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Abstract

Essays on the use of probabilistic machine learning for estimating

customer preferences with limited information

Nicolas Padilla

In this thesis, I explore in two essays how to augment thin historical purchase data

with other sources of information using Bayesian and probabilistic machine learning

frameworks to better infer customers’ preferences and their future behavior. In the first

essay, I posit that firms can better manage recently-acquired customers by using the

information from acquisition to inform future demand preferences for those customers. I

develop a probabilistic machine learning model based on deep exponential families to relate

multiple acquisition characteristics with individual level demand parameters, and I show that

the model is able to capture flexibly non-linear relationships between acquisition behaviors

and demand parameters. I estimate the model using data from a retail context and show

that firms can better identify which new customers are the most valuable. In the second

essay, I explore how to combine the information collected through the customer

journey—search queries, clicks and purchases; both within-journeys and across

journeys— to infer the customer’s preferences and likelihood of buying, in settings in which

there is thin purchase history and where preferences might change from one purchase journey

to another. I propose a non-parametric Bayesian model that combines these different sources

of information and accounts for what I call context heterogeneity, which are journey-specific

preferences that depend on the context of the specific journey. I apply the model in the

context of airline ticket purchases using data from one of the largest travel search websites



and show that the model is able to accurately infer preferences and predict choice in an

environment characterized by very thin historical data. I find strong context heterogeneity

across journeys, reinforcing the idea that treating all journeys as stemming from the same set

of preferences may lead to erroneous inferences.
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Introduction

In the data-rich environment, firms and researcher aim at inferring customer preferences

from their history of past purchases, to predict whether customers will buy again, what

product they will buy, and how they may respond to marketing actions. Firms are often

pressured to understand customers at the time they make decisions, right after they are

acquired, or when they are still interacting with the firm at a time where such decisions are

most effective. However, traditional approaches to understand customer heterogeneous

preferences often rely on long history of past purchases. There are many reasons why

long-history of purchases by consumers may not be available. First, many product categories

may have a long product cycle (e.g. cars, mortgage), or the customer may purchase very

infrequently in the category (e.g. flights, hotel stays). Second, the firm may be particularly

interested in understanding specific customers with short purchase history, because they have

recently purchased for the first time, or the firm may want to understand the needs of an

infrequent customer at the moment of interaction. Third, rising concerns regarding consumer

privacy has resulted, and may continue to result, in regulatory changes that limit firms’

ability to store long historical data at the individual level.
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The solution to thin history about customer purchases may lie in different sources of

data beyond purchases that can be collected by the firm. Firms do not only store whether a

customer transacts with the firm, but they can also register several other relevant pieces of

information on the interaction between the firm and the customer.

In this dissertation I explore in two essays how to incorporate these other sources of

information to better predict customers’ future behavior. In both contexts, I employ a

similar methodological strategy. I assume that these different sources of information are

outcomes from individual parameters that correlate with those of interest. Thus, even if

these sources of information may be different in nature from purchase outcomes, they carry

valuable information about the customer’s underlying preferences, and are hence useful to

better predict purchase outcomes.

In the first essay “Overcoming the Cold Start Problem of CRM using a Probabilistic

Machine Learning Approach" I posit that firms can better manage recently-acquired

customers by using the information from acquisition to inform future demand preferences for

those customers. In this essay, I develop a probabilistic machine learning model based on

Deep Exponential Families to relate multiple acquisition characteristics with individual level

demand parameters, and I show that the model is able to capture flexibly non-linear

relationships between acquisition behaviors and demand parameters. I estimate the model

using data from a retail context and show that firms can better identify which new

customers are the most valuable.

In the second essay “The Customer Journey as a Source of Information," I explore

how the information along the journey that the customer undertakes carries valuable

information about the purchase that may take place. This information is particularly

2



valuable for high involvement purchases, such as flights, insurance, and hotel stays, where

the firm observe at most only a handful of purchases during a customer lifetime. Moreover,

customers in these industries often look for products that satisfy different needs depending

on the context of the purchase (e.g., flights for a family vacation vs. flights for a business

trip), further complicating the task to understand what a customer might prefer in the next

purchase occasion. To overcome those challenges, I propose a non-parametric Bayesian

model that combines different sources of information from the customer journey—search

queries, clicks and purchases; both within-journeys and across journeys—to infer the

customer’s preferences. The model accounts for what I call context heterogeneity, which are

journey-specific preferences that depend on the context of the specific journey. I apply the

model in the context of airline ticket purchases using data from one of the largest travel

search websites and show that the model is able to accurately infer preferences and predict

choice in an environment characterized by very thin historical data. I find strong context

heterogeneity across journeys, reinforcing the idea that treating all journeys as stemming

from the same set of preferences may lead to erroneous inferences.

Beyond the main substantive question, these two essays share a common

methodological approach. Both models are developed using a flexible probabilistic

framework and relate to the use of probabilistic machine learning and Bayesian methods

marketing contexts. In the first essay I develop a deep probabilistic model of demand and

acquisition characteristics where the individual-level parameters of each of these sub-models

are projected into a lower-dimension space using a two-layered deep exponential family

(DEF) component. This flexible component allows the model to capture potential non-linear

relationships between these set of parameters, while reducing the dimensionality of a large

3



set of potentially correlated acquisition characteristics. In the second essay, I use Bayesian

nonparametrics methods to uncover the number of (unobserved) purchase contexts that shift

individual preferences for each customer journey differently. These methods used in the two

essays of this dissertation illustrate how marketers can flexibly capture customer preferences

and their future demand propensities by leveraging other sources of data.

