

bd=CAc

bd=CA c’
9=1

(V̂(xCA
9
) � V(xCA

9
))�(xCA

9
)
�
H

����
k⌘ � 6̂kH (!̂ (#̂) + !̂ (# |xCA

1
,...,x

CA

bd=CA c
))  2k⌘ � 6̂kH !̂ (# |xCA

1
,...,x

CA

bd=CA c
), (4.33)

115

by definition of (1). Thus, when taking ⌘ = 6W and 6̂ = 6̂
W,^

CA

'
,_
CA

'

for some W, we can combine

(4.18) and (4.29) to guarantee, with probability 1 � 2X,

���� 1

bd=CAc

bd=CA c’
9=1

(V̂(xCA
9
) � V(xCA

9
)) (⌘(xCA

9
) � 6̂(xCA

9
))

����


r

8 log

2

X

'⇠ (1 � d)�1/2(W�1
=
�1/2
CA

) ·

s✓
⌫

2

=CA

+ 1

=C4

◆

=O(W�1
=
�1/2
CA

(=�1

CA
+ =�1

C4
) 1

2). (4.34)

For the last term g , 1

bd=CA c
Õbd=CA c
9=1

V(xCA
9
) (6(xCA

9
) � 6̂(xCA

9
)) + 1

=C4

Õ
=C4

8=1
6̂(xC4

8
) � a, the analysis

relies the splitting of data, as we notice that

E|^CA
'

,_
CA

'


1

bd=CAc

bd=CA c’
9=1

V(xCA
9
) (6(xCA

9
) � 6̂(xCA

9
)) + 1

=C4

=C4’
8=1

6̂(-C4
8
) � a

�

=Ex⇠%CA [V(x)6(x)] � a � Ex⇠%CA [V(x)6̂(x)] + Ex⇠%C4 [6̂(x)]

=Ex⇠%C4 [6(x)] � a � Ex⇠%C4 [6̂(x)] + Ex⇠%C4 [6̂(x)]

=0. (4.35)

Notice the second line follows since 6̂(·) is determined by {^CA
#'

,_
CA

#'
} and thus is independent of

{^CA
 ""

,_
CA

 ""
} or {^C4}. Thus, we have

Var(g) =Var(E|^CA
'

,_
CA

'

(g)) + E[Var|^CA
'

,_
CA

'

(g)]

=E[Var|^CA
'

,_
CA

'

(g)]

=
1

bd=CAc
E[Varx⇠%CA |^CA

'
,_
CA

'

(V(x) (6(x) � 6̂(x)))] + 1

=C4

E[Varx⇠%C4 |^CA
'

,_
CA

'

(6̂(x))]

 ⌫
2

bd=CAc
E^CA

'
,_
CA

'

k6 � 6̂k2
↵2

%CA

+ 1

=C4

E^CA
'

,_
CA

'

k6̂k2
↵2

%C4

 ⌫
2

bd=CAc
E^CA

'
,_
CA

'

k6 � 6̂k2
↵2

%CA

+ ⌫

=C4

E^CA
'

,_
CA

'

k6̂k2
↵2

%CA

, (4.36)

116

and we can use the Chebyshev inequality and Lemma 9 to conclude, with probability at least 1� X,

|g | 
r

1

X

s
⌫

2

bd=CAc
E^CA

'
,_
CA

'

k6 � 6̂k2
↵2

%CA

+ ⌫'
2

=C4

, (4.37)

which becomes, by (4.28), with probability 1 � 2X,

|g | 
r

1

X

s
⌫

2

bd=CAc
⇠ (1 � d)�3/4(WZ + W�1/2

=
�1/2
CA

+ W�1
=
�3/4
CA

) + ⌫'
2

=C4

=O((WZ + W�1/2
=
�1/2
CA

+ W�1
=
�3/4
CA

)=�1/2
CA

+ =�1/2
C4

) (4.38)

with Z = \

2\+4
. Now, to bound the second term 1

bd=CA c
Õbd=CA c
9=1

(V̂(xCA
9
) � V(xCA

9
)) (6(xCA

9
) � ⌘(xCA

9
)), we

have

1

bd=CAc

bd=CA c’
9=1

| (V̂(xCA
9
) � V(xCA

9
)) (6(xCA

9
) � 6W (xCA9)) |

 ⌫

bd=CAc

bd=CA c’
9=1

|6(xCA
9
) � 6W (xCA9) |


�� ⌫

bd=CAc

bd=CA c’
9=1

|6(xCA
9
) � 6W (xCA9) | � ⌫k6 � 6W k↵1

%CA

�� + ⌫k6 � 6W k↵1

%CA


r

1

X

s
⌫

2

d=CA

k6 � 6W k2↵2

%CA

+ ⌫k6 � 6W k↵2

%CA


r

1

X

⌫⇠W
Z

s
1

d=CA

+ ⇠WZ = O(WZ) = O(W \

2\+4). (4.39)

where ↵1

%CA

denotes the 1-norm Ex⇠%CA |6(x) � 6W (x) |. Notice the second-to-last line follows from

the Chebyshev inequality, the Cauchy-Schwarz inequality, and the last line from (4.26).

Thus, when taking ⌘ = 6W and 6̂ = 6̂
W,^

CA

'
,_
CA

'

for some W > 0, we can combine (4.32), (4.34),

117

(4.38) and (4.39) to have

|+' (d) � a | =O(=�
1

2

CA
) + O(W \

2\+4) + O(W�1
=
�1/2
CA

(=�1

CA
+ =�1

C4
) 1

2)

+ O((W \

2\+4 + W�1/2
=
�1/2
CA

+ W�1
=
�3/4
CA

)=�1/2
CA

+ =�1/2
C4

)

=O(=�
1

2

CA
+ =�

1

2

C4
+ W \

2\+4 + W� 1

2=
�1

CA
+ W� 1

2=

� 1

2

CA
=

� 1

2

C4
), (4.40)

after simplification. Now, if we take W = =�
\+2

\+1 where = , min(=CA , =C4), then (4.40) becomes

|+' (d) � a |

=O(=� 1

2 + =�
\

2(\+1) + =
\+2

2(\+1) =
�1) = O(=� \

2\+2) = O(=
� \

(2\+2)
CA

+ =
� \

(2\+2)
C4

), (4.41)

which is the statement of the theorem. However, note that if we choose W = =
�1, we would

achieve the convergence rate of+ "" as O(=
� \

(2\+4)
CA

+=
� \

(2\+4)
C4

). Moreover if lim=!1 =
6\+8

3\+6

C4
/=CA ! 0

and we choose W = =�1

CA
, then the rate becomes O(=�

\

2\+4

CA
+ =�

1

2

C4
). ⇤

Proof of Proposition 1. Fixing W > 0, if 6 2 H (8.4., 6 2 '0=64(T
\

2\+4

) with \ ! 1), then by

definition of 6W we would have

k6W k2H 
k6W � 6k2↵2

%CA

+ Wk6W k2H
W


k6 � 6k2

↵2

%CA

+ Wk6k2H
W

= k6k2H , (4.42)

or equivalently k6W kH = O(1) since the fixed true regression function k6kH = O(1). Thus, a

simplified analysis shows

+' (d) � a =
1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
).CA
9
� a

+ 1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
)6̂(xCA

9
) � 1

=C4

=C4’
8=1

6̂(xC4
8
) (4.43)

Note that the first term on the right is nothing but the + "" estimator with 100 ⇥ d percent of the

training data and we shall denote it as+ "" (d) without ambiguity. For the second term, assuming

118

6̂ = 6̂
W,^

CA

'
,_
CA

'

, is bounded by

1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
)6̂(xCA

9
) � 1

=C4

=C4’
8=1

6̂(xC4
8
)

=
1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
)
⌦
6̂,�(xCA

9
)
↵
H �

1

=C4

=C4’
8=1

⌦
6̂,�(x=C4

8
)
↵
H

=
⌧
6̂,

1

bd=CAc

bd=CA c’
8=1

V̂(xCA
9
)�(xCA

9
) � 1

=C4

=C4’
8=1

�(xC4
8
)
�
H
 k6̂

W,^
CA

'
,_
CA

'

kH !̂ (ˆ#), (4.44)

Then, by (4.43) and (4.44), we have

|+' (d) � a |  |+ "" (d) � a | + !̂ (ˆ#) (k6W � 6̂W,^CA
'

,_
CA

'

kH + k6W kH)

=O(=�
1

2

CA
+ =�

1

2

C4
), (4.45)

following (4.42), (4.29) and Theorem 1 of [135]. ⇤

Proof of Proposition 2. If the function 6 only satisfies the condition A1(6, �) , infk 5 kH� k6 �

5 k  ⇠ (log �)�B for some ⇠, B > 0, then we again follow the analysis in the proof of Proposition

1 and arrive at the decomposition in (4.43)

|+' (d) � a |  |+ "" (d) � a | + !̂ (ˆ#) (k6W � 6̂W,^CA
'

,_
CA

'

kH + k6W kH)

=O(log

=CA=C4

=CA + =C4
)�B, (4.46)

which is the rate of + "" by Theorem 3 of [135]. ⇤

Proof of Theorem 2. Define n , sup
\2D

����+' (\) � E[;0(-C4,.C4; \)]
����. We have

E[;0(-C4,.C4; \̂')] � n  +' (\̂')  +' (\¢)  E[;0(-C4,.C4; \¢)] + n . (4.47)

119

On the other hand, we know by the triangle inequality that n is bounded by

sup

\2D

�� 1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
);0(xCA

9
, H
CA

9
; \) � 1

=C4

=C4’
8=1

; (xC4
8

; \)
��

+ sup

\2D

�� 1

bd=CAc

bd=CA c’
9=1

V̂(xCA
9
) ;̂ (xCA

9
; \) � 1

=C4

=C4’
8=1

;̂ (xC4
8

; \)
�� + sup

\2D

�� 1

=C4

=C4’
8=1

; (xC4
8

; \) � E[; (-C4; \)]
��
,

where the first term is bounded by O(=�
1

2

CA
+ =�

1

2

C4
) following Corollary 8.9 in [115]. Moreover, the

second term is also O(=�
1

2

CA
+ =�

1

2

C4
) as in (4.44) or Lemma 8.7 in [115]. For the last term, due to the

Lipschitz and compact assumption, it follows from Theorem 19.5 of [69] (see also Example 19.7

of [69]) that function class G is %C4-Donsker, which means that

G= (\) ,
p
=C4

✓
1

=C4

=C4’
8=1

; (xC4
8

; \) � Ex⇠%C4 [; (x; \)]
◆

converges in distribution to a Gaussian ProcessG1 with zero mean and covariance function Cov(G1(\1),G1(\2)) =

Ex⇠%C4 (; (x; \1); (x; \2)) �Ex⇠%C4 ; (x; \1)Ex⇠%C4 ; (x; \2). Notice G1 can be viewed as random func-

tion in ⇠ (D), the space of continuous and bounded function on \. Since for any I 2 ⇠ (D), the

mapping I ! kIk1 , sup
\2D I(\) is continuous with respect to the supremum norm, it follows

from the continuous-mapping theorem that =
1

2

C4
sup

\2D
�� 1

=C4

Õ
=C4

8=1
; (xC4

8
; \) � E[; (-C4; \)]

�� converges

in distribution to kG1k1 which has finite expectations based on the assumptions on G (see, e.g.,

Section 14, Theorem 1 of [149]). Thus, by definition of convergence in distribution, for any X > 0,

we can find some constant ⇡0 that

%(kG=k1 > ⇡
0) = %(kG1k1 > ⇡

0) + >(1)  X + >(1), (4.48)

which means, we can find some # such that when =C4 > # ,

%C4

�
sup

\2D

���� 1

=C4

=C4’
8=1

; (xC4
8

; \) � E[; (-C4; \)]
���� > =� 1

2

C4
⇡
0� = %C4 (kG=k1 > ⇡

0)  2X,

120

and consequently, with probability 1 � 2X, we have

sup

\2D

�� 1

=C4

=C4’
8=1

; (xC4
8

; \) � E[; (-C4; \)]
��  =� 1

2

C4
⇡
0
.

In other words, we also have

sup

\2D

�� 1

=C4

=C4’
8=1

; (xC4
8

; \) � E[; (-C4; \)]
�� = O(=�

1

2

C4
),

which concludes our proof. ⇤

121

Chapter 5: Constrained Reinforcement Learning via Policy Splitting

We develop a model-free reinforcement learning approach to solve constrained Markov de-

cision processes, where the objective and budget constraints are in the form of infinite-horizon

discounted expectations, and the rewards and costs are learned sequentially from data. We propose

a two-stage procedure where we first search over deterministic policies, followed by an aggre-

gation with a mixture parameter search, that generates policies with simultaneous guarantees on

near-optimality and feasibility. We also numerically illustrate our approach by applying it to an

online advertising problem.

We note the special structure we developed here is currently limited to CMDP with one con-

straint. A further generalization with multiple constraints might be worth exploring.

5.1 Introduction

Applications of Reinforcement Learning (RL) in online advertising with recommendation sys-

tems have been a topic of major research interests ([10, 11, 12]). However, despite their tremendous

success, most RL-methods are not designed to learn optimal policies under constraints, yet they ap-

pear ubiquitously when facing budget or safety considerations. A standard framework for studying

RL under constraints is the Constrained Markov Decision Process (CMDP), where the objective

is to maximize the long-run return, with constraints on one or several types of long-run costs. In

this Chapter, we consider the case where both the objective and the constraint are in the form of an

infinite-horizon cumulative discounted expectation, whereas the returns, costs and transitions are

revealed from sequential data. The goal is to design an efficient methodology for the constrained

problem by assimilating classical optimality properties of CMDP into RL, in order to efficiently

use established RL approaches and obtain policies that enjoy both near-optimality and feasibility.

122

The CMDP in the form described above is motivated from a range of important applications

including online advertising. Sponsored search campaigns, for instance, are designed based on

predetermined budgets. Therefore, the marketer has to employ effective strategies to accrue the

maximum reward while observing certain monetary constraints throughout the campaign. Simi-

larly, in email campaigns, the marketer can only send out a limited number of emails under different

constraints due to user fatigue or limited available discount offers. Thus, it is important to consider

information beyond potential revenues, such as the remaining budget or the likely outcomes of dif-

ferent offers. Direct applications of most RL-algorithms do not, in general, consistently produce

optimal solutions within these budget constraint. Thus, several lines of work have been devoted

to resolve this challenge. In the model-based regime (i.e., parametric-based transition), [150] and

[151] consider linear programming, [150] considers state-space extension, and [152] considers

policy iterations. However, model-based algorithms suffer when the state or action space gets

large as estimating the transition dynamics of the users can be very challenging or even infeasi-

ble. In model-free settings, constrained policy optimization (CPO) ([153]) is designed based on

trust region policy optimization (TRPO) and its variants ([154, 155]). Through surrogate function

approximations, CPO provides safe iterations in each policy update, preventing any constraint vi-

olation in the agent’s learning process. However, the implementation requires a safe policy to start

with and it may be over-conservative to require a safe update in each iteration, especially for areas

of advertising where the budget constraint is not as hard a constraint as, say, in auto-driving. Thus,

the extra effort and setup in the implementation of CPO might not be as desirable in our setting.

Another line of work in tacking constrained MDP uses primal-dual, Lagrangian-based RL meth-

ods ([156, 157]), which involves stochastic updates for solving the KKT conditions. In particular,

[156] investigates constraints arising from risk criteria such as conditional-value-at-risk or chance

constraints while the reward constrained policy optimization (RCPO) in [157] uses an actor-critic

updates in the policy space and a stochastic recursion on the Lagrange multiplier updates in the

dual space. However, although convergence is guaranteed for primal-dual methods in theory, in

practice significant efforts are required to tune the hyper-parameters, especially the learning rates

123

of the dual variable, as the updates become noisy and unstable around convergence and the training

process can easily become too slow or overly greedy.

In this Chapter, we address these issues on the primal-dual formulation and explain the unstable

convergence behavior of primal-dual methods around the optimal value. Furthermore, we design

a mixing method which aims to alleviate the tuning issues by both exploiting the low-dimensional

feature of dual variables (when the number of budget constraints is negligible compared to the car-

dinality of the state/action space) and investigating a special splitting property of CMDPs ([152]).

In particular, for a single budget constraint, the “splitting" property refers to a structure of the

optimal randomized policy in CMDP where two possible actions are assigned with a binary distri-

bution to a certain state and the policy stays deterministic elsewhere ([152]). This splitting property

contributes to the unstable behaviors of the dual convergence because the RL method is essentially

searching for two different optimal policies around the optimal dual value. This splitting property

arises from the extreme points of a linear program (LP) formulation of CMDP via the occupation

measure ([158]). It reveals the saddle point structure of the Lagrangian and allows us to confine

our policy search in a smaller solution space.

Leveraging the splitting property, our approach bypasses the need to search over large spaces

of randomized policies and, by solving a sequence of RL problems without restriction under the

Lagrangian relaxation, finds candidate deterministic policies with direct application of classical

RL-methods (e.g. &-learning, TD-learning or TRPO). To improve on the undesirable properties of

primal-dual methods around convergence, we first propose a discretization scheme which exploits

the one-dimensional structure of dual variable and allows for parallel computing. Then we propose

a novel feasibility mixing procedure which efficiently mixes the candidate policies and find an op-

timal randomized policy that would achieve both optimality and feasibility. We provide theoretical

justifications on our framework, and also conduct experiments on an online advertisement problem

to demonstrate its performance.

The remainder of this Chapter is organized as follows. Section 5.2 presents our problem setting

and notations. Section 5.3 describes our Lagrangian formulation and its implications. Section 5.4

124

presents our main dual &-learning algorithm that harnesses the splitting property of CMDP in the

Lagrangian formulation. Section 5.5 discusses practical implementation, and Section 5.6 illustrates

our experimental results.

5.2 Problem Setting

A Constrained Markov Decision Process (CMDP) can be formulated as follows. Let S be the

finite set of states, A the finite set of actions, and ?(B, 0, B0) the probability measure governing the

stochastic transition between states, namely

P(BC+1 = B0|BC = B, 0C = 0) = ?(B, 0, B0)

with non-negative entries and
Õ
B
0 ?(B, 0, B0) = 1. Let AC = A (BC , 0C) be the corresponding expected

reward. Denote ⇧ to be the space of stationary randomized policies c where

P(0C = 0 |B0, 00, A1, B1, 01, ..., AC , BC = B) = P(0C = 0 |BC = B) = c(B, 0),

and
Õ
0
c(B, 0) = 1, c(B, 0) � 0 for all 0, B. Notice the stationarity comes from the fact that the

policy at each state B does not change with C. Moreover, if over any state B, c(B, 0) is zero for all

but one action 0 2 A, then we say c 2 ⇧0 ⇢ ⇧ is a stationary deterministic policy and denote

this 0 by c(B). Suppose at each step C, the agent interacting with the environment not only receives

random (immediate) reward AC but also incurs random (immediate) cost denoted by 2C = 2(BC , 0C).

Let B0 ⇠ d be the distribution of the initial state and W 2 [0, 1] be the discounted factor. We

consider the following CMDP:

max
c2⇧

EB0⇠d,c

" 1’
C=1

W
C�1
AC

#

s.t. EB0⇠d,c

" 1’
C=1

W
C�1
2C

#
 ⌫,

(5.1)

125

where EB0⇠d,c denotes the expectation under policy c and initial distribution B0 ⇠ d. We confine

our policy search in ⇧ because it is well-known (see, e.g., [158]) that the optimal policy c¢ for

CMDP lies in the space ⇧. Also, we do not assume the distributions of A (·, ·) 2(·, ·), or ?(·, ·, ·) are

known.

5.3 Lagrangian with Reduced Policy Space

A common way to solve CMDP (5.1) is to formulate it as the following LP ([158]):

max
x�0

’
B,0

GB0A (B, 0)

s.t.
’
B,0

GB02(B, 0)  ⌫,

’
0

GB0 � W
’
B
0
,0

GB00 ?(B0, 0, B) = d(B) 8B,

(5.2)

where GB0 =
Õ1
C=1
W
C�1P(BC = B, 0C = 0 |c, B0 ⇠ d) is referred to as the occupation measure of

policy c under initial distribution d. It can be interpreted as the total discounted expected number

of times state-action pair (B, 0) is visited under policy c, so that Ec [
Õ1
C=1
W
C�1
AC] can be seen to

be expressible as
Õ
B,0
GB0A (B, 0) and similarly Ec [

Õ1
C=1
W
C�1
2C] as

Õ
B,0
GB02(B, 0), and the second

constraint in (5.2) follows from a first-step Markovian analysis. Moreover, it is shown in [158] that

an optimal randomized policy c¢ can be computed from an optimal solution x¢ of (5.2) by letting

c
¢(B, 0) = G

¢

B0Õ
0
G
¢

B0

. (5.3)

However, formulating the above optimization problem requires the knowledge of A (B, 0), 2(B, 0)

and ?(B, 0, B0) of the MDP which in our setting can only be learned implicitly. Also, the number

of state-action pair may get too large to use tabular methods. On the other hand, the more efficient,

large-scale approximate RL methods such as TD-learning, &-learning or TRPO ([159, 160]) can-

not directly help us with the search of an optimal randomized policy. To address this issue, we first

126

consider the dual optimization problem ([161]) of (5.2):

min
_�0,v

’
B

EBd(B) + _⌫

s.t. EB � A (B, 0) � _2(B, 0) + W
’
B
0
?(B, 0, B0)EB0 8B.

(5.4)

For fixed _ � 0, the minimization in (5.4) is exactly the LP formulation for solving the value

function of an unconstrained MDP with adjusted reward A_
C
= AC � _2C instead of AC at each step

C (plus the constant term _⌫), and the constraint follows from the Bellman optimality equation

([162]). This allows us to convert (5.1) into the form (5.5) (shown below). Advantageously, for any

fixed _, because of its unconstrained nature, the inner maximization problem in (5.5) now suffices

to search for policy c in the deterministic policy space ⇧0 instead of the randomized policy space

⇧. Hence we can apply many suitable approximation algorithms in RL to search for the optimal

deterministic policy ([159]). We have the following theorem (Notice the reduction of policy space

into ⇧0 as a key transition in this dual):

Theorem 5.3.1. Problem (5.1) can be reformulated as

min
_�0

max
c2⇧0

R(c, d) � _
�
C(c, d) � ⌫

�
(5.5)

where R(c, d) , EB0⇠d,c [
Õ1
C=1
W
C�1
AC] and C(c, d) , EB0⇠d,c [

Õ1
C=1
W
C�1
2C].

Proof. Based on our discussion and the LP duality, we only have to show that for any fixed _ � 0,

min
v

’
B

EBd(B)

subject to EB � A (B, 0) � _2(B, 0) + W
’
B
0
?(B, 0, B0)EB0 8B

(5.6)

is equivalent to

max
c2⇧0

R(c, d) � _C(c, d). (5.7)

In particular, for fixed _ � 0, problem (5.6) obtains the optimal expected total discounted reward

127

Õ
B
EBd(B) with adjusted reward A_

C
= AC � _2C guaranteed by the Bellman optimality constraint as

well as the condition that d(B) > 0,8B ([162]). On the other hand, given the discounted adjusted

reward A_
C
, we know from classical MDP results that for any unconstrained infinite-horizon dis-

counted MDP there exists a stationary and deterministic optimal policy c¢ 2 ⇧0 for any initial

state distribution satisfying d(B) > 0,8B. Moreover, the optimal expected total discounted reward

is max
c2⇧0

R(c, d) � _C(c, d). ⇤

Theorem 1 suggests that the search for optimal policies can first proceed with a deterministic

policy search fixing some set of _. Then, we optimize with respect to _ in (5.5) to find an optimal

_
¢ which closes the duality gap between (5.2) and (5.4) with optimal policies that maximize the

penalized expected reward AC � _⇤2C plus the term _
¢
⌫.

5.4 Policy Mixing and Dual &-Learning

The two steps discussed above recover the optimal value of the primal (5.2). However, to

recover the optimal, possibly randomized policy, we need to look more closely at the dual problem

(5.5). To begin, it is known that if an LP has an optimal solution, then it also has an optimal basic

feasible solution ([161]), meaning that we can find optimal solution x¢ with at most B+1 non-zeros

entries. This leads to the following proposition.

Proposition 6. If d(B) > 0 8B, then there is an optimal policy c¢ for the primal problem (5.1) with

c
¢(B) following a deterministic action for all but possibly one state.

Proof. Given that we can find optimal solution x¢ for problem (5.2) with at most B + 1 non-zero

entries, if we further assume that d(B) > 0 for all state B, then the second constraint of (5.2) would

force any feasible solution x to satisfy
Õ
0
GB0 > 0 for any B. This condition implies that for any B,

we can find at least one 0 such that G¢
B0

> 0. Since x¢ has at most B + 1 non-zeros entries, we can

have at most one positive entry among all entries of G¢
B0

. It then follows from (5.3) that the optimal

policy c¢ for (5.1) is deterministic at all states except possibly one, where the optimal policy splits

into two possible actions. ⇤

128

Following Proposition 6, we can characterize an important property regarding the optimal pol-

icy for (5.5). In particular, we consider the dual function

D(_) , max
c2⇧0

R(c, d) � _
�
C(c, d) � ⌫

�
. (5.8)

Theorem 5.4.1. Assume d(B) > 0 8B and the optimal policy c¢ for problem (5.1) is unique. Then

the maximization in (5.8), at the optimal _⇤ that solves (5.5), admits either a deterministic optimal

policy c¢, or a pair of optimal deterministic policies c1, c2 with actions different in one state B and

c
¢ = (1 � C)c1 + Cc2 for some 0 < C < 1.

Proof. Let c¢ be the optimal, possibly randomized policy for the primal (5.1). By the LP duality

([161]), we know the optimal values for (5.1) and (5.5) are equal and we must have, for some

_
¢ 2 argmin

_�0

D(_) � 0, that

R(c¢, d) = min
_�0

D(_) = D(_¢). (5.9)

If there exists _¢ = 0 where (5.9) holds, then

min
_�0

D(_) = D(0) = max
c2⇧0

R(c, d). (5.10)

Combining (5.9) and (5.10), we have R(c¢, d) = max
c2⇧0

R(c, d) and by the uniqueness we have

c
¢ = argmax

c2⇧0

R(c, d). The primal feasibility of (5.1) guarantees C(c¢, d)  ⌫. In fact, notice

in this case, the optimal policy for the unconstrained MDP in (5.1) is actually feasible, and thus

CMDP (5.1) reduces to an unconstrained MDP.

On the other hand, if we have argmin
_�0

D(_) > 0, then we observe that D(_) = max
c2⇧0

R(c, d) �

_

�
C(c, d)�⌫

�
is the maximum of a finite number (i.e. the number of deterministic policies is finite)

of linear functions in _. Thus, D(_) is piece-wise linear and convex in _. Since _¢ > 0 is the global

minimum of D(_) and D(_) is piece-wise linear, we must have D+(_¢) = limC!0

D(_¢+C)�D(_¢)
C

�

0 and D�(_¢) = limC!0

D(_¢)�D(_¢�C)
C

 0.

129

Now if _¢ = argmin
_�0

D(_) > 0 is not unique, then by convexity we can find an interval of _

with the same optimal D(_), implying the optimal deterministic policy under this _ is both feasible

(zero slope means C(c, d) = ⌫) and optimal. Thus, suppose _¢ = argmin
_�0

D(_) > 0 is unique, then

we have D�(_¢) < 0 < D+(_¢), and there exists some n > 0 and policies c1, c2 such that

D(_) =D(_¢) + D+(_¢) (_ � _¢) = R(c1, d) � _
�
C(c1, d) � ⌫

�
(5.11)

for _¢  _  _¢ + n and

D(_) =D(_¢) + D�(_¢) (_ � _¢) = R(c2, d) � _
�
C(c2, d) � ⌫

�
(5.12)

for _¢ � n  _  _¢. In particular, at _¢, we have

R(c1, d) � _¢
�
C(c1, d) � ⌫

�
= R(c2, d) � _¢

�
C(c2, d) � ⌫

�
(5.13)

which implies

c1 = c2 = argmax
c2⇧0

R(c, d) � _¢C(c, d). (5.14)

We know from [163] that for a finite unconstrained MDP problem, there exists a unique optimal

value function such that E¢(B) � Ec (B) for all state B. Thus, (5.14) and the fact that d(B) > 0 8B

implies that we must have

E
¢(B) = Ec1 (B) = Ec2 (B) 8B (5.15)

where v¢ is the optimal value function for the MDP with adjusted reward A_¢
C

= AC � _¢2C and vc8

is the value of policy c8 under this adjusted reward. This implies v¢, vc1 and vc2 must satisfy all

130

three forms of the Bellman equations:

E(B) =max

0

A
_
¢ (B, 0) + W

’
B
0
?(B, 0, B0)E(B0),

=A_
¢ (B, c1(B)) + W

’
B
0
?(B, c1(B), B0)E(B0) = A_

¢ (B, c2(B)) + W
’
B
0
?(B, c2(B), B0)E(B0),

(5.16)

for all B. Now, for any 0  C  1, let cC be the randomized policy cC = (1 � C)c1 + Cc2. Then the

value of policy cC uniquely satisfies the following Bellman equation:

E
cC (B) = (1 � C)A_¢ (B, c1(B)) + C · A_

¢ (B, c2(B))

+W
’
B
0

✓
(1 � C)?(B, c1(B), B0) + C ?(B, c2(B), B0)

◆
E
cC (B0) (5.17)

It follows from (5.16) that v¢ satisfies (5.17) and is thus the value function (i.e. fixed point) of

policy cC . Thus any policy cC , 0  C  1 is optimal for the MDP with adjusted reward A_¢
C

= AC�_¢2C

and achieves primal optimality in the sense that

R(c¢, d) = D(_¢) = R(cC , d) � _¢
�
C(cC , d) � ⌫

�
. (5.18)

Now, it follows from (5.11) and (5.12) that D+(_¢) = ⌫ � C(c1, d) > 0 and D�(_¢) =

⌫ � C(c2, d) < 0. Furthermore, C(cC , d) can be shown to be a continous function of C. Thus, we

must have C(cC , d) = ⌫ for some 0 < C < 1. Then such cC satisfies not only primal feasibility but

also primal optimality due to (5.18):

R(c¢, d) = R(cC , d) � _¢
�
C(cC , d) � ⌫

�
= R(cC , d). (5.19)

The claim that c1 and c2 differ by one state now follows from (6) and the uniqueness assump-

tion. The other cases where one or both of D+(_¢) and D�(_¢) are 0 lead to either C = 0 or 1,

which further lead to deterministic policy. The analysis is similar so we omit it. ⇤

131

Theorem 5.4.1 postulates that the maximization of the Lagrangian or penalized objective R(c, d)�

_
⇤ �C(c, d) � ⌫�

generally leads to multiple (deterministic) optimal solutions, even if the primal

problem (5.1) has a unique optimal policy. Note that the maximization of R(c, d)�_⇤
�
C(c, d)�⌫

�
is an unconstrained MDP, which allows us to use any classical RL methods to learn its optimal pol-

icy. The key is that in order to retrieve the primal optimal policy, we need to identify two optimal

policies for this penalized objective, and mix them together with a search for the optimal mixture

parameter C.

Before presenting practical algorithms for implementation, we first propose a straightforward

theoretical procedure in Algorithm 3 that would demonstrate the asymptotic optimality of our

method. For demonstration, we would simply use &-learning on the penalized problem along with

subsequent TD-learning for dual updates. However, we note that Algorithm 3 can be replaced

by any type of Actor-Critic updates as in [157]. Notation-wise, we use c_ to denote the optimal

deterministic policy for penalized reward A_
C
= AC � _2C . Given the simple dual &-learning method

described in Algorithm 3, we have the following Theorem 5.4.2. Notice the # chosen large is fixed

and does not grow with iterations.

132

Algorithm 3 Dual &-learning on Candidates for Mixture
Input: Dual range 0  _<8= < _<0G , discretization parameter =, maximum episode ⇢1 and ⇢2,

maximum trajectory "1 and "2, learning rate U4, n6A443H for the greedy policy and discretized

_<8= = _1 < ... < _= = _<0G .

for 8 = 1 to = do

Initialize : 4 0, &̂8
4
, the &-function array for storage (e.g. to 0), an estimate of &8 (B, 0) =

E
c
_
8
[Õ1

C=0
W
C (AC � _82C) |B0 = B, 00 = 0] and {Ê2>BC}84 cost value function array for storage, an

estimate of E
c
_
8
[Õ1

C=0
W
C
2C |B0 = B].

repeat

4 4 + 1, initialize C 0 and sample B0 ⇠ d

while BC is not terminal and C  "1 do

Take action 0C at BC derived from &̂
8

4�1
using n6A443H-greedy policy and observe

AC+1, BC+1, then let &̂8
4�1

(BC , 0C) &̂
8

4�1
(BC , 0C) + U4

�
AC+1 � _82C+1 + Wmax

0
0
&̂
8

4�1
(BC+1, 0

0) �

&̂
8

4�1
(BC , 0C)

�
and update C C + 1

Update &̂8
4
 &̂

8

4�1
.

until 4 � ⇢1 or changes in &̂8 are small

4 0.

repeat

4 4 + 1, initialize C 0 and sample B0 ⇠ d

while BC is not terminal and C  "2 do

{Ê2>BC}8
4�1

(BC) {Ê2>BC}8
4�1

(BC) + U4
�
2C+1 + W{Ê2>BC}8

4�1
(BC+1) � {Ê2>BC}8

4�1
(BC)

�
Update C C + 1

Update {Ê2>BC}84 {Ê2>BC}8
4�1

.

until 4 � ⇢2 or changes in +̂ 8
2>BC

are small

Compute D̂(_8) =
Õ
B
(max0 &̂

8 (B, 0))d(B) + _8⌫. Find c_8 (B) = argmax
0
&̂
8 (B, 0)

Output: c1 = c
_8 and c2 = c

_
8
0 where _8 = argmin{D̂(_ 9) |

Õ
B
Ê
9

2>BC
(B)d(B)  ⌫} and _80 =

argmin{D̂(_ 9) |
Õ
B
Ê
9

2>BC
d(B) � ⌫, c_ 9 < c1}.

133

Theorem 5.4.2. Assume d(B) > 0 8B, the optimal policy c¢ for problem (5.1) is unique and there

exists some _¢ 2 argmin D(_) such that _<8= < _
¢
< _<0G . Fix = � 0, assume for each &8-

learning problem and TD-learning problem for 1  8  =, every state and every state-action pair

are visited infinitely often. Furthermore, sequence U4 satisfies

’
4

U4 = 1 and
’
4

U
2

4
< 1. (5.20)

Then there exists # large enough and n6 small enough such that if we fix = = # and n6A443H  n6,

we will recover a pair of deterministic policies c1, c2 such that c¢ = (1 � C)c1 + Cc2 for some

0  C  1 with probability 1 as the number of episode ⇢1, ⇢2 !1.

Proof. Following Theorem 5.4.1, first consider the case where _¢ > 0 is unique and D�(_¢) <

0 < D+(_¢). Then, as discussed in Theorem 5.4.1, (5.11) and (5.12), there exist some n > 0 and

policies c0
1
, c
0
2

which differ by one state such that c¢ = (1 � C)c0
1
+ Cc0

2
for some 0 < C < 1,

D(_) =D(_¢) + D+(_¢) (_ � _¢) = R(c0
1
, d) � _

�
C(c0

1
, d) � ⌫

�
(5.21)

for _¢  _  _¢ + n and some deterministic c0
1

while

D(_) =D(_¢) + D�(_¢) (_ � _¢) = R(c0
2
, d) � _

�
C(c0

2
, d) � ⌫

�
(5.22)

for _¢ � n  _  _
¢ and some deterministic c0

2
. It is clear from the definition of D(_) and

our assumption on the uniqueness of c¢ that c0
1
= c

_ for _¢ < _ < _
¢ + n and c0

2
= c

_ for

_
¢ � n < _ < _

¢. Then, for = = # large enough, where (_<0G � _<8=)/#  n , we must have some

_
¢ � n  _8  _¢  _8+1  _¢ + n for some 1  8  = and due to the strict convexity of D(_)

around [_¢� n , _¢+ n], we must have D(_8) < D(_8�1) < ... < D(_1) and D(_8+1) < D(_8+2) <

... < D(_=). Now, by the assumption on the &-learning procedure (infinitely often visit for state-

action pair under n-greedy policy, the Robbins-Monro ([164]) type condition (5.20)), it follows

that the &8-learning for every 1  8  = converges to the optimal &8 value (or n6A443H-optimal

134

assuming optimistic, large initialization for& values ([165])) and we can recover the optimal value

(_-adjusted) function max0 &
8 (B, 0) with probability 1 as ⇢ ! 1 ([160, 159, 166]). Thus, as

⇢ ! 1, we will have D̂(_8) < D̂(_8�1) < ... < D̂(_1) and D̂(_8+1) < D̂(_8+2) < ... < D̂(_=).

On the other hand, the assumption also guarantees that the TD learning on Ê 9
2>BC

will converge to

E

_ 9

2>BC
(or E

c

_
9

n
6A443H

2>BC
, where c_ 9

n6A443H
is the n6A443H greedy policy from the optimal c_ 9). If we pick

n6A443H > 0 small enough, we can make
Õ
B
|Ec_ 9
2>BC

(B) � E
c

_
9

n
6A443H

2>BC
(B) |d(B) arbitrarily small. However,

we know from the piece-wise linearity and convexity of D(_) that, for all _ 9 � _¢, the gradient

⌫ � C(c_, d) > 0 which implies
Õ
B
E
c
_
9

2>BC
(B)d(B) = ⇠ (c_ 9 , d) < ⌫, and we can find n6A443H small

enough such that
Õ
B
E

c

_
9

n
6A443H

2>BC
(B)d(B) < ⌫ and thus (in both cases)

Õ
B
Ê
9

2>BC
(B)d(B) < ⌫ with

8+1 = argmin{D̂(9) |
Õ
B
Ê
9

2>BC
(B)d(B)  ⌫} implying c1 = c0

1
as ⇢1, ⇢2 ! 1. Similarly we can

show c2 = c0
2
. For other cases where _¢ = 0 and one or both of D+(_¢) and D�(_¢) are 0, it can

be shown that the unique deterministic policy c¢ can be recovered. ⇤

Theorem 5.4.2 guarantees that with suitable algorithmic parameter choices, Algorithm 3 can

retrieve two candidate optimal policies such that their mixture gives rise to the optimal randomized

policy for the constrained problem (5.1). Next we will discuss in more detail the implementation

issues, including how to search for the mixture parameter.

5.5 Discussion and Implementation

Theorem 5.4.2 not only gives us theoretical guarantees on recovering the candidates for optimal

mixtures, but also partially explains why the behavior of a direct primal dual method becomes un-

stable around convergence. In particular, the splitting of action forces the primal update to search

for different optimal polices around the _¢ and makes the convergence especially difficult. To

overcome such a difficulty, we use the mixing of policies which is to be explained later in this sec-

tion. The discretization of dual variable _ is designed for this purpose as well. Notice this special

discretization also allows for efficient parallel computing on different _. On the other hand, the

conditions can be restrictive in practice and the implementation for Algorithm 3 becomes ineffi-

cient as the accuracy parameters increase. In particular, there are several main issues concerning

135

the implementation of Algorithm 3:

1. How to find the a reasonable set of _<8=, _<0G?

2. What if Algorithm 3 cannot converge to the correct pair of policies (e.g. c1 and c2 differ by

more than one state)?

