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Abstract 

Exploring a Generalizable Machine Learned Solution for Early Prediction of Student At-Risk 

Status 

Chad J. Coleman 

 

 Determining which students are at-risk of poorer outcomes -- such as dropping out, 

failing classes, or decreasing standardized examination scores -- has become an important area of 

both research and practice in K-12 education. The models produced from this type of predictive 

modeling research are increasingly used by high schools in Early Warning Systems to identify 

which students are at risk and intervene to support better outcomes. It has become common 

practice to re-build and validate these detectors, district-by-district, due to different data 

semantics and various risk factors for students in different districts. As these detectors become 

more widely used, however, a new challenge emerges in applying these detectors across a broad 

spectrum of school districts with varying availability of past student data. Some districts have 

insufficient high-quality past data for building an effective detector. Novel approaches that can 

address the complex data challenges a new district presents are critical for advancing the field. 

Using an ensemble-based algorithm, I develop a modeling approach that can generate a useful 

model for a previously unseen district. During the ensembling process, my approach, District 

Similarity Ensemble Extrapolation (DSEE), weights districts that are more similar to the Target 

district more strongly during ensembling than less similar districts. Using this approach, I can 

predict student-at-risk status effectively for unseen districts, across a range of grade ranges, and 

achieve prediction goodness but ultimately fails to perform better than the previously published 

Knowles (2015) and Bowers (2012) EWS models proposed for use across districts. 
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 Chapter 1: Introduction & Background 

Most researchers agree there are clear benefits to completing high school education 

(Amos, 2008; Clark, & Martorell, 2014; Ensminger, & Slusarcick,1992; McCallumore, & 

Sparapani, 2010; Swanson, 2004; Upchurch, & McCarthy, 1990), so why do millions of students 

continue to drop out of high school every year (Rumberger, 2020; Snyder, De Brey, & Dillow, 

2018)? Researchers have committed extensive efforts to try to answer this question, with the 

hope that once a student is at-risk of dropping out, educators and administrators can apply a 

preventative or remedial intervention to curb student dropout (Bowers & Sprott 2012; Bowers, 

2021). However, many factors appear to lead to student dropout, including lack of social support 

from parents, poor motivation, low self-esteem, parental educational achievement and value, and 

economic factors, making it difficult to create a single intervention that works for all students 

(Driscoll, 1999; Legault, Green-Demers, & Pelletier 2006). 

 While demographic factors correlate with eventual dropout (Dunn, Chambers, & Rabren, 

2004; Rumberger, 2011), these indicators are not considered actionable. Demographic factors are 

considered non-actionable indicators because a school district generally does not have the 

capacity to improve a student’s economic condition. As such, the educational research 

community has focused on more actionable factors such as behavior, attendance, engagement, 

and social-emotional learning (Barfield, Hartman, & Knight, 2012; Finn 1989). The most 

successful interventions have attempted to address issues related to specific indicators while also 

attempting to improve overall student academic engagement (Christenson & Thurlow 2004). 

There is a range of potential interventions, and many are costly, driving a need to identify the 

students that could benefit most from specific forms of support. Identifying these students can be 

a difficult task (Bowers, Sprott, & Taff, 2012) which has led to an ongoing effort within the 
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educational research community to determine which students are at risk of not graduating from 

high school (Ensminger & Slusarcick, 1992) to apply proactive interventions that can help get 

students back on track (Belfield & Levin, 2007). As such, the work in this field is twofold: 

researchers must identify both the indicators that determine educational success and the students 

most in need of receiving interventions. 

These goals, along with the growing availability of student data, have led to early 

warning systems and early warning indicators (EWS/EWI). While some researchers have begun 

to classify EWIs and EWSs as two distinct solutions, with EWIs focused primarily on providing 

an indicator for dropout risk and EWSs designed to collect insights from an EWI to enable more 

focused applications of educational resources to reduce risk (Allensworth et al., 2018; Davis et 

al., 2013; McMahon & Sembiante, 2020), there is still debate on whether this difference is 

meaningful, as both EWSs and EWIs often rely on statistical methods applied to historical 

student data to predict outcomes for new students, and ultimately serve the same purpose of 

providing educators actionable predictors of a student failing to graduate high school (Bowers, 

2021). Early work on predicting high school graduation tended to use statistical methods in order 

to infer the relationship between graduation and indicators such as grades and attendance. For 

example, the seminal Chicago model developed an "On-Track" indicator built from first-year 

high school student performance indicators and then used this newly defined feature within 

logistic regression to model student risk (Allensworth & Easton, 2007). This method proved 

useful in Chicago Public Schools with 80+ percent accuracy in predicting student dropout, 

leading to high popularity and wide-scale implementation (Balfanz, Herzog, & Mac Iver, 2007). 

Despite the On-Track indicator’s promising results in Chicago, the authors of this EWI stress 

that it may not perform the same for different student populations. They state that this EWI does 
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not consider the role that school climate and structure play in whether students succeed in high 

school, therefore possibly reducing the likelihood it can scale (Allensworth & Easton, 2005). 

While this work provided states and districts a method of addressing the dropout crisis (by 

identifying potential at-risk students to apply proactive, positive interventions), there is still work 

to be done on improving the performance of these early warning systems (Balfanz & Byrnes, 

2019; Bowers, 2021).  Given this need for further improvement in EWSs, the focus of this 

research aims to address this demand for more accurate EWS solutions that can better scale 

across student populations. 

1.1 Why Predicting Dropout is Important 

Graduating from high school is an educational achievement that is strongly linked to 

gainful well-paying employment, higher personal income, better personal health, reduced risk of 

incarceration, and lowered reliance on social welfare programs (Amos, 2008; Hoffman, Vargas, 

Venezia, & Miller, 2007). Graduation rates have been rising in the United States, towards 

reaching 85% nationwide by the year 2020 (NCES, 2020). While this is a positive 

accomplishment, it leaves millions of students not completing high school, representing a 

continuing crisis within the American educational system. This crisis is not evenly distributed; in 

the USA, there are much higher dropout rates for African American, Native American, and 

Hispanic/Latinx students (Driscoll, 1999; Rumberger, 1987), up to four times the rate for white 

students, as well as for learners from low-income families and with disabilities (Stark & Noel, 

2015). Research by Reardon found that historical policies of race segregation continue to 

produce inequalities in learning opportunities across U.S. school districts, with the early learning 

opportunities available strongly associated with the school districts’ socioeconomic status. 

Reardon states “affluent families and districts are able to provide much greater opportunities than 
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poor ones early in children’s lives” (2019). Providing an accessible system that school districts 

can leverage for early dropout detection enables us to move one step closer to reducing 

educational inequality based on community socio-economic level (Reardon, 2019). 

As students progress through their education, they may learn at different rates, and those 

that learn slower start to lag behind (Kaznowski, 2004). This lag causes an achievement gap, 

which then widens year-after-year. One way to remedy this issue is to retain a student a year and 

provide them additional time to catch up and close the gap (Martin, 2011; West, 2012). While 

this solution may be simple, it ignores the fiscal burden that an additional year of education puts 

on schools (Chaifetz, & Kravitz, 2004). There is also research that suggests this approach may 

not be beneficial to improving outcomes. Eide and Showalter analyzed the impact that grade 

retention and high school graduation have on overall labor market outcomes. They found that 

students that were retained at least one grade are less likely to graduate from high school. They 

also find that students who are retained have a higher likelihood of achieving lower earnings 

once they enter the job market compared to their non-retained counterparts (2001), making early 

identification of risk all the more critical. A 2005 research study conducted on the students in the 

Chicago Public Schools analyzed the experience of students that were retained in either the 3rd 

or 6th grades by, over two years, examining the relationship between the students retention and 

the students reading achievement. They found that students who were retained continue to 

struggle during the retained year. For students retained in third grade, there was no evidence to 

conclude that achievement rates increased. For students retained in the 6th grade, they found 

evidence that retention was associated with lower achievement growth (Roderick, & Nagaoka, 

2005).  
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Improving the rate of high school graduation has the potential of positively impacting our 

overall economy (Heckman, 2011). Taking a new approach to the analysis of dropout, Gilbert 

examined the impact not graduating has on employment and labor markets. To accomplish this, a 

target population of 18 to 20-year-olds was identified and sampled using the Canadian Family 

Allowance file as the sampling frame. 18,000 individuals were selected, with a total of 9,460 

individuals responding to the computer-assisted survey. This survey interview obtained 

information regarding demographics, social and economic characteristics, school experiences, 

and post-school outcomes. Though the study was conducted during an economic recession, the 

results suggest the high school graduates are presented with greater economic employment 

opportunities and students who left school early were more likely to receive public assistance 

(Gilbert, 1993). By reducing the number of dropouts, we would, in turn, reduce the number of 

individuals reliant on public support as they would hopefully have better opportunities for 

gainful employment with the completion of their academic credentials.  

1.2 Problem Statement 

More recently, researchers have begun to employ machine learning and data mining 

methods, sometimes termed predictive analytics, to find complex patterns associated with future 

student outcomes (Kotsiantis et al., 2003; Dekker, Pechenizkiy, & Vleeshouwers, 2009; Bowers, 

2021). In K-12 education, Lakkaraju et al. (2015) used this approach to predict student dropout 

in two districts, finding that the Random Forest algorithm outperformed several other algorithms. 

Some of the efforts to use machine learning in predicting student success have scaled beyond 

single districts to entire states (Knowles, 2015). However, these implementations are rare as it 

remains a challenge to deploy predictive analytics for use in schools at scale. District data often 

contain substantial information about its schools and students: demographic data about the 
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student and teacher populations, academic performance information, financial information, 

disciplinary actions, and attendance records (Schildkamp, Lai, & Earl, 2012). However, in many 

school districts, data quality is limited. Common problems that researchers encounter when 

working with school district data include incompatible student ID numbers, errors in data entry, 

and local idiosyncratic interpretations of often ambiguous data fields. Often, accessing the data 

mentioned above also involves integration across multiple data warehouses to compile all the 

available information. In some situations, even when current data is readily available, critical 

data from past years is often unavailable due to the absence of a formal data system or due to the 

use of a data system that is difficult to query. Semantics may also change; for example, the 

definition of "not graduated" is not stable across years and contexts (Rumberger, 1987), but these 

changes may not always be clearly understood when reviewing past data. 

One solution is to use models that involve simple variables that are feasible for almost 

any districts’ data. In doing so, researchers then could assume that the model will be valid in new 

contexts, even contexts that may be quite different from the context where the model was 

initially developed (e.g., Neild, Stoner-Eby, & Furstenberg, 2008). The Chicago model 

(Allensworth & Easton, 2007) is a common choice for this type of application. While this 

method has proved useful in the past, such a system has not been shown to achieve the 

performance of those driven by more advanced techniques of modeling, such as machine 

learning.  

Despite the advancements made with early warning systems, there has yet to be an 

effective modeling method that can be applied to school districts that suffer from data quality 

issues, while also taking into consideration the unique heterogeneity properties of the individual 

school district. This presents a challenging problem, as schools that suffer from data quality 
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issues seem destined to use lower-performing methods of risk analysis until they can populate 

the data required to drive the development of a machine-learned model. 

1.3 Research Questions 

I hypothesize that by utilizing models from districts with sufficient data, researchers can 

create a process for generalizing models, which will produce predictions for districts lacking 

high-quality data, districts for which it is otherwise infeasible to generate their own unique 

models.  As such, my objectives for this research are three-fold.  

RQ1: First, I explore the efficacy of whether it is possible to develop a predictive 

modeling approach that can determine student risk of high school dropout with 

better accuracy than simple methods, such as the Chicago model, for school 

districts with low amounts of high-quality data.  

 

RQ2: Second, I investigate solutions that take a separate set of features selected to 

describe each population’s attributes into account within the modeling approach, 

i.e., not building separate models for each district but taking district features into 

account within a broader model, with the hope that including these features will 

enable the models to scale while improving overall model performance. 

 

RQ3: Lastly, I compare the performance of this system against existing 

generalized EWS detectors with varying levels of complexity and interpretability, 

mainly a Growth Mixture Model published in 2012 (Bowers & Sprott, 2012) and 

replicated in 2015 (Knowles, 2015), the Knowles Machine Learning Ensemble 

published in 2015 (Knowles, 2015), the Balfanz logistic regression model, 
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published in 2007 (Balfanz, 2007), and the Chicago model, originally published in 

2007 (Allensworth & Easton, 2007).  

 

I call this alternative solution the District Similarity Ensemble Extrapolation (DSEE). The 

DSEE attempts to customize a model for a specific “Target” school district based on models 

from other school districts where full datasets are available, taking into account the degree of 

similarity each school district has to the Target district. I compare the effectiveness of this 

approach to simply averaging multiple existing models from different districts, where all existing 

models are given equal weight. I also compare the quality of the DSEE approach to the earlier 

solution of using simple generic models-- specifically, the Chicago model and the more recently 

published, higher-performing Growth Mixture Model (Bowers & Sprott, 2012; Knowles, 2015).  

My approach differs from previous research on early warning systems in that there exists 

a gap of knowledge on how to generalize models across districts to develop high-quality machine 

learning-driven at-risk predictions for schools with access to little historical data. The data I use 

for this study is sufficiently large enough to be considered nationally representative, allowing me 

to validate this method across a wide range of unique students from various regions and 

backgrounds within the United States. The magnitude of this data also presents the possibility of 

conducting additional analysis related to identifying any algorithmic predictive bias that may 

occur given the inherent risks of utilizing a machine learning driven solution. 

1.4 Expected Limitations 

It is worth noting that this study may encounter several limitations. While the results of 

this study prove useful to educators, there likely will need to be additional analysis conducted 

with factors beyond the scope of this initial investigation in order to improve external validity. 
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Analytical dissection of how the models perform in locations with highly diverse student 

populations would be helpful, as such diversity is not wholly found within the data set used in 

this dissertation work (i.e., this dissertation uses a diverse range of settings, with diverse student 

populations in aggregate, but not necessarily in any one specific school). 

Moreover, the data utilized within this study was gathered using an educational data 

management tool purchased by educators across the U.S. This specific tool provided educators 

with three primary functions: (a) to aggregate data from historically siloed systems (grade books, 

attendance records, assessment scores, etc.), (b) to flatten this aggregated data by mapping to a 

unified schema, and (c) to provide actionable data-driven insights to educators through the use of 

a dashboard. This means that this analysis is limited to school districts with the capacity to 

purchase such a tool and may not include districts that opted to spend the funding on other 

resources they deemed more necessary or districts that did not have sufficient funding to 

purchase this tool. However, many districts serving low-income students are included in the 

population being studied. 

Furthermore, as this data was collected using a third-party software system not owned by 

the researcher, additional stakeholders (data engineers) are involved with accessing certain 

aspects of the data sample. This means the capacity to conduct a further, more in-depth analysis 

of certain areas of the modeling approach is limited by the availability of these stakeholders. 

Additionally, while the data for this research comprises millions of unique students collected at a 

national level, at the time of this research, the data set still lacks data from districts with 

substantial Native American populations or those located in extremely rural regions, such as 

northern or western Alaska.  
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Lastly, recent research has shown that common, widely used risk indicators are often 

ineffective in accurately identifying students at-risk of dropping out, which could potentially 

limit this model’s performance. Without the ability to incorporate meaningful insight from 

teachers or counselors within each school, this model is unable to account for unobserved 

factors, such as personal home life issues, or drug use, not recorded in the data that could 

potentially provide better indications of risk than the current set of widely used factors (Gleason 

& Dynarski, 2002). 
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Chapter 2: Review of Literature 

A literature review was conducted over existing published evidence related to the topic of 

predicting student risk of high school dropout. To perform this review, peer-reviewed published 

literature was collected and examined beginning from the year 1980 to the present date (2020). 

Early Warning focused research was then grouped into two categories: simplified threshold-

based methods and advanced contemporary methods. 

Existing literature classifies EWS as simple threshold-based when they rely on generated 

threshold values that can be applied to specific education-related indicators to identify risk 

(Allensworth, 2013; Allensworth, Nagaoka, & Johnson, 2018; Carlson, 2018; Davis, Gleason, & 

Dynarski, 2002; Herzog, & Legters, 2013; Bowers, 2021). These simple threshold-based 

methods of EWSs require little to no implementation effort on the part of educators or districts 

and rely on little or no statistical modeling (Neild, Balfanz, & Herzog, 2007) to be put into 

practice. They are often based on research designs that would be considered standard statistical 

procedures for data modeling, which are then used to extract predictor level cut-points. Simple 

threshold-based EWSs rely on surface-level student indicators such as (non) cumulative grade 

point average, course pass rate, and current grade level to generate the prediction. Simple 

threshold-based EWSs utilize methods such as generalized linear modeling (Roderick & 

Camburn, 1996), growth modeling (Bowers & Sprott, 2012), maximum likelihood logistic 

regression (Kupersmidt & Coie, 1990) or discriminant analysis (Curtis, 1983) on these predictors 

to generate a series of cut points and then ultimately to determine student risk.  An example of 

this in practice would be the Chicago On-Track indicator, where a student is considered to be on 

track for graduation if they meet the following criteria: (a) the number credits accumulated 

during the first year of high school is greater than or equal to five and (b) the number of semester 
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core course failures during the first year of high school is less than or equal to one; otherwise the 

student is considered off-track and is at risk of dropping out of high school (Allensworth & 

Easton, 2005). 

Articles classified as advanced methods use analysis techniques that are computationally 

intensive and have only recently been accessible to everyday researchers using emerging 

methods enabled by access to aggregated big data (Sara, Halland, Igel, & Alstrup, 2015). These 

articles generally use techniques related to supervised (Aguiar, Lakkaraju, Bhanpuri, Miller, 

Yuhas, & Addison, 2015), or unsupervised (Márquez‐Vera, Cano, Romero, Noaman, Mousa 

Fardoun, & Ventura, 2016) machine learning methods, ranging from classification algorithms 

(Coleman, Baker, & Stephenson, 2020) to deep learning neural networks (Kotsiantis, Pierrakeas, 

& Pintelas, 2003), that fit more complex functions that are often difficult to re-implement by 

hand or understand without sophisticated inspection methods (Nagrecha, Dillon, & Chawla, 

2017).  

2.1 Selection Criteria 

The selection of literature for review was based on two key criteria. First, an analysis of 

several existing literature reviews on dropout prediction was conducted. Dupéré, Leventhal, 

Dion, Crosnoe, Archambault, and Janosz (2015) conducted a review of existing dropout 

literature to better understand the determinants of dropout (both long-term and immediate) with 

the goal of understanding why and when students drop. The result of this research was the 

creation of a stress process, life-course model of dropout. This model highlights how risk factors, 

proximal precipitating stressors and supports, play a role in understanding eventual student 

graduation outcomes (Dupéré, Leventhal, Dion, Crosnoe, Archambault, and Janosz, 2015).   
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A literature review conducted by Freeman & Simonsen (2015) focused on outlining and 

understanding how policy and practice interventions impact high school completion rates. 

Through their analysis, the authors found that the majority of the existing research is focused on 

single-component, individual, or small-group interventions at the high school level, despite there 

being significant evidence that successful intervention is based on multiple factors and a need for 

interventions at grade levels beyond high school.  

A similar review was conducted by Rumberger, Addis, Allensworth, Balfanz, Bruch, 

Dillon, & Tuttle, C. (2017), where they completed a focused analysis of dropout literature to 

inform secondary educators on how to better monitor their student population in order to reduce 

high school dropout. They found that 1) proactive intervention is important when students show 

early signs of attendance, behavior, or academic problems, 2) individualized support improves 

graduation outcomes for students that are showing signs of risk, 3) offering curriculum that 

promotes the benefits of high school graduation with college and career success increases student 

success and 4) for students with large at-risk populations, dividing students into smaller cohorts 

to better monitor their performance and response to interventions improves the likelihood a 

student will graduate.  One article, in particular, was especially informational as it not only 

covered related publication in this space, it also provided the reader with a systematic review of 

dropout system performance dating from 1980 to 2012 (Bowers, Sprott, & Taff, 2012).  

While these articles provided a sound basis for initial inquiry, I attempted to improve on 

the existing comprehensive literature by conducting an expanded search for research in this area 

related to educational data analysis, educational data mining, and learning analytics. After 

reviewing the works in these related articles, a search was done using various combinations of 

the following keywords: “Early Warning Dropout Systems,” “High School Dropout,” 

https://www.zotero.org/google-docs/?jzVWbH
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“Predicting High School Dropout,” “Predicting High School Graduation,” “Learning Analytics,” 

“Educational Data Mining,” “Educational Data Analysis,”  “Machine Learning,” and “High 

School Predictive Modeling” within Google Scholar, a web search focused scholarly article 

aggregator. The primary databases queried within the Columbia University Library system were 

the American Psychological Association (PsycINFO), Eric (EBSCO), and JSTOR articles 

databases, which resulted in a review of 198 articles. 

2.2 Learning Analytics & Educational Leadership Data Analytics 

Understanding the role that data plays within education enables leaders and practitioners 

to better make decisions within schools (Bowers, 2008; Mandinach, Honey, Light, & Brunner, 

2008). Traditional methods of data analysis and educational technology have become more 

advanced in recent years, creating new classifications of educational research such as learning 

analytics, academic analytics, and educational data mining (Romero & Ventura, 2010; Siemens 

& Long, 2011). These roles leverage a similar data model (Figure 1) in different ways to better 

inform the many stakeholders within our educational system.  

For example, academic analytics utilizes data to gain insight at the institutional, regional, 

national or international levels which will better inform administrators, funders, governments, 

educational authorities, researchers and analysts (Agasisti & Bowers, 2017) whereas educational 

data mining is generally used to understand learning at the course or institution level to better 

inform researchers, analysts, faculty, and tutors (Agasisti & Bowers, 2017). Lastly, the learning 

analytics field sits between the data miners and academic analytics in that it generally utilizes 

data to gain insight at the course and institution level in order to inform learners and faculty with 

their decision making (Agasisti & Bowers, 2017). EWS research has resided within both the 

educational data mining and the learning analytics categories  as it focuses on using data to 
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inform educators and administrators to better understand student dropout within their population, 

with the overall goal of reducing risk and improving overall student outcomes (Aguilar, Lonn, & 

Teasley, 2014; Krumm, Waddington, Teasley, & Lonn, 2014; Lonn, Aguilar, & Teasley, 2015) 

 

 

Figure 1: Data Analytics Lifecycle in Education1 

Additionally, over the past several years, there has been significant progress in enabling 

data-driven analytics within the educational setting (Bowers, Bang, Pan, & Graves, 2019), 

particularly with machine learning-driven decision making (Bowers, 2017). Combining these 

advancements in data analysis techniques within existing Educational Data Analytics 

 
1 Source: Authors’ elaborations, originally inspired by Siemens (2013) and adapted from Agasisti & Bowers (2017). 
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frameworks to identify a student at risk of dropout directly enables educational leaders to 

identify areas of opportunity for the educational system and student outcome improvement 

(Bernhardt, 2004; Bowers, 2021). Insights driven from this process can inform educational 

leadership in several different ways, ranging from identifying areas of opportunity for more 

successful applications of targeted student interventions (Pinkus, 2008; Kennelly & Monrad, 

2007), identifying better resource management for dropout risk mitigation (Heppen, & 

Therriault, 2008), and ultimately, informing district leaders with the insights needed to 

implement effective whole-school reform focused on drop-out prevention that improves equity 

among underserved populations within their educational settings (Mac Iver & Mac Iver, 2009).  

2.3 Early Work on Predictors of Dropout 

Early research on dropout prediction analyzed several areas of student data and their 

relationship to high school success. These areas can be loosely summarized into four primary 

categories: Academic, Attendance, Behavioral, and Identity. Academic data encompasses school 

marks or teacher provided ratings of student achievement (Marsh & Yeung, 1997). Examples of 

indicators in this category are student course/semester/yearly grade point averages (GPA), 

summative or interim assessment scores, course-failure rates, and course credit accumulation. 

Attendance data reflects information regarding student absenteeism and participation within their 

educational system, which is often recorded as whether the student was physically present at the 

school on a given day or whether the student was late to report to class at a given time 

(tardiness). The behavioral category focuses on observed student actions and interactions, such 

as the perceived social status among their peers rated by school counselors and educators (e.g., 

popularity, friendliness, involvement in social groups, etc.), aggression, or anti-social activities. 
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Lastly, the category Identity is related to student demographics and covers factors such as age, 

sex, ethnicity, or urbanicity.   

2.3.1 Academic Indicators 

Initial dropout analysis research focused on data related to student academic performance 

indicators such as course GPA, test scores, or class failure rates (Barrington & Hendricks, 1989; 

Bearden & Spencer, 1989; Finn, 1987; Pallas, 1985; Rumberger, 1987). Early research on 

identifying academic predictors for high school dropout was published in 1983 with the 

presentation of Curtis’ paper titled Dropout Prediction, at the Annual Meeting of American 

Educational Research Association (1983). Using high school student data collected from 1977-

1981 from Austin, TX public schools (n=5,039), Curtis developed a dropout prediction model 

using discriminant analysis on 60% of the data and evaluated on the remaining 40%. Variables 

utilized within the model were collected from the school district's student information system 

and consisted of five specific items: student GPA, grade placement (grade in which the student 

was enrolled), sex, ethnicity, and the number of serious discipline problems. Student outcomes 

were classified into four groups: non-leavers, transfers, dropouts, and other/unknown. Special 

education students were omitted from the analysis. The resulting model was able to accurately 

predict 78% of the students that did not graduate high school. The initial results from this 

analysis revealed that “=students who have low GPA's, who are behind in grade for their age, 

who have been involved in serious discipline incidents, who are female, and who are non-Black 

have a higher than average probability of dropping out” (Curtis, J., 1983). Curtis found these 

findings to be puzzling, as the data showed that male students had a higher rate of dropout. After 

additional analysis, he concluded that overall, males had a higher probability of dropping out but 
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females that exhibit certain characteristics not specifically recorded in the data (such as teenage 

pregnancy) were more likely than males to leave school.  

A study conducted three years later by David Doss expanded on this analysis using a 

similar approach (1986). He conducted a discriminant analysis on GPA, grade placement, sex, 

ethnicity, and the number of serious discipline problems to identify students (n=649) who were 

at the greatest risk of dropping out within the study sample (n=3028). Once these students were 

identified, a second analysis of their course registration was conducted. This analysis revealed 

that classes could be classified as either "above" or "below" holding power (i.e., the likelihood a 

student will stay in school). Classes with an above-average holding power included Spanish, 

introductory algebra, world history, dance, photography, biology, drawing and painting, and 

varsity sports. Courses with below-average holding power included drama, Spanish for native 

speakers, fundamentals of mathematics, field sports, and electronics. On the surface, these results 

suggest that the subject area of a student’s course enrollment can be predictive of whether she is 

on track to graduate.  

In 1986, using student (n=3,000) surveys, subject-specific achievement test scores, and 

demographic variables, Ekstrom, Goertz, Pollack &  Rock constructed a path analysis model to 

investigate causal reasons as to why students drop out of high school (1986). Estimates derived 

from the path analysis were compared to estimates produced by a second propensity score 

analysis to verify results. Lastly, the authors conducted a third value-added analysis on the 

impact that test achievement gain has on student outcomes. The findings from the path analysis 

suggest that school grades and student behavior are more explanatory for dropout behavior than 

other variables used in their analysis. The value-added analysis found that females and minorities 

were impacted the most from unrealized achievement due to dropping out of high school, with 

https://www.zotero.org/google-docs/?hwlgZI
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these two groups “falling the furthest behind in language development, vocabulary, reading, and 

writing when they leave school early” (Ekstrom, Goertz, Pollack &  Rock, 1986). 

In addition to individual course performance, information regarding student grade 

retention has shown promising results in identifying dropout risk. Using Logistic Regression and 

Survival Analysis, Melissa Roderick examined the relationship between grade retention and the 

likelihood of graduating from high school. Her research suggests that even after controlling for 

external factors such as student background and school performance, students who repeated a 

prior grade were substantially more likely to never graduate high school, with students over the 

age of 16 at over double the risk of dropping out after repeating a grade. The influence of 

repeating a grade has on high school graduation is reduced at lower grades, students that were 

held back a year in kindergarten through third grade, not any more likely than their non-retained 

counterparts to drop out of high school (Roderick, 1994).  

2.3.2 Attendance Indicators 

While it’s clear that academic performance is an important metric in evaluating a 

student's overall achievement in a course, term, or year, unsurprisingly, this information is only 

reliable if the student is physically present in the school to be evaluated. This presents several 

problems as student attendance can fluctuate for many different reasons. For example, home life 

issues such as lack of residence or chronic homelessness (Epstein & Sheldon, 2002; Mawhinney-

Rhoads & Stahler, 2006), medical illness, negative peer influence (Hartnett, 2007), lack of 

student interest or engagement (Legault, Green-Demers, & Pelletier, 2006) and student mobility 

(Dunn, Kadane, & Garrow, 2003) can all contribute to a reduction in student participation 

(Hocking, 2008). Various studies have been conducted that suggest this data can provide useful 

https://www.zotero.org/google-docs/?NdGokv
https://www.zotero.org/google-docs/?b8Vm7U
https://www.zotero.org/google-docs/?b8Vm7U
https://www.zotero.org/google-docs/?lVLjmG
https://www.zotero.org/google-docs/?sp7iZm
https://www.zotero.org/google-docs/?GmWLgX
https://www.zotero.org/google-docs/?tf47x6


20 

 

insight into the trajectory of a student's likelihood of graduating high school using data from 

grades as early as elementary or middle school. (McKee & Caldarella, 2016).   

Recent studies focusing on attendance patterns and their potential to impact a student’s 

long-term academic high school outcomes have suggested these indicators to be significant to 

early identification of student at-risk status. Research completed in 2012 by Schoeneberger using 

a group-based trajectory structural equation model analyzed twelve years of student’ records 

(n=286,529) within a large urban school district in the southeastern United States. The results of 

this research found students could be grouped into four distinct groups: (a) Constant Attendee 

which represented students who consistently attended school, (b) Developing Truants, 

representing students who historically had constant attendance but had recently began to show 

indications of truancy, (c) Early Truants which consisted of students that were once Constant 

Attendees but were now consistently truant in school attendance, and (d) Chronic Truants which 

represented students that have historically and currently been absent from their school setting. 

These findings suggest that these four attendance related groups differ in terms of eventual high 

school dropout (Schoeneberger, 2012). 

2.3.3 Student Behavioral Indicators 

A substantial amount of dropout research has focused on student academic performance, 

attendance, and demographic indicators. While these data points have shown to be important 

factors in identifying dropout (Suh, Suh, & Houston, 2007), little research has been completed on 

understanding how social contexts can impact student educational outcomes (Hartnett, 2007). 

Barbara S. Mensch and Denise B. Kandel explored the relationship between substance abuse and 

high school dropout (1988). To conduct this research, they built a discrete-time logistic 

regression on variables related to the use and abuse of specific substances. These included the 

https://www.zotero.org/google-docs/?q5Qr7z
https://www.zotero.org/google-docs/?YoSFa7
https://www.zotero.org/google-docs/?JTjNuu
https://www.zotero.org/google-docs/?FQrjvR
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age of initiation at which a substance or behavior (cigarette use, marijuana use, other illicit drug 

use, alcohol use, and did not use) was first exhibited, the age of initiation for each individual 

substance or behavior if students used various substances, and whether or not the student 

eventually dropped out or completed high school.  Due to computational cost limitations, the 

study sample was downsampled to represent 30% of the original dataset. The analysis was based 

on a youth cohort sample of the National Longitudinal Survey of Youth‐1997 (US Bureau of 

Labor Statistics, 2002) (NLSY), representative of individuals born in 1957-1964. This cohort 

was interviewed manually in 1984 regarding various aspects of their life, including sexual 

activity, alcohol consumption, and pregnancy, and exposure to violence (number of school 

fights) history. The results of this research found that substance abuse and deviant behavior 

increased the probability of not graduating high school. The researchers conclude that if these 

influential factors can be mitigated, the possibility exists for an improvement in overall student 

achievement outcomes in the form of successful high school completion.  

While initial research into the relationship between behavioral data and dropout focused 

on negative substance use, researchers soon began to expand the breadth of their analysis to 

include social, teacher, and peer reported behavioral data. Research by Kupersmidt and Coie 

investigated the role of peer status, aggressive behavior, and school adjustment that influences a 

student's likelihood of achieving a high school education (1990). To accomplish this, the 

researchers selected a (n=112) cohort of 5th graders and followed them for 7 years. They then 

collected data related to SES, aggressive behavior, and school adjustment as well as the student's 

high school academic outcomes. They built a series of logistic regression models to test their 

hypothesis. Results from this analysis found two significant predictors of dropout: peer-

perceived aggression and an excessive number of school absences. Students that were 
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excessively absent were found to be 27% more likely to drop out, students that were aggressive 

were 45% more likely to drop out, and students that were both aggressive and frequently absent 

were 73.7% more likely to not complete high school compared to the reference group 

(Kupersmidt & Coie, 1990). Student social behavior, in particular, has proven to be useful in 

identifying students at risk of dropping out of high school. A 2001 study conducted on (n= 516) 

8th-grade students and (n=1157) 10th-grade students looked at the impact that anti-social 

behavior and peer rejection have on a student’s likelihood of dropping out of school. Using 

logistic regression analysis, the researchers found evidence that suggests antisocial behavior and 

rejection may lead to heightened levels of student risk (French & Conrad, 2001).  

Analysis of student social activities has continued to be a topic of research in the field of 

high school retention. Using longitudinal cluster analysis, Joseph L. Mahoney investigated the 

impact of social, extracurricular activity participation on a student's development of anti-social 

patterns and eventual academic and life outcomes. To accomplish this study, students were 

interviewed in the fourth or seventh grade and tracked until twelfth grade to determine their 

academic outcome. Participants were then interviewed twice at both 20 and 24 years of age. The 

interview questions covered items related to the interpersonal Competence Scale, physical 

maturation, extracurricular activity involvement, socioeconomic and demographic information, 

social networks, early school dropout, and criminal offending. Cluster analysis was then used to 

identify patterns within the cohorts of study, which were then compared across groups based on 

gender, educational outcome, and criminal involvement. Results from this study found that a 

student’s involvement in extracurricular activities was correlated with lower rates of dropping 

out of school or becoming involved with criminal activity as adults. Additionally, Mahoney also 

https://www.zotero.org/google-docs/?ZLjgg0
https://www.zotero.org/google-docs/?XKdxd5
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found evidence that suggests student risk of antisocial behavior for both boys and girls was 

reduced by peer social network interactions and in school activities (Mahoney, 2000). 