4



Chapter 1

Overcoming the Cold Start Problem of
CRM using a Probabilistic Machine Learn-
ing Approach

This essay forms the basis of a paper of the same name jointly authored with Eva Ascarza

which is under third round review at the Journal of Marketing Research.
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Abstract

The success of Customer Relationship Management (CRM) programs ultimately depends on

the firm’s ability to understand consumers’ preferences and precisely capture how these

preferences may differ across customers. Only by understanding customer heterogeneity,

firms can tailor their activities towards the right customers, therefore increasing the value of

customers while maximizing the return on the marketing efforts. However, identifying

differences across customers is a very difficult task when firms attempt to manage new

customers, for whom only the first purchase has been observed. For those customers, the

lack of repeated observations poses a structural challenge to infer unobserved differences

across them. This is what we call the “cold start” problem of CRM, whereby companies have

difficulties leveraging existing data when they attempt to make inferences about customers

at the beginning of their relationship.

In this research we propose a solution to the cold start problem by developing a modeling

framework that leverages the information collected at the moment of acquisition. The main

aspect of the model is that it flexibly captures latent dimensions that govern both the

behaviors observed at acquisition as well as future propensities to buy and to respond to

marketing actions. Using probabilistic machine learning, we combine deep exponential

families with the demand model, relating behaviors observed in the first purchase with

consequent customer behavior. The model can be integrated with a variety of demand

specifications and is flexible enough to capture a wide range of heterogeneity structures

(both linear and non-linear), thus being applicable to a variety of behaviors and contexts.

We validate our approach in a retail context and illustrate how the focal firm can overcome

6



the cold start problem by augmenting the (thin) historical data for new customers using the

firm’s transactional database and applying the proposed modeling framework to those data.

We empirically demonstrate the model’s ability at identifying high-value customers as well as

those most sensitive to marketing actions, right after their first purchase. Leveraging the

model predictions, the firm can also identify the most relevant variables— transaction

characteristics or products being purchased at the moment of acquisition—that are

predictive of behaviors of interest (e.g., sensitivity to email communications).

Keywords: Customer Relationship Management (CRM), Deep Exponential Families,

Probabilistic Machine Learning, Cold Start Problem.
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1.1 Introduction

Customers are different, not only in their preferences for products and services, but also in

the way they respond to marketing actions. Understanding customer heterogeneity is at the

heart of Customer Relationship Management (CRM) programs— from obtaining accurate

estimates of the value of current and future customers, to deciding which customers should

be targeted in the next marketing campaign. Over the last three decades, the marketing

literature has provided researchers and analysts with methods to empirically identify

unobserved differences across customers using their past history—e.g., customers with

higher versus lower expected lifetime value (e.g., Schmittlein et al., 1987; Fader et al., 2005,

2010), those who are less sensitive to a price increase (e.g., Rossi et al., 1996; Allenby and

Rossi, 1998), or those who are more receptive to marketing communications (e.g., Ansari and

Mela, 2003). However, when firms attempt to implement CRM programs on customers who

have been acquired recently, they only observe these customers’ first purchase. This lack of

repeated observations presents a structural challenge for estimating unobserved differences

across recently-acquired customers, precluding firms from leveraging such heterogeneity. We

call this the “cold start” problem of CRM; that is, the challenge that firms face when trying

to make inferences about customers at the outset of the relationship, for whom data is

limited.

Firms have traditionally relied on demographics (e.g., age, gender) and/or recency

metrics (e.g., how many weeks since your last transaction) to target marketing efforts with

limited data (Shaffer and Zhang, 1995). These approaches, however, face practical
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limitations: Recency metrics, for example, do not differentiate among recently acquired

customers (as they all were acquired at the same time), and relevant personal information is

generally hard to collect or poses data privacy challenges. Although, thanks to technological

advances, firms can now increasingly observe a wider range of behaviors on each customer

touch. What in the past might have been considered simply a transaction added to a

customer base is now a collection of behaviors that a customer incurs while making a first

purchase (e.g., is the purchase online or offline, did they buy a new product or an old

best-seller, did they buy on discount or at full price). While some of these characteristics

may be purely coincidental with the moment in which the customer made their first

purchase, others may carry important information as they reflect latent customer

preferences/attitudes. Thus, whereas firms only observe a just-acquired customer in one

occasion, they now have many more cues to form a “first impression” of who this customer is,

which can be used to understand heterogeneity across recently acquired customers. We

present a solution to the cold start problem that is flexible, scalable, and general.

Specifically, we augment transactional data with information collected when a customer

makes their first purchase— information already available in the firm’s database—and

propose a probabilistic machine learning modeling framework that extracts information

relevant to making inferences about the customer’s future behavior. The model, which we

term the “First Impression Model” (FIM), reflects the premise that behaviors and choices

observed in newly-acquired customers can be informative about underlying traits that are, in

turn, predictive of their future behavior. We operationalize these customer traits via a finite

set of latent factors that enable the model to reduce the dimensionality of, while extracting
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relevant signals from, the data, and assume those traits to drive, at least partially, customer

behaviors observed both at the moment of acquisition and in the future.

In essence, the FIM is a deep probabilistic model of demand (main outcome of

interest to the firm) and acquisition characteristics (customer outcomes that are observed to

the firm at the moment of acquisition) where the individual-level parameters of each of these

sub-models are projected into a lower-dimension space using a two-layered deep exponential

family (DEF) component. The lower layer of the DEF component captures the relevant

correlations among the individual-level parameters. We incorporate automatic relevance

determination priors (ARD) for this layer, enforcing sparsity and automatically reducing the

dimensionality of the individual-level parameters, similarly as in a Bayesian PCA model and

modern applications of “supervised” factor models. The model departs from the

aforementioned models by allowing non-linear relationships among the factors in the lower

layer, through the upper layer.

First among four notable aspects of the proposed modeling approach is that the

model is able to capture a wide range of relationships between observed behaviors and

variables of interest, for example, the interaction effects between two (or more) acquisition

variables and the outcomes of interest. As the model will recover them from the data, those

(linear or non-linear) relationships do not need to be pre-specified. Second, unlike traditional

dimensionality reduction methods, the number of latent factors do not need to be specified a

priori. The model infers the number of relevant dimensions from the data through automatic

relevance determination. Third, the model is scalable, being applicable to datasets with large

numbers of customers and many acquisition characteristics, some of which might contain

missing observations. When present, these missing observations are easily handled by the
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FIM, which models them as outcomes using a Bayesian estimation framework. Lastly, the

proposed modeling framework is general in the sense that can be integrated with any

demand specification, from simple linear specifications to more complex model structures

that incorporate a latent attrition component (a.k.a., “buy-till-you-die” models) or other

forms of customer dynamics (e.g., hidden Markov models). This desirable feature implies

that marketers across business settings, contractual and non-contractual, can use this

framework by making minor adjustments to the demand/transactional model.