3. Given two candidate policies c1, c2, and the results from Theorem 5.4.1 that c¢ = (1� C)c1+

Cc2 for some 0  C  1, how do we find C?

The first point is not a major concern. As mentioned, the dual variable _ is one-dimensional and

we can use many efficient RL methods such as &-learning. In fact, we can use RCPO efficiently

before we run into convergence issues, at which point we can already observe a good range of

dual value _ for which the optimal _¢ is likely to be contained in. To address the second and third

issues, we note that in both minimizing D(_) and mixing cC = (1 � C)c1 + Cc2, it is critical to

efficiently estimate C(c, d) for a given policy c.

Cost Evaluation. Suppose we have found c_ 2 argmax
c2⇧0

R(c, d) � _C(c, d). Then an estimate

of C(c_, d) can help evaluate a sub-gradient ([167]) of the piece-wise linear dual function D(_),

which is given by ⌫ � C(c_, d). This in turn helps decide a search direction for _¢ based on first-

order optimization methods. On the other hand, when mixing the policies cC = (1 � C)c1 + Cc2, we

know from duality that

R(c¢) = D(_¢) = R(cC , d) � _¢
�
C(cC , d) � ⌫

�
. (5.23)

Thus, if we can find C such that C(cC , d) = ⌫, it then follows from (5.23) that policy cC satisfies

primal feasibility and optimality simultaneously and is the solution of (5.1).

There are many ways to estimate C(c, d), e.g., TD-learning
Õ
B
EBd(B), or Monte Carlo by

[159]. Thus, from now on we assume an efficient oracle ⇢E0;⇠ (c, d) which takes as input policy

c and initial distribution d and outputs an estimate of C(c, d).

Dual Variable Range. Given the oracle ⇢E0;⇠ (c, d), we can construct algorithms that effec-

136

Algorithm 4 Dual Variable Range Selection
Input: A threshold 0 < \ < 1 (e.g. \ = 1/2), step size _BC4? and a tolerance for budget constraint
g.
Initialization: _, _<8=,_<0G (e.g. 0)
Find c_ by &-learning
if ⌫ � g  ⇢E0;⇠ (c_, d)  ⌫ + g, then

Break search and accept c_ as optimal policy.
if ⇢E0;⇠ (c_, d) < (1 � \)⌫ then

Set _<0G = _, Break Search and restart algorithm with _ _ � _BC4?. (Also Break if
_<0G = 0, suggesting the MDP is unconstrained.)
if ⇢E0;⇠ (c_, d) > (1 + \)⌫ then

Set _<8= = _. Break Search and restart algorithm with _ _ + _BC4?.

tively select a reasonable pair of _<8= and _<0G . In particular, given a _ � 0, if we have found

c
_ by &-learning on function D(_), then by the convexity of D(_), we know if C(c_, d) > ⌫,

it indicates _  _
¢ whereas if ⇠ (c_, d) < ⌫, it indicates _ � _

¢. Thus, we can make use of

the oracle ⇢E0;⇠ (c, d) to estimate C(c, d). However, the estimate would inevitably be corrupted

by noise so we want to ensure an empirically over-budget policy c (i.e. C(c, d) > ⌫) is indeed

over-budgeted, by setting a “safety margin" \ to account for statistical significance. For exam-

ple, if ⇢E0;⇠ (c_, d) > (1 + \)⌫, then with high probability we have C(c_, d) > ⌫ and we can

set _<8= = _. On the other hand, if during the search we have found a policy c_ that is close to

feasibility (i.e. C(c_, d) ⇡ ⌫), then we make use of weak duality ([161]):

R(c_, d) ⇡R(c_, d) � _
�
C(c_, d) � ⌫

�
= D(_) � R(c¢, d),

and accept c_ as a near-optimal, near-feasible solution. Of course such cases will not occur in

general. Based on these discussion, we propose one possible Algorithm 4.

Feasibility Mixing. As we have discussed in (5.23), we need to build an oracle that given two

policies c1, c2 with C(c1, d)  ⌫ and C(c2, d) � ⌫, we can find cC = (1 � C)c1 + Cc2 satisfying

C(cC , d) = ⌫. Here we make use of oracle ⇢E0;⇠ again to present an approximate algorithm that

combines linear interpolation and bisection to quickly search for a feasible policy. Specifically, for

the interpolation part, we notice that, for !  ⌫  *, (1 � C)! + C* = ⌫ where C = ⌫�!
*�! . In

137

Algorithm 5 Feasibility Mixing
Input: policies c1, c2 with ⇢E0;⇠ (c1, d)  ⌫, ⇢E0;⇠ (c2, d) � ⌫, a tolerance for the budget g
Initialize: C ⌫�⇢E0;⇠ (c1,d)

⇢E0;⇠ (c2,d)�⇢E0;⇠ (c1,d) , (or 8 1, C8 1/2 for direct bisection)
Set policy cC = (1 � C)c1 + Cc2 ⌫ � g  ⇢E0;⇠ (cC , d)  ⌫ + g, Break search and accept cC as
optimal policy.
if ⇢E0;⇠ (cC , d) < ⌫ � g then

Update c1 cC and C ⌫�⇢E0;⇠ (c1,d)
⇢E0;⇠ (c2,d)�⇢E0;⇠ (c1,d) , (or 8 8 + 1 C C + 1/28)

if ⇢E0;⇠ (cC , d) > ⌫ + g then
Update c2 cC and C ⌫�⇢E0;⇠ (c1,d)

⇢E0;⇠ (c2,d)�⇢E0;⇠ (c1,d) , (or 8 8 + 1 C C � 1/28)
Output: C (or cC).

practice, we may use a direct bisection. Feasibility mixing is especially practical because we might

only obtain approximately optimal candidate policies c0
1
, c
0
2

(i.e. they might not be the optimal

pair of polices) under two dual variables _0
1

and _0
2

(i.e. they might be different from the desired _1

and _2 in Theorem 5.2) from Algorithm 3 that in turn might only be approximately optimal for _0
8

(meaning that R(c0
8
.d)�_0

8
(⇠ (c0

8
, d)�⌫)  D(_8)). However, based on the piecewise-linearity and

the convexity of D(_), as long as feasibility mixing is performed, it is straight-forward to show that

the reward function of the mixing policy cC satisfies D(_¢) �R(cC , d) = O(n1 · n2 · n3) where n1 =

max182 |_8�_¢|, n2 = max182 |D(_8)�D(_¢) | and n3 = max182 |R(c0
8
.d)�_0

8
(⇠ (c0

8
, d)�⌫) |.

5.6 Numerical Experiments

5.6.1 Environment Description and Setup

We evaluate the proposed algorithms on a real world dataset collected from [anonymized for

review purpose] during a sponsored search campaign portfolio which spans over six months and

contains over a million distinct user search trajectories. The dataset provides ad click records of

anonymous users before conversion with their corresponding timestamps. The ad click records are

associated with a matching of the user’s query with a keyword group. This particular dataset has

ten different keyword groups each containing hundreds of keywords. Similar to other advertiser-

specific data, we do not directly observe the events in which the users did not click on the ad.

Similarly, the data does not record the searches for which the ad was not shown to the user for

138

any reason such as low bid values, budget constraint, etc. On the other hand, a smaller version

of the experiment allows a clear validation of our key theorem on policy splitting, because the

optimal policy and its two splitting policies in a CMDP is difficult to recover in complicated,

large MDPs. However, we note that our algorithm allows for larger experiments in a model-free

algorithm setting.

For the experiment setup, we first retrieve the cost information for our sampled dataset with

CPC (cost per click) metric averaged at the keyword group level for the similar time period as

the collected data. The average cost for the ten keyword groups in our experiment is estimated to

be [0.2, 0.4, 0.25, 0.5, 0.3, 0.6, 0.5, 0.3, 0.3, 0.4] in dollars. Additionally, the reward for converting

a user is estimated to be worth $10 for this campaign. Then, we follow the framework in [168]

to establish a CMDP. In particular, user state represents the matching of the user’s last query

with any of the keyword groups that translates to ten states in our experiment. Then, our action

space is binary and includes “advertise" and “do not advertise" actions and transition probabilities

between states are directly estimated from the data. In order to overcome the issue of estimating

transition probabilities for “do not advertise", we follow the remedy suggested by [168]. That is,

we assume the transitions between states are independent of the ad presented to the user if the time

period between two consecutive searches is longer than one day. Moreover, we bundle all possible

advertisement keywords in 10 keyword groups. Finally, we add 4 states, which contain a beginning

state, a conversion state, a non-conversion state and eventually the final state to incorporate the

situation where users may convert temporarily but eventually become disinterested in the ad push

(see Figure 5.1). Consequently, we have 14 states in our environment in total with a transition

probability matrix in R2⇥14⇥14. We run Algorithm 3 with hyper-parameters _<8= = 0, _<0G = 2,

"1 = 10
5, ⇢1 = 3.5 ⇥ 10

5
, "2 = 10

4
, ⇢2 = 2 ⇥ 10

5
, U4 = 9

9+0.24
, n6A443H = 0.2, ⌫ = 0.45,

W = 0.6, g = 10
�4 and early stopping criterion requires k · k1 norm within 10

�4. The metrics here

for reward and cost are averaged accumulative rewards and averaged accumulative costs defined

in (1), In order to show the advantage of our method, we pick RCPO as a baseline. For the sake of

fairness, all experiments are implemented in Python 3.7 and executed on a standard 1.7 GHz

139

Dual-Core Intel Core i7.

Figure 5.1: MDP on advertisement (red node denotes a conversion/non-conversion state).

5.6.2 Algorithm Performances

Figure 5.2(a) demonstrates the averaged accumulative costs of the two candidate policies (Pol-

icy 1 and Policy 2) selected by Algorithm 3. Moreover, for each _, D(_) can be computed effi-

ciently with RL-methods and its convexity is shown in Figure 5.2(b). After identifying two candi-

date policies from Algorithm 3, we run Algorithm 5 which mixes the policies to satisfy the budget

constraint. As shown in Figure 5.2(c), we start with Policies 1 and 2 corresponding to C = 0 and

1 and use a simple bisection to search for the target value of C. Figure 5.2(d) shows the searching

process stabilizes after a few iterations and the corresponding long-run budget for different mix-

ture policies gradually converges to the target budget value. As we expect, in this case the optimal

policy comes from the mixture, one policy going over budget and the other under.

To show the robustness of the procedure, we perform a large number of experiments to see the

effectiveness of Algorithm 3 in recovering the correct pair of optimal policies. Figure 5.3 (a)(b)

shows that, in this example, the correct pair of policies can be recovered in 78% of the experi-

mental repetitions. More importantly, we plot the distribution of the reward-budget pairs of the

resulting mixture policy across all experiments and show that, among the occasions Algorithm 3

does not pick the correct pair, the resulting mixture is still approximately optimal and feasible,

within a controllable error margin, showing the stability of the procedure. In addition, we compare

the performances between our method and RCPO. As shown in Figure 5.3(c), the learning curve on

rewards of RCPO is between the learning curves of two candidate policies. However, as shown in

Table 5.1 and 5.3(d), our mixing method can find a randomized policy that has a higher average ac-

cumulative reward in lesser time. As discussed, RCPO converges fast initially, yet the convergence

slows down and exhibits a zigzag motion when it is quite close to the optimal _. Advantageously,

140

our mixing method bypass this problem around convergence.

Methods Accumulative Rewards Accumulative Costs Clock Time (s)

RCPO 1.229 0.405 924.961

Policy Mixing (g = 1e-4) 1.271 0.449 839.708

Policy Mixing (g = 1e-3) 1.277 0.449 702.927

Policy Mixing (g = 1e-2) 1.276 0.449 558.763

Table 5.1: Performance comparison summary (Bold means either the best or valid).

(a) a (b) b

(c) c (d) d

Figure 5.2: (a) Budget estimates of policies with different _; (b) Convexity of ⇡ (_); (c) Accumulative
adjusted rewards during policy mixing; (d) Accumulative costs during policy mixing.

141

(a) q (b) b

(c) c (d) d

Figure 5.3: (a) Occurrences of policy pairs (Label 0 denotes valid policy pairs with only one state with
different actions); (b) Joint distribution of averaged reward and cost, where each dot represents each experi-
ment and the heat map is estimated from kernel density estimation; (c) Learning curves of policies 1, 2 and
RCPO. A tick on x-axis denotes 500 episodes and y-axis denotes the total rewards for every 500 episodes;
(d) MC evaluation of averaged accumulative rewards.

5.7 Conclusion

We focus on solving CMDPs which, although arise frequently in practice, are not amenable

to efficient solution techniques offered by most established RL-methods on unconstrained prob-

lems. Through incorporating the “splitting" property of CMDP in a Lagrangian formulation, our

approach investigates the potential issues around convergence for current primal-dual RL-methods

and offers a suitable alternative. The approach aims to identify two candidate optimal policies

which through mixing would result in an optimal randomized policy of the CMDPs. We illustrate

our performances through an online advertising problem with budget calibrated by real-world data.

142

Chapter 6: Unbiased Sampling of Multidimensional Partial Differential

Equations with Random Input

Partial differential equations (PDEs) are important tools for modeling physical or financial

systems. However, intrinsic variability of the system or measurement errors bring uncertainty into

the model and are commonly represented by random input data. In this chapter, we use multilevel

Monte Carlo (MLMC) to construct unbiased estimators for expectations of random parabolic PDE.

Building on previous works of Giles (2008) and Li et al.(2018), we obtain estimators with finite

variance and finite expected computational cost, but bypassing the curse of dimensionality. For the

error analysis in random PDE, we combine rough path theory with numerical stochastic analysis

in a novel way.

The rough path part is mostly proof and are left in the Supplementary. Interesting readers can

turn to [169]. The use of MLMC in random PDE can be justified by the need for an unbiased

estimator and Feynman-Kac formula.

6.1 Introduction

The heat equation is a classic PDE with many applications. In different contexts, the interpre-

tations for the coefficients of PDE vary. In heat conduction, the equation follows from Fourier’s

law and the solution represents the temperature of the material, while the coefficients character-

ize the thermal conductivity of the material. In flow dynamics [170], the heat equation follows

from Darcy’s law for describing the flow of fluids through a porous medium, where the solution

represents the fluid pressure and the coefficients characterize the medium permeability, analogous

to Fick’s second law in diffusion theory. In mathematical finaince, the heat equation governs the

risk-neutral pricing of European-style options with given payoff at maturity where coefficients

143

represent properties of financial markets and underlyiung assets, including risk-free rate, drift rate,

volatility, etc [171]. In general, the coefficients in the heat equation reflect properties of medium

or underlying systems. In practice, either due to microscopic heterogeneity of the media, intrinsic

variability of the system or measurement error from experiments, the coefficients in the PDE are

inherently uncertain and are modeled as random fields in probability space. Related literature on

the modeling and analysis for the heterogeneous random medium includes [172, 173, 174, 175].

On the other hand, in derivative pricing, while the diffusion coefficient f can be estimated reason-

ably accurate due to the characteristics of quadratic variations, the drift coefficient ` is typically

difficult to calibrate and modeled as random variable [176, 177].

Specifically, in this chapter we consider a random parabolic partial differential equation (PDE)

D : X ⇥ R+ ! R on a simply connected and compact domain X ✓ R3:

mCD(G, C) = -
) (G)⇡GD(G, C) +

1

2

CA024

⇣
f (G) f) (G) ⇡GGD(G, C)

⌘
, (6.1)

with known initial condition D(·, 0) = 5 (·) : R3 ! R, where f(·) : R3 ! R3⇥3
0 is known

(sometimes implicitly) but -(·) : R3 ! R3 is a random field on some probability space (⌦, F , P).

Here ⇡G and ⇡GG denote the first and second order partial derivatives operators, while CA024(·) :

R3⇥3 ! E denotes the trace operator for matrices. Notice randomness propagates in (6.1) through

-(·). The solution D is implicitly determined by `(·,l), the realization of - and is hence also

random, henceforth denoted as u. However, for brevity, we suppress its dependence on ⌦ and still

write {D(G, C)}(G,C)2X⇥R+ instead of {D(G, C,l)}(G,C)2X⇥R+ for the realization of u. Generally, we are

interested in estimating statistics or functionals of u (failure probability, moments estimation, e.g.)

[173, 178]. As dependence of D on ` is typically implicit and in non-closed form, a popular tool for

studying distributional property of u is Monte Carlo method. In particular, we study expectations

of the form

a = E [⌧ (u(G1, C1), ..., u(G: , C:))] , (6.2)

for any {(G8, C8)}82[:] ✓ X ⇥ R+, : 2 Z+ and ⌧ : R: ! R satisfying certain regularity conditions.

144

Notice

{⌧ (·) : ⌧ (D) = ⌧ (D(G1, C1), ..., D(G: , C:)) for : 2 Z+ and {(G8, C8)}82[:] ✓ X ⇥ R+}

only constitutes a proper subset of all functionals of D. However, as we shall see, this form of ⌧

allows us to bypass the curse of dimensionality and make arbitrarily fine approximation for a wide

range of functionals on D, as : gets large.

6.1.1 Background and review of related results

In this chapter, we provide an unbiased estimator for a in (6.2) and could be efficiently imple-

mented by parallel computing architectures. Due to ease of implementation, Monte Carlo method

has been widely used for solving PDEs with random input, including quasi-Monte Carlo and mul-

tilevel Monte Carlo methods [179, 180, 181]. On the other hand, spectral stochastic methods,

with faster convergence rates but suffering from the curse of dimensionality, are also popular for

moderate dimensional problems and include stochastic Galerki method and stochastic collocation

method [178, 182, 183]. In general, all such methods, including Monte Carlo methods, require

approximations to the PDE solution, using determinsitic slovers such as the finite elements method

(FEM), the finite difference method (FDM),the finite volume method, etc [184, 185, 186]. In par-

ticualr, recent development from [187] combines multilevel Monte Carlo (see [188, 189, 190]),

a randomization scheme (see [191]) and FEM to build an unbiased estimator for the solution of

elliptic equations with random inputs and Dirichlet boundary conditions. The variance and the ex-

pected computational cost of generating such an estimator are shown to be finite. However, as the

error analysis based on FEM depends on the underlying dimension 3, even though the sampling

strategy in [187] achieves a square-root convergence rate, the estimator can achieve both finite

variance and finite expected computational cost only when 3  3. In other words, similar as a

substantial amount of recent literature combining the multilevel Monte Carlo technique with the

numerical methods for PDE, the procedure in [187] suffers from the curse of dimensionality, as the

145

rate of convergence (for the numerical solver of PDE and for the estimator) deteriorates with the

increase of problem dimensions [184, 179, 186]. On the other hand, Monte Carlo methods with

better dependence on problem dimension 3 are available, but they produce biased estimators [183,

190, 180].

6.1.2 Contribution

The contribution of this chapter is to introduce an unbiased estimator for a with finite variance,

finite expected computational cost to generate and for arbitrary dimension 3. Consequently, our

method allows for a full Monte Carlo procedure with a traditional square-root convergence rate for

any dimension 3, therefore preserving the well-known characteristic of the Monte Carlo method in

combating the curse of dimensionality. Thus, if the parallel computing cores are relatively cheap

and wall-clock time is a relatively hard constraint, one can then independent copies the estimator in

parallel servers and combine them to provide confidence intervals with squared-root convergence

rate for any 3.

The technical contribution of this chapter is potentially of interest in its own right. In order

to bypass the curse dimensionality, the construction of the estimator avoids the numerical approx-

imations of PDE (e.g., FDM, FEM) and instead exploits the connection between the parabolic

PDEs and stochastic differential equations (SDEs) using the Feynman-Kac formula. Thus, instead

of discretizing the mesh size of numerical PDE, we discretize the step for simulating the path of

SDE, combining multilevel Monte Carlo [181] with randomization step [191] and an additional

randomization from [192] canceling the bias incurred from randomness of -. The difficulty arises

from the this additional randomization step and requires a non-standard technical development. In

particular, error analysis in numerical SDE [181, 185] commonly relies on Gronwall’s inequal-

ity [193]. However, if the same stochastic analysis were applied here, the estimator could not be

shown to exhibit both finite variance and finite expected computational cost. To overcome this is-

sue, we turn to the theory of rough paths to obtain “path-by-path" estimates. The rough path theory

[194, 195, 196, 197] has received substantial attention in recent literature due to connections to the

146

theory of regularity structures and nonlinear stochastic PDEs [198]. Even though a considerable

amount of literature has been devoted to explore the relations between the theory of rough paths

and stochastic numerical analysis in the context of cubature methods [199] or SDEs [169, 200],

rough paths estimates have yet to be connected with numerical analysis of random PDEs. In this

chapter, we are able to brige this gap which also allows us to overcome our technical difficulty,

adding to the literature combining rough paths theory with numerical stochastic analysis.

The rest of the chapter is organized as follows. In Section 2 we lay out notations and as-

sumptions used throughout the chapter. In Section 3 we present preliminary material and roadmap

towars the construction of the unbiased Monte Carlo estimator. In Section 4, we provide theo-

retical analysis and proofs for properties of the estimator. In Section 5, we present simulation

studies on numerical experiments. Finally, proofs omitted in the main sections can be found in the

Supplementary. We also include a supplementary material for additional technical proofs.

6.2 Preliminaries

6.2.1 Notations and assumptions

We use the following notations and terminology throughout the chapter. The Frobenius norm

of vectors and matrices is k · k� . The supreme norm is denoted as k · k1. The 3-dimensional

Gaussian random vector with mean \ 2 R3 and covariance matrix ⌃ 2 R3⇥3 is denoted N(\,⌃).

For a natural number : 2 Z+, we denote [:] to be the set {1, ..., :}. As before, ⇡G and ⇡GG denote

the first and second order (partial) derivatives operators with respect to variables in X. We also

use m operator to specify the components of differentiation. For use - D= . to denote two random

variables (or stoachastic process) equal in distribution.

Moreover, given ! > 0, we denote L(!) to be the space of bounded, Lipschitz continuous and

twice continuously differentiable functions defined on R3 (range not sepcified) such that ` 2 L(!)

if

k`k1  !, k⇡G`k1  ! and k⇡GG`k1  !. (6.3)

147

It is worth noting that the analysis somtimes simplifies when we focus on L(!) for ! > 1. How-

ever, since L(!1) ✓ L(!2) for !2 � !1, we always assume ! > 1 without loss of generality

when we say ` 2 L(!). We also write ` 2 L when the constant ! exists but does not need to

be specified. We denote ?>;H(·) (or ?>;H(·, ·), ?>;H(·, ·, ·), etc) to be a (multivariable) polynomial

function.

Throughout the chapter, we assume the following regularity conditions. First, we need a

Karhunen-Loève type of representation for the random field -.

Assumption 5. The random field - : X ⇥⌦! R3 has the following expansion

`(·,l) =
1’
8=1

_8

8
@
· +8 (l) · k8 (·), (6.4)

where @ > 4 is a fixed constant, {_8}8�1 ✓ R is uniformly bounded, {\8}8�1 is a sequence of i.i.d.

N(0,⌃8) and k8 (·) : R3 ! R is a sequence of deterministic functions. Moreover, there exists a

constant ! > 1 such that for 8 � 1,

max

8

k⌃8k� < !, kk8k1 < !, k⇡Gk8k1 < 8!, and k⇡GGk8k1 < 8
2
!. (6.5)

In fact the proof does not require the assumption on {\i}8 being Gaussian. We only need the

tails of {k\8k1}8 to decay exponentially fast and uniformly in 8 (see Supplementary).

Given the representation in (6.4), we provide a technical lemma. Denote Y= as the partial sum

process for - in (6.4):

(= (·,l) =
=’
8=1

_8

8
@
· +8 (l) · k8 (·).

Lemma 13. Under Assumption 5, there exists a random variable R1 > 1 on (⌦, F , P) such that

E(4CR1) < 1 for C 2 R+ and {-} [{Y=}=�1 ✓ L(R1) almost surely.

We also need the following smoothness conditions on the deterministic functions f, 5 and ⌧.

Assumption 6. There exists a constant ! > 1 such that f(·), 5 (·) and ⌧ (·) defined in (6.1) and

(6.2) are in L(!).

148

6.2.2 Definitions

In this section we present definitions from antithetic multilevel Monte Carlo for SDEs [181]

related to our estimator. Let ⌫(·) be a 30-dimensional standard Brownian motion and ⌫9 (·) be its

9-th component for 9 2 [30].

Definition 2. For = � 0, define �C= , 2
�= and C=

:
, :�C=. Define �⌫=

:
, ⌫(C=

:+1
) � ⌫(C=

:
) and

�⌫=
9 ,:
, ⌫9 (C=

:+1
)�⌫9 (C=

:
) as the Brownian increments of step size �C= at C=

:
and its 9-th component

for 9 2 [30].

Definition 3. Given = � 0 and a sequence of Brownian increments {�⌫=
:
}0:2

=�1 ✓ R[3 0] . For

8, 9 2 [30], e
�8 9 is defined on {(C=

:
, C
=

:+1
)}0:2

=�1:

e
�8 9 (C=

:
, C
=

:+1
) ,

�⌫=
8,:

· �⌫=
9 ,:
� O8 9 · (�C=)

2

, (6.6)

where O is the 30-dimensional identity matrix.

Definition 4. Given = � 0 and a sequence of Brownian increments {�⌫=
:
}0:2

=�1, define the

sequence of antithetic Brownian increments {�⌫=,0
:

}0:2
=�1 as

�⌫=,0
2<
, �⌫=

2<+1
and �⌫=,0

2<+1
, �⌫=

2<
for 0  <  2

=�1 � 1 . (6.7)

The e
�8 9 for 8, 9 2 [30] in (6.6) can be equivalently defined for {�⌫=,0

:
}0:2

=�1. We denote it

as e
�
0

8 9
. It also follows from Definition 4, given Brownian motion ⌫(·),

�⌫=
2:

+ �⌫=
2:+1

= �⌫=�1

:
= �⌫=,0

2:+1
+ �⌫=,0

2:
(6.8)

for = � 1, 0  :  2
=�1 � 1.

Moreover, it is easy to check that {�⌫=
:
}0:2

=�1

D= {�⌫=,0
:

}0:2
=�1 for = � 0.

149

Definition 5. Given the representation of - in (6.4) and W > 0, define -
(=) as

`
(=) (·,l) ,

b2=Wc’
8=1

_8

8
@
· +8 (l) · k8 (·),

and the 8-th component of -(=) is denoted -
(=)
8

for 8 2 [3].

Note in Definition 5 we supress the dependence on W as we treat it as one of the hyperparameters

which is considered fixed throughout the chapter. The details will be provided in the sequel.

Finally, it follows directly that {-(=) }=�0 ✓ L(R1) for the same R1 in Lemma 13.

6.3 Construction of the unbiased estimator

We denote, as our unbiased estimator for a in (6.2). In this section we present the construction

of , in several steps. For ease of presentation, we illustrate the case for : = 1 and C = 1 in (6.2).

The case for general (: , C) 2 Z+ ⇥ R+ follows in a straightforward manner.

6.3.1 Probabilistic representation of D(G, C)

For ` 2 L, the solution D(G, C) in (6.1) is connected to a 3-dimensional diffusion process by

the Feynman-Kac formula. For a brief introduction on SDE and Feynman-Kac formula, see, e.g.,

[201, 202].

Proposition 7. Suppose (G, C) 2 X ⇥R+ and `(·) 2 L in (6.1). Then under Assumption 6, solution

of the PDE in (6.1) satisfies

D(G, C) = E 5 (-C), (6.9)

where the expectation is taken w.r.t. to the 3-dimensional diffusion process {-B}0BC with -0 = G

and governed by the SDE (i.e., the unique strong solution):

3-B = `(-B)3C + f(-B)3⌫B (6.10)

for 0  B  C. Here ⌫B is a 30-dimensional Brownian motion.

150

Proof. For ` 2 L, the existence and uniqueness of strong solution {-B, 0  B  C} follow from

the Lipschitz condition on f(·). The rest follows from the Feynman-Kac formula (see Section 4.4

in [201]). ⇤

We motivate the construction of, in two steps. First, given `(·,l), we construct an estimator

/ (`) such that E/ (`) = D(G, 1) (we are letting C = 1 w.l.o.g). We write / (`) to stress that / is

constructed while keeping the random field realization ` fixed. Here the expectation is not taken

w.r.t the randomness in - but the randomness in the estimator / itself. Next, we construct estimator

, (`) such that E, (`) = ⌧ (E/ (`)) = ⌧ (D(G, 1)), again with ` fixed. After these two steps, we

can sample - and construct, = , (-) as above. Then, the unbiasedness of, follows:

E, = E[E[, (`) |- = `]] = E[E[⌧ (D(G, 1)) |- = `]] = E[⌧ (u(G, 1))] = a. (6.11)

Notice this construction does not guarantee the finite variance or finite expected computational

cost of, for arbitary dimension 3. For now we focus on the construction of / and, .

6.3.2 Multilevel Monte Carlo

Section 6.3.1 allows for estimators based on discretization schemes for SDEs (e.g., Euler

scheme, Milstein scheme, see [185]) rather than the ones for PDEs (e.g., FEM, FDM), which

do not suffer from curse of dimensionality in the context of linear parabolic PDEs. However, esti-

mators directly from numerical schemes are biased. The multilevel Monte Carlo method (MLMC)

combines different “levels" of numerical estimators [189, 190]. In particular,

/MLMC =
#’
==0

1

"=

"=’
8=1

�(8)
=

+ 1

#0

#0’
8=1

5 (- (8)
0
(1)). (6.12)

where {�(8)
=
}
82["=] and {- (8)

0
(1)}

82["0] are generally I.I.D. copies. Here, �= is any estimator satis-

fying

E�= = E 5 (-=+1(1)) � E 5 (-= (1)), (6.13)

151

where -< (1) for < � 0 corresponds to any discretization scheme for SDE solution -C from (6.10)

at C = 1 and < is a generic index indicating the level of discretization. # is a truncating integer

(typically large) for the telescope sum

E/MLMC =
#’
==0

E 5 (-=+1(1)) � E 5 (-= (1)) + E 5 (-0(1)) = E 5 (-#+1(1)),

to control bias. However, the advantage of MLMC is the variance reduction from the efficient

coupling in �= [188, 189]. In fact, the finite variance of our estimator hinges on �= proposed by so

called antithetic MLMC for multidimensional SDEs [181].

However, in this chapter, we do not assume we can explicitly sample - in (6.4). Thus, we

can not directly apply the antithetic MLMC in [181] as we need to approximate the random field

by -
(=) in Definition 5. We summarize our discretization scheme into the following Algorithm:

Num_Sol(·, ·, ·). Notations in Algorithm Num_Sol(·, ·, ·) are defined in Section 6.2.2, and W > 0

is considered fixed, to be sepcified later.

Algorithm 6 Num_Sol: discretization scheme for SDE
1: procedure NUM_ SOL (G, =, {�⌫=

:
}0:2

=�1)

2: input: starting point G 2 R3 , discretization level = � 0 and Brownian increments

{�⌫=
:
}0:2

=�1.

3: -= (0) G, `
(=) (·) Õb2=Wc

8=1

_8

8
@
+8q8 (·)

4: compute {e�8 9 (C=
:
, C
=

:+1
)}
8, 92[3 0],0:2

=�1 from {�⌫=
:
}0:2

=�1

5: for 0  :  2
= � 1 and 8 2 [3] do

6: -8,= (C=
:+1

) -8,= (C=
:
) + `(=)

8
(-= (C=

:
))�C= +

Õ
3
0

9=1
f8 9 (-= (C=

:
))�⌫=

9 ,:

7: +Õ
3
0

9=1

Õ
3

;=1

Õ
3
0

<=1

mf8 9

mG;

(-= (C=
:
))f;< (-= (C=

:
))e�< 9 (C=

:
, C
=

:+1
)

8: output: {-8,= (C=
:
)}
82[3],0:2

= (or {-= (C=
:
)}0:2

= ✓ R3)

From (6.8) in Remark 6.2.2, given {�⌫=+1

:
}

0:2
=+1�1

, we create {�⌫=
:
}0:2

=�1 and {�⌫=+1

:
}

0:2
=+1�1

.

The �= in the modified antithetic scheme uses coupling of three discretizations from the three

152

Brownian increments above:

�= ,
1

2

�
5 (- 5

=+1
(1)) + 5 (-0

=+1
(1))

�
� 5 (-= (1)). (6.14)

where

-
5

=+1
(·) Num_Sol(G, = + 1, {�⌫=+1

:
}

1:2
=+1�1

)

-
0

=+1
(·) Num_Sol(G, = + 1, {�⌫=+1,0

:
}

1:2
=+1�1

)

-= (·) Num_Sol(G, =, {�⌫=
:
}1:2

=�1) (6.15)

The notations - 5

=+1
and -0

=+1
comes from [181]. They represent the “fine" and “antithetic" solu-

tions on level = + 1 versus the“coarse" solution -= on level =. Moreover, note (6.13) is satisfied for

�= in (6.14). In particular, - 5 (·) D= -
0 (·) since {�⌫=

:
}0:2

=�1

D= {�⌫=,0
:

}0:2
=�1.

6.3.3 Bias removal via additional randomization

After the construction of MLMC (6.12), we note the bias exists as long as # is finite. In this

section we present a bias removal technique via additonal randomness, originally proposed by

[192, 191], for the construction of both / and, in Section 6.3.1.

Definition 6 (Construction of / (`)). Given \ > 0, a fixed hyperparameter, let # ⇠ ⌧4><(1�2
�\)

be a geometric R.V. with ?= , P(# = =) = (1 � 2
�\) (2�\=), = � 0. Let =0 � 0 be the base

discretization level for estimator -=0
 Num_Sol(G, =0,

{�⌫=0

:
}1:2

=
0�1) and �= as defined in (6.14). Then

/ (`) , 5 (-=0
(1)) +

�#+=0

?#

. (6.16)

In practice, a larger value of =0 gives lower variance of / at the cost of a higher computational

cost. We can use the same Brownian path to for -=0
(1) and �#+=0

in (6.16). We summarize the

procedure for obtaining / (`) into an Algorithm: Unbiased_Z(·, ·).

153

Algorithm 7 Generate / (`) (hyperparameters \ and W fixed)

1: procedure UNBIASED_Z(G, =0) with input G 2 R3 and =0 � 0.

2: Generate # ⌧4><(1 � 2
�\), and \8 N(0,⌃8) for 1  8  b2(#+=0+1)Wc .

3: `
(#+=0+1) Õb2(#+=

0
+1)Wc

8=1

_8

8
@
+8q8 (·) and same for `(#+=0)

, `
(=0)

4: sample a Brownian path at times {C#+=0+1

:
}

0:2
#+=

0
+1

5: store Brownian increments {�⌫#+=0+1

:
}

0:2
#+=

0
+1�1

, {�⌫=0

:
}0:2

=
0�1

6: store {�⌫#+=0+1,0

:
}

0:2
#+=

0
+1�1

and {�⌫#+=0

:
}

0:2
#+=

0�1

7: -=0
(·) #D<_(>; (G, =0, {�⌫=0

:
}1:2

=
0�1) and ?# (1 � 2

�\) (2�\#)

8: Compute �#+=0
from (6.15) and (6.14)

9: Output / (`) �#+=
0

?#

+ 5 (-=0
(1))

The additional randomness via geometric R.V. is also used for debiasing, (`). We summarize

the Algorithm: Unbiased_W for generateing, (`), for a general : 2 Z+ and ⌧ (·) : R: ! R.

Definition 7. Given " 2 Z+ and {/8 9 }82[:], 92["] . For 0, 1 2 Z+ and 0  1  " ,

((0, 1; {/8 9 }) , ⌧
✓

1

1 � 0 + 1

1’
9=0

/1 9 , ...,

1

1 � 0 + 1

1’
9=0

/: 9

◆
(6.17)

Definition 8 (Construction of , (`)). Let {/8 (`)}8 be I.I.D. copies of random variables / (`) in

(6.16). Define

e�= ,((1, 2e#+=1+1
; {/8 9 })

� 1

2

⇣
((1, 2e#+=1

; {/8 9 }) + ((2e#+=1 + 1, 2
e#+=1+1

; {/8 9 })
⌘
. (6.18)

Let =1 � 1 be the base level and e# ⇠ ⌧4><(1 � 2
�1.5) with e?= , P(e# = =) = 2

�1.5= (1 � 2
�1.5)

for = � 0. Then,

, (`) =
e�e#+=1e? e#

+ ((1, 2=1
; {/8 9 }). (6.19)

154

Algorithm 8 Generate, (`).
1: procedure UNBIASED_W({G8}82[:] , =0, =1)

2: input: starting points {G8}82[:] ✓ R3 , base level =0 � 0 and =1 � 1.

3: Generate e# ⌧4><(1 � 2
�1.5)

4: for 1  8  : do

5: for 1  9  2
e#+=1+1 do

6: Generate /8 9 UNBIASED_Z(G8, =0)

7: compute e�e#+=1

in (6.18) and ((1, 2=1
; {/8 9 })

8: ? e# 2
�1.5e# (1 � 2

�1.5)

9: Output, (`)
e� e#+=

1

? e# + ((1, 2=1
; {/8 9 })

Notice that if we denote #8 9 to be the geometric random variable generated for /8 9 ! Unbiased_Z(G8, =0).

Then, let

< = max

82[:], 92[2 e#+=
1
+1]
#8 9 and " = b2(<+=0+1)Wc .

We only need to generate\1, ...,\" for approximating random field - and use them for generating

all {/8 9 }.

6.4 Main results

In this section, we present the analysis on the moments and complexity for estimator , and

/ . We show our estimator for a is unbiased, has a finite variance and can be generated with finite

computational cost.

6.4.1 Unbiasedness

To show the unbiasedness of / , we need a couple of a technical lemma on the approximation

error from the discretization scheme -= (·) Num_ Sol.

Lemma 14. Given ` [{`(=) }=�1 ✓ L(!1) for !1 > 1, let {-C}C2[0,1] be the solution of the SDE in

(6.10) and {-= (C=
:
)}0:2

= be the numerical solution from Num_ Sol. Then, for appropriate choice

155

of W and \, there exists n > 0 and ⇠ > 1 such that,

Ek-= (C) � -C k41  4⇠!1�C2�n
=

, (6.20)

for all C 2 {C=
:
}0:2

= .

Given ` 2 L(!1), typical results from stochastic analysis (e.g.,[181]) show that Ek-= (C) �

-C k41 = $ (�C2
=
). Such is a standard error bound for numerical SDEs obtained from Gronwall’s

inequality [193, 185] which has the form

Ek-= (C) � -C k41  4⇠!
4

1�C2
=
, (6.21)

However, when - is random and 4R
?

1 may not have finite expectation for ? greater than 1, which

becomes a technical challenge for showing finite variance. Instead of Gronwall’s inequality, we

use rough path techniques in [200] to develop an path-wise bound and trade the term 4
⇠!

?

1 for 4⇠!1

by giving up n order from �C2
=

in (6.21).

Corollary 6.4.0.1. Under the same setting of Lemma 14 plus Assumption 6, we have

lim

=!1
E 5 (-= (1)) = E 5 (-1). (6.22)

Proof. From Assumption 6 and Cauchy-Schwarz inequality, we have

E(5 (-= (1)) � 5 (-1))2  !2Ek-= (1) � -1k21  !2

q
Ek-= (1) � -1k41. (6.23)

which converge to 0 by Lemma 14. ⇤

Lemma 15. Under the same setting of Lemma 14 plus Assumption 6, we have

E/ = D(G, 1).