2.3.4 Student Identity 

Lastly, there is evidence to suggest that a relationship exists between a student’s 

demographic characteristic, such as urbanicity, and their eventual educational outcomes 

(Adelman, 2002), with school-level variables such as socioeconomic status or school size 

showing significant results in a student’s eventual educational outcome (Wood,  Kiperman,  

Esch, Leroux & Truscott, 2017).  Research has also suggested that rural student dropouts may 

differ statistically from dropouts in suburban/urban schools in several ways. For example, rural 

dropouts are often cited as leaving for reasons such as pregnancy or marriage, whereas urban 

students are cited as dropping to enter the workforce so they can better support their current 

family. They are also cited as dropping out of high school because their peers are leaving the 

educational environment. Additionally, when conducting analysis on a student's attitude towards 

the general school conditions, urban students were more likely to rate their school higher than 

rural students. This analysis suggests that rural students were less likely to get along with their 

instructors compared to their urban student counterparts, which could be an influencing factor in 

their decision to drop out (McCaul, 1989).  

Ensminger and Slusarcick conducted a longitudinal analysis of black first-graders over 

the course of 12 years. They selected 1,242 first grade students from an urban community who 

were classified as high risk for dropping out of school and collected several measures around 

their family background, school behavior, academic performance, and parent-child interactions 

concerning school, educational values, and expectations. At the conclusion of the 12 years, a 

final measurement was made on the sample that collected data on whether the student 

https://www.zotero.org/google-docs/?BoHyaC
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successfully graduated or dropped out of school. Using this information, the authors built a 

logistic regression model to determine the likelihood each coefficient has on whether the student 

will drop out or graduate. Their results from this analysis suggest that student poverty played a 

crucial role in student risk, with the link between early school academic performance and high 

school graduation decreasing for students who were not considered poor. Their findings also 

imply that there is a generational link between parental academic achievement and the likelihood 

a student will graduate (Ensminger & Slusarcick, 1992).  

Factors that are external and often unreported (at least, to the schools) can influence high 

school dropout. For example, research by McNeal examined the relationship that student 

employment has on dropping out of high school. Students sampled from a high school in 1980 

were surveyed regarding their employment, the field of employment, hours employed, and 

academic performance. These students were then followed for 2 years to determine if they 

dropped out or successfully graduated from high school. Logistic regression was then utilized on 

the variables of interest to determine the odds of a student dropping out versus graduating. 

Results from this analysis suggest that the type of student employment and the intensity at which 

they are employed significantly impacted their trajectory in high school. McNeal Jr. also found 

that the effects of employment were contingent on the student's gender (1997). While results 

showing an association between teenage employment and graduation outcome have generally 

been replicated by educational researchers, there remains the question of whether employment is 

truly causal in determining high school outcomes or whether these are spurious findings resulting 

from other non-observed factors such as student socioeconomic status or general aspirations. 

Attempts to answer this question have produced evidence to support the latter.  A study that 

utilized a propensity score matching design on nationally representative longitudinal student 

https://www.zotero.org/google-docs/?mzCuxU
https://www.zotero.org/google-docs/?HU4pVH
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survey data to model the effects of after-school paid work intensity on the probability of 

dropping out found that there was no significant correlation between the number of hours worked 

by a student and their likelihood of not graduating (Lee & Staff, 2007). This study suggests that 

modeling teenage employment intensity as a single factor producing high school dropout is 

insufficient to explain dropout, and that researchers need to account for possible external effects 

on employment intensity by identifying student factors such as socioeconomic status. These 

early studies on identifying predictors of dropout would go on to provide the foundation for the 

creation of the Early Warning Systems in use today and enable researchers to identify the 

relevant data points that are included in the design of previous and current systems.  

2.4 Threshold Based Methods 

Traditional research into high school dropout has provided a wealth of information about 

the many factors that can impact student success. While these studies are useful in interpreting 

the relationship of specific academic, behavioral, attendance, or identity variables, they also 

provided researchers the opportunity to develop predictive systems based on the findings of this 

work. These systems are designed with the intention to identify students prior to their dropout 

event occurring, allowing educators the ability to apply prediction- driven interventions rather 

than traditional prescriptive interventions. The foundation of these systems is built upon the 

traditional research conducted over the past several decades, with the first of these systems 

relying solely on insights generated from these early analyses.  

Deploying dropout identification systems can require a significant amount of resources to 

test, build, and deploy a predictive model within a school district (Frazelle & Nagel, 2015). 

Districts that face resource and funding constraints often have to rely on simpler methods of 

early at-risk detection (Balfanz & Byrnes, 2019). These methods rely less on statistical rigor, and 

https://www.zotero.org/google-docs/?ohqnqF
https://www.zotero.org/google-docs/?YveLkg
https://www.zotero.org/google-docs/?4R4OaN
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more on the ease of implementation and on how understandable they are for school districts’ 

employees (i.e., administrators and educators). While the approach to these detectors may seem 

facile in comparison to more advanced methods of statistical data modeling (which will be 

discussed later), their simplicity enables non-technical users, such as educators and guidance 

counselors, to understand the inner workings of the detector which is the primary reason why 

these types of EWSs still remain widely popular and in use today, despite the often heuristic 

approach to their design. 

In some cases, simple heuristic early-warning systems have been mandated by state 

legislatures. House Bill (H.B.) 1010, passed by the Texas State Legislature in 1986, attempted to 

reduce the number of dropout students within the state by providing educators with indicators 

that can be used to classify students (Frazer, 1991; Supik & Johnson, 1999). The bill was specific 

to students within grades 7 through 12, with earlier grade students omitted from risk 

classification. In order for a student to be flagged as high-risk, they must either 1) not have 

advanced from one grade level to the next in two or more school years, 2) have mathematics or 

reading skills that are two or more years below grade level, 3) not maintain an average of 70% in 

two or more registered courses, and 4) not obtain a satisfactory score on the state-mandated end 

of year exams. This EWS was the first to be mandated at the state level and scaled across all 

relevant schools throughout Texas, with the eventual performance providing mixed results on the 

capacity of this generalized EWS’s effects on reducing the number of high school dropouts. 

While such systems are easy to implement and understand, they can be inaccurate at 

identifying students who are at-risk. A study to evaluate the performance of this system was 

conducted by the Austin (Texas) Independent School District (AISD). This research focused on 

25,587 students from 1987-88, 25,292 from 1988-89, and 25,998 students from 1989-90 who 

https://www.zotero.org/google-docs/?9geDIL
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were in grades 7-12. Using the state-mandated Texas at-risk definition, AISD assigned these 

students to relevant risk groups, and then evaluated their performance three years later after a 

true outcome (whether the student graduated or dropped out) was recorded. The results of this 

research found that; (a) the classification accuracy of the Texas legislative at-risk system grossly 

over labeled students as at-risk who did not eventually drop out of high school with 

approximately 87% of students across all 3 years of study classified as at-risk of not completing 

their high school education, (b) students with lower risk in year one were nonetheless more likely 

to graduate than high-risk students, (c) and that students who are in the high-risk category in 

their first year are more likely to grow in risk throughout the subsequent years (Frazer, 1991). 

Frazer’s research reveals that while threshold-based EWSs are easily deployed within a school 

district, they are prone to significant classification errors.  

The implementation of Texas H.B., while not as successful as one would have hoped, did 

reveal civic, legislative interests in adopting some form of at-risk dropout detection. Addressing 

this need led to the eventual design of more advanced methods of threshold-based systems, such 

as the Chicago model, mentioned earlier in the introduction of this proposal. The Chicago model 

is similar to Texas H.B. 1010 in that it relies on simple cut points to determine the student's risk 

status; where it differs is how those cut points were generated. The Chicago on-track indicator, 

developed by Allensworth, utilized two primary indicators that focused on a student transition 

through 9th grade, an important milestone in a student's high school career (Easton, Johnson, & 

Sartain, 2017). The first indicator is the accumulation of course credits, and the second is 

whether or not the student has failed at least one core course in their ninth-grade year 

(Allensworth, 2013; Allensworth & Easton, 2007). The cut-point values used to determine 

student at-risk status was based on several studies conducted by the consortium beginning in the 

https://www.zotero.org/google-docs/?ooP3QR
https://www.zotero.org/google-docs/?yhMRNL
https://www.zotero.org/google-docs/?yhMRNL
https://www.zotero.org/google-docs/?g50FJW
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1990s (Roderick & Camburn, 1996; Miller et al., 1999) that suggested there was a strong 

correlation between course failures and credits earned to the likelihood a student will graduate 

high school (Miller, Allensworth & Kochanek, 2002).  

On the surface, the performance of the on-track indicator proved to be widely adopted, 

with a significant amount of schools nationally utilizing the on-track indicator as an 

accountability measure with varying levels of success. Several researchers have reviewed the 

performance of the indicators used in the on-track metric and compared to other commonly used 

drop-out indicators and found that the on-track EWS outperforms many of its competitors 

(Bowers et al., 2012; Bowers & Zhou, 2019a; Hoff, 2019). While these findings, coupled with 

the on-track indicator’s high adoption rate in schools, suggested promising results, recent 

research suggests there still exist several limitations in its performance. A 2019 study found that 

implementing an Early Warning Intervention (EWI) model, used to monitor ninth-grade 

indicators in an attempt to modify student behavior and based off of the On-Track EWS in 41 

geographically and demographically diverse high schools, showed no statistically significant 

impact on overall student performance for 9th-grade students in regards to either attendance or 

credit accumulation (Mac Iver, Stein, Davis, Balfanz, & Fox, 2019). The authors believe that this 

lack of significance was due to the research and best practices for ninth-grade interventions 

already having been disseminated; that is to say, the EWI processes and procedures for 

intervention had become common knowledge among educators, regardless of whether the school 

had a designated program in place. At this point then, the On-Track indicator may not capture 

enough indicators to make a difference compared to the knowledge that now exists among 

teachers and administrators. Alternatively, the On-Track indicator may not be effective once it is 

taken out of its initial setting of development and closely related schools.  

https://www.zotero.org/google-docs/?XU39Gl
https://www.zotero.org/google-docs/?CBeAfn
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Building on top of the University of Chicago Consortium’s On-Track indicator (The 

Chicago model) work, the American Institute of Research (AIR) launched a threshold-based 

EWS spreadsheet that districts could use to identify students at-risk of dropping out (Heppen & 

Therriault, 2008). This tool, similarly to the On-Track indicator, focused on the performance data 

of students in the 9th grade. In addition to the course credits and course failure indicators, they 

also looked at student attendance and overall student GPA. While AIR’s work expanded the 

range of indicators used in a threshold-based system, validity analysis of this EWS suggests that 

it largely performs the same as the On-Track indicator when it comes to identifying students at 

risk of dropping out (Bowers et al., 2012; Bowers & Zhou, 2019a; Johnson & Semmelroth, 

2010).  

While the continued use of these threshold-based Early Warning Systems suggests that 

there is a demand for simple methods of detecting student risk, their inability to  take localized 

trends into consideration when making a risk prediction diminishes their ability to make 

meaningful predictions that identify not only students at-risk, but identify the areas most 

susceptible to positive early intervention. Determining which predictors are important for each 

school or district is still an active area of research as we begin to consider both the regionality 

and population diversity within school districts (Bowers, 2010). Threshold-based approaches 

lack the ability to account for these identifying factors when determining relevant predictors and 

thresholds, which presents a serious flaw in their design. Implicitly, these models lead 

individuals viewing the results to make decisions based on the inaccurate assumption that all 

students are the same, regardless of external factors or regional localities. 

https://www.zotero.org/google-docs/?D6K6Zb
https://www.zotero.org/google-docs/?D6K6Zb
https://www.zotero.org/google-docs/?IwWiwh
https://www.zotero.org/google-docs/?IwWiwh
https://www.zotero.org/google-docs/?swrhQB
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2.5 Machine Learned Early Warning Systems 

Until the 2010s, if a school district employed an EWS, it was derived from these 

threshold-based methods. It wasn’t until recently that emerging methods of dropout detection 

began to utilize advanced methods of data modeling to detect student risk of high school dropout. 

These modeling solutions rely on the aggregation of multiple student data sources, which were 

once inaccessible due to siloing. These new solutions largely have become available through 

school districts’ recent adoption of data management systems, coined Student Information 

Systems (SIS), which are specifically created to store student records (Halverson, & Smith, 

2009). These systems store both past and present student academic performance records, 

attendance records, behavioral data, demographics, attendance, and test scores all in one 

location. With access to this wealth of information in one place, researchers are now capable of 

utilizing modeling methods that require significant amounts of historical data, such as machine 

learning, to create more accurate risk detectors.  

The state of Wisconsin was one of the first major adopters of such a system. In 2012, 

they created and deployed to all schools The Wisconsin Dropout Early Warning System 

(DEWS). This EWS provides over 225,000 at-risk predictions and is focused on identifying sixth 

through ninth grade students at risk of failure to graduate on time (Clune & Knowles, 2016). This 

EWS utilized an advanced statistical method that scans through 35 different analytical techniques 

and selects the best models by building and evaluating performance with each solution. It then 

takes an ensemble approach and combines the best models to generate the final detector. This 

approach performs better than previously developed solutions, with a dropout detection accuracy 

of 65% on students before they enter high school (Knowles, 2015). The performance of this 

https://www.zotero.org/google-docs/?6HOaNp
https://www.zotero.org/google-docs/?vdrKSf
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EWS at such a large-scale proved promising for research to continue developing such advanced 

solutions that are not only accurate but can also generalize.  

While there is value in the ability to analyze diverse amounts of aggregate student data, 

regardless of whether or not this data can be modified through intervention, there still remain 

opportunities to leverage a small subset solely consisting of actionable student data to build 

advanced EWS solutions. For example, instructor-assigned academic course achievement 

measured over time has proven to be a valuable indicator for early identification of high school 

dropouts. This is evident in one of the more recent studies conducted by Bowers and Sprott 

(2012a). This now pivotal study utilized a Structural Equation Modeling approach (Anderson & 

Gerbing, 1988; Hoyle, 1995; Russell, Kahn, Spoth, & Altmaier, 1998) known as Growth Mixture 

Modeling (Muthén, 2001; Wang & Bodner, 2007) on a 2002 nationally representative data set 

(n=5400) (Ingels, Pratt, Rogers, Siegel, & Stutts, 2004) to identify students at risk of dropping 

out.  The researchers focused on two primary questions; a) measuring the influence that non-

cumulative GPA for 9th-grade students has on their overall likelihood of dropping out of high 

school and b) dissecting definitions of student dropout classifications (dropout typologies). 

Bowers and Sprott found that they were able to identify 91.8% of the dropouts using only the 

non-cumulative GPA indicator (measured over 3 semesters). They also found evidence to 

support that rather than one binary category of either graduation or dropout; there are four latent 

levels of dropout trajectory (the four trajectories are Mid-Decreasing, Low-Increasing, Mid-

Achieving, and High-Achieving). The researchers found that the variables impacted the dropout 

trajectory differently for each typology, leading the researchers to conclude that understanding 

the different types of dropout typologies could better enable schools to provide better, more 

personalized interventions for students. This research still remains one of the best performing 

https://www.zotero.org/google-docs/?oeP3gD
https://www.zotero.org/google-docs/?CB9eTk
https://www.zotero.org/google-docs/?CB9eTk
https://www.zotero.org/google-docs/?tDjrB2
https://www.zotero.org/google-docs/?xfEY6e
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models of high school dropout risk identification within the literature (Bowers & Zhou, 2019). A 

follow-up study conducted by the same authors, utilizing a latent class analysis method, was able 

to identify the remaining 9% of student dropouts as “lost at the last minute” or “involved.” Lost 

at the last minute, encompassed students with decreasing GPA trajectories and involved 

consisted of students that were more similar to graduates but ended up not completing their high 

school graduation due to a mistake in their transcript, not knowing they needed to take a class, or 

a major life event, such as pregnancy or a sudden move or life change (Bowers & Sprott, 2012a; 

Bowers & Sprott, 2012b). 

Utilizing machine learning approaches allows the researcher to let the algorithm 

determine the value of model variables within the detector. This enables EWS design to be 

deployed across a wide range of variables, making use of any data available rather than relying 

on a limited set of specific predictors. This is especially important if the intention is to produce 

predictions at earlier grades as teacher-reported academic performance becomes less available 

and standard (GPA not recorded, credit system not implemented, etc.). For example, researchers 

in the State of Florida were able to build a dropout detector for 1st and 2nd-grade students using 

interim and summative assessment scores when GPA data was not available (Koon & Petscher, 

2015). 

Not only are methods of model building enabled through advanced statistical methods, 

but opportunities exist for addressing data issues used to train these models. For example, a 

recent study aimed to address class imbalance (i,e., the number of dropouts and graduates are not 

close to equal within the data) by applying an advanced technique called synthetic minority 

oversampling techniques (SMOTE), which generates new data records using existing records 

(Chawla, Bowyer, Hall, & Kegelmeyer, 2002). This can be especially beneficial for school 

https://www.zotero.org/google-docs/?WE2WqN
https://www.zotero.org/google-docs/?IL0HQo
https://www.zotero.org/google-docs/?IL0HQo
https://www.zotero.org/google-docs/?nkOgd9


33 

 

districts that have low dropout rates or lack dropout records and wish to build their own EWS. 

Recent research using the SMOTE technique on educational data has shown mixed results with 

improving classification accuracy of the (often dropout) minority (less common) class. This is 

due to a phenomenon where classifiers trained on class-imbalanced datasets tend to show a poor 

sensitivity of predicting minority classes because classification algorithms tend to weight the 

misclassification of minority classes lower than the misclassification of the majority class. 

Building off of these findings, researchers in 2019 attempted to use the SMOTE technique on a 

large number of student historical records (n=165,715) and then built detectors with machine 

learning tree-based algorithms. They found that implementing SMOTE impacted the detectors’ 

true positive rate (ability to classify dropouts) most positively and true negative rate (ability to 

classify graduates) most negatively, with ROC AUC values dropping for models that utilized 

SMOTE (S. Lee & Chung, 2019). These findings suggest that even advanced statistical 

applications within an EWS can present researchers with similar challenges faced by 

implementations of simplified threshold-based systems and that striking a balance between over 

classifying students not at-risk or under classifying students at-risk is a continuing area of active 

improvement in the community.  

While advanced statistical models have shown promising results with improving dropout 

detector accuracy (Bowers et al., 2012; Bowers, 2021), there exist limitations in their 

interpretability for stakeholders attempting to utilize these insights. The inherently complex 

nature of machine learning algorithms makes it difficult for educators to interpret results into 

actionable interventions. A researcher may classify a student as at-risk, but understanding that 

the risk is associated with specific indicators is essential for determining the appropriate 

interventions. Fortunately, in addition to the recent uptick in advanced statistical EWS research, 

https://www.zotero.org/google-docs/?O11JYW
https://www.zotero.org/google-docs/?1IblOn
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there is a growing number of companies, non-profits, and researchers focused on providing EWS 

tools to schools within the educational technology industry that assist educators with better 

understanding and interpreting these models (McIntire, 2004). For example, Infinite Campus, an 

educational technology company, recently published results from their EWS dashboard product 

where they provide users with domain level insights in addition to an overall student risk 

prediction. They found that building individual domain-specific (academic, attendance, behavior, 

etc.) machine-learned models produced highly predictive context-specific results, achieving an 

average AUC score above 0.86 for 6th – 12th grade student predictions (Christie, Jarratt, Olson, & 

Taijala, n.d.) using a combination of four separate educational domain models, resulting in 

improving the actionable outcomes of these insights by educators and relevant user stakeholders.  

Organizations such as the American Institute of Research (AIR) have partnered with 

these educational technology companies to help districts better support students that are showing 

early indications of dropout (O'Cummings, & Therriault, 2015). Through a systematic process, 

they provide educators with the resources to 1) establish roles and responsibilities, 2) review 

early warning data, 3) correctly interpret this data, 4) assign appropriate interventions, 5) monitor 

the students' intervention progress, and 6) evaluate the effectiveness of these interventions to 

better refine future processes (Therriault, O’Cummings, Heppen, Yerhot & Scala, 2013). While 

this partnership has improved the design of the tools offered by the educational technology 

companies, it is limited to school districts that have the financial capacity to purchase these tools 

and resources. This has led to a division among school districts, where some districts are able to 

provide educators with the necessary support to better understand the data, through both 

technology (EWS, Dashboards, visualizations, etc.) and professional development and some 

districts are not. This presents a significant challenge as these resources are paramount to help 

https://www.zotero.org/google-docs/?CHhEJO
https://www.zotero.org/google-docs/?CHhEJO
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mitigate and reduce dropout risk within our educational communities (Dwyer, Osher, & Warger, 

1998; Dwyer, Osher, & Hoffman, 2000).  

2.6 Generalizing Models 

One of the primary reasons threshold-based EWS remains so prominent in use throughout 

schools today is their ability to generalize across schools due to their overall design simplicity. 

The same cannot be said for models that rely on advanced statistical techniques. Generalizing 

machined learned models across domains or populations has shown to be a challenging 

accomplishment (Ocumpaugh, Baker, Gowda, Heffernan, & Heffernan, 2014). This presents 

limitations for those districts that want to leverage these more accurate detectors but lack the 

ability to build their own context-specific models. This challenge of implementing advanced 

solutions within education is a commonly discussed barrier within the field of educational data 

mining and learning analytics (Baker & Koedinger, 2018; Niemi, Pea, Saxberg, & Clark, 2018). 

Overcoming these challenges may seem daunting, but researchers have made positive 

gains in understanding methods for replicating a standard predictive modeling method across 

populations (Gardner & Brooks, 2017). A recent systematic review of research found that a 

primary way to mitigate these issues and improve generalizability across populations is by taking 

contextual factors into consideration (Joksimović et al., 2018). These findings suggest that a 

student’s individual identity and external factors of their environment play an important role in 

determining their eventual educational outcome and that in order to move forward with 

developing successful EWSs, we need to better evaluate and understand their performance as 

they are deployed across an ever-widening range of student populations.   

https://www.zotero.org/google-docs/?NfwKBk
https://www.zotero.org/google-docs/?3qxVgV
https://www.zotero.org/google-docs/?BYpntA


36 

 

2.7 Evaluating Early Warning Systems 

Auditing the performance of these detectors is an important step in validating and 

measuring their success in real-world contexts (Sullivan, 2017). Prediction can sometimes fail, 

with students still slipping between the gaps of detection. Previous research has shown the 

machine learning-based systems can bias their predictions in unforeseen ways, which can cause 

more harm than good (Sansone, 2019). A high-performing EWS may be performing 

exceptionally well on the surface, but when researchers evaluate the performance within specific 

subgroups, they have, in some cases, found that their model was biasing dropout towards 

students with specific demographic characteristics, such as gender (Pagani et al., 2008). Despite 

their decision to expressly exclude this feature in the initial model, the data still contained latent 

information that caused the model to skew towards this specific group.  

Prediction bias can manifest in different ways presenting challenges to researchers 

working to improve the trust and accuracy of the EWS. For example, over-prediction of certain 

groups (ethnicity, gender, etc.) can highlight or propagate already existing discriminatory 

practices within the school environment (Catterall, J. S., 1998; Huysamen, J. E.,1999). 

Differential model accuracy between certain groups where the model performs well overall but 

underperforms when evaluating at the subgroup level can reduce value and benefit for already 

underserved populations (Soland, J., 2013). Bias towards features that are obtained at different 

times within education, such as college placement exams, could over classify students at risk 

who are interested in vocational or non-traditional post-secondary pathways (Patrick, L., Care, 

E., & Ainley, M., 2011). This model biasing presents a severe obstacle to overcome if these 

systems are to be implemented within our educational system. Addressing these challenges is 

https://www.zotero.org/google-docs/?gMsvyo
https://www.zotero.org/google-docs/?3vsDuz
https://www.zotero.org/google-docs/?MNnWjz
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paramount to generating an effective generalizable EWS. Therefore, it is essential to select the 

appropriate evaluation metric when validating EWSs.  
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Chapter 3: Methodology 

In the following sections, I discuss my method for making at-risk student predictions for 

school districts with insufficient data. These predictions incorporate the unique demographic and 

local attributes of each district to generate the final student risk values. This model is termed 

District Similarity Ensemble Extrapolation (DSEE). In addition to the design of the DSEE, I 

discuss my methods of validating the performance of my modeling solution both internally and 

externally, which occurs by calculating metrics of performance during model creation and by 

comparing my model against three well established existing methods through the replication of 

their design.   

3.1 Criterion for Building the District Similarity Ensemble Extrapolation Model 

Building an EWS driven by machine-learned methods presents several challenges related 

to data. A sufficient quantity of historical labeled data must be available in order to create a 

machine-learned model (Byrd, Chin, Nocedal, & Wu, 2012; Stockwell & Peterson, 2002). 

Research has shown that these types of models perform better when built using rich datasets (i.e., 

the data contains enough representative qualitative and quantitative data to reveal the 

complexities of what is being studied) and perform worse when quality issues exist in the data 

(Cortes, Jackel, & Chiang, 1995). Additionally, in order to build an EWS that can provide risk 

predictions down to the first-grade student level, a sufficient number of historical records (12 

years) are required to not only build the model but validate its performance at the many grade 

levels it will be utilized (Žliobaitė, Bifet, Read, Pfahringer, & Holmes, 2015). Several issues 

exist without this historical data: we are unable to accurately determine how the EWS is 

performing for these lower-grade students; interpretability is reduced, limiting opportunities for 
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intervention; and the ability to mitigate latent biases that the model may be producing (Cawley & 

Talbot, 2010). 

A study conducted by Coleman, Baker & Stephenson (2020) focused on building an 

EWS model for students in the 1st through 12th-grade levels. Using academic, attendance, 

behavior, and assessment data collected from a nationally representative (n =3,575,724) sample 

from 34 diverse U.S. K-12 educational systems (one large educational agency with decision-

making power over a large geographical region, and 33 individual school districts) found data 

quality to be a significant barrier for building high performing machine-learning driven district 

(or education agency) level EWS models. Their research concluded that of the 34 systems in 

their sample, only four had nearly complete data (with only small numbers of variables). The 

remaining 30 districts suffered from three major data quality issues related to missingness, 1) a 

high degree of missingness in the feature data, 2) a deficiency in the number of records available 

that span 12 years down to first grade, and 3) a low number of unique student records. The 

percent of feature data missingness within these agencies and districts was as high as 60% in 

some cases (M= 41.65, SD=7.498). The majority were also missing 100% of the data for students 

at lower grade levels (primarily elementary), and most of these systems contained a low number 

of total records across all students (less than 20,000 records), with some having as few as 271 

total historical student records available for analysis. When the authors attempted to fit 

district/agency level models on the districts that suffer from these data quality issues, the 

performance was suboptimal, with no model obtaining an AUC above .70, further supporting the 

importance of data quality when building an advanced EWS solution (Coleman, Baker, & 

Stephenson, 2020). 
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Recently, the educational community has made progress in attempting to address these 

educational data quality issues. One such initiative is the U.S. Department of Education’s 

creation of the Common Education Data Standards (CEDS), a collaborative effort to develop 

common data standards for key sets of educationally related data elements which include 

standard definitions, option sets, and technical specifications to assist educators with sharing, 

analyzing, and comparing information within their system (Common Education Data Standards, 

2019). In addition to the data standards, the CEDS initiative has partnered with other 

organizations to provide education stakeholders with the tools they need to understand their data. 

One particular organization, the Ed-Fi Alliance, is a nonprofit focused on assisting school 

districts and states reach data interoperability by aggregating disparate educational data collected 

on students into one standards-aligned unified datastore (Alliance, 2015), enabling educational 

stakeholders with the ability to conduct robust, in-depth analysis on their student population. 

While these advancements of standards and tools greatly improve opportunities for data-driven 

EWS analytic enablement within schools and districts, there remain challenges.  

With these standards just now coming online, educators will need to dedicate a 

significant amount of time and resources to adopt these changes, which could encourage them to 

only apply these standards to current and future students, rendering their historical data 

incompatible for modeling future student risk. Additionally, districts that simply do not have 12 

years of digitally stored historical data on their past students, and lack the resources to sift 

through and manually store analog paper files and records, would be faced with the challenge of 

first having to implement CEDS, and then waiting several years (potentially as many as 11) 

before they would have a rich enough data set to build their own EWS, putting them in the 

position to miss the opportunity of leveraging EWSs for early identification of at-risk students 
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reducing intervention success and overall student outcomes during this data collection period. 

The research in this document hopes to address some of these identified challenges and issues. 

The design of my model solution involves first developing and validating a series of 

predictive analytics models for school districts with enough historical data (coined Pillar 

Models). These models predict each student’s probability of graduating (or risk of not 

graduating). I then develop a distance metric capturing the degree of similarity between these 

validated models to school districts that lack sufficient historical data (coined Target districts) to 

build their own district-level models. Building on the research of Coleman, Baker and 

Stephenson (2020), districts are categorized as data deficient if they suffer from one or more of 

the following data quality issues; 1) Contain less than 20,000 records across all students 

(regardless of the total number of unique students in the district), 2) have over 40% of their 

feature space data missing, or 3) are missing historical records for all 1-12 grades . I then 

ensemble each of the existing models, weighting them by the similarity to the Target district, 

producing a single ensemble prediction for each student. I test the quality of this approach by 

applying this method on all the records that exist for the district, treating these records as the 

hold-out test set. 

3.1.1 Model Validation 

Data hold-out testing is a common method of validation implemented within the machine 

learning data science community (Schaffer, 1993). The advantages gained by utilizing this 

technique enable the scientist to better understand how the model will perform when generalized 

to the target population. This is accomplished by training the model on a subset (usually between 

70% to 85%) of the original labeled data (i.e., the historical records of dropouts or students). The 

model is then applied to the remaining unseen data to generate the at-risk student predictions, 
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which can then be compared to the actual historical outcome of that student (the label) (Forman 

& Scholz, 2010). Model performance metrics can then be calculated to provide insight into how 

the model will perform when generalized to current attending students (Wong, 2015). Without 

conducting hold-out testing or cross-validation, the calculated performance could be misleading 

if the model is over-fit to the training data (Hawkins, 2004).   Figure 2 below provides an 

example of an 80% train and 20% test data assignment during hold-out testing.  

 

Cross-validation is another method of data preparation that can be implemented to 

validate a model’s performance. Like hold-out testing, cross-validation utilizes subsets of the 

data to build a model and then test the performance (Forman & Scholz, 2010). It differs from 

hold-out testing by using all the data available; this is accomplished by randomly assigning 

records in entire data set into a specified number of partitions (k-fold assignments), and then 

systematically training and testing across the data, utilizing a different partition for testing each 

time (Wong, 2015). While some researchers argue that cross-validation is more effective for 

model validation (Blum, Kalai, & Langford, 1999), there is debate on the number of k-fold 

assignments needed with the validation, with some researchers stating that 3-fold or 5-fold cross-

validation is as effective as 10-fold cross-validation (Wiens, Dale, Boyce & Kershaw, 2008), 

while other suggest the higher number of folds the better the validation (Moreno-Torres, Sáez, & 

Figure 2: Example of Data Assignment During Hold-Out Testing Model Validation 
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Herrera, 2012). Cross-validation also presents a significant challenge to researchers working on 

large data sets, as the time and resources needed to validate the model increases with each 

additional k-fold assignment, requiring additional computational resources (Yadav & Shukla, 

2016). Figure 3 below provides a visual representation of cross-validation. 

 

Conducting validation tests using either method (hold-out testing or k-fold cross 

validation) not only makes it possible to measure model performance, it is also a good way to 

check for issues related to model over-fitting,  area of concern when working with supervised 

machine learning algorithms (Hastie, Tibshirani, & Friedman, 2008). Model overfitting occurs 

when the model procedure violates the principle of parsimony, which states that the model 

should only use the information that is necessary to produce the prediction, and nothing more 

(Hawkins, 2004). Since machine learning algorithms generally employ methods that search for 

an optimal function that fits the provided training data (Dietterich, 1995), researchers are at risk 

of building a model that not only fits the relationship between the features but has also fit the 

Figure 3: Example of 5-fold Cross-Validation Data Assignment 
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meaningless information (noise) in the training data by utilizing features in the data that do not 

correspond to underlying general patterns (Lever, Krzywinski & Altman, 2016).  

Several techniques can be used to reduce the likelihood a model is overfitting. Increasing 

the size of the data can introduce new information, allowing the algorithm to better separate the 

useful features from the noise (Jabbar, & Khan, 2015). Tuning the model parameters to limit the 

maximum number of features the model can use during training can also lead to better 

generalization as it reduces the number of optimum functions possible in the search space (Sarle, 

1996). Lastly, utilizing ensemble methods (where multiple models are trained and combined) 

such as boosting or bagging can help reduce overfitting (Ghojogh & Crowley, 2019). Boosting is 

where the model trains a series of weak constrained models, each one learning from the error of 

the model before it, and then combines them to create one final strong predictor (Vezhnevets & 

Barinova, 2007). Bagging is similar to boosting in that it builds a series of models and combines 

them; it differs in that it builds a series of unconstrained models (sometimes using different 

algorithms, sometimes using different subsets of the training data) to combine together with the 

hope of smoothing out the prediction error (Quinlan, 1996).  