Using a set of simulation analyses, we demonstrate the FIM inferences for

newly-acquired customers’ to be more accurate than those generated by multiple tested

benchmarks. Unlike other models, our approach accommodates flexible relationships among

relevant behaviors, enabling the model to make accurate inferences about newly-acquired

customers when the relationships between acquisition characteristics and demand parameters

are unknown to the firm or researcher.

We then apply the FIM to a retail context and demonstrate how the focal firm can

overcome the cold start problem by augmenting the (thin) historical data using their

transactional database and employing the proposed modeling framework that extracts the

relevant information from the augmented customer data. First, we use the transactional data

to extract the characteristics of every customer’s first purchase (namely price paid, number

of products purchased, etc.) as well as observed product characteristics such as category

purchased, package size, etc. Second, we leverage the transactional data from customers

outside our sample to create a continuous multidimensional representation of products (or

product embeddings). Specifically, we use the word2vec algorithm—a machine learning

approach originally developed to analyze textual data—to model the co-occurrence of

11



products in customer baskets. This yields a set of product embeddings that can be used to

augment data on customers’ first transactions based on the specific products they bought.

We then estimate the FIM to the augmented cold start data and make individual-level

predictions for newly-acquired customers outside the calibration sample.

We empirically demonstrate the superiority of the FIM at distinguishing, immediately

after they make their first purchase, heavy spenders from those expected to yield less value.

The model can be also used to highlight the set of acquisition characteristics most predictive

of future behavior. For example, we find the predicted Top 10% heavy spenders to be less

likely to be acquired during the holiday period and more likely to be acquired offline, and

their first purchases to tend to include expensive and discounted products. The model also

captures differences in customer responsiveness to marketing actions, enabling firms to

identify and characterize those most (or least) sensitive to specific marketing

communications. For example, we find that customers most sensitive to email marketing are

more likely to be acquired online and buy less expensive products, and their first purchases

to include fewer units. We also find non-linear relationships between acquisition

characteristics and customer responsiveness to marketing actions. For example, the

differences in email sensitivities across customers that received discounts on their first

purchase only exist for those who also purchased a recently introduced product.

The present research develops a modeling framework that overcomes the cold start

problem by linking customers’ early observed behaviors and choices with future purchase

behavior, enabling firms to make meaningful predictions about customers just acquired.

Methodologically, our paper contributes to the CRM literature by being the first to

incorporate in a general, flexible, and scalable way information obtained at the moment of
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acquisition (generally discarded due to an inability to use it effectively). Substantively, our

research is relevant to marketers faced with the challenge of managing customers soon after

acquisition. We show how the proposed modeling framework enables firms to identify and

characterize, from information collected at the moment of acquisition, high-value customers

and those most sensitive to marketing communications. From a practical perspective, our

research guides firms in the use of cold start data to augment information already in their

databases. To that end, we employ recent developments in machine learning and natural

language processing to create a matrix of product “embeddings” that enable firms to

characterize (even recently acquired) customers based on the products they purchase. We

believe this approach to customer segmentation to be highly promising, enabling firms to

obtain rich information about individual customers without recourse to customer-provided

data or external sources that might pose privacy concerns.

The remainder of the paper is organized as follows. Following a brief review of the

literature related to our work, we introduce the cold start problem and illustrate the main

challenges to solving it in practice. We next present our modeling framework, discuss its

components, and evaluate its performance vis-à-vis existing approaches that could be used to

solve the cold start problem. We then apply our model in the context of an international

beauty and cosmetic retailer. We conclude with a discussion of the implications, managerial

relevance, and future directions of our research.
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1.2 Previous literature

Our research relates to the broad literature on customer-base analysis that has provided

managers and analysts with tools for understanding, forecasting, and managing the

(heterogeneous) behavior of customers. It relates particularly to work that has incorporated

the effect of marketing variables or, more generally, time-varying covariates in customer

lifetime value (CLV) models. Notable work in this area includes Schweidel and Knox (2013)

and Schweidel et al. (2014) who, building on the foundations of the

Beta-Geometric/Beta-Binomial (BG/BB) model (Fader et al., 2010), incorporate the effect

of direct marketing activity and past customer activity on the latent attrition process and

the customer’s purchase propensity while alive, and Knox and van Oest (2014) and Braun

et al. (2015) , who incorporate the effect of the customer service experience and customer

complaints on the latent attrition process of the Beta-Geometric/NBD (BG/NBD) model

(Fader et al., 2005). Our research and methodological objectives differ in two main ways.

Whereas the main purpose of the aforementioned studies is to capture the effect of

time-varying marketing variables (e.g., direct marketing activities, customer complaints) on

customer behavior, we extract as much information as possible from cold start data. The

referenced models, although they could be used to incorporate a handful of pre-specified

acquisition variables, are not well suited to extract relevant information from noisy and

redundant variables, the case with cold start data. Second, we do not build on a specific

demand specification tied to a business context, but rather provide a modeling framework

that can incorporate any of the models of behavior presented in the foregoing papers.
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On a substantive level, our work relates to Gopalakrishnan et al. (2016), who propose

a framework for multi-cohort data able to predict the behavior of new cohorts of customers

for whom little transactional data is available. Gopalakrishnan and colleagues build a model

that allows customers to be inherently different depending on when they were acquired (i.e.,

which cohort they belong to), while capturing the underlying dynamics across cohorts. We

posit that such inherent heterogeneity can be explained (at least partially) by

individual-level observed characteristics collected when customers make their first purchase.