156

Proof. Note

E[
�#+=0

?#

] = E[E[
�#+=0

?#

|#]] =
1’
==0

E�=+=0

?=

· ?= =
1’
==0

E�=+=0

It then follows from (6.13) and Lemma 14 that

E/ = E 5 -=0
(1) +

1’
==0

E 5 -=+=0+1(1) � E 5 -=+=0
(1) = E 5 -1.

The conclusion now follows from Proposition 7. ⇤

Lemma 15 proves the unbiasedness of / . We also need technical lemmas on the fourth moment

of �= and / . Note finite fourth moment implies finite variance.

Lemma 16. Under the same setting of Lemma 14, there exist X > 0 and ⇠ > 1 that

E�4

=
 4⇠!1�C4�X

=
, (6.24)

E 5 (-=0
(1))4  ?>;H(!1), (6.25)

for some polynomial function ?>;H(·) satisfying ?>;H(G) > 1 when G > 1.

Lemma 17. Under the setting of Lemma 16, there exists appropriate choice of W and \ with 3\ <

4 � X such that

E/4  4⇠!1
, (6.26)

for some ⇠ > 1.

Proof. It follows from

|
#’
==1

0= |?  #?�1

#’
==1

|0= |?, (6.27)

that E/4 is bounded by

8

1’
==0

E�4

#+=0

?
3

=

+ 8E| 5 (-=0
(1)) |4  8

⇣
4
⇠!1

(1 � 2
�\)3

1’
==0

�C4�X
=

�C3\
=

+ ?>;H(!1)
⌘

(6.28)

157

according to Lemma 16. Since 4� X > 3\, the conclusion follows if we can find some ⇠0 > 1 such

that (6.28) can be bounded by 4⇠ 0!1 . This can be done since for any ?>;H(·), we can find 2 > 0

such that ?>;H(G) < 42G when G > 1. ⇤

We can now show the unbiasedness of, .

Lemma 18. Under the same setting of Lemma 16 plus Assumptions 6, we have

E, = ⌧ (E/). (6.29)

Proof. It follows from 17 that

lim

=!1
E
���
Õ
=

9=1
/ 9

=

� E/
��� = 0. (6.30)

It then follows from the bound of k⇡G⌧k1 in Assumption 6 that

lim

=!1
E⌧

⇣Õ2
=

9=1
/ 9

2
=

⌘
= ⌧ (E/) (6.31)

as =! 1. Now, since Ee�= = E⌧ (
Õ

2
=+1

9=1
/ 9 (`)

2
=+1

) � E⌧ (
Õ

2
=

9=1
/ 9 (`)

2
=

), the rest of the proof follows as in

Lemma 15. ⇤

6.4.2 Variance and computational cost

After unbiasedness, we now show, has finite variance and finite computational cost. We start

with several technical lemmas and then proceed to the main theorem.

Lemma 19. Under the setting of Lemma 14 plus Assumptions 6, e�= satisfies

Ee�2

=
 4⇠!1�C2

=
(6.32)

for some ⇠ > 1.

158

Lemma 20. Under the setting of Lemma 14 plus Assumptions 6, we have

E,2  4⇠!1 (6.33)

for some ⇠ > 1.

To discuss the computational cost for generating / , denoted as 2>BC/ , we denote the cost for

generating then -= (·) Num_Sol by 2>BC=. Then, notice

2>BC/ = 2>BC=0
+ 2>BC#+=0

+ 22>BC#+=0+1, (6.34)

due to the computation of -=0
(·), -#+=0

(·), - 5

#+=0+1
(·) and -0

#+=0+1
(·).

Lemma 21. There exists appropriate choice of W and \ with \ > 1 + W and the computational cost

for generating / has finite expectation:

E(2>BC/) < 1. (6.35)

Proof. Consider the 2>BC=. For fixed =, one needs to generate 2
= Brownian increments and $ (2W=)

of \8 for -
(=) . Then, to compute -= (1), one needs 2

= recursions in Num_Sol and each iteration

requires $ (2W=) computation to evaluate

q1(-= (C=
:
)), ..., q

2
bW=c (-= (C=

:
))

in -
(=) (-= (C=

:
)). Thus,

2>BC= ⇠ $ (2(1+W)=) (6.36)

159

Therefore, from (6.34) and ?= ⇠ 2
�\=, we have

E(2>BC/) E(2>BC=0
) + E(2>BC#+=0

) + 2E(2>BC#+=0+1)

=E(2>BC=0
) +

1’
==0

E(2>BC=+=0
)?= + 2

1’
==0

E(2>BC=+=0+1)?=

⇠$
✓
2
(1+W)=0 (1 +

1’
==0

2
(1+W�\)= + 2

1+W
1’
==0

2
(1+W�\)=)

◆
< 1 (6.37)

since \ > 1 + W. ⇤

Now we discuss the computational cost for generating, , denoted by 2>BC, . The construction

, consists of e�e#+=1

and ⌧ (Õ2
=
1

9=1
/ 9/2=1). The computation cost of both lies in generating samples

of /:

2>BC, =
2

e#+=
1
+1’

9=1

2>BC/ 9
. (6.38)

Lemma 22. The total expected computational cost of, satisfies

E(2>BC,) < 1. (6.39)

Proof. Using Wald’s identity and Lemma 21, we have

E(2>BC,) =E(2#̃+=1+1)E(2>BC/)

=2
=1+1

✓ 1’
==0

2
�0.5= (1 � 2

�1.5)
◆
E(2>BC/) < 1. (6.40)

⇤

6.4.3 Main theorem

Theorem 6.4.1. Under Assumptions 5-6 and appropriate choice of W and \, , is an unbiased

estimator for a. Moreover, , has a finite variance and the computational cost for generating ,

has finite expectation.

160

Proof. The appropriate choice for W and \ that satisfies all Lemma conditions are referred to Def-

inition 9. The unbiasedness follows from Lemma 18. The finite expected computational cost

follows from Lemma 22.Since -(·) 2 L(R1) almost surely for the R1 in Lemma 13, for any

realization, we have `(·,l) 2 L(!1(l)) with probability 1. To show the finite variance property

of, , note it follows from Lemma 13 and Lemma 20 that,

E,2 = E[E[,2(`) |- = `]]  E[E[4⇠!1 |- = `]]  E[4⇠R1] < 1.

⇤

6.5 Simulation

Example 1 Consider the one-dimensional SDE known as the Ornstein-Uhlenbeck Process [185]:

8>>>><
>>>>:
3-C = �"-C3C + 3⌫C for C � 0

-0 = 0

, (6.41)

where " 2 R is random. Given the realization U(l), the solution are known exactly,

-1 = 4�UC
π

1

0

4
UB

3⌫B . (6.42)

Consequently, given the realization U(l), using Itô’s isometry, it can be shown that -1 is Gaussian

with mean 0 and variance (2U(l))�1(1 � 4�2U(l)). For simulation, we set " to be Gaussian with

mean 1 and variance 0.05
2 along with 5 (G) = G

2, ⌧ (G) = 4
�G2 . Then, it follows from direct

calculation that E[5 (-1) |U] = 1�4�2U

2U
, and

E[⌧ (E[5 (-1) |U])] =
π 1

�1

1

p
2c · 0.05

2

· 4�
(G�1)2
2·0.05

2 · 4�(
(1�4�2G)

2G
)2
3G ⇡ 0.8291.

161

value of estimator Z
0 0.5 1 1.5 2 2.5 3 3.5 4

F
re

q
u
e
n
cy

0

500

1000

1500

2000

2500

3000

3500

4000
truemean=0.4323
samplemean=0.4303

Figure 6.1: Histogram of Estimator / when U = 1

value of estimator W
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F
re

q
u
e
n
cy

0

100

200

300

400

500

600
truemean=0.8291
samplemean=0.8323

(a) Histogram of Estimator,

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

truemean=0.8291

samplemean=0.8245

(b) Estimators based on Numerical PDE

Figure 6.2: Comparsion of Multilevel Estimators based on Antithetic Numerical SDE or Numerical PDE

To check the unbiasedness property of / , we first fix U = 1 in simulation so that E[5 (-1) |U =

1] ⇡ 0.4323 . Picking =0 = 5 as the base level, we generate 10,000 copies of / with U = 1. A

sample mean of 0.4303 is obtained to compare with its true mean 0.4323, as in Figure 1. Then,

we pick =1 = 5 and generate 10,000 copies of, to obtain a sample mean of 0.8323 while the true

mean is 0.8291, as in Figure 2a. Furthermore, in Figure 2b, we generate 10000 copies of unbiased

estimators of ⌧ (D(G, 1)) using the multilevel Monte Carlo estimator based on a finite difference

numerical PDE solver similarly as the methods proposed in [187]. In both cases, the sample size is

10,000 and the difference between sample mean and true mean is within a 95% confidence interval.

Overall, the findings are consistent with our theoretical results on the unbiasedness.

162

Example 2 In this example, we consider the more complicated SDE:

8>>>><
>>>>:
3-C = �-(-C)3C + cos(-C)3⌫C for C � 0

-0 = 0,

(6.43)

where -(G) =
1Õ
8=1

8
�4

sin(8G)\8 and we compare the proposed method with the standard Monte

Carlo method with bias. We take W = 1

3
and \ = 4

3
for simplicity. Similar to the previous example,

we take =0 = =1 = 5. We generate 10, 000 copies of our estimator and compare it with 10, 000

copies of a standard Monte Carlo estimator where we remove the debiasing part �#
?#

in both estima-

tor / and , . As a result, using the CLT, we compute a 95% confidence interval [0.4610, 0.4656]

for our estimator while we obtain an interval [0.5189, 0.5255] for the standard Monte Carlo esti-

mator. As we can see, these two intervals are not overlapping, suggesting that the standard Monte

Carlo estimator has a non-negligible bias.

6.6 Supplementary: Proofs

6.6.1 Proof of Lemma 19

Proof. Denote ((0, 1) ,
Õ
1

9=0 / 9

1�0+1
as before but also (: (0, 1) = (((0, 1) � E/): . Then, as in [192],

a second order Taylor expansion of ⌧ (·) around E/ (`) gives

e�= =⌧ (((1, 2=+1)) � 1

2

⇣
⌧ (((1, 2=)) + ⌧ (((2= + 1, 2

=+1))
⌘

=⌧
0 (E/ (`)) (((1, 2=+1) � 1

2

⇣
((1, 2=) + ((2= + 1, 2

=+1)
⌘

+ ⌧
00 (b1)
2

(
2(1, 2=+1) � ⌧

00 (b2)
4

(
2(1, 2=) � ⌧

00 (b3)
4

(
2(2= + 1, 2

=+1), (6.44)

163

where b1 is between E/ (`) and ((1, 2=+1), similarly b2 between E/ (`), ((1, 2=) and b3 between

E/ (`), ((2= + 1, 2
=+1). Thus, it follows from (6.27) and Assumption 6 that

|e�= |2  3!
2

4

�
(

4(1, 2=+1) + 1

4

(
4(1, 2=) + 1

4

(
4(2= + 1, 2

=+1)
�
. (6.45)

However, (/ 9 (`) � E/ (`)) are I.I.D. with mean 0. In particular, when we write out the expansion

in (6.45) and take expectation, the terms with odd power will vanish

E[(/8 (`) � E/ (`))2(/ 9 (`) � E/ (`)) (/: (`) � E/ (`))] =0,

E[(/8 (`) � E/ (`))3(/ 9 (`) � E/ (`))] =0,

E[(/8 (`) � E/ (`)) (/ 9 (`) � E/ (`)) (/: (`) � E/ (`)) (/; (`) � E/ (`))] =0. (6.46)

Thus, taking expectation in (6.45) gives Ee�2

=
is bounded by

⇠

✓
2
=+1

2

◆
2
�4= · E

�
/ (`) � E/ (`)

�
4 (6.47)

for some ⇠ > 1 since E(/ 9 (`) � E/ (`))2(/8 (`) � E/ (`))2  E(/ 9 (`) � E/ (`))4. Since
�
=

2

�
=

$ (=2), we have ✓
2
=+1

2

◆
2
�4=  ⇠�C2

=
, (6.48)

for some (different) ⇠ > 1. Finally, we bound E
�
/ (`) � E/ (`)

�
4 by Lemma 17:

E
�
/ (`) � E/ (`)

�
4  4⇠!1 (6.49)

for some ⇠ > 1. Thus, we conclude there exists some ⇠ > 1 that Ee�2

=
 4⇠!1�C2

=
. ⇤

164

6.6.2 Proof of Lemma 20

Proof. Denote ((0, 1) ,
Õ
1

9=0 / 9

1�0+1
as before but also (: (0, 1) = (((0, 1) � E/): . By Lemma 17,

Assumption 6 on ⌧ (·) and Cauchy-Schwarz inequality, we have

E
���⌧ (((1, 2=1))

���2 E(|⌧ (0) | + ! |((1, 2=1) |)2

 |⌧ (0) |2 + 2|⌧ (0) |! |((1, 2=1) | + !2
(

2(1, 2=1)

⇠ + ⇠4⇠!1 (6.50)

for some ⇠ > 1. Now, using (6.27), (6.50) and Lemma 19, we have

E,2 2E
⇣e�2

#+=1e?2

#

+
���⌧ (

Õ
2
=
1

9=1
/ 9

2
=1

)
���2⌘

=2

1’
==0

Ee�2

=1+=e?= + 2E
���⌧ (

Õ
2
=
1

9=1
/ 9

2
=1

)
���2

 24
⇠!1

(1 � 2
�1.5)

1’
==0

2
�2=

2
�1.5=

+ 2⇠ + 2⇠4
⇠!1  4⇠ 0!1 (6.51)

for some ⇠0 > 1. The last inequality follows since for any 0, 1 and 2, there exists 3 such that

0 + 241G < 43G when G > 1.

⇤

6.6.3 Definitions and supporting lemmas

The following definition discusses the appropriate hyperparameters as well as choice of n , X in

Lemma 14 and Lemma 16. Finally, U and V are used for rough path estimates in the sequel.

Definition 9. Let n > 0 to be small enough so

n <

1

144

and n <

@ � 4

36

1

2 + @ , (6.52)

165

where @ > 4 is from Assumption 5. Define

U ,
1

2

� n , V ,
1

2

+ 2n , W ,
1

3

� 12n , \ ,
4

3

� 23

2

n and X , 33n (6.53)

It is easy to check:

W � 1

4

, (3 + @ � 4

2

)W > 1, 8(2U � V) > 4 � X > 3\ > 0 and \ > 1 + W > 0 (6.54)

The next definition is used for rough path estimates as well. Notice we have extend the defini-

tion of e
� in Definition 3 to include generat (B, C) 2 [0, 1] ⇥ [0, 1].

Definition 10. Let {⌫(C)}
C2[0,1] be a Brownian motion on [0, 1] and U, V be defined as in Definition

9. Then, define

k⌫kU , sup

0BC1

k⌫(C) � ⌫(B)k1
|C � B |U and k�k2U , sup

0BC1

max

18, 93 0
|�8 9 (B, C) |
|C � B |2U

k �̃k2U , sup

0BC1

max

18, 93 0
|e�8 9 (B, C) |
|C � B |2U

and �e' , sup

0BC1

B,C2⇡=,=�1

max

18, 93 0

|e'=
8, 9
(B, C) |

|C � B |V�C2U�V
=

,

where ⇡= is the dyadic rationals(i.e. multiples of 1

2
=
) in [0, 1] and for 8, 9 2 [30], 8 < 9 ,

�8 9 (B, C) ,
π

C

B

(⌫8 (D) � ⌫8 (B))3⌫9 (D)

e
�8, 9 (B, C) ,

(⌫8 (C) � ⌫8 (B)) (⌫9 (C) � ⌫9 (B))
2

e
�8,8 (B, C) =�8,8 (B, C) ,

(⌫8 (C) � ⌫8 (B))2 � (C � B)
2

,

e'=
8, 9
(C=
;
, C
=

<
) ,

<’
:=;+1

{�8, 9 (C=
:�1

, C
=

:
) � e

�8, 9 (C=
:�1

, C
=

:
)}.

The proofs for the following lemmas are left in the supplementary material.

Lemma 23. Fixing n > 0, let {`=}=�1 be a sequence I.I.D. standard 3-dimensional Gaussian

166

random vectors (i.e., ⌃= = �3 for all = � 1). Then, the R.V.

"n , sup

=�1

k`=k1
=
n

,

has finite moment-generating function (i.e., E[4C"n] < 1) for all C � 0.

Lemma 24. The quantities k⌫kU, k�k2U, k �̃k2U and �e' defined in Definition 10 have moments of

arbitrary order.

Lemma 25. Let -= (·) be the discretization in Num_Sol generated under `(=) (·) 2 L(!1), !1 > 1

and Brownian motion ⌫(·). Then, there exists ?>;H(·) : R3 ! R such that

k-= (C) � -= (A)k1  ?>;H(!1, k⌫kU, ke�k2U) |C � A |U

for A, C 2 {C=
:
}0:2

= and = � 0. Moreover, ?>;H(G, ·, ·) > 1 for G > 1.

Lemma 26. Let -`
=
(·) be the discretization from Num_Sol but generated under `(·) 2 L(!1), !1 >

1 (instead of `= (·), same as in [181]) and Brownian motion ⌫(·). Also, let {-C}C2[0,1] be the

solution of SDE in (6.10). Then, there exists ?>;H(·) : R4 ! R that,

k-`
=
(C) � -C k1  ?>;H(!1, k⌫kU, k�k2U, �e')�C2U�V=

. (6.55)

for = � 0 and C 2 {C=
:
}0:2

= . Moreover, ?>;H(G, ·, ·, ·) > 1 for G > 1.

6.6.4 Proof of Lemma 13

Proof of Lemma 13. Let {\=}=�1 be I.I.D. N(0,⌃=) with the covariance matrix k⌃=k� < ! for

all = � 1 as in Assumption 5. Since {⌃=}= are positive semi-definite, the square root matrices ⌃
1

2

=

167

satisfy,

k⌃
1

2

=
k2
�
=CA024((⌃

1

2

=
)) (⌃

1

2

=
)) = CA024(⌃=)

=
’
8

_8 
’
8

(_2

8
+ 1)  CA024(⌃)

=
⌃=) + 3

k⌃=k2� + 3  !2 + 3,

where _8 are the eigenvalues of ⌃=. Thus, if we set !0 =
p
!

2 + 3 > 1, we have k⌃
1

2

=
k� < !

0 for all

= � 1. Finally, by the equivalence of matrix norms, there exists !00 > 1 such that k⌃
1

2

=
k1 < !

00, for

all = � 1.

Consequently, if we let {`=}=�1 be a sequence of I.I.D. 3-dimensional standard Gaussian, then

{⌃
1

2

=
· `=}=�1 are distributed as {\=}=�1, and we define

" @�4

2

, sup

=�1

k⌃
1

2

=
· `=k1
=

@�4

2

 !00 sup

=�1

k`=k1
=

@�4

2

. (6.56)

It then follows from Lemma 23 that, the random variable " @�4

2

and thus

@�4

2

, sup

=�1

k\=k1
=

@�4

2

has finite moment-generating function for all C � 0. Finally, to bound k⇡G-k1,

k⇡G`k1 
1’
==1

|_= |k+=k1
=

4+ @�4

2 =

@�4

2

k⇡Gk=k1


1’
==1

|_= |=!
=

4+ @�4

2

@�4

2

 ⇠# @�4

2

,

for some ⇠ > 1, by Assumptions 5-6. Similarly, we can bound k-k1 and k⇡GG-k1 by R.V. with

finite moment-generating function. The same bound applies for Y=, -(=) and -̄
(=) and we can this

uniform (random) bound by R1 with condition R1 > 1. ⇤

168

6.6.5 Proof of Lemma 14

Proof of Lemma 14. Let {-C}C2[0,1] , -= (·) Num_Sol and -`
=
(·) be as defined in Lemma 25 and

26. Then, for C 2 [0, 1],

k-= (C) � -C k1  k-= (C) � -`= (C)k1 + k-`
=
(C) � -C k1. (6.57)

To bound k-`
=
(C) � -C k1, Lemma 26 provides some ?>;H(G, ·, ·, ·) > 1 for G > 1 that

k-`
=
(C) � -C k41  ?>;H(!1, k⌫kU, k�k2U, �e')�C4(2U�V)=

.

However, Lemma 24 states k⌫kU,k�k2U and �e' have moments of arbitrary order. Thus, for `(·) 2

L(!1), !1 > 1, we can find some ?>;H0(G) > 1 for G > 1 such that

Ek-`
=
(C) � -C k41 E[?>;H(!1, k⌫kU, k�k2U, �e')]�C4(2U�V)=

?>;H0(!1)�C4(2U�V)=
 4⇠!1�C4(2U�V)

=
, (6.58)

for some appropriately chosen ⇠ > 1 (note this is possible since !1 > 1). Combining this with

(6.57), we have

Ek-= (C) � -C k41  8Ek-= (C) � -`= (C)k41 + 84
⇠!1�C4(2U�V)

=
. (6.59)

On the other hand, if we can show

Ek-= (C) � -`= (C)k41  4⇠!1�C4U
=
, (6.60)

for some ⇠ > 1, we can show

Ek-= (C) � -`= (C)k41  4⇠!1�C4(2U�V)
=

, (6.61)

169

since 4U = 2 � 4n > 2 � 16n = 4(2U � V) by Lemma 9 and �C= < 1. Finally, we can conclude the

proof using (6.59),(6.61) and by adjusting the constant ⇠ and n (Lemma 14 states 2 � 2n and we

have 2U � V = 2 � 16n here). To prove (6.60), we define ¯̀
(=) (·) , ` � `(=) = Õ1

8=b2=Wc+1

_8

8
@
+8k8 (·).

As shown in Section 6.6.4, the proof of Lemma 13, that

k ¯̀
(=) (·)k1  !1�C

3+ @�4

2

=
. (6.62)

Then, for -`
=
(·) � -= (·), we notice the recursion:

-
`

8,=
(C=
:+1

) � -8,= (C=
:+1

) = -`
8,=
(C=
:
) � -8,= (C=

:
) + [8,=,: , (6.63)

for 8 2 [3] and 0  :  2
= � 1, obtained by modifying Num_Sol with [8,=,: :

[8,=,: ,
�
`
(=)
8

(-`
=
(C=
:
)) � `(=)

8
(-= (C=

:
))

�
�C= + ¯̀

(=) (-`
=
(C=
:
))�C=

+
3’
9=1

⇣
f8 9 (-`= (C=:)) � f8 9 (-= (C

=

:
))

⌘
�⌫=

9 ,:

+
3
0’

9=1

3’
;=1

3
0’

<=1

⇣
mf8 9

mG;

(-`
=
(C=
:
))f;< (-`= (C=:))

�
mf8 9

mG;

(-= (C=
:
))f;< (-= (C=

:
))

⌘ e
�< 9 (C=

:
, C
=

:+1
). (6.64)

Furthermore, for convenience, define for 8 2 [3] and 0  :  2
=, b=,: , -

`

=
(C=
:
) � -= (C=

:
) and

b8,=,: , -
`

8,=
(C=
:
) � -8,= (C=

:
) so that (6.63) becomes, b8,=,:+1 = b8,=,: + [8,=,: . Given ` [{`(=) }= ✓

L(!1), !1 > 1, taking expectation in (6.64) after raising it to the fourth power,

E(b4

8,=,:+1
)

=E(b4

8,=,:
) + E([4

8,=,:
) + 3E(b3

8,=,:
[8,=,:) + 3E(b8,=,:[3

8,=,:
) + 6E(b2

8,=,:
[

2

8,=,:
). (6.65)

Recalling (6.60), it sufficies to show Ek-= (C)�-`= (C)k41 = Ekb=,2= k41  4⇠!1�C4U
=

for some ⇠ > 1.

Thus, it further sufficies to prove there exists ?>;H(·) that:

170

• (I) When = is large that 2
=
> ?>;H(!1), E|b8,=,: |4  4⇠!1·C=

:�C4U
=

for all 8, : .

• (II) When 2
=  ?>;H(!1), there exists ?>;H0(·) with ?>;H0(G) > 1 for G > 1 such that for

E|b8,=,: |4  ?>;H0(!1)�C4U= for all 8, : .

The proof of above statement would conclude (after further adjustments of constants) the proof.

So we focus on proving statement (I) and (II).

Proof of statement (I) Given ` [{`(=) }= ✓ L(!1), !1 > 1, we do inductions on 0  :  2
=.

First of all, when : = 0, for 8 2 [3], the claim holds since b8,=,0 = -
`

8,=
(0) � -8,= (0) = G � G = 0.

Next, for 0  :  2
= � 1 , assume that the induction hypothesis holds so that for all 0  9  : ,

E|b4

8,=, 9
|  4⇠!1C

=

9 · �C4U
=
, (6.66)

for 8 2 [3] and some ⇠ > 1. We need to show

E|b4

8,=,:+1
|  4⇠!1C

=

:+1 · �C4U
=
, (6.67)

for all 8 2 [3]. To do so, we bound every term on the right hand side of (6.65). For [4

8,=,:
, define

3̄ , max{3, 30}, by Definition 10 |[8,=,: | is bounded by

|[8,=,: | km`(=)
8
k1kb=,: k1�C= + k ¯̀

(=) k1�C=

+ 3̄!kb=,: k1k⌫kU�CU= + 3̄3
!kb=,: k1k�k2U�C2U=

!1kb=,: k1�C= + !1�C
4+ @�4

2

=
+ 3̄!kb=,: k1k⌫kU�CU=

+ 3̄3
!kb=,: k1k�k2U�C2U= ,

where the last inequality follows from (6.62). Since b=,: is independent of the shifted Brownian

motion {⌫(C)�⌫(C=
:
)}C=

:
CC=

:+1

, quantities k⌫kU and k�k2U associated to {⌫(C)�⌫(C=
:
)}C=

:
CC=

:+1

are

thus independent of b=,: . Consequently, it then follows from Lemma 24 that we can ⇠0 > 1 such

171

that

E[4

8,=,:
⇠0

�
!

4

1
E(kb=,: k41)�C4= + !4

1
�C16+2(@�4)
=

+ E(kb=,: k41)�C4U= + E(kb=,: k41)�C8U=
�

⇠00!4

1
3̄

4
4
⇠!1·C=

: · �C8U
=
, (6.68)

for some ⇠00 > 1 where the last line follows from the induction hypothesis and 8U < 16 + 2(@ � 4)

in Definition 9. To bound E(b3

8,=,:
[8,=,:) in (6.65), we observe the terms in (6.64). We use (6.62)

along with the martingale property (i.e., the independence of �⌫=
:

and -= (C=
:
)) to obtain

E(b3

8,=,:
[8,=,:)

=E
 �
-
`

8,=
(C=
:
) � -`

(=)

8,=
(C=
:
)
�
3

⇣ �
`
(=)
8

(-`
=
(C=
:
)) � `(=)

8
(-`

(=)
=

(C=
:
))

�
�C=

+ ¯̀
(=) (-`

=
(C=
:
))�C=

⌘�

E[!1kb=,: k41�C=] + E[!1kb=,: k31�C
4+ @�4

2

=
]  2!13̄

4
4
⇠!1·C=

:�C4U+1

=
.

The inequality follows from induction hypothesis, Hölder’s inequality and the fact that U < 4 +
@�4

2
as in Definition 9. For the bound on E(b2

8,=,:
[

2

8,=,:
), notice the bound on |[8,=,: | and the fact

E
�
⌫(C)�⌫(B)

�
2 = $ (|C � B |) and E

� e
�8 9 (B, C)

�
2 = $ ((C � B)2) (see, for example, [201]), we can find

some ⇠0 > 1 that E(b2

8,=,:
[

2

8,=,:
) is bounded by

E(b2

8,=,:
[

2

8,=,:
) ⇠0

⇣
E(kb=,: k41)!2

1
�C2
=
+ E(kb=,: k21)!2

1
�C4+@
=

+ E(kb=,: k41)�C= + E(kb=,: k41)�C2=
⌘

⇠0E(kb=,: k41)�C=
�
!

2

1
�C= + 2

�
+ ⇠0E(kb=,: k41)

1

2�C2U+1

=

�
!

2

1
(l)�C=

�
2⇠

00
3̄

4
4
⇠!1·C=

: (!2

1
�C= + 1)�C4U+1

=
, (6.69)

172

for some ⇠00 > 1. The last line follows from induction hypothesis. The second to last line fol-

lows from Hölder’s inequality and the fact that 2U + 2 < 4 + @ as in Definition 9. Finally, to

bound E(b8,=,:[3

8,=,:
) in (6.65), we again use inequality (6.68), induction hypothesis and Hölder’s

inequality to obtain

E(b8,=,:[3

8,=,:
) (E(b4

8,=,:
)) 1

4 (E([4

8,=,:
)) 3

4  ⇠00!3

1
3̄

3
4
⇠!1·C=

:�C7U
=
.

Now we are ready to prove the induction hypothesis. Let

⇠ = 12⇠
00
3̄

4 + 63̄
4 + 1 and ?>;H(G) =

✓
⇠
00(G4

3̄
4 + 3G

3
3̄

3 + 12G
2
3̄

4)
◆

3

. (6.70)

It is easy to check that ⇠ > 1 and the polynomial ?>;H(G) > 1 for G > 1. Then, it follows

from Definition 9 and standard calculation that if = is large enough that 2
=
> ?>;H(!1) (i.e.,

�C= < (?>;H(!1))�1), then

⇠
00
!

4

1
3̄

4�C4U�1

=
+ 3⇠

00
!

3

1
3̄

3�C3U�1

=
+ 12⇠

00
!

2

1
3̄

4�C=

(⇠00!4

1
3̄

4 + 3⇠
00
!

3

1
3̄

3 + 12⇠
00
!

2

1
3̄

4)�C3U�1

=

=(?>;H(!1))
1

3�C3U�1

=
< (P(!1))

4

3
�3U

< 1, (6.71)

where the last inequality follows �C= = 2
�=  (?>;H(!1))�1 ,4

3
� 3U < 0, !1 > 1 and ?>;H(G) > 1

for G > 1. Thus, for = such that 2
=
> ?>;H(!1), we use (6.65), Hölder’s inequality and the bounds

above to obtain

4
⇠!1·C=

:�C4U
=

✓
1 + ⇠00!4

1
3̄

4�C4U
=

+ 6!13̄
4�C= + 3⇠

00
!

3

1
3̄

3�C3U
=

+ 12⇠
00
3̄

4(!2

1
�C= + 1)�C=

◆

4⇠!1C
=

:�C4U
=

✓
1 + (63̄4 + 12⇠

00
3̄

4 + 1)!1�C=

◆

=4⇠!1C
=

:�C4U
=
(1 + ⇠!1�C=)  4⇠!1C

=

:+1�C4U
=
,

173

where the last line follows from convexity of exponential function: 4H � 4G + 4G · (H � G) for H � G.

The second to last inequality follows from (6.70), (6.71) and the fact that !1 > 1. This concludes

the induction. However, since C:
=
 1 for all 0  :  2

=, we have proven that when 2
=
> ?>;H(!1)

(i.e., �C= < (?>;H(!1))�1),

Ek-`
8,=
(C) � -8,= (C)k41  4⇠!1 · �C4U

=
, (6.72)

for all 8 2 [3] and C 2 [0, 1].

Proof of statement (II) We extend the result to the case when 2
=  ?>;H(!1). By observing

(6.63), we can find some ?>;H0(·) with ?>;H0(G) > 1 for G > 1 so that:

���(-`
8,=
(C=
:+1

) � -8,= (C=
:+1

)) � (-`
8,=
(C=
:
) � -8,= (C=

:
))

���  ?>;H0(!1, k⌫kU, ke�k2U)�CU= .

Since the number of iterations in the discretization is at most 2
=  ?>;H(!1), thus k-`

8,=
(·) �

-8,= (·)k1  ?>;H(!1)?>;H0(!1, k⌫kU, ke�k2U)�CU= , and from Lemma 24:

Ek-`
8,=
(·) � -8,= (·)k41  ?>;H00(!1)�C4U= , (6.73)

for some ?>;H00(·) with ?>;H00(G) > 1 for G > 1. This concludes the proof of Lemma 14. ⇤

The proof for Lemma 16 is similar and left in the supplementary materials along with other

technical lemmas.

6.7 Supplementary Material

We use (#)(SP) to quote equations in this supplementary material, to distinguish from equations

in the main text.

Lemma 27. Let - 5

=+1
(1) and -

0

=+1
(1) from (3.7) with `

(=+1) (·) 2 L(!1). Then, there exists

174

?>;H(·) : R! R such that

Ek- 5

=+1
(1) � -0

=+1
(1)k81  ?>;H(!1)�C8(2U�V)=

. (6.74)

Moreover, ?>;H(G) > 1 for G > 1.

6.8 Proof of Lemma 4.3

Proof of (4.6) in Lemma 4.3. Assume w.l.o.g. G = 0. Given ` [{`(=) }= ✓ L(!1), !1 > 1, similar

as in [181], we can use Burkholder-Davis-Gundy inequality [203] to find ⇠ > 1 that

E sup

1:2
=

|-8,= (C=
:
) |4  ⇠ (!4

1
+ !4

2
= (

2
=’

:=0

�C2
=
+

2
=’

:=0

�C4
=
)) < P(!1),

for some polynomial function ?>;H(·) with ?>;H(G) > 1 when G > 1. Finally, the claim on

E| 5 (-=0
(1)) |4 follows from the bound on k⇡G 5 k1 in Assumption 2. ⇤

Proof of (4.5) in Lemma 4.3. It follows from Equation (4.8) in [181], |�= |? is bounded by

|�= |? 2
?�1
!
?Ek1

2

(-=+1(1) + -0
=+1

(1)) � -= (1)k?1

+ 2
�?�1

!
?Ek-=+1(1) � -0

=+1
(1)k2?1 .

when we have ? � 2. Thus, to prove Lemma 4.3 and E(�4

=
)  4

⇠!1�C4�X
=

, it is sufficient to

bound Ek 1

2
(-=+1(1) + -0

=+1
(1)) � -= (1)k41 and Ek-=+1(1) � -0

=+1
(1)k81. Note that bound on

Ek-=+1(1) � -0
=+1

(1)k81 is provided by Lemma 27 since 4 � X < 8(2U � V) as in Definition A.1

and ?>;H(!1) < 4⇠!1 for appropriately chosen ⇠ > 1.

It remains for us to bound Ek 1

2
(-=+1(1) + -0

=+1
(1)) � -= (1)k41. First we write the recursion for

175

-=+1(·) over the coarse step �C= instead of �C=+1:

-8,=+1(C=
:+1

) = -8,=+1(C=
:
) + `(=+1)

8
(- 5

=+1
(C=
:
)) +

3
0’

9=1

f8 9 (-=+1(C=
:
))�⌫=

9 ,:

+
3
0’

9=1

3’
;=1

3
0’

<=1

mf8 9

mG;

(-=+1(C=
:
))f;< (-=+1(C=

:
))e�< 9 (C=

:
, C
=

:+1
) + # 5

8,=,:
+ " 5 ,(1)

8,=,:
+ " 5 ,(2)

8,=,:
+ " 5 ,(3)

8,=,:

�
3
0’

9=1

3’
;=1

3
0’

<=1

mf8 9

mG;

(-=+1(C=
:
))f;< (-=+1(C=

:
)) (�⌫=+1

9 ,2:
�⌫=+1

<,2:+1
� �⌫=+1

<,2:
�⌫=+1

9 ,2:+1
),

where we define

"
5 ,(2)
8,=,:

,
⇣ 3

0’
9=1

(f8 9 (-=+1(C=+1

2:+1
)) � f8 9 (-=+1(C=

:
)))

�
3
0’

9=1

3’
;=1

3
0’

<=1

�mf8 9
mG;

· f;<
�
(-=+1(C=

:
))�⌫=+1

<,2:

⌘
�⌫=+1

9 ,2:+1
,

"
5 ,(3)
8,=,:

,
3
0’

9=1

3’
;=1

3
0’

<=1

⇣ �mf8 9
mG;

· f;<
�
(-=+1(C=+1

2:+1
))

�
�mf8 9
mG;

· f;<
�
(-=+1(C=

:
))

⌘ e
�< 9 (C=+1

2:+1
, C
=

:+1
),

"
5 ,(1)
8,=,:

,
� 3’
9=1

m`
(=+1)
8

mG 9

(-=+1(C=
:
))

3
0’

<=1

f9< (-=+1(C=
:
))�⌫=+1

<,2:

��C=
2

,

176

#
5

8,=,:
,

�
`
(=+1)
8

(-=+1(C=+1

2:+1
)) � `(=+1)

8
(-=+1(C=

:
))

��C=
2

� " 5 ,(1)
8,=,:

=
⇣ 3’
9=1

m`
(=+1)
8

mG 9

(-=+1(C=
:
)) (-9 ,=+1(C=+1

2:+1
) � -9 ,=+1(C=

:
))

+1

2

3’
9=1

3’
<=1

m
2
`
(=+1)
8

mG 9 mG<

([) (-9 ,=+1(C=+1

2:+1
) � -9 ,=+1(C=

:
)) (-<,=+1(C=+1

2:+1
) � -<,=+1(C=

:
))

⌘�C=
2

� " 5 ,(1)
8,=,:

=
✓

3’
9=1

m`
(=+1)
8

mG 9

(-=+1(C=
:
))

⇣
`
(=+1)
9

(-=+1(C=
:
))�C=

2

+
’
<,;,e<

�mf9<
mG;

· f
;e<

�
(-=+1(C=

:
))e�

<e< (C=: , C=+1

2:+1
)
⌘

+1

2

3’
9 ,<=1

m
2
`
(=+1)
8

mG 9 mG<

(d) (-9 ,=+1(C=+1

2:+1
) � -9 ,=+1(C=

:
)) (-<,=+1(C=+1

2:+1
) � -<,=+1(C=

:
))

◆
�C=
2

,

for some d that lies between -=+1(C=
:
) and -=+1(C=+1

2:+1
). Furthermore, we similarly define #0

8,=,:
,"

0,(·)
8,=,:

associated with -0
=+1

(·), ⌫=+1,0 (C) and e
�
0 (C=+1

:+1
, C
=+1

:
) so that:

-
0

8,=+1
(C=
:+1

) = -0
8,=+1

(C=
:
) + `(=+1)

8
(-0

=+1
(C=
:
)) +

3
0’

9=1

f8 9 (-0
=+1

(C=
:
))�⌫=

9 ,:

+
3
0’

9=1

3’
;=1

3
0’

<=1

mf8 9

mG;

(-0
=+1

(C=
:
))f;< (-0

=+1
(C=
:
))e�0

< 9
(C=
:
, C
=

:+1
) + #0

8,=,:
+ "0,(1)

8,=,:
+ "0,(2)

8,=,:
+ "0,(3)

8,=,:
.

�
3
0’

9=1

3’
;=1

3
0’

<=1

mf8 9

mG;

(-0
=+1

(C=
:
))f;< (-0

=+1
(C=
:
)) (�⌫=+1,0

9 ,2:
�⌫=+1,0

<,2:+1
� �⌫=+1,0

<,2:
�⌫=+1,0

9 ,2:+1
).