Reducing the likelihood of model overfitting is an important step when creating at-risk 

student prediction using an EWS. Without addressing over-fitting during the model building 

stage, issues can surface when attempting to generalize the model to any new data as over-fit 

models generally perform worse than a correctly-fit model, leading to error or bias in prediction 

(Kuhn & Johnson, 2013). This is caused by the model including predictors (learned during the 

training) that perform no useful function, which adds noise to the model, leading to 

misclassification prediction errors (Bramer, (2007). 
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3.1.2 Calculating District-to-District Similarity 

The district-to-district similarity is calculated based on several properties (not utilized 

within the predictive model) that capture some of the key differences between school districts 

and the students within them. These indicators include information such as general student 

demographic ratios, grade enrollment distributions, and district graduation rates. The list of 

features is as follows: 

Table 1: Student and School Characteristics Used to Derive Similarity Scores 

Student Demographics Local Attributes 

% of Students Classified as Pacific Islander % 1st to 4th Grade 

% of Students Classified as Native American % 5th to 8th Grade 

% of Students Classified as Multiracial % 9th to 12th Grade 

% of Students Classified as White  Total Students 

% of Students Classified as Black  Avg Graduation Rate 

% of Students Classified as Asian  Local Total Population 

% of Students Classified as Hispanic Urbanicity (rural, urban and suburban)  

% of Students who District did not have 

Race/Ethnicity Data  

Local Population Economics 

(employment rates, median income, etc) 

 

The selection of these indicators is based on two primary factors; 1) the availability of the 

data (i.e. the data was either collected and stored in the Clarity platform, or the data was publicly 

available from a secondary source such as the U.S. Census Bureau) and 2) evidence provided by 

existing research in this space. The selection process first involved reviewing the existing 

literature on high-school dropout and Early Warning Systems (see literature review above). After 

reviewing the literature, a list of potential population descriptive indicators was created. The 

final indicators were then isolated and selected for use in the DSEE model based on whether the 

data was available either from the Clarity system or from a reputable public source.   
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The district-to-district similarity is determined by a similarity score distance calculation 

based on Euclidean distance (Cha, 2007). This score is derived by computing how similar a 

district is to each of the districts for which a predictive analytics model is available. The higher 

the similarity between a new and Pillar district, the smaller the distance. Selecting the 

appropriate distance measure is an important step in calculating similarity, as it has a strong 

influence on the clustering results (Tan, Kumar, & Srivastava, 2002; Tan, Kumar, & Srivastava, 

2004). Correlated-based distance measures such as Pearson’s correlation assume that two 

separate feature sets share a linear relationship. While this measure can be advantageous when 

comparing data gathered on different scales across the feature set, it can be highly sensitive to 

outliers in the data, producing non-optimal results (Kim, Kim, & Ergün, 2015). To adjust for 

outlier concerns, Spearman and Kendall correlation distances can be used as an alternative to 

Pearsons’s correlation as they are non-parametric metrics that perform rank-based analysis 

(Gideon, & Hollister, 1987). As we are comparing a scale-normalized feature set of a model built 

in one district directly to another district in order to better utilize that model’s predictions, we are 

not concerned with differences in scale (Zhang, Kwok, & Yeung, 2003). Given the nature of our 

data, we need to consider distance measures that can best identify the nearest neighbor using our 

normalized identity feature set.  

One alternative to using a pure distance measure to calculate similarity would be the 

implementation of a recommender system approach. Similar to predictive models, these systems 

rely on historical data to match, or recommend, an outcome based on similarities within this data 

(Resnick & Varian, 1997). Methods such as content-based filtering (Basilico & Hofmann, 2004), 

collaborative filtering (Schafer, Frankowski, Herlocker & Sen, 2007), K-Nearest Neighbors (K-

NN) (Wang, Liao & Zhang, 2013), Latent-factor (Koren, 2011), or a combination of some or all 

https://www.zotero.org/google-docs/?m7JzFx
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of these methods have been used to build recommender systems (Li & Kim, 2003). While 

extensive research exists on building recommender systems (Amatriain, Jaimes, Oliver, & Pujol, 

2011), the choice to implement a distance-based weighting measure for this research is driven by 

three factors: 1) implementing a recommender style system further reduces the interpretability of 

the final dropout results to the stakeholder (Gedikli, Jannach & Ge, 2014), 2) building a 

recommender layer on-top of a machine-learning driven EWS presents a significant technical 

challenge, significantly increasing the resources required to generate the EWS predictions and 

also compounding the time it would take to develop models in practice (Manouselis, Drachsler, 

Verbert & Santos, 2014), and 3) these systems rely on historical data to build the 

recommendation, which presents a problem for districts with high levels of missingness within 

their feature set (Marlin, Zemel, Roweis & Slaney, 2011).  

The Euclidian distance measure was selected for this research method for several key 

reasons: 1) It is the basis of many measures of similarity and dissimilarity (Krislock & 

Wolkowicz, 2012), and one of the most commonly utilized measures utilized within clustering 

software (De Hoon, Imoto, Nolan & Miyano, 2004), 2) It provides us the opportunity to leverage 

some aspects of a k-NN recommender system approach within our approach by determining the 

similarity for the nearest neighbor within the district characteristic feature set (Hu, Huang, Ke & 

Tsai, 2016), and 3) the results are highly interpretable compared to other, more technical, 

measures (D’Agostino & Dardanoni, 2009). While the Euclidian distance can become more 

sensitive to noise in the data with high-dimensional feature spaces due to the squared terms (as 

the number of features grows, the relative distance between points can change in non-obvious 

ways), the n size of our distance features is sufficiently small for this limitation to be a mitigating 

factor for our choice to use this metric (Hassanat, 2014). 
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Using these similarity values, an algorithmic solution is developed to weight the 

importance of Pillar model probabilities generated for Target districts with the hope of improved 

performance when generalizing across districts.  Specifically, to generate this similarity score, I 

take similarity features F, with the number of similarity features Fs. I then Z score each of these 

features across all districts to ensure equal weighting during distance calculation. For each of the 

I Pillar districts, I calculate the Euclidian distance Eai, between each Pillar district Ai and the 

Target district S using feasible features F. I then find the average distance per feature Eais by 

dividing by Fs. The resultant values of Eais scale between 0 (identical district properties) and 

infinity (most different district possible). The next step is to scale the values Eais to be between 0 

and 1, for easier calculation. I do this by using a re-scaling function Eaisb = (1/Eais) / ((1/Eais) + 

Q); where Q is a static value used to increase or reduce the severity of distance. This provides me 

with the distance between each pillar district and the target district (Eaisb). The goal is to have all 

of the district predictions sum up to 1, in which case I can make a prediction for a given student 

that are scaled between 0 and 1 by simply summing the predictions from each Pillar model, 

multiplied by each Pillar district’s distance. However, the values of Eaisb do not yet add up to 1. 

To re-scale these values so that they add to 1 across all Pilar districts, I use iterative gradient 

descent to find the value M such that the sum of all (Eaisb*M) values together is 1. Note that the 

value of M needs to be calculated once for each Target district. Lastly, the predictions are then be 

taken for each student in the Target district, from each model Pi,, for all Pillar models P1…Pn, 

and multiple each prediction Pi = Pi*Eaisb*M. Finally, I sum all the Pi*Eaisb*M together; the 

final result is a prediction for that student, scaled between 0 and 1.  

Both the fitted Pillar models used within the Pillar Pool and the performance of the 

Target district predictions generated by the DSEE are evaluated using the Area Under the Curve 
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for the Receiver Operator Characteristic graph (Hanley & McNeil, 1982). Models developed for 

specific districts as potential candidates to be Pillar models are fit and evaluated using held-out 

test sets from that district’s own data. Districts for which we are able to produce a model with 

AUC higher than 0.7, averaged across all student class years, are designated as Pillar 

districts/models and used to create  predictions for those districts which models could not be 

generated for all grade levels, or for which models were insufficient in quality (Targets). 

Using alternative metrics such as Accuracy, Precision, Recall, or Kappa presents 

challenges for interpreting model results as schools are interested in not just a binary predicted 

outcome, but also the level of risk associated with the outcome (ex: dropout classified as High, 

Medium and Low) (Suh, & Suh, 2007). Accuracy is measured as the proportion of true positives 

observed among the total number of predictions made; using this metric of evaluation could over 

inflate our model results when the dropout records are highly imbalanced (ex: if 97% of our 

records are that a student graduated, and 3% of our records are dropout, the model can predict 

graduate for all the records and still achieve 97% accuracy) (Sidiroglou-Douskos, Misailovic, 

Hoffmann & Rinard, 2011). Precision and Recall involve a single threshold and are only 

concerned with the model’s success at predicting true positives (in this case the dropouts, 

ignoring how the model performs on graduates) limiting interpretation to a binary outcome 

rather than a relative level of risk as Precision is focused on evaluating what proportion of 

predicted dropouts are actual dropouts, and Recall provides metrics on what proportion of 

historical dropouts were actually predicted to dropout (Buckland, & Gey, 1994).  Cohen’s Kappa 

is another common performance metric but fails to address the concerns presented by Accuracy, 

Precision, and Recall as it provides a metric of model performance for how the classifier 

performs over the unconditioned class probabilities, known as the base rate (Kvålseth, 1989). 

https://www.zotero.org/google-docs/?vHOlzi
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The limitation of Kappa is that it is not perfect at controlling for the base rate (Delgado & Tibau, 

2019) and there is no standardized way to interpret the results (Landis & Koch, 1977). Given the 

limitations of the metrics mentioned above, the Area Under the Curve (AUC) for the Receiver 

Operator Characteristic (ROC) was selected as our primary evaluation statistic due to its 

interpretability and validity for highl y-imbalanced test sets (Jeni, Cohn, & De La Torre, 2013). 

AUC ROC calculates the tradeoff between true positive and false negative for every possible 

threshold used for labeling data points as positive and negative; as such, it is well-suited for 

evaluating how well an algorithm ranks students relative to their risk (Bowers et al., 2012; 

Bowers & Zhou, 2019a). 

Given that AUC values are reported from a scale of 0 to 1, where 1 is 100% perfect at 

classifying both outcomes, and 0 is 100% perfect at miss-classifying both outcomes, and 0.5 is a 

random guess, one could suggest that it might be effective to invert the AUC if it falls below 0.5 

to turn a suboptimal model into an optimal model (Flach, Hernández-Orallo & Ramirez, 2011). 

This is accomplished by subtracting the probability produced by the model from 1, which 

produces the opposite predicted classification outcome. For example, if a trained model produces 

an AUC of 0.3, then we can assume it has a worse than random miss classification error. To 

correct this, one would simply invert the prediction so that a student predicted as dropout is now 

predicted as graduated, and a student predicted as dropout is now predicted as dropout. This 

would result in an AUC of 0.7. 

While this strategy seems appropriate at face value, it is not used for this research for 

several reasons. A model can bias or underperform for non-obvious reasons; flipping the AUC 

and assuming the model is performing well provides a false sense of security in model accuracy, 

without understanding the root cause of why a model is performing so poorly. Additionally, early 

https://www.zotero.org/google-docs/?dt8Hkl
https://www.zotero.org/google-docs/?oxmX1m
https://www.zotero.org/google-docs/?oxmX1m
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warning systems are effective when they are both accurate and interpretable (Bowers, 2021). 

Inverting the AUC may produce the appearance of reasonably high model quality when it instead 

represents significant over-fitting to a training set with very limited  signal in the data 

(Jamalabadi, Hamidreza, et al, 2016; Snoek, Miletić & Scholte, 2019). This could also lead to 

errors in interpretation and applications of interventions as there would be no evidence-based 

approach to understanding the reason why a student was predicted as at-risk. Given these 

concerns, this dissertation reports AUC values under 0.5 rather than inverting them.  

3.1.3 Comparing the District Similarity Ensemble Extrapolation Model 

I validate the new approach using several different methods. The first evaluates DSEE’s 

performance against previously-published dropout detectors used at scale (though not all these 

models have been validated to generalize): the widely-used Chicago model (Allensworth & 

Easton, 2007), the Philadelphia logistic regression model (Balfanz, 2007), the Wisconsin 

machine learning EWS (Knowles, 2012), and the high-performing Bowers & Sprott Growth 

Mixture Model (Bowers & Sprott, 2012)  

As mentioned previously, the Chicago model is a well-known and popular method used 

to identify students who are not on track for graduating from high school (Balfanz et al., 2007) 

and can be used for entirely new districts with no re-training. The Chicago model utilizes 

freshman-year GPA, the number of semester course failures, and freshman-year absences to 

determine the risk of the student not meeting the milestone of high school graduation 

(Allensworth et al., 2005). Since this traditional model relies on data collected within the first 

year of high school, I will only be able to compare the performance of the DSEE to the Chicago 

model for high school students that have freshmen year GPA, course failures, and absences data 

available in their records.  

https://www.zotero.org/google-docs/?NMqi5A
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A similar approach is taken to compare the DSEE to the threshold-based Philadelphia-

based Balfanz (2007) model. The Blafanz model looks at whether a student obtained a 1) final 

grade of F in mathematics, 2) a final grade of F in English/Language Arts, 3) attendance below 

80 percent for the year, and 4) a final “unsatisfactory” behavior mark in at least one class. 

Utilizing any of these four signals, a student (6th grade or higher) is marked as at-risk (having a 

75 percent or higher probability of dropping out of high school) if they meet at least ONE of the 

conditions (risk increased about 75 percent for students meeting more than one of signal 

conditions) (Neild, Balfanz, & Herzog, 2007). Like the Chicago model approach, I will only be 

able to compare the performance of the DSEE to the Balfanz model for 6th to 12th grade students 

that contain course grade and attendance data available in their records, as the “unsatisfactory” 

behavior mark is not universally collected by schools within my research data.  

Comparing against the Knowles model requires me to subset my data to 6th-12 grade 

records and then calculate the DSEE performance against a replicated Knowles model (Knowles, 

2012) built using the same 6th – 12th grade population of my research data. As discussed earlier 

in the Literature Review, the Wisconsin Dropout Early Warning System developed by Knowles 

utilizes a method that scans through many different machine-learning algorithms, selects the best 

performing models, and then ensembles them together into one predictor to generate a student’s 

dropout risk. While Knowles did originally publish a publicly available code library with his 

original paper, this library will not be used when I replicate this model on my data due to 

insurmountable technical limitations. Specifically, these limitations involve issues with 

deprecated code, calls to obsolete libraries, and dependencies on non-publicly available code, 

making the publicly released code library no longer functional. Given these limitations, my 

approach to replicating the Knowles model will focus primarily on the methods outlined in his 



53 

 

publications, which involves writing new code to scan through a list of potential machine learned 

algorithms and then combining the best performing models together via an ensemble to create 

the detector for comparison.  

 Lastly, to compare against the Bower’s GMM, I take the results of the calculated 

DSEE’s AUC performance across all grades and conduct a direct comparison against the 

reported AUC of the GMM, published in 2010 (Bowers, 2010) and reported in 2012 (Bowers & 

Sprott, 2012). The decision to compare against the published results, rather than attempt to 

replicate the method on my data to create a new model, is primarily due to the GMM’s structural 

equation modeling approach on one single indicator (GPA) over three semesters. Structural 

equation models are traditionally built using proprietary software (ex. MPLUS) and used for 

theory testing, making them difficult to implement in a system used to generate dynamic, on 

demand risk predictions (Evermann & Tate, 2016). While there are ongoing attempts to address 

this issue, there still exists a large gap of knowledge in how to replicate and productionize these 

methods using open-source coding languages such as R or Python (Wardenaar, 2020). Despite 

my inability to recreate the GMM model, providing a comparison is still valuable as the Bowers’ 

published EWS leveraged a nationally representative dataset and achieved performance similar 

or better than other previous GMM-driven dropout research (Bowers, Sprott, & Taff, 2012). 

Unlike the previous comparisons made in this research, there is no requirement to subset my 

DSEE results data to match the GMM’s results, as they both utilize an identical approach 

(generate predictions down to the 1st grade level and include records with missing feature data). 

Figure 4 below provides a visual representation of the model performance of existing EWSs I 

compare the DSEE approach to. 
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Figure 4: Visual Representation of Existing EWS Model Performance2 

  

 
2 Source: Adapted from Do we know who will drop out? A review of the predictors of dropping out of high school: 

Precision, sensitivity, and specificity. The High School Journal, 77-100. Reprinted with permission. 



55 

 

An additional method of analysis is conducted which focuses on measuring 1) the 

performance of a base model (Aggregate Data model) comprised of all the records across all 

districts compared to an ensemble of multiple predictions from models created at the district 

level, and 2) the impact of using the distance calculation in the DSEE to weight the predictions 

within the ensemble. To accomplish this, I evaluate performance at all possible grades (1st – 12th) 

using two more approaches. The first method (Aggregate Data model) of comparison involves 

the creation of a single new model generated from an aggregate of all student records across all 

districts. Using the same 30% hold-out data for the DSEE and the aggregate model, predictions 

are created and evaluated using AUC ROC values. The results of this comparison allow me to 

identify if there is a significant improvement from building district/organization level models and 

then pooling them together rather than building one unified model with all the data.  

The second and final method (Mean vs DSEE) of comparison takes a simple average of 

the predictions generated by the pillar models (coined the Mean model) by not utilizing the 

weights generated within the similarity function. Comparing a simple average against the 

weighted predictions allows me to determine if using a similarity function generated from 

descriptive features does indeed improve the performance of the model. The AUC ROC metric is 

used as the performance measure for this approach as well. To determine significance, I conduct 

a Delong Mann-Whitney-Wilcoxon test using the R pROC library (Robin, Turck, Hainard, 

Tiberti, Lisacek, Sanchez & Müller, 2011) on the resulting AUC performances, a commonly 

used method for determining which model produces a better AUC when comparing performance 

across multiple detectors (Bamber, 1975; DeLong et al., 1988; Bowers & Zhou 2019).  

To compare the effect of the Chicago model, Balfanz model, Knowles, Aggregated Data 

Model, the Mean model, and the DSEE model, a set of Delong Mann-Whitney-Wilcoxon tests 
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was conducted using the R programming language and the R pROC library (Robin, Turck, 

Hainard, Tiberti, Lisacek, Sanchez & Müller, 2011). These tests allows me to determine if there 

is a statistically significant difference between each of the Early Warning Systems created above, 

based on the reported AUC performance within each district (Hsu & Peter, 2005). Districts for 

which I was unable to calculate an AUC (due to data limitation etc.) will be removed from the 

analysis, resulting in a maximum of 64 AUC pairings out of the original 70 Target districts. A 

total of eight tests are conducted, based on the target populations of the EWS. For comparing 

performance of predictions generated down to the first-grade level, the following DeLong-tests 

were made: the Aggregate Model compared to the Mean model, the Aggregate Model compared 

to the DSEE model and the Mean model compared to the DSEE model. To compare EWS 

performance for predictions generated for 6th grade students, the following DeLong-tests 

conducted: DSEE compared to the Balfanz model and the DSEE compared to the Knowles 

model. Lastly, to compare the performance of the DSEE to 9th grade student populations, two 

DeLong-tests were conducted between the DSEE compared to the Chicago model, the DSEE 

compared to the Knowles model. Note that given that the Balfanz, Chicago and Knowles models 

were not built for all student grade populations, the AUC performance will be recalculated for 

the DSEE model using the same populations defined in the Chicago, Balfanz, and Knowles 

methodologies.  

3.2 Data for Analysis 

Data for this research originate from the BrightBytes data analytics and visualization 

platform, Clarity®. The Clarity® platform ingests disparate datasets, transforms them into a 

standardized format by mapping district-specific variables to a common schema, prepares the 

data for analysis, and then visualizes the data in a meaningful, easy-to-understand way. The 
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Clarity® platform is used by 1 in 5 schools across 47 states to empower educational leaders to 

use data for decision making. The value derived from the Clarity® platform comes from using 

data to drive change within an organization (Strudler & Schrader, 2016; Chute, 2019). The 

anonymized dataset used to support the DSEE research represents a large spectrum of K-12 

students in terms of free/reduced lunch eligibility, school urbanicity, and school demographic 

makeup consisting of almost 3 million individual student records.  

The set of predictor variables was selected in partnership with the American Institutes for 

Research (AIR) Early Warning Systems in Education team (Heppen & Therriault, 2008), 

researchers and developers at BrightBytes (including this dissertation’s author), and a researcher 

at the University of Pennsylvania. This collaboration resulted in a theory-based (Bernhardt, & 

Bernhardt, 2013) framework of success indicators, along with definitions of those success 

indicators that are used to map and align district data. Due to the data ingestion and 

transformation process, the same data features can be used across all districts. Below is a 

distillation of the broad range of potential variables into a small set of meaningful buckets: 

● General Coursework: indicators related to student academic performance such as total 

credits earned or student grade point performance within course type (math, science, 

reading, social sciences, etc.), non-cumulative grade point average, and grade point 

averages within course category (core courses, elective courses, etc.) (Bowers, 2019; 

Bowers, 2010; Bowers, 2011; Bowers & Sprott, 2012; Kemple, Segeritz, & Stephenson, 

2013; Allensworth, Gywnne, Moore, & de la Torre, 2014; Balfanz, Bridgeland, Bruce, & 

Fox, 2013; Brookhart et al., 2016; Stuit et al., 2016; Balfanz, DePaoli, Ingram, 

Bridgeland, & Fox, 2016). 
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● Student Assessments:  interim or summative assessments related to math, science, 

reading and social studies performance (Koon, & Petscher, 2016; Cumpton, Schexnayder, 

& King, 2012; Bowers & Zhou, 2019). 

● Student Attendance: recorded absences, tardies, and flags of chronic absenteeism 

(Balfanz, & Byrnes, 2012; Rafa, A., 2017; Caldarella, Christensen, Young, & Densley, 

2011; Hein, Smerdon, & Sambolt, 2013; Bowers & Sprott, 2012). 

● Student Behavior: data related to the number and type of recorded disciplinary incidents 

the student has on file (Balfanz, Byrnes, & Fox, 2015; Bowers, & Sprott, 2012; Owens, 

J., 2016; Office of the State Superintendent of Education, District of Columbia, 2014; 

Landers, Courtade, & Ryndak, 2012). 

3.2.1 Study Participants 

The data used in this research consists of 326,533 unique students from 88 school 

districts (for the purposes of this research, models will be built at the district level), all with 

varying levels of dropout rates, diversity, and locality. The distribution of gender was largely 

equal, with 158,590 female students and 159,641 male students (data on gender was unavailable 

for 8,302 students).   

The ethnic distribution of these students consisted of  7,096 (2.17%) Asian, 67,900 

(20.82%) African American, 34,592 (10.59%) Hispanic, 1,319 (0.40%) Native American, 4,896 

(1.5%) multi-ethnic, 1,195 (0.37%) Pacific Islander, 193,300 (59.20%) White and 7,863 (2.41%) 

undefined. 8,302 student records did not contain any ethnicity data. According to July 1st 2019 

population estimates provided by the U.S. Census Bureau, the United States has an ethnicity 

distribution of 5.9% Asian, 13.4% African-American, 18.5% Hispanic/Latino, 0.2% Native 

American or Pacific Islander, and 60% White alone (not Hispanic or Latino) (2019) suggesting 
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that our study sample is over-representative of some groups (African-American, Native 

American, and Pacific Islander) and largely under-representative, by a factor of up to 3, of other 

groups (Asian, Hispanic/Latino, multi-ethnic, and White). These differences are likely caused by 

variances in the local population such as urbanicity, the funding available to purchase an 

educational technology tool (Title 1), and the factors motivating the decision to choose the 

BrightBytes ed-tech solution used to collect the data within this analysis.     

Within this population of study, 35,151 students were flagged as dropping out with 

288,317 students graduating high school, showing an 11.40% dropout rate across all school 

districts. While this number may seem relatively high overall, the dropout rate varies 

significantly within each school district. Additionally, there was significant heterogeneity across 

districts for when the dropout event took place, with some districts observing students dropping 

out in earlier grades (as early as 6th grade) and others recording the highest proportion of 

dropouts in higher grades (see Figure 38 in Appendix A for full dropout distribution across 

districts). Each student provides a record for each historical grade they attended, with one unique 

student having a possible max number of 12 total records in the data, one for each grade (1-12), 

creating a total size of 2,362,621 records for examination. See Appendix A for tables that 

provide a descriptive summary calculated on the data used within this research.  

 A primary concern about the data, and the motivating factor of this research, is that there 

exist large gaps of recorded data within many of these districts. Table 14 found in Appendix A 

provides a good summary of this issue, with 35 districts containing less than 100 historical 

dropout records, and 6 districts containing less than 100 historically recorded graduation records. 

These results are especially concerning, as the data collected from this research originates from 

school districts with relatively large (more than 100) current student populations. As mentioned 
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earlier, districts that lack historically recorded graduate or dropout records are hindered in their 

ability to generate a district specific machine learned EWS. Traditionally, these districts would 

have to rely on threshold based EWSs as they do not have the data required to implement an 

accurate machined learned method of dropout detection. For the purposes of this research, 

districts with no historical records were removed from the analysis as I am unable to conduct any 

cross-validation to measure prediction performance. In practice, these districts would leverage 

current student records to generate predictions driven by the DSEE EWS method further 

discussed in this paper. 

3.2.2 Data for District-to-District Similarity  

 Despite the data quality issues present in the historical student data, they do not impact 

the current student population records. This is largely due to the school districts’ decision to 

partner with an educational technology company (in this case, the BrightBytes company), which 

provides them the capability to accurately record and track current student educational data 

aligned to a common unified schema. Having clean, accurate, and common current student data 

is a requirement to generate risk predictions for students in one district using a model from 

another (the core approach used in the DSEE). It also makes it possible for me to create 

additional features that can be utilized within the similarity weighting function in the DSEE 

solution.  

Current student populations vary across school districts; the average number of currently 

enrolled students across all 88 districts at is 7,936.16 (SD=13,631.62). Ethnic/racial distributions 

vary widely as well, with 6 districts consisting predominately Asian students (Orgs 13, 14, 15, 

43, 44, 46), 8 containing mostly Hispanic (Orgs 0, 7, 8, 9, 26, 37, 38, 39) students, 1 containing 

mostly Pacific Islanders (Org 106), 1 containing mostly Indigenous students (Org 48), and 65 
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containing a majority of White students. The remaining 7 districts contain a diverse distribution 

of ethnicities. The extreme racial heterogeneity across districts highlights the issues that continue 

to persist from segregation policies enacted decades ago (Reardon, 2019). Appendix B provides 

summary statistics (provided by BrightBytes) of the current student populations of study.   

 As mentioned previously, the data used to calculate the district-to-district similarity used 

in the DSEE falls within two categories: (current) student demographics such as ethnic/racial 

distribution or average graduation rates and local population attributes such as population 

economics, employment rates, median income, etc. The current student demographic data is 

captured within the BrightBytes Clarity® platform, which is calculated at the district level using 

the information provided by the district. To obtain local population statistics, additional data 

from a reliable, publicly available source was required. The local population attributes were 

collected using American Community Survey 5 Year Estimates, accessible through the U.S. 

Census Bureau (2020) API. The American Community Survey 5-Year Estimates contains data 

down to the block-group level, and covers a large of topics such as social, economic, 

demographic, and housing characteristics of the U.S. population, with over 20,000 unique 

variables. To extract the data utilized in this research, zip codes were collected on every school 

within each school district. These zip codes were then used to query the publicly available 

Census Data API to obtain these additional local population features. Specifically, the following 

variables were extracted: 

• B01003: Estimated total population. 

• S2301_C01_001E: Estimated employment status of population 16 years and over. 

• S1501_C01_008E: Estimated population of 25 years or older with no high school 

diploma. 

• B19013_001E: Estimated median household income in the past 12 months (in 2018, 

inflation-adjusted dollars) 
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Urbanicity data was also collected from the Census Bureau using provided definitions. The 

US Census defines two types of urban zones within the United States: Urbanized Area (UAs) 

which consist of 50,000 or more people, and Urban Clusters (UCs) which consist of at least 

2,500 people and less than 50,000 people. Communities designates as “Rural” encompass the 

population not included within an urban area (Census Bureau, 2020). As such, a total of four 

urban-rural variables were calculated consisting of a total count of persons residing in each 

urban-rural type at the zip code level. These four variables are defined as: UA representing the 

count value of Urbanized Area. UC representing the count value of Urbanized Cluster, Urban, 

consisting of the combined count total of Urbanized Areas and Urban Clusters, and Rural, 

consisting of the count of persons residing in rural areas. This data was then converted to a 

percent value using the total population to create a ratio representing each urban-rural zone 

feature.  

 After acquiring this data at the zip code level, an average was then calculated for each 

school district by taking the mean values of all the school zip code within this district. This 

produced an average population of 93,623 (SD=168,274), median income of $50,445 

(SD=$11,145.32), ratio of peoples in combined urban area and urban clusters of 0.546 

(SD=0.31), ratio of peoples urban areas of 0.365 (SD=0.387), ratio of peoples in urban clusters 

of 0.181 (SD=0.245), the ratio of peoples in rural areas of 0.455 (SD=0.314), employment rate of 

0.81 (SD=0.04) and high school educated rate of 0.94 (SD=0.02) across all 88 school districts.  

After computing these averages, the data was joined with the collected current student population 

demographics. This combined data is then utilized within the similarity calculation of the DSEE 

modeling approach, discussed in further detail later in this document. Appendix B provides a 

summary of the local population statistics similarity data used in the analysis.  
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3.3 Instruments 

 Several instruments were used throughout this study. As mentioned earlier, the initial 

data originates from the BrightBytes data analytics and visualization platform, Clarity®. The 

Clarity® platform ingests disparate datasets, transforms them to a standardized format by 

mapping district-specific variables to a common schema, prepares the data for analysis, and then 

visualizes the data. The Clarity platform works by ingesting all available data from the various 

tools (attendance trackers, grade books, intervention management systems, etc.) used within the 

school district using a series of Application programming interfaces (API’s). This data is then 

mapped and aggregated at the student level which is then stored in an Amazon Redshift 

Database.   

 To generate the feature set used within this dissertation’s analyses, SQL queries were 

made to the Redshift database using the Psequel integrated development environment (IDE). 

These queries created a series of tables that contained the base features, the generated additional 

features, and the population descriptive features within each educational organization. Once 

these tables were made, they were unloaded to the Amazon S3 data lake service and downloaded 

using a command line interface (CLI) to a local computer to be analyzed and modeled.  

 Predictive models were created using the Anaconda Python programming language 

distribution. This Python package includes several IDEs and all the scientific computing libraries 

needed to manipulate and build the machine learned dropout risk prediction model (see 

Appendix N for full list of packages and libraries). Traditionally, the models would be 

productionized by integrating the python code within an automation engine and deployed using a 

distributed computing cloud service in user defined frequencies (i.e. the user decides how often 

the model updates) in order to create updated predictions as the student data changes over time. I 
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did not have access to such a system, and instead relied on the Spyder 4 IDE and the computing 

power of a local desktop computer to complete this research. This desktop computer ran on the 

Windows 10 64-bit operating system and contained an AMD Ryzen 7 1700 Eight-Core 3.0 GHz 

Processor with 32 gigabytes of DDR4 Rapid Access Memory (RAM). 

3.4 Preparing the Data for Modeling 

 Identical data preparation was conducted for all three models’ methods created in this 

research. For every unique student, their end of year records (reported values in the system as of 

July 31st) were collected and extracted for each grade a record was present. This resulted in a 

long-form data set containing multiple rows for each unique student, with each row representing 

their academic, assessment, behavior and attendance data for each year they attended school 

within the district (historical records for transfer students were added when available). Once the 

core feature set (attendance, assessment scores, academic performance, and behavioral Incidents) 

was identified for each student, it was then manipulated to generate additional insights by 

creating new features and to remove any data anomalies. The additional features generated 

consisted of several combined and computed features built using the base feature set. An 

example of this in practice would be taking the average of recorded grade point average (GPA) 

of the science, language arts, history, and math courses to create a new core courses GPA. This 

process resulted in a total of 56 unique features that were used to predict likelihood of high 

school graduation.  

 Given the nature of the discrepancies mentioned earlier of how individual districts record 

data, the feature set was then normalized within district and within class number. Normalizing 

this data accomplished two things: first, it allows me to account for large variations in the 

recorded data as some districts recorded the data in different ways and scales (ex: one district 
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recording academic performance on a 4 point scale vs another recording academic performance 

on a 100 point scale). Without normalizing this data, model performance would be heavily 

impacted. The second reason to normalize this data is to try to identify and reduce any 

unforeseen predictive bias created by the model. Research has shown that model performance 

can heavily bias within various populations. This bias can produce a highly inequitable 

environment for underserved populations. To ensure fair treatment among all groups, data 

normalization is completed by converting values to standard scores (z-score). This allows me to 

examine how far any given value falls from the population mean on a normal distribution and is 

used to identify data imbalances and reduce unfair treatment effects (Actionable Intelligence for 

Social Policy, 2020). Once these features are calculated, the next step is cleaning the data. 

Data cleaning involved extracting the data from the database and then stripping out any 

white space within the feature space. Records before 1st grade and after 12th grade were removed 

from the data set. I then created a new column called “dropped” in the data containing a Boolean 

label where student records received a value of 1 if they were a high school dropout and a value 

of 0 if they were a high school graduate. Only these students were used for building the models; 

all other outcomes such as transferring to another school district, current students, and records 

that did not have a historical outcome values were removed from the filtered dataset. Student 

metadata (identifying keys) were then removed from the data set. The remaining features were 

then converted to a number data type, coercing all non-number values to Not a Number 

(represented as NaN in python) missing values. Converting the missing values to NaN allows me 

to both visualize and address any missingness within the data.  

Results of the missingness analysis show that some features suffer from high numbers of 

missingness, with interim assessments having the highest levels of missingness (M = 0.985%, 



66 

 

SD = 0.134%), summative assessments containing an average of 0.611% missingness (SD = 

0.321%), credit based features having an average missingness of 0.518% (SD = 0.197%), GPA 

based features having an average of 0.240% (SD=0.229%), and behavior based data showing the 

least amount of missingness at 0% (SD=0%) (see Appendix C).  Given the nature of educational 

data, identifying, and addressing the cause of this missingness is not simple. While the features 

selected for this analysis attempt to be general enough that most districts would be able to 

populate these values, there are features that by their nature will always be missing for some 

students. Data collected and recorded in later stages of academic progress such as GPA, or 

Advanced Placement course participation, will not be present for early grade students. 