This is consistent with Anderson et al. (2020) who document the existence of “harbinger

products.” These are products that, when purchased by a customer in their first transaction,

are an indicator of the customer being less likely to purchase again, and hence, provide less

value to the firm. Our work also relates to Loupos et al. (2019), who use social network data

for recently acquired customers to explain heterogeneity in their future value to the firm. To

the best of our knowledge, our approach is the first to integrate several types of information

collected at the moment of acquisition, and to differentiate responsiveness to marketing

actions—not only individual propensity to transact—on the basis of customers’ first

purchases. The latter aspect is crucial in cases in which targeting occurs soon after the

customer is acquired or when securing a second purchase is challenging.

The premise that behaviors observed at the moment of acquisition can help firms

explain heterogeneity in future behavior is consistent with empirical findings in the CRM

literature (e.g., Fader et al., 2007; Voigt and Hinz, 2016), specifically, work on customer

acquisition that has investigated the relationship between acquisition-related

information—e.g., channel of acquisition—and subsequent customer lifetime value (e.g.,

Verhoef and Donkers, 2005; Lewis, 2006; Villanueva et al., 2008; Chan et al., 2011; Steffes
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et al., 2011; Schmitt et al., 2011; Uncles et al., 2013; Datta et al., 2015). Our work, although

it investigates relationships between acquisition-related variables and subsequent customer

behavior, differs in two important ways. First, our end goal is to inform decisions related to

the management of already acquired customers (e.g., whom to target in the next campaign)

rather than the design of optimal strategies for customer acquisition (e.g., free trials to

increase customer acquisition). The goal of our modeling framework is to extract as much

observed heterogeneity as possible from initial behaviors while controlling for firms’

acquisition activities rather than estimate the casual impact of these acquisition variables on

future behavior. Second, this literature suggests that customers are inherently different

depending on how they have been acquired. We broaden the range of acquisition-related

behaviors by looking not only at how a customer was acquired (e.g., online vs. offline, trial

vs. regular), but also what they did when they were acquired (e.g., what kind of product did

they buy? how much did they pay?), hence extracting more information from the initial

transaction. The latter is especially relevant for managers and analysts in large retail and

hospitality businesses, among others, such information not only being easily observed, but

typically already residing in their databases.

From a methodological perspective, we contribute to the literature on applying

probabilistic machine learning methods to marketing (Jacobs et al., 2016; Dew and Ansari,

2018; Dew et al., 2020). More specifically, our work relates to the literature on applying deep

exponential families (Ranganath et al., 2015) as building blocks of more complex models

(Ranganath et al., 2016; Wang and Blei, 2019), and other generative models such as Bayesian

Principal Component Analysis (Bishop, 1999; Mohamed et al., 2008).
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1.3 The “cold start” problem of CRM

We turn to a retail context to illustrate the cold start problem, and to motivate and validate

our modeling framework. Retail is a good context to examine this phenomenon for several

reasons. First, firms in this sector increasingly collect transactional data and rely on

analytics to better manage their customers (Forbes, 2015). Second, retail represents a large

proportion of the total economy, with revenues accounting for 31% for the global GDP

(Research and Markets, 2016). Finally, the data structure in most retail settings— in

particular, the one used in this research—resembles that in many other industries such as

hospitality, entertainment business, or non-for-profit organizations, that face similar data

challenges when implementing CRM programs.

1.3.1 The “cold start” problem

Consider a retailer that sells cosmetic/beauty products both via online and offline channels.1

Like most other companies, it records the transactions of all individual customers since the

moment they were acquired, including the time of purchase, the products purchased in each

particular transaction, their price and discounts (if any), along with information about the

CRM activities that the company engaged with, such as email marketing activities. With

these transactional data at hand, the focal company could apply some of the aforementioned

models and be able to predict, with a good degree of accuracy, the number of transactions

that customers with different transaction patterns would make in future periods (e.g., Fader
1This will be the specific context of our empirical application. The full set of details about the focal firm

and the data will be presented in Section 1.5; in this section we only present the relevant information to
motivate the business problem and the modeling challenges.
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et al., 2010). The marketer can also incorporate the historical marketing actions to capture

how those variables affected transaction propensities and customer value (e.g., Schweidel and

Knox, 2013; Schweidel et al., 2014). However, when making these types of inferences for

recently acquired customers, for whom the firm has no transactional history nor past

marketing interventions, the “best guess” that the marketer can get is the population average.

This is what we call the “cold start problem of CRM” whereby firms cannot make

individual-level inferences about newly-acquired customers that differentiates them, therefore

diminishing the effectiveness of future CRM activities.

The premise of this research is that, while it is the lack of (historical) data that

causes the cold start problem, firms nowadays have access to other data sources that,

properly leveraged, can help them overcome the cold start problem. Granted, if firms only

observed that the customer made “a transaction” it would be very difficult to overcome the

cold start problem. However, most firms not only know when a customer made their first

transaction but also record the details such as the channel/store used, the exact product the

customer purchased, the price paid, whether they bought in discount, the time of the day,

and so forth.2 We propose leveraging those (already existing) data and extract what we call

“acquisition characteristics” from each customer’s first transaction.3 We contend that these
2Note that the amount of data collected by firms also include data prior to the moment of acquisition.

For example, e-retailers collect information via cookies, which could identify which customers have visited the
website previously (yet, not making a purchase). When available, those data can be included in the exact
same fashion as the acquisition characteristics. For simplicity, we denote “acquisition” data to all information
available to the firm at the moment of acquisition, acknowledging that such data could also incorporate
actions the customer performed before their first transaction.

3In theory, the data could also be augmented with characteristics of the second, or third transaction, for
customers who are repeat buyers. However, we only use the first transaction because that is the data that
every customer— just acquired and existing users—have in common, which will be the key to make inferences
about recently-acquired customers. Adding information about each later transactions might add precision
to the individual-level inferences of repeat users, but not necessarily to the inferences of recently-acquired
customers, which is the main focus of this paper.
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acquisition characteristics/choices can be informative about underlying customer differences

which can be predictive of customers behavior in the future. Because these data are also

available for customers with longer tenure with the company, the firm would be able to

uncover the (subtle) relationships between the choices observed at the moment of acquisition

and the customer behavior down the road.