177

Now, we write the recursion for -̄=+1(·) , 1

2

�
-=+1(·) + -0

=+1
(·)

�
over �C=:

-̄8,=+1(C=
:+1

) =-̄8,=+1(C=
:
) + `(=+1)

8
(-̄=+1(C=

:
))�C= +

3
0’

9=1

f8 9 (-̄=+1(C=
:
))�⌫=

9 ,:

+
3
0’

9 ,<=1

3’
;=1

mf8 9

mG;

(-̄=+1(C=
:
))f;< (-̄=+1(C=

:
))e�< 9 (C=

:
, C
=

:+1
) + '8,=,: ,

'8,=,: ,#
(1)
8,=,:

+ " (1)
8,=,:

+ " (2)
8,=,:

+ " (3)
8,=,:

+1

2

(# 5

8,=,:
+ " 5 ,(1)

8,=,:
+ " 5 ,(2)

8,=,:
+ " 5 ,(3)

8,=,:
+ #0

8,=,:
+ "0,(1)

8,=,:
+ "0,(2)

8,=,:
+ "0,(3)

8,=,:
),

#
(1)
8,=,:
,

1

2

⇣
`
(=+1)
8

(-=+1(C=
:
)) + `(=+1)

8
(-0

=+1
(C=
:
))

⌘
� `(=+1)

8
(-̄=+1(C=

:
)),

"
(1)
8,=,:
,

3
0’

9=1

⇣
1

2

�
f8 9 (-=+1(C=

:
)) + f8 9 (-0

=+1
(C=
:
))

�
� f8 9 (-̄=+1(C=

:
))

⌘
�⌫=

9 ,:
,

"
(2)
8,=,:
,

3
0’

9 ,<=1

3’
;=1

⇣
1

2

�
(
mf8 9

mG;

· f;<) (-=+1(C=
:
)) + (

mf8 9

mG;

· f;<) (-0
=+1

(C=
:
))

�

�
�mf8 9
mG;

· f;<
�
(-̄=+1(C=

:
))

⌘ e
�< 9 (C=

:
, C
=

:+1
),

"
(3)
8,=,:
,

3
0’

9 ,<=1

3’
;=1

1

2

�
(
mf8 9

mG;

· f;<) (-=+1(C=
:
)) � (

mf8 9

mG;

· f;<) (-0
=+1

(C=
:
))

�

· (�⌫=+1

9 ,2:
�⌫=+1

<,2:+1
� �⌫=+1

<,2:
�⌫=+1

9 ,2:+1
).

178

Finally, subtract the recursion in Num_Sol for -= (·) from -̄= (·) to obtain

-̄8,=+1(C=
:+1

) � -8,= (C=
:+1

)

=-̄8,=+1(C=
:
) � -8,= (C=

:
) + (`(=)

8
(-̄=+1(C=

:
)) � `(=)

8
(-= (C=

:
)))�C=

+ (`(=+1)
8
� `(=)

8
) (-̄8,=+1(C=

:
))�C=

+
3
0’

9=1

�
f8 9 (-̄8,=+1(C=

:
)) � f8 9 (-8,= (C=

:
))

�
�⌫=

9 ,:

+
3
0’

9 ,<=1

3’
;=1

�
(
mf8 9

mG;

· f;<) (-̄8,=+1(C=
:
)) � (

mf8 9

mG;

· f;<) (-8,= (C=
:
))

� e
�< 9 (C=

:
, C
=

:+1
)

+ '8,=,: .

Now, similarly as in the proof of Lemma 4.1, we simplify the notation by defining

b8,=,: , -̄8,=+1(C=
:
) � -8,= (C=

:
) and b=,: , -̄=+1(C=

:
) � -= (C=

:
),

and also

[8,=,:

,(`(=)
8

(-̄=+1(C=
:
)) � `(=)

8
(-= (C=

:
)))�C= +

3
0’

9=1

�
f8 9 (-̄8,=+1(C=

:
)) � f8 9 (-8,= (C=

:
))

�
�⌫=

9 ,:

+
3
0’

9 ,<=1

3’
;=1

�
(
mf8 9

mG;

· f;<) (-̄8,=+1(C=
:
)) � (

mf8 9

mG;

· f;<) (-8,= (C=
:
))

� e
�< 9 (C=

:
, C
=

:+1
)

+ '8,=,: + (`(=+1)
8
� `(=)

8
) (-̄8,=+1(C=

:
))�C=,

for 0  :  2
= � 1, so that b8,=,:+1 = b8,=,: + [8,=,: . Given ` [{`(=) }= ✓ L(!1), !1 > 1, we want

to find ⇠ > 1 and ?>;H(·) with ?>;H(G) > 1 when G > 1, such that if 2
=
> ?>;H(!1), then

E(b8,=,:)4  4⇠!1·C=
:�C4�X

=
, (6.75)

179

for all 8 2 [3] and 0  :  2
=. Similarly, we prove by induction on 0  :  2

= and by bounding

the terms of '8,=,: . We start by bounding # (1)
8,=,:

using Taylor expansion,

#
(1)
8,=,:
,

1

2

⇣
`
(=+1)
8

(-=+1(C=
:
)) � `(=+1)

8
(-0

=+1
(C=
:
))

⌘
� `(=+1)

8
(-̄=+1(C=

:
))

=
3’

9 ,<=1

⇣
m

2
`8 (d1)

mG 9 mG<

+
m

2
`8 (d

0
1
)

mG 9 mG<

⌘
(-9 ,=+1(C=

:
) � -0

9 ,=+1
(C=
:
)) (-<,=+1(C=

:
) � -0

<,=+1
(C=
:
))�C=

16

,

where d1 and d
0
1

lie somewhere between -
0

=+1
(C=
:
) and -=+1(C=

:
). Now we use Lemma 6.74 on

(-9 ,=+1(C=
:
) � -0

9 ,=+1
(C=
:
)) (-<,=+1(C=

:
) � -0

<,=+1
(C=
:
)) and Hölder’s inequality to get

E(# (1)
8,=,:

)4
< ?>;H(!1)�C8(2U�V)+4

=

?>;H(·) with ?>;H(G) > 1 when G > 1. In fact, based on the similar analysis on

#
5

8,=,:
,"

(1)
8,=,:

,"
(2)
8,=,:

,"
(3)
8,=,:

,"
5 ,(1)
8,=,:

,"
5 ,(2)
8,=,:

,"
5 ,(3)
8,=,:

as above, we can find some ?>;H(·) with ?>;H(G) > 1 when G > 1 that

E'4

8,=,:
 ?>;H(!1)�C8(2U�V)+2

=
. (6.76)

Then, as in proof of Lemma 4.1, we prove the hypothesis in (6.75) by induction. First of all, when

: = 0, for 8 2 [3], the claim holds since b8,=,0 , -
`

8,=
(0) � -8,= (0) = G � G = 0. Now, fixing

0  :  2
= � 1 and 8 2 [3], suppose the induction hypothesis holds so that we can find ⇠ > 1

where E|b4

8,=, 9
|  4⇠!1·C=

9 · �C4�X
=

for all 0  9  : . We want to show, E|b4

8,=,:+1
|  4⇠!1·C=

:+1 · �C4�X
=

180

for all 8 2 [3]. Use similar analysis as in proof of Lemma 4.1, we obtain

E[4

8,=,:
4⇠1!1C

=

:�C5�X
=

(?>;H(!1)�C1+8(2U�V)�(4�X)
=

+ 2!
4

1
�C3
=
+ 2!

4�C=),

E(b3

8,=,:
[8,=,:) 4⇠!1C

=

:�C5�X
=

(2!1 + 2!1�C
X

4
+2(2U�V)�1

=
),

Eb8,=,: ([8,=,:)3 4⇠!1C
=

:�C5�X
=

(?>;H(!1) + 2!
4

1
+ 2!

4)�C
1

2

=
,

E(b8,=,:)2([8,=,:)2 4⇠!1C
=

:�C5�X
=

�
?>;H%(!1)�C8(2U�V)�(4�X)=

+ 2!
4

1
�C2
=
+ 2!

4
� 1

2
. (6.77)

for some ?>;H(·) with ?>;H(G) > 1 when G > 1. Thus, we can find some ?>;H0(·) with ?>;H0(G) >

1 when G > 1, such that 2
=
> ?>;H

0(!1), we can find Let ⇠ = 5 + 2! > 1 that

(2!1 + 2!1�C
X

4
+2(2U�V)�1

=
) 3!1,

(?>;H(!1)�C1+8(2U�V)�(4�X)
=

+ 2!
4

1
�C3
=
+ 2!

4�C=) 1,

(?>;H(!1) + 2!
4

1
+ 2!

4)�C
1

2

=
1,

�
?>;H(!1)�C8(2U�V)�(4�X)=

+ 2!
4

1
�C2
=
+ 2!

4
� 1

2 2!
2
. (6.78)

Consequently, when 2
=
> ?>;H

0(!1), we use the bound in Equations (6.78) (SP) to obtain

E(b8,=,:+1)4 4⇠!1C
=

:�C4�X
=

+ 4⇠!1C
=

:�C5�X
=

(3!1 + 2 + 2!
2)

4⇠!1C
=

:�C4�X
=

· (1 + ⇠!1�C=)  4⇠!1C
=

:+1�C4�X
=

, (6.79)

where the last line follows from convexity of exponential function 4H � 4G + 4G · (H � G) for H � G.

Now we use the method as in the proof of Lemma 4.1 to extend the induction hypothesis to the

case where �C=  ?>;H0(!1). This concludes the proof. ⇤

6.9 Proof of Supporting Lemmas

First, we use the Levy-Ciesielski construction of the Brownian motion (see [202]).

Lemma 28. Let {*<

9
: 1  9  2

<�1
,< � 1} along with *0

0
be a sequence of I.I.D standard

181

normal random variables, and we define

� (C) , I(0  C < 1/2) � I(1/2  C  1), (6.80)

along with its family of functions {�<

9
(C) = 2

</2
� (2<�1

C � 9 + 1) : 1  9  2
<�1

,< � 1} and

constant function �0

0
(·) = 1. Now, if we define ⌫(C) for C 2 [0, 1] by

⌫(C) , *0

0

π
C

0

�
0

0
(B)3B +

’
<�1

2
<�1’
9=1

⇣
*
<

9

π
C

0

�
<

9
(B)3B

⌘
, (6.81)

then it can be shown that the right-hand side converges uniformly on [0,1] almost surely and the

process {⌫(C)}
C2[0,1] is a standard Brownian motion on [0,1].

Proof. See Section 2.3 of [201]. ⇤

Changing the sign of a standard Gaussian does not change its distribution. Thus the above

theoretical construction a way to define ⌫(=+1),0 (C) related to Definition 4.

Corollary 6.9.0.1. Fixing = � 0 and the sequence of I.I.D. standard Gaussian {*<

9
: 1  9 

2
<�1

,< � 1} along with*0

0
, we can define

⌫
=+1,0 (C) , *0

0

π
C

0

�
0

0
(B)3B+

2
=’

9=1

⇣
�*=+1

9

π
C

0

�
=+1

9
(B)3B

⌘
+

’
<�1

<<=+1

2
<�1’
9=1

⇣
*
<

9

π
C

0

�
<

9
(B)3B

⌘
, (6.82)

which is a again Brownian motion on [0,1].

Lemma 29. Given a sequence of I.I.D. standard Gaussian {*<

9
: 1  9  2

<�1
,< � 1}. For

0  C  1 and = � 0, define ⌫(C) as in (6.81) and ⌫=+1,0 (C) as in (6.82). Let

�⌫=+1

:
=⌫(C=+1

:+1
) � ⌫(C=+1

:
),

�⌫=+1,0

:
=⌫(=+1),0 (C=+1

:+1
) � ⌫(=+1),0 (C=+1

:
). (6.83)

182

for 1  :  2
=+1 � 1. Then �⌫=+1

:
and �⌫=+1,0

:
satisfy equations (2.5) and (2.6) in Definition 2.3.

Thus, we may regard -0
=+1

(·) to be -=+1(·) generated under Brownian motion ⌫=+1,0 (·) instead of

⌫(·).

Proof of Lemma 29. By Definition 28, for = � 1 and 0  :  2
=�1 � 1,

8>>>><
>>>>:

Ø
C
=

2:+1

C
=

2:

�
<

9
(C)3C =

Ø
C
=

2:+2

C
=

2:+1

�
<

9
(C)3C for all < < = and 1  9  2

<�1

Ø
C
=

2:+1

C
=

2:

�
<

9
(C)3C = �

Ø
C
=

2:+2

C
=

2:+1

�
<

9
(C)3C for all < = = and 1  9  2

<�1
.

(6.84)

Thus, we have that, for 0  :  2
= � 1,

⌫
=+1,0 (C=+1

2:+1
) � ⌫=+1,0 (C=+1

2:
) =⌫(C=+1

2:+2
) � ⌫(C=+1

2:+1
) = �⌫=+1,0

2:
,

⌫
=+1,0 (C=+1

2:+2
) � ⌫=+1,0 (C=+1

2:+1
) =⌫(C=+1

2:+1
) � ⌫(C=+1

2:
) = �⌫=+1,0

2:+1
,

by simply taking the difference in (6.82) and checking (6.84). ⇤

Proof of Lemma A.2. Following Definition A.2, define '=
8, 9
(C=
;
, C
=

<
) = Õ

<

:=;+1
�8, 9 (C=

:�1
, C
=

:
) for 0 

; < <  2
=
, 8, 9 2 [30] and 8 < 9 . Then, we can define

�' , sup

=�1

sup

0BC1

B,C2⇡=

max

18, 93 0,8< 9

|'=
8, 9
(B, C) |

|C � B |V�C2U�V
=

,

�
'�'̃ , sup

=�1

sup

0BC1

B,C2⇡=

max

18, 93 0,8< 9

|'=
8, 9
(B, C) � '̃=

8, 9
(B, C) |

|C � B |V�C2U�V
=

,

Observing the definition for both the case 8 = 9 and 8 < 9 , we have

k �̃k2U  k�k2U + k⌫k2U and �
'̃
 �' + �

'�'̃ . (6.85)

Now, following Lemma 3.1 in [200], we define a family of random variables (!=
8, 9
(:) : : =

183

0, 1, ..., 2
=�1

, 8, 9 2 [30], 8 < 9 , = � 1) satisfying !=
8, 9

(0) = 0 and

!
=

8, 9
(:) = !=

8, 9
(: � 1) +

�
⌫8

�
C
=

2:�1

�
� ⌫8

�
C
=

2:�2

� � �
⌫9

�
C
=

2:

�
� ⌫9

�
C
=

2:�1

� �
.

Then, following Lemma 3.4 and its proof in [200], we define, for 8, 9 2 [30] and 8 < 9 ,

#8, 9 ,2 = max{= : |!=
8, 9
(<) � !=

8, 9
(;) | > (< � ;)V�C2U

=
for some 0  ; < <  2

=�1},

and define #2 = max{#8, 9 ,2 : 8, 9 2 [30], 8 < 9} along with

�! , max{1, max

18, 93 0,8< 9
max

=<#2

max

0;<<<2
=�1

|!=
8, 9

(<) � !=
8, 9

(;) |
(< � ;)V �C2U

=

}.

Finally, we use Definition A.2 and apply the result of Lemma 3.5 in [200] to write:

�' 
2
�(2U�V)

1 � 2
�(2U�V) · �! , and k�k2U  �' ·

2

1 � 2
�2U

+ k⌫k2
U
· 2

1�U

1 � 2
�U .

Thus, it suffices to show that k⌫kU, �! and �
'�'̃ has finite moments of every order. For k⌫kU, it

follows from Borell’s inequality for continuous Gaussian random fields (see Section 2.3 of [204]).

To show the result for �! , we follow the proof of Lemma 3.4 in [200] to show that P(#8, 9 ,2 � =) is

bounded by

1’
⌘==

P(|!⌘
8, 9
(<) � !⌘

8, 9
(;) | > (< � ;)V�C2U

=
for some 0  ; < <  2

=�1)


1’
⌘==

2
2⌘

exp(�\02⌘(1�2U))  exp(�\
0

2

· 2
=(1�2U))

1’
⌘=0

2
2⌘

exp(�\
0

2

· 2
⌘(1�2U))

 ⇠ exp(�\
0

2

· 2
=(1�2U)), (6.86)

for some ⇠ > 1 and \0 > 0. It follows that,

P(#2 � =)  ⇠ (30)2
exp(�\

0

2

· 2
=(1�2U)), (6.87)

184

E (exp ([#2)) 
1’
==1

⇠ (30)2
exp ([=) exp(�\

0

2

· 2
=(1�2U)) < 1, (6.88)

for every [> 0. On the other hand, since for < > ;, =  #2, we have

(< � ;)�V�C�2U

=
= (< � ;)�V22U=  2

2U#2
,

�!  1 + 2
2U#2 ·

�
max

18, 93 0,8< 9
max

=<#2

max

0;<<<2
=�1

|!=
8, 9

(<) � !=
8, 9

(;) |
�
.

Since #2 has a finite moment-generating function on the real line according to (6.88), in order to

establish that �! has finite moments of every order, it suffices to show that

E[(
#2’
==1

2
=�1’

1<;<<

3
0’

18< 9
|!=
8, 9

(<) � !=
8, 9

(;) |):] < 1.

for every : � 1. Letting =̄ be the number of total elements being summed up inside the previous

expectation, it follows that =̄  #2 · 2
2#2 (30)2 and therefore, by (6.27)

E(
#2’
==1

2
=�1’

1<;<<

3
0’

18< 9
|!=
8, 9

(<) � !=
8, 9

(;) |):  E=̄:�1

#2’
==1

2
=�1’

1<;<<

3
0’

18< 9
|!=
8, 9

(<) � !=
8, 9

(;) |:


#2’
==1

2
=�1’

1<;<<

3
0’

18< 9
E

h
(#2 · 2

2#2 (30)2):�1 |!=
8, 9

(<) � !=
8, 9

(;) |: � (#2 � =)
i
.

To bound these terms, we first show that, fixing any ⌘ � 1, E|!=
8, 9
(<) � !=

8, 9
(;) |⌘ is uniformly

bounded for any = � 1, 1  ; < <  2
=�1

, 1  8, 9  = and 8 < 9 . Let {.80}80�1 be I.I.D. with

.

D= /1 · /2 where /1, /2 are independent standard Gaussian. It follows from Hölder’s inequality

and Jensen’s inequality that we can find ⇠⌘ > 0 such that E|
Õ
=

8=1
.
8
0

=
|⌘ < ⇠⌘ for all = � 1. Then

E|!=
8, 9
(<)�!=

8, 9
(;) |⌘ < ⇠⌘ follows from |!=

8, 9
(<)�!=

8, 9
(;) | 3= |�C=

Õ
<�;
8
0=1
.80 |  |

Õ
<�;
8
0=1
.
8
0

<�; |. Specifically

E|!=
8, 9
(<) � !=

8, 9
(;) |4: < ⇠4: for all = � 1. Now we can use Hölder’s inequality multiple times and

185

the fact that #2 has moment-generating function to conclude:

⇢

h
(30)2(:�1)

2
3#2 (:�1) |!=

8, 9
(<) � !=

8, 9
(;) |: � (#2 � =)

i
 ⇠0 5 (#2 � =)1/2

,

for ⇠0 > 1 and it follows from (6.87) that �! has moments of every order. Finally, for �
'�'̃, define

{!̃=
8, 9
(:) : : = 0, 1, ..., 2

=
, 8, 9 2 [30], 8 < 9 , = � 1} with !̃=

8, 9
(0) and

!̃
=

8, 9
(:) = !̃=

8, 9
(: � 1) +

�
⌫8

�
C
=

:

�
� ⌫8

�
C
=

:�1

� � �
⌫9

�
C
=

:

�
� ⌫9

�
C
=

:�1

� �
,

#̃2 = max{= : | !̃=
8, 9
(<) � !̃=

8, 9
(;) | > (< � ;)V�C2U

=
for some 0  ; < <  2

=

, 8, 9 2 [30], 8 < 9},

�
!̃
, max{1, max

18, 93 0,8< 9
max

=<#̃2

max

0;<<<2
=�1

| !̃=
8, 9

(<) � !̃=
8, 9

(;) |
(< � ;)V �C2U

=

}.

Then, for 1  8, 9  30, 8 < 9 , = � 1 and 0  B < C  1, B, C 2 ⇡=, we have

'
=

8, 9
(B, C) � '̃=

8, 9
(B, C) =

C2
=’

:=B2=+1

e
�8, 9 (C=

:�1
, C
=

:
) = !̃=

8, 9
(C2=) � !̃=

8, 9
(B2=), (6.89)

which implies �
'�'̃  �

!̃
. We can now proceed to show �

!̃
has finite moments of every order in

the similar fashion as we did for �! . This completes the proof. ⇤

Proof of Lemma A.3. Let -M
=

(·) be the Milstein discretization for �C= :

-
M
8,=

(C=
:+1

) = -M
8,=

(C=
:
) + `8 (-M

=
(C=
:
))�C= +

3
0’

9=1

f8 9 (-M
=

(C=
:
))�⌫=

9 ,:

+
3
0’

9=1

3’
;=1

3
0’

<=1

mf8 9

mG;

(-M
=

(C=
:
))f;< (-M

=
(C=
:
))�< 9 (C=

:
, C
=

:+1
),

where we use �8 9 (B, C) instead of e
�8 9 (B, C) defined in (24) (This distinguishes -M

=
(·) from -= (·),

our antithetic scheme). Then, ` [{`(=) }= ✓ L(!1), !1 > 1, we compute constant ⇠1 explicitly

in terms of !1, k⌫kU and k�k2U (denoted as " , k/ kU and k�k2U in [200]) such that for = large

enough and A, C 2 ⇡=, k-M
=

(C) � -M
=

(A)k1  ⇠1 |C � A |U. See page 305 of [200, Lemma 6.1].

186

To get the result for -= (·) instead of -M
=

(·), we follow page 283 of [200, Lemma 2.1], replacing

k�k2U by k �̃k2U in notation, we define

8>>>>>>>><
>>>>>>>>:

⇠1(X) = 3̄!1k⌫kU + 1/2,

⇠2(X) = 3̄3
!

2

1
k�k2U + 1/2,

⇠3(X) = 2

1�2
1�3U

(3̄!1⇠1(X)2k⌫kU + 3̄2
!1⇠2(X)k⌫kU + 3̄2

!
2

1
k⌫kU + 23̄

3
!

2

1
⇠1(X)k�k2U),

and find some ?>;H(·) with ?>;H(G) > 1 when G > 1 so that if

X = (P(!1, k⌫kU, k�k2U))�1
,

then

⇠3(X)X2U + !1X
1�U + 3̄3

!
2

1
k�k2UXU < 1/2 and ⇠3(X)XU < 1/2, (6.90)

so that Equation (6.4) in page 308 of [200, Lemma 6.1] is satisfied:

8>>>>>>>><
>>>>>>>>:

⇠1(X) � 3̄!1k⌫kU + !1X
1�U + 3̄!1k⌫kU + 3̄3

!
2

1
ke�k2UXU,

⇠2(X) � 3̄3
!

2

1
k�k2U + 3̄3

!
2

1
ke�k2U,

⇠3(X) � 2

1�2
1�3U

(3̄!1⇠1(X)2k⌫kU + 3̄2
!1⇠2(X)k⌫kU + 3̄2

!
2

1
k⌫kU + 23̄

3
!

2

1
⇠1(X)k�k2U),

which gives, according to line 12 � 17 of page 308 of [200, Lemma 6.1], that

k-= (C) � -= (A)k1 
2

X

⇠1(X) |C � A |U, (6.91)

for all = large enough where �C=  1

2
X. Notice we changed the result to address -= (·) instead of

-
M
=

(·), and so far it follows from an modification of [200, Lemma 6.1].

To extend the result for = where �C= > X

2
, notice the recursion in Num_Sol is carried out at most 2

=

number of times and 2
= = (�C=)�1

< 2(X)�1 = 2?>;H(!1, k⌫kU, k�k2U). By analyzing Num_Sol,

187

we have

k-= (C=
:+1

) � -= (C=
:
)k1 3̄ (⇠!1�C= + 3̄!k⌫kU�CU= + 3̄3

!
2k�k2U�C2U=)

3̄ (⇠!1 + 3̄!k⌫kU + 3̄3
!

2k�k2U)�CU= ,

for some ⇠ > 1. Since �C= < 1, thus, for �C= > X

2
, k-= (C) � -= (A)k1 is bounded by

|C � A |�CU
=

�C=
3̄ (⇠!1 + 3̄!k⌫kU + 3̄3

!
2k�k2U)

3̄ (⇠!1 + 3̄!k⌫kU + 3̄3
!

2k�k2U)
|C � A |21�U

X
1�U

23̄ (⇠!1 + 3̄!k⌫kU + 3̄3
!

2k�k2U) · ?>;H(!1, k⌫kU, k�k2U) · |C � A |U, (6.92)

where the last line follows from ?>;H(G) > 1 when G > 1 and |C � A | < 1. The second to last line

follows from �C= > X

2
. We now combine (6.91) and (6.92) and let

?>;H
0(!1, k⌫kU, k�k2U)

,23̄ (⇠!1 + 3̄!k⌫kU + 3̄3
!

2k�k2U) · ?>;H(!1, k⌫kU, k�k2U) ·
2

X

⇠1(X),

be the polynomial k-= (C) � -= (A)k1  ?>;H0(!1, k⌫kU, ke�k2U) |C � A |U for all =. ⇤

Proof of Lemma A.4. The discretization -̂= (·) from Equation (2.4) on page 280 of [200] is defiend

as:

-̂
=

8
(C=
:+1

) =-̂=
8
(C=
:
) + `8 (-̂= (C=

:
))�C= +

3
0’

9=1

f8 9 (-̂= (C=
:
))�⌫=

9 ,:

+
3
0’

9=1

3’
;=1

3
0’

<=1

mf8 9

mG;

(-̂= (C=
:
))f;< (-̂= (C=

:
)) �̂< 9 (C=

:
, C
=

:+1
),

where �̂8, 9 (B, C) = 0 for 8 < 9 and �̂8,8 (B, C) = �8,8 (B, C) for 8 2 [3] as in Definition A.2. Moreover,

188

it is defined on page 280 of [200], as in Definition A.2, that

'
=

8, 9
(C=
;
, C
=

<
) ,

<’
:=;+1

{�8, 9 (C=
:�1

, C
=

:
) � �̂8, 9 (C=

:�1
, C
=

:
)}

�' , sup

=�0

0BC1

B,C2⇡=

max

18, 93 0

|'=
8, 9
(B, C) |

|C � B |V�C2U�V
=

.

With a slight change in notation, we replace " with !1(l), k/ kU with k⌫kU, then according

to [200, Theorem 2.1], we can find constant ⌧ (for notation consistency with [200]) explicitly

in terms of !1, U, 2U and ' such that k -̂= (C) � -C k1  ⌧�C2U�V=
where we may take U =

k⌫kU, 2U = k�k2U and ' = �' + 1. To prove a similar result for k-`
=
(C) � -C k1 instead of

k -̂= (C) � -C k1, we replace �' with our �e' defined in Definition A.2, the proof will follow exactly

as in the proof of Theorem 2.1 in [200][Proposition 6.1 and 6.2]. Particularly, we are able to

compute constant ⌧ in terms of !1(l), k⌫kU, k�k2U and �e' such that k-`
=
(C) � -C k1  ⌧�C2U�V=

,

for = large enough. However, we can extend the result to hold for all = using the the method in the

proof of Lemma A.3. Moreover, following Section 2.2 on pages 282�283 of [200] (part of which is

shown in Lemma A.3), the construction of the constant⌧ only involves multiplication and addition

among the variables !1,k⌫kU,k�k2U, �e' and constants. Thus there exists ?>;H00(·) : R4 ! R with

?>;H
00(G, ·, ·, ·) > 1 when G > 1

k-`
=
(C) � -C k1  ?>;H00(!1, k⌫kU, k�k2U, �e')�C2U�V=

.

⇤

Proof of Lemma 27. Given ` [{`(=) }= ✓ L(!1), !1 > 1. Denote {- (C; `, ⌫)}
C2[0,1] to be the

solution of SDE under `(·) and Brownian motion ⌫. Let -= (C; `(=+1)
, ⌫) Num_Sol but under

`
(=+1) 2 L1 instead of `(=) . Since �⌫=

:
are the same for ⌫(·) and ⌫(=+1),0 (·) by Eqautions (2.6),

we have -= (1; `
(=+1)

, ⌫) = -= (1; `
(=+1)

, ⌫
=+1,0).

189

Thus k-=+1(1) � -0
=+1

(1)k1 is bounded by

k-=+1(1) � -= (1; `
(=+1)

, ⌫)k1 + k-0
=+1

(1) � -= (1; `
(=+1)

, ⌫
=+1,0)k1

k-=+1(1) � - (1; `
(=+1)

, ⌫)k1 + k-= (1; `
(=+1)

, ⌫) � - (1; `
(=+1)

, ⌫)k1

+ k-0
=+1

(1) � - (1; `
(=+1)

, ⌫
=+1,0)k1 + k-= (1; `

(=+1)
, ⌫

=+1,0) � - (1; `
(=+1)

, ⌫
=+1,0)k1

2

⇣
?>;H

00(!1, k⌫kU, k�k2U, �e') + ?>;H00(!1, k⌫=+1,0kU, k�=+1,0k2U, �e'=+1,0)
⌘
�C2U�V
=

.

The last line follows from Lemma A.4 where quantity k⌫=+1,0kU, k�=+1,0k2U, �e'=+1,0 is defined

for ⌫=+1,0 (·) as for ⌫(·) in Definition A.1. Now, raising above inequality to the eighth power and

using A.2, there exists some ?>;H(·) with ?>;H(G) > 1 when G > 1

Ek-=+1(1) � -0
=+1

(1)k81  ?>;H(!1)�C8(2U�V)=
,

for all = � 0. ⇤

Proof of Lemma A.1. By the Gaussian tail bound
Ø 1
b

4
� C2

2 3C  1

b
4
� b

2

2 for all b > 0,

P("n > 1) = 1 �
1÷
==1

P(|/= |  1=n)  1 �
1÷
==1

(1 � 2

p
2c · 1=n

4
� 12

=
2n

2).

Thus, we have E[4C"n] =
Ø 1
0
P(4C"n

> 1)31 which is bounded by

3 +
π 1

3

P("n >

log(1)
C

)31  3 +
π 1

3

(1 �
1÷
==1

(1 � 2C

p
2c=

n · log(1)
4
� log(1)2=2n

2C
2))31 < 1,

according to calculation. ⇤

190

Chapter 7: Unbiased Gradient Simulation for Stochastic Composition

Optimization

We introduce unbiased gradient simulation algorithms for solving stochastic composition opti-

mization (SCO) problems. We show that the unbiased gradients generated by our algorithms have

finite variance and finite expected computational cost. Therefore, the unbiased gradients can be

directly used to solve SCO problems by applying the Stochastic Gradient Descent method (SGD)

and have an iteration complexity of $ (n�1) for strongly convex SCOs. We also show how to com-

bine unbiased gradient simulation with variance reduction techniques such as stochastic variance

reduced gradient (SVRG) or stochastically controlled stochastic gradient (SCSG) to achieve state-

of-the-art theoretical convergence rates as well as practical performances. Finally, we illustrate the

effectiveness of our algorithms through experiments on datasets arising from statistics and machine

learning, specifically, Cox’s partial likelihood model and conditional random field models.

7.1 Introduction

In statistics and machine learning, we often encounter the generic stochastic optimization prob-

lem

min

G2D
� (G) , EE 5E (G), (7.1)

where 5E is a convex function indexed by random variable E, EE denotes expectation with respect to

E, and D ⇢ R3 is a compact convex set. A special case of (7.1) is the empirical risk minimization

191

(ERM) problem when E is from the uniform random variable on {1, 2, . . . , =}, that is,

min

G2D
�= (G) ,

1

=

=’
8=1

58 (G). (7.2)

When obtaining the full gradient is computationally intensive, a popular method for solving these

problems is the (projected) stochastic gradient descent (SGD) algorithm, which can be described

by the following update rule for C = 1, 2, ...

GC = ⇧D{GC�1 � _Cr 5EC (GC�1)}, (7.3)

where EC is sampled from the distribution of E for generic optimization problems and from the

uniform distribution on {1, 2, ..., =} for ERM problems, _C is the step size, and ⇧D is the projection

operator on to D. It is well known that convergence of SGD requires a diminishing step size _C

and thus results in a worse convergence rate than gradient descent algorithms. [205] observed that

the inferior rate of SGD is caused by the fact that stochastic gradients do not converge to 0 as the

iterates converge to the optimal solution. Base on this observation, they improved the SGD by

applying a control variate variance reduction technique to the stochastic gradient generation which

is known as the SVRG algorithm. SVRG has been shown to converge linearly to the optimal

solution for strongly convex ERM problems and performs well in practice. These algorithms

implicitly assume that the gradient of each member function 5E (·) is easy to compute. But this

assumption does not hold in the so-called stochastic composition optimization (SCO) problem

[206]:

min

G2D
� (G) , EE 5E (EF6F (G)),

192

where E and F are random variables with certain known joint distributions nor its finite sample

version:

min

G2D
�= (G) ,

1

=

=’
8=1

58{
1

<8

<8’
9=1

68 9 (G)}. (7.4)

Problems of this form arise in many areas such as reinforcement learning and risk-averse learning

to graphical models, econometrics and survival analysis. As far as we know, all current algorithms

that are used to solve SCO problems are based on biased stochastic gradient oracles. The conver-

gence rates for these algorithms are unsatisfactory compared to the algorithms for solving generic

stochastic optimization problems, except for the Comp-SVRG algorithms in [207]. Their algo-

rithms are also based on biased stochastic gradients, but the modified variance reduced gradients

vanish as the iterates converge to the optimal solution. Therefore, linear convergence can be proved

for the finite sum version of SCO when strong convexity is present. However, the number of sam-

ples that are needed to construct a variance reduced gradient depends on the condition number of

the objective function. All these drawbacks are the result of biased stochastic gradients. If unbi-

ased stochastic gradients can be generated for SCO problems, we can treat SCO problems in the

same way that we treat generic stochastic optimization problems and apply SGD and its variants

to solve it.

7.1.1 Contributions

The contributions of this chapter can be summarized as follows.

• We introduce unbiased gradient simulation algorithms that are based on a multilevel Monte

Carlo technique for solving smooth SCO problems. We also show that the output of these

algorithms has finite variance and its expected computational cost is finite.

• Based on our unbiased gradient simulation algorithms, a stochastic composition optimization

problem can be considered as a generic stochastic optimization problem. This is because we

can simply apply SGD to solve SCO problems and achieve the same iteration complexity as

193

using SGD to solve generic stochastic optimization problems.

• We also show that our unbiased gradient simulation algorithm can be combined with variance

reduction techniques including SVRG [205] and SCSG [208], yielding variance reduced

optimization algorithms that converge linearly to the optimum of a SCO problem.

7.1.2 Related work

In the current SCO literature, as far as we know, all the algorithms used to solve SCO prob-

lems are based on biased stochastic gradients. [206] first proposed a generic algorithm for solv-

ing (7.5) with an iteration complexity of $ (n�3/2) for strongly convex objectives and $ (n�4) for

general convex objectives. This result is further improved to $ (n�5/4) for strongly convex objec-

tives and $ (n�7/2) for general convex objectives in [209]. For strongly convex objectives with

finite sum structure, ([207]) modified the SVRG algorithm and achieved a sample complexity

$ ((< + =) log(1/n)). Stochastic algorithms using biased gradient methods also appeared in [210]

for non-convex SCOs.

We propose unbiased gradient simulation methods that are based on a multilevel Monte Carlo

technique for solving smooth SCO problems. Unbiased simulation methods for functions of ex-

pectations using multilevel Monte Carlo techniques were developed in [191] and [192]. Such

techniques have been heavily used in simulation algorithms to solve problems that require high ac-

curacy estimates such as stochastic differential equation [211, 187, 212], stochastic partial differen-

tial equations [213], and Markov Chains [214]. They also have been used to reduce computational

cost through variance reduction techniques [188, 189, 179, 184].

We also consider variance reduced stochastic gradient algorithms that are based on unbiased

gradient simulation. A number of variance reduction techniques have been proposed for strongly

convex ERM problems in the literature including control variate see SVRG in ([205]) and SDCA

in ([215]), incremental gradients in [216] and SAGA in [217], and importance sampling in [218].

The analysis of these methods and their variants can be find in [219, 220, 221, 222, 223, 224].

A summary of the iteration complexity for current algorithms on smooth SCO is presented in

194

Table 1. In particular, SimGD, SimVRG and SCSimG are proposed in this chapter. We report

iteration complexity instead of sample complexity due to the special randomization component in

the gradient estimator construction. This component is critical for our estimator to be unbiased,

but the trade-off is the difficulty during the analysis of sample complexity. We will discuss the

related issue into detail in later sections.

Table 7.1: Iteration complexity of different algorithms for solving smooth SCO problems.

Convex Strongly Convex

Basic SCGD [206] $ (1/n4) $ (1/n3/2)
Accelerating SCGD [209] $ (1/n7/2) $ (1/n5/4)

Compositional SVRG-1 [207] N.A. $ (log(1/n))
Compositional SVRG-2 [207] N.A. $ (log(1/n))
SimGD (our variant of SGD) $ (1/n2) $ (1/n)

SimVRG (our variant of SVRG) N.A. $ (log(1/n))
SCSimG (our variant of SCSG) N.A. $ (log(1/n))

The basic SCGD and accelerating SCGD makes 2 sampling queries in every iteration, Com-

positional SVRG-1 and Compositional SVRG-2 make
Õ
=

8=1
<8 and additional constant number of

sampling queries in every iteration. SimGD makes a random number of sampling queries in every

iteration and the expectation of this random number is finite. SimSVRG makes
Õ
=

8=1
<8 and addi-

tional random number of sampling queries in every iteration and the the expectation of this random

number is finite. SCSimG makes
Õ
=

8=1
<8^1/n and additional random number of sampling queries

in every iteration and the the expectation of this random number is finite.

7.1.3 Organization

The rest of the chapter is organized as follows. In section 2, we describe the problem for-

mulations and introduce the notation that we will use. We then introduce our unbiased gradient

simulation algorithms and the optimization algorithms that are based on these unbiased simula-

tions. In section 3, we give concrete examples of SCO problems that arise in a variety of areas and

explain how our algorithms are well-suited to solve them. In section 4, we prove several important

195

theoretical properties of our gradient simulation algorithm. In particular, its unbiasedness, finite

variance and finite expected computational cost. We also show it has a certain “Lipschitz” property

that makes it suitable for combining with variance reduction algorithms such as SVRG and SCSG.

Finally, we prove the convergence properties of our algorithms. In section 5, we present numerical

results obtained using our algorithms for maximizing Cox’s partial likelihood and training condi-

tional random fields.

7.2 Problem Description and Algorithms

7.2.1 Problem description and Notations

Throughout this chapter, we consider the following smooth stochastic composition optimiza-

tion problem

min

G2D
� (G) , EE 5E (EF6F (G)). (7.5)

We define the support of the distributions E and F to be ⌦E and ⌦F. Note that the following two

problems can be considered as special cases of (7.5); the first one is the finite sum problem:

min

G2D
�= (G) ,

1

=

=’
8=1

58 (
1

<8

<8’
9=1

68 9 (G)), (7.6)

and the second one is the mixed problem:

min

G2D

1

=

=’
8=1

58 (EF6F (G)). (7.7)

Later, we will discuss algorithms for these two special cases.