Additionally, some students may not have access to these initiatives and do not have an 

opportunity to be exposed to these programs. Simply omitting these features would address the 

missingness but would likely reduce the accuracy of the model as these feature types have been 

shown to be predictive of dropout. Taking all of this into consideration, implementing a strategy 

to address the missingness while also maintain the maximum amount of information on the 

student is required. 

The severity of the missingness within the data impacts the algorithms that can be used to 

build the models (Marlin, 2008) and the process used to generate the predictions (Batista & 

Monard, 2003), which means that selecting the way we address this problem is an important step 

of the data preparation process. There are many different imputation methods that can be 

implemented to address this challenge, with varying levels of complexity (Lakshminarayan, 

Harp, Goldman & Samad, 1996). While data imputation can be a powerful tool for handling 

missing data (Schafer, 1999; Schafer & Olsen, 1998), it is not necessarily ideal when trying to 

predict the very variable that is missing. As a result, it can often be infeasible to create scalable, 
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locally validated models for specific districts that generalize to new unseen district populations. 

Given this limitation, the simple method of arbitrary value substitution was used to replace 

missing values with a high, out of bounds integer (a value of 2,000).  

The resultant dataset was highly imbalanced, with substantially more students graduating 

than dropping out, as can be seen in Appendix A. To account for this imbalance, the training data 

was manually re-balanced (using random-over sampling) by adding duplicate copies of students 

who dropped out to the data set. A count of records within each grade is calculated to determine 

how many historical records exist within each recorded class number which was then used to 

inform the up sample. Specifically, duplicates were created such that every grade level (10th, 

11th, 12th, etc.) of students in the training datasets had an equal number of students who dropped 

out as students who remained. The original data distribution was used when testing the models. 

This resulted in the final dataset used for the creation of the base model, coined the Aggregate 

Data model, the Mean model, and the DSEE model. 

3.5 Model Parameter Tuning 

Many machine learning algorithms contain specific settings that can be changed within 

the algorithm to better optimize the performance (Sonobe, Tani, Wang, Kobayashi, & 

Shimamura, 2014). These hyperparameters can be adjusted to increase the predictive results of 

the models within which they are used (Probst, Wright & Boulesteix, 2019), but there is a risk of 

creating under-performing models through over-fitting, selecting an inappropriate metric, or 

setting incorrect hyperparameter values (Feurer & Hutter, 2019). Like adjusting the faucet on a 

bathroom sink to achieve better water efficiency, tuning the hyperparameters on a machine 

learning algorithm during model training can improve the performance of the detector. In this 

section, I discuss my approach to tuning the hyperparameters of machine learning EWSs I have 
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created within my research (the Aggregate Data model, Mean model, and DSEE). The specific 

model hyperparameters for each of these modeling approaches are provided in their relevant 

sections found in the results section of this paper. 

During a previously completed pilot study on this data, the random forest algorithm was 

determined to be the best algorithm to use given the nature of the data used in this research 

(Coleman, Baker & Stephenson, 2019). The random forest works by building multiple decision 

trees, and then pooling them together to achieve a higher performing model. As an analogy of 

this process, let’s imagine a soon-to-be-graduated high school senior named Susie, who is having 

difficulty committing to one of the two universities she has recently been admitted. To help with 

her decision, she approaches her best friend Gary for advice. Gary asks Susie a series of 

questions regarding her interests; does she like an urban or rural campus setting? Does she prefer 

a school with a large sports team? Does she prefer a cold weather climate or moderate weather 

climate? Based on Susie’s answers, Gary provides a response as to which university she should 

attend. In its simplest form, this is how a decision tree works. Gary created a list of conditions to 

present to Susie, who then provided an answer which ultimately led to the university 

recommendation provided by Gary. After speaking with Gary, Susie then begins asking 

additional friends for advice on which university she should attend. Some of her friends ask new 

questions, some ask the same questions, and some ask a combination of both new and similar 

questions until finally providing their recommendation. Susie collects all these responses, and 

finally decides to attend the university that was recommended most often to her. A random forest 

operates the same way, where instead of relying on one friend to determine the decision, it relies 

on many friends (trees) and then combines the cumulative results to generate the final outcome.  
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 Given the decision to utilize a random forest method, the hyperparameter tuning method 

was implemented with this algorithm in mind. Tuning a machine-learning algorithm requires a 

significant amount of trial and error, as determining the best parameters to use is not possible 

prior to fitting the model (Bei, Yu, Zhang, Xiong, Xu, Eeckhout, & Feng, 2015). This means that 

in order to identify the optimal hyperparameter setting values, a test of all possible combinations 

(within the parameter value space) needs to be conducted, known as a hyperparameter sweep 

(Kostrikov, & Gall, 2014). Additionally, there exists an increased risk to overfitting the data 

when conducting the sweep to tune the hyperparameters of the model, addressed in this case by 

using a fully held-out data test set. 

The Random Forest algorithm contains 6 primary hyperparameters that can be tuned 

when fitting the model to find the most optimal detector. They consist of the following items; 1) 

the number of trees or estimators to use in the forest, 2) the maximum number of features to 

consider when splitting a node, 3) the maximum number of levels in each decision tree within 

the forest, 4) the minimum number of samples within a node before the node is split, 5) the 

minimum number of samples for a node to be considered a leaf, and 6) whether the data 

sampling method will utilize sampling with replacement or sampling without replacement. (i.e. 

Bootstrapping) (Hesterberg, 2011). To accomplish this, a randomized parameter grid was created 

to sample from during the model fitting.  
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Figure 5: Flow chart of hyperparameter search procedure 

 

This involves the creation of an n-dimensional vector, with each hypermeter representing 

a dimension and the scale of the dimension consisting of each possible value within the 

hyperparameter. This vector can be viewed as a catalog of all possible combinations of values 

that can be used (via random sampling) efficiently to train and evaluate models with various 

combinations of hyperparameters to identify the optimal settings. The grid was created using the 

following hyperparameters:  

Number of Estimators: [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] 

Maximum Features: sqrt, which takes the square root of the total number of features 

and auto, which simply takes all the features into consideration. 

Maximum Depth: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110] 

Minimum Samples for Split: [2, 5, 10] 

Minimum Samples for a Leaf: [1, 2, 4] 

Bootstrapping: Enabled and Disabled 
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Using this grid, 100 iterations of model training were conducted, with the algorithm 

randomly sampling (sweeping) from the grid during each iteration. Conducting a random search 

provides the benefit of not having to fit every possible combination of parameters (in this case, 

3,960), but instead enables the algorithm to search through a wide range of values to identify the 

appropriate hyperparameters. Throughout each iteration, an AUC was calculated to evaluate the 

model’s performance. Once the 100 iterations were completed, the parameters that produced the 

highest AUC was used to train the final model used to generate the student risk predictions.  

To address concerns around over-fitting, 70% of the data was sampled from the total, and 

then 3-fold cross validation was used during the hyperparameter tuning process (Duarte & 

Wainer, 2017). While there is some evidence to suggest a larger number of folds (ex:10-fold) is 

more effective at validating model performance, there is a significant trade-off between 

improved performance and computational resources (Bengio & Grandvalet, 2004). Due to 

computational limitations, 3-fold cross validation was used as it is significantly better than 

simple hold-out validation and less expensive than 5 or 10-fold cross-validation (Moore, 2001). 

Once the optimal parameters were identified, hold-out validation was then used to fit the model, 

with the 70%  randomly selected data set used for training and the remaining 30%, which was 

excluded from the hyperparameter tuning, and used to measure the predictive performance of the 

model. This created a total of 300 model fits during the hyperparameter tuning process, with one 

final fit conducted once the optimal parameters were identified. 

3.6 Model Fitting 

 In the following section, I discuss my approach to fitting the generated models  

 used to compare the performance of the proposed DSEE model in this research. As mentioned 

previously, an Aggregate Data model (using all records available across all the educational 
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organizations) and a Mean model (taking a simple average of predictions generated by the pillar 

model) was created.  

3.6.1 Aggregate Data Model 

By combining all the data into one, single model, I am able to better understand the 

performance impact of having one single model generating predictions using one national level 

model compared to having multiple models generating weighted and unweighted predictions at 

the organization/district level, this model will serve as a baseline for comparison. Creating the 

Aggregate Data model began with first combining all available records into one single dataset (n 

= 326,533) containing a total of 2,362,621 records. The data was then prepared using the method 

outlined above in the Preparing the Data for Modeling section. The data was then split into two 

partitions, one consisting of 70 percent of the records (used for training) and the remaining 30 

percent used for validating the model.  

 

Figure 6: Process for fitting the Aggregate Data model EWS 

Once the random forest algorithm was fit using the default base values, the 

hyperparameter tuning sweep (outlined in the methods section) was conducted to identify the 
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optimal parameters for the model based on AUC performance. This process required 8 hours of 

computation time (with all 16-cores utilized) and involved over 300 model fits using 3-fold 

cross-validation during the tuning process. After the hyperparameter tuning sweep was 

completed, the best performance (measured using AUC) was a model with the following hyper 

parameter values:   

Number of Estimators: 40 

Maximum Features: sqrt 

Maximum Depth: 40 

Minimum Samples for Split: 5 

Minimum Samples for a Leaf: 2 

Bootstrapping: Disabled 

 The final model used to create the Aggregate Data model was fit on the training using 

these optimal hyperparameter settings. The validation data was then scored against this model 

and used to evaluate the 1) overall performance of the detector across all records and 2) the 

performance of the detector within-district. Results of this analysis is found below in the 

Research Findings section of the paper.   

3.6.2 Mean Model  

 The Mean model was created by developing and validating predictive models for each 

school district with sufficient data to create their own predictor, with these models predicting 

each student’s probability of graduating (or risk of not graduating). These models are then used 

to generate predictions for students in districts that lack the data required to build their own 

district specific model. The predictions are then averaged together using a simple ensemble 

approach (taking an average of all the produced risk probabilities), to produce a single prediction 
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for each student. The performance of this approach is tested by using the historical records from 

held-out districts where data is available. This Mean model forms the basis of the proposed 

DSEE approach and will allow me to measure the impact the DSEE similarity calculation will 

have on the predictive performance compared to having no weighting function in place.  

Building the Mean model was a several stage process. The first step (Stage 1) was 

designating districts as either Pillars or Targets based on the districts’ data properties. As a first 

step within this stage, districts were classified as Targets that if they did not contain historical 

data spanning all grades 1st through 12, as districts without historical data would be less useful 

for modeling than districts where historical data are present. This process resulted in the 

selection of 79 possible Pillar models, with the remaining 9 organizations being designated 

Target districts.  
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Figure 7: Count of Historical Outcomes by Grade and Organization 

Figure 7 above provides a visual representation of the number of available outcome 

records across all students within each grade and organization. From this chart, we can see that 

most school districts contained some level of graduation recorded graduation outcome for 1st 
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through 12th records. Additionally, the visualization shows that that three organizations (Orgs 0, 

30, and 69) contain significantly more outcome records compared to the other school districts 

within this analysis. Despite most districts containing records, some organizations are completely 

missing outcome values for a specific grade (Orgs 20, 26, 27 and 104), while some only contain 

single digit values (Orgs 32, 40, 47, and 48), which suggest these districts did not begin 

collecting student data in a digital format until recently and are unable (either through lack of 

resources or interest) to convert their historical data for use in a district specific machine learning 

driven EWS system.   

I then designated districts as Targets that had low (less than 20,000 total outcome 

records) numbers of historical records. This resulted in the reclassification of an additional 53 

districts from possible Pillar models to Targets, creating a total of 62 (M=10,934.34, 

SD=11,180.38) school districts identified as Targets and 26 (M=63,288.23, SD=62,776.56) 

identified as possible Pillar models. Lastly, I calculated the proportion of missing values within 

the total feature set for these Pillar candidates, and classified districts with over 40 percent of 

values missing across the entire feature set as Targets, as these districts would be less useful for 

modeling other districts where these features were present. Two of the potential Pillar candidates 

contained more than 40 percent missing data (M=0.562%, SD=0.089%) and were therefore 

reclassified as Targets. The remaining 24 potential Pillars had relatively good data completeness, 

with an average of 27.98 (SD=0.056%) percent missing data for all features (see Appendix D).  

The next stage (Stage 2) toward building an at-risk prediction model for districts without 

sufficient data is to build models for districts with sufficient data. This was accomplished by 

attempting to fit a model for every educational organization in the data set. For each of these 

models, the data was prepared using the same method as the Aggregate Data model, where 
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records were filtered down to only the students who were flagged as ‘dropped’ and ‘graduated’, 

simple imputation was applied to address the missing values, with the training set having 

outcome records duplicated at the class number level to address any outcome imbalance issues.  

Identical to the Aggregate Data model, Pillars models underwent hyperparameter tuning 

to identify the optimal settings for the algorithm prior to training the final detector used to 

generate the student risk predictions. This tuning process involved over 300 fits for each 

potential Pillar model, requiring significant resources and several days to complete using all 

computational resources available. Overall, a total of 8,937 fits were conducted to produce the 

optimal model for each district. The table below provides a summary of the selected 

hyperparameters for each potential Pillar district model. 

Table 2: Pillar Model Hyperparameters Selected During Model Tuning 

Pillar 

Model 

Org ID 

(n) 

Estimator

s 

Max 

Feature

s 

Max 

Depth 

Min Samples 

for Split 

Min Samples 

for Leaf 

Bootstrap 

Enabled 

0 40 auto 10 5 1 TRUE 

11 40 sqrt 10 5 2 FALSE 

13 50 sqrt 10 5 1 TRUE 

18 45 auto 10 5 4 FALSE 

30 50 sqrt 10 5 1 TRUE 

50 25 auto 10 2 1 FALSE 

51 40 sqrt 10 2 4 TRUE 

54 40 sqrt 10 2 4 TRUE 

58 40 sqrt 10 2 4 TRUE 

61 40 sqrt 10 2 4 TRUE 

65 40 sqrt 10 2 4 TRUE 

67 10 sqrt 10 2 4 TRUE 

68 40 auto 10 5 1 TRUE 

69 25 sqrt 10 10 2 TRUE 

72 10 sqrt 10 2 4 TRUE 

73 40 sqrt 10 2 4 TRUE 

74 10 sqrt 10 2 4 TRUE 

77 25 sqrt 10 5 2 TRUE 

80 40 sqrt 10 2 4 TRUE 

88 40 sqrt 10 2 4 TRUE 
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Pillar 

Model 

Org ID 

(n) 

Estimator

s 

Max 

Feature

s 

Max 

Depth 

Min Samples 

for Split 

Min Samples 

for Leaf 

Bootstrap 

Enabled 

89 40 sqrt 10 2 4 TRUE 

90 50 sqrt 10 5 1 TRUE 

99 25 sqrt 10 5 2 TRUE 

103 40 sqrt 10 2 4 TRUE 

 

The goodness of each district’s model was evaluated, within-district, using a train-test 

split method (note that models are also evaluated within entirely new districts; see below). In 

each case, the training set consisted of a randomly selected 70 percent of the data with label-

based stratification used across grades. The test set held out to validate the model consisted of 

the remaining 30 percent of the data., with the Area Under the Curve for the Receiver Operator 

Characteristic used as the model evaluation statistic. 

 After attempting to fit a model for every district Pillar candidate in the dataset, the 

performance was reviewed for each districts predictor in order to identify the final models that 

will be simple ensembled (the Pillar Models), with the remaining underperforming districts used 

to validate the ensemble (joining the Targets). Selection of Pillar districts at this point was based 

model performance. As mentioned previously, models developed for specific districts as 

potential candidates to be Pillar models were fit and evaluated using held-out test sets from that 

district’s own data.  

3.6.3 District Similarity Ensemble Extrapolation  

Having developed models for Pillar districts, where data are abundant, data quality is 

high, and where it is possible to develop a high-quality model, I next applied the DSEE (District 

Similarity Ensemble Extrapolation) approach. This approach combines the Pillar district models 

(created during the Mean model method) to obtain predictions for the Target districts, in a more 
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sophisticated fashion than just averaging them. This was accomplished through a several step 

process. 

The first step to applying the Pillar models was simply to run each of them on the Target 

district’s data and obtain predictions for each student. This was completed when the Mean model 

was created and provides a set of predictions for each student and for each model. Second, I 

calculated the similarity between the Target district and each of the Pillar districts. The district-

to-district similarity is calculated based on several properties (not utilized within the predictive 

model) that capture some of the key differences between school districts and the students within 

them. These indicators include information such as general student demographic ratios, grade 

enrollment distributions, district graduation rates and local population data such as employment 

rates, median household income, and urbanicity. The last step involves converting the similarity 

scores into weights using a gradient descent approach, and then applying these weights to the 

probabilities generated by each Pillar Model. The final weighted average is then used to 

determine a student’s risk of dropping out of high school.  

I applied the DSEE model (using the same Pillar models identified in the Mean model 

approach) to 64 Target school districts (n = 758,379) for which data were available. These 

districts had considerable variation in size, graduation rate, and degree of missingness of data 

(and which features were missing), with values for these variables that were substantially higher 

or lower than the values for the Pillar districts. As such, applying models from the Pillar districts 

to these sixty-four Target districts represents substantial extrapolation. Note that the goal of 

DSEE is not just to provide models for these seventy districts, but even more for the large 

number of additional districts that do not have sufficient historical data available to be able to 

develop a model at all (for which we may not have the data to measure how well they work). 
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However, these 64 districts are generally representative -- in terms of their range of size, data 

quality, and demographics -- of the range of districts that DSEE could be applied to (see 

Appendix A). 

 To calculate the district-to-district scores, the similarity data was first cleaned and 

prepared. This process involved first removing any identifying metadata not used in the 

calculation and then coercing the entire data sate to a numeric data type to identify any missing 

values. There are several common strategies used to address missing data in cluster analysis 

(Zhang, Zhang, Zhu, Qin, & Zhang, 2008). For this analysis, simple value imputation as used 

where a value of 0 was imputed for all missing values. To address the differences in 

measurement scales (ex. population counts vs percentage rates) and ensure equal weighting 

during the distance calculation, the raw numeric values were converted to normalized z-scores 

per column for each variable included in the distance data. Figure 8 below provides a visual 

representation of the normalized values for each feature used within the distance calculation. 

From this image, we see that districts with low high school graduation rates, are often the 

districts with low employment rates as well. Additionally, current student population ethnic 

distributions shift significantly within each district. Districts containing large Hispanic or Black 

student rations generally see lower graduation rates, with majority White and Asian student 

districts seeing higher graduation rates. Urbanicity is diverse, with some districts containing 

mostly rural students and other’s containing mostly urban student. These values are then used to 

calculate the final similarity distances and weights used within the DSEE EWS method.   
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Figure 8: Normalized Features After Missing Data Imputation Using Z-Score 

Standardization in the DSEE Calculation 
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 For each of the Pillar districts P, I calculated the Euclidian distance between each Pillar 

district and each Target district T using the available demographic (ethnicity distribution, district 

size, urbanicity, etc.) features. 

 

𝐸𝑎𝑖 = 𝑑𝑖𝑠𝑡(𝑇(𝑥𝑖 , 𝑦𝑖), 𝑃(𝑎𝑖, 𝑏𝑖)) =  √(𝑥𝑖  − 𝑎𝑖)2  +  (𝑦𝑖  − 𝑏𝑖)2 

 

I then found the average distance by taking the sum of the distances by the total number 

of features used in the calculation. 

𝐸𝑎𝑠𝑖
̅̅ ̅̅ ̅̅ =  

Σ(𝐸𝑎𝑖)

𝑛
 

The average distances were then rescaled between 0 and 1 across all Pillar and Target 

pairs for easier calculation. 

𝐸𝑎𝑠𝑏𝑖 =  
𝐸𝑎𝑠𝑖 −  𝑚𝑖𝑛(𝐸𝑎𝑠𝑖)

𝑚𝑎𝑥(𝐸𝑎𝑠𝑖) − min (𝐸𝑎𝑠𝑖)
  

To convert the distance to a similarity value, I take each distance and subtract them from 1, 

effectively inverting the values so that a higher value symbolizes a smaller distance between 

each Pillar and Target district.  

NEasbi = 1 − Easbi 

The goal is to have all of the similarities add up to 1, in which case I can make a 

prediction for a given student that will be scaled between 0 and 1 by simply summing the 

predictions from each Pillar model, multiplied by each Pillar district’s distance. The figure 9 

provides a visual representation of the similarity between each Pillar district to each Target 

district.  
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Figure 9: Adjusted Similarity Between Pillar District and Target District Models 

Using Normalized Euclidian Distance Function 

Observations from this analysis suggest that the Target 48 and 106 districts are very 

dissimilar to all the Pillar models and that the Pillar 30 district is dissimilar from every Target 

district. Target District 48 consisted of a large Native American/Indigenous population and 

Target 106 consisted entirely of Pacific Islander students. Pillar Model 30 contains a diverse set 

of students, from a large range of backgrounds. This range of diversity could be limiting the 

model’s similarity to Target districts compared to other Pillar Models that contain a larger range 

of demographic feature values which could be the potential cause of these results.  All other 

Pillar to Target similarities obtained a largely similar value, with small differences observed in 

the similarity values.   

Predications generated by a Machine Learning model are supplied in the form of a 

probability, with a possible minimum value of .0 and possible maximum value of 1 (DasGupta, 

2011). This presents a challenge when attempting to use the calculated similarities, as simply 

taking the sum of the probabilities multiplied by the similarity could potentially produce 

probabilities above 1 (which would mean a student is over 100% likely to drop out). To address 

this issue, I use iterative gradient descent (Kelley, 1999) to find a multiplier value (M) such that 

the Pillar model predictions Pi multiplied by the Pillar-Target similarity NEasbi multiplied by the 

Mi value summed together is 1.  

𝑓(𝑥, 𝑀′(𝑥))  =  1 

𝑓(𝑥) = (𝑁𝐸𝑎𝑠𝑏1 ∗   𝑀) + (𝑁𝐸𝑎𝑠𝑏2 ∗ 𝑀)+ . . . (𝑁𝐸𝑎𝑠𝑏𝑖 ∗ 𝑀) 

Note that we need only calculate M once for each Target district as the similarity values 

differ between each Target and Pillar. By combining these three values, the result is a single 

prediction for a given student, scaled between 0 and 1, where a value of less than 0.5 is 
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considered a student on path to graduation and a value of 0.5 or greater is a student at-risk of 

dropping out of school. 

�̂� =  (𝑃1 ∗  𝑁𝐸𝑎𝑠1 ∗   𝑀) + (𝑃2 ∗ 𝑁𝐸𝑎𝑠𝑏2 ∗ 𝑀)+ . . . (𝑃𝑖 ∗ 𝑁𝐸𝑎𝑠𝑏𝑖 ∗ 𝑀) 
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Table 4: Example of Distances Between Target and Pillar 

Converted to Weights 

Table 3: Example of Student Level Predictions 
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Tables 4 and 4 above shows an example of this method in practice. I applied DSEE Pillar 

models to Target districts, and evaluated these models using all historical records present in the 

data. Using all the Target student records to evaluate the model’s performance was permitted as 

this as none of these records were used within model training (only student records from Pillar 

districts were used for training), effectively allowing me to treat them as the hold-out test set. As 

with the Pillar models, I use the AUC ROC as the metric of model goodness to evaluate the 

Target district student predictions. 

3.6.4 The Chicago Model 

Districts that lack enough data (Targets) to build an advanced EWS system would 

traditionally rely on a simpler methods of early dropout risk detection. The Chicago model On-

Track indicator is a simple threshold-based EWS that relies on two freshman-year data points; 

the number of credits earned and the number of course (English, math, science or social science) 

failures within a semester. To fit this EWS to the data, a simple conditional argument can be 

applied using the parameters specified by the Chicago model research. The specific conditional 

argument used is as follows; if the student did not obtain enough credits their 9th grade year OR 

if a student received at least one failure in their core courses THEN the student is off-track and at 

risk of dropping out of high school.  

 Comparing the DSEE to the Chicago model was limited by data availability, as the 

Chicago model relies on high school student GPA records. As such, the validation sample used 

to calculate the AUC was limited to students with data available in 9th grade. Due to the high 

missingness within the data, many of the target districts lacked data for the features outlined 

within the Chicago model research, for at least some students. If at least one feature was 

available for the Chicago model, the model was used; a student was assigned a default .5 
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probability of graduating if the Chicago model was missing all features and therefore incapable 

of producing a prediction. In practice, the Pillar models also performed more poorly for students 

with very high data missingness compared to students with lower missing values in their data 

records. Of the 126,650 unique total students across the 64 Target school districts, 124,942 

contained 9th grade data records used to calculate the On-Track indicator, a reduction of 1.3 

percent. Of this population, 46.6 percent did not contain credit data, 27.52 percent did not 

contain math course data, 27.17 percent did not contain reading course data, and 29.4 percent did 

not contain social science related data.   

3.6.5 The Balfanz Model 

 The Balfanz model is similar to the Chicago model in that it is also a threshold based 

EWS that relies key data point values to identify students at risk of dropping out. The Balfanz 

model deviates from the Chicago model approach by leveraging four indicators to generate risk, 

implemented beginning at the 6th grade level compared to two indicators in the Chicago model 

implemented at the 9th grade level. These indicators are: student grade in mathematics, student 

grade in reading/Language Arts, student attendance, and student behavior. To fit this model to 

my data, a simple conditional statement using the parameters specified by the Balfanz model was 

applied on 6th grade student records. The specific conditional argument applied is as follows; IF 

a student obtained final grade of F in mathematics OR a final grade of F in English/Language 

Arts OR a attendance below 80 percent for the year OR a obtained final “unsatisfactory” 

behavior mark in at least one class THEN the student (6th grade or higher) is marked as at-risk. 

Like the Chicago model, if at least one feature was available for the Balfanz model, the 

model was used; a student was assigned a default .5 probability of graduating if the Balfanz 

model was missing all features and therefore incapable of producing a prediction. Of the 126,650 
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unique total students across the 64 Target school districts, 38,715 contained 6th-grade data 

records used to calculate the On-Track indicator, a reduction of 69.43 percent. Of this 

population, 33.13 percent did not contain math course data, 32.19 percent did not contain reading 

course data, and 5.95 percent did not have attendance related data. All student records contained 

behavioral data, likely due to the system used to collect these records as it automatically 

defaulted to a value of 0 if the school district provided no incident records. 

3.6.6 The Knowles Model 

 The Knowles model utilizes traditional machine learning techniques to build high school 

dropout models. It differs from previous research in that it does not rely on one single algorithm 

to create the detector but instead produces multiple detectors using different machine learning 

algorithms and then selects several (anywhere from 4 to 7) of the best performing models and 

averages them together to create a single detector as the final risk prediction mechanism 

(Knowles, 2015). As mentioned earlier, I encountered several limitations when attempting to 

apply the original modeling code (written in the R programming language) published by 

Knowles to my research data. The decision to copy the Knowles method rather than try and fit 

his published code to my data was due to three primary issues I encountered. The first issue is 

that the libraries and packages called by the Knowles published code have not been kept up to 

date and are significantly deprecated. The second issue is that Knowles created the codebase for 

the State of Wisconsin school system, with the expected features hardcoded in the provided 

functions. Lastly, the code relies on dependencies that are not available to the public (i.e., other 

libraries and packages only available to Wisconson educational researchers). Lacking the 

capacity to resolve these issues, I was opted to replicate his approach using newly created code 

using the same R language and similar statistical techniques. 
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 While my codebase is different than the original published implementation, I follow the 

same 4 step process as Knowles consisting of 1) combining all the available data and building a 

test and training set, 2) fitting a range of models using different algorithmic approaches, and then 

evaluating the model's performance via cross-fold validation, 3) identifying the best performing 

models on the test data, and 4) selecting the N top best performing models and ensembling them 

together into a single EWS detector.  

 Preparing the data for the Knowles model began by first combining all available student 

records together into one large single data set. To mimic the approach by Knowles, this data was 

then filtered to only include students with 6th grade records, reducing the total unique student 

records by 0.0067 percent from 326,533 to 324,345. Missing values were then imputed using 

mean value replacement for each column (i.e. an average value was calculated for each predictor, 

and then used as a replacement for students that had no data present for that specific variable). 

Lastly, the data was then randomly split into a training set, consisting of 75 percent of the data 

(used for training and cross-validation), and a test set, consisting of the 25% of records used for 

validation. The next step involved fitting many different models using a supplied list of defined 

algorithmic approaches to search and identify the best performing methods. This step was 

computationally intensive, taking several weeks to complete using the resources at my disposal. 

These algorithms were fit using 10-fold cross validation during training to identify the optimal 

parameters for each approach. Once the optimal model was fit, the test set was then scored 

against the model to calculate the final performance using the AUC metric. 



 

91 

 

 

Figure 10: Flow Diagram of Knowles EWS Modeling Process3 

  After reviewing the results, the top four (gradient boosting machine, random forest, 

multivariate adaptive regression spline, and elastic-net regularized logistic regression) 

performing models were then selected to be combined into a single dropout risk estimator, which 

was then validated using the test holdout data. Interestingly, the highest performing model 

reported by Knowles was also the gradient boosting machine, with multivariate adaptive 

regression spline, and elastic-net regularized logistic regression also performing scoring high 

(but not in the top 4). The performance of the random forest algorithm was not reported by 

Knowles (Knowles, 2015). Appendix I provides a comprehensive analysis of results, with AUC 

performances provided for all algorithms searched during this step.    

3.7 Measuring Feature Importance 

 To understand which features are particularly important to the model, a feature 

importance score was calculated. Feature importance was calculated using the mean decrease 

impurity method, sometimes referred to as the Gini importance (Breiman, & Cutler, 2007). The 

Gini importance measures the probability of misclassification if it was randomly classified 

 
3 Source: Of Needles and Haystacks: Building an Accurate Statewide Dropout Early Warning System in Wisconsin. 

JEDM | Journal of Educational Data Mining, 7(3), 18–67. 
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according to the distribution of values in the features. The Gini importance value can be created 

by taking the sum of the probability 𝑝(𝑖) of picking a datapoint value with a true class 𝐶 

multiplied by the probability of a mistake in the model predicting the class for this datapoint 

(Nembrini, König, & Wright, 2018).  

𝐺𝑖𝑛𝑖 =  ∑ 𝑝(𝑖) ∗ (1 − 𝑝(𝑖))

𝐶

𝑖=1

 

The Gini importance was calculated using the sci-kit learn python library for each 

machine learning driven EWS (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, ... & 

Vanderplas, 2011). Creating this metric allows me to calculate how much each feature 

contributes to the model’s eventual predictions of a student’s outcomes (in this case, risk of 

dropout) (Breiman, 2001). The Gini importance serves two primary functions; the first is that it 

can provide additional insights into improving the models design through better feature selection 

(Katuwal & Chen, 2016) and the second is that it can serve as a basic form of model 

interpretability for educators who implement an advanced form of early warning system in their 

school district (Chung, & Lee, 2019).  

3.8 Calculating Prediction Equity 

  When generating risk predictions to detect the likelihood of high school dropout, we 

want to make sure the EWS not only performs well overall, but also is not biased against 

members of specific groups (Yordanova, & Emanuilov, 2020) as there is the potential to cause 

unwanted harm to students when implementing any predictive risk system within an educational 

systems (Bird, Dudík, Edgar, Horn, Lutz, Milan, & Walker, 2020). If an EWS does not perform 

as expected within various groups, it could lead educators to inadvertently deny students access 

to services, resources, or interventions that would have improved their educational outcome 
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(Christenson & Thurlow, 2004). Additionally, for students that do have access and receive an 

intervention, there is the risk the quality of the service could be reduced based on inequitable 

model performance. For example, denying a student access to an after-school study program 

based on their gender or ethnic background harms the student and is illegal (Pinkus, 2008). 

Similarly, imagine that a student does get access to the after-school study program, but the EWS 

suggests the student is not as likely to drop out as the other students participating in the same 

program. This may lead the educator leading the study program sessions to decide to prioritize 

their time supporting the other students. The student still receives the intervention service, but 

the quality of that service is reduced.  

  To understand how fair each EWS replicated in this research is performing between 

student demographic groups, I subset the predictions based on either the student’s ethnicity/race 

or gender and then calculated the AUC within group for each model. By calculating the model’s 

performance within various demographic populations, I can better understand if some models 

underperform when generating student risk predictions of high school dropout. Understanding if 

or where the EWS is biasing predictions is the first step to implementing strategies to reduce this 

effect. While this dissertation does not specifically implement or test these strategies, I will 

outline potential methods that can be used to mitigate and address algorithmic bias further in the 

Conclusion & Discussion chapter of this document.  

 The prediction equity AUC comparison is completed in three separate steps based on the 

grade of target population for each EWS replicated in this research. The first comparison is made 

between the Aggregated Data Model, the Mean model, and the DSEE model for all 1st through 

12th grade risk predictions. The second set of comparisons is made between the Aggregated Data 

Model, the Mean model, the DSEE model, the Balfanz model, and the Knowles model for all 6th 
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through 12th grade risk predictions. Lastly, the final set of AUC comparison calculations is made 

for the Aggregated Data Model, the Mean model, the DSEE model, thh Balfanz model, the 

Knowles model and the Chicago model for all 9th through 12th grade student risk predictions.  
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Chapter 4: Research Findings 

 In the following sections, I will discuss the results and performance of the Aggregate 

Date Model, Mean model, DSEE, Chicago model, Balfanz model, Kowles Model and Bowers 

GMM Early Warning Systems. EWS results are provided in both an overall value (across all 

students) and within-grade AUC for each relevant EWS population. Additionally, I provide 

summary results of my equity analysis, highlighting the variance of performance for each EWS 

created across both students reported ethnicity and student reported gender. Table 5 provides a 

summary of each EWS evaluated in this research for reference.  

Table 5: Description of Early Warning Systems Evaluated in This Research 

EWS Name Description 

Aggregate Data model Single model created by combining all student records 

across all available school districts. 

Mean model Single detector created using average prediction of 

multiple models from select districts (Pillar), used to 

generate risk for students in other districts (Targets) 

incapable of creating their own model. 

DSEE Single detector created using the weighted average of 

predictions using similarity features of multiple models 

from select districts (Pillar), used to generate risk for 

students in other districts (Targets) incapable of creating 

their own model. 