1.3.2 Augmenting cold start data with acquisition characteristics

Considering the retailer introduced above, who is trying to make inferences about its

customers right after they have been acquired. A natural first step for the analyst would be

to select a handful of variables collected at the acquisition moment (e.g., channel of

acquisition) and use existing models to relate those characteristics to future demand (e.g.,

Chan et al., 2011). The caveat of doing so is that merely few variables might not fully

capture the richness of the acquisition data, and the level of personalization would likely be

limited as these few variables only capture a coarse representation of customers’

heterogeneity. We propose to fully augment the acquisition data to broaden the amount of

information that would (potentially) be linked to future behavior, therefore increasing the

chance to solve the cold start problem.

Specifically, using the (existing) data from each first transaction, we propose to

augment cold start data with three types of acquisition variables: transaction characteristics

(e.g., channel, price paid, holiday season) and product characteristics (e.g., product category,

package size), which are easily extracted from the transactional database, and shopping

basket (latent) representation. The latter type of data aims to capture the “nature” of
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products that the customer purchased, above and beyond what the standard (observed)

product categories represent. Our premise is that the nature of products purchased can

signal the type of customer who purchases those. For example, in the market of cosmetics,

certain ingredients or aroma characterize lines of products. It is possible that customers who

discover the brand by buying products of certain “nature” are similar in they way they

behave in the future. Because such information is not readily available from the firm’s

database, we need a method to encode the information embedded in each product, to then

aggregate it at the basket level.4

Previous literature has used different methods to encode such information, from

human coding based on full description of the product, to machine learning approaches that

apply textual analyses to the description of products, or that leverage co-occurrence of

products in basket data to create measures of similarity across products (e.g., Jacobs et al.,

2016; Ruiz et al., 2017; Kumar et al., 2020; Chen et al., 2020). We take the latter approach

and leverage the transaction data from anonymous customers to create continuous

multidimensional representations of products, called product embeddings, that capture the

nature of the product. Specifically, we create a co-occurrence matrix based on the

composition of shopping baskets— i.e., which SKUs are purchased together—and implement

word2vec (Mikolov et al., 2013), a machine learning approach widely used for natural

language processing, to map each item to a multi-dimensional vector that captures

similarities across products. This exercise is similar to creating a perceptual map from
4One alternative to this solution would be to include a dummy variable per (available) SKU. This approach

would be straight forward in business contexts where the product space is small. However, when the firm
offers a large selection of items or SKUs—as it is the case for most retailers— the vector of dummy variables
would be too sparse to capture similarities among baskets and thus would prevent any model to learn across
customers. For those cases, we recommend using a lower-dimensional vector representing the product space,
as we do in this research.
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association data (Netzer et al., 2012) in which the co-occurrence of products in a basket is

used as proxy of association between two products. (See Appendix A.1 for all the details

about how we process the transaction data and create the product embeddings using the

word2vec algorithm.) Once we represent each product by a continuous vector, we can easily

characterize the first purchase of any customer by computing moments of the product

vectors in that basket.

In sum, using the transactional data already collected by the firm, one can easily

augment each customer’s data with a high-dimensional vector that captures a wide variety of

acquisition characteristics including details about the first transaction as well as the type of

products purchased.5

1.3.3 Predictive power of augmented data

A natural question to ask is: Do acquisition characteristics carry information about future

behavior? While this is an empirical question, we present preliminary evidence from our

empirical application that these augmented acquisition characteristics in turn explain

differences in subsequent demand behavior across customers. To do so, we select customers

who have been with the company for at least 15 months and relate their total number of

repeat purchases during those 15 months with their (augmented) acquisition characteristics.

We explore the relationship between individual acquisition characteristics and future

transactions (Figure 1.1), as well as possible interactions among acquisition variables in their

correlation with future demand (Figure 1.2).
5In our empirical application this vector has 31 dimensions. Further details are presented in Section 1.5.

21



Indeed, acquisition characteristics are predictive of customers future transactions.

Consistent with common belief in the industry (e.g., Artun, 2014; RJMetrics, 2016),

customers that were acquired during the holiday season are less valuable to the firm, as we

find that they are less likely to transact in the future. On the other hand, customers who

Figure 1.1: Transactions versus acquisition characteristics. Observed repeated trans-
actions as a function of a sample of augmented acquisition characteristics.
All acquisition variables are constructed from the first transaction of each
customer. Repeated transactions do not include the first transaction.
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Figure 1.2: Transactions versus interaction of acquisition characteristics. Observed
repeated transactions as a function of interactions among acquisition
characteristics. All acquisition variables are constructed from the first
transaction of each customer. Repeated transactions do not include the
first transaction.
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bought using discounts on their first transaction generally buy more during the next 15

months than customers who did not. A similar pattern exists for customers who bought a

recently-introduced product on their first transaction, and those who purchased products

from the hair care category. Interestingly, this model-free analysis also suggest that some of

these relationships are likely to be non-linear. For example, looking at average price paid per

item, customers that bought more expensive products in their first transaction tend to buy

more frequently in the future. Noteworthy, this relationship is not linear. Customers in the

lowest quartile (Q1) tend to buy less frequently in their first 15 periods than all other

customers. Similar non-linear relationships appear for the number of units and the total

amount of the ticket.

Interesting patterns also emerge in Figure 1.2. On the left, we group customers on

whether they were acquired during the winter holiday season, coupled with whether they

purchased travel-size products. We find that purchasing travel-size products moderates the

relationship between being acquired during the holidays and the future number of

transactions. Turning to the figure on the right, we observe that purchasing a discounted

product on the first transaction signals lower value only if such a purchase did not include a

new product. Taken together, these results present evidence of a relationship between

acquisition characteristics and future transactions, confirming that augmenting cold start

data with acquisition characteristics incorporates relevant information to infer customers’

differences.