As for the notation, for a vector E 2 R=, we use [E]8 to denote the 8-th entry for 1  8  = and

196

use kEk? to denote its !?-norm. For a matrix � 2 R<⇥=, we use [�]8 9 , [�]: 9 and [�]8: to denote the

(8, 9)-th entry, 9-th column and 8-th row for every 1  8  < and 1  9  =. We use k�k2 and k�k�

to denote its spectrum norm and Frobenius norm. We use k�k1 to denote the maximum absolute

value of the entries of �, that is, k�k1 = max{| [�]8 9 | | 1  8  <, 1  9  =}. For a multi-linear

map ⌫ 2 R<⇥=⇥?, we use [⌫]8 9 : 2 R to denote its (8, 9 , :)-th entry, use [⌫]: 9 : 2 R<,[⌫]8:: 2 R=,

and [⌫]8 9 : 2 R1⇥? to denote its (9 , :)-th column fiber,(8, :)-th row fiber, and (8, 9)-th tube fiber,

and use [⌫]::: 2 R<⇥=, [⌫]: 9 : 2 R<⇥? and [⌫]8:: 2 R=⇥? to denote its :-th frontal slice, 9-th

lateral slice and 8-th horizontal slice, where 1  8  <, 1  9  = and 1  :  ?. We define

k⌫k1 = {| [⌫]8 9 : | | 1  8  <, 1  9  =, 1  :  ?}. Moreover, we use vec(·) to denote the

vectorize operation for one matrix or a multi-linear map. When there are multiple arguments in

vec(), it vectorize each component and stack them into another vector.

We write the Jacobian (with respect to G) of the vector valued 6F (·) as

r6F (G) =
©≠≠≠≠≠
´

m [6F]1

m [G]1

(G) · · · m [6F]1

m [G] ? (G)
.
.
.

.
.
.

.

.

.

m [6F]3
m [G]1

(G) · · · m [6F]3
m [G] ? (G)

™ÆÆÆÆÆ
¨
,

where

6F (G) = ([6F]1(G), [6F]2(G), . . . , [6F]3 (G))>.

It then follows from the chain rule that the gradient (with respect of G) of 5E (·) for the stochastic

problem is {EFr6F (G)}r 5E{EF6F (G)} and

r� (G) = {EFr6F (G)}|EE{r 5E (EF6F (G))}. (7.8)

We use r2
6F (G) 2 R3⇥?⇥? to denote the Hessian (with respect to G) of the vector valued 6F (·) and

197

use r2
6F (G) [D, E] 2 R3 to denote the vector that r2

6F (G) acting on D, E 2 R?, that is,

[r2
6F (G) [D, E]]8 =

?’
9=1

?’
:=1

[r2
6F (G)]8 9 : [D] 9 [E]: =

?’
9=1

?’
:=1

[r2 [6F]8 (G)] 9 : [D] 9 [E]: .

Finally, we introduce the following notations used in our gradient simulation algorithms. Let

�= (E1) = {F8}=
8=1

be a collection of random variables that are i.i.d. generated from the distribution

of F given E = E1, where E and F are the random variables in problem (7.5). Given the samples

�= (E1), let

6(G; =1, =2) =
1

=2 � =1 + 1

=2’
8==1

6F8
(G),

r6(G; =1, =2) =
1

=2 � =1 + 1

=2’
8==1

r6F8 (G), and

r2
6(G; =1, =2) =

1

=2 � =1 + 1

=2’
8==1

r2
6F8

(G),

for G 2 D ⇢ R? and 1  =1  =2  =. These quantities are unbiased estimates of EF6F (G),

EFr6F (G) and EFr2
6F (G). In addition, let

H̄(G; =1, =2) = r6(G; =0, =1)>r 5E (6̄(G; =1, =2)),

which is the gradient of 5E1
(6̄(G; =1, =2)). This is an estimate of r{EE 5E (EF6F (G))} however, it is

a biased estimate, that is,

EH̄(G; =1, =2) < r
�
EE 5E{EF6F (G)}

�
.

Since the samples are i.i.d., the expectation of H̄(G; =1, =2) only depends on the distribution of F

condition on E = E1, and the number of samples that are used to construct H̄(G; =1, =2). Then, we

write

B(G; =2 � =1 + 1, E1) = E{H̄(G; =1, =2) |E = E1}.

198

We also let

[Ī(G; =1; =2)]8 = {[r2
6(G; =1, =2)]::8}>r 5E1

{6̄(G; =1, =2)}

+ {r6(G; =1, =2)}>r2
5E1

{6̄(G; =1, =2)}[r6(G; =1, =2)]:8,

which is the 8-th row of the Hessian of 5E1
(6̄(G; =1, =2)) for 1  8  ?. Similarly, it is also a biased

estimate of r2
�
EE 5E{EF6F (G)}

�
.

7.2.2 Unbiased stochastic gradient simulation

We first present Algorithm 1 to simulate unbiased gradients for the stochastic problems (7.5)

and (7.7) while fixing a component E1 for 5E1
(EF6F (G)). It can be considered as a variant of [192]

based on a multilevel randomization technique.

Algorithm 9 UnbiasedGradient(G, E1, =0, W)
1: procedure UNBIASEDGRADIENT(G, E1, =0, W)(.)

2: Input: G 2 D,E1 2 ⌦E, base level =0 � 0 2 Z, rate parameter 1 < W < 2.

3: Output: ⌧ (G, E1) 2 R?, an unbiased estimate of the gradient of 5E1
(EF6F (G)) at point G

and component E1.

4: Sample # from a geometric distribution with success probability 1 � ? where ? = 0.5
W.

5: Independently sample �
2
=
0
+#+1 (E1) = {F8}2

=
0
+#+1

8=1
from the distribution of F given E1.

6: Compute .1(G) = H̄(G; 1, 2
=0+#+1).

7: Compute .2(G) = H̄(G; 1, 2
=0+#).

8: Compute .3(G) = H̄(G; 2
=0+# + 1, 2

=0+#+1).

9: Compute .4(G) = H̄(G; 1, 2
=0).

10: Compute ⌧ (G, E1) = .1 (G)�0.5(.2 (G)+.3 (G))
?̃#

+ .4(G), where ?̃# = (1 � ?)?# .

11: Output: ⌧ (G, E1)

We shall prove in Section 4 that the output of Algorithm 1 is indeed an unbiased estimate of

5E1
(EF6F (G)) for fixed E1. It follows that if we sample E1 ⇠ E, then ⌧ (G, E1) would be an unibased

199

estimate of the gradient of EE 5E (EF6F (G)).

Remark: We note that Algorithm 1 requires conditional sampling of F given E. It is difficult

to obtain such samples in a very general setting. However, in many applications, obtaining such

samples can be relatively easy. We will discuss this in detail in Section 3. Moreover, Algorithm 1

uses a random number of samples to construct an unbiased estimate. We will show later that the

number of samples needed is finite in expectation and free of the problem sample size. However,

for problems such as (7.6), computing an unbiased estimate using this algorithm may need the

same number of samples as computing the true gradient in a worst case scenario.

7.2.3 Optimization Algorithms

We now present our optimization algorithms to solve problem (7.5), (7.7) and (7.6) based on

unbiased gradient simulation. First, in Algorithm 10, we present our SGD (SimGD) algorithm with

a simple averaging techinique (see [225]). Convergence of our SimGD algorithm under different

conditions will be analyzed in Section 4. It is worth noting that our SGD algorithm is an analogue

of the standard stochastic gradient descent algorithm that substitutes simulated unbiased gradients

for sampled stochastic gradients. Therefore, the unbiased gradient simulation algorithm enables us

to solve SCO problems in the same way as generic stochastic optimization problems.

Algorithm 10 Simulated Gradient Descent (SimGD)
Input: Number of iterations) , step size {_C}1

C=1
, initial point G0, base level =0 and rate parameter

1 < W < 2.

for C = 0, 1, 2, . . . ,) � 1 do
Sample EC follows the distribution of E and let dC = UnbiasedGradient(GC , EC , =0, W)
GC+1 = ⇧D(GC � _C dC)

option I Output G̃) = 2

()) ()+1)
)�1Õ
C=0

(C + 1)GC
option II Output G)

In contrast to SGD, where a diminishing step size is used, we also introduce an SVRG type

of control variate variance reduced algorithm as mentioned in [205] with constant step size for

SCO problems. As described in [205] for ERM problems (7.2) and in [226] for generic stochastic

200

optimization problems (7.1), a variance reduced stochastic gradient at point G with respect to the

reference point G̃ is defined as r 5E0 (G)�r 5E0 (G̃)+r� (G̃) where E0 is sampled from E for the generic

stochastic optimization problem (7.1) and defined similarly for the ERM problem. We adopt these

variance reduction techniques in our setting of unbiased gradient simulation. Specifically, we will

simulate the unbiased gradients at G and G̃ simultaneously, using the same set of simulated

data, to reduce variance. The details of generating such variance reduced gradients are specified

in Algorithm 11. For ease of presentation, Algorithm 11 is built on the setting of Algorithm 1 and

it can be modified by using Algorithm 2 for solving problem (7.6).

Algorithm 11 SimulatedGradient(G, G̃, ⌧ (G̃), E1, =0, W)

procedure SIMULATEDGRADIENT(G, G̃, ⌧ (G̃), E1, =0, W)Input: G 2 R3 , E1 2 ⌦E, reference
point G̃ 2 R3 , an estimate of gradient at point G̃ ⌧̂ (G̃) 2 R?, base level =0 � 0 and rate parameter
1 < W < 2.

Output: , 2 R?, a variance reduced unbiased estimator of the gradient of EE 5 (EF6F (G), E)
at point G.

Sample # from a geometric distribution with success rate 1 � ? where ? = 0.5
W.

Compute ?̃# = (1 � ?)?# .
Independently sample �

2
=
0
+#+1 (E1) = {F8}2

=
0
+#+1

8=1
from the conditional distribution of F given

E = E1.
Compute .1(G) = H̄(G; 1, 2

=0+#+1) and .1(G̃) = H̄(G̃; 1, 2
=0+#+1).

Compute .2(G) = H̄(G; 1, 2
=0+#) and .2(G̃) = H̄(G̃; 1, 2

=0+#).
Compute .3(G) = H̄(G; 2

=0+# + 1, 2
=0+#+1) and .3(G̃) = H̄(G̃; 2

=0+# + 1, 2
=0+#+1).

Compute .4(G) = H̄(G; 1, 2
=0) and .4(G̃) = H̄(G̃; 1, 2

=0).
Compute, (G, E1) = .1 (G)�0.5{.2 (G)+.3 (G)}

?̃#

+ .4(G).
Compute, (G̃, E1) = .1 (G̃)�0.5{.2 (G̃)+.3 (G̃)}

?̃#

+ .4(G̃).
Set, (G, G̃, E1) = , (G, E1) �, (G̃, E1) + ⌧̂ (G̃).
Output: , (G, G̃, E1).

In Algorithm 11, the reference gradient ⌧ (G̃) can either be the full gradient at r� (G̃) or an

estimate of the full gradient r� (G̃). For example, when it is efficient to compute full gradients

of the objective function for problem (7.5) and (7.7), we propose to use the following method in

Algorithm 5 to solve this problem. It can be considered as a variant of SVRG, we thus denote it by

Simulated Variance Reduced Gradient Descent.

However, when the full gradients r� (G̃) of the objective function (7.5) can be difficult to

201

Algorithm 12 Simulated Variance Reduced Gradient Descent(SimVRG)
Inputs: Number of epochs) , number of steps in each epoch " , step size _ and initial point G̃0,
base level =0 � 0, and parameter 1 < W < 2.
for B = 0, 1, 2, . . . ,) � 1 do

Compute the full gradient r� (G̃B)
G0 = G̃B
for C = 0, 1, 2, . . . ," � 1 do

Sample EC from the distribution of E.
Compute dC = SimulatedGradient(GC , G̃B, ⌧̂ (GB), EC , =0, W).
Update GC+1 = ⇧D(GC � _dC).

option I Output G̃B+1 = G"
option II Output G̃B+1 = GC for randomly chosen C 2 {1, ...,"}

compute, we estimate the full gradient r� (G̃) by sampling the unbiased gradient within a batch

of the indices and taking the average. This method is related to another variant of SVRG, namely

SCGS in [222] and we summarize the details of this approach in Algorithm 13. Convergence

properties of Algorithm 12 and Algorithm 13 will be analyzed in Section 4.

Algorithm 13 Stochastically Controlled Simulated Gradient Descent(SCSimG)
Inputs: Number of epochs) , number of steps in each epoch " , batch size ⌫, sample size ,
step size _, initial point G̃0, base level =0 � 0 and parameter 1 < W < 2.
for B = 0, 1, . . . ,) � 1 do

G0 = G̃B
Uniformly sample a batch IB ⇢ ⌦E according to the distribution of E with |IB | = ⌫
for : = 1, 2, . . . , do

Compute ⌘: (G̃B) = 1

⌫

Õ
E82IBUnbiasedGradient(G̃B, E8, =0, W)

Compute ⌘̃(G̃B) = 1

Õ

8=1
⌘8 (G̃B)

for C = 0, 1, . . . ," � 1 do
Sample EC from the distribution of E.
Set dC = SimulatedGradient(GC , G̃B, ⌘̃(G̃B), EC , =0, W).
Update GC+1 = ⇧D(GC � _dC).

option I Output G̃B = G"
option II Output G̃B = GC for randomly chosen C 2 {1, ...,"}

7.3 Examples

We now present some important examples that can be formulated as SCO problems.

202

7.3.1 Conditional Random Fields (CRF)

Conditional random fields (CRF) [227] is a popular probabilistic model used for structural

prediction. It has been used in a number of natural language processing (NLP) problems including

part-of-speech tagging [227], noun-phrase chunking [228, 229] named identity recognition [230]

and image segmentation in computer vision [231]. In the CRF models, the conditional probability

of a structured outcome H 2 Y given an observation G 2 X is:

?(H | I; G) = exp{G>� (I, H)}Õ
H
02Y exp{G>� (I, H0)} , (7.9)

where G 2 R? is the parameter for estimation and � (I, H) 2 R? is a vector of pre-specified feature

functions depending on the underlying structure of Y. Based on the set of training data {(I8, H8), 8 =

1, . . . , =}, the parameter G can be estimated by maximizing the log likelihood function

max

G2R?
1

=

=’
8=1

log ?(H8 | I8, G). (7.10)

As we shall see, the practical difficulty of computing the objective function value or its gradient lies

in the exponential cardinality of Y. The hardness of computing log-likelihood and gradients for

CRFs has been considered in [232] and [233]. When the underlying structure of Y is a linear chain

or a tree, both the objective function value and the gradient can be efficiently computed through

dynamic programming (the Viterbi algorithm in [234]). For these structural cases, a number of

methods can be used to solve (7.10); for example, deterministic methods such as the iterative scal-

ing algorithm in [227] , L-BFGS in [229], stochastic methods such as stochastic gradient descent

in [235] and SAG in [236]. However, when the underlying structure is more general (no linear

chain or tree structure), computing a full gradient or even a stochastic gradient for problem (7.10)

is difficult due to the exponential cardinality of Y. In our setting, we can formulate (7.10) as a

203

composition optimization problem as in (7.5) by noticing that (7.10) is equivalent to

min

G

1

=

=’
8=1

�
log

⇥ ’
H
02Y

exp{G>� (I8, H0)}
⇤
� G>� (I8, H8),

�
(7.11)

whose gradient can be written as

1

=

=’
8=1

Õ
H
02Y exp{G>� (I8, H0)}� (I8, H0)Õ

H
02Y exp{G>� (I8, H0)}

� � (I8, H8).

Note that this problem is equivalent to

min

G

1

=

=’
8=1

�
log

⇥ 1

|Y|
’
H
02Y

exp{G>� (I8, H0)}
⇤
� G>� (I8, H8) + log |Y|

�
.

Therefore we can view it as a form of problem (7.5) and apply our optimization algorithms to solve

(7.11).

To obtain a sample H0 uniformly from Y, we first let (+ , ⇢) be the underlying graph of the

CRF. We assume that each vertex E 2 + takes value from {1, 2, . . . , }. Under this setting, we can

generate a discrete uniform random number over {1, 2, . . . , } for each vertex, and hence repeat

this |+ | times to obtain a sample H0 uniformly, where |+ | is the cardinality of + . This sampling

scheme avoids sampling H0 from a set of cardinality |+ | directly.

7.3.2 Softmax optimization

The Softmax optimization problems naturally arise when applying maximum likelihood esti-

mation to the multinomial logistic model with application in many fields such as economics [237]

and and network flows [238]. Specifically, the multinomial logistic model assumes the conditional

probability mass of a discrete response . 2 {1, . . . , } given covariates - 2 R? and parameters

204

V = [V1, . . . V] 2 R?⇥ satisfies

P(. = : |- , V) = exp(G>V:)Õ

8=1
exp(->V8)

.

Given = observations (-8,.8), the log-likelihood function can be written as

; (V) =
=’
8=1

{->
8
V.8
� log{

 ’
9=1

exp(->
9
V 9)}}.

Therefore, maximizing the log-likelihood function, which is known as the Softmax optimization

problem, can be viewed as a compositional optimization problem, where the V here corresponds

to the G in problem (7.6). To obtain a sample F8 in Algorithm 1 for this problem, we only need to

generate a discrete uniform random variable over {1, . . . , }.

7.3.3 Cox’s partial likelihood

The Cox’s partial likelihood model [239, 240] is a widely used in survival analysis for censored

data. It belongs to a class of survival models in statistics called the propositional harzard models

in [241]. In particular, the Cox’s model assumes there is a hazard function for an observation with

covariates - 2 R? and coefficient V 2 R? as:

_(C |-) = _0(C) exp(V>-),

where _0(C) is the baseline hazard function. In Cox’s model, for each data point, we have two

variables)8 denoting the true life time and ⇠8 denoting the censoring time independent of)8 which

are not observed. Instead, we can only observe (-8,.8,�8)18= assumed to be I.I.D. observations,

where -8 2 R? are the covariates, .8 2 R are the observed times determined by .8 = min()8,⇠8),

and �8 = I{.8 =)8} are the indications for the censoring. Moreover, for a particular observation 8,

we define its risk set as the index set { 9 : .9 � .8}. The Cox’s model aims to maximize the partial

205

likelihood function as follows:

max

V2R?
�1

=

=’
8=1

�8 [�->8 V + log{
=’
9=1

I(.9 � .8) exp(->
9
V)}], (7.12)

which is equivalent to

min

V2R?
1

=

=’
8=1

�8 [�->8 V + log{1

=

=’
9=1

I(.9 � .8) exp(->
9
V)}],

whose gradient can be written as

1

=

=’
8=1

�8 [�-8 +
Õ
=

9=1
I(.9 � .8) exp(->

9
V)-9Õ

=

9=1
I(.9 � .8) exp(->

8
V)] . (7.13)

This problem as a form of (7.5) hence we can apply the proposed algorithms to solve it.

7.4 Theory

In this section we present the analysis of our algorithms applied to problem (7.5), that is,

min

G2D
� (G) , EE 5E{EF6F (G)}. We omit the case for (7.6) and (7.7) as they can be analyzed similarly.

We first give our assumptions.

7.4.1 Definitions, Assumptions and Lemmas

Assumption 1 In the compact set D, each 5E (·) in the objective function of (7.5) is three times

continuously differentiable. Its first order derivative is Lipschitz continuous with constant ! 5 ,1, its

second order derivative is Lipschitz continuous with constant ! 5 ,2, and its third order derivative is

Lipschitz continuous with constant ! 5 ,3.

Assumption 2 In the compact set D, each 6F (·) is twice continously differentiable. Its first order

derivative is Lipschitz continuous with constant !6,1 and its second order derivative is Lipschitz

continuous with constant !6,2.

206

Assumption 3 We assume � (·) in (7.5) is strongly convex with parameter ` and its gradient is

Lipstchitz continuous with constant !.

Definition 2. Define G = {H 2 R3 | H = 6F (G), G 2 D,F 2 ⌦F} H = {H 2 R3⇥? | H = r6F (G), G 2

D,F 2 ⌦F} and J = {I 2 R3⇥?⇥? | I = r2
6F (G), G 2 D,F 2 ⌦F}.

Assumption 4 We assume that ;6,0 = sup{kHk1 | H 2 G ⇢ R3} < 1, ;6,1 = sup{kHk1 | H 2 H ⇢

R3⇥?} < 1, and ;6,2 = sup{kIk1 | I 2 J ⇢ R3⇥?⇥?}.

Assumption 5 We assume that ; 5 ,0 = sup{|H | | H = 5E (G), G 2 G, E 2 ⌦E} < 1, ; 5 ,1 =

sup{kHk1 | H = r 5E (G), G 2 G, E 2 ⌦E} < 1, ; 5 ,2 = sup{kHk1 | H = r2
5E (G), G 2 G, E 2

⌦E} < 1, and ; 5 ,3 = sup{kHk1 | H = r3
5E (G), G 2 G, E 2 ⌦E} < 1.

Before we proceed, we state two elementary lemmas used in our proofs.

Lemma 30. Let 5 : R3 ! R be a continuously differentiable function with !-Lipschitz continuous

gradients, then

| 5 (H) � 5 (G) � hr 5 (G), H � Gi |  !
2

kH � Gk2
2
.

We omit the proof of Lemma 30 since it is a well known result.

Lemma 31. Given a positive integer # and a sequence of real number 08, 1  8  # , we have, for

all ? � 1, that

|
#’
8=1

08 |?  #?�1

#’
8=1

|08 |?, (7.14)

Proof. Proof. This is a consequence of Jensen’s inequality. ⇤

207

7.4.2 Properties of the Unbiased Gradient Simulation Algorithm

In this subsection, we analysis the properties of Algorithm 1. We first prove the unbiasedness

of ⌧ (G, E1).

Proposition 1 (Unbiasedness) For any G 2 D, sample E1 ⇠ E, ⌧ (G, E1) is an unbiased estimate of

rEE 5E{EF6F (G)}, that is, E⌧ (G, E1) = rEE 5E{EF6F (G)}.

Proof. Proof of Proposition 1. Fix E1 and G 2 D. We first show that the output ⌧ (G, E1) is an

unbiased estimate of r 5E1
{EF6F (G)}. According to Algorithm 1, we have,

E⌧ (G, E1) =
1’
==0

E{⌧ (G, E1) |# = =}P(# = =)

=
1’
==0

E{.1(G) � 0.5(.2(G) + .3(G)) |# = =}
?̃=

?̃= + E.4(G)

=
1’
==0

E{.1(G) � 0.5(.2(G) + .3(G)) |# = =} + E.4(G).

Note that condition on # = =, we assume there is hypothetically a set of i.i.d. samples �
2
=
0
+=+1 (E1) =

{F8}2
=+=

0
+1

8=1
that follows the distribution of F given E = E1 that .1(G), .2(G) and .3(G) are con-

structed. Therefore

E{.2(G) |# = =} = E{H̄(G, 1, 2=0+=)} = B(G; 2
=+=0)

= E{H̄(G; 2
=0+= + 1, 2

=0+=+1)} = E{.3(G) |# = =}.

208

And E.4(G) = B(G; 2
=0
, E1) and E{.1(G) |# = =} = B(G; 2

=0+=+1
, E1). Therefore,

E⌧ (G, E1)

=
1’
==0

�
B(G; 2

=0+=+1
, E1) � 0.5{B(G; 2

=0+=
, E1) + B(G; 2

=0+=
, E1)}

�
+ B(G; 2

=0
, E1)

=
1’
==0

{B(G; 2
=0+=+1

, E1) � B(G; 2
=0+=

, E1)} + B(G; 2
=0
, E1).

Note that the above sum is a telescoping sum, therefore

E⌧ (G, E1) = lim

=!1
B(G; 2

=0+=
, E1) � B(G; 2

=0
, E1) + B(G; 2

=0
, E1)

= lim

=!1
B(G; 2

=0+=
, E1) = lim

=!1
EH̄(G; 1, 2

=0+=
, E1)

= lim

=!1
E
�
r6(G; 1, 2

=0+=)>r 5E1
{6̄(G; 1, 2

=0+=)}
�

= lim

=!1
E
�
{ 1

2
=0+=

2
=
0
+=’

8=1

r6F8 (G)}> 5E1
{ 1

2
=0+=

2
=
0
+=’

8=1

6F8
(G)}

�
.

Since

k{ 1

2
=0+=

2
=
0
+=’

8=1

r6F8 (G)}> 5E1
{ 1

2
=0+=

2
=
0
+=’

8=1

6F8
(G)}k2

 k{ 1

2
=0+=

2
=
0
+=’

8=1

r6F8 (G)}k� k 5E1
{ 1

2
=0+=

2
=
0
+=’

8=1

6F8
(G)}k2


�p
?3k{ 1

2
=0+=

2
=
0
+=’

8=1

r6F8 (G)}k1
� �p

3k 5E1
{ 1

2
=0+=

2
=
0
+=’

8=1

6F8
(G)}k1

�

 p?3;6,0;6,1,

where the last inequality utilizes Assumption 4 and Assumption 5. Consequently, by the bounded

convergence theorem, we can exchange the expectation and limit and hence

E⌧ (G, E1) = E lim

=!1

�
{ 1

2
=0+=

2
=
0
+=’

8=1

r6F8 (G)}> 5E1
{ 1

2
=0+=

2
=
0
+=’

8=1

6F8
(G)}

�
.

209

By continuity of r 5E1
(·), we have

lim

=!1
r 5E1

{ 1

2
=0+=

2
=
0
+=’

8=1

6F8
(G)} = r 5E1

{ lim

=!1
1

2
=0+=

2
=
0
+=’

8=1

6F8
(G)}.

Since the samples are i.i.d., by the strong law of large numbers, we have

lim

=!1
1

2
=0+=

2
=
0
+=’

8=1

6F8
(G) = EF6F (G) almost surely.

By a similar argument,

lim

=!1
1

2
=0+=

2
=
0
+=’

8=1

r6F8 (G) = EFr6F (G) almost surely.

Therefore

E⌧ (G, E1) = E lim

=!1

�
{ 1

2
=0+=

2
=
0
+=’

8=1

r6F8 (G)}> 5E1
{ 1

2
=0+=

2
=
0
+=’

8=1

6F8
(G)}

�

= E
�
{EFr6F (G)}>r 5E1

{EF6F (G)}
�

= {EFr6F (G)}>r 5E1
{E6F (G)} = r{ 5E1

(EF6F (G))}.

Finally, taking expectation w.r.t E1, we obtain that

E⌧ (G, E1) = EEr(5E{EF6F (G)}) = rEE 5E{EF6F (G)}.

⇤

Next, we will state two ancillary lemmas that will be used in proving the finite variance of

⌧ (G, E1). Proof of these two lemmas can be found in the Supplementary.

Lemma 32. For every B 2 H ⇢ '
3⇥?, C 2 G ⇢ '

3 , and E1 2 ⌦E, define � : H ⇥ G ! R?

by � (B, C) = B
>r 5E1

(C). Then every component function of � (B, C) has a Lipschitz continuous

210

gradient with constant !� =
q
!

2

5 ,1
+ 23;

2

5 ,2
+ 23;

2

6,1
!

2

5 ,2
, i.e., for every 1  8  ?, we have

kr[�]8 (B1, C1) � r[�]8 (B2, C2)k�  !� kvec([B1]:8, C1) � vec([B2]:8, C2)k2.

Lemma 33. For every B, B0 2 H ⇢ R3⇥? and C, C0 2 G ⇢ R?, define

'(B, B0, C, C0) = � (B, C) � � (B0, C0) � r� (B0, B0) [B � B0, C � C0] .

Then we have

k'(B, B0, C, C0)k 
!�

2

(kB � B0k2� + ?kC � C0k22).

Proposition 2 (Finite second order moment) Fix any G 2 D and E1 2 ⌦E, we have

Ek⌧ (G, E1)k22  ⇠
0
D ,

where

⇠
0
D = 2?3

2
;
2

6,1
;
2

5 ,1
+

108?
2
3

2(!2

5 ,1
+ 235

2

5 ,2
+ 23;

2

6,1
!

2

5 ,2
) (;4

6,0
+ ;4

6,1
)

4
=0 (1 � 0.5

W) (1 � 0.5
2�W)

and 1 < W < 2 is from the unbiased gradient simulation algorithm. Therefore ⌧ (G, E1) has finite

variance.

Proof. Proof of Proposition 2. First, by (7.14),

k⌧ (G, E1)k22 = k
�
.1(G) � 0.5{.2(G) + .3(G)}

�
?̃#

+ .4(G)k22

 2k
�
.1(G) � 0.5{.2(G) + .3(G)}

�
?̃#

k2
2
+ 2k.4(G)k22.

211

To obtain an upper bound of Ek⌧ (G, E1)k2
2
, we first take expectation with respect to # , therefore

Ek⌧ (G, E1)k22

 2

1’
==0

E(
k.1(G) � 0.5{.2(G) + .3(G)}k2

2

?̃
2

=

|# = =)P(# = =) + 2Ek.4(G)k22

 2

1’
==0

E
�
k.1(G) � 0.5{.2(G) + .3(G)}k2

2
|# = =

�
?̃=

+ 2Ek.4(G)k22. (7.15)

To proceed with equation (7.15), we first upper bound k.4(G)k2
2

by

k.4(G)k22 = k{ 1

2
=0

2
=
0’

8=1

r6F8 (G)}>r 5E1
{ 1

2
=0

2
=
0’

8=1

6F8
(G)}k2

2

 k 1

2
=0

2
=
0’

8=1

r6F8 (G)k22 kr 5E1
{ 1

2
=0

2
=
0’

8=1

6F8
(G)}k2

2

 k 1

2
=0

2
=
0’

8=1

r6F8 (G)k2� kr 5E1
{ 1

2
=0

2
=
0’

8=1

6F8
(G)}k2

2
.

Note that by Assumption 4 and 5,

k 1

2
=0

2
=
0’

8=1

r6F8 (G)k� 
p
?3k 1

2
=0

2
=
0’

8=1

r6F8 (G)k1 
p
?3;6,1, and

kr 5E1
{ 1

2
=0

2
=
0’

8=1

6F8
(G)}k2 

p
3kr 5E1

{ 1

2
=0

2
=
0’

8=1

6F8
(G)}k1 

p
3; 5 ,1.

Therefore

Ek.4(G)k22  ?3
2
;
2

6,1
;
2

5 ,1
. (7.16)

To bound the second term on the right hand side of (7.15), we first define the following vector-

valued function: for B 2 H ✓ R3⇥? and C 2 G ✓ R3 , define � : H ⇥ G ! R? by � (B, C) ,

B
|r 5E1

(C). Moreover, to simplify the notation, let =̄0 = =0 + = and =̄+
0
= =0 + = + 1. Therefore given

212

that # = =, we can write

.1(G) � 0.5{.2(G) + .3(G)}

= H̄(G; 1, 2
=̄
+
0) � 0.5{H̄(G; 1, 2

=̄0) + H̄(G; 2
=̄0 + 1, 2

=̄
+
0)}

= �{r6(G; 1, 2
=̄
+
0), 6̄(G; 1, 2

=̄
+
0)} � 0.5�{r6(G; 1, 2

=̄0), 6̄(G; 1, 2
=̄0)}

� 0.5�{r6(G; 2
=̄0 + 1, 2

=̄
+
0), 6̄(G; 2

=̄0 + 1, 2
=̄
+
0). (7.17)

Since 6̄(G; 1, 2
=̄
+
0) = 0.5{6̄(G; 1, 2

=̄0) + 6̄(G; 2
=̄0 + 1, 2

=̄
+
0)}, and r6(G; 1, 2

=̄
+
0) = 0.5{r6(G; 1, 2

=̄0) +

r6(G; 2
=̄0 + 1, 2

=̄
+
0)}, when expanding the three functions in (7.17) at (EFr6F (G),EF6F (G)), the

zeroth order terms and first order terms vanish. Therefore condition on # = =,

.1(G) � 0.5(.2(G) + .3(G))

= '{r6(G; 1, 2
=̄
+
0),EFr6F (G), 6̄(G; 1, 2

=̄
+
0),EF6F (G)}

� 0.5'{r6(G; 1, 2
=̄0),EFr6F (G), 6̄(G; 1, 2

=̄0),EF6F (G)}

� 0.5'{r6(G; 2
=̄0 + 1, 2

=̄
+
0),EFr6F (G), 6̄(G; 2

=̄0 + 1, 2
=̄
+
0),EF6F (G)}.

213

As a result, using (7.14) and (7.44), we have

1’
==0

E[k.1 � 0.5(.2 + .3)k2
2
|# = =]

?̃=


1’
==0

3

?̃=

⇣
Ek'{r6(G; 1, 2

=̄
+
0),EFr6F (G), 6̄(G; 1, 2

=̄
+
0),EF6F (G)}k22

+ 1

4

Ek'{r6(G; 1, 2
=̄0),EFr6F (G), 6̄(G; 1, 2

=̄0),EF6F (G)}k22

+ 1

4

Ek'{r6(G; 2
=̄0 + 1, 2

=̄
+
0),EFr6F (G), 6̄(G; 2

=̄0 + 1, 2
=̄
+
0),EF6F (G)}k22

⌘


3!

2

�

4

1’
==0

1

?̃=

⇣
E(kr6(G; 1, 2

=̄
+
0) � EFr6F (G)k2� + ?k6̄(G; 1, 2

=̄
+
0) � EF6F (G)k22)

2

+ 1

4

E(kr6(G; 2
=̄0 + 1, 2

=̄
+
0) � EFr6F (G)k2� + ?k6̄(G; 2

=̄0 + 1, 2
=̄
+
0) � EF6F (G)k22)

2

⌘

+ 1

4

E(kr6(G; 1, 2
=̄0) � EFr6F (G)k2� + ?k6̄(G; 1, 2

=̄0) � EF6F (G)k22)
2
. (7.18)

Then, by (7.14),

E(kr6(G; 1, 2
=̄
+
0) � EFr6F (G)k2� + ?k6̄(G; 1, 2

=̄
+
0) � EF6F (G)k22)

2

 2Ekr6(G; 1, 2
=̄
+
0) � EFr6F (G)k4� + 2?

2Ek6̄(G; 1, 2
=̄
+
0) � EF6F (G)k22)

4
.

Next, we will analyze the two terms on the right hand side of the inequality above. Since r6(G; 1, 2
=̄
+
0) =

1

2
=̄
+
0

Õ
2
=̄
+
0

8=1
r6F8 (G), and Er6(G; 1, 2

=̄
+
0) = EFr6F (G), we can write

Ekr6(G; 1, 2
=̄
+
0) � EFr6F (G)k4�

= E{
3’
:=1

?’
⌘=1

(1

2
=̄
+
0

2
=̄
+
0’

8=1

{[r6F8 (G)]:⌘ � EF [r6F (G)]:⌘})2}2

 ?3
3’
:=1

?’
⌘=1

E(1

2
=̄
+
0

2
=̄
+
0’

8=1

{[r6F8 (G)]:⌘ � EF [r6F (G)]:⌘})4
,

where the last inequality is obtained by using (7.14). Note that for I.I.D. -=
8=1

’s that E-8 = 0, and

214

|- |  20 we have

E(1

=

=’
8=1

-8)4

=
1

=
4

E{
=’
8=1

-
4

8
+

’
8< 9

(4-3

8
- 9 + 3-

2

8
-

2

9
) +

’
8< 9<:

6-
2

8
- 9 -: +

’
8< 9<:<⌘

-8-9 -: -⌘}

=
1

=
4

{=E-4

1
+ 3=(= � 1)E-2

1
-

2

2
} 

32
4

0

=
2

.

Since | [r6F8 (G)]:⌘ � EF [r6F (G)]:⌘ |  2;6,1 and E{[r6F8 (G)]:⌘ � EF [r6F (G)]:⌘} = 0, we have

E(1

2
=̄
+
0

Õ
2
=̄
+
0

8=1
{[r6F8 (G)]:⌘ �EF [r6F (G)]:⌘})4 

48;
4

6,1

4
=̄
+
0

and hence Ekr6(G; 1, 2
=̄
+
0)�EFr6F (G)k4

�


48?
2
3

2
;
4

6,1

4
=̄
+
0

. By the same argument, we also have Ekr6(G; 1, 2
=̄0) � EFr6F (G)k4

�


48?
2
3

2
;
4

6,1

4
=̄
0

and

Ekr6(G; 2
=̄0 + 1, 2

=̄
+
0) � EFr6F (G)k4

�


48?
2
3

2
;
4

6,1

4
=̄
0

. Similarly, since E6̄(G; 1, 2
=̄
+
0) = EF6F (G) and

| [6F8 (G)] 9 � EF [6F (G)] 9 |  2;6,0, we have

Ek6̄(G; 1, 2
=̄
+
0) � EF6F (G)k42 = E(

3’
9=1

{ 1

2
=̄
+
0

2
=̄
+
0’

8=1

([6F8 (G)] 9 � EF [6F (G)] 9)}2)2

 3
3’
9=1

E{ 1

2
=̄
+
0

2
=̄
+
0’

8=1

([6F8 (G)] 9 � EF [6F (G)] 9)}4 
483

2
;
4

6,0

4
=̄
+
0

.

Using the same argument, we also have Ek6̄(G; 1, 2
=̄0) � EF6F (G)k4

2


483
2
;
4

6,0

4
=̄
0

, and Ek6̄(G; 2
=̄0 +

1, 2
=̄
+
0) � EF6F (G)k4

2


483
2
;
4

6,0

4
=̄
0

. Therefore

E(kr6(G; 1, 2
=̄
+
0) � EFr6F (G)k2� + ?k6̄(G; 1, 2

=̄
+
0) � EF6F (G)k22)

2

 2Ekr6(G; 1, 2
=̄
+
0) � EFr6F (G)k4� + 2?

2Ek6̄(G; 1, 2
=̄
+
0) � EF6F (G)k22)

4


96?

2
3

2(;4
6,0

+ ;4
6,1
)

4
=̄
+
0

.

215

Hence

E(kr6(G; 1, 2
=̄0) � EFr6F (G)k2� + ?k6̄(G; 1, 2

=̄0) � EF6F (G)k22)
2 

96?
2
3

2(;4
6,0

+ ;4
6,1
)

4
=̄0

and

E(kr6(G; 2
=̄0 + 1, 2

=̄
+
0) � EFr6F (G)k2� + ?k6̄(G; 2

=̄0 + 1, 2
=̄
+
0) � EF6F (G)k22)

2 
96?

2
3

2(;4
6,0

+ ;4
6,1
)

4
=̄0

.

Now we continue with the analysis of (7.18)

1’
==0

1

?̃=

E{(.1(G) � 0.5(.2(G) + .3(G)))2 | # = =}

 3!�

4

1’
==0

1

?̃=

⇣
E(kr6(G; 1, 2

=̄
+
0) � EFr6F (G)k2� + ?k6̄(G; 1, 2

=̄
+
0) � EF6F (G)k22)

2

+ 1

4

E(kr6(G; 1, 2
=̄0) � EFr6F (G)k2� + ?k6̄(G; 1, 2

=̄0) � EF6F (G)k22)
2

+ 1

4

E(kr6(G; 2
=̄0 + 1, 2

=̄
+
0) � EFr6F (G)k2� + ?k6̄(G; 2

=̄0 + 1, 2
=̄
+
0) � EF6F (G)k22)

2

⌘

 72(!2

5 ,1
+ 235

2

5 ,2
+ 23;

2

6,1
!

2

5 ,2
)?2

3
2(;4

6,0
+ ;4

6,1
)
1’
==0

3

?̃=4
=+=0+1

,

since !� =
q
!

2

1
+ 235

2

5 ,2
+ 23;

2

6,1
!