Chicago model Threshold based EWS that relies on two freshman-year 

data points 

Balfanz model Threshold based EWS that relies on four 6th grade year 

data points 

Knowles model Single detector using advanced machine learning 

technique of stacking multiple models together.  

Bowers GMM Growth Mixture Model on non-cumulative GPA for 9th-

grade students 

 

4.1 Results of the Aggregate Data Model 

 Initial results of the Aggregate Data model showed acceptable performance (Mandrekar, 

2010), with an overall AUC of 0.76 across all grade levels. The performance of the detector 
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within grade levels varied significantly, with performance increasing over time as the students 

get closer to possible dropout. The lowest performance is seen when making first grade dropout 

predictions, which shows an AUC of 0.637. The Aggregate Data model performs the best at 

grade 12, with an AUC of 0.83. Additionally, there is a significant observed drop in performance 

before grade 5, suggesting that generating predictions for early year students could produce 

significantly more levels of errors compared to later year students. The figure below provides a 

graphical illustration of AUC performance across all grade levels, using data calculated within 

grade.  

 

Figure 11: AUC Performance of Aggregate Data model within Grade Levels 

 While these initial results may be promising as it beats the performance of many existing 

EWS (Bowers & Zhou, 2019), the model performance at the district levels suggests severe issues 

generalizing these risk predictions across all organizations within the data. We see that despite 

the initial results of 0.76 of the combined test data, the true average performance is 0.696 

(SD=0.06) when calculating the AUC within each organization’s population, with some districts 

(Org 10 & 38) achieving an AUC as low as 0.49, suggesting that a coin flip would be better at 



 

97 

 

predicting dropout risk than this model method for these districts.  (See Appendix E). 

Performance increased for districts with a larger number of records, suggesting that the fitted 

model was biased towards districts that provided the large rest number of records during training.  

Evaluating the Aggregate Data model performance within grade produced less than 

optimal results and further highlighted the severity of the low data quality for several school 

districts within this research. Figure 12 below provides a visualization of the AUC performance 

within each school district calculated within each class number record, when historical outcome 

data was available. As the heat map shows, the performance of the model varies significantly 

depending on the grade of the prediction and the within which organization the prediction is 

made. Additionally, the amount of white space in this visual highlight areas where no historical 

records were available in the test set to create a prediction, indicating that many organizations do 

not have twelve years of historical data. This presents a significant challenge when attempting to 

build an organizational specific model as the ability to measure performance and bias for current 

student predictions is hindered for grades that do not have the historical data required to validate 

the model. 
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Figure 12: AUC Performance of Aggregate Data model by Organization and Grade 

Level 1st Through 12th  

4.1.1 Aggregate Model Feature Importance 

To understand which features are particularly important to the model, a feature 

importance score was calculated. Feature importance was calculated using the mean decrease 

impurity method, sometimes referred to as the gini importance (Breiman, & Cutler, 2007). A 

range of different types of features were found to be important in the Aggregate Data model.  

Table 6: Aggregate Data model Gini Feature Importance 

Feature Name Importance 

gpa_for_grade_band 0.15495 

avg_all_course_grade 0.11080 

attend_ratio 0.07724 

sum_absent_ratio 0.06515 

pass_rate 0.06235 

chronic_absent 0.05505 

sum_attendance_ratio 0.05154 

norm_age_for_class_number 0.03933 
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Feature Name Importance 

avg_core_course_grade 0.03244 

count_minor 0.03179 

count_major 0.02845 

norm_avg_all_course_grade 0.02666 

stddev_elective_grade 0.02116 

avg_credits_earned 0.01949 

stddev_core_course_grade 0.01926 

total_absent_in_first_90 0.01626 

grad_credit_ratio 0.01466 

avg_reading_grade 0.01366 

avg_reading_norm_summative_score 0.01185 

avg_math_norm_summative_score 0.01127 

total_absent_in_first_60 0.01116 

stddev_credits_earned 0.01050 

total_absent_in_first_45 0.00857 

avg_science_grade 0.00803 

avg_social_science_grade 0.00778 

avg_math_grade 0.00754 

attnd_100 0.00695 

algebra_passed 0.00579 

total_absent_in_first_30 0.00549 

norm_grad_credit_ratio 0.00511 

norm_avg_math_grade 0.00505 

norm_avg_elective_grade 0.00474 

sum_reading_grade 0.00462 

absent_in_first_90 0.00421 

count_science 0.00398 

count_reading 0.00390 

absent_in_first_60 0.00365 

count_social_science 0.00354 

avg_science_norm_summative_score 0.00312 

avg_reading_norm_interim_score 0.00297 

norm_avg_reading_grade 0.00276 

absent_in_first_45 0.00273 

avg_social_science_norm_summative_score 0.00254 

count_math 0.00243 

norm_avg_social_science_grade 0.00228 

sum_tardy_ratio 0.00213 

absent_in_first_30 0.00142 

norm_avg_science_grade 0.00095 

stddev_science_grade 0.00058 

avg_math_norm_interim_score 0.00056 
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Feature Name Importance 

stddev_reading_grade 0.00051 

stddev_social_science_grade 0.00045 

stddev_math_grade 0.00033 

avg_science_norm_interim_score 0.00030 

avg_social_science_norm_interim_score 0.00000 

 

Overall, the Aggregate Data model relied heavily on features related to attendance and 

academic credit achievement, with attendance ratio, non-cumulative GPA within grade, average 

course grades, and attendance ratios providing the most importance for the model. Assessment 

related features, such as Interim and Summative test scores, and course subject specific 

performance were valued the least within this model. While this model did produce a relatively 

acceptable model, defined by achieving an AUC between 0.7 and 0.8 (Mandrekar, 2010), the 

reliance on these specific features presents a challenge when generalizing to students that do not 

have this data available, likely leading to some districts receiving lower predictive performance 

(ex: organization 37 or 106).  

4.2 Results of the Mean Model  

 The following section will discuss the results of the Pillar selection and final Mean model 

performance on Target districts. The first step to creating the Mean model is identifying potential 

district candidates for which a model can be created. The next step is creating and validating 

these models to determine which Pillar models will be pooled together and used to generate risk 

predictions for districts that are unable to create their own district level model. Finally, the pool 

of models is used to generate risk for these Target districts by taking a simple average of the 

predictions across each Pillar detector, creating the final Mean model prediction.  
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4.2.1 Pillar Selection 

Districts for which I was able to produce a model with AUC higher than 0.7, averaged 

across all student grades, were then designated as Pillar districts/models and used to create 

predictions for students in districts for which models could not be generated for all grade levels, 

or for which models were insufficient in quality. Interestingly, the pillars that experienced the 

largest amount of missingness were also those that generally reported lower AUC.  

 

Figure 13: AUC Performance of Pillar Models on Test Hold-Out Compared to % of 

Missing data in Feature Space 

All potential Pillar Candidates achieved an average AUC above 0.7 (M=0.862, SD=0.291), so no 

district models were reclassified at this point from Pillar to a Target, resulting in a final Pillar 

district model count of 24 and Target district count of 64.   
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Figure 14: Average AUC Performance of Pillar Organization Models on Test Hold-

Out Data During Model Training 

The lowest Pillar model received (Org 9) a 0.762 AUC score and the highest (Org 13) 

received an AUC of 0.904 when validated across all grade levels within district (see Appendix 

D). When results were calculated within grade and within district, the variance of AUC 

performance shifts significantly depending on the district and the grade in which the prediction is 

being validated. Figure 15 below provides a breakdown of this performance.  
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Figure 15: Performance of Pillar Model AUC within Grade and Organization 

 Calculating the AUC performance within grade and district of the Pillar models allowed 

me to better understand how these models will perform when generating predictions to the 

current student populations at the student grade level. For example, Org 80 generally performs 

lower when creating predictions for students in lower grades (0.588 AUC), but performs 

relatively better at higher grades (12th grade AUC of 0.898). While not explored in this research, 

this analysis could uncover alternative methods of designating Pillar Models, with the potential 

to create grade specific Pillar Model pools to generate student risk predictions using the models 

that performed the best within each grade.   
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4.2.2 Mean model Performance on New Districts 

 I applied the Pillar models to every record available for each student’s data from the 64 

Target districts (758,379 historical records) and averaged the probability across models for each 

student. These districts had considerable variation in size, graduation rate, and degree of 

missingness of data (and which features were missing), with values for these variables that were 

substantially higher or lower than the values for the Pillar districts. In other words, applying 

models from the Pillar districts to these sixty-four Target districts represents substantial 

extrapolation. 

 

Figure 16: Model Performance of Individual Pillars and Mean model on Target Data 

The figure above shows the average performance of each individual Pillar model detector 

on the Target district data compared to the Pillar model performance of the within-district 

validation data. The performance of these models when applied to new, unseen districts is lower 

than their performance on within-district data, but overall performed well despite the high degree 
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of extrapolation required. When taking the average probability of all detectors combined (to 

create the Mean model) the Mean model performed the best at 0.8 AUC. While all 25 detectors 

achieved relatively good AUC scores, Org 69 appears to suggest that as the false positive rate 

becomes greater than 90%, the false positive rate increases more quickly than the true positive, 

causing the ROC curve to drop below random chance (see Appendix E).  AUC results within 

grade produced similar results, with the models performing better within higher grades and 

underperforming at lower grade levels. The figure below provides a breakdown of these results. 
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Figure 17: Average Performance of Pillar Model and Mean Detectors on All Target 

District Data. 

 While the Mean model, on average, outperformed the individual Pillar district model, 

some Target districts did perform better when scored against the individual Pillars compared to 

the average scores provided by the combined Mean model. For example, Target District 47 

achieved a low AUC (below .5 chance) using the Mean model but performed relatively well 

using the Organization 0 Pillar model (a calculated AUC of 0.77). Target District 106 shows a 

similar trend, where the AUC performance of the Mean model (AUC = 0.72) was lower than an 

individual Pillar, in this case, the Organization 88 Pillar Model, where an AUC of 0.74 was 

observed. This pattern is observed for several additional Target Districts within the analysis. The 

figure below provides a full breakdown of the AUC performance within each Target 

organization scored against the Pillar Models and averaged Mean model. With some Pillar 

models exceeding the performance of the averaged Mean model, an opportunity exists to develop 

a method that will better implement this modeling approach by improving the way the Pillar 

Models are leveraged within this simple ensemble. 
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Figure 18: AUC Performance of Pillar Model and Mean Detectors within each Target 

District Data4 

 

 
4 White values are created when there are not enough historical records in the data to calculate an AUC score 
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An additional finding from these results show that some Target districts failed to produce 

high AUC’s from any of the Pillar Models used. Target districts 38, 10 and 9 achieved AUC’s 

close to the 0.5 chance prediction threshold for all Pillar Models. It is worth noting that these two 

districts had the highest rate of missing data for features that ranked most important in the Pillar 

models, with over 80% of students in these Target districts missing data related to coursework, 

over 90% of the records not containing any assessment scores, and the data for 40% of the 

students not containing attendance information. Overall, the districts with the highest amounts of 

missing data in core features were also the districts with the lowest AUC ROC values. 

 

Figure 19: Mean model Performance on Target Districts by (%) Missingness5 

   

 
5 Three districts achieved AUC performance under 0.5 and are not shown in this figure. District 38 received an AUC 

of 0.496, District 10 received an AUC of 0.303, and District 47 received an AUC of 0.287. 
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4.2.3 Pillar Model Feature Importance 

 Like the Aggregate Data model, a feature importance was calculated using the mean 

decrease impurity method (gini importance) to understand which features are particularly 

important to each Pillar model (Breiman, & Cutler, 2007).  A range of different types of features 

were found to be important in the twenty-four models.  

 

Figure 20: Gini Feature Importance Values of Pillar District Models 
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Overall, the Pillar Organization models relied heavily on features related to attendance 

and academic credit achievement, with attendance ratio, course grades, core course grades, GPA, 

and absent ratios providing the most importance for the models. While this trend was generally 

seen across all the models, some differences were observed. The Organization 11 model heavily 

valued summative assessment, student age within grade, and behavioral data (i.e., disruption, 

defiance, etc.) to generate risk predictions. However, student behavioral records were also 

important to the Organization 20 model. The Organization 67 and Organization 65 Pillar models 

was were most similar, with both models relying heavily on course grade data and attendance 

data. The differences in feature importance are likely due to a multitude of reasons. One reason 

could be that there were differences in the data availability of features for each district. For 

example, no interim assessment data was available for Organization 13, whereas Organization 0 

had interim assessment data available for almost all their historical student records. Another 

cause could be the difference in the populations of students in each Pillar district. For example, 

attendance may play a larger role in graduation in urban districts (e.g. Organization 108), 

whereas behavioral incidents could play a larger role in the path to dropping out for students in 

more rural districts (e.g. Organization 67) (Jordan, Kostandini, & Mykerezi, 2012). 

4.3 Results of the District Similarity Ensemble Extrapolation 

Despite the high degree of extrapolation required, the DSEE performance was generally 

good, with an average AUC (across all Target districts) of 0.80, with five Target districts 

achieving an AUC above 0.9 across all grades.  
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Figure 21: DSEE AUC Performance Across All Target District Records 

As shows in the image below, within grade AUC performance (across all Targets) 

achieved expected results, with the model performing worse at lower grades (0.57 in first grade 

predictions) and better at higher grades (0.86 in 11th and 12th grades) as the student nears the 

potential dropout event.  

 

Figure 22: Calculated DSEE AUC Performance within Grade Level 
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 However, three additional Target districts (districts 47, 10 & 38) achieved AUCs below 

0.5. It is worth nothing that these districts had high rates of missing data, with relatively low 

numbers of recorded historical outcomes use to calculate the AUC. Overall, the Target districts 

with the highest amounts of missing data generally performed the lowest when the DSEE was 

applied to their data. The table below provides the AUC performance of the DSEE applied to all 

Target districts (see Appendix F for expanded results).  

Table 7: Summary results of DSEE AUC performance on Target District Data 

 X̅ σ 

AUC Performance 0.805 0.112 

Count of Graduates 10,837 10922 

Count of Dropouts 895 1250 

 

 One potential future option for improving the modeling for these districts may be to 

weight the distance between districts by the degree of overlap in features available and missing, 

as done with the demographic features used above. This approach may become particularly 

useful as more Pillar models are obtained that share more feature overlap with these three 

districts.  Another opportunity (mentioned earlier) could be using different lists of Pillar models 

at different the grade levels, so that only the best performing models are used to generate risk 

predictions for students within a specific grade.   

4.4 Results of The Chicago Model 

Despite the high degree of missing records in the high school Target district student 

records, the Chicago model On-Track indicator achieved an AUC of 0.69 across all combined 9th 

grade records, almost 0.1 points lower than the results originally reported by Allensworth and 

Easton (2007; Bowers & Sprott, 2012). Calculating AUC performance within-district produced 

slightly lower results (M=0.682, SD=0.141), with AUCs ranging from the high 0.80s to below 
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0.2, worse than a random coin flip. The highest AUC (0.90) found was found in Org 32, and the 

lowest AUC (0.0) was observed in Org 104 (see Appendix G). Due to this model’s reliance on a 

few indicators, the performance has a linear relationship between the amount of data missing and 

the ability to create an accurate dropout risk prediction, shown in Figure 23.  

 

Figure 23: AUC performance of the Chicago On-Track Indicator EWS by (%) of 

missing data across 9th grade students6 

Evaluating the Chicago model performance within district produced less than optimal 

results, with significant variance in AUCs observed and further highlighted the both the severity 

of missing data within the student records and the models capacity to generalize across 

populations. The figure 23 provides a visualization of the AUC performance within each school 

district calculated on 9th grade student records, when historical outcome data was available. As 

 
6 Four districts achieved an AUC below 0.5 and are removed from the figure. District 48 received an AUC of 0.499, 

District 9 received an AUC of 0.498, District 46 received an AUC of 0.395 and District 104 received an AUC of 

0.00 (calculated on 2 outcome records). 
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the figure shows, the performance of the model varies significantly depending on the school 

district with which the prediction is made, with some school districts (Orgs 7, 9, 17, 27, 35, 40, 

46, 97, & 104) receiving low AUC scores across 9th grade students. These results highlight the 

significant challenges of using a threshold based EWS built in one school district to create risk 

predictions in another, as differences in data quality and recording can severely impact the 

EWS’s performance at detecting student dropout risk.  

 

Figure 24: AUC performance of the Chicago On-Track Indicator by School District. 

Red line provides a reference for a 0.5 AUC. 

4.5 Results of The Balfanz Model 

The Balfanz model EWS achieved an AUC of 0.64 across all combined 6th grade records 

when generating risk using any of the four flags. These results are higher than the originally 

published performance reported by Balfanz but failed to mirror recent replicated results 

conducted by Bowers et. al, who reported an AUC of 0.729 (Balfanz et al.; 2007; Bowers et al. 
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2012; Bowers & Zhou, 2019). Calculating AUC performance within district produced slightly 

higher results (M=0.657, SD=0.094), with AUCs ranging from the high 0.80s to below 0.5, 

worse than a random coin flip. The highest AUC (0.884) found was found in Org 32, and the 

lowest AUC (0.463) was observed in Org 44 (see Appendix H). Like the Chicago threshold 

based EWS, the Balfanz model’s performance has a linear relationship between the amount of 

data missing and the ability to create an accurate dropout risk prediction.  

 

Figure 25: AUC performance of the Balfanz EWS by (%) of missing data across 6th  

grade students7 

The similarities with the Chicago EWS continue, with the Balfanz model producing 

suboptimal results when evaluating the models’ performance within grade and district. This 

finding is likely due to the severity of missing data within the student records and the model’s 

 
7 Four districts achieved an AUC below 0.5 and are removed from the figure. District 38 received an AUC of 0.494, 

District 15 received an AUC of 0.478, District 96 received an AUC of 0.470 and District 44 received an AUC of 

0.463. 
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capacity to generalize across populations. The figure 26 provides a visualization of the AUC 

performance within each school district calculated using 6th grade records, when historical 

outcome data was available. The figure suggests the performance of the model varies 

significantly depending on the district within which the prediction is made, with some school 

districts (Orgs 9, 37, 44, 47, 95 & 106) receiving low AUC scores across all 6th grade records. 

These results further highlight the significant challenges of using a threshold based EWS built in 

one school district to create risk predictions in another, as differences in data quality and 

recording can severely impact the EWS’s performance at detecting student dropout risk.  

 

Figure 26: AUC performance of the Balfanz EWS by School District. A red reference 

line is provided to show the cutoff for 0.5 AUC  

4.6 Results of The Knowles model 

The individual models utilized in the final ensemble produced relatively high AUCs, with 

the gradient boosting machine model performance at 0.882 AUC, the random forest at 0.878 

AUC, the multivariate adaptive regression spline model at 0.872 AUC, and elastic-net 
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regularized logistic regression model at 0.887. Combining these four models together into a 

single ensemble (the Knowles model) EWS achieved an AUC of 0.887 across all combined 6th 

through 12th grade records, performing slightly better than the original results published by 

Knowles, who achieved AUC between 0.83 and 0.87 (Knowles, 2015). The lowest (0.796) AUC 

observed for 6th grade predictions and the highest (0.899) AUC observed for 12th grade 

predictions.  

 

Figure 27: AUC Performance of Knowles model within Grade Levels 

AUC performance within district produced similar results (M=0.874, SD=0.071), with 

AUC’s ranging from 0.943 (Org 8) to a low of 0.562 (Org 38). Districts (Org 38 & Org 10) 

where the model underperformed (0.562 AUC & 0.569 AUC) had considerably higher dropout 

rates (over 50 percent) than those that generally reported higher AUC results (see Appendix I). 

The figure below provides a visualization of the AUC performance within each school district 
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calculated within each grade when historical outcome data was available. As the heat map 

shows, the performance of the model was generally good, but still shows some variance in 

performance depending on the grade of the prediction and the within which organization the 

prediction is made, with Org 38 receiving low AUC scores across all grades.  

 

Figure 28: AUC performance of the Knowles EWS by Grade and School District 

4.6.1 Knowles Model Feature Importance 

Like the previously generated Machine Learning EWS models, a feature importance was 

calculated using the mean decrease impurity method (gini importance) to understand which 

features are particularly important to each individual model and the final combined ensemble 
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(Breiman, & Cutler, 2007).  A range of different types of features were found to be important in 

the five total models.  

 

Figure 29: Gini Feature Importance Values of Knowles models 

The Knowles models relied heavily on features related to attendance, academic 

achievement, student behavior, and the students age (normalized within grade) with course pass 

rate, attendance ratio, normalized age within grade, and GPA within grade providing the most 

importance for the overall ensembled model. While this trend was generally seen across all the 

individual models, some differences were observed. The multivariate adaptive regression spline 

(earth) model valued the student’s count of math courses completed much higher than the other 
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models and the elastic-net regularized logistic regression (glmnet) model put importance on a 

wider set of student features related to attendance and assessments.  

4.7 Comparing Across the Generated Models (Grades 1st - 12th) 

 The AUC performance for the Aggregated Data, Mean, and DSEE models are calculated 

across grades 1st through 12th for all districts. A DeLong test was then used to compare the model 

performance of each EWS pair. The first pair of tests was conducted to compare the AUC 

performance of the Aggregate Data model and the Mean model. There was a significant 

difference in AUC performance between the Aggregate Model (AUC=0.7583) and the Mean 

model (AUC=0.7955) EWS’s; D= -29.759, p <0.001. These results suggest that the Mean model 

outperforms the Aggregate Data model when generating high school dropout predictions. 

Averaging the risk probabilities of individualized district level models appears to be better at 

detecting student at-risk status than combining all the data together to create one single, multiple 

district model.  

The second DeLong test conducted was to compare the AUC performance of the 

Aggregate Data model and the DSEE model. There was a significant difference in AUC 

performance for the Aggregate Model (AUC=0.758) and the DSEE model (AUC=0.797) EWS’s; 

D = -31.191, p <0.001. These results suggest that the DSEE model outperforms the Aggregate 

Data model when generating high school dropout predictions. Using a weighted average based 

on similarity on the risk probabilities of individualized district level models appears to be better 

at detecting student at-risk status than combining all the data together to create one single, 

multiple district model.  

The final DeLong test conducted was done to compare the AUC performance of the 

Mean model and the DSEE model. There was a significant difference in AUC performance 
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between the Mean model (AUC=0.795) and the DSEE model (AUC=0.797) EWS’s; D=-77.18, p 

< 0.001. These results suggest that the DSEE model slightly outperforms the Mean model 

perform the same when generating high school dropout predictions. Using a weighted average 

based on similarity on the risk probabilities of individualized district level models produced 

higher results at detecting student at-risk status as taking a simple average of predictions 

generated by each Pillar Model. A correlation analysis of AUC performance and district graduate 

rates did not show significant results, suggesting the districts’ dropout rate does not impact the 

accuracy of the Aggregate Data Model, Mean Model, and DSEE model for 1st through 12th grade 

predictions.  

 

Figure 30: Pearson correlation of EWS AUC performance on 1st through 12th grade 

predictions and reported district graduation rates.  

4.8 Comparing Across the Generated Models (6th Grade Students) 

The reported AUC performance for the DSEE, Balfanz and Knowles models are 

calculated across 6th grade student records for all districts. A DeLong test was then used to 

compare the model performance of each EWS pair. The first test was conducted to compare the 

AUC performance of the Balfanz threshold based EWS and the DSEE model. There was a 

significant difference in AUC performance between the Balfanz (AUC=0.639) and the DSEE 

model (AUC=0.710) EWS’s; D= -15.211, p <0.001. These results suggest that the DSEE model 
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outperforms the Balfanz model when generating high school dropout predictions using 6th grade 

student records. Averaging the weighted risk probabilities of individualized district level models 

appears to be better at detecting student at-risk status than utilizing a simplified threshold-based 

method.  

The last DeLong test conducted was to compare the AUC performance of the Knowles 

model and the DSEE model. There was a significant difference in AUC performance between 

the Knowles model (AUC=0.801) and the DSEE model (AUC=0.710) EWS’s; D= 20.506, p 

<0.001. These results suggest that the Knowles model outperforms the DSEE model when 

generating high school dropout predictions using 6th grade student records. Building multiple 

EWS models using combined data and ensembling them together into one single detector 

appears to be better at detecting student at-risk status than averaging the weighted risk 

probabilities of individualized district level models. A correlation analysis of AUC performance 

and district graduate rates did not show significant results, suggesting the districts’ dropout rate 

does not impact the accuracy of the DSEE, Balfanz or Knowles models for 6th grade predictions.  

 

Figure 31: Pearson correlation of EWS AUC performance on 6th grade predictions and 

reported district graduation rates. 

4.9 Comparing Across the Generated Models (9th Grade Students) 

The reported AUC performance for the DSEE, Knowles and Chicago models are 

calculated across 9th grade student records for all districts. The first DeLong test conducted was 



 

123 

 

used to compare the AUC performance of the Chicago threshold based EWS and the DSEE 

model on high school student predictions. There was a significant difference in AUC 

performance between the Chicago (AUC=0.693) and the DSEE model (AUC=0.821) EWS’s; D= 

-55.809, p <0.001. These results suggest that the DSEE model outperforms the Chicago model 

when generating high school dropout predictions. Averaging the weighted risk probabilities of 

individualized district level models appears to be better at detecting student at-risk status than 

utilizing a simplified threshold-based method.  

The final DeLong test conducted was used to compare the AUC performance of the 

Knowles model and the DSEE model on 9th grade student predictions. There was a significant 

difference in AUC performance between the Knowles model (AUC=0.884) and the DSEE model 

(AUC=0.821) EWS’s; D= 28.259, p <0.001. These results suggest that the Knowles model 

outperforms the DSEE model when generating high school dropout predictions. Using a 

weighted average based on similarity on the risk probabilities of individualized district level 

models does not appear to be better at detecting student at-risk status than combining multiple 

models built on the same data together into a single ensemble. A correlation analysis of AUC 

performance and district graduate rates did not show significant results, suggesting the districts’ 

dropout rate does not impact the accuracy of the DSEE, Chicago or Knowles models for 9th 

grade predictions.  



 

124 

 

 

Figure 32: Pearson correlation of EWS AUC performance on 9th grade predictions and 

reported district graduation rates. 

4.10 Prediction Equity Results 

 Regarding equity, 1st grade through 12th-grade risk predictions for the Aggregate Data 

model, Mean model, and DSEE model produced mixed results. Each model performed better 

within some demographic groups and lower in others. The Aggregate Data model performed 

lower than the Mean and DSEE models in all groups except the Hispanic student populations, 

where it achieved an AUC of 0.71 compared to the 0.693 AUC of the Mean model and the 0.695 

of the DSEE model (SD=0.007). The Mean model performed slightly better than the DSEE 

model for predicting risk among multi-racial students (0.001 better), with the DSEE marginally 

performing better in every other category. AUC performance across all ethnicity groups within 

EWSs produced expected results, with the Mean model (M=0.744, SD=0.044) and DSEE model 

(M=0.745, SD=0.044) performing similarly, beating the Aggregate Data model (M=0.692, 

SD=0.058) which reported both a lower average AUC and higher AUC variance within groups. 

 When looking at all EWS’s average performance within groups, White (M=0.803, 

SD=0.032) and Black (M=0.776, SD=0.015) students received more accurate predictions than all 

other populations. Overall, the models generally performed worse for students who were 

Hispanic (M=0.699, SD=0.007), Indigenous (M=0.713, SD=0.008), and Undefined (M= 0.690, 
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SD=0.060). The models achieved the lowest average AUC for Pacific Islander students, at 0.665 

(SD=0.014). Curiously, Asian students performed much better in the Mean model (AUC=0.755) 

and DSEE (AUC=0.756) compared to the Aggregate Data model (AUC=0.629) (SD=0.059). 

White students achieving the best results within all models is a notable finding. White 

students are typically not considered underserved populations that generally experience lower 

levels of dropout than other demographic groups that could benefit more from focused 

interventions driven by the accuracy of a high school dropout EWS (McFarland, Cui, Rathbun & 

Holmes, 2018). However, Black students achieving the second-highest AUC was an interesting 

and somewhat unexpected result, as Black students are seen as an underserved group susceptible 

to algorithm-driven predictive bias (Selena & Kenney, 2019). Looking at the distribution of 

student demographics (see Appendix A) used for these models' training, it appears that White 

and Black students were the average largest groups represented in the study data, with Pacific 

Islanders one of the smallest. This difference in population representation could be why this 

pattern emerges within all the EWSs AUC performance. Model performance based on Gender 

across all grades was relatively even. The difference between male and female students was 

within 0.1 percent for all models. The results of this analysis are found below. 

 

Table 8: AUC Results Calculated Within Demographic Groups (1st – 12th Grade) 

Demographic 

Mean 

model 

DSEE 

model 

Aggregated Data 

Model X̅ σ 

E
th

n
ic

it
y
 

Asian 0.755 0.756 0.629 0.713 0.059 

Black 0.787 0.787 0.755 0.776 0.015 

Hispanic 0.693 0.695 0.710 0.699 0.007 

Indigenous 0.717 0.719 0.701 0.713 0.008 

Multi 0.767 0.766 0.731 0.755 0.017 

Pacific 

Islander 0.707 0.708 0.581 0.665 0.060 
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Demographic 

Mean 

model 

DSEE 

model 

Aggregated Data 

Model X̅ σ 

Undefined 0.700 0.701 0.670 0.690 0.014 

White 0.825 0.826 0.757 0.803 0.032 

X̅ 0.744 0.745 0.692 0.727 0.025 

σ 0.044 0.044 0.058 0.049 0.007 

G
en

d
er

 Female 0.799 0.800 0.748 0.782 0.025 

Male 0.794 0.796 0.750 0.780 0.021 

X̅ 0.797 0.798 0.749 0.781 0.023 

σ 0.003 0.002 0.001 0.002 0.001 

X̅ 0.754 0.755 0.703 0.738 0.026 

σ 0.045 0.045 0.057 0.045 0.018 

 

6th grade risk predictions for the Aggregate Data model, Mean model, DSEE model, 

Balfanz model, and Knowles model produced interesting results in terms of equity. The Knowles 

model more equitably performed better within all ethnic demographic groups than the other four 

models. On Average, the Knowles model achieved an AUC of 0.758 (SD=0.05) compared to the 

DSEE model’s 0.626 (SD=0.063), Mean models 0.621 (0.063) Aggregate Data model’s 0.569 

(SD=0.142) and Balfanz model’s 0.527 (SD=0.073) AUC scores across all demographic groups. 

The Balfanz model produced the overall lowest AUC across all ethnic groups, with the 

lowest AUCs observed in Asian (0.508), Black (0.508), Hispanic (0.575), and the Pacific 

Islander populations (receiving the lowest score of 0.399). The Aggregate Data model was the 

second-lowest performing model across these groups, only performing marginally better than the 

Balfanz model with Asian (0.590), Pacific Islander (0.346), and Indigenous (0.350) ethnicity 

groups obtaining the lowest AUC scores. Interestingly, the Aggregate Data model was better at 

generating equitable dropout risk for Black and Multi-ethnic students than the Balfanz model, 

which produced lower AUCs for these populations. This result could be due to the Balfanz 

models threshold-based approach and reliance on a few critical indicators implemented on these 
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populations, which may not have been present or available to generate accurate dropout risk 

predictions.  

When looking at the combined average performance of EWSs’ within the groups, the 

EWSs performed similarly to the previous equity analysis. White (M=0.732, SD=0.052) and 

Black (M=0.64, SD=0.094) students received more accurate predictions than the other 

populations, with the models performing worse for students with Undefined (M=0.597, 

SD=0.043), Indigenous (M=0.579, SD=0.14), and Pacific Islander (M=0.553, SD=0.149) 

backgrounds. We observe that Hispanic students performed much better in the more advanced 

EWS implementations, with the Mean model (AUC=0.605), DSEE (AUC=0.611), and Knowles 

(AUC=0.778) model performing considerably better than the Aggregate Data model 

(AUC=0.596) and Balfanz model (M=0.508) (SD=0.074). 

While the Knowles model shows the same pattern as the other EWSs in terms of 

performance within student ethnicity (White students achieving the best results and other groups 

receiving lower results), the overall performance is considerably higher, with the Knowles model 

producing an AUC above 0.70 for most of the other groups, much better than the other models. 

Despite these results, the Knowles model still struggled to identify dropout risk within the 

Pacific Islander (AUC=0.639) student population, which received an AUC of 0.035 points lower 

than the next lowest scoring group, students with an Undefined ethnicity (AUC=0.673). This 

finding is of interest, as the Pacific Islander population performs the weakest across models that 

use combined district data, and stronger for models that are built within district (DSEE, Mean) to 

identify student at-risk status. As mentioned previously, these findings could result from the low 

representation of Pacific Islander students within the data utilized for this analysis. 
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Model performance based on the reported student gender across 6th through 12th-grade 

students produced minimal variance across all 5 EWSs. The Knowles model had the highest 

AUC across both males, and female students (AUC=0.795), followed by the DSEE 

(AUC=0.709) and Mean (AUC=0.706) models. The Aggregated Data Model and Balfanz model 

produced the lowest average AUCs across groups, with the Aggregate Data model receiving 

0.681 and the Balfanz model obtaining an average AUC of 0.629. The difference in model 

performance between male and female students was within 0.5 percent for all EWS, with the 

Mean, DSEE, and Knowles model slightly performing better for male students and the 

Aggregate Data model and Balfanz model performing marginally better for female students. The 

results of this gender-based equity analysis suggest the student’s gender identity does not broadly 

impact the EWSs performance at detecting high school dropout risk, regardless of the method 

implemented for creating the detector. The results of this analysis are found below. 