Nevertheless, this simple analysis is insufficient for solving the cold start problem of

CRM as would likely miss useful information from the data. First, it can only be performed

for sub-sample of customers— those for whom we observe for relatively long period of time
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(e.g., 15 months)— in order to have a fair comparison across customers over the same

number of periods. Second, this type of analysis examines each variable independently

(Figures 1.1), at most allowing for single interactions (Figure 1.2). Given that the goal is to

extract relevant correlations in high-dimension cold start data, it will be more effective (and

efficient) to examine these correlations collectively, while allowing for flexible relationships

among the variables. Furthermore, the model-free analysis does not shed any light about

customers’ response to marketing actions. These results indicate that “holiday” customers

are less likely to transact again. However, are they more/less sensitive to the firm’s

communication? How strongly will they react product introductions? A model would be

certainly necessary to effectively extract the information from the acquisition characteristics

to predict differences in transaction propensities as well as in responsiveness to marketing

actions. Before presenting our modeling framework, we describe the methodological

challenges that such a model should overcome.

1.3.4 Modeling challenges

Our solution to overcome the cold start problem ultimately depends on the ability of the

model to extract the information hidden in the augmented data that is predictive of future

behavior. Naturally, increasing the dimensionality of the acquisition data increases the

chances of adding (at least potentially) information that will be relevant to infer customer

differences down the road. However, expanding the dimensionality of the acquisition data

also adds methodological challenges.

24



First, several of those augmented variables are likely to be irrelevant. Many of the

behaviors observed in the first purchase are likely to be random and not systematically

related with how customers will behave in the future. Second, some of these augmented data

are multiple signals from the same underlying behaviors, implying that much of those data

would be redundant. For example, a price-conscious customer may purchase a set of

travel-sized, cheap products that are discounted. Although, the variables price and discount

capture different types of information (e.g., a discounted product may still be an expensive

one), these variables are clearly correlated as they are both signals of this customer’s

preferences for inexpensive products. Moreover, if one also were to include latent

representations of the products bought, these representations may also correlate with the

prices that these products are sold and how frequently they are discounted; adding to the

total correlation present among augmented variables. Taken together, these characteristic

suggest that it is likely that cold start data would have low “signal-to-noise” ratio, increasing

the difficulty of recovering the relationships between acquisition characteristics and future

behavior.

Importantly, the underlying relationships between acquisition variables and future

demand is unknown. As indicated by the early exploration of the data (Figures 1.1 and 1.2),

those relationships are unlikely to be linear. It is unrealistic to recommend that a firm would

explore all possible interactions and non-linear specifications among their augmented

acquisition characteristics, and is especially cumbersome when also interested in customers’

response to marketing actions. Moreover, increasing the dimensionality of the augmented

data only emphasizes this challenge as it would increase the number of potential non-linear

relationships and interactions among acquisition variables. Another potential limitation of
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increasing the dimensionality of the acquisition variables is that some variables might be

missing for some customers. Missing observations present challenges to estimate models that

use those missing variables as covariates as they require imputation methods—cumbersome

for high-dimensional spaces—or deletion of customers (or variables) from the data—which

directly reduces the amount of information, defeating the purpose of the data augmentation

step.

In this research, we propose a modeling framework that overcomes all these issues at

once. We combine a flexible demand specification (such that can be applicable to a wide

rage of marketing contexts) with state-of-the-art machine learning methods (addressing

nonlinearities and data redundancy) within a Bayesian framework (that extract signals from

the acquisition characteristics while handling missing data). The resulting modeling

framework is a flexible probabilistic machine learning model that links the individual-level

parameters governing customer’s future behavior (e.g., transaction propensities, sensitivity to

marketing actions) with a latent representation of the behaviors/choices observed at the

moment of acquisition. This modeling approach seamlessly captures flexible relationships

among variables (linear and non-linear) without the need to pre-specify those relationships a

priori. Moreover, the model explicitly accounts for correlations in the acquisition data which

helps regularize the flexible model avoiding overfitting.

These benefits will become clear as we build and validate the model in the next

section, where we also show how this approach dominates existing alternatives that

addressed some (but not all) modeling challenges. For example, we compare it with a

standard hierarchical Bayesian model with acquisition characteristics are included as

covariates; a fully hierarchical model where acquisition characteristics and demand are jointly
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correlated using a multivariate Gaussian distribution; or a (supervised) Bayesian PCA that

aims to reduce dimensionality of acquisition characteristics as well as demand parameters.

Finally, as we show in our empirical application that, if we simplify the task and only

consider the model’s ability to predict future transactions, our modeling approach performs

at the level of traditional machine learning (ML) approaches such as a random forest and a

deep neural network (proven to capture non-linear relationships very well). Our model

stands out in comparison with these ML benchmarks in two main ways. Methodologically, it

can be easily be combined with multiple demand specifications, as well as allows for missing

observations in acquisition characteristics without relying on data imputation. Practically,

our model provides inferences beyond predictions of future transactions, enabling marketers

to get insights about customer heterogeneity in preferences and in sensitivity to marketing

actions.

1.4 Modeling framework

1.4.1 Model development

Our modeling framework—which we call “First Impression Model” (FIM)—comprises three

main components: (1) the demand model, main outcome of interest to the firm, which could

include customers transactions, purchase volume, etc., (2) the acquisition model, capturing

all customer outcomes that are observed to the firm at the moment of acquisition, and (3)

the probabilistic model that links the underlying customer parameters influencing these two

types of behaviors through hidden traits.
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1.4.1.1 Demand model