2

2
. Note that ?̃= = (1 � 0.5

W)0.5W= and 1 < W < 2; therefore

1’
==0

3

?̃=4
=+=0+1

=
3

4
=0+1(1 � 0.5

W)

1’
==0

2
=(W�2) =

3

4
=0+1(1 � 0.5

W) (1 � 0.5
2�W)

< 1.

Hence

1’
==0

{k.1(G) � 0.5(.2(G) + .3(G))k2
2

?̃=


54?

2
3

2(!2

5 ,1
+ 235

2

5 ,2
+ 23;

2

6,1
!

2

5 ,2
) (;4

6,0
+ ;4

6,1
)

4
=0 (1 � 0.5

W) (1 � 0.5
2�W)

(7.19)

Combining (7.16) and (7.19), we can bound (7.15) by

Ek⌧ (G, E1)k22  2Ek.4(G)k22 + 2

1’
==0

{k.1(G) � 0.5(.2(G) + .3(G))k2
2

?̃=

 2?3
2
;
2

6,1
;
2

5 ,1
+

108?
2
3

2(!2

5 ,1
+ 235

2

5 ,2
+ 23;

2

6,1
!

2

5 ,2
) (;4

6,0
+ ;4

6,1
)

4
=0 (1 � 0.5

W) (1 � 0.5
2�W)

= ⇠0D .

216

⇤

Proposition 3 (Finite expected computational cost) For any G 2 D and E1 2 ⌦E, the number of

random numbers one needs to generate (simulation cost) to construct ⌧ (G, E1) has finite expecta-

tion.

Proof. Proof of Proposition 3. Fix E1 2 ⌦E and G 2 D, and denote by 2>BC⌧ the number of random

variables one needs to generate to construct ⌧ (G, E1). In Algorithm 1, we generate one geometric

random variable # and 2
=0+=+1 number of F8 that follows the distribution of F conditioned on

E = E1. Thus we have 2>BC⌧ = 1 + 2
=0+#+1. Taking expectation w.r.t. # , we conclude

E(2>BC⌧) = E{E(2>BC⌧ |#)} =
1’
==0

E(2>BC⌧ |# = =)P(# = =)

=
1’
==0

(1 + 2
=0+=+1) (1 � 0.5

W)0.5W=

=1 + 2
=0+1(1 � 0.5

W) (1 � 2
1�W)�1

< 1,

where the convergence of the series above relies on W > 1. ⇤

Remark: Note that the choices of both the base level =0 and W affect both the variance of

the simulated estimator and its computational cost. By choosing a larger =0, the variance of the

simulated gradient will be lower but it will also have a higher computational cost. Similarly,

choosing a smaller W will result in an estimator that has lower variance but higher computational

cost.

7.4.3 Convergence of the Simulated Gradient Descent Algorithm

In this subsection, we establish the convergence properties of Algorithm 10 under different

conditions. Note that with the unbiasedness and finite second order moment properties of the sim-

217

ulated gradients, convergence properties of the Simulated Gradient Descent (SimGD) algorithm

for SCO problems follow from the classical theory of the stochastic gradient descent algorithm for

generic stochastic optimization problems. For completeness, we include the proof of the conver-

gence properties in the Supplementary.

Lemma 34. [Almost Sure Convergence] If � (·) is `-strongly convex, assume EkGC � G¢k2
2
 ⇡ for

all C � 0. When
Õ
C
_C = 1 and

Õ
C
_

2

C
< 1, kGC � G¢k2

2
converges to 0 almost surely.

The techniques of our proof for the Lemma below come mostly from [225]. We include a proof

in the Supplementary.

Lemma 35. [Rate of Convergence] In the presence of `-strong convexity for � (·), with _C = 2

`(C+1) ,

we can show that EkG) � G¢k2
2
 4⇠

0
D

`
2 ()+1) and EkG̃) � G¢k2

2
 4⇠

0
D

`
2 ()+1) . In the case where � (·) is not

strongly convex, if we have EkGC � G¢k2
2
 ⇡ for all C, then with _C = 2p

C+1

and 2 > 0, we can show

that E� (G̃)) � � (G¢) 
2

p
2⇠
0
D+2�1

4

p
2⇡

p
)

.

Corollary 7.4.0.1. The iteration complexity of Algorithm 3 is $ (n�1) when � (·) is `-strongly

convex and the iteration complexit is $ (n�2) when � (·) is not strongly convex.

7.4.4 Lipschitz Continuity of the Simulated Variance Reduced Gradient

In this subsection, we will present the convergence properties of the Simulated Variance Re-

duced Gradient (SVRG) algorithm. In contrast to the stochastic variance reduced gradient algo-

rithm for ERM problem (7.2) , the property that

Ekr 58 (G) � 58 (G̃) + r�= (G̃)k22  4!{�= (G) � �= (G¢) + �= (G̃) � �= (G¢)},

where 8 is uniformly sampled form {1, . . . , =} and ! is the Lipschitz constant of r�= (G) may

no longer hold because of the variance introduced by the simulation procedure. Instead, we

establish a Lipschitz continuity property of the output , = , (G, E1) � , (G̃, E1) + ⌧ (G̃), where

218

⌧ (G̃) can be full gradient or a subsampled gradient at G̃, from Algorithm 3 that is important in the

proof of the convergence rate of Algorithm 4 and 5. We need the following two lemmas to prove

the results.

Lemma 36 (Azuma-Hoeffding). Let -1, -2, . . . , -= be i.i.d. random variables such that |-8 |  ⌫

for all 1  8  =. Let -̄= = 1

=

Õ
=

8=1
-8. Then for any C > 0, we have

P(|
=’
8=1

-8 � =E[-] | > C)  2 exp

⇣
� C

2

2=⌫
2

⌘
, (7.20)

and

P(| -̄= � E[-] | > C)  2 exp

⇣
� =C

2

2⌫
2

⌘
. (7.21)

Lemma 37. For all = � 1, we have

E


sup

G2D
|[r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 |4

�
 ⇠1

� ;>6(4=2)
=

�
2 (7.22)

E


sup

G2D
|[6̄(G; 1, =)]⌘ � [EF6F (G)]⌘ |4

�
 ⇠0

� ;>6(4=2)
=

�
2 (7.23)

E


sup

G2D
|[r2

6(G; 1, =)]:8 9 � [EFr2
6F (G)]:8 9 |4

�
 ⇠2

� ;>6(4=2)
=

�
2 (7.24)

for any = � 1, 1  : , ⌘  3 and 1  8, 9  ?, where ⇠1 = 8;
4�?
6,1

(4diam(D)?)??/2!?
6,1

+64;
4

6,1
(? +

1)2, ⇠0 = 8;
4�?
6,0

(4diam(D)?)??/2!?
6,0

+ 64;
4

6,0
(? + 1)2 and ⇠2 = 8;

4�?
6,2

(4diam(D)?)??/2!?
6,2

+

64;
4

6,2
(? + 1)2.

Proof of Lemma 37 can be found in the Supplementary.

In this subsection, we need the following ancillary functions to develop our theory. For G 2

H ⇢ R3⇥?, H 2 G ⇢ R3 and I 2 J ⇢ R3⇥?⇥?, for every 1  8  ? and 1  9  ?, define

219

� (G, H, I) : H ⇥ G ⇥ J ! R?⇥? that

[�]8 9 (G, H, I) = I>:8 9r 5E (H) + [G]8:r2
5E (H) [G]: 9 .

Lemma 38. Then [�]8 9 (G, H, I) has Lipschitz continuous gradient with constant !� , that is, for

G1, G2 2 H , H1, H2 2 G and I1, I2 2 J ,

kr[�]8 9 (G1, H1, I1) � r[�]8 9 (G2H2, I2)k�  !� kvec(G1, H1, I1) � vec(G2, H2, I1)k2,

where

!� = {123
2
!

2

5 ,2
;
2

6,1
+ 43 (

p
36,2! 5 ,2 + 32

;
2

6,1
! 5 ,3)2 + 3!2

5 ,1
+ 43

2
;
2

5 ,2
!

2

6,2
+ 23

2
;
2

5 ,2
+ 43

3
;
2

5 ,3
}1/2

.

Proof of Lemma 38 can be found in the Supplementary.

Base on the ancillary function � (G, H, I), for G, G0 2 H ⇢ R3⇥?, H, H0 2 G ⇢ R3 and I, I0 2

J ⇢ R3⇥?⇥?, we define

[']8 9 (G, G0, H, H0, I, I0)

= [�]8 9 (G, H, I) � [�]8 9 (G0, H0, I0) � {r[�]8 9 (G0, H0, I0)}[G � G0, H � H0, I � I0],

where

{r[�]8 9 (G0, H0, I0)}[G � G0, H � H0, I � I0]

=
�
vec{r[�]8 9 (G0, H0, I0)}

�>vec(G � G0, H � H0, I � I0)

=
3’

:
0=1

3’
9
0=1

m [�]8 9
m [G]: 0 9 0

(G0, H0, I0) ([G]: 0 9 0 � [G0]: 0 9 0) +
3’

⌘
0=1

m [�]8 9
m [H]⌘0

([H]⌘0 � [H0]⌘0)

+
3’

:
00=1

?’
8
00=1

?’
9
00=1

m [�]8 9
m [I]: 00800 9 00

(G0, H0, I0) ([I]: 00800 9 00 � [I0]: 00800 9 00)

220

Lemma 39. For all G, G0 2 H , H, H0 2 G and I, I0 2 J , we have

| [']8 9 (G, G0, H, H0, I, I0) | 
!�

2

kvec(G, H, I) � vec(G0, H0, I0)k22,

where

!� = {123
2
!

2

5 ,2
;
2

6,1
+ 43 (

p
36,2! 5 ,2 + 32

;
2

6,1
! 5 ,3)2 + 3!2

5 ,1
+ 43

2
;
2

5 ,2
!

2

6,2
+ 23

2
;
2

5 ,2
+ 43

3
;
2

5 ,3
}1/2

.

Proof. Proof. This result is a direct consequence of Lemma 30. ⇤

Now we proceed with the main lemma of this section and this lemma will be used for proving

convergence results for SimVRG and SCSimG algorithms.

Lemma 40. There exist a constant ⇠D < 1 such that for any E1 2 ⌦E and G, G̃ 2 D,, (G, E1) and

, (G̃, E1) from the variance reduced unbiased gradient, (G, G̃, E1) = , (G, E1) �, (G̃, E1) +r⌧ (G̃)

in Algorithm 3 satisfies

Ek, (G, E1) �, (G̃, E1)k22  ⇠D kG � G̃k22, (7.25)

where

⇠D = 4?
2
3

2
5

2

6,2
;
2

5 ,1
+ 4?

2
3

4
;
4

6,1
;
2

5 ,2

+ 9!
2

�
?

2(⇠0 + ⇠1 + ⇠2)
� (=0 + 1)2

1 � 2
W�2

+ 2(=0 + 1)2W�2

(1 � 2
W�2)2

+ 2
3W�6 + 2

W�2

(1 � 2
W�2)3

�
.

Proof of this lemma can be found in the Supplementary.

7.4.5 Convergence of the Simulated Variance Reduced Gradient Algorithm

In this section we prove the convergence of Algorithm 12. We make use of the constant ⇠D

defined in Lemma 40 and Assumption 3 that � (·) is `-strongly convex.

221

Lemma 41. Let � : R? ! R be a convex function with !-Lipschitz gradient and denote G¢ =

arg min

G2R?
� (G) to be the global minimizer of � (·). Then for any G 2 R?,

1

2!

kr� (G)k2
2
 � (G) � � (G¢).

We omit the proof for this lemma since it is a well known result.

Theorem 1 Consider Algorithm 12 with options II. Let _ be sufficiently small and " be sufficiently

large so that

U =
1

`(1 � 4

`
⇠D_)_"

+
(4

`
⇠D + 2!)_

1 � 4

`
⇠D_

< 1. (7.26)

Then under Assumptions 1-5, we have geometric convergence in expectation for the SimVRG :

E[� (G̃B)]  � (G¢) + UB [� (G̃0) � � (G¢)]

Proof. Proof of Theorem 1. It follows from Lemma 41 that

kr� (G) � r� (G¢)k22 = kr� (G)k2
2
 2! [� (G) � � (G¢)] (7.27)

. Now conditioning on GC , we can take expectation with respect to EC 2 ⌦E to obtain

E[kdC k22 | GC] 2E[k, (GC , EC) �, (G̃B, EC)k22 | GC] + 2rk� (G̃B)k22

2⇠D kGC � G̃Bk22 + 4! [� (G̃B) � � (G¢)]

4⇠D(kGC � G¢k22 + kG̃B � G¢k
2

2
) + 4! [� (G̃B) � � (G¢)]

 8

`

⇠D [� (GC) � � (G¢)] + (8

`

⇠D + 4!) [� (G̃B) � � (G¢)] . (7.28)

where the second inequality follows from Theorem 40 and equation (7.27). The last inequality

follows from the strong convexity of � (·). Thus, by the contraction property of the projection

222

operator ⇧D ,

E[kGC+1 � G¢k22 | GC]

kGC � G¢k22 � 2_(GC � G¢)|E[dC |GC] + _2E[kdC k22 |GC]

kGC � G¢k22 � 2_(GC � G¢)|r� (GC) +
8

`

⇠D_
2 [� (GC) � � (G¢)] + (8

`

⇠D + 4!)_2 [� (G̃B) � � (G¢)]

kGC � G¢k22 � 2_[� (GC) � � (G¢)] +
8

`

⇠D_
2 [� (GC) � � (G¢)] + (8

`

⇠D + 4!)_2 [� (G̃B) � � (G¢)]

=kGC � G¢k22 � 2_(1 � 4

`

⇠D_) [� (GC) � � (G¢)] + (8

`

⇠D + 4!)_2 [� (G̃B) � � (G¢)] . (7.29)

where the third line follows from the unbiasedness of the simulated gradient and the fourth line

follows from the convexity of � (). Since G̃B+1 is selected uniformly after all " updates are com-

pleted and G0 = G̃B. Summing over the previous inequality over C = 0, ...," � 1, taking expectation

and using option II at stage B, we obtain

E[kG" � G¢k22] + 2_(1 � 4

`

⇠D_)"E[� (G̃B+1) � � (G¢)]

E[kG0 � G¢k22] + (8

`

⇠D + 4!)_2
"E[� (G̃B) � � (G¢)]

=E[kG̃B � G¢k22] + (8

`

⇠D + 4!)_2
"E[� (G̃B) � � (G¢)]

 2

`

E[� (G̃B) � � (G¢)] + (8

`

⇠D + 4!)_2
"E[� (G̃B) � � (G¢)]

=(2

`

+ (8

`

⇠D + 4!)_2
")E[� (G̃) � � (G¢)] (7.30)

Thus we obtain

E[� (G̃B+1) � � (G¢)] 


1

`(1 � 4

`
⇠D_)_"

+
(4

`
⇠D + 2!)_

1 � 4

`
⇠D_

�
E[� (G̃B) � � (G¢)] (7.31)

This implies that E[� (G̃B) � � (G¢)]  UBE[� (G̃0) � � (G¢)]. The conclusion follows. ⇤

As we mentioned, the sample complexity becomes difficult to analyze in the presence of batch

size randomization. However, the corollary below provides an estimate of the total number of

223

samples that are needed to achieve and n-accurate solution for the finite sample SCO problems

using Algorithm 4.

Corollary 7.4.0.2. In Algorithm 12, let)n = min{= � 0 | � (G̃:) � � (G¢)  n} and let #: ,C be

the geometric random number that is generated when calling SimulatedGradient procedure at C-th

epoch and :-th iteration. Then we have

E{
)n’
:=1

"’
C=1

(2=0+#: ,C+1 + 1)} = $ (log(1/n)).

Proof. Proof of Corrollary 7.4.0.2. Since)n is a stopping time, by Wald’s identity and Proposition

3, we have

E{
)n’
:=1

"’
C=1

2
#: ,C+1} = " E)n E(2=0+#: ,C+1 + 1)

= "{1 + 2
=0+1(1 � 0.5

W) (1 � 2
1�W)�1}E)n .

Next, we analyze E)n . Since)n is non- negative, we have

exp(E)n)  E exp()n) =
π 1

0

P{exp()n) � G}3G = 1 +
π 1

1

P{)n � log(G)}3G

 1 +
π 1

1

P{)n � blog(G)c}3G  3 +
π 1

3

P{)n � blog(G)c}3G.

By the definition of)n ,Markov’s inequality and Theorem 2 , we have

P()n � :)  P{� (G̃:) � � (G¢) � n} 
1

n

E{� (G̃:) � � (G¢)} 
1

n

U
: {� (G̃0) � � (G¢)}.

Therefore,

exp{E)n }  3 + 1

n

π 1

3

{� (G̃0) � � (G¢)}Ublog(G)c
3G  3 + � (G̃0) � � (G¢)

Un

π 1

3

G
log(U)

3G.

224

If we choose " and _ in Algorithm 4 such that logU < �1, we have

exp{E)n }  3 + � (G̃0) � � (G¢)
Un (� logU � 1) 3

logU+1
.

Therefore E)n = $ (log(1/n)). Consequently, E{Õ)n

:=1

Õ
"

C=1
(2=0+#: ,C+1 + 1)} = $ (1/n). ⇤

Corollary 7.4.0.3. Let {G̃B}B�0 be the sequence of outputs from each epoch of the Simulated SVRG

algorithm. Then, with probability 1, G̃B converges exponentially fast to G¢.

Proof. Proof of Corrollary 3. It follows from Theorem 7.4 that we can find 0 < U < 1 such that

E[� (G̃B)]  � (G̃¢) + UB [� (G̃0) � � (G̃¢)]. Pick any U < d < 1. Define the set AB = {� (G̃B) �

� (G¢) > d
B} in probability space, we have P(AB)  (U

d
)BE[� (G̃0) � � (G¢)] which implies that

Õ
B�0
P(AB) < 1. It then follows from Borel-Cantelli lemma that

P(AB occurs infinitely often) = P
⇣
lim sup

B!1
AB

⌘
= P(

1Ÿ
C=0

1ÿ
B=C

AB) = inf

C�0

P(
1ÿ
B=C

AB)

 inf

C�0

’
B�C
P(AB) = 0. (7.32)

Thus with probability 1, � (G̃B)�� (G¢) < d
B for B large enough (depending on each the probability

path), which implies kG̃B � G¢k2
2
 2

`
d
B in the presence of `-strong convexity. ⇤

7.4.6 Convergence of the Stochastically Controlled Simulated Gradient Algorithm

In this section we prove the convergence of Algorithm 13.

Lemma 42. Fix G 2 D and , ⌫ � 1, sample a batch I ⇢ ⌦E with |I | = ⌫ following the

distribution of E and independently generate

⌘: (G) =
1

⌫

’
E82I

UnibasedGradient(G, E8, =0, W)

for 1  :  . Let ⇠0D be the constant in the proof of Proposition 2, where Ek, (G, E)k2
2
 ⇠0D

225

for arbitary E 2 ⌦E. Defining ⌘̃(G) = 1

Õ

8=1
⌘8 (G), we have

E[⌘̃(G)] = r� (G) and +0A [⌘̃(G)] 
⇠
0
D

 ⌫

+ 4?3
2
;
4

D(1

+ 1

⌫

), (7.33)

so +0A [⌘̃(G)] can be made arbitrarily small for any G 2 D by making and ⌫ sufficiently large.

Proof of this Lemma can be found in the Supplementary.

Theorem 2 Consider the Simulated SCSG Algorithm 6 with options II. Fix n > 0 as the level

of accuracy. Let _ be sufficiently small and " be sufficiently large so that

U =
2

`(1 � 8

`
⇠D_)_"

+
(8

`
⇠D + 8!)_

1 � 8

`
⇠D_

< 1, (7.34)

while making either or ⌫ large enough so that

4(_ + 1

2`
)

1 � 8

`
⇠D_

+0A [⌘̃(G̃B)] < n (7.35)

Then

E[� (G̃B) � � (G¢)]  UBE[� (G̃0) � � (G¢)] +
1

1 � Un (7.36)

Proof. Proof of Theorem 2 Conditioning on GC , we can take expectation with respect to EC 2 ⌦E to

obtain

E[kdC k22 | GC]

2E[k, (GC , EC) �, (G̃B, EC)k22 | GC] + 4kr� (G̃B)k22 + 4k ⌘̃(G̃B) � r� (G̃B)k22

2⇠D kGC � G̃Bk22 + 8! [� (G̃B) � � (G¢)] + 4k ⌘̃(G̃B) � r� (G̃B)k22

4⇠D(kGC � G¢k22 + kG̃B � G¢k
2

2
) + 8! [� (G̃B) � � (G¢)] + 4k ⌘̃(G̃B) � r� (G̃B)k22

 8

`

⇠D [� (GC) � � (G¢)] + (8

`

⇠D + 8!) [� (G̃B) � � (G¢)] + 4k ⌘̃(G̃B) � r� (G̃B)k22. (7.37)

where the second inequality follows from Lemma 40 and equation (7.27). The last inequality

226

follows from the strong convexity of � (·). Now following (7.37), using the distance contraction

property of projection operator ⇧D(·) we can write

E[kGC+1 � G¢k22 | GC]

kGC � G¢k22 � 2_(GC � G¢)|E[dC |GC] + _2E[kdC k22 |GC]

kGC � G¢k22 � 2_(GC � G¢)| (r� (GC) � r� (G̃B) + ⌘̃(G̃B)) +
8

`

⇠D_
2 [� (GC) � � (G¢)]

+ (8

`

⇠D + 8!)_2 [� (G̃B) � � (G¢)] + 4_
2k ⌘̃(G̃B) � r� (G̃B)k22

kGC � G¢k22 � 2_[� (GC) � � (G¢)] + 2_(GC � G¢)| (⌘̃(G̃B) � r� (G̃B))

+ 8

`

⇠D_
2 [� (GC) � � (G¢)] + (8

`

⇠D + 8!)_2 [� (G̃B) � � (G¢)] + 4_
2k ⌘̃(G̃B) � r� (G̃B)k22

=kGC � G¢k22 � 2_(1 � 4

`

⇠D_) [� (GC) � � (G¢)] + (8

`

⇠D + 8!)_2 [� (G̃B) � � (G¢)]

+ 4_
2k ⌘̃(G̃B) � r� (G̃B)k22 + 2_(GC � G¢)| (⌘̃(G̃B) � r� (G̃B)), (7.38)

where the third line follows from the convexity of � (·). Now we consider a fixed stage B, so that

G0 = G̃B and G̃B+1 is selected uniformly after all " updates are completed. Summing the previous

inequality over C = 1, ...," , taking expectation and using option II at stage B, we obtain

E[kG" � G¢k22] + 2_(1 � 4

`

⇠D_)"E[� (G̃B+1) � � (G¢)]

E[kG0 � G¢k22] + (8

`

⇠D + 8!)_2
"E[� (G̃B) � � (G¢)]

+ 4_
2
" k ⌘̃(G̃B) � r� (G̃B)k22 + 2_"E[(G̃B+1 � G¢)| (⌘̃(G̃B) � r� (G̃B))]

E[kG̃B � G¢k22] + (8

`

⇠D + 8!)_2
"E[� (G̃B) � � (G¢)]

+ 4_" (_ + 1

2`

)k ⌘̃(G̃B) � r� (G̃B)k22 +
`

2

_"E[kG̃B+1 � G¢k22]

E[kG̃B � G¢k22] + (8

`

⇠D + 8!)_2
"E[� (G̃B) � � (G¢)]

+ 4_" (_ + 1

2`

)k ⌘̃(G̃B) � r� (G̃B)k22 + _"E[� (G̃B+1) � � (G¢)], (7.39)

227

where the second inequality follows from 20
|
1  Vk0k2

2
+ 1

V
k1k2

2
while V = `

2
. The last inequality

follows from the strong convexity of � (·). Finally, taking expectation over the randomness of

⌘̃(G̃B), we have

_(1 � 8

`

⇠D_)"E[� (G̃B+1) � � (G¢)]

E[kG̃B � G¢k22] + (8

`

⇠D + 8!)_2
"E[� (G̃B) � � (G¢)] + 4_" (_ + 1

2`

)+0A [⌘̃(G̃B)]

 2

`

E[� (G̃B) � � (G¢)] + (8

`

⇠D + 8!)_2
"E[� (G̃B) � � (G¢)] + 4_" (_ + 1

2`

)+0A [⌘̃(G̃B)]

=(2

`

+ (8

`

⇠D + 8!)_2
")E[� (G̃B) � � (G¢)] + 4_" (_ + 1

2`

)+0A [⌘̃(G̃B)] (7.40)

Thus we obtain

E[� (G̃B+1) � � (G¢)]




2

`(1 � 8

`
⇠D_)_"

+
(8

`
⇠D + 8!)_

1 � 8

`
⇠D_

�
E[� (G̃B) � � (G¢)] +

4(_ + 1

2`
)

1 � 8

`
⇠D_

+0A [⌘̃(G̃B)]

UE[� (G̃B) � � (G¢)] + n (7.41)

This implies that E[� (G̃B) � � (G¢)]  UBE[� (G̃0) � � (G¢)] + n

1�U . The conclusion follows. ⇤

Corollary 7.4.0.4. Let {G̃B}B�0 be the sequence of outputs from each epoch of the Simulated SCSG

algorithm and define H̃B = min

CB
{� (G̃C) � � (G¢)} for B � 0 to be the lowest objective value after

epoch s. Then, with probability 1, we have inf

B�0

H̃B  n

1�U .

Proof. Proof of Corollary 4. It follows from Theorem 3 that we can find 0 < U < 1 where

E[� (G̃B) �� (G¢)]  UBE[� (G̃0) �� (G¢)] + n

1�U . We also have sup

G2D
{� (G) �� (G¢)}  2;D from the

definition of ;D . It follows that for any G̃0 2 D, we have that E[� (G̃B)�� (G¢) |G̃0]  UB ·2;D + n

1�U .

For any d > 0, picking # large enough so that X = (U# · 2;D + n

1�U) (
n

1�U + d)�1
< 1, we have

P(H̃# �
n

1 � U + d)  P(� (G̃#) � � (G) �
n

1 � U + d)  E[� (G̃0) � � (G)] (
n

1 � U + d)�1  X.

228

However, if we denote X# to be the distribution of G̃# conditioning on H̃# � n

1�U +d, then it follows

from the Markov Property that

P(H̃2# �
n

1 � U + d)

=P(H̃2# �
n

1 � U + d | H̃# �
n

1 � U + d)P(H̃# �
n

1 � U + d)

=P(min

#+1B2#

{� (G̃B) � � (G¢)} �
n

1 � U + d | H̃# �
n

1 � U + d)P(H̃# �
n

1 � U + d)

=(PG̃#⇠X# P(min

#+1B2#

{� (G̃B) � � (G¢)} �
n

1 � U + d |G̃#)) · P(H̃# �
n

1 � U + d)

(PG̃#⇠X# P(� (G̃2#) � � (G¢) �
n

1 � U + d |G̃#)) · X

(PG̃#⇠X#E[� (G̃2#) � � (G¢) |G̃#]) · (
n

1 � U + d)�1 · X

=(PG̃0⇠X#E[� (G̃#) � � (G¢) |G̃0]) · (
n

1 � U + d)�1 · X

PG̃0⇠X# (U# · 2;D + n

1 � U) · (
n

1 � U + d)�1 · X  X2

Continue on, we can prove that P(H̃:# � n

1�U + d)  X: . Thus if we define the set Ad = {inf

B�0

H̃B �
n

1�U + d} and A = {inf

B�0

H̃B >
n

1�U } in probability space, we have

P(Ad) = P(inf

B�0

H̃B �
n

1 � U + d)  P(H̃:# �
n

1 � U + d)  X: , (7.42)

for any : � 1. Since X < 1, we have P(Ad) = 0 for any d > 0 which implies P(A) = P(–
=�1

A 1

=

) 
1Õ
==1

P(A 1

=

) = 0. So, with probability 1, inf

B�0

H̃B  n

1�U . ⇤

7.5 Numerical Experiments

In our numerical experiments, all algorithms were implemented in C++, and all experiments

were performed on an Intel i5-5200U processor using Ubuntu 16.04.

229

7.5.1 Cox’s partial likelihood

We implemented Algorithms 2(SGD),4(SimVRG) and 5(SCSimG) to minimize a regularized

Cox’s negative partial log- likelihood and compared their performance with the Compositional-

SVRG-1 algorithm (Comp-SVRG-1) in [207], the Stochastic Compositional Gradient Descent

algorithm (SCGD) in [206] and Gradient Descent(GD) algorithm. The optimization problem in

Section 3.2 combined with !2 regulation can be written as:

min

V2R?
1

=

=’
8=1

�8 [�->8 V + log{
=’
9=1

I(.9 � .8) exp(->
9
V)}] + 1

2

kVk2
2
, , (7.43)

where (-8,.8,�8) and)8,⇠8 for 8 = 1, . . . , = come from the Cox’s model as in the setting of Section

3.2. Here, we generated our dataset by seting = = 10
4, ? = 10

3 and letting -8 follow i.i.d. standard

normal distribution. Moreover,)8 was generated according to the standard exponential base line

hazard function and ⇠8 was generated independent of)8 with a 30% censoring rate. One can

check that each component function is strongly convex with Lipschitz continuous gradients. The

numerical results are presented below in Figure 1.

In Figure 1, the left plot is the logarithm of the objective value minus the optimal value versus

the number of iterations while the right plot is the logarithm of the same difference versus the CPU

running time. We compare both the running time and the iteration number to give a more compre-

hensive review of each algorithm since the iteration time for each algorithm could be drastically

different due to different update rules. Moreover, the parameters in each algorithm were selected

and tuned to achieve a relatively optimal performance without heavily increasing the computational

cost. In Algorithm 5, we set _ = 0.01, W = 3/2 " = 100 and =0 = 0, in Algorithm 6, _ = 0.0005,

" = 100, ⌫ = 100, = 50 and =0 = 2, in Compositional SVRG-1, _ = 0.001, " = 100 and

⌫ = 500, in Gradient Descent _ = 0.01.

As we can see, in the left plot, the SimVRG and Compositional-SVRG-1 algorithm performed

best amongst all algorithms while SimVRG also had better performance in the right plot. Algo-

rithm 6, SCSimG was slightly less effective due to the lack of full gradient computation, but, as

230

expected from the theorems in Section 4, Algorithm 6 also converged linearly to the optimal so-

lution. SimGD algorithm is ploted for every 50 iterations for the sake of fairness (to account for

the inner loop in the other algorithms) and it also showed satisfactory performance without the

presence of variance reducetion techinques.

231

number of iterations
0 100 200 300 400 500 600 700 800 900 1000

lo
g
(f

(x
k
)

-
f(

x
*
))

-7

-6

-5

-4

-3

-2

-1

0

1

2
Iteration comparisons of the algorithms on maximizing negative partial likelihood

SimVRG

SCSimG

Comp-SVRG-1

GD

SimGD

SCGD

cpu time (s)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
g

(f
(x

k
)

-
f(

x
*))

-7

-6

-5

-4

-3

-2

-1

0

1

2
Time comparisons of the algorithms on maximizing partial likelihood

SimVRG
SCSimG
Comp-SVRG-1
GD
SimGD
SCGD

Figure 7.1: Performance plots for different algorithms on Cox’s partial likelihood dataset. For both plots,
the H-axis is the logarithm of the objective value minus the optimal value. For the plot on the left, the G-axis
is number of iterations while for the right plot, the G-axis is the running time of the algorithms.

232

7.5.2 Conditional Random Fields

We implemented Algorithms 3(SimGD),5(SimVRG) and 6(SCSimG) to train conditional ran-

dom field models and compared their performance with the Compositional-SVRG-1 algorithm

(Comp-SVRG-1) in [207], the Stochastic Compositional Gradient Descent algorithm (SCGD) in

[206] and Gradient Descent(GD) algorithm. However, we used the optical character recognition

(OCR) data in [242]. Specifically, the ORC dataset provides labelling for letters in a image com-

posed of words. The numerical results are summarized in Figure 2.

Once again, to make comparisons fair, the performance of algorithms are measured both in

number of iterations and CPU time. For the parameters, in Algorithm 5, we have _ = 0.001,W =

3/2 " = 200 and =0 = 0, in Algorithm 6, _ = 0.0001, " = 200, ⌫ = 100, = 10 and =0 = 2,

in Gradient Descent, _ = 0.01. In other algorithms, the parameters are chosen according to their

convergence theorem with scaling factor 0.5. For example, basic SCGD corresponds to Theorem

6 in [206].

As we can see from the figures, once again, the SimVRG of Algorithm 5 has the best per-

formance amongst the group. However, in this example, the gradient descent algorithm actually

outperforms Algorithm 6, SimVRG in terms iteration complexity. This is possibly due to the lack

of accurate gradient estimation in Algorithm 6. Specifically, as the dataset grows large, it becomes

more costly to obtain accurate gradient estimate. On the other hand, the SimGD in Algorithm 3

outperforms SCGD in terms of iterations and CPU time for both datasets. We note that the oc-

casional increase of function value in some executions of the SimGD algorithm is caused by the

variance of our gradient simulation.

7.6 Conclusion and Future Work.

In this chapter, we introduced unbiased gradient simulation algorithms that are based on a mul-

tilevel Monte Carlo technique for solving stochastic compositional optimization (SCO) problems

and proved convergence of our algorithms and applied them on a number of different statistical

233

0 50 100 150 200 250 300 350 400 450 500

number of iterations

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

lo
g
(f

(x
k
)

-
f(

x
*
))

Iteration comparisons of the algorithms for CRF on OCR data

SimVRG
SCSimG
Comp-SVRG-1
GD
SimGD
SCGD

0 100 200 300 400 500 600 700 800 900 1000

cpu time (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

lo
g
(f

(x
k
)

-
f(

x
*
))

Time comparisons of the algorithms for CRF on OCR data

SimVRG
SCSimG
Comp-SVRG-1
GD
SimGD
SCGD

Figure 7.2: Performance plots for different algorithms on the OCR dataset. For both plots, the H-axis is the
logarithm of the objective value minus the optimal value. For the plot on the left, the G-axis is number of
iteration while for the right plot, the G-axis is the running time of the algorithms.

234

and machine learning problems.

There are several directions where we can expand upon our work. For example, different accel-

erating schemes and second order methods usually show fast convergence in practice, and can be

extended using simulated gradients for SCO problems. Another direction is to extend our approach

to adaptive step size schemes. A limitation of our unbiased gradient simulation algorithm is the

requirement for smoothness of the objective function. Therefore, developing unbiased simulation

of sub-gradient methods and utilizing them for optimizing non-smooth functions is also of great

interest. Analyzing the sample complexity of our algorithms and the optimal choice of the param-

eters are also interesting problems for future work.

235

7.7 Supplementary A:Proof of Lemma 32

Proof. Proof. Before proving this lemma, we introduce the notation for partial derivatives of

� (B, C), i.e., each component of the gradient r� (B, C) 2 R? ⇥ (R3⇥? ⇥ R3). Let

m [�]8
m [B]: 9

(B, C) = X8 9
m 5E1

m [C]:
(C), and

m [�]8
m [C]⌘

(B, C) =
3’
:=1

[B]:8
m [r 5E1

]:
m [C]⌘

=
3’
:=1

[B]:8
m

2
5E1

m [C]:m [C]⌘
(C),

where 1  8  ?, 1  9  ?, 1  :  3 , 1  ⌘  3, and X8 9 is the Kronecker delta, i.e., X8 9 = 1

when 8 = 9 ; X8 9 = 0 otherwise. Note that by Assumption 1, r 5E1
is Lipschitz continuous with

constant ! 5 ,1; therefore m [�]8
m [B]: 9 (B, C), which is the partial derivative of r 5E1

, is Lipschitz continuous

with constant ! 5 ,1. By Assumption 1, r2
5E1

is Lipschitz continuous with constant ! 5 ,2; therefore
m [�]8
m [C]⌘ (B, C) is Lipschitz continuous with constant ! 5 ,2. Therefore

kr[�]8 (B1, C1) � r[�]8 (B2, C2)k�



vut
3’
:=1

?’
9=1

(X8 9
m 5E1

m [C]:
(C1) � X8 9

m 5E1

m [C]:
(C2))2 +

3’
⌘=1

(
3’
:=1

[B1]:8
m

2
5E1

m [C]:m [C]⌘
(C1) �

3’
:=1

[B2]:8
m

2
5E1

m [C]:m [C]⌘
(C2))2

.

Since

3’
:=1

?’
9=1

{X8 9
m 5E1

m [C]:
(C1) � X8 9

m 5E1

m [C]:
(C2)}2 =

3’
:=1

{ m 5E1

m [C]:
(C1) �

m 5E1

m [C]:
(C2)}2

2
= kr 5E1

(C1) � r 5E2
(C2)k22

 !2

5 ,1
kC1 � C2k22

236

using the fact that | [B2]:8 |  ;6,1 | m
2
5E

1

m [C]:m [C]⌘ (C2) |  ; 5 ,2 for all : and ⌘,

3’
⌘=1

{
3’
:=1

[B1]:8
m

2
5E1

m [C]:m [C]⌘
(C1) �

3’
:=1

[B2]:8
m

2
5E1

m [C]:m [C]⌘
(C2)}2

 2

3’
⌘=1

{
3’
:=1

[B1]:8
m

2
5E1

m [C]:m [C]⌘
(C1) �

3’
:=1

[B2]:8
m

2
5E1

m [C]:m [C]⌘
(C1)}2

+ 2

3’
⌘=1

{
3’
:=1

[B2]:8
m

2
5E1

m [C]:m [C]⌘
(C1) �

3’
:=1

[B2]:8
m

2
5E1

m [C]:m [C]⌘
(C2)}2

 2;
2

5 ,2

3’
⌘=1

{
3’
:=1

[B1]:8 � [B2]:8}2 + 2;
2

6,1

3’
⌘=1

{
3’
:=1

m
2
5E1

m [C]:m [C]⌘
(C1) �

m
2
5E1

m [C]:m [C]⌘
(C2)}2

 2;
2

5 ,2
3k [B1]:8 � [B2]:8k22 + 2;

2

6,1
3!

2

5 ,2
kC1 � C2k22.

Hence,

kr[�]8 (B1, C1) � r[�]8 (B2, C2)k� 
q
!

2

5 ,1
kC1 � C2k2

2
+ 2;

2

5 ,2
3k [B1]·8 � [B2]·8k2

2
+ 23;

2

6,1
!

2

5 ,2
kC1 � C2k2

2


q
!

2

5 ,1
+ 23;

2

5 ,2
+ 23;

2

6,1
!

2

5 ,2
kvec([B1]:8, C1) � vec([B2]:8, C2)k2

= !� kvec([B1]:8, C1) � vec([B2]:8, C2)k2.

⇤

7.8 Supplementary B: Proof of Lemma 33

Proof. Proof. Recall that r� (B, C) [D, E] 2 R?, D 2 R3⇥?, E 2 R3 and each component r� (B, C) is

defined as

[r� (B, C) [D, E]]8 = r[�]8 (B, C) [D, E] =
3’
:=1

?’
9=1

m [�]8
m [B]: 9

(B, C) · [D]: 9 +
3’
⌘=1

m [�]8
m [C]⌘

(B, C) · [E]⌘.

Note that '(B, B0, C, C0) can be considered as the remainder of the first order Taylor expansion of

� (B, C) at (B0, C0). Now using Lemma 30, we have

237

k'(B, B0, C, C0)k2 = k� (B, C) � � (B0, C0) � r� (B0, C0) [(B � B0), (C � C0)]k2

=

vt
?’
8=1

| [�]8 (B, C) � [�]8 (B0, C0) � r[�]8 (B0, C0) [B � B0, C � C0] |2


?’
8=1

| [�]8 (B, C) � [�]8 (B0, C0) � r[�]8 (B0, C0) [B � B0, C � C0] |


?’
8=1

1

2

q
!