Table 9: AUC Results Calculated Within Demographic Groups (6th Grade Predictions) 

Demographic 

Mean 

model 

DSEE 

model 

Aggregated 

Data Model 

Balfanz 

model 

Knowles 

model X̅ σ 

E
th

n
ic

it
y

 

Asian 0.565 0.565 0.590 0.508 0.797 0.605 0.100 

Black 0.604 0.609 0.692 0.508 0.787 0.640 0.094 

Hispanic 0.605 0.611 0.596 0.575 0.778 0.633 0.074 

Indigenous 0.606 0.621 0.350 0.534 0.782 0.579 0.140 

Multi 0.554 0.559 0.741 0.457 0.806 0.623 0.129 

Pacific 

Islander 0.688 0.692 0.346 0.399 0.639 0.553 0.149 

Undefined 0.593 0.593 0.540 0.585 0.673 0.597 0.043 

White 0.756 0.757 0.701 0.647 0.799 0.732 0.052 

X̅ 0.621 0.626 0.569 0.527 0.758 0.620 0.098 

σ 0.063 0.063 0.142 0.073 0.060 0.050 0.037 

G
en

d
er

 Female 0.700 0.703 0.670 0.605 0.799 0.695 0.063 

Male 0.713 0.716 0.693 0.654 0.791 0.713 0.045 

X̅ 0.706 0.709 0.681 0.629 0.795 0.704 0.054 

σ 0.006 0.007 0.011 0.025 0.004 0.009 0.009 

X̅ 0.638 0.643 0.592 0.547 0.765 0.637 0.089 
σ 0.066 0.065 0.135 0.078 0.056 0.056 0.038 
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The last prediction equity comparison is for 9th grade student risk predictions created by 

the Aggregate Data, Mean, DSEE, Knowles, and Chicago models. This analysis produced 

similar results to the previous study, with the machine learning driven EWSs outperforming the 

thresholds based EWS. Again, the Knowles (M=0.831, SD=0.087) model had the best-

performing detector, averaged across groups, followed by the DSEE (M=0.767, SD=0.057), 

Mean (M=0.767, SD=0.057), and Aggregate Data (M=0.755, SD=0.077) models. The threshold-

based Chicago model EWS performed the worst (M=0.626, SD=0.047), obtaining a significantly 

lower AUC scores across groups.  

 Overall performance of the EWSs within-group continues the previously seen trend of 

performance, with White (M=0.817, SD=0.059) and Black (M=0.801, SD=0.081) students 

achieving the highest scores, followed by Asian (M=0.766, SD=0.094), Indigenous (M=0.768, 

SD=0.086), and Multi-ethnic (M=0.784, SD=0.086) students. Undefined (M=0.681, SD=0.063) 

and Pacific Islander (M=0.650, SD=0.051) students continued to receive the lowest average 

AUC performance among all EWSs used in the high school risk detection population. 

The highest performing Knowles model shows the same performance pattern within 

student ethnicity as the other 4 EWSs, with White and Black students achieving the best results 

and other groups receiving lower results. Despite this consistent pattern, the Knowles model's 

overall performance was considerably higher across groups for almost all ethnicities than the 

other models, with the Pacific Islander (AUC=0.650) and Undefined (AUC=0.681) students the 

only groups receiving an AUC below 0.7. As mentioned previously, these findings are of interest 

as the Pacific Islander population performs the weakest across all models, regardless of the 



 

130 

 

EWSs method of implementation, potentially resulting from the low representation of Pacific 

Islander students within the data utilized for this analysis. 

Model performance based on Gender for 9th grade students produced a low average 

variance (SD=0.063) across all 5 EWSs. The Knowles model had the highest AUC across both 

male, and female students (AUC=0.884), followed by the DSEE (AUC=0.822) and Mean 

(AUC=0.821) models. The Aggregated Data (0.784), and Chicago (0.692) produced the lowest 

AUCs, with the Chicago showing the worst performance among all 5 EWSs tested. The 

difference in model performance between male and female students was marginal (within 0.2) 

percent for all EWS. The Mean, DSEE, Aggregate Data and Knowles model results show a 

slightly higher performance for female students. In contrast, the Chicago model perform 

marginally better for male students. These findings suggest that the student’s gender identity 

does not broadly impact the EWSs performance at detecting high school dropout risk, regardless 

of the method implemented for creating the detector. The results of this analysis are found 

below. 

Table 10: AUC Results Calculated Within Demographic Groups (9th Grade Students) 

Demographic 

Mean 

model 

DSEE 

model 

Aggregated 

Data Model 

Knowles 

model 

Chicago 

model X̅ σ 

E
th

n
ic

it
y
 

Asian 0.794 0.794 0.744 0.894 0.606 0.766 0.094 

Black 0.831 0.832 0.800 0.891 0.650 0.801 0.081 

Hispanic 0.708 0.709 0.745 0.871 0.605 0.727 0.086 

Indigenous 0.724 0.725 0.885 0.851 0.656 0.768 0.086 

Multi 0.817 0.816 0.788 0.875 0.621 0.784 0.086 

Pacific 

Islander 0.709 0.709 0.604 0.641 0.589 0.650 0.051 

Undefined 0.708 0.707 0.694 0.736 0.558 0.681 0.063 

White 0.847 0.847 0.782 0.887 0.721 0.817 0.059 

X̅ 0.767 0.767 0.755 0.831 0.626 0.749 0.076 

σ 0.057 0.057 0.077 0.087 0.047 0.065 0.066 

G
e

n
d

er
 

Female 0.829 0.830 0.792 0.892 0.686 0.806 0.068 
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Demographic 

Mean 

model 

DSEE 

model 

Aggregated 

Data Model 

Knowles 

model 

Chicago 

model X̅ σ 

Male 0.812 0.814 0.777 0.876 0.699 0.796 0.058 

X̅ 0.821 0.822 0.784 0.884 0.692 0.801 0.063 

σ 0.008 0.008 0.008 0.008 0.006 0.005 0.005 

X̅ 0.778 0.778 0.761 0.842 0.639 0.760 0.073 

σ 0.055 0.055 0.070 0.080 0.050 0.053 0.014 

 

4.11 Summary of Findings 

 In this dissertation, I have developed a novel approach to modeling student risk of not 

graduating from high school for districts where the quality, quantity, or availability of data is 

insufficient to produce a comprehensive student risk model. The District Similarity Ensemble 

Extrapolation (DSEE) approach attempts to customize a model for a specific “Target” school 

district based on models from other school districts where more complete data are available, 

taking into account the degree of similarity each school district has to the Target district. This 

new method achieves good predictive power for students in districts that were not used to 

develop the model without fitting or modifying the models or their application. Furthermore, it 

achieves statistically significant better results than popular alternate threshold-based approaches 

to predicting at-risk status in new districts (the Chicago model and the Balfanz model) and 

statistically significant better performance than a simply created base model using an aggregate 

of all records (Aggregate Data model), and slightly better than simply averaging model 

predictions across districts with equal weight given to each Pillar district. 

However, the DSEE fails to outperform the replicated Knowles model method in both 

student dropout risk predictive accuracy and equitable model performance within student 

demographics (ethnicity and gender). Additionally, given the DSEE’s performance, we can 

conclude that it does not beat the Bowers Growth-Mixture Model's reported results, which 



 

132 

 

reported a higher AUC than the Knowles model. These findings suggest that generalizing 

machine-learned district level models to new district populations for dropout risk detection is 

more effective than traditional threshold-based early warning systems, but ultimately fails to 

outperform models that implement more advanced methods of machine learning techniques.  

 

Figure 33: Average AUC performance of EWSs with 95% confidence intervals 

Evaluating these EWS’s within demographic groups to determine prediction equity 

suggests that a machine-learned based system produce not only better overall AUC performance 

but also higher levels of equity when making risk predictions within specific student ethnicity 

populations. While the Aggregate Data, Mean, DSEE, and Knowles models far exceeded the 

threshold-based Balfanz and Chicago models' performance, the Knowles model stands out as it 

outperformed the other machine-learned EWS’s in overall predictive accuracy and reported 

lower levels of AUC variance within demographic groups when evaluating the EWSs prediction 
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equity. Moreover, the equity analysis results suggest that the EWSs tested in this research 

generally performed better among students that represented a larger proportion of the students 

contained in the research data such as White and Black students, and reported lower AUC scores 

for other populations with lower representation in the data such as the Pacific Islander 

population, which consistently received the lowest AUC scores, regardless of the grade level or 

EWS implementation method.  

Lastly, EWS performance within gender suggests little to know modeling bias when 

creating risk predictions, irrespective of whether the EWS is threshold-based or machine 

learning-driven. Given that the gender distribution was mostly equal for both males and females 

in the data, this provides further evidence that the level of diverse student representation in the 

data is a potential driver of how the EWS performs within these populations, even after 

excluding demographic data when creating the EWS modes.  While these findings show the 

Knowles model as a clear winner in terms of AUC performance, implementing this method 

presents many challenges to educators due to the computational power required to train, validate, 

and deploy this EWS.  
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Chapter 5: Conclusions & Discussion 

 This research highlights the differences in Early Warning system performance, depending 

on the method of implementation. Threshold-based systems are easy to implement, often 

consisting of a single, simple conditional argument on a few key indicators used to dropout 

generate risk. While these types of EWS’s may excel in their simplistic design, they fall short in 

their performance compared to the far more complicated and costly methods of machine 

learning-driven EWSs. With minimal financial and expert resources available, educators 

interested in deploying an EWS in their school district face the challenge of balancing 

complexity, interpretability, and model accuracy. Moreover, while EWS performance can be 

measured in binary outcomes (graduate or dropout), deploying the model into the real world is 

not as simple. Educators need the capacity to identify which students are at-risk, but they also 

require additional capabilities with understanding why that student is at risk to provide the best 

interventions and affordances (Bowers, 2021).   

 While machined-learning-driven EWSs are more potent at identifying dropout risk, they 

are often complicated in their black-box design, making them difficult to dissect and interpret at 

the student prediction level. Additionally, once a decision is made to implement an EWS, there 

also begins the task of mitigating any predictive bias that may propagate in the risk predictions to 

ensure fair and equitable distribution of resources among high-risk student populations and 

identifying and providing the best intervention specific to the individual needs of the student.  

In the following sections, I will expand on these issues and discuss the importance of 

machine-learned EWS model explainability, key for delivering focused student interventions that 

reduce dropout risk. I will also discuss the challenges and trade-offs between EWS accuracy and 

interpretability and suggest potential strategies that can be implemented to minimize having to 
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sacrifice one for the other. Additionally, I will provide strategies for how machine-learned 

EWS’s can be interpreted at the student prediction level, opening the black box, and allowing for 

more focused student interventions. Lastly, I will discuss future opportunities that build upon this 

research that can potentially lead to improved results for the DSEE early warning system.  

5.1 Common Data Standards & Open Access Algorithms 

 As mentioned earlier in this paper, the data utilized within this study was gathered using 

an educational data management tool purchased by educators across the U.S. This specific tool 

provided educators with three primary functions: (a) to aggregate data from historically siloed 

systems (grade books, attendance records, assessment scores, etc.), (b) to flatten this aggregated 

data by mapping to a unified schema, and (c) to provide actionable data-driven insights to 

educators through the use of a dashboard. This tool's use provided the foundational capability to 

build and test the methods replicated in this research. The vendor had completed the bulk of the 

work standardizing the data. While I was fortunate enough to leverage such a system, many 

school districts interested in applying data-driven dropout detection may not have the resources 

to invest in such a scenario, presenting significant implementation challenges.  

 These challenges stem from U.S. school districts' heterogeneous nature with data 

collection standards set by the local or state education departments. This heterogeneity results in 

some school districts quantifying student data in different ways (ex: differences in GPA scale, 

absentee counts, formative assessments, etc.), limiting their ability to implement a generalizable 

EWS built in another district without significant effort to fit the data to the method. In my case, a 

team of four dedicated data analysts worked with each school district for several weeks to map 

their data to the standard schema of the BrightBytes system, representing thousands of hours of 

labor resources. This effort highlights educators' need to adopt a common data system across 
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districts that ease their capacity to test and implement Early Warning systems. While there has 

been a movement from the Federal Department of Education to address these challenges from 

the Common Education Data Standards (CEDS), these standards' adoption is not seen across the 

nation (Common Education Data Standards, 2019).  

 Districts adhering to data standards benefit from reduced preparation for EWS 

deployment and are enabled to take advantage of potential existing EWS algorithmic code with 

little to no modification. Recent work by Bowers calls for EWS researchers to make their 

algorithms and code open-access, available to the public (Bowers, 2021). In addition to call for 

open-access, Bowers proposes a “Four A” framework in the design of an EWS to ensure they are 

Accurate, Accessible, Actionable and Accountable. Using metrics such as ROC AUC to measure 

the performance of an EWS ensures the detector is Accurate in predicting a student outcome. 

Improving transparency in the algorithms design, so that it can be accessed, examined and 

understood, makes the EWS Accessible. Designing an EWS to not only create a risk prediction, 

but also provide insights that help educators tailor interventions based on the individual student’s 

data profile, ensures the EWS is Actionable. Lastly, implementing policies and procedures that 

frequently check for prediction bias created by the EWS algorithm in the communities they serve 

enables educators to critique and adjust the EWS to be more equitable and Accountable (Bowers, 

2021).  

5.2 Dissecting the Early Warning System 

As this research shows, Machine learning-driven Early Warning Systems provide significant 

performance advantages over a traditional threshold-based EWS. While this performance 

increase is substantial, using these methods, introduce additional barriers for educators who 

utilize an EWS within their school district. The primary advantage of a threshold-based EWS is 
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that it is 1) easy to implement and 2) easy to explain why the EWS assigned the student an at-

risk status. This explainability removes the guesswork from determining which potential 

interventions are required to reduce the likelihood of dropping out and enables educators to 

apply. For example, the Chicago model relies on two freshman-year data points to assign risk; 

the number of credits earned and the number of core course (English, math, science, or social 

science) failures within a semester. An educator in a district utilizing this EWS could review 

these data points for any predicted at-risk student and determine what type of course-work based 

intervention is required to improve that student’s outcome. While highly interpretable to a non-

technical educator, these data-driven interventions are limited to the few indicators utilized in the 

EWS, potentially reducing their effectiveness. An educator may see that the Chicago model 

indicates a student is off-track based on their number of core course failures and suggest the 

student participate in an after-school credit recovery program as an intervention. In actuality, the 

student was suffering from chronic absenteeism and was simply not present in school for those 

courses, impacting their grade and requiring a completely different set of risk-mitigating 

intervention strategies. 

Machine learning EWSs, while better performing, are much more difficult to interpret given 

the complexity of their design (Sansone, 2019). Implementing these detectors often requires 

aggregating many different student data types from multiple areas (behavior, attendance, 

academic performance, etc.) and applying highly advanced statistical methods to produce the risk 

prediction. Additionally, this EWS prediction is given as a binary outcome (dropout or graduate). 

It offers no additional insight to the educator into how the model arrived at this estimate for an 

individual student and therefore reduces their capacity to apply focused interventions. 

Additionally, with resource scarcity in many school districts, educators are often faced with 
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prioritizing the type of intervention available based on their risk severity. The binary outcome 

produced by these systems is based on a (sometimes arbitrary) threshold (if the probability for 

dropout is above 0.5, then the student is predicted to dropout, otherwise graduate). It reduces an 

educator's ability to assign interventions on both the student's need and risk severity. This trade-

off between accuracy and interpretability presents significant challenges in adopting and using 

EWSs within school districts (Knowles, 2015).  

One potential opportunity for improving machine-learned EWS interpretability without 

sacrificing accuracy, leading to better-focused student interventions, is to leverage additional 

machine learning techniques that break down how the model is working for individual 

predictions. One such method is to utilize SHapley Additive exPlanations (SHAP) values to 

provide insights into a student-level risk prediction. In its simplest definition, SHAP values are 

created by looking at an individual prediction made by the model and analyzing and highlighting 

the student’s data to generate the prediction. It then isolates the specific indicators that either 

contributed to the student’s risk of dropout or contributed to against it (Ribeiro, Singh, & 

Guestrin, 2016). This information is then provided as an additional output to help make an 

informed decision around what interventions and actions educators should provide to reduce 

dropout risk for this student. 

 

Figure 34: Example output of SHAP value implementation for Machine-Learning 

EWS for a student predicted to graduate. 

 The figure above provides a visual representation of SHAP values in practice for a single 

student prediction. In this example, the model produced a 0.626% probability that the student 
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will graduate from high school. Reviewing the SHAP values suggests that this prediction is 

driven by the student's relatively low number of absences in the first 30 days, low number of 

minor behavioral incidents, and low number of major behavior incidents. The contributing 

factors that cause the model’s relatively low confidence in this prediction are driven by the 

students' low-grade performance in social science and missing data for their reading interim 

assessment scores. An educator reviewing this data could provide the student with additional 

social science learning affordances as an intervention to better improve their likelihood of 

graduating.  

 While implementing SHAP values into the EWS presents researchers with new 

opportunities to improve highly accurate machine learning model interpretability, limitations still 

exist. The resources required to build an advanced EWS are already significant compared to a 

simple threshold-based approach; adding a SHAP value layer on top of this solution further 

complicates these Early Warning Systems. Despite this complication, any district investing in an 

advanced Early Warning System should include some method that enables improved model 

explainability and interpretability to the end-user. The benefits of data-driven focused 

interventions are substantial for improving student graduation outcomes. 

5.3 Prediction-Driven Intervention Strategies 

Research has shown the most successful school dropout interventions “identify and track 

youth at risk for school failure, maintain a focus on students' progress toward educational 

standards across the school years, and are designed to address indicators of student engagement 

and to impact enrollment status” (Christenson & Thurlow, 2004). These findings suggest that 

educators not only have to apply focused data-driven interventions that provide academic support 

and enrichment, implement programs to improve student behavior and provide personalized 
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learning and individualized instruction, they also need to monitor and curate these strategies for 

the individual student over long periods (Freeman & Simonsen, 2015). This process can present 

significant challenges to school districts that suffer from resource scarcity, which often exhibit 

higher dropout levels (McPartland & Jordan, 2001). 

The table below serves as an example of potential interventions that educators can implement 

to reduce students' drop-out risk. This table provides a set of students at varying levels of risk 

determined by an EWS and the factors that contributed to the detector’s prediction at the 

individual student level. Potential interventions are categorized based on the school districts’ 

resource levels required to implement these actions, with low representing relatively low levels 

of cost and time resources, medium representing moderate levels of cost or time, and high and 

conveying significant resource investment. These interventions represent only a few strategies 

that educators can leverage to improve graduation rates in their school district. Depending on 

resource availability, they may elect to apply more than one action for any given student.  

Table 11: List of Potential Prediction-Driven Intervention Strategies to Mitigate the 

Likelihood of High School Dropout 

Category 
Likelihood 

of Dropout 

Triggering 

Event 

Resource 

Level 

Potential 

Intervention(s) 

Intervention 

Description 
Citation 

General 

Coursework 
�̂� ≤ 0.4 

The student 

receives lower 

than average 

semester grade 

performance in 

the English 

language arts 

core course 

subject area but 

is still 

considered 

passing. 

Low 

Remedial 

Course 

Enrollment 

The student is 

enrolled in a 

remedial ELA 

course 

(Goldschmidt & 

Wang, 1999) 

Increased 

responsibility 

Leadership roles in 

the classroom (i.e., 

being a tutor, 

reteaching a 

lesson) 

(Shernoff, 

Csikszentmihalyi, 

Schneider & 

Shernoff, 2014) 

Positive 

Reinforcement 

(Rewards) 

System of rewards 

(student points or 

color on color 

chart yields 

rewards), positive 

phone calls home, 

(Nowicki, Duke, 

Sisney, Stricker, & 

Tyler 2004) 
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Category 
Likelihood 

of Dropout 

Triggering 

Event 

Resource 

Level 

Potential 

Intervention(s) 

Intervention 

Description 
Citation 

Honor Roll 

program 

Personalized 

Evaluation 

Excused 

Deadlines, 

extended time on 

homework, change 

of grading scale. 

(Clarke, 2013) 

Personalized 

Curriculum 

Chunking larger 

assignments into 

smaller 

deliverables and 

deadlines, 

alternative 

assignments (easier 

text in language 

arts, shorter essay 

requirements in 

other classes), 

customized lesson 

plans & curricula. 

(Clarke, 2013) 

Change of 

Instructional 

Delivery 

The student is 

paired with bi-

lingual native 

language speaking 

peers during class 

exercises 

(Christenson & 

Thurlow, 2004) 

0.6 ≤ 

�̂� 

≤ 0.8 

Student 

receives a 

failing grade in 

elective 

courses and 

lower than 

average grade 

performance in 

core course 

subject areas. 

Medium 

The student is 

enrolled in a 

tutoring program 

Subject-specific 

study hall (pairing 

with a teacher in 

the same subject 

matter that student 

struggles the 

most), required 

presence at after-

school tutoring 

program, required 

presence at lunch-

time study sessions 

(Somers, Owens & 

Piliawsky, 2009) 

Personalized 

Curriculum 

Alternative online 

educational 

resources are 

provided (licensed 

instruction, tools, 

and technology) 

(Clarke, 2013) 

Course 

substitution 

Remedial course in 

place of study hall, 

a remedial course 

instead of an 

elective class 

(García, Fernández 

& Weiss, 2013) 

�̂� ≥ 0.8 

The student is 

failing two or 

more core 

High 
Credit recovery 

program 

The student is 

enrolled in summer 

school or an online 

(Rickles, Heppen, 

Allensworth, 
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Category 
Likelihood 

of Dropout 

Triggering 

Event 

Resource 

Level 

Potential 

Intervention(s) 

Intervention 

Description 
Citation 

course subject 

areas; the 

student is not 

considered 

passing. 

credit recovery 

program 

Sorensen & 

Walters, 2018) 

Provided In-

Class Resources 

Enrollment in an 

ICR (in-class 

resource) 

environment, 

which as general 

ed and special ed 

teacher present 

(Betts & Shkolnik, 

2000) 

School provided 

technology 

School-provided 

device/WiFi 

hotspot to improve 

assignment 

completion 

through other 

technology access. 

(Darling-

Hammond, 

Zielezinski & 

Goldman, 2014) 

Assigned 

Intervention 

Service 

Professional 

Educators come 

together 

throughout the 

year to formulate 

and deliver 

coordinated 

services. 

(Mac Iver & Mac 

Iver, 2010) 

Alternate 

Pathway 

Enrollment in 

vocational 

programs 

(alternative 

pathways that may 

improve student 

interest) 

(Tyler & 

Lofstrom, 2009) 

Individualized 

Attention 

Assignment of a 

paraprofessional or 

classroom aide 

(Lane, Fletcher, 

Carter, Dejud & 

Delorenzo, 2007) 

Student 

Assessments 
�̂� ≤ 0.4 

Students 

receive higher 

than average 

interim 

assessments 

and lower than 

average 

summative 

assessment 

performance in 

English and 

math course 

subject areas 

but are still 

considered 

passing. 

Low 
Assessment 

Accommodation 

The student is 

provided additional 

accommodation 

such as extended 

time, has questions 

read aloud 

(Gregg, 2009) 
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Category 
Likelihood 

of Dropout 

Triggering 

Event 

Resource 

Level 

Potential 

Intervention(s) 

Intervention 

Description 
Citation 

0.6 ≤ 

�̂� 

≤ 0.8 

Students 

receive lower 

than average 

interim and 

summative 

assessment 

performance in 

English and 

math course 

subject areas 

but are still 

considered 

passing. 

Medium 

Assessment 

Accommodation 

Provision of a 

scribe or language 

translator 

(Gregg, 2009) 

Change of 

Environment 

Small-group 

testing 

environments to 

limit distractions 

(Gregg, 2009) 

�̂� ≥ 0.8 

Student 

receives lower 

than average 

interim 

assessments 

and failure 

summative 

assessment 

scores in 

English, math, 

and science 

course subject 

areas. The 

student is not 

considered 

passing. 

High 

Assigned 

Intervention 

Service 

Professional 

Educators come 

together 

throughout the 

year to formulate 

and deliver 

coordinated 

services. 

(Mac Iver & Mac 

Iver, 2010) 

Individualized 

Attention 

Assignment of a 

paraprofessional or 

classroom aide 

(Lane, Fletcher, 

Carter, Dejud & 

Delorenzo, 2007) 

Student 

Attendance 

�̂� ≤ 0.4 

The student 

shows more 

than ten 

absences 

recorded in the 

first 30 days of 

school but 

shows higher 

than average 

summative 

assessment 

scores in core 

subject areas 

and no core 

course failures. 

Low 

Parental 

Involvement 

Daily parental 

contact when 

students are absent 

(phone call, email, 

text message), text 

messages/notificati

ons are sent to 

parents in their 

primary language. 

(Ross, 2016) 

Positive 

Reinforcement 

(Rewards) 

Perfect attendance 

award 

(Sutphen, Ford & 

Flaherty, 2010) 

Negative 

Reinforcement 

Attendance-related 

punishment (losing 

a spot on a sports 

team, inability to 

attend prom) 

(Epstein & 

Sheldon, 2002) 

0.6 ≤ 

�̂� 

≤ 0.8 

The student is 

two standard 

deviations 

from the norm 

in school 

attendance and 

Medium 
Parental 

Involvement 

Provision of a 

translator for 

parent/teacher 

conferences 

(Ross, 2016) 
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Category 
Likelihood 

of Dropout 

Triggering 

Event 

Resource 

Level 

Potential 

Intervention(s) 

Intervention 

Description 
Citation 

shows lower 

than average 

performance in 

core subject 

areas but is still 

considered 

passing. 

Transportation 

Adjust the school 

transportation 

program to 

improve 

transportation 

access. 

(Patel, Messiah, 

Hansen, & 

D’Agostino, 2020) 

�̂� ≥ 0.8 

The student is 

three standard 

deviations 

from the norm 

in school 

attendance and 

shows three 

failures in core 

subject areas; 

the student is 

not considered 

passing. 

High 

Assigned 

Intervention 

Service 

Professional 

Educators come 

together 

throughout the 

year to formulate 

and deliver 

coordinated 

services. 

(Lane, Fletcher, 

Carter, Dejud & 

Delorenzo, 2007) 

School provided 

Social Services 

Before- and after-

school childcare 

for the children of 

students, free and 

reduced breakfast 

and lunch access, 

on-site laundry 

services, or 

clothing access 

program 

(Barnet, Arroyo, 

Devoe & Duggan, 

2004) 

Alternate 

Pathway 

Enrollment in 

vocational 

programs 

(alternative 

pathways that may 

improve student 

interest) 

(Tyler & 

Lofstrom, 2009) 

Student 

Behavior 
�̂� ≤ 0.4 

The student 

shows more 

than the 

average count 

of minor 

behavior 

incidents and 

lower than 

average core 

course 

performance 

but is still 

considered 

passing. 

Low 

Preferential 

Seating 

The student is 

provided 

preferential seating 

in the classroom to 

peer reduce 

distractions. 

(Mulligan, 2001) 

Negative 

Reinforcement 

Behavior-related 

punishment (losing 

a spot on a sports 

team, inability to 

attend prom) 

(Mayer, Sulzer & 

Cody, 1968) 

Course Change 

Change of 

instructor or course 

period (time) 

(Sheldon & 

Epstein, 2002) 

Positive 

Reinforcement 

(Rewards) 

Allowing breaks to 

leave the 

classroom after x 

minutes of work. 

(Partin, Robertson, 

Maggin, Oliver & 

Wehby, 2009) 
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Category 
Likelihood 

of Dropout 

Triggering 

Event 

Resource 

Level 

Potential 

Intervention(s) 

Intervention 

Description 
Citation 

0.6 ≤ 

�̂� 

≤ 0.8 

The student 

shows a lower 

than average 

count of minor 

behavior 

incidents, 

higher than the 

average count 

of major 

behavior 

incidents, and 

lower than 

summative 

assessment 

performance in 

all subject 

areas but is still 

considered 

passing. 

Medium 

Enrollment in 

Behavior 

Program 

PBSIS program 

(Positive Behavior 

Support in 

Schools) 

(Christofferson & 

Callahan, 2015) 

�̂� ≥ 0.8 

The student 

shows a higher 

than the 

average count 

of minor 

behavior 

incidents, 

higher than the 

average count 

of major 

behavior 

incidents, and 

is failing more 

than one core 

course subject; 

the student is 

not considered 

passing. 

High 

Assigned 

Intervention 

Service 

Professional 

Educators come 

together 

throughout the 

year to formulate 

and deliver 

coordinated 

services. 

(Lane, Fletcher, 

Carter, Dejud & 

Delorenzo, 2007) 

Individualized 

Attention 

Assignment of a 

paraprofessional or 

classroom aide 

(Lane, Fletcher, 

Carter, Dejud & 

Delorenzo, 2007) 

 

Given that intervention strategies vary in their complexity and resource costs, educators 

using interpretable machine learning-driven EWS’s can better equip and utilize these strategies 

to effect change in students based on risk. Students at lower levels of dropout risk can be 

provided lower resource interventions such as testing accommodations or changes in their 

instruction delivery, which reserves the more costly interventions like individualized, 

personalized learning attention for students at higher risk. While enabling educators to target 

better interventions based on both the binary prediction and the severity of the prediction can 
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improve graduation outcomes within the district, it also reinforces the need to monitor and 

address EWS prediction bias based on student identity.  

5.4 Addressing Prediction Bias 

 As mentioned earlier in this research, reducing prediction bias is crucial when 

implementing predictive modeling on student populations, primarily when a model's output is 

used to target and apply interventions. Despite specifically excluding any demographic variables 

in their design, this research shows that some of the EWS model methods tested are still 

susceptible to bias based on student ethnicity. The EWSs show significant performance varies 

based on the student’s identity. This fluctuation in performance can lead to unfavorable 

circumstances for some student populations, with the potential for the model to either over-

identify or under identify student dropout risk for some student ethnicities. When educators are 

unaware of these risk misclassifications, they could unknowingly bias their interventions to over 

include or under exclude protected class students. If this occurs, the district would not observe 

lower levels of dropout reduction but would also be exposed to potential discriminatory civil 

litigation risk (Gordon, Piana, & Keleher, 2000). Fortunately, there are methods for assessing 

and addressing predictive model bias that can be utilized in Early Warning Systems. 

The fairlearn open-source toolkit developed by Microsoft provides a suite of resources they 

can utilize to detect and mitigate machine learning model predictive bias. This toolkit, developed 

in the Python programming language, enables researchers to assess, visualize, and compare the 

disparity of performance and predictions for sub-groups by the model(s). Once any unfairness is 

detected, various artificial intelligence (AI) tasks and algorithms are included in the toolkit that 

mitigates bias and improves prediction equity (Bird, Dudík, Edgar, Horn, Lutz, Milan, & Walker, 

K, 2020).  
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Figure 35: Example dashboard of fairlearn toolkit for gender-based bias analysis of 

Mean model performance disparity on 10,000 random sampled student predictions 

 

Figure 36: Example dashboard of fairlearn toolkit for gender-based bias analysis of 

Mean model prediction disparity on 10,000 random sampled student predictions 
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There are two primary functions in which these algorithms operate to improve fairness. The 

first is by analyzing the model’s performance within a defined group characteristic and then 

tuning the predictions using demographic-based weights derived from the analysis. The second 

approach conducts a similar analysis, but rather than tuning the predictions; it attempts to 

identify the optimal classification probability threshold for each demographic group under 

investigation. Also, rather than merely adjusting the model to achieve parity across groups in 

AUC performance, the fairlearn toolkit allows researchers to select the type of bias to mitigate 

across several different metrics. These types include demographic parity (the selection rate of 

samples predicted to dropout is equal across all groups), equalized odds (true positive rate and 

false positive rate is similar across groups), true positive rate parity (true positive rate is equal 

across groups), false positive rate parity (false positive rate is equal among groups) and error rate 

parity (error rates are similar across groups) (Yordanova & Emanuilov, 2020). While the 

fairlearn toolkit provides EWS researchers with new capabilities to reduce bias, it is often at the 

trade-off of model accuracy. The algorithm attempts to meet in the middle across groups when 

achieving parity, which could lower performance from some groups while increasing others' 

performance. 

Recent work published by Gardner, Brooks, and Baker provides an alternate method for 

evaluating unfairness in predictive models. Their research demonstrates that by assessing the 

predictive model’s performance across different demographic categories in the test set (slicing) 

and then calculating the differential accuracy between subgroups (termed the Absolute Between-

ROC Area - ABROCA), they can effectively quantify the level of unfairness present in the 

detector into a single value (2019). This work overcomes existing limitations of most commonly 

used current fairness analysis methods by 1) providing researchers the capability to evaluate 
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model performance across all thresholds; instead of a specific threshold set by the evaluator, 2) 

assess the model accuracy without strictly focusing on the positive case outcome (dropout), 3) 

relies solely on the predicted probabilities and predicted class, making it easy to implement, and 

4) build on existing performance metrics (ROC) that are commonly used in machine learning 

making it easy to interpret and visualize (Gardner, Brooks & Baker, 2019).  

 

Figure 37: Example of an annotated slice plot of ABROCA statistic 8 

 In contrast to the fairlearn toolkit above, the authors note that using this technique shows no 

evidence of a strict trade-off between fairness and model performance (Gardner, Brooks & 

Baker, 2019). By utilizing this method for fairness evaluation, researchers can better identify 

 
8 Source: Reprinted from Evaluating the fairness of predictive student models through slicing analysis. In 

Proceedings of the 9th International Conference on Learning Analytics & Knowledge (pp. 225-234). 
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which statistical algorithms produce the best fairness when designing the EWS. They can also 

assess the severity of discrimination across a range of possible thresholds to better tune the 

model's classification prediction. Lastly, researchers can understand how the data used to train 

the models can be manipulated (ex: through sampling) to improve model fairness across 

subgroups. The last method for mitigating bias created by predictive modeling is to provide 

educators with an EWS factsheet to increase transparency into the design and methodology. This 

documentation should detail the model’s intended purpose, performance, safety, security, and 

provenance information. While this strategy does not strictly change the underlying model or 

manipulate the produced predictions using post-hoc transformations, it does improve user 

(educator) knowledge on both the design and existing limitations of the EWS. Having a deep 

understanding of the EWS would enable educators to make more informed equitable decisions 

on dropout risk interventions (Arnold, Bellamy, Hind, Houde, Mehta, Mojsilović, ... & Reimer, 

2019). Suppose an EWS is well documented and known to underperform for a specific sub-

group. In that case, the educator could leverage additional data (ex. classroom observations, 

qualitative data, etc.) in addition to the quantitative output of the model to better mitigate the 

dropout likelihood more equitably.  