We start by assuming a general model for demand, suitable for different specifications, and

parametrized using individual-level parameters and population-level parameters. Specifically,

for customer i at period t, we denote

ppyit|rx
y
it,β

y
i ,σ

y
q “ f ypyit|rx

y
it,β

y
i ,σ

y
q i P t1, . . . , Iu, t P t1, . . . , Tiu, (1.1)

where I represents the total number of customers, Ti denotes the number of periods since the

customer was acquired, βyi is a vector containing customer i’s individual-level parameters,

the vector σy contains the parameters that are common across customers, and rxyit includes

the observed covariates for customer i at period t. Finally, f yp¨q is the pdf/pmf for outcome

yit; for example, if the outcome of interest is purchase incidence, we would specify

ppyit “ 1q “ logit´1
“

xyit
1
¨ βyi

‰

.6

1.4.1.2 Acquisition model

We denote Ai the vector of characteristics that are collected at the moment of acquisition,

and aik the k’th component/behavior (e.g., did the customer purchase a discounted product

on their first transaction?). These acquisition characteristics are likely to be influenced by

individual-level parameters (e.g., does this customer have the tendency to buy on discount?)
6The model can easily be adapted to other forms of demand (e.g., continuous demand, count) and

extended to dynamic specifications such as latent attrition models. For the latter, one could define (1.1)
as a state-space model (e.g., a hidden Markov model) with state variable sit and ppyit, sit|yi1:t´1, si1:t´1q “

ppyit|sitq ¨ppsit|sit´1q. We would implement such a model by having two individual level vectors, βyqi and βyei ,
as well as two population level vectors, σyq and σye, that would govern transitions among the hidden states
and emissions in a state, respectively. We would substitute (1.11) for ppyit, sit|yi1:t´1, si1:t´1,x

y
it,β

y
i ,σ

yq “

ppyit|sit,x
y
it,β

yq
i ,σ

yqq ¨ ppsit|sit´1,x
y
it,β

ye
i ,σ

yeq, where βyi “
“

βyqi βyei
‰

, and σy “
“

σyq σye
‰

be the
parameters of the demand model.
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but also by the market conditions at the moment of acquisition (e.g., was the company

running heavy discounts during that period?). We account for these effects by modeling the

acquisition characteristics as a probabilistic outcome, rather than as an input/covariate to

the model. Note that we do not model acquisition per se, i.e., whether the customer is

acquired or not. Rather, we model the characteristics of their first purchase, given that the

customer was acquired.

Modeling the acquisition characteristics as an output not only allows us to control for

the time-varying factors that shift demand at the moment of acquisition, but also allows for

a flexible modeling specification of the latent traits that overcome challenges such as

redundancy, irrelevance of variables, and missing data commonly encountered in the firm’s

database. (We discuss these challenges in Section 1.4.1.3). Specifically, we denote

ppaip|β
a
ip,σ

a
p ,x

a
mpiqτpiqq “ fap paip|β

a
ip,σ

a
p ,x

a
mpiqτpiqq i P t1, . . . , Iu, p P t1, . . . , P u, (1.2)

where P is the number of different types of behaviors collected at acquisition, βaip is an

individual level parameter that reflects tendency to observe such a behavior when customer i

is acquired, σap denotes a vector of parameters that are common across customers, and

xampiqτpiq comprises the set of market-level covariates, with mpiq indicating the market

customer i belongs to, and τpiq denoting the time period at which the customer was acquired.

The term fap p ¨ |q is the pdf/pmf of a distribution to model acquisition behavior p.

Note that some of these behaviors will likely be discrete (e.g., whether the customer was
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acquired online), in which case we specify σap “
“

bap
‰

and model p as

ppaip “ 1q “ logit´1
“

βaip ` xampiqτpiq
1
¨ bap

‰

. (1.3)

For continuous acquisition variables (e.g., total amount spent in the first transaction) we

define σap “
“

bap, σ
a
p

‰

and model p as

ppaipq “ N pβaip ` xampiqτpiq
1
¨ bap, σ

a
pq, (1.4)

specification that can be easily adjusted for multivariate outcomes as we do with some

acquisition variables in our empirical application.

All of these types of variables are easily incorporated by adjusting the acquisition

model accordingly. We define βai “
„

βai1 . . . βaiP



and σa “
„

σa1 . . . σaP



as the full set

of individual- and population-level vectors of acquisition parameters, respectively.

Note that we only have one observation per individual and behavior. Hence, in

theory, having an individual-level parameter βaip could completely capture the residual

variance of aip that is not systematically explained by the market-level factors (as in a

regression with individual random effects but only one observation per individual). However,

because we model demand and acquisition jointly, our model will balance fitting each

acquisition behavior aip with fitting the other acquisition characteristics, as well as fitting

demand, with a reduced set of individual factors or traits. Therefore, the individual level

parameters βaip will not have full flexibility to accommodate perfectly to the behavior aip.

Rather, these parameters will capture the residual variance that is correlated with the rest of

30



the acquisition variables and with the demand model. This remark will become clearer when

we specify the relationship between the individual-level demand and acquisition parameters,

βyi and βai , as we do in the next section.

Finally, the term xampiqτpiq controls for the overall marketing intensity that a

yet-to-be-acquired customer might have been exposed to in a particular market at the

moment of acquisition. For example, if there is a strong promotional activity in market m in

period t, one would likely observe a higher-than-usual share of discounted products among

the acquisition characteristics, not only driven by the customers’ propensity to buy on

discount, but also by the fact that the majority of products were discounted.7 Accordingly,

we want to capture this systematic shift in the acquisition characteristics as a market-related

shift and not as a customer-driven shift, and therefore set bap common across customers.

1.4.1.3 Linking acquisition and future demand: Deep probabilistic model

We use a deep exponential family (DEF) component (Ranganath et al., 2015) to relate

demand and acquisition parameters hierarchically, through hidden layers. We chose such

specification because of its hierarchical nature—allowing the model to identify/extract

individual-level traits that affect both acquisition and future demand—and because the

presence of multiple layers facilitates the reduction of dimensionality while accommodating a

wide range of possible relationships between acquisition and demand variables. Furthermore,

one important characteristic of DEFs is that the latent variables are distributed according to

distributions that belong to the exponential family (e.g., Gaussian, Poisson, Gamma),
7If the model did not control for these market-level conditions and the firm managed acquisition and

retention efforts strategically, the correlations between acquisition characteristics and demand parameters
obtained by the model could be spurious in the sense that they could be driven by the firm’s actions and not
by customers’ underlying preferences.
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making them a good candidate to model the wide range of data types encountered in the

firm’s database. Finally, DEFs also enjoy the flexibility of probabilistic models, allowing

them to be easily incorporated in more complex model structures, as we do in this research.