2

5 ,1
+ 23;

2

5 ,2
+ 23;

2

6,1
!

2

5 ,2
kvec([B] 8, C) � vec([B0] 8, C0)k22

=
1

2

q
!

2

5 ,1
+ 23;

2

5 ,2
+ 23;

2

6,1
!

2

5 ,2
(kB � B0k2� + ?kC � C0k22)

=
!�

2

(kB � B0k2� + ?kC � C0k22) (7.44)

for any G, G0 2 H and H, H0 2 G.

⇤

7.9 Supplementary C: Proof of Lemma 34

Proof. Proof. Define .C = kGC � G¢k2
2
. By the contraction property of projection operators, we have

.C+1 = kGC+1 � G¢k2
2
= k⇧D(GC � _C dC) � ⇧D(G¢)k2

2
 kGC � _C dC � G¢k2

2
. Thus

.C+1 � .C  kGC+1 � G¢k2 = kGC � G¢k2 = �2_C (GC � G¢)|dC + _2

C
kdC k22, (7.45)

Moreover, with respect to the natural filtration {FC}C�0, we can obtain, using Proposition 1 and 2,

E{dC | FC} = r� (GC) and E{kdC k2
2
| FC}  ⇠

0
D and by convexity of � (·), we have 0 � � (G¢) �

� (G) � (G¢ � G)|r� (G). Therefore

E[.C+1 � .C |FC]  �2_C (GC � G¢)|r� (GC) + _2

C
⇠
0
D  _

2

C
⇠
0
D . (7.46)

238

Define "C = .C +
Õ1
C
_

2

B
⇠
0
D with respect to the natural filtration FC . Then it can be checked that

"C is a positive supermartingale with finite expected values. Thus, it follows from the martingale

convergence theorem that "C and consequently .C = kGC � G¢k2
2

converges almost surely. To show

that kGC � G¢k2
2
! 0, we define /C =

Õ
C

B=0
2_C (GC � G¢)|r� (GC), and notice that 0  /C  /C+1 due

to convexity of � (·). Therefore, using the monotone convergence theorem and (7.46) we have

E[
’
C

2_C (GC � G¢)|r� (GC)] 
’
C

E[2_C (GC � G¢)|r� (GC)]

=
’
C

E[.C] � E[.C+1] + _2

C
E[d2

C
]  ⇡ +

’
C

_
2

C
⇠
0
D < 1. (7.47)

Thus the monotone series /C =
Õ
BC 2_B (GB�G¢)|r� (GB) converges almost surely. It follows from

Õ
C
_C = 1 and (GC � G¢)|r� (GC) � 0 that (GC � G¢)|r� (GC) ! 0. Since � (·) is `-strongly convex,

we have (GC � G¢)|r� (GC) � `kGC � G¢k2
2
, which implies kGC � G¢k2

2
! 0.

⇤

7.10 Supplementary D: Proof of Lemma 35

Proof. Proof. By the contraction property of projection operators, we have

E[kGC � G¢k2 |GC�1]  E[kGC�1 � _C dC�1 � G¢k2 |GC�1]

= kGC�1 � G¢k22 + _
2

C
E[kdC�1k22 |GC�1] � 2_C (GC�1 � G¢)|E[dC�1 |GC�1]

= kGC�1 � G¢k22 + _
2

C
E[kdC�1k22 |GC�1] � 2_C (GC�1 � G¢)|r� (GC�1)

 kGC�1 � G¢k22 + _
2

C
⇠
0
D � 2_C (� (GC�1) � � (G¢) +

`

2

kGC�1 � G¢k22). (7.48)

The third line follows from the Proposition 1 and the fourth line follows from Proposition 2 and

strong convexity. Now we have

E[� (GC�1)] � � (G¢) 
_C⇠

0
D

2

+
_
�1

C
� `

2

EkGC�1 � G¢k22 �
_
�1

C

2

EkGC � G¢k22. (7.49)

239

Finally, with _C = 2

`(C+1) , it follows from the convexity of � (·) that

0  E[� (G̃))] � � (G¢) 
2

()) () + 1)

)�1’
C=0

(C + 1)
�
E[� (GC)] � � (G¢)

�

 2

()) () + 1)

)�1’
C=0

C + 1

C + 2

⇠
0
D
`

+ `
4

�
(C) (C + 1)EkGC�1 � G¢k22 � (C + 1) (C + 2)EkGC � G¢k22

�


2⇠
0
D

`() + 1) �
`

2

EkG) � G¢k22. (7.50)

The last inequality implies that both EkG) � G¢k2
2
 4⇠

0
D

`
2 ()+1) and EkG̃) � G¢k2

2
 4⇠

0
D

`
2 ()+1) (using

strong convexity).

When � (·) is non-strongly convex, we can use the convexity of � (·) so that the last inequality

of (7.48) becomes

E[kGC � G¢k2 |GC�1]  kGC�1 � G¢k22 + _
2

C
⇠
0
D � 2_C (� (GC�1) � � (G¢)), (7.51)

Thus we have

E[� (GC�1)] � � (G¢) 
_C⇠

0
D

2

+
_
�1

C

2

EkGC�1 � G¢k22 �
_
�1

C

2

EkGC � G¢k22. (7.52)

Finally, with _C = 2p
(C+1)

, it follows from the convexity of � () and the assumption that EkGC �

G¢k2
2
 ⇡ that

0  E[� (G̃))] � � (G¢) 
2

()) () + 1)

)�1’
C=0

(C + 1)
�
E[� (GC)] � � (G¢)

�


p

2

22()) () + 1)⇡ + 2

()) () + 1)

)�1’
C=0

(C + 1)
2⇠
0
D

2

p
C + 2

+
)�1’
C=1

(
p
C + 2(C + 1)

22

�
p
C + 1(C)

22

)EkGC � G¢k22


p

2

22()) () + 1)⇡ + 2

()) () + 1)

)�1’
C=0

p
C + 1

2⇠
0
D

2

+
)�1’
C=1

p
C + 1

22

(3C + 2p
(C + 2) (C + 1) + C

)⇡


p

2

22()) () + 1)⇡ + 2

()) () + 1) () + 1) 3

2

�2⇠0D
2

+ 3⇡

22

�


2

p
2⇠
0
D + 2�1

4

p
2⇡

p
)

(7.53)

240

⇤

7.11 Supplementary E: Proof of Lemma 37

Proof. Proof. We start by proving (7.22). Since r6F (G) is Lipschitz continuous with constant

!6,1, then every m [6F]:/m [G] 9 (G) is Lipschitz continuous with constant !6,1 for every 1  :  3

and 1  9  ?. It follows from Definition 2 that for any F 2 ⌦F,

max

1 9?
1:3

{| m [6F]:
m [G] 9

(G) � m [6F]:
m [G] 9

(G̃) |}  !6,1kG � G̃k2. (7.54)

It also follows from Definition 2 that diam(D) < 1. Consequently, we can find a set � ⇢ R? with

cardinality |�| 
�

2diam(D)
n/p?

�
? such that for any G 2 D, there exists I 2 � with kG � Ik2  n , and

hence

| [r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 | =|
1

=

=’
8=1

m [6F8]:
m [G] 9

(G) � EF
m [6F]:
m [G] 9

(G) |

 |1
=

=’
8=1

m [6F8]:
m [G] 9

(I) � EF
m [6F]:
m [G] 9

(I) | + 2n!6,1

=| [r6(I; 1, =)]: 9 � [EFr6F (I)]: 9 | + 2n!6,1.

Fixing X > 0 and 0 < n < min{diam(D), X

2!6,1

}, we have

P

⇢
| [r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 | � X

�
 P

⇢
max

I2�
| [r6(I; 1, =)]: 9 � [EFr6F (I)]: 9 | + 2n!6,1 � X

�


’
I2�
P

⇢
| [r6(I; 1, =)]: 9 � [EFr6F (I)]: 9 | � X � 2n!6,1

�
.

By Assumption 4, | m [6F8]:
m [G] 9 (G) | < ;6,1 for every G 2 D, 1  :  3 and 1  9  ?. Therefore, by

241

applying Azuma-Hoeffding inequality and using the cardinality bound of �, we have

P

⇢
| [r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 | � X

�


’
I2�

2 exp{�
=(X � 2n!6,1)2

2;
2

6,1

}

 2

�2diam(D)
n/p?

�
?

exp {�
=(X � 2n!6,1)2

2;
2

6,1

}. (7.55)

Noticing that sup
G2D |[r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 |  2;6,1, we have

E


sup

G2D
|[r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 |4

�
 (2;6,1)4P{sup

G2D
|[r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 | | � X}

+ X4P{sup

G2D
|[r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 | < X}

32;
4

6,1

�2diam(D)
n/p?

�
?

exp {�
=(X � 2n!6,1)2

2;
2

6,1

} + X4

=32;
4

6,1
(2diam(D))? ??/2 exp {�

=(X � 2n!6,1)2

2;
2

6,1

+ ? log(1
n

)} + X4
, (7.56)

where the second inequality above follows from (7.55). Letting X =
p

2;6,1

p
4(?+1) log(4=2)p

=

and n =
p

2;6,1

2!6,1

p
=

, we have =(X�2n!6,1)2
2;

2

6,1

= (
p

4(? + 1) log(4=2) � 1)2
. Note that (G � 1)2 � G2/4 for all G � 2.

Since,
p

4(? + 1) log(4=2) � 2 for ? � 1, = � 1, we have

=(X � 2n!6,1)2

2;
2

6,1

= (
q

4(? + 1) log(4=2) � 1)2 � (? + 1) log(4=2).

Hence

E


sup

G2D
|[r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 |4

�

32;
4

6,1
(2diam(D))? ??/2 exp{�(? + 1) log(4=2) + ? log

p
= + ? log(

p
2!6,1/;6,1)}

+
64;

4

6,1
(? + 1)2{log(4=2)}2

=
2

.

242

Since log(4=2) > log

p
= for every = � 1, we have

E


sup

G2D
|[r6(G; 1, =)]: 9 � [EFr6F (G)]: 9 |4

�

 32;
4

6,1
(2diam(D))? ??/2 exp{� log(4=2) + ? log(

p
2!6,1/;6,1)} +

64;
4

6,1
(? + 1)2{log(4=2)}2

=
2

=
8;

4�?
6,1

(4diam(D)?)??/2!?
6,1

=
2

+
64;

4

6,1
(? + 1)2{log(4=2)}2

=
2

 ⇠1

(log(4=))2

=
2

where ⇠1 = 8;
4�?
6,1

(4diam(D)?)??/2!?
6,1

+ 64;
4

6,1
(? + 1)2.

To prove (7.23), we notice that 6F (G) is Lipschitz continuous with constant !6,0 and for all

G 2 D, | [6F]: |  ;6,0. Therefore, we can apply exactly the same argument to derive (7.23). Fi-

nally, (7.24) can be proved in the same way.

⇤

7.12 Supplementary F: Proof of Lemma 38

Proof. Proof. Note that

[�]8 9 (G, H, I) = I>:8 9r 5E (H) + [G]8:r2
5E (H) [G]: 9 =

3’
:=1

✓
[I]:8 9

m 5E1

m [H]:
(H) + [G]:8

⇣ 3’
⌘=1

m 5E1

m [H]:m [H]⌘
(H) [G]⌘ 9

⌘◆
.

243

We can then compute each component of the gradient r[�]8 9 (G, H, I) 2 R(3⇥?)⇥3⇥(3⇥?⇥?) as

m [�]8 9
m [G]: 0 9 0

(G, H, I) = X8 9 0
3’
⌘=1

m 5E1

m [H]: 0m [H]⌘
(H) [G]⌘ 9 + X 9 9 0

3’
:=1

m 5E1

m [H]:m [H]: 0
(H) [G]:8

= X8 9 0 [r2
5E1

]: 0:(H) [G]: 9 + X 9 9 0 [r2
5E1

]: 0:(H)G:8

m [�]8 9
m [H]⌘0

(G, H, I) =
3’
:=1

✓
[I]:8 9

m 5E1

m [H]:m [H]⌘0
(H) + [G]:8

⇣ 3’
⌘=1

m 5E1

m [H]:m [H]⌘m [H]⌘0
(H) [G]⌘ 9

⌘◆

= [I]>
:8 9
[r2

5E1
(H)]:⌘

0 + [G]>
:8
[r3

5E1
(H)]::⌘

0 [G]: 9

m [�]8 9
m [I]

:
00
8
00
9
00
(G, H, I) = X

88
00X

9 9
00
m 5E1

m [H]
:
00
(H) = X

88
00X

9 9
00 [r 5E1

(H)]: 00 .

where 1  8
0
, 9
0
, 8
00
, 9
00  ?,1  :

0
, ⌘
0
, :
00  3 and X8 9 is the Kronecker delta. Note that by

Assumptions 1, 2, 4, and 5, we have

|
m [�]8 9
m [G]: 0 9 0

(G1, H1, I1) �
m [�]8 9
m [G]: 0 9 0

(G2, H2, I2) |

 X8 9 0 | [r2
5E1

]: 0:(H1) [G1]: 9 � [r2
5E1

]: 0:(H2) [G2]: 9 | + X 9 9 0 | [r2
5E1

]: 0:(H1) [G1]:8 � [r2
5E1

]: 0:(H2) [G2]:8 |

 X8 9 0
p
3{; 5 ,2k [G1]: 9 � [G2]: 9 k2 + ! 5 ,2;6,1kH1 � H2k2} + X 9 9 0

p
3{; 5 ,2k [G1]:8 � [G2]:8k2 + ! 5 ,2;6,1kH1 � H2k2}

= (X8 9 0 + X 9 9 0)
p
3! 5 ,2;6,1kH1 � H2k2 + X8 9 0

p
3; 5 ,2k [G1]: 9 � [G2]: 9 k2 + X 9 9 0

p
3; 5 ,2k [G1]:8 � [G2]:8k2

|
m [�]8 9
m [H]⌘0

(G1, H1, I1) �
m [�]8 9
m [H]⌘0

(G2, H2, I2) |

 | [I1]>:8 9 [r2
5E1

(H1)]:⌘
0 � [I2]>:8 9 [r2

5E1
(H2)]:⌘

0 | + | [G1]>:8 [r3
5E1

(H1)]::⌘
0 [G1]: 9 � [G2]>:8 [r3

5E1
(H2)]::⌘

0 [G2]: 9 |


p
3;6,2! 5 ,2kH1 � H2k2 +

p
3; 5 ,2!6,2k [I1]:8 9 � [I2]:8 9 k2 + 3;26,1! 5 ,3kH1 � H2k2

+ 3;6,1; 5 ,3k [G1]: 9 � [G2]: 9 k2 + 3;6,1; 5 ,3k [G1]:8 � [G2]:8k2

= (
p
3;6,2! 5 ,2 + 3;26,1! 5 ,3)kH1 � H2k2 +

p
3; 5 ,2!6,2k [I1]:8 9 � [I2]:8 9 k2

+ 3;6,1; 5 ,3k [G1]: 9 � [G2]: 9 k2 + 3;6,1; 5 ,3k [G1]:8 � [G2]:8k2

244

|
m [�]8 9

m [I]
:
00
8
00
9
00
(G1, H1, I1) �

m [�]8 9
m [I]

:
00
8
00
9
00
(G2, H2, I2) |  |X8800X 9 9 00 [r 5E1

(H1)]: 00 � X8800X 9 9 00 [r 5E1
(H1)]: 00 |

 X8800X 9 9 00! 5 ,1kH1 � H2k2.

Note that

kr[�]8 9 (G1, H1, I1) � r[�]8 9 (G2, H2, I2)k2�

=
3’

:
0=1

?’
9
0=1

|
m [�]8 9
m [G]: 0 9 0

(G1, H1, I1) �
m [�]8 9
m [G]: 0 9 0

(G2, H2, I2) |2 +
3’

⌘
0=1

|2
m [9]8 9
m [H]⌘0

(G1, H1, I1) �
m [9]8 9
m [H]⌘0

(G2, H2, I2) |2

+
3’

:
00=1

?’
8
00=1

?’
9
00=1

|
m [�]8 9

m [I]: 00800 9 00
(G1, H1, I1) �

m [�]8 9
m [I]: 00800 9 00

(G2, H2, I2) |2.

Then based on our previous computation and using (7.14), we have

3’
:
0=1

?’
9
0=1

|
m [�]8 9
m [G]: 0 9 0

(G1, H1, I1) �
m [�]8 9
m [G]: 0 9 0

(G2, H2, I2) |2


3’

:
0=1

?’
9
0=1

3{(2X8 9 0 + 2X 9 9 0)3!2

5 ,2
;
2

6,1
kH1 � H2k22 + X8 9 03;

2

5 ,2
k [G1]: 9 � [G2]: 9 k22 + X 9 9 03;

2

5 ,2
k [G1]:8 � [G2]:8k22}

= 123
2
!

2

5 ,2
;
2

6,1
kH1 � H2k22 + 3

2
;
2

5 ,2
k [G1]: 9 � [G2]: 9 k22 + 3

2
;
2

5 ,2
k [G1]:8 � [G2]:8k22},

3’
⌘
0=1

|
m [9]8 9
m [H]⌘0

(G1, H1, I1) �
m [9]8 9
m [H]⌘0

(G2, H2, I2) |2

 43 (
p
3;6,2! 5 ,2 + 3;26,1! 5 ,3)

2kH1 � H2k22 + 43
2
;
2

5 ,2
!

2

6,2
k [I1]:8 9 � [I2]:8 9 k22

+ 43
3
;
2

5 ,3
k [G1]: 9 � [G2]: 9 k22 + 43

3
;
2

6,1
;
2

5 ,3
k [G1]:8 � [G2]:8k, and

3’
:
00=1

?’
8
00=1

?’
9
00=1

|
m [�]8 9

m [I]: 00800 9 00
(G1, H1, I1) �

m [�]8 9
m [I]: 00800 9 00

(G2, H2, I2) |2  3!2

5 ,1
kH1 � H2k22.

245

Therefore

kr[�]8 9 (G1, H1, I1) � r[�]8 9 (G2, H2, I2)k2�

 {123
2
!

2

5 ,2
;
2

6,1
+ 43 (

p
36,2! 5 ,2 + 32

;
2

6,1
! 5 ,3)2 + 3!2

5 ,1
}kH1 � H2k22 + 43

2
;
2

5 ,2
!

2

6,2
k [I1]:8 9 � [I2]:8 9 k22

+ (32
;
2

5 ,2
+ 43

3
;
2

5 ,3
)k [G1]: 9 � [G2]: 9 k22 + (32

;
2

5 ,2
+ 43

3
;
2

5 ,3
)k [G1]:8 � [G2]:8k22

 {123
2
!

2

5 ,2
;
2

6,1
+ 43 (

p
36,2! 5 ,2 + 32

;
2

6,1
! 5 ,3)2 + 3!2

5 ,1
+ 43

2
;
2

5 ,2
!

2

6,2

+ 23
2
;
2

5 ,2
+ 43

3
;
2

5 ,3
}kvec(G1 � G2, H1 � H2, I1 � I2)k22

= !2

�
kvec(G1 � G2, H1 � H2, I1 � I2)k22

⇤

7.13 Supplementary G: Proof of Lemma 40

Proof. Proof. Fixing E1 2 ⌦E and G, G̃ 2 D, we have

, (G, E1) �, (G̃, E1) =
1

?̃#

✓
.1(G) � .1(G̃) �

1

2

⇣
.2(G) � .2(G̃) + .3(G) � .3(G̃)

⌘◆
+ .4(G) � .4(G̃).

Similar to the proof of Proposition 2, we first take expectation with respect to # . Then,

Ek, (G, E1) �, (G̃, E1)k22 =
1’
==0

E{k, (G, E1) �, (G̃, E1)k22 |# = =} ?̃=

=
1’
==0

?’
8=1

E
�
{[, (G, E1)]8 � [, (G̃, E1)]8}2 |# = =

�
?̃= 

?’
8=1

2E{[.4(G)]8 � [.4(G̃)]8}2

+
1’
==0

?’
8=1

2

?̃=

E{
�
[.1(G)]8 � [.1(G̃)]8 � 0.5{[.2(G)]8 � [.2(G̃)]8 + [.3(G)]8 � [.3(G̃)]8}

�
2 |# = =},

where the last inequality comes from (7.14). Since [.4(·)]8 and [.1(·)]8 � 0.5{[.2(·)]8 + [.3(·))]8}

are continuous for every 1  8  ?. By the mean value theorem, there exist Z8 and b8 that lie

246

between G and G̃ such that [.4(G)]8 � [.4(G̃)]8 = r[.4(Z8)]>
8
(G � G̃) and

�
[.1(G)]8 � 0.5{[.2(G)]8 + [.3(G)]8}

�
�

�
[.1(G̃)]8 � 0.5{[.2(G̃)]8 + [.3(G̃)]8}

�
= {r

�
[.1(b8)]8 � 0.5{[.2(b8)]8 + [.3(b8)]8}

�
}>(G � G̃).

Therefore, we may write

Ek, (G, E1) �, (G̃, E1)k22 =
?’
8=1

2E{r[.4(Z8)]>8 (G � G̃)}2

+
1’
==0

?’
8=1

2

?̃=

E

✓n
r
�
[.1(b8)]8 � 0.5{[.2(b8)]8 + [.3(b8)]8}

�>(G � G̃)o2

|# = =
◆


?’
8=1

2kG � G̃k2
2
Ekr[.4(Z8)]8k22

+
1’
==0

?’
8=1

2kG � G̃k2
2

?̃=

E
n
kr

�
[.1(b8)]8 � 0.5{[.2(b8)]8 + [.3(b8)]8}

�
k2

2
|# = =

o

=
?’
8=1

2kG � G̃k2
2
Ekr[.4(Z8)]8k22

+
1’
==0

?’
8=1

?’
9=1

2kG � G̃k2
2

?̃=

E
n
k [r.1(b8)]8 9 � 0.5{[r.2(b8)]8 9 + [r.3(b8)]8 9 }k22 |# = =

o
(7.57)

where the last inequality uses the Cauchy-Shwartz inequality. Next, we first obtain an upper bound

for Ekr[.4(Z8)]8k2
2

and then bound E
n
kr

�
[.1(b8)]8 � 0.5{[.2(b8)]8 + [.3(b8)]8}

�
k2

2
|# = =

o
using a

function of = in order to analyze the infinite sum above.

To obtain an upper bound for Ek [r.4(Z8)]8k2
2
, we first note that

r{[.4(Z8)]8}

= {[r2
6(G; 1, 2

=0)]::8}>r 5E1
{6̄(G; 1, 2

=0)} + {r6(G; 1, 2
=0)}>r2

5E1
(6̄(G; 1, 2

=0)) [r6(G; 1, 2
=0)]8:.

247

Therefore by (7.14),

kr{[.4(Z8)]8}k22  2k{[r2
6(G; 1, 2

=0)]::8}>r 5E1
{6̄(G; 1, 2

=0)}k2
2

+ 2k{r6(G; 1, 2
=0)}>r2

5E1
(6̄(G; 1, 2

=0)) [r6(G; 1, 2
=0)]8:k22

 2k [r2
6(G; 1, 2

=0)]::8k2� kr 5E1
{6̄(G; 1, 2

=0)}k2
2

+ 2kr6(G; 1, 2
=0)k2

�
kr2

5E1
(6̄(G; 1, 2

=0))k2
�
k [r6(G; 1, 2

=0)]8:k22.

By Assumptions 4 and 5,

k [r2
6(Z8; 1, 2

=0)]::8k2�  ?3k [r2
6(Z8; 1, 2

=0)]::8k21  ?3;26,2,

kr 5E1
{6̄(Z8; 1, 2

=0)}k2
2
 ?k 5E1

{6̄(Z8; 1, 2
=0)}k21  3;25 ,1,

kr6(Z8; 1, 2
=0)k2

�
 ?3kr6(Z8; 1, 2

=0)k21  ?3;26,1,

kr2
5E1

(6̄(Z8; 1, 2
=0))k2

�
 32kr2

5E1
(6̄(Z8; 1, 2

=0))k21  32
;
2

5 ,2
, and

k [r6(Z8; 1, 2
=0)]8:k22  3k [r6(Z8; 1, 2

=0)]8:k21  3;26,1.

Therefore

kr{[.4(Z8)]8}k22  2?3
2
5

2

6,2
;
2

5 ,1
+ 2?3

4
;
4

6,1
;
2

5 ,2
.

Hence

2kG � G̃k2
2
Ekr[.4(Z8)]8k22  {4?32

5
2

6,2
;
2

5 ,1
+ 4?3

4
;
4

6,1
;
2

5 ,2
}kG � G̃k2

2
. (7.58)

To bound the second term in (7.57), we let =̄0 = = + =0 and =̄+
0
= = + =0 + 1 and note that

248

conditioned on # = =,

[r.1(b8)]8 9 = [�]8 9 {r6(b8; 1, 2
=̄
+
0), 6̄(b8; 1, 2

=̄
+
0),r2

6(b8; 1, 2
=̄
+
0)}

= [�]8 9 {EFr6F (b8),EF6F (b8),EFr2
6F (b8)}

+ r[�]8 9 {EFr6F (b8),EF6F (b8),EFr2
6F (b8)}[r6(b8; 1, 2

=̄
+
0) � EFr6F (b8),

6̄(b8; 1, 2
=̄
+
0) � EF6F (b8),r2

6(b8; 1, 2
=̄
+
0) � EFr2

6F (b8)]+

'

�
r6(b8; 1, 2

=̄
+
0),EFr6F (b8), 6̄(b8; 1, 2

=̄
+
0),EF6F (b8),r2

6(b8; 1, 2
=̄
+
0),EFr2

6F (b8)

,

[r.2(b8)]8 9 = [�]8 9 {r6(b8; 1, 2
=̄0), 6̄(b8; 1, 2

=̄0),r2
6(b8; 1, 2

=̄0)}

= [�]8 9 {EFr6F (b8),EF6F (b8),EFr2
6F (b8)}

+ r[�]8 9 {EFr6F (b8),EF6F (b8),EFr2
6F (b8)}[r6(b8; 1, 2

=̄0) � EFr6F (b8),

6̄(b8; 1, 2
=̄0) � EF6F (b8),r2

6(b8; 1, 2
=̄0) � EFr2

6F (b8)]+

'

�
r6(b8; 1, 2

=̄0),EFr6F (b8), 6̄(b8; 1, 2
=̄0),EF6F (b8),r2

6(b8; 1, 2
=̄0),EFr2

6F (b8)

, and

[r.3(b8)]8 9 = [�]8 9 {r6(b8; 2
=̄0 + 1, 2

=̄
+
0), 6̄(b8; 2

=̄0 + 1, 2
=̄
+
0),r2

6(b8; 2
=̄0 + 1, 2

=̄
+
0)}

+ r[�]8 9 {EFr6F (b8),EF6F (b8),EFr2
6F (b8)}[r6(b8; 2

=̄0 + 1, 2
=̄
+
0) � EFr6F (b8),

6̄(b8; 2
=̄0 + 1, 2

=̄
+
0) � EF6F (b8), r2

6(b8; 2
=̄0 + 1, 2

=̄
+
0) � EFr2

6F (b8)]

+ '{r6(b8; 2
=̄0 + 1, 2

=̄0

+), EFr6F (b8), 6̄(b8; 2
=̄0 + 1, 2

=̄0

+), EF6F (b8),

r2
6(b8; 2

=̄0 + 1, 2
=̄0

+), EFr2
6F (b8)}.

249

Therefore, condition on # = =, we have

[r.1(b8)]8 9 � 0.5{[r.2(b8)]8 9 + [r.3(b8)]8 9 }

= '
�
r6(b8; 1, 2

=̄
+
0),EFr6F (b8), 6̄(b8; 1, 2

=̄
+
0),EF6F (b8),r2

6(b8; 1, 2
=̄
+
0),EFr2

6F (b8)

� 1

2

'

�
r6(b8; 1, 2

=̄0),EFr6F (b8), 6̄(b8; 1, 2
=̄0),EF6F (b8),r2

6(b8; 1, 2
=̄0),EFr2

6F (b8)

� 1

2

'{r6(b8; 2
=̄0 + 1, 2

=̄
+
0), EFr6F (b8), 6̄(b8; 2

=̄0 + 1, 2
=̄
+
0), EF6F (b8),r2

6(b8; 2
=̄0 + 1, 2

=̄
+
0), EFr2

6F (b8)}.

Then, by (7.14)

E
n⇣
[r.1(b8)]8 9 � 0.5{[r.2(b8)]8 9 + [r.3(b8)]8 9 }

⌘
2��
= =

o

 3E
⇣
'

�
r6(b8; 1, 2

=̄
+
0),EFr6F (b8), 6̄(b8; 1, 2

=̄
+
0),EF6F (b8),r2

6(b8; 1, 2
=̄
+
0),EFr2

6F (b8)

2

⌘

+ 3

4

E
⇣
'

�
r6(b8; 1, 2

=̄0),EFr6F (b8), 6̄(b8; 1, 2
=̄0),EF6F (b8),r2

6(b8; 1, 2
=̄0),EFr2

6F (b8)

2

⌘

+ 3

4

E
⇣
'{r6(b8; 2

=̄0 + 1, 2
=̄
+
0),EFr6F (b8), 6̄(b8; 2

=̄0 + 1, 2
=̄
+
0), EF6F (b8),r2

6(b8; 2
=̄0 + 1, 2

=̄
+
0), EFr2

6F (b8)}2

⌘
.

Now, applying Lemma 39 on the three terms on the right-hand-side of the inequality above,

E
n⇣
[r.1(b8)]8 9 � 0.5{[r.2(b8)]8 9 + [r.3(b8)]8 9 }

⌘
2��
= =

o


3!

2

�

4

{Ekr6(b8; 1, 2
=0+=+1) � EFr6F (b8)k4� + Ek6̄(b8; 1, 2

=0+=+1) � EF6F (b8)k4�

+ Ekr2
6(b8; 1, 2

=0+=+1) � EF6F (b8)k4�} +
3!

2

�

16

{Ekr6(b8; 1, 2
=0+=) � EFr6F (b8)k4�+

Ek6̄(b8; 1, 2
=0+=) � EF6F (b8)k4� + Ekr2

6(b8; 1, 2
=0+=) � EFr2

6F (b8)k4�}+
3!

2

�

16

{Ekr6(b8; 2
=0+= + 1, 2

=0+=+1) � EFr6F (b8)k4� + Ek6̄(b8; 2
=0+= + 1, 2

=0+=+1) � EF6F (b8)k4�

+ Ekr2
6(b8; 2

=0+= + 1, 2
=0+=+1) � EFr2

6F (b8)k4�}.

250

Then using Lemma 37 to the right-hand-side of the above inequality, we have

E
n⇣
[r.1(b8)]8 9 � 0.5{[r.2(b8)]8 9 + [r.3(b8)]8 9 }

⌘
2��
= =

o


3!

2

�

4

�
(⇠0 + ⇠1 + ⇠2)

{log(4=+=0+1)}2

4
=+=0+1

�
+

3!
2

�

8

�
(⇠0 + ⇠1 + ⇠2)

{log(4=0+=)}2

4
=0+=

�

=
3!

2

�
(⇠0 + ⇠1 + ⇠2)

4
=0+=+1

{1

4

{log(4=+=0+1)}2 + 1

2

{log(4=0+=)}2}


3!

2

�
(⇠0 + ⇠1 + ⇠2)

4
=0+=+1

{3

2

(=0 + = + 1)2}, (7.59)

where the last inequality is the result of log 4 < 2.

Now we are ready to obtain a bound for (7.57). Using (7.58) and (7.59), we have

Ek, (G, E1) �, (G̃, E1)k22


?’
8=1

2kG � G̃k2
2
Ekr[.4(Z8)]8k22

+
1’
==0

?’
8=1

?’
9=1

2kG � G̃k2
2

?̃=

E
n
k [r.1(b8)]8 9 � 0.5{[r.2(b8)]8 9 + [r.3(b8)]8 9 }k22 |# = =

o


?’
8=1

{4?32
5

2

6,2
;
2

5 ,1
+ 4?3

4
;
4

6,1
;
2

5 ,2
}kG � G̃k2

2

+
1’
==0

?’
8=1

?’
9=1

2kG � G̃k2
2

?̃=

3!
2

�
(⇠0 + ⇠1 + ⇠2)

4
=0+=+1

{3

2

(=0 + = + 1)2}

= kG � G̃k2
2

n
4?

2
3

2
5

2

6,2
;
2

5 ,1
+ 4?

2
3

4
;
4

6,1
;
2

5 ,2
+ 9!

2

�
?

2(⇠0 + ⇠1 + ⇠2)
1’
==0

(=0 + = + 1)2

?̃=4
=0+=+1

o
.

Since ?̃= = (1 � 0.5
W)0.5W= and 1 < W < 2, we have

1’
==0

(=0 + = + 1)2

?̃=4
=0+=+1

=
1

(1 � 0.5
W)4=0+1

1’
==0

(=0 + = + 1)2

2
(2�W)=

=
(=0 + 1)2

1 � 2
W�2

+ 2(=0 + 1)2W�2

(1 � 2
W�2)2

+ 2
3W�6 + 2

W�2

(1 � 2
W�2)3

.

251

Therefore

Ek, (G, E1) �, (G̃, E1)k22  ⇠D kG � G̃k22,

where

⇠D = 4?
2
3

2
5

2

6,2
;
2

5 ,1
+ 4?

2
3

4
;
4

6,1
;
2

5 ,2

+ 9!
2

�
?

2(⇠0 + ⇠1 + ⇠2)
� (=0 + 1)2

1 � 2
W�2

+ 2(=0 + 1)2W�2

(1 � 2
W�2)2

+ 2
3W�6 + 2

W�2

(1 � 2
W�2)3

�
.

⇤

7.14 Supplementary H: Proof of Lemma 42

Proof. Proof. First we have

E[⌘̃(G)] = E[⌘1(G)] = E[E[⌘1(G) |I]] =
1

⌫

E[E[
’
E82I

UnibasedGradient(G, E8) |I]]

=
1

⌫

E[
’
E82I
r(5E8 (EF6F (G)))] = r� (G).

Secondly, for any E 2 ⌦E, denote ,8 = UnbiasedGradient(G, E8), ⌘E = r(5E (EF6F (G))) and

⌘(I) = E[⌘1(G) |I] = 1

⌫

Õ
E82I ⌘E8 , we have

+0A [⌘̃(G)] =E[+0A [⌘̃(G) |I]] ++0A [E[⌘̃(G) |I]] = 1

E[+0A [⌘1(G) |I]] ++0AI [⌘(I)]

=
1

E
⇥
E[(⌘1(G) � ⌘(I))| (⌘1(G) � ⌘(I)) |I]

⇤
+ 1

⌫

+0AE [⌘E]

=
1

 ⌫
2

E
⇥
E[(

⌫’
8=1

,8 � ⌘E8 + ⌘E8 � ⌘(I))| (
⌫’
8=1

,8 � ⌘E8 + ⌘E8 � ⌘(I)) |I]
⇤
+ 1

⌫

+0AE [⌘E]

=
1

 ⌫
2

E
⇥
E[

⌫’
8=1

k,8 � ⌘E8 k22 +
⌫’
8=1

⌫’
9=1

(⌘E8 � ⌘(I))| (⌘E 9 � ⌘(I)) |I]
⇤
+ 1

⌫

+0AE [⌘E]


⇠
0
D

 ⌫

+ 4?3
2
;
2

5 ,1
;
2

6,1
(1

+ 1

⌫

)

252

where the last inequality follows from the definition of ⇠0D and the fact that each component of

⌘E is bounded by 3; 5 ,1;6,1 for any E 2 ⌦E, according to the definition of ;D and ⌘E. The equality

above it follows from the independence between the,8’s given I.

⇤

253

References

[1] J. Blanchet, D. Goldfarb, G. Iyengar, F. Li, and C. Zhou, “Unbiased simulation for opti-
mizing stochastic function compositions,” arXiv preprint arXiv:1711.07564, 2017.

[2] H. Lam and F. Li, “Sampling uncertain constraints under parametric distributions,” in 2018
Winter Simulation Conference (WSC), 2018, pp. 2072–2083.

[3] H. Lam and F. Li, “Parametric scenario optimization under limited data: A distributionally
robust optimization view,” ACM Transactions on Modeling and Computer Simulation, To
appear.

[4] J. Blanchet, F. Li, and X. Li, “Unbiased sampling of multidimensional partial differential
equations with random coefficients,” arXiv preprint arXiv:1806.03362,

[5] F. Li, H. Lam, and S. Prusty, “Robust importance weighting for covariate shift,” S. Chiappa
and R. Calandra, Eds., ser. In proceeding of the 23rd International Conference of Artificial
Intelligence and Statistics (AISTATS) 2020, Proceedings of Machine Learning Research,
Online: PMLR, 2020, pp. 352–362.

[6] F. Li, H. Lam, H. Chen, and A. Meisami, “Constrained reinforcement learning via policy
splitting,” S. J. Pan and M. Sugiyama, Eds., ser. In proceeding of the 12th Asian Conference
on Machine Learning (ACML) 2020, Proceedings of Machine Learning Research, Online:
PMLR.

[7] H. Lam and F. Li, General feasibility bounds for sample average approximation via vapnik-
chervonenkis dimension, 2021. arXiv: 2103.01324 [math.OC].

[8] R. P. Liu, “On feasibility of sample average approximation solutions,” SIAM Journal on
Optimization, vol. 30, no. 3, pp. 2026–2052, 2020.

[9] R. Chen and J. Luedtke, “On sample average approximation for two-stage stochastic pro-
grams without relatively complete recourse,” arXiv preprint arXiv:1912.13078, 2019.

[10] Q. Cai, A. Filos-Ratsikas, P. Tang, and Y. Zhang, “Reinforcement mechanism design for
e-commerce,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1339–
1348.

[11] X. Wang, Y. Chen, J. Yang, L. Wu, Z. Wu, and X. Xie, “A reinforcement learning frame-
work for explainable recommendation,” in 2018 IEEE International Conference on Data
Mining (ICDM), IEEE, 2018, pp. 587–596.

254

[12] D. Wu, X. Chen, X. Yang, H. Wang, Q. Tan, X. Zhang, J. Xu, and K. Gai, “Budget con-
strained bidding by model-free reinforcement learning in display advertising,” in Proceed-
ings of the 27th ACM International Conference on Information and Knowledge Manage-
ment, 2018, pp. 1443–1451.

[13] A. Prékopa, “Probabilistic programming,” in Handbooks in Operations Research& Man-
agement Science, A. Ruszczynski and A. Shapiro, Eds., Amsterdam, Netherlands: Elsevier,
2003.

[14] M. R. Murr and A. Prékopa, “Solution of a product substitution problem using stochastic
programming,” in Probabilistic Constrained Optimization, U. Stanislav, Ed., Manhattan,
New York: Springer, 2000, pp. 252–271.

[15] M. A. Lejeune and A. Ruszczynski, “An efficient trajectory method for probabilistic production-
inventory-distribution problems,” Operations Research, vol. 55, no. 2, pp. 378–394, 2007.

[16] A. Prékopa and T. Szántai, “Flood control reservoir system design using stochastic pro-
gramming,” in Mathematical Programming in Use, M. Balinski and C. Lemarechal, Eds.,
Manhattan, New York: Springer, 1978, pp. 138–151.