5.5 Limitations  

The difficulty involved of replicating the Bowers GMM was a limiting factor in this 

research, requiring me to conduct a direct comparison against the reported AUC of the GMM, 

published in 2010 and 2012, rather than reporting the results of his duplicated method on my 

research data (Bowers, 2010; Bowers & Sprott, 2012). As mentioned earlier, the decision to 

compare against the published results is primarily due to the GMM’s structural equation 

modeling approach, as these types of models are traditionally built using proprietary software 
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and used for theory testing instead of generating on-demand risk predictions (Evermann & Tate, 

2016). While identifying and measuring the differences in change among potential un-observed 

dropout sub-populations would have been a fascinating endeavor, this type of modeling often 

takes several days to converge (Ram & Grimm, 2009). As the computational resources available 

for this research were limited to my local computer, and the cost of licensing the required 

software was prohibitive, I could not apply this method to my data.  

Despite my inability to replicate the Bowers GMM, my results highlight the value that this 

single non-cumulative GPA feature has on dropout risk detection performance across all the 

machine learning driven EWSs created in this research, matching prior evidence of this feature’s 

value (Bowers, 2012a, 2012b). While this result holds true for most districts, there are a few 

districts where it doesn’t. Generally, where non-cumulative GPA importance was low, absences 

is high, suggesting these districts may suffer from student attendance problems. Given that GPA 

and attendance interplay (i.e. if a student is not present, then their GPA goes down), attendance 

related features become more important for these districts than GPA. 

 Given these findings, there is an opportunity for future work to conduct deeper examinations 

of the correlations between these features as well as the cutoff values, in order to identify the 

optimal hand off from absence to non-cumulative GPA. This can lead to the creation of a 

threshold effect that is non-cumulative inside the algorithm, where educators can better focus on 

the indicator that is truly dominating the risk prediction and provide better intervention.  

Additionally, the results of this research do not account for difference in survival versus 

hazard rates within grade (i.e. the risk set is conditionally dependent on time, yet it's considered 

time invariant in all models tested). My reported findings assume the at-risk population to be 

stable and unchanging through each grade, an incorrect assumption (Bowers, 2010; Singer & 
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Willett, 2003). According to Bowers (2010), “aggregated overall rates of dropping out do not 

acknowledge the time-sensitive nature of schooling and dropout processes” (p. 7). This presents 

several challenges for educators attempting to interpret and utilize EWSs within their school 

district. Given this existing limitation, future research should attempt to account for differences 

in risk populations within grade to better improve the internal validity of this research.  

This can be accomplished by taking a similar approach to a discrete-time hazard model and 

restructuring the data and method used for analysis to evaluate the risk of dropout within each 

grade, rather than aggregating all the years together (Singer & Willett, 1993, 2003; Willett & 

Singer, 1991). Implementing this method would require removing students at each grade level 

that have either 1) dropped out before that grade or 2) transferred or left the school district for 

another (valid) reason. Removing these students from the data would then make the dropout risk 

conditionally relative to the grade population in which the student represents. 

Enabling school stakeholders with the ability to review dropout risk conditional on time 

within each grade level would be impactful in two ways. The first is that they would be able to 

measure the number of students currently enrolled versus the number of students who began in 

that cohort in an earlier grade (i.e., grade one or perhaps even the beginning grade in that school 

building such as grade nine for a high school) to better understand how many students they have 

lost over time. This will show how significant the threat of dropout is to their student population 

to better focus and apply resources that improve student outcomes. The second way this would 

be impactful for educators is that having the ability to view students currently enrolled during X 

month of a school year versus the number of students who started that grade in the beginning of 

the year would show schools their risk relative to their actual population (i.e. who is attending, 

where should interventions be focused, etc.). If the data is not narrowed year by year, then the 
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risk set could be artificially inflated and would not present findings that are actionable for the 

school district quickly. In addition, it would result in a model showing incorrect lower dropout 

rates, suggesting a higher graduation rate then what is occurring in that school. 

The binary categorization of graduates and dropouts can be considered a limitation 

encountered in this research. Mentioned earlier, research by Bowers and Sprott (2012a) found 

evidence to suggest there are several types of potential student dropouts, all with various 

trajectories. The authors assert that rather than one binary category of either graduation or 

dropout; there are several latent levels of dropout trajectory. The original four trajectories 

identified in 2012 were Mid-Decreasing, Low-Increasing, Mid-Achieving, and High-Achieving 

and account for 91.8% of dropouts. A follow-up study conducted by Bowers and Sprott (2012) 

identified the remaining 9% of students as either “Involved” or lost at the last minute. The results 

of this research suggest that indicators used to predict dropout (in their case, non-cumulative 

GPA) impacted the dropout trajectory differently for each typology, leading the authors to 

conclude that understanding the different types of dropout typologies could better enable schools 

to provide better, more personalized interventions for students (Bowers & Sprott, 2012a; Bowers 

& Sprott, 2012b, Bowers & Zhou, 2019).  

My research does not account for these different typologies and instead limits the potential 

student outcome to a binary problem, the student either graduates, or the student drops out. 

While binary classification is a common method application of machine learning (Kumari & 

Srivastava, 2017), it presents some challenges to EWS researchers attempting to better intervene 

on students at-risk of dropping out (Bowers & Sprott, 2012a; Ananga, 2011). One future strategy 

that can be used to overcome this limitation would be to implement a two-step approach to EWS 

design to conduct an analysis of the data using a Growth-Mixture Model or Latent Class 
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Analysis approach (Bowers & Sprott, 2012a; Bowers & Sprott, 2012b, Bowers & Zhou, 2019) to 

create and classify the historical data into multiple dropout typologies. Once the data has been re-

labeled with the various typologies, a multi-classification machine-learning model could be 

trained to predict not only the student risk of dropout, but the students risk of dropout-type, 

leading to better insights into potential interventions (Janosz, Le Blanc, Boulerice, & Tremblay, 

2000).  

Lastly, the data for this research was sourced in partnership with a private entity that 

school districts pay to use, the sample cannot be considered truly random nor nationally 

representative. The BrightBights Clarity platform is offered to schools that have the capacity to 

purchase the licensing, potentially biasing the sample data. Given the way resources and funding 

are provide in the U.S. education system, the student data represented in this research stems from 

two types of school districts; 1) high-performing schools in more affluent parts of the country, 

and 2) underperforming schools that rely on Title I funding. The funding available to purchase an 

educational technology tool (Title I), and the factors motivating the decision to choose the 

BrightBytes ed-tech solution used to collect the data within this analysis introduces potential bias 

impacting the external validity of my research. The data does not fully represent every type of 

school district interested in utilizing an early warning system to improve student graduation 

rates. Future work on EWSs should consider using truly nationally representative data, similar to 

the GMM research completed by Bowers and Sprott (2012a).  

5.6 Future Work 

There are several ways in which the models presented here could be improved. Currently, I 

only look at the following characteristics: student/school demographics, school size, district-level 

census data, and graduation rate. Research has shown that contextual factors can help identify 
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students at risk of dropping out and that the factors associated with dropout can differ between 

populations (Balfanz & Legters, 2004; Christle, Jolivette, Nelson, 2007). Some additional 

features to include in future work could be 1) measures of the distance between the school and 

the nearest city, 2) the percentage of students that continue to postsecondary enrollment, 3) the 

percentage of students proficient on state exams, 4) the parent or student satisfaction with the 

school, 5) the proportion of military-connected or otherwise highly mobile students (Baker, 

Berning, & Gowda, 2020), 6) rates of teen pregnancy within the school district, 7) participation 

in after-school activities, and 8) crime rate by city or zip code.  

Exploring alternative forms of distance calculation could also improve the performance of 

the DSEE relative to the Mean model. In the current approach, I measure district-to-district 

similarity with the use of a Euclidean distance measure. Future iterations of the DSEE method 

could take an empirical approach to select the measure of similarity based on model performance 

(McCune, Grace, & Urban, 2002), rather than being limited to the simplistic distance calculation 

method used in this research, where all demographic features are weighted equally. Given the 

type and quality of the data used in the similarity calculation, there is evidence to suggest that 

substituting the Euclidian distance measure with an alternative approach, such as the 

Mahalanobis distance which controls for covariance in the data (De Maesschalck, Jouan-

Rimbaud & Massart, 2000) or the Hassanat distance which is invariant to different scales, noise 

and outliers (Alkasassbeh, Altarawneh & Hassanat, 2015) can better improve the calculation of 

similarity between two districts as research suggests that that datasets favor a specific distance 

metric (Prasatha, Alfeilate, Hassanate, Lasassmehe, Tarawnehf, Alhasanatg & Salmane, 2017; 

Ho & Pepyne, 2002). 
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Taking a model-based collaborative filtering recommender system approach to determine 

Pillar model selection at the student level, instead of at the district level, could also potentially 

improve the DSEE performance. This could be completed by first building a multi-class model 

on Pillar student features using District ID as the label, then scoring the Target students against 

this model to probabilistically determine which Pillar model the Target students belong to (Jiang, 

Qian, Shen, Fu & Mei, 2015). This District ID prediction would then be used to select the 

model(s) used to assign the final dropout prediction, based on data properties collected at the 

student level. Implementing strategies from the better-performing Knowles model EWS into the 

design of the DSEE could also increase both the performance and prediction equity. This 

research shows that the Mean model and DSEE failed to outperform the computationally-

intensive stacked model approach used in the Knowles model. By combining the methods and 

building the best possible district-level Pillar Knowles models, and then generalizing these 

models to new districts using the weighting algorithm, there is an opportunity for improved 

DSEE model performance.  

Creating Target District personalization of Pillars to only include the Pillar Models that 

provide the best performance in the pool when generating risk predictions could also increase 

DSEE AUC scores. Using the historical records available in a Target District as a test set, I could 

select Pillar Models to include in the pool used for scoring based on performance, rather than 

electing to use all the Pillar Models. This process is similar to the Knowles approach and could 

improve overall DSEE performance as the Pillar Model pool used for scoring would only include 

the optimal, best-performing detectors. Additionally, with the reduced number of models used, 

the degree of difference in data for the distance calculation could shift, potentially improving the 

similarity weighting function.  
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Additionally, future DSEE work that builds on Bowers’ research and includes more 

longitudinal-based non-cumulative features to align with the Bowers GMM approach more 

closely could improve the performance of the DSEE. Currently, the data used in the DSEE relies 

on student-level data recorded at the grade level, with each student containing a maximum of 12 

records, one for each grade. Increasing the granularity of this feature set to include data collected 

at the semester-grade level (ex: 9th Grade Semester 1 non-cumulative GPA, 9th Grade Semester 2 

non-cumulative GPA, etc.) could provide additional information for predicting student dropout 

risk using the DSEE.  

Lastly, future work should explore the 'recursive' impact of an intervention on both model 

performance and design. An effective implementation of an EWS in a school district provides 

two key outputs; 1) the students at-risk of dropping out and 2) why the student is at risk. This 

output is then used to inform the appropriate intervention needed to put the student back on path 

to graduation. The successful application of this intervention essentially changes the underlying 

student data used to both create the EWS and generate the predictions, making EWS design 

recursive (i.e. there is a half-life on the performance of the EWS before it must be 

retrained/refreshed to reflect the change of data). While this research explores both EWS design 

and potential data-driven intervention strategies to be used to mitigate dropout for at-risk 

students, future research should expand on this recursive issue and explore the impact that these 

interventions have on EWS design.  

Exploring this issue would hopefully lead to new strategies on the frequency at which EWS 

models should be retrained based on changes in the underlying data. Considering the effort 

involved with implementing a machine-learning driven EWS, having a better understanding of 

the cadence at which the model needs to be trained to produce an accurate at-risk prediction 
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would help educators interested in EWS applications with balancing the resources required with 

not only implementing the EWS, but also maintaining the successful use of these systems 

moving forward.  

5.7 Concluding Remarks  

 Given the results of this research, there are several conclusions that can be drawn for 

educators and researchers interested in implementing an early warning system in the school 

district.  

 First, creating an early warning system is difficult and costly for educators. The results of 

this research are the culmination of several years of work, completed with the support of a 

company that specializes in K-12 student data storage. I was in the fortunate position to work 

with data that had already been collected and prepared for data modeling. Many schools and 

districts within the U.S. are not offered this opportunity, and further lack the financial resources 

to hire a researcher internally gather, clean, prepare, model, and deploy an early warning system 

into the educational environment. While recent calls by researchers have advocated for EWS 

code to be published publicly (Agasisti & Bowers, 2017; Bowers et. Al., 2019; Bowers, 2021) 

improving their accessibility and alleviating some of this burden, there still exist significant 

barriers to implementing an early warning system in the short-term.  

 Second, there is a common data theme across the EWSs replicated in this research, with 

non-cumulative GPA and student absence records often providing the most information for 

detecting student dropout risk. While I do not advocate for the removal of the other features in 

EWS design, as the information provided by the other student records (assessments and 

behavioral data) most likely improves EWS performance; the level of importance of these two 

features provide an interesting opportunity for educational researchers and school districts 
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interested in deploying an early warning system. Given the level of effort required to collect and 

clean student records, there exists the possibility of creating an EWS that simply relies on non-

cumulative GPA, absences and student age (as a proxy for retention) to detect risk, significantly 

reducing the effort required to design and deploy the EWS.  

Third, there seems to be an observable performance ceiling for early warning systems. 

While the performance of the EWSs tested in this research shift significantly, depending on 

design, a perfect detector is never achieved. This ceiling is likely due to the data captured on 

students by educational systems. Research has shown that students dropout for many different 

reasons, and not accounting for the differences in dropout typology can limit EWS performance 

(Bowers, 2012a, 2012b). While future work can attempt to address this issue, EWS performance 

will still be limited to the simple fact that schools will never be able to collect all the meaningful 

data on a student. Additionally, there exists a set of trade-offs between model interpretability and 

model performance, with the best-performing models using complex opaque methods of analysis 

and the lowest-performing models using easily interpretable thresh-hold based methods. 

Lastly, predicting student performance outcomes is difficult work. A recent systematic 

literature review of published material between 2010 and 2020 completed by Namoun and 

Alshanqiti (2021) highlight the major challenges faced by researchers focused on predicting 

student performance. The results of this review according with my findings: machine-learned 

driven methods (Random Forest, Hybrid/Stacked models, etc.) outperform traditional methods 

(linear regression, discriminant analysis, etc.) of EWS design. In addition, Namoun and 

Alshanqiti (2021)suggest cthat urrent studies implementing machine learning models to predict 

student outcomes have difficulty with; 1) exploring how student outcomes predictions can assist 

with automated course and program-level assessments, 2) using multiple datasets from various 
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disciplines to strengthen predictive model validity, 3) shifting from predictive analytics to 

explanatory analytics in order to understand the effects of different features on student outcomes 

to enable better applications of focused interventions, 4) using multiple different metrics for 

model performance to better evaluate the quality of the predictive solution, 5) exploring 

unsupervised learning techniques, and 6) applying new technologies such as automated machine-

learning to improve efficiency and accessibility to non-technical audiences (Namoun & 

Alshanqiti, 2021).  

To address these challenges, Namoun and Alshanqiti recommend that future studies 

should focus on 1) formalizing a clear definition of the outcome variable of prediction, 2) build 

predictive models for non-technical audiences, 3) produce and share datasets for other 

researchers to explore, 4) build models that predict at the program or cohort level, and 5) 

implement methods that explain and justify the prediction in way that is actionable to educators 

(Namoun & Alshanqiti, 2021).  While my research provides a clear definition of dropout and 

incorporates components that explain the model for non-technical stakeholders, I only address 

three of the five recommendations provided by the authors. As my research was completed in 

corporation with a private entity (BrightBytes), the choice to share the data with other 

researchers is this organization’s decision rather than mine. Additionally, the data provided by 

BrightBytes did not include student cohort and program level data which made it infeasible to 

model at this level when generating at-risk predictions. 

In conclusion, this dissertation presents new opportunities in identifying students at risk 

of dropping out for districts with minimal or no data. Students educated by districts where data is 

insufficient can now be presented with greater opportunities using proactive interventions driven 

by predictive modeling rather than being limited to receiving reactive interventions that are often 
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applied too late, if ever. Research into the design, application, and performance of early warning 

systems in K-12 education needs to receive continued community support, given the potential 

benefit of improving student outcomes through proactive data-driven interventions for at-risk 

students. Ultimately, there needs to be a balance between the effectiveness of the early system 

and the lift to execute and deploy such a system into practice.  
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Appendix A: Study Participant Descriptive Tables & Figures 

 

Figure 38: Proportion of Dropout Records by Grade and School District 
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Table 12: Student Gender Distribution Within Each District9 

Org ID Female Male Missing 

(%) 

Female 

(%) 

Male 

(%) 

Missing 

Total 

Students 

0 20,000 16,000 1000 49% 48% 3% 33,000 

7 2,000 2,000 0 49% 51% 1% 3,000 

8 1,000 1,000 0 51% 48% 1% 2,000 

9 2,000 2,000 0 49% 50% 1% 5,000 

10 0 0 0 67% 33% 0% 0 

11 5,000 5,000 0 50% 46% 4% 11,000 

13 4,000 4,000 0 49% 47% 4% 9,000 

14 7,000 6,000 0 50% 47% 3% 13,000 

15 7,000 7,000 1000 49% 48% 3% 15,000 

17 1000 1000 0 46% 53% 1% 2,000 

18 9,000 9,000 1,000 47% 47% 7% 20,000 

20 0 0 0 37% 63% 0% 0 

26 0 0 0 51% 49% 0% 0 

27 1000 1000 0 50% 50% 0% 1,000 

30 16,000 16,000 2,000 48% 47% 5% 34,000 

31 0 0 0 22% 33% 45% 0 

32 1000 1000 0 51% 49% 0% 1,000 

33 0 0 0 46% 53% 1% 1000 

34 1000 1000 0 50% 49% 1% 1,000 

35 0 0 0 43% 52% 5% 0 

36 1000 1000 0 47% 48% 5% 2,000 

37 0 0 0 51% 49% 0% 0 

38 0 0 0 42% 56% 2% 0 

39 1000 1,000 0 39% 56% 5% 3,000 

40 0 0 0 43% 55% 2% 0 

43 2,000 2,000 0 50% 49% 2% 5,000 

44 3,000 3,000 0 50% 49% 1% 5,000 

45 0 0 1000 13% 10% 77% 1000 

46 8,000 8,000 1000 50% 45% 5% 17,000 

47 0 0 0 44% 22% 33% 0 

48 0 0 0 32% 68% 0% 0 

49 1000 1000 0 44% 55% 0% 1,000 

50 4,000 4,000 0 50% 49% 1% 8,000 

51 1,000 1,000 0 48% 52% 1% 2,000 

52 1000 1000 0 50% 50% 0% 1,000 

53 1000 1000 0 50% 50% 0% 2,000 

54 3,000 3,000 0 50% 50% 1% 6,000 

55 0 0 0 50% 50% 0% 1000 

56 0 0 0 52% 48% 0% 1000 

57 0 0 0 48% 52% 0% 1000 

58 2,000 2,000 0 46% 53% 1% 4,000 

 
9 Values rounded to obfuscate school individual districts 
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Org ID Female Male Missing 

(%) 

Female 

(%) 

Male 

(%) 

Missing 

Total 

Students 

59 0 0 0 47% 53% 0% 1000 

60 0 1000 0 46% 54% 0% 1000 

61 1,000 1,000 0 48% 52% 0% 3,000 

62 1000 1000 0 47% 53% 0% 2,000 

63 1,000 1,000 0 49% 51% 0% 2,000 

64 1000 1000 0 50% 50% 0% 1,000 

65 3,000 3,000 0 50% 50% 1% 6,000 

67 1,000 1,000 0 47% 53% 0% 2,000 

68 2,000 2,000 0 49% 50% 1% 4,000 

69 7,000 7,000 0 48% 51% 1% 14,000 

70 1000 1000 0 49% 51% 0% 1,000 

71 1000 1000 0 49% 50% 1% 1,000 

72 2,000 2,000 0 49% 51% 1% 3,000 

73 2,000 2,000 0 49% 50% 1% 4,000 

74 1,000 1,000 0 49% 51% 0% 3,000 

75 1,000 1,000 0 47% 52% 0% 2,000 

76 1000 1000 0 46% 53% 1% 1,000 

77 2,000 2,000 0 49% 51% 1% 5,000 

78 1,000 1,000 0 49% 51% 0% 2,000 

79 1000 1000 0 48% 52% 1% 1,000 

80 3,000 3,000 0 48% 51% 1% 6,000 

81 0 0 0 49% 52% 0% 1000 

82 1000 1000 0 49% 51% 0% 1,000 

83 1000 1,000 0 47% 52% 1% 2,000 

84 1,000 1,000 0 49% 50% 0% 3,000 

85 0 0 0 48% 52% 0% 1000 

86 0 0 0 47% 53% 0% 1000 

87 0 0 0 46% 54% 0% 1000 

88 1,000 1,000 0 49% 51% 0% 2,000 

89 2,000 3,000 0 48% 52% 1% 5,000 

90 3,000 3,000 0 50% 50% 1% 6,000 

91 1,000 1,000 0 48% 51% 1% 2,000 

92 0 0 0 52% 48% 0% 1000 

93 1000 1000 0 46% 54% 0% 1,000 

94 0 0 0 49% 51% 0% 1000 

95 1000 1000 0 48% 52% 0% 1,000 

96 0 0 0 51% 50% 0% 1000 

97 0 0 0 49% 50% 0% 1000 

98 1000 1000 0 49% 51% 0% 2,000 

99 2,000 2,000 0 48% 52% 0% 4,000 

100 0 0 0 47% 53% 0% 1000 

101 1000 1000 0 48% 51% 1% 2,000 

102 0 0 0 48% 52% 0% 1000 

103 3,000 3,000 0 48% 51% 1% 6,000 
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Org ID Female Male Missing 

(%) 

Female 

(%) 

Male 

(%) 

Missing 

Total 

Students 

104 0 0 0 10% 30% 60% 0 

105 1,000 1,000 0 49% 51% 0% 2,000 

106 0 0 0 48% 52% 0% 1000 

X̅ 2,000 2,000 0 47% 50% 3% 4,000 
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Table 13: Student Ethnicity Distribution Within Each District1011 

Org 

ID 
AS AA HIS IND MU PI UN WH NA Total 

0 1,100 2,300 15,100 900 200 - - 12,900 900 33,400 
7 300 300 1,700 0 100 0 0 1,000 0 3,400 
8 100 400 1,400 0 0 0 0 200 0 2,200 
9 400 200 2,700 0 0 200 900 300 100 4,700 

10 - - 0 - - - - 0 - 0 
11 200 1,400 2,500 0 200 0 - 6,200 400 11,000 

13 100 6,400 200 0 100 - 0 1,800 300 9,000 
14 800 9,000 1,500 0 200 0 - 1,500 400 13,500 
15 400 7,200 900 0 500 0 - 5,600 500 15,200 
17 0 100 0 0 0 - 600 800 0 1,600 

18 900 2,200 2,300 100 700 0 
6,10
0 6,200 1,300 19,800 

20 - 0 - - - - 0 0 - 0 
26 0 0 0 - 0 - 100 - - 100 
27 0 0 100 0 0 0 - 1,000 - 1,200 
30 1,100 11,500 2,000 0 500 0 0 17,200 1,600 33,900 
31 - 0 0 - - - - 100 100 200 

32 0 0 0 0 0 - - 1,100 0 1,200 
33 0 100 100 0 0 - 0 400 0 700 
34 0 100 0 - 0 - 0 1,300 0 1,400 
35 0 0 0 - 0 - - 300 0 400 
36 0 500 0 0 200 0 - 1,000 100 1,800 
37 0 0 200 0 0 - 0 200 0 500 
38 - - 100 0 - - - 0 0 100 
39 0 400 1,500 0 0 - - 500 100 2,500 
40 0 0 200 - 0 - - 0 0 200 
43 100 3,600 100 0 100 0 - 1,000 100 4,900 

44 100 3,200 300 0 100 0 - 1,500 100 5,200 
45 0 0 0 0 - - - 200 700 900 

46 300 12,500 200 0 
1,10
0 0 0 1,900 800 17,000 

47 - - 0 - - - 0 0 0 0 
48 - - 0 0 - - 0 0 - 100 
49 0 0 0 0 0 - - 1,200 0 1,200 
50 100 900 400 0 100 - - 6,800 100 8,300 

 
10 AS = Asian, AA = African American, HIS = Hispanic, IND = Indigenous, PI = Pacific Islander, UN = Undefined, 

WH = White, NA = Missing Record 

 
11 Values rounded to nearest hundred obfuscate school individual districts 
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Org 

ID 
AS AA HIS IND MU PI UN WH NA Total 

51 0 0 0 0 0 - - 2,100 0 2,100 
52 0 0 0 - 0 - - 1,100 0 1,200 
53 0 0 0 0 0 - - 1,700 0 1,700 
54 100 400 100 0 100 - - 5,400 0 6,000 
55 0 0 0 0 0 - - 600 - 600 
56 0 0 0 - - - - 900 - 900 
57 0 0 0 0 0 0 - 700 - 700 
58 0 200 0 0 0 - - 3,300 0 3,600 

59 - 0 0 - 0 - - 500 0 500 
60 0 0 0 - - - - 1,000 0 1,000 
61 0 100 0 0 0 - - 2,500 0 2,700 
62 0 0 0 0 0 - - 1,800 0 1,900 
63 0 100 0 0 0 - - 2,000 0 2,100 
64 0 0 0 - 0 - - 1,100 - 1,200 
65 0 100 0 0 0 - - 5,300 0 5,500 
67 0 0 0 0 0 - - 2,400 0 2,500 
68 100 400 200 0 100 0 - 3,400 0 4,200 
69 200 1,600 100 0 0 0 - 12,300 200 14,400 

70 0 0 0 0 0 - - 1,400 0 1,400 
71 - 0 0 - 0 - - 1,400 0 1,500 
72 0 100 0 - 0 - - 3,100 0 3,200 
73 0 200 0 0 0 0 - 3,800 0 4,200 
74 0 0 0 0 0 0 - 2,600 0 2,600 
75 0 0 0 0 0 - - 2,100 0 2,200 
76 0 200 0 - 0 - - 1,200 0 1,400 
77 0 400 0 0 0 0 - 4,000 0 4,500 
78 0 100 0 0 0 - - 2,200 0 2,300 
79 0 0 0 - 0 - - 1,300 0 1,300 
80 200 200 100 0 100 0 - 5,000 0 5,600 

81 - 0 0 - 0 - - 1,000 - 1,000 
82 0 0 0 0 0 - - 1,300 0 1,400 
83 0 0 0 - 0 - - 2,100 0 2,100 
84 0 200 0 0 0 0 - 2,600 0 2,800 
85 0 0 - 0 0 - - 500 - 600 
86 0 0 0 - 0 - - 700 0 700 
87 - 0 0 - 0 - - 600 0 600 
88 0 0 0 - 0 - - 2,200 0 2,200 
89 0 100 0 0 0 - - 4,800 0 5,000 
90 100 600 0 0 0 - - 5,200 0 6,000 

91 0 0 0 0 0 - - 2,000 0 2,100 
92 0 0 0 - 0 - - 800 0 800 
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Org 

ID 
AS AA HIS IND MU PI UN WH NA Total 

93 0 0 0 0 0 - - 1,200 0 1,200 
94 0 0 0 - 0 0 - 700 0 800 
95 0 0 0 0 0 - - 1,200 0 1,200 
96 0 0 0 0 - - - 600 - 600 
97 0 0 - 0 0 - - 800 0 800 
98 0 0 0 0 0 - - 1,900 0 1,900 
99 0 0 0 0 0 - - 3,700 0 3,800 

100 - 0 0 - 0 - - 800 0 800 

101 0 0 0 - 0 - - 1,500 0 1,600 
102 0 0 0 0 - - - 500 - 500 
103 100 100 0 0 0 - - 6,100 0 6,400 
104 - - - - - - - 0 0 0 
105 0 0 0 0 0 - - 2,100 0 2,100 
106 - - - - - 800 - - 0 800 

X̅ 100 800 400 0 100 0 100 2,200 100 3,700 

 7,100 68,000 34,600 1,300 4,900 1,200 7,900 193,300 8,300 326,500 
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Table 14: Count of Recorded Student Outcomes Within Each District12 

Org ID Dropout Graduated Total Students Dropout Rate 

0 4,700 28,700 33,400 14% 
7 0 3,400 3,400 1% 
8 0 2,100 2,200 2% 
9 400 4,300 4,700 10% 
10 0 0 0 83% 

11 1,200 9,700 11,000 11% 
13 1,600 7,300 9,000 18% 
14 1,100 12,400 13,500 8% 
15 1,700 13,600 15,200 11% 
17 200 1,500 1,600 11% 
18 3,100 16,700 19,800 16% 
20 0 0 0 85% 
26 0 100 100 2% 
27 0 1,200 1,200 3% 
30 3,400 30,500 33,900 10% 
31 0 200 200 11% 

32 0 1,200 1,200 3% 
33 100 600 700 17% 
34 300 1,100 1,400 22% 
35 0 400 400 5% 
36 400 1,400 1,800 23% 
37 0 500 500 2% 
38 100 0 100 52% 
39 1,900 600 2,500 76% 
40 100 200 200 32% 
43 600 4,300 4,900 12% 

44 400 4,800 5,200 7% 
45 100 900 900 8% 
46 1,800 15,200 17,000 10% 
47 0 0 0 89% 
48 0 0 100 61% 
49 100 1,100 1,200 8% 
50 700 7,600 8,300 9% 
51 300 1,900 2,100 12% 
52 100 1,000 1,200 11% 
53 100 1,700 1,700 3% 

 
12 Values rounded nearest hundred to obfuscate school individual districts 
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Org ID Dropout Graduated Total Students Dropout Rate 
54 700 5,400 6,000 12% 
55 0 500 600 8% 
56 100 900 900 6% 
57 0 600 700 7% 
58 500 3,100 3,600 14% 
59 0 500 500 4% 
60 100 900 1,000 7% 
61 300 2,400 2,700 10% 
62 200 1,700 1,900 12% 

63 100 1,900 2,100 6% 
64 100 1,100 1,200 7% 
65 500 5,000 5,500 9% 
67 200 2,300 2,500 9% 
68 300 3,900 4,200 7% 
69 2,100 12,300 14,400 14% 
70 200 1,200 1,400 14% 
71 200 1,300 1,500 13% 
72 300 2,900 3,200 8% 
73 400 3,800 4,200 9% 

74 200 2,400 2,600 8% 
75 200 2,000 2,200 9% 
76 200 1,200 1,400 14% 
77 600 4,000 4,500 12% 
78 100 2,200 2,300 4% 
79 100 1,200 1,300 7% 
80 600 5,000 5,600 10% 
81 100 900 1,000 9% 
82 100 1,300 1,400 8% 
83 200 1,900 2,100 9% 
84 200 2,600 2,800 7% 

85 0 500 600 8% 
86 0 700 700 5% 
87 100 600 600 10% 
88 200 2,000 2,200 11% 
89 300 4,600 5,000 7% 
90 700 5,400 6,000 11% 
91 200 1,900 2,100 9% 
92 100 800 800 9% 
93 100 1,100 1,200 9% 
94 100 700 800 14% 

95 200 1,100 1,200 13% 
96 0 600 600 5% 
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Org ID Dropout Graduated Total Students Dropout Rate 
97 0 800 800 4% 
98 300 1,700 1,900 13% 
99 500 3,300 3,800 12% 
100 100 800 800 9% 
101 100 1,500 1,600 5% 
102 0 500 500 5% 
103 600 5,900 6,400 9% 
104 0 0 0 20% 
105 300 1,900 2,100 13% 

X̅ 400 3,300 3,700 14% 
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Appendix B: Similarity Data Descriptive Tables 

Table 15: Reported Demographic Descritpives of Current Student Populations1314 

Org 

ID 

Graduation 

Rate15 
Total 

Students 

Expressed as a % 

PI IND AS AA  WH HIS UN 

0 83% 45000 0% 4% 2% 9% 20% 64% 0% 

7 94% 11000 0% 0% 7% 8% 25% 57% 1% 

8 80% 10000 2% 0% 2% 18% 8% 67% 1% 

9 94% 9000 4% 0% 11% 3% 5% 76% 0% 

10 88% 13000 0% 1% 4% 19% 61% 15% 0% 

11 85% 48000 0% 0% 2% 13% 45% 36% 0% 

13 79% 21000 0% 0% 1% 77% 13% 5% 0% 

14 78% 99000 0% 0% 7% 61% 12% 18% 0% 

15 87% 42000 0% 0% 3% 54% 28% 10% 0% 

17 92% 5000 0% 0% 2% 10% 76% 6% 0% 

18 88% 31000 0% 1% 8% 20% 37% 28% 0% 

20 94% 2000 0% 0% 1% 2% 95% 3% 0% 

26 93% 0 0% 0% 0% 0% 0% 100% 0% 

27 92% 1000 0% 0% 8% 0% 65% 25% 0% 

30 89% 9000 0% 0% 5% 37% 41% 12% 0% 

31 96% 2000 0% 1% 1% 5% 82% 11% 0% 

32 90% 4000 0% 0% 2% 2% 92% 3% 0% 

33 67% 2000 0% 0% 2% 10% 46% 37% 0% 

34 67% 3000 0% 0% 1% 5% 79% 9% 0% 

35 92% 1000 0% 0% 1% 12% 72% 8% 0% 

36 84% 9000 0% 0% 1% 22% 53% 8% 0% 

37 85% 2000 0% 0% 0% 0% 41% 57% 0% 

38 82% 1000 0% 1% 1% 0% 25% 73% 0% 

39 0% 0 0% 0% 0% 33% 0% 67% 0% 

40 91% 3000 0% 0% 15% 38% 22% 16% 0% 

43 81% 23000 0% 0% 1% 70% 19% 6% 0% 

44 89% 28000 0% 0% 3% 57% 20% 12% 0% 

45 92% 4000 0% 0% 1% 5% 90% 4% 0% 

46 0% 0 0% 1% 0% 84% 1% 11% 0% 

47 98% 4000 0% 1% 0% 3% 50% 44% 0% 

48 87% 3000 0% 55% 0% 0% 37% 0% 6% 

 
13 AS = Asian, AA = African American, HIS = Hispanic, IND = Indigenous, PI = Pacific Islander, UN = Undefined, 

WH = White, NA = Missing Record 
14 Values rounded to nearest thousand obfuscate school individual districts 
15 As Reported to NCES for all public institutions.  
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Org 

ID 

Graduation 

Rate15 
Total 

Students 

Expressed as a % 

PI IND AS AA  WH HIS UN 

49 84% 2000 0% 2% 0% 1% 94% 1% 0% 

50 85% 20000 0% 0% 1% 9% 74% 8% 0% 

51 82% 4000 0% 0% 0% 1% 99% 0% 0% 

52 83% 2000 0% 0% 0% 0% 97% 1% 0% 

53 91% 3000 0% 0% 0% 2% 95% 1% 0% 

54 78% 12000 0% 0% 1% 6% 84% 2% 0% 

55 87% 1000 0% 0% 0% 0% 99% 1% 0% 

56 83% 2000 0% 0% 0% 0% 99% 0% 0% 

57 88% 1000 0% 0% 0% 0% 97% 1% 0% 

58 80% 3000 0% 0% 0% 4% 94% 1% 0% 

59 90% 1000 0% 0% 1% 1% 97% 1% 0% 

60 89% 2000 0% 0% 0% 1% 97% 1% 0% 

61 84% 5000 0% 0% 1% 3% 92% 2% 0% 

62 81% 3000 0% 0% 0% 1% 95% 2% 0% 

63 87% 4000 0% 0% 0% 3% 93% 1% 0% 

64 85% 2000 0% 0% 0% 3% 85% 9% 0% 

65 83% 11000 0% 0% 1% 2% 93% 2% 0% 

67 86% 4000 0% 0% 0% 1% 97% 1% 0% 

68 87% 9000 0% 0% 1% 6% 76% 10% 0% 

69 78% 25000 0% 0% 1% 10% 82% 1% 0% 

70 81% 3000 0% 0% 0% 1% 98% 1% 0% 

71 82% 3000 0% 0% 0% 1% 99% 0% 0% 

72 84% 6000 0% 0% 0% 2% 97% 0% 0% 

73 87% 8000 0% 0% 1% 5% 90% 1% 0% 

74 88% 4000 0% 0% 0% 1% 96% 1% 0% 

75 84% 4000 0% 0% 0% 1% 96% 1% 0% 

76 79% 3000 0% 0% 0% 8% 88% 0% 0% 

77 82% 9000 0% 0% 0% 9% 84% 1% 0% 

78 92% 4000 0% 0% 0% 4% 93% 1% 0% 

79 88% 4000 0% 0% 0% 2% 96% 1% 0% 

80 84% 12000 0% 0% 3% 4% 86% 2% 0% 

81 86% 2000 0% 0% 0% 1% 96% 1% 0% 

82 89% 2000 0% 0% 0% 1% 95% 2% 0% 

83 85% 4000 0% 0% 0% 1% 98% 0% 0% 

84 88% 5000 0% 0% 1% 7% 85% 1% 0% 

85 88% 1000 0% 0% 0% 2% 94% 2% 0% 

86 91% 1000 0% 0% 0% 0% 97% 1% 0% 

87 84% 1000 0% 0% 0% 0% 99% 0% 0% 
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Org 

ID 

Graduation 

Rate15 
Total 

Students 

Expressed as a % 

PI IND AS AA  WH HIS UN 

88 82% 4000 0% 0% 0% 1% 98% 1% 0% 

89 88% 10000 0% 0% 1% 2% 94% 1% 0% 

90 84% 12000 0% 0% 1% 8% 85% 1% 0% 

91 85% 4000 0% 0% 0% 2% 96% 1% 0% 

92 87% 1000 0% 0% 0% 0% 99% 1% 0% 

93 83% 2000 0% 0% 0% 1% 97% 1% 0% 

94 78% 1000 0% 0% 0% 2% 93% 1% 0% 

95 82% 2000 0% 0% 0% 1% 99% 0% 0% 

96 90% 1000 0% 0% 0% 1% 97% 1% 0% 

97 91% 1000 0% 0% 0% 0% 98% 0% 0% 

98 80% 4000 0% 0% 0% 1% 97% 2% 0% 

99 82% 7000 0% 0% 0% 1% 98% 0% 0% 

100 86% 1000 0% 0% 0% 1% 99% 1% 0% 

101 91% 2000 0% 0% 1% 1% 97% 1% 0% 

102 89% 1000 0% 0% 0% 1% 97% 1% 0% 

103 85% 12000 0% 0% 1% 2% 93% 1% 0% 

104 35% 0 0% 0% 0% 2% 97% 0% 0% 

105 83% 4000 0% 0% 0% 1% 98% 0% 0% 

106 95% 3000 100% 0% 0% 0% 0% 0% 0% 

X̅ 83% 8359 1% 1% 1% 9% 73% 12% 0% 
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Table 16: Summary Statistics of Data Used to Determine EWS Similarity Scores16 

Org 

ID Population 

Median 

Income 

(%) Of Population 

Urban UA UC Rural Employed 
Highschool 

Educated 

0 660,000 50,000 1 1 0 0 0.8 1 

7 110,000 70,000 1 1 0 0 0.8 1 

8 140,000 50,000 1 1 0 0 0.7 0.9 

9 190,000 80,000 1 1 0 0 0.8 0.9 

10 100,000 50,000 0.7 0.7 0 0.3 0.8 0.9 

11 450,000 60,000 0.9 0.9 0 0.1 0.8 1 

13 170,000 50,000 0.8 0.8 0 0.3 0.8 0.9 

14 640,000 60,000 0.9 0.9 0 0.1 0.8 1 

15 190,000 50,000 0.5 0.5 0.1 0.5 0.8 0.9 

17 40,000 50,000 1 1 0 0 0.8 1 

18 270,000 60,000 0.9 0.9 0 0.1 0.8 1 

20 10,000 50,000 0 0 0 1 1 0.9 

26 50,000 90,000 1 0 1 0 1 0.9 

27 20,000 60,000 1 1 0 0 0.8 1 

30 750,000 50,000 1 1 0 0 0.8 0.9 

31 10,000 50,000 0.7 0 0.7 0.3 0.8 1 

32 30,000 80,000 0.7 0.7 0 0.3 0.8 1 

33 10,000 50,000 0.7 0 0.7 0.3 0.8 0.9 

34 20,000 40,000 0.7 0 0.7 0.3 0.8 0.9 

35 0 60,000 0 0 0 1 1 0.9 

36 120,000 40,000 1 1 0 0.1 0.8 0.9 

37 30,000 50,000 0.8 0.3 0.5 0.2 0.8 0.9 

38 10,000 40,000 0.7 0 0.7 0.3 0.8 0.9 

39 160,000 50,000 1 1 0 0 0.8 0.9 

40 30,000 50,000 1 1 0 0 0.8 0.9 

43 290,000 50,000 0.8 0.8 0 0.3 0.8 1 

44 130,000 60,000 0.4 0.4 0 0.6 0.8 1 

45 40,000 40,000 0.8 0.8 0 0.2 0.8 0.9 

46 950,000 60,000 1 0.9 0 0.1 0.8 1 

47 20,000 60,000 0.5 0.1 0.5 0.5 0.8 0.9 

48 10,000 60,000 0.4 0 0.4 0.7 0.7 1 

49 10,000 30,000 0.1 0 0.1 0.9 0.8 0.9 

50 90,000 60,000 0.5 0.5 0 0.5 0.8 0.9 

51 110,000 40,000 0.3 0.1 0.2 0.7 0.8 0.9 

52 0 40,000 0 0 0 1 0.8 0.9 

53 20,000 50,000 0.5 0.5 0 0.5 0.8 0.9 

54 100,000 50,000 0.7 0.7 0 0.3 0.8 1 

55 0 50,000 0 0 0 1 0.8 0.9 

56 60,000 80,000 1 1 0 0.1 0.8 1 

57 20,000 40,000 0.6 0 0.6 0.4 0.8 0.9 

 
16 Values rounded to nearest thousand to obfuscate school individual districts.  
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Org 

ID Population 

Median 

Income 

(%) Of Population 

Urban UA UC Rural Employed 
Highschool 

Educated 

58 30,000 40,000 0.4 0.4 0 0.6 0.8 0.9 

59 30,000 70,000 0.9 0.9 0 0.1 0.8 1 

60 10,000 30,000 0.4 0 0.4 0.6 0.9 0.9 

61 20,000 40,000 0.3 0 0.3 0.7 0.8 0.9 

62 20,000 40,000 0 0 0 1 0.8 0.9 

63 80,000 70,000 0.6 0.6 0 0.4 0.8 1 

64 10,000 40,000 0.4 0 0.4 0.6 0.8 0.9 

65 100,000 50,000 0.6 0.1 0.5 0.4 0.8 0.9 

67 20,000 40,000 0.3 0 0.3 0.7 0.8 0.9 

68 40,000 70,000 0.5 0 0.5 0.5 0.8 0.9 

69 280,000 50,000 0.7 0.6 0.1 0.3 0.8 0.9 

70 10,000 40,000 0.3 0 0.3 0.7 0.8 1 

71 10,000 40,000 0 0 0 1 0.8 1 

72 20,000 50,000 0.3 0 0.3 0.7 0.9 0.9 

73 110,000 50,000 0.5 0.3 0.3 0.5 0.8 0.9 

74 20,000 40,000 0.5 0.5 0 0.5 0.9 0.9 

75 10,000 60,000 0.2 0 0.2 0.8 0.8 0.9 

76 30,000 70,000 0.8 0.5 0.3 0.2 0.8 1 

77 80,000 40,000 0.5 0 0.5 0.6 0.8 1 

78 20,000 50,000 0.1 0 0.1 0.9 0.8 1 

79 100,000 60,000 0.5 0.3 0.3 0.5 0.8 0.9 

80 100,000 50,000 0.6 0.6 0 0.4 0.8 1 

81 - - - - - - - - 

82 20,000 50,000 0 0 0 1 0.9 0.9 

83 40,000 30,000 0.4 0.3 0.1 0.6 0.8 0.9 

84 40,000 50,000 0.8 0.8 0 0.2 0.8 1 

85 40,000 50,000 0.3 0.1 0.2 0.7 0.8 0.9 

86 10,000 50,000 0.9 0 0.9 0.2 0.8 1 

87 0 40,000 0 0 0 1 0.8 0.9 

88 40,000 40,000 0.3 0 0.3 0.7 0.8 0.9 

89 40,000 60,000 0.6 0.6 0 0.4 0.8 0.9 

90 10,000 50,000 0.4 0.4 0 0.6 0.8 1 

91 10,000 40,000 0.2 0 0.2 0.8 0.8 0.9 

92 10,000 40,000 0 0 0 1 0.8 0.9 

93 20,000 40,000 0.4 0 0.4 0.6 0.8 0.9 

94 10,000 40,000 0.4 0 0.4 0.6 0.9 0.9 

95 10,000 40,000 0.5 0 0.5 0.5 0.9 0.9 

96 - - - - - - - - 

97 - - - - - - - - 

98 20,000 40,000 0.2 0 0.2 0.8 0.8 0.9 

99 50,000 40,000 0.5 0.3 0.2 0.5 0.8 0.9 

100 60,000 40,000 0.5 0.5 0 0.5 0.8 1 

101 - 40,000 0.7 0 0.7 0.4 0.8 0.9 
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Org 

ID Population 

Median 

Income 

(%) Of Population 

Urban UA UC Rural Employed 
Highschool 

Educated 

102 - - - - - - - - 

103 40,000 50,000 0.6 0.5 0.2 0.4 0.8 1 

104 - - - - - - - - 

105 0 40,000 0 0 0 1 0.8 1 

106 80,000 60,000 1 1 0 0 0.9 1 

X̅ 90,000 50,000 0.6 0.4 0.2 0.5 0.8 0.9 
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Appendix C: Data for Modeling 

 

Table 17: Percent of Missing Data Across Model Features 

Feature Name (%) Missing 

avg_social_science_norm_interim_score 99.96% 

avg_science_norm_interim_score 99.27% 

avg_math_norm_interim_score 97.40% 

avg_reading_norm_interim_score 97.29% 

avg_social_science_norm_summative_score 93.56% 

avg_science_norm_summative_score 83.79% 

norm_grad_credit_ratio 72.54% 

stddev_social_science_grade 70.29% 

stddev_science_grade 67.87% 

grad_credit_ratio 64.79% 

stddev_math_grade 64.14% 

stddev_reading_grade 54.37% 

norm_avg_social_science_grade 51.42% 

norm_avg_science_grade 48.52% 

norm_avg_elective_grade 47.04% 

norm_avg_math_grade 46.61% 

norm_avg_reading_grade 45.86% 

avg_social_science_grade 41.47% 

stddev_elective_grade 41.19% 

norm_avg_all_course_grade 40.93% 

avg_science_grade 38.68% 

avg_math_grade 36.30% 

avg_reading_grade 35.51% 

sum_reading_grade 35.51% 

stddev_credits_earned 35.26% 

avg_credits_earned 34.65% 

stddev_core_course_grade 34.51% 

avg_core_course_grade 33.90% 

avg_math_norm_summative_score 33.72% 

avg_reading_norm_summative_score 33.40% 

avg_all_course_grade 30.38% 

pass_rate 29.64% 

gpa_for_grade_band 27.32% 

norm_age_for_class_number 26.67% 

attend_ratio 2.85% 

absent_in_first_30 2.82% 
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Feature Name (%) Missing 

absent_in_first_45 2.82% 

absent_in_first_60 2.82% 

absent_in_first_90 2.82% 

attnd_100 2.82% 

chronic_absent 2.82% 

sum_absent_ratio 2.82% 

sum_attendance_ratio 2.82% 

sum_tardy_ratio 2.82% 

total_absent_in_first_30 2.82% 

total_absent_in_first_45 2.82% 

total_absent_in_first_60 2.82% 

total_absent_in_first_90 2.82% 

algebra_passed 0.00% 

count_major 0.00% 

count_math 0.00% 

count_minor 0.00% 

count_reading 0.00% 

count_science 0.00% 

count_social_science 0.00% 

X̅ 33.33% 
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Appendix D: Pillar & Target Model Designation 

Table 18: Results of Data Based Pillar and Target Organization Assignment17 

Org ID Contains Missing Records Total Records Model Designation 

0 No 292,000 Pillar 

7 Yes 13,000 Target 

8 Yes 4,000 Target 

9 No 34,000 Pillar 

10 Yes 0 Target 

11 No 93,000 Pillar 

13 No 71,000 Pillar 

14 Yes 37,000 Target 

15 Yes 68,000 Target 

17 No 17,000 Target 

18 No 87,000 Pillar 

20 Yes 0 Target 

26 Yes 0 Target 

27 Yes 5,000 Target 

30 No 217,000 Pillar 

31 Yes 1,000 Target 

32 No 5,000 Target 

33 No 5,000 Target 

34 No 8,000 Target 

35 No 2,000 Target 

36 No 7,000 Target 

37 No 4,000 Target 

38 No 1,000 Target 

39 No 10,000 Target 

40 No 1,000 Target 

43 Yes 32,000 Target 

44 No 39,000 Pillar 

45 No 6,000 Target 

46 Yes 39,000 Target 

47 No 0 Target 

48 No 0 Target 

49 No 10,000 Target 

50 No 72,000 Pillar 

51 No 20,000 Pillar 

52 No 10,000 Target 

53 No 16,000 Target 

 
17 Values rounded to nearest thousand to obfuscate school individual districts. 
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Org ID Contains Missing Records Total Records Model Designation 

54 No 51,000 Pillar 

55 No 5,000 Target 

56 No 8,000 Target 

57 No 6,000 Target 

58 No 29,000 Pillar 

59 No 4,000 Target 

60 No 9,000 Target 

61 No 23,000 Pillar 

62 No 16,000 Target 

63 No 18,000 Target 

64 No 10,000 Target 

65 No 48,000 Pillar 

67 No 22,000 Pillar 

68 No 36,000 Pillar 

69 No 131,000 Pillar 

70 No 12,000 Target 

71 No 12,000 Target 

72 No 28,000 Pillar 

73 No 36,000 Pillar 

74 No 22,000 Pillar 

75 No 18,000 Target 

76 No 13,000 Target 

77 No 42,000 Pillar 

78 No 19,000 Target 

79 No 12,000 Target 

80 No 47,000 Pillar 

81 No 8,000 Target 

82 No 12,000 Target 

83 No 19,000 Target 

84 Yes 23,000 Target 

85 No 5,000 Target 

86 No 6,000 Target 

87 No 6,000 Target 

88 No 20,000 Pillar 

89 No 44,000 Pillar 

90 No 53,000 Pillar 

91 No 19,000 Target 

92 No 12,000 Target 

93 No 10,000 Target 

94 No 6,000 Target 

95 No 10,000 Target 

96 No 5,000 Target 
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Org ID Contains Missing Records Total Records Model Designation 

97 No 7,000 Target 

98 No 16,000 Target 

99 No 32,000 Pillar 

100 No 7,000 Target 

101 No 14,000 Target 

102 No 4,000 Target 

103 No 57,000 Pillar 

104 Yes 0 Target 

105 No 20,000 Target 

106 Yes 3,000 Target 
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Table 19: Results of All Pillar Models During Training 

Org ID Missing (%) AUC Model Designation 

0 0.272 0.878 Pillar 

9 0.625 0.762 Target 

11 0.394 0.889 Pillar 

13 0.291 0.904 Pillar 

18 0.343 0.851 Pillar 

30 0.208 0.874 Pillar 

44 0.499 0.821 Target 

50 0.264 0.874 Pillar 

51 0.234 0.859 Pillar 

54 0.289 0.878 Pillar 

58 0.375 0.865 Pillar 

61 0.360 0.807 Pillar 

65 0.224 0.895 Pillar 

67 0.242 0.89 Pillar 

68 0.271 0.864 Pillar 

69 0.263 0.852 Pillar 

72 0.240 0.856 Pillar 

73 0.225 0.873 Pillar 

74 0.227 0.878 Pillar 

77 0.249 0.871 Pillar 

80 0.281 0.891 Pillar 

88 0.302 0.878 Pillar 

89 0.227 0.885 Pillar 

90 0.233 0.848 Pillar 

99 0.339 0.848 Pillar 

103 0.246 0.858 Pillar 

108 0.396 0.847 Pillar 

X̅ 0.301 0.862 - 
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Appendix E: Aggregate Data Model Performance 

Table 20: Performance of Aggregate Data model Across All Districts in Data Test Set18 

Org ID Graduated Dropout Total Records 
Aggregate Data model 

AUC 

0 80000 7000 87000 0.768 

7 4000 0 4000 0.707 

8 1000 0 1000 0.851 

9 10000 1000 10000 0.622 

10 0 0 0 0.5 

11 25000 3000 28000 0.733 

13 19000 3000 21000 0.768 

14 10000 1000 11000 0.791 

15 19000 2000 21000 0.696 

17 5000 0 5000 0.747 

18 22000 4000 26000 0.715 

20 0 0 0 0.864 

26 0 0 0 0 

27 1000 0 1000 0.621 

30 60000 5000 65000 0.749 

31 0 0 0 0.685 

32 1000 0 1000 0.846 

33 1000 0 1000 0.706 

34 2000 0 2000 0.705 

35 1000 0 1000 0.771 

36 2000 0 2000 0.691 

37 1000 0 1000 0.566 

38 0 0 0 0.501 

39 1000 2000 3000 0.533 

40 0 0 0 0.69 

43 9000 1000 10000 0.752 

44 11000 1000 12000 0.682 

45 2000 0 2000 0.732 

46 11000 1000 12000 0.804 

47 0 0 0 0.875 

48 0 0 0 0.74 

49 3000 0 3000 0.811 

50 20000 1000 22000 0.779 

 
18 Values rounded to nearest thousand to obfuscate school individual districts. 
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Org ID Graduated Dropout Total Records 
Aggregate Data model 

AUC 

51 5000 1000 6000 0.75 

52 3000 0 3000 0.76 

53 4000 0 5000 0.771 

54 14000 1000 15000 0.776 

55 1000 0 1000 0.798 

56 2000 0 2000 0.771 

57 2000 0 2000 0.726 

58 8000 1000 9000 0.751 

59 1000 0 1000 0.785 

60 3000 0 3000 0.759 

61 7000 0 7000 0.728 

62 4000 0 5000 0.766 

63 5000 0 5000 0.767 

64 3000 0 3000 0.785 

65 13000 1000 14000 0.804 

67 6000 0 7000 0.8 

68 10000 1000 11000 0.781 

69 35000 4000 39000 0.743 

70 3000 0 4000 0.776 

71 3000 0 4000 0.738 

72 8000 0 9000 0.769 

73 10000 1000 11000 0.781 

74 6000 0 6000 0.776 

75 5000 0 6000 0.773 

76 3000 0 4000 0.756 

77 11000 1000 13000 0.759 

78 5000 0 6000 0.787 

79 3000 0 4000 0.712 

80 13000 1000 14000 0.786 

81 2000 0 2000 0.736 

82 3000 0 4000 0.772 

83 5000 0 6000 0.796 

84 7000 0 7000 0.79 

85 1000 0 2000 0.825 

86 2000 0 2000 0.856 

87 2000 0 2000 0.743 

88 6000 0 6000 0.772 

89 13000 1000 13000 0.793 

90 15000 1000 16000 0.748 
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Org ID Graduated Dropout Total Records 
Aggregate Data model 

AUC 

91 5000 0 6000 0.768 

92 3000 0 4000 0.723 

93 3000 0 3000 0.718 

94 2000 0 2000 0.776 

95 3000 0 3000 0.778 

96 1000 0 2000 0.731 

97 2000 0 2000 0.683 

98 4000 0 5000 0.746 

99 9000 1000 10000 0.738 

100 2000 0 2000 0.783 

101 4000 0 4000 0.712 

102 1000 0 1000 0.791 

103 16000 1000 17000 0.772 

104 0 0 0 0.75 

105 5000 1000 6000 0.749 

106 1000 0 1000 0.623 

X̅ 7000 1000 8000 0.746 
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Figure 39: AUC Curve Performance of Pillar Models and Mean model on Target 

District Data 
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Appendix F: District Similarity Ensemble Extrapolation 

Table 21: AUC Performance of DSEE on Target Districts19 

Org ID 

Count of Records 

AUC Graduates Dropout 

7 12,900 100 0.774 

8 4,000 0 0.791 

9 32,200 1,900 0.672 

10 0 100 0.307 

14 34,700 2,600 0.84 

15 63,200 5,000 0.823 

17 15,200 1,500 0.817 

20 0 100 0.742 

26 400 0 0.902 

27 4,400 100 0.779 

31 500 100 0.821 

32 4,900 100 0.878 

33 4,400 600 0.806 

34 6,400 1,400 0.802 

35 2,100 100 0.845 

36 5,400 1,500 0.772 

37 4,300 100 0.706 

38 500 400 0.497 

39 2,900 7,500 0.673 

40 800 300 0.725 

43 29,100 3,300 0.82 

44 37,300 1,600 0.762 

45 5,300 400 0.868 

46 35,200 4,100 0.747 

47 0 0 0.287 

48 100 100 0.852 

49 9,700 500 0.87 

52 9,200 800 0.829 

53 15,300 400 0.879 

55 4,600 200 0.853 

56 7,600 300 0.831 

57 5,500 300 0.832 

59 4,200 100 0.867 

60 8,700 300 0.828 

62 14,900 1,500 0.848 

63 16,900 700 0.873 

64 9,700 500 0.865 

70 11,000 1,100 0.829 

 
19 Values rounded to nearest thousand to obfuscate school individual districts. 
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Org ID 

Count of Records 

AUC Graduates Dropout 

71 11,300 1,100 0.839 

75 17,200 900 0.853 

76 11,300 1,300 0.85 

78 18,900 300 0.9 

79 11,800 500 0.809 

81 7,400 500 0.824 

82 11,300 600 0.879 

83 17,500 1,000 0.876 

84 21,800 800 0.895 

85 4,800 200 0.907 

86 6,300 200 0.872 

87 5,300 500 0.861 

91 17,500 1,200 0.854 

92 11,100 700 0.826 

93 9,700 600 0.824 

94 5,600 700 0.839 

95 9,400 1,000 0.847 

96 4,900 200 0.878 

97 6,800 200 0.842 

98 14,900 1,600 0.806 

100 6,800 400 0.863 

101 13,400 500 0.842 

102 4,300 200 0.902 

104 0 0 0.78 

105 17,800 2,000 0.818 

106 2,900 200 0.72 

X̅ 10,800 900 0.805 
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Appendix G: Chicago Model Performance 

 

Table 22: Chicago model Performance on Target Districts (9th Grade Records)20 

Org ID Graduated Dropout Total Records Chicago model AUC 

7 1700 0 1700 0.537 

8 0 0 0 0.611 

9 3400 200 3600 0.498 

10 0 0 0 0.5 

14 4400 800 5100 0.652 

15 8300 900 9200 0.742 

17 1800 200 2000 0.523 

20 0 0 0 0 

26 100 0 100 0 

27 1000 0 1100 0.517 

31 100 0 100 0.748 

32 700 0 700 0.9 

33 500 100 600 0.746 

34 800 300 1100 0.725 

35 200 0 300 0.529 

36 800 300 1100 0.704 

37 400 0 400 0.862 

38 0 0 100 0.499 

39 500 1900 2400 0.579 

40 100 100 200 0.5 

43 4300 900 5200 0.674 

44 4200 300 4500 0.675 

45 800 100 800 0.7 

46 3400 1000 4400 0.395 

47 0 0 0 0 

48 0 0 0 0.875 

49 1100 100 1200 0.808 

52 1100 200 1200 0.707 

53 1800 100 1900 0.832 

55 500 0 600 0.704 

56 900 100 1000 0.655 

57 600 100 700 0.764 

59 500 0 500 0.835 

60 1000 100 1000 0.732 

62 1700 200 1900 0.685 

63 1900 100 2100 0.823 

64 1100 100 1200 0.819 

 
20 Values rounded to nearest hundred to obfuscate school individual districts. 
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Org ID Graduated Dropout Total Records Chicago model AUC 

70 1300 200 1500 0.628 

71 1400 300 1700 0.787 

75 2100 200 2300 0.762 

76 1100 200 1300 0.787 

78 2200 100 2200 0.78 

79 1100 100 1200 0.648 

81 900 100 1000 0.744 

82 1400 100 1500 0.758 

83 2000 200 2200 0.591 

84 2600 200 2800 0.745 

85 500 0 600 0.81 

86 800 0 800 0.746 

87 600 100 700 0.7 

91 2000 200 2200 0.768 

92 1300 100 1500 0.72 

93 1100 100 1200 0.789 

94 700 100 800 0.728 

95 1100 200 1300 0.78 

96 600 0 600 0.673 

97 800 0 800 0.512 

98 1900 400 2200 0.724 

100 700 100 800 0.621 

101 1500 100 1600 0.706 

102 500 0 500 0.846 

104 0 0 0 0 

105 2000 300 2400 0.655 

106 700 0 700 0.631 

X̅ 1200 100 1300 0.682 
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Appendix H: Balfanz Model Performance 

Table 23: Balfanz model Performance on Target Districts (Grades 6th – 12th)21 

Org ID Graduated Dropout Total Records Balfanz model AUC 

7 500 0 500 0.644 

9 2600 200 2800 0.614 

10 0 0 0 0.5 

14 0 100 100 0 

15 3900 400 4400 0.478 

17 1200 100 1300 0.557 

20 0 0 0 0 

32 200 0 200 0.884 

33 300 0 300 0.641 

34 500 100 600 0.583 

35 100 0 100 0.664 

36 300 100 400 0.551 

37 400 0 400 0.622 

38 0 0 100 0.494 

39 100 600 700 0.547 

40 0 0 0 0.567 

43 1500 300 1700 0.547 

44 3200 100 3300 0.463 

45 400 0 400 0.572 

46 0 200 200 0.533 

47 0 0 0 0.5 

48 0 0 0 0 

49 700 0 800 0.622 

52 700 100 700 0.724 

53 1100 0 1100 0.617 

55 300 0 400 0.727 

56 600 0 600 0.742 

57 400 0 400 0.794 

59 300 0 300 0.771 

60 700 0 700 0.67 

62 1100 100 1200 0.642 

63 1200 100 1200 0.762 

64 700 0 800 0.764 

70 800 100 900 0.665 

 
21 Values rounded to nearest hundred to obfuscate school individual districts. 
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Org ID Graduated Dropout Total Records Balfanz model AUC 

71 800 100 1000 0.638 

75 1400 100 1400 0.546 

76 900 100 1000 0.682 

78 1400 0 1400 0.672 

79 1100 0 1200 0.627 

81 500 0 600 0.69 

82 800 0 900 0.701 

83 1300 100 1400 0.63 

84 1500 0 1500 0.803 

85 400 0 400 0.647 

86 500 0 500 0.698 

87 400 0 400 0.58 

91 1300 100 1400 0.677 

92 800 0 800 0.66 

93 700 100 800 0.759 

94 400 100 500 0.721 

95 700 100 800 0.754 

96 300 0 400 0.47 

97 500 0 500 0.552 

98 1200 100 1300 0.654 

100 500 0 500 0.762 

101 1000 0 1000 0.658 

102 300 0 300 0.674 

104 0 0 0 0 

105 1400 200 1600 0.627 

106 100 0 100 0.5 

X̅ 700 100 700 0.657 
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Appendix I: Knowles Model Performance 

Table 24: Knowles model Algorithm Search Results 

Method AUC AUC SD 

gbm 88.213 0.0043 

rf 87.960 0.0054 

earth 87.132 0.0036 

glmnet 86.912 0.0064 

multinom 86.907 0.0040 

glm 86.907 0.0050 

treebag 86.856 0.0042 

glmboost 86.645 0.0029 

lda 86.628 0.0014 

lda2 86.628 0.0044 

sda 86.624 0.0012 

nnet 86.548 0.0044 

ctree 85.730 0.0009 

ctree2 85.152 0.0033 

pda2 84.203 0.0062 

knn 83.429 0.0037 

LogitBoost 83.022 0.0006 

rpart 79.301 0.0106 

 

  



 

220 

 

Table 25: Knowles model Performance on Target Districts (Grades 6th – 12th)22 

Org ID Graduated Dropout Total Records Knowles model AUC 

7 11400 100 11500 0.823 

8 3600 0 3600 0.943 

9 13200 500 13700 0.79 

10 0 0 0 0.57 

14 31100 2200 33400 0.927 

15 51100 3200 54300 0.866 

17 10800 1000 11800 0.849 

20 0 100 100 0.857 

26 400 0 400 0.805 

27 300 0 300 0.996 

31 500 0 500 0.839 

32 4300 100 4400 0.938 

33 2200 300 2400 0.921 

34 4900 1100 6000 0.835 

35 1400 0 1500 0.856 

36 4700 1200 5900 0.785 

38 300 300 500 0.563 

39 600 1500 2100 0.79 

40 700 200 1000 0.782 

43 25600 2400 28000 0.884 

44 16300 700 17000 0.905 

45 4400 300 4700 0.88 

46 31800 3400 35200 0.938 

47 0 0 0 0.771 

48 100 100 100 0.886 

49 7200 400 7700 0.891 

52 6500 600 7100 0.867 

53 10800 300 11100 0.914 

55 3300 200 3500 0.877 

56 5500 300 5800 0.851 

57 4000 200 4200 0.871 

59 3100 100 3100 0.906 

60 6100 300 6400 0.853 

62 10700 1100 11800 0.875 

63 12200 500 12700 0.91 

64 6900 400 7300 0.891 

70 8000 900 8900 0.875 

71 8100 900 9000 0.857 

75 12100 700 12800 0.894 

76 7800 900 8700 0.882 

78 13600 300 13900 0.92 

79 7600 300 8000 0.847 

 
22 Values rounded to nearest hundred to obfuscate school individual districts. 
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Org ID Graduated Dropout Total Records Knowles model AUC 

81 5300 400 5800 0.85 

82 8200 500 8600 0.881 

83 12400 800 13300 0.898 

84 15900 700 16600 0.91 

85 3300 200 3500 0.919 

86 4500 100 4700 0.919 

87 3700 300 4000 0.886 

91 12300 900 13200 0.886 

92 8100 500 8700 0.861 

93 6900 500 7300 0.856 

94 4100 500 4700 0.858 

95 6600 800 7400 0.876 

96 3600 200 3800 0.905 

97 4900 200 5000 0.873 

98 10900 1300 12200 0.847 

100 4800 300 5100 0.89 

101 9400 300 9800 0.876 

102 3100 100 3300 0.912 

104 0 0 0 0.905 

105 12400 1400 13800 0.852 

106 2600 200 2800 0.716 

X̅ 6900 500 7300 0.874 
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Appendix J: AUC Performance at 95% CI by Populations 

Table 26: Calculated Mean, Standard Deviation, Standard Error, and 95% Confidence 

Interval of EWS AUC Performance 

Grade Prediction EWS Model Mean SD SE 95% CI 

1st - 12th 

Aggregate Data model 0.739 0.078 0.010 0.020 

DSEE model 0.805 0.114 0.014 0.028 

Mean model 0.805 0.111 0.014 0.028 

6th  

Aggregate Data model 0.708 0.102 0.014 0.029 

Balfanz model 0.640 0.096 0.013 0.026 

DSEE model 0.747 0.144 0.019 0.039 

Knowles model 0.757 0.133 0.018 0.036 

Mean model 0.747 0.144 0.019 0.039 

9th  

Aggregate Data model 0.774 0.083 0.011 0.022 

Chicago model 0.683 0.141 0.018 0.037 

DSEE model 0.846 0.089 0.012 0.023 

Knowles model 0.863 0.073 0.010 0.019 

Mean model 0.846 0.089 0.012 0.023 

 

 