[17] A. Prékopa, T. Rapcsák, and I. Zsuffa, “Serially linked reservoir system design using
stochastic programing,” Water Resources Research, vol. 14, no. 4, pp. 672–678, 1978.

[18] Y. Shi, J. Zhang, and K. B. Letaief, “Optimal stochastic coordinated beamforming for wire-
less cooperative networks with csi uncertainty,” IEEE Transactions on Signal Processing,
vol. 63, no. 4, pp. 960–973, 2015.

[19] L. J. Hong, J. Luo, and B. L. Nelson, “Chance constrained selection of the best,” INFORMS
Journal on Computing, vol. 27, no. 2, pp. 317–334, 2015.

[20] M. C. Campi and S. Garatti, “A sampling-and-discarding approach to chance-constrained
optimization: Feasibility and optimality,” Journal of Optimization Theory and Applica-
tions, vol. 148, no. 2, pp. 257–280, 2011.

[21] A. Nemirovski and A. Shapiro, “Scenario approximations of chance constraints,” in Prob-
abilistic and randomized methods for design under uncertainty, Springer, 2006, pp. 3–47.

[22] M. C. Campi and S. Garatti, “The Exact Feasibility of Randomized Solutions of Uncertain
Convex Programs,” SIAM Journal on Optimization, vol. 19, no. 3, pp. 1211–1230, 2008.

[23] D. P. De Farias and B. Van Roy, “On Constraint Sampling in the Linear Programming
Approach to Approximate Dynamic Programming,” Mathematics of Operations Research,
vol. 29, no. 3, pp. 462–478, 2004.

255

[24] J. Luedtke and S. Ahmed, “A sample approximation approach for optimization with prob-
abilistic constraints,” SIAM Journal on Optimization, vol. 19, no. 2, pp. 674–699, 2008.

[25] G. Schildbach, L. Fagiano, and M. Morari, “Randomized solutions to convex programs
with multiple chance constraints,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2479–
2501, 2013.

[26] M. C. Campi and S. Garatti, “Wait-and-Judge Scenario Optimization,” Mathematical Pro-
gramming, vol. 167, no. 1, pp. 155–189, 2018.

[27] M. C. Campi and A. Carè, “Random Convex Programs with !1-Regularization: Sparsity
and Generalization,” SIAM Journal on Control and Optimization, vol. 51, no. 5, pp. 3532–
3557, 2013.

[28] A. Carè, S. Garatti, and M. C. Campi, “FAST-- Fast Algorithm for the Scenario Tech-
nique,” Operations Research, vol. 62, no. 3, pp. 662–671, 2014.

[29] G. C. Calafiore, F. Dabbene, and R. Tempo, “Research on Probabilistic Methods for Con-
trol System Design,” Automatica, vol. 47, no. 7, pp. 1279–1293, 2011.

[30] M. Chamanbaz, F. Dabbene, R. Tempo, V. Venkataramanan, and Q.-G. Wang, “Sequential
Randomized Algorithms for Convex Optimization in the Presence of Uncertainty,” IEEE
Transactions on Automatic Control, vol. 61, no. 9, pp. 2565–2571, 2016.

[31] G. C. Calafiore, “Repetitive Scenario Design,” IEEE Transactions on Automatic Control,
vol. 62, no. 3, pp. 1125–1137, 2017.

[32] W. Wiesemann, D. Kuhn, and M. Sim, “Distributionally robust convex optimization,” Op-
erations Research, vol. 62, no. 6, pp. 1358–1376, 2014.

[33] E. Delage and Y. Ye, “Distributionally Robust Optimization Under Moment Uncertainty
with Application to Data-Driven Problems,” Operations Research, vol. 58, no. 3, pp. 595–
612, 2010.

[34] J. Goh and M. Sim, “Distributionally robust optimization and its tractable approximations,”
Operations research, vol. 58, no. 4-part-1, pp. 902–917, 2010.

[35] G. A. Hanasusanto, V. Roitch, D. Kuhn, and W. Wiesemann, “A distributionally robust
perspective on uncertainty quantification and chance constrained programming,” Mathe-
matical Programming, vol. 151, no. 1, pp. 35–62, 2015.

[36] S. Zymler, D. Kuhn, and B. Rustem, “Distributionally robust joint chance constraints with
second-order moment information,” Mathematical Programming, pp. 1–32, 2013.

256

[37] G. A. Hanasusanto, V. Roitch, D. Kuhn, and W. Wiesemann, “Ambiguous joint chance
constraints under mean and dispersion information,” Operations Research, vol. 65, no. 3,
pp. 751–767, 2017.

[38] B. Li, R. Jiang, and J. L. Mathieu, “Ambiguous risk constraints with moment and uni-
modality information,” Mathematical Programming, vol. 173, no. 1-2, pp. 151–192, 2019.

[39] R. Jiang and Y. Guan, “Data-driven chance constrained stochastic program,” Mathematical
Programming, vol. 158, no. 1-2, pp. 291–327, 2016.

[40] Y. Zhang, R. Jiang, and S. Shen, “Ambiguous chance-constrained bin packing under mean-
covariance information,” arXiv preprint arXiv:1610.00035, 2016.

[41] Z. Hu and L. J. Hong, “Kullback-Leibler divergence constrained distributionally robust
optimization,” Available at Optimization Online, 2013.

[42] J. Cheng, E. Delage, and A. Lisser, “Distributionally robust stochastic knapsack problem,”
SIAM Journal on Optimization, vol. 24, no. 3, pp. 1485–1506, 2014.

[43] W. Xie and S. Ahmed, “On deterministic reformulations of distributionally robust joint
chance constrained optimization problems,” SIAM Journal on Optimization, vol. 28, no. 2,
pp. 1151–1182, 2018.

[44] W. Chen, M. Sim, J. Sun, and C.-P. Teo, “From CVaR to uncertainty set: Implications in
joint chance-constrained optimization,” Operations research, vol. 58, no. 2, pp. 470–485,
2010.

[45] Z. Chen, D. Kuhn, and W. Wiesemann, “Data-driven chance constrained programs over
wasserstein balls,” arXiv preprint arXiv:1809.00210, 2018.

[46] R. Ji and M. Lejeune, “Data-driven distributionally robust chance-constrained optimization
with wasserstein metric,” Available at SSRN 3201356, 2018.

[47] A. Ben-Tal, D. den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen, “Robust
solutions of optimization problems affected by uncertain probabilities,” Management Sci-
ence, vol. 59, no. 2, pp. 341–357, 2013.

[48] I. R. Petersen, M. R. James, and P. Dupuis, “Minimax optimal control of stochastic uncer-
tain systems with relative entropy constraints,” IEEE Transactions on Automatic Control,
vol. 45, no. 3, pp. 398–412, 2000.

[49] L. P. Hansen and T. J. Sargent, Robustness. Princeton university press, 2008.

257

[50] D. Love and G. Bayraksan, “Phi-divergence constrained ambiguous stochastic programs
for data-driven optimization,” Department of Integrated Systems Engineering, The Ohio
State University, Columbus, Ohio, Tech. Rep., 2015.

[51] P. Dupuis, M. A. Katsoulakis, Y. Pantazis, and P. Plechác, “Path-space information bounds
for uncertainty quantification and sensitivity analysis of stochastic dynamics,” SIAM/ASA
Journal on Uncertainty Quantification, vol. 4, no. 1, pp. 80–111, 2016.

[52] H. Lam and E. Zhou, “The empirical likelihood approach to quantifying uncertainty in
sample average approximation,” Operations Research Letters, vol. 45, no. 4, pp. 301–307,
2017.

[53] H. Lam, “Recovering best statistical guarantees via the empirical divergence-based distri-
butionally robust optimization,” Operations Research, vol. 67, no. 4, pp. 1090–1105, 2019.

[54] J.-y. Gotoh, M. J. Kim, and A. E. Lim, “Robust empirical optimization is almost the same
as mean–variance optimization,” Operations Research Letters, vol. 46, no. 4, pp. 448–452,
2018.

[55] J. Duchi, P. Glynn, and H. Namkoong, “Statistics of robust optimization: A generalized
empirical likelihood approach,” arXiv preprint arXiv:1610.03425, 2016.

[56] P. M. Esfahani and D. Kuhn, “Data-Driven Distributionally Robust Optimization using the
wasserstein Metric: Performance guarantees and tractable reformulations,” Mathematical
Programming, pp. 1–52, 2015.

[57] J. Blanchet and K. Murthy, “Quantifying distributional model risk via optimal transport,”
arXiv preprint arXiv:1604.01446, 2016.

[58] J. Blanchet, Y. Kang, and K. Murthy, “Robust wasserstein profile inference and applica-
tions to machine learning,” arXiv preprint arXiv:1610.05627, 2016.

[59] R. Gao and A. J. Kleywegt, “Distributionally robust stochastic optimization with wasser-
stein distance,” arXiv preprint arXiv:1604.02199, 2016.

[60] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses. Springer Science & Busi-
ness Media, 2006.

[61] Z. Hu, J. Cao, and L. J. Hong, “Robust simulation of global warming policies using the
dice model,” Management Science, vol. 58, no. 12, pp. 2190–2206, 2012.

[62] P. Glasserman and X. Xu, “Robust risk measurement and model risk,” Quantitative Fi-
nance, vol. 14, no. 1, pp. 29–58, 2014.

258

[63] H. Lam, “Robust sensitivity analysis for stochastic systems,” Mathematics of Operations
Research, vol. 41, no. 4, pp. 1248–1275, 2016.

[64] Z. Hu and L. J. Hong, “Robust simulation of stochastic systems with input uncertainties
modeled by statistical divergences,” in Proceedings of the 2015 Winter Simulation Confer-
ence, L. Yilmaz et al., Ed., IEEE, Piscataway, New Jersey, 2015, pp. 643–654.

[65] H. Lam, “Sensitivity to serial dependency of input processes: A robust approach,” Man-
agement Science, vol. 64, no. 3, pp. 1311–1327, 2018.

[66] S. Ghosh and H. Lam, “Robust analysis in stochastic simulation: Computation and perfor-
mance guarantees,” Operations Research, vol. 67, no. 1, pp. 232–249, 2019.

[67] E. Erdoğan and G. Iyengar, “Ambiguous chance constrained problems and robust opti-
mization,” Mathematical Programming, vol. 107, no. 1, pp. 37–61, 2006.

[68] H. Lam and F. Li, “Sampling uncertain constraints under parametric distributions,” in 2018
Winter Simulation Conference (WSC), IEEE, 2018, pp. 2072–2083.

[69] A. W. Van der Vaart, Asymptotic statistics. Cambridge university press, 2000, vol. 3.

[70] E. L. Lehmann, Elements of Large-sample Theory. Springer Science & Business Media,
2004.

[71] L. Pardo, Statistical Inference Based on Divergence Measures. New York: Chapman and
Hall/CRC, 2005.

[72] F. Nielsen and R. Nock, “On the chi square and higher-order chi distances for approximat-
ing 5 -divergences,” IEEE Signal Processing Letters, vol. 21, no. 1, pp. 10–13, 2014.

[73] A. P. Korostelev and O. Korosteleva, Mathematical Statistics: Asymptotic Minimax Theory.
Providence, Rhode Island: American Mathematical Society, 2011.

[74] D. P. Bertsekas, “Control of uncertain systems with a set-membership description of the
uncertainty.,” Ph.D. dissertation, Massachusetts Institute of Technology, 1971.

[75] D. P. Bertsekas, A. Nedi, A. E. Ozdaglar, et al., Convex Analysis and Optimization. Athena
Scientific, 2003.

[76] F. H. Clarke, “Generalized gradients and applications,” Transactions of the American Math-
ematical Society, vol. 205, pp. 247–262, 1975.

[77] A. Marandi, A. Ben-Tal, D. den Hertog, and B. Melenberg, “Extending the scope of robust
quadratic optimization,” Available on Optimization Online, 2017.

259

[78] A. Ben-Tal, E. G. Laurent, and A. Nemirovski, Robust Optimization, ser. Princeton Series
in Applied Mathematics. Princeton University Press, 2009.

[79] A. Nemirovski and A. Shapiro, “Convex approximations of chance constrained programs,”
SIAM Journal on Optimization, vol. 17, no. 4, pp. 969–996, 2007.

[80] M. A. Lejeune and F. Margot, “Solving chance-constrained optimization problems with
stochastic quadratic inequalities,” Operations Research, vol. 64, no. 4, pp. 939–957, 2016.

[81] G. Folland, Real Analysis: Modern Techniques and Their Applications. John Wiley & Sons,
2013.

[82] A. Winkelbauer, “Moments and absolute moments of the normal distribution,” arXiv preprint
arXiv:1209.4340, 2012.

[83] A. O. Daalhuis, “Confluent hypergeometric functions,” NIST Handbook of Mathematical
Functions, FWJ Olver, DW Lozier, RF Boisvert, and CW Clark, eds., Cambridge Univer-
sity, New York, pp. 321–349, 2010.

[84] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming:
Modeling and Theory. SIAM, 2014, vol. 16.

[85] J. Linderoth, A. Shapiro, and S. Wright, “The empirical behavior of sampling methods for
stochastic programming,” Annals of Operations Research, vol. 142, no. 1, pp. 215–241,
2006.

[86] J. L. Higle and S. Sen, Stochastic decomposition: a statistical method for large scale
stochastic linear programming. Springer Science & Business Media, 2013, vol. 8.

[87] P. Jirutitijaroen and C. Singh, “Reliability constrained multi-area adequacy planning us-
ing stochastic programming with sample-average approximations,” IEEE Transactions on
Power Systems, vol. 23, no. 2, pp. 504–513, 2008.

[88] B. K. Pagnoncelli, S. Ahmed, and A. Shapiro, “Sample average approximation method
for chance constrained programming: Theory and applications,” Journal of optimization
theory and applications, vol. 142, no. 2, pp. 399–416, 2009.

[89] W. Wang and S. Ahmed, “Sample average approximation of expected value constrained
stochastic programs,” Operations Research Letters, vol. 36, no. 5, pp. 515–519, 2008.

[90] G. Barbarosoǧlu and Y. Arda, “A two-stage stochastic programming framework for trans-
portation planning in disaster response,” Journal of the operational research society, vol. 55,
no. 1, pp. 43–53, 2004.

260

[91] C. Liu, Y. Fan, and F. Ordóñez, “A two-stage stochastic programming model for trans-
portation network protection,” Computers & Operations Research, vol. 36, no. 5, pp. 1582–
1590, 2009.

[92] N. Noyan, “Risk-averse two-stage stochastic programming with an application to disaster
management,” Computers & Operations Research, vol. 39, no. 3, pp. 541–559, 2012.

[93] G. Huang and D. P. Loucks, “An inexact two-stage stochastic programming model for
water resources management under uncertainty,” Civil Engineering Systems, vol. 17, no. 2,
pp. 95–118, 2000.

[94] M. Dillon, F. Oliveira, and B. Abbasi, “A two-stage stochastic programming model for
inventory management in the blood supply chain,” International Journal of Production
Economics, vol. 187, pp. 27–41, 2017.

[95] X. Chen, A. Shapiro, and H. Sun, “Convergence analysis of sample average approximation
of two-stage stochastic generalized equations,” SIAM Journal on Optimization, vol. 29,
no. 1, pp. 135–161, 2019.

[96] M. Anthony and N. Biggs, Computational learning theory. Cambridge University Press,
1997, vol. 30.

[97] M. J. Kearns, U. V. Vazirani, and U. Vazirani, An introduction to computational learning
theory. MIT press, 1994.

[98] V. Vapnik, The nature of statistical learning theory. Springer science & business media,
2013.

[99] A. Van Der Vaart and J. A. Wellner, “A note on bounds for vc dimensions,” Institute of
Mathematical Statistics collections, vol. 5, p. 103, 2009.

[100] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learnability and the vapnik-
chervonenkis dimension,” Journal of the ACM (JACM), vol. 36, no. 4, pp. 929–965, 1989.

[101] S. Hanneke, “The optimal sample complexity of pac learning,” Journal of Machine Learn-
ing Research, vol. 17, no. 38, pp. 1–15, 2016.

[102] H. U. Simon, “An almost optimal pac algorithm,” in Proceedings of The 28th Conference
on Learning Theory, P. Grünwald, E. Hazan, and S. Kale, Eds., ser. Proceedings of Machine
Learning Research, vol. 40, Paris, France: PMLR, 2015, pp. 1552–1563.

[103] R. M. Dudley, “Central limit theorems for empirical measures,” The Annals of Probability,
pp. 899–929, 1978.

261

[104] A. W. Van Der Vaart and J. A. Wellner, “Weak convergence,” in Weak convergence and
empirical processes, Springer, 1996, pp. 16–28.

[105] R.-J. Jing, M. Moreno-Maza, and D. Talaashrafi, “Complexity estimates for fourier-motzkin
elimination,” in International Workshop on Computer Algebra in Scientific Computing,
Springer, 2020, pp. 282–306.

[106] M. J. Panik, “Extreme points and directions for convex sets,” in Fundamentals of Con-
vex Analysis: Duality, Separation, Representation, and Resolution. Dordrecht: Springer
Netherlands, 1993, pp. 189–234, ISBN: 978-94-015-8124-0.

[107] M. Terzer, “Large scale methods to enumerate extreme rays and elementary modes,” Ph.D.
dissertation, ETH Zurich, 2009.

[108] G. Calafiore and M. C. Campi, “Uncertain convex programs: Randomized solutions and
confidence levels,” Mathematical Programming, vol. 102, no. 1, pp. 25–46, 2005.

[109] S. Ahmed, “Two-stage stochastic integer programming: A brief introduction,” Wiley ency-
clopedia of operations research and management science, 2010.

[110] S. Ahmed, A. Shapiro, and E. Shapiro, “The sample average approximation method for
stochastic programs with integer recourse,” Submitted for publication, pp. 1–24, 2002.

[111] S. Küçükyavuz and S. Sen, “An introduction to two-stage stochastic mixed-integer pro-
gramming,” in Leading Developments from INFORMS Communities, INFORMS, 2017,
pp. 1–27.

[112] H. M. Bidhandi and J. Patrick, “Accelerated sample average approximation method for
two-stage stochastic programming with binary first-stage variables,” Applied Mathematical
Modelling, vol. 41, pp. 582–595, 2017.

[113] I. Borosh and L. B. Treybig, “Bounds on positive integral solutions of linear diophantine
equations,” Proceedings of the American Mathematical Society, vol. 55, no. 2, pp. 299–
304, 1976.

[114] J. Huang, A. Gretton, K. Borgwardt, B. Schölkopf, and A. J. Smola, “Correcting sample
selection bias by unlabeled data,” in Advances in neural information processing systems,
2007, pp. 601–608.

[115] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf, “Covari-
ate shift by kernel mean matching,” Dataset shift in machine learning, vol. 3, no. 4, p. 5,
2009.

[116] J. J. Heckman, “Sample selection bias as a specification error,” Econometrica: Journal of
the econometric society, pp. 153–161, 1979.

262

[117] B. Zadrozny, “Learning and evaluating classifiers under sample selection bias,” in Pro-
ceedings of the twenty-first international conference on Machine learning, ACM, 2004,
p. 114.

[118] M. Sugiyama, M. Krauledat, and K.-R. MÃžller, “Covariate shift adaptation by impor-
tance weighted cross validation,” Journal of Machine Learning Research, vol. 8, no. May,
pp. 985–1005, 2007.

[119] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, Dataset shift
in machine learning. The MIT Press, 2009.

[120] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adap-
tation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017, pp. 7167–7176.

[121] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in nlp,” in Proceedings
of the 45th annual meeting of the association of computational linguistics, 2007, pp. 264–
271.

[122] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf, and A. J. Smola,
“Integrating structured biological data by kernel maximum mean discrepancy,” Bioinfor-
matics, vol. 22, no. 14, e49–e57, 2006.

[123] M. Sugiyama and M. Kawanabe, Machine learning in non-stationary environments: Intro-
duction to covariate shift adaptation. MIT press, 2012.

[124] H. Hachiya, T. Akiyama, M. Sugiyama, and J. Peters, “Adaptive importance sampling with
automatic model selection in value function approximation.,” in AAAI, 2008, pp. 1351–
1356.

[125] H. Shimodaira, “Improving predictive inference under covariate shift by weighting the log-
likelihood function,” Journal of statistical planning and inference, vol. 90, no. 2, pp. 227–
244, 2000.

[126] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge
and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[127] J. Blitzer, R. McDonald, and F. Pereira, “Domain adaptation with structural correspon-
dence learning,” in Proceedings of the 2006 conference on empirical methods in natural
language processing, Association for Computational Linguistics, 2006, pp. 120–128.

[128] M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe, “Direct impor-
tance estimation with model selection and its application to covariate shift adaptation,” in
Advances in neural information processing systems, 2008, pp. 1433–1440.

263

[129] S. Bickel, M. Brückner, and T. Scheffer, “Discriminative learning for differing training
and test distributions,” in Proceedings of the 24th international conference on Machine
learning, ACM, 2007, pp. 81–88.

[130] T. Kanamori, T. Suzuki, and M. Sugiyama, “Statistical analysis of kernel-based least-
squares density-ratio estimation,” Machine Learning, vol. 86, no. 3, pp. 335–367, 2012.

[131] C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh, “Sample selection bias correc-
tion theory,” in International conference on algorithmic learning theory, Springer, 2008,
pp. 38–53.

[132] Y. Yao and G. Doretto, “Boosting for transfer learning with multiple sources,” in 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE,
2010, pp. 1855–1862.

[133] D. Pardoe and P. Stone, “Boosting for regression transfer,” in Proceedings of the 27th
International Conference on International Conference on Machine Learning, Omnipress,
2010, pp. 863–870.

[134] B. Schölkopf, A. J. Smola, F. Bach, et al., Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

[135] Y.-L. Yu and C. Szepesvári, “Analysis of kernel mean matching under covariate shift,” in
ICML, Omnipress, 2012, pp. 1147–1154.

[136] F. Cucker and D. X. Zhou, Learning theory: an approximation theory viewpoint. Cam-
bridge University Press, 2007, vol. 24.

[137] J. Blanchet and H. Lam, “State-dependent importance sampling for rare-event simulation:
An overview and recent advances,” Surveys in Operations Research and Management Sci-
ence, vol. 17, no. 1, pp. 38–59, 2012.

[138] J. Wen, C.-N. Yu, and R. Greiner, “Robust learning under uncertain test distributions: Re-
lating covariate shift to model misspecification.,” in ICML, 2014, pp. 631–639.

[139] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe,
“Direct importance estimation for covariate shift adaptation,” Annals of the Institute of
Statistical Mathematics, vol. 60, no. 4, pp. 699–746, 2008.

[140] E. H. Kennedy, Z. Ma, M. D. McHugh, and D. S. Small, “Non-parametric methods for
doubly robust estimation of continuous treatment effects,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 79, no. 4, pp. 1229–1245, 2017.

[141] S. Smale and D.-X. Zhou, “Learning theory estimates via integral operators and their ap-
proximations,” Constructive approximation, vol. 26, no. 2, pp. 153–172, 2007.

264

[142] H. Sun and Q. Wu, “A note on application of integral operator in learning theory,” Applied
and Computational Harmonic Analysis, vol. 26, no. 3, pp. 416–421, 2009.

[143] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector ma-
chines,” Advances in computational mathematics, vol. 13, no. 1, p. 1, 2000.

[144] B. L. Nelson, “Control variate remedies,” Operations Research, vol. 38, no. 6, pp. 974–
992, 1990.

[145] P. W. Glynn and R. Szechtman, “Some new perspectives on the method of control variates,”
in Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer, 2002, pp. 27–49.

[146] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,” in Inter-
national conference on computational learning theory, Springer, 2001, pp. 416–426.

[147] I. Pinelis et al., “Optimum bounds for the distributions of martingales in banach spaces,”
The Annals of Probability, vol. 22, no. 4, pp. 1679–1706, 1994.

[148] H. Sun and Q. Wu, “Regularized least square regression with dependent samples,” Ad-
vances in Computational Mathematics, vol. 32, no. 2, pp. 175–189, 2010.

[149] M. A. Lifshits, Gaussian random functions. Springer Science & Business Media, 2013,
vol. 322.

[150] P. Geibel, “Reinforcement learning for mdps with constraints,” in European Conference on
Machine Learning, Springer, 2006, pp. 646–653.

[151] J. Lee, Y. Jang, P. Poupart, and K.-E. Kim, “Constrained bayesian reinforcement learning
via approximate linear programming.”

[152] E. A. Feinberg and U. G. Rothblum, “Splitting randomized stationary policies in total-
reward markov decision processes,” Mathematics of Operations Research, vol. 37, no. 1,
pp. 129–153, 2012.

[153] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy optimization,” in Pro-
ceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR.
org, 2017, pp. 22–31.

[154] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy opti-
mization,” in International conference on machine learning, 2015, pp. 1889–1897.

[155] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

265

[156] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-constrained reinforcement
learning with percentile risk criteria,” Journal of Machine Learning Research, 2018.

[157] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained policy optimization,”
arXiv preprint arXiv:1805.11074, 2018.

[158] E. Altman, Constrained Markov decision processes. CRC Press, 1999, vol. 7.

[159] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[160] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,
1992.

[161] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization. Athena Scientific
Belmont, MA, 1997, vol. 6.

[162] M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[163] R. Bellman, Dynamic programming. Courier Corporation, 2013.

[164] H. Robbins and S. Monro, “A stochastic approximation method,” in Herbert Robbins Se-
lected Papers, Springer, 1985, pp. 102–109.

[165] E. Even-Dar and Y. Mansour, “Convergence of optimistic and incremental q-learning,” in
Advances in neural information processing systems, 2002, pp. 1499–1506.

[166] J. N. Tsitsiklis, “Asynchronous stochastic approximation and @-learning,” Machine learn-
ing, vol. 16, no. 3, pp. 185–202, 1994.

[167] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[168] N. Archak, V. Mirrokni, and S Muthukrishnan, “Budget optimization for online campaigns
with positive carryover effects,” in International Workshop on Internet and Network Eco-
nomics, Springer, 2012, pp. 86–99.

[169] C. Bayer, P. Friz, S. Riedel, and J. Schoenmakers., “From rough path estimates to multi-
level Monte Carlo,” SIAM Journal on Numerical Analysis, vol. 54, no. 3, pp. 1449–1483,
2016.

[170] S. Whitaker., “Flow in porous media I: A theoretical derivation of Darcy’s law,” Transport
in porous media, vol. 1, no. 1, pp. 3–25, 1986.

[171] D. Duffie., Dynamic asset pricing theory. Princeton University Press, 2010.

266

[172] G. Marsily, F. Delay, J. Goncalves, P. Renard, T. Vanessa, and S. Violette., “Dealing with
spatial heterogeneity,” Hydrogeology Journal, vol. 13, no. 1, pp. 161–183, 2005.

[173] J. Delhomme., “Spatial variability and uncertainty in groundwater flow parameters: A geo-
statistical approach,” Water Resources Research, vol. 15, no. 2, pp. 269–280, 1979.

[174] M. Ostoja-Starzewski., Microstructural randomness and scaling in mechanics of materials.
CRC Press, 2007.

[175] K. Sobczyk and D. Kirkner., Stochastic modeling of microstructures. Springer Science &
Business Media, 2012.

[176] M. Hofmann., “!? estimation of the diffusion coefficient,” Bernoulli, vol. 5, no. 3, pp. 447–
481, 1999.

[177] S. Pastorello., “Diffusion coefficient estimation and asset pricing when risk premia and
sensitivities are time varying,” Mathematical Finance, vol. 6, no. 1, pp. 111–117, 1996.

[178] D. Guignard, “Partial differential equations with random input data: A perturbation ap-
proach,” Archives of Computational Methods in Engineering, vol. 26, no. 5, pp. 1313–
1377, 2019.

[179] K. Cliffe, M. Giles, R. Scheichl, and A. Teckentrup., “Multilevel Monte Carlo methods
and applications to elliptic PDEs with random coefficients,” Computing and Visualization
in Science, vol. 14, no. 1, p. 3, 2011.

[180] D. Crevillén-García and H. Power, “Multilevel and quasi-Monte Carlo methods for uncer-
tainty quantification in particle travel times through random heterogeneous porous media,”
Royal Society open science, vol. 4, no. 8, p. 170 203, 2017.

[181] M. Giles and L. Szpruch, “Antithetic multilevel Monte Carlo estimation for multi-dimensional
SDEs without Lévy area simulation,” The Annals of Applied Probability, vol. 24, no. 4,
pp. 1585–1620, 2014.

[182] H. G. Matthies and A. Keese, “Galerkin methods for linear and nonlinear elliptic stochastic
partial differential equations,” Computer methods in applied mechanics and engineering,
vol. 194, no. 12-16, pp. 1295–1331, 2005.

[183] A. Teckentrup, P. Jantsch, C. Webster, and M. Gunzburger., “A multilevel stochastic collo-
cation method for partial differential equations with random input data,” SIAM/ASA Jour-
nal on Uncertainty Quantification, vol. 3, no. 1, pp. 1046–1074, 2015.

[184] J. Charrier, R. Scheichl, and A. Teckentrup., “Finite element error analysis of elliptic PDEs
with random coefficients and its application to multilevel Monte Carlo methods,” SIAM
Journal on Numerical Analysis, vol. 51, no. 1, pp. 322–352, 2013.

267

[185] P. Kloeden and E. Platen., Numerical Solution of Stochastic Differential Equations, ser. Stochas-
tic Modelling and Applied Probability. Springer Berlin Heidelberg, 2011, ISBN: 9783540540625.

[186] S. Mishra, C. Schwab, and J. Šukys., “Multi-level Monte Carlo finite volume methods for
nonlinear systems of conservation laws in multi-dimensions,” Journal of Computational
Physics, vol. 231, no. 8, pp. 3365–3388, 2012.

[187] X. Li and J. Liu., “A multilevel approach towards unbiased sampling of random elliptic
partial differential equations,” arXiv preprint arXiv:1605.06349, 2016.

[188] M. Giles., “Multilevel Monte Carlo path simulation,” Operations Research, vol. 56, no. 3,
pp. 607–617, 2008.

[189] ——, “Multilevel Monte Carlo methods,” in Monte Carlo and Quasi-Monte Carlo Methods
2012, Springer, 2013, pp. 83–103.

[190] M. B. Giles and F. Bernal, “Multilevel estimation of expected exit times and other func-
tionals of stopped diffusions,” SIAM/ASA Journal on Uncertainty Quantification, vol. 6,
no. 4, pp. 1454–1474, 2018.

[191] C. Rhee and P. Glynn., “Unbiased estimation with square root convergence for SDE mod-
els,” Operations Research, vol. 63, no. 5, pp. 1026–1043, 2015. eprint: http://dx.
doi.org/10.1287/opre.2015.1404.

[192] J. Blanchet and P. Glynn, “Unbiased Monte Carlo for optimization and functions of ex-
pectations via multi-level randomization,” in Winter Simulation Conference (WSC), 2015,
IEEE, 2015, pp. 3656–3667.

[193] R. Howard., “The Gronwall inequality,” Lecture notes, 1998.

[194] T. Lyons., “Differential equations driven by rough signals,” Revista Matemática Iberoamer-
icana, vol. 14, no. 2, pp. 215–310, 1998.

[195] A. Davie., “Differential equations driven by rough paths: An approach via discrete approx-
imation,” Applied Mathematics Research eXpress, vol. 2008, 2008.

[196] P. Friz and N. Victoir., Multidimensional stochastic processes as rough paths: theory and
applications. Cambridge University Press, 2010, vol. 120.

[197] P. Friz and M. Hairer., A course on rough paths: with an introduction to regularity struc-
tures. Springer, 2014.

[198] M. Hairer, “A theory of regularity structures,” Inventiones mathematicae, vol. 198, no. 2,
pp. 269–504, 2014.

268

[199] T. Lyons and N. Victoir., “Cubature on Wiener space,” in Proceedings of the Royal Soci-
ety of London A: Mathematical, Physical and Engineering Sciences, The Royal Society,
vol. 460, 2004, pp. 169–198.

[200] J. Blanchet, X. Chen, and J. Dong, “n-strong simulation for multidimensional stochastic
differential equations via rough path analysis,” The Annals of Applied Probability, vol. 27,
no. 1, pp. 275–336, Feb. 2017.

[201] I. Karatzas and S. Shreve., Brownian motion and stochastic calculus. Springer Science &
Business Media, 2012, vol. 113.

[202] J. Steele., Stochastic calculus and financial applications. Springer Science & Business
Media, 2012, vol. 45.

[203] D. Burkholder, B. Davis, and R. Gundy., “Integral inequalities for convex functions of op-
erators on martingales,” in Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 2: Probability Theory, University of California Press,
1972, pp. 223–240.

[204] R. Adler., Random fields and their geometry. Birkhäuser, 2003.

[205] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive vari-
ance reduction,” in Advances in neural information processing systems, 2013, pp. 315–
323.

[206] M. Wang, E. X. Fang, and H. Liu, “Stochastic compositional gradient descent: Algorithms
for minimizing compositions of expected-value functions,” Mathematical Programming,
vol. 161, no. 1-2, pp. 419–449, 2017.

[207] X. Lian, M. Wang, and J. Liu, “Finite-sum Composition Optimization via Variance Re-
duced Gradient Descent,” in Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, A. Singh and J. Zhu, Eds., ser. Proceedings of Machine
Learning Research, vol. 54, Fort Lauderdale, FL, USA: PMLR, 2017, pp. 1159–1167.

[208] L. Lei and M. I. Jordan, “Less than a single pass: Stochastically controlled stochastic gra-
dient method,” arXiv preprint arXiv:1609.03261, 2016.

[209] M. Wang and J. Liu, “Accelerating stochastic composition optimization,” in Advances In
Neural Information Processing Systems, 2016, pp. 1714–1722.

[210] S. Ghadimi, A. Ruszczyński, and M. Wang, “A single time-scale stochastic approximation
method for nested stochastic optimization,” arXiv preprint arXiv:1812.01094, 2018.

269

[211] M. B. Giles, L. Szpruch, et al., “Antithetic multilevel monte carlo estimation for multi-
dimensional sdes without lévy area simulation,” The Annals of Applied Probability, vol. 24,
no. 4, pp. 1585–1620, 2014.

[212] S. Dereich and F. Heidenreich, “A multilevel monte carlo algorithm for lévy-driven stochas-
tic differential equations,” Stochastic Processes and their Applications, vol. 121, no. 7,
pp. 1565–1587, 2011.

[213] M. B. Giles and C. Reisinger, “Stochastic finite differences and multilevel monte carlo
for a class of spdes in finance,” SIAM Journal on Financial Mathematics, vol. 3, no. 1,
pp. 572–592, 2012.

[214] D. F. Anderson and D. J. Higham, “Multilevel monte carlo for continuous time markov
chains, with applications in biochemical kinetics,” Multiscale Modeling & Simulation,
vol. 10, no. 1, pp. 146–179, 2012.

[215] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent methods for regular-
ized loss minimization,” Journal of Machine Learning Research, vol. 14, no. Feb, pp. 567–
599, 2013.

[216] N. L. Roux, M. Schmidt, and F. R. Bach, “A stochastic gradient method with an exponential
convergence _rate for finite training sets,” in Advances in Neural Information Processing
Systems, 2012, pp. 2663–2671.

[217] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives,” in Advances in Neural Information
Processing Systems, 2014, pp. 1646–1654.

[218] P. Zhao and T. Zhang, “Stochastic optimization with importance sampling for regularized
loss minimization,” in International Conference on Machine Learning, 2015, pp. 1–9.

[219] L. Xiao and T. Zhang, “A proximal stochastic gradient method with progressive variance
reduction,” SIAM Journal on Optimization, vol. 24, no. 4, pp. 2057–2075, 2014.

[220] Z. Allen-Zhu and Y. Yuan, “Improved svrg for non-strongly-convex or sum-of-non-convex
objectives,” arXiv preprint, Tech. Rep., 2016.

[221] R. Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt, J. Konečnỳ, and S. Sallinen, “Stop-
wasting my gradients: Practical svrg,” in Advances in Neural Information Processing Sys-
tems, 2015, pp. 2251–2259.

[222] L. Lei and M. Jordan, “Less than a single pass: Stochastically controlled stochastic gradi-
ent,” in Artificial Intelligence and Statistics, 2017, pp. 148–156.

270

[223] P. Gong and J. Ye, “Linear convergence of variance-reduced stochastic gradient without
strong convexity,” arXiv preprint arXiv:1406.1102, 2014.

[224] A. Nitanda, “Stochastic proximal gradient descent with acceleration techniques,” in Ad-
vances in Neural Information Processing Systems, 2014, pp. 1574–1582.

[225] S. Lacoste-Julien, M. Schmidt, and F. Bach, “A simpler approach to obtaining an o (1/t)
convergence rate for the projected stochastic subgradient method,” arXiv preprint arXiv:1212.2002,
2012.

[226] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford, “Competing with the empirical risk
minimizer in a single pass,” in Conference on learning theory, 2015, pp. 728–763.

[227] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data,” 2001.

[228] C. Sutton, A. McCallum, and K. Rohanimanesh, “Dynamic conditional random fields:
Factorized probabilistic models for labeling and segmenting sequence data,” Journal of
Machine Learning Research, vol. 8, no. Mar, pp. 693–723, 2007.

[229] F. Sha and F. Pereira, “Shallow parsing with conditional random fields,” in Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-Volume 1, Association for Computa-
tional Linguistics, 2003, pp. 134–141.

[230] A. McCallum and W. Li, “Early results for named entity recognition with conditional ran-
dom fields, feature induction and web-enhanced lexicons,” in Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003-Volume 4, Association for
Computational Linguistics, 2003, pp. 188–191.

[231] S. Nowozin, C. H. Lampert, et al., “Structured learning and prediction in computer vision,”
Foundations and Trends® in Computer Graphics and Vision, vol. 6, no. 3–4, pp. 185–365,
2011.

[232] F. Barahona, “On the computational complexity of ising spin glass models,” Journal of
Physics A: Mathematical and General, vol. 15, no. 10, p. 3241, 1982.

[233] V. Chandrasekaran, N. Srebro, and P. Harsha, “Complexity of inference in graphical mod-
els,” arXiv preprint arXiv:1206.3240, 2012.

[234] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–
278, 1973.

271

[235] S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy, “Accelerated
training of conditional random fields with stochastic gradient methods,” ACM, 2006, pp. 969–
976.

[236] M. Schmidt, R. Babanezhad, M. Ahmed, A. Defazio, A. Clifton, and A. Sarkar, “Non-
uniform stochastic average gradient method for training conditional random fields,” in Ar-
tificial Intelligence and Statistics, 2015, pp. 819–828.

[237] R. T. Rust and A. J. Zahorik, “Customer satisfaction, customer retention, and market
share,” Journal of Retailing, vol. 69, no. 2, pp. 193–215, 1993.

[238] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow problem,” Journal of the
ACM (JACM), vol. 37, no. 2, pp. 318–334, 1990.

[239] R. D. Cox, “Regression models and life tables (with discussion),” Journal of the Royal
Statistical Society, vol. 34, pp. 187–220, 1972.

[240] D. R. Cox, “Partial likelihood,” Biometrika, vol. 62, no. 2, pp. 269–276, 1975.

[241] ——, “Regression models and life-tables,” in, Springer, 1992, pp. 527–541.

[242] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov networks,” in Advances in
Neural Information Processing Systems, 2004, pp. 25–32.

272