(See Appendix A.2 for more details on DEFs.)

Turning our attention to our modeling challenge, the primary goal of our model is to

infer the individual-level parameters βyi . Therefore, we specify the DEF component such

that the lowest level captures the individual-level traits that affect both the acquisition

characteristics and future demand. Specifically, we define

βyi “ µ
y
`Wy

¨ z1i (1.5)

βai “ µ
a
`Wa

¨ z1i (1.6)

such that the individual level parameters, βyi and βai are a (deterministic) function of mean

parameters, µy and µa, and individual deviations from this mean which are a function of the

lower layer vector z1i , and weight matrices Wy and Wa. Similarly as in a Bayesian Principal

Components Analysis (Bayesian PCA) model (Bishop, 1999), the vector z1i captures the

individual level traits that explain jointly demand and acquisition behavior. The weight

matrices Wy and Wa capture how each one of these traits manifests in both demand and

acquisition characteristics respectively.

We assume that each component k of the lower layer, z1ik, is distributed Gaussian

with mean gp´w1
k
1
¨ z2i q, and variance 1,

ppz1i,k|z
2
i ,W

1
q “ N

´

z1i,k|g
´

´w1
k
1
¨ z2i

¯

, 1
¯

k P t1, . . . , N1u, (1.7)
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where N1 is the dimension of the lower layer, gpxq “ log plog p1` exppxqqq is the log-softplus

function (Ranganath et al., 2015),8 and W1 is the weight matrix that links the upper and

lower layers. The upper layer captures higher-level traits (resembling the structure of neural

networks), while allowing for non-linear correlations between the traits in the lower level z1i .

The correlations among the lower layer components are induced by reducing the

dimensionality of top layer (z2i is a vector of length N2, with N2 ă N1)9 whereas the

non-linear relationships are captured by the non-linear link function gp¨q, which relates the

higher-level traits with the lower-level traits that manifest in demand and acquisition.

Finally, we model the upper layer using a standard Gaussian distribution,

ppz2i,kq “ N
`

z2i,k|0, 1
˘

k P t1, . . . , N2u. (1.8)

To sum, we link the individual-level demand and acquisition parameters using a DEF

component of two Gaussian layers, z1i and z2i . The model could easily accommodate more

layers (e.g., Ranganath et al., 2015, use up to 3 layers, L ď 3, in their empirical

applications).10

8In Stan, the softplus function, defined as fpxq “ logp1` exppxqq, can be computed using log1p_exp(¨).
9In theory, N2 could be larger than N1 but such a model would not necessarily reflect patterns in data as

information would be lost going from the upper layers of the DEF to the lower layers of the DEF. Ranganath
et al. (2015) only estimate models with decreasing dimensions of upper layers.

10We follow the specifications from Ranganath et al. (2015), where the model is estimated using, at most,
3 layers (L ď 3). In that paper, the model is trained on two large text corpora (5.9K and 8K terms), two
matrix factorization tasks on a movie ratings dataset (50K users and 17.7K movies), and a click dataset
(18K users and 20K documents). All of these datasets are considerably larger than our data (both in the
simulations and in the empirical application). Furthermore, Tables 2 and 3 from Ranganath et al. (2015) do
not show consistently whether L “ 3 is better than L “ 2. As a result, we use L “ 2 as it is the smallest
configuration that allows for non-linear relationships.
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1.4.1.4 Dimensionality of the DEF component

At first glance, the choice of the layers dimensions N1 and N2 may seem cumbersome. On

the one hand, high values of N1 and N2 increase the computational burden of the inference

procedure, which is not desirable. On the other hand, a model with low values for N1 and

N2 may miss relevant correlations that are needed to infer customers’ parameters. In the

extreme, if the number of components of the lower layer, N1, is set to one, the model would

only learn a single trait to describe the variation across all parameters, which will fail to

capture the heterogeneity in the demand parameters, and their (potentially non-linear)

relationships with acquisition characteristics. Similarly, if the number of components of the

higher layer, N2, is set to zero, the model would be stripped away from the non-linear

function gp¨q that allows the model to capture non-linear relationships between demand and

acquisition parameters.

Similar to other latent-space models, one could test all possible combinations of N1

and N2 (increasing in magnitude) and choose the optimal values using cross-validation. Such

exercise is certainly required when using Maximum Likelihood Estimation, as more flexibility

in a model leads to over-fitting following the classical bias-variance trade-off, and therefore

poor performance in holdout samples. However, when using Bayesian inference, this exercise

would not only be computationally very costly, but also unnecessary, provided that adequate

priors such as spike-and-slab or sparse-gamma (Karaletsos and Rätsch, 2015; MacKay, 1995;

Neal, 2012) are used to induce regularization in the parameters governing the weights that

activate the traits. Using such priors ensures that a trait only manifests in a particular
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variable if the improvement in fit is significant; otherwise, that trait is “shut down” by the

prior (Ranganath et al., 2015).

Therefore, our approach to specifying the dimensionality of the model is to set a “large

enough” number of traits to ensure that all relevant traits are recovered, while using sparse

priors to ensure that the model only activates the relevant traits, thus avoiding over-fit the

data. Specifically, we use sparse Gamma priors for W1 and hierarchical Gaussian automatic

relevance determination (ARD) priors for Wy and Wa, both of which are spike-and-slap-like

priors that have shown to perform well on feature selection (e.g., Bishop, 2006; Kucukelbir

et al., 2017). These priors ensure that once a trait is “shut down,” adding more traits (i.e.,

increasing N1 or N2) would just add irrelevant traits with weights all being close to zero, not

affecting the performance of the model. (See Appendix A.3.1 for details about these priors.)

The added benefit of inducing regularization through the priors is that we can look at

the posterior estimates of the variances of the weights (Wy, Wa, and W1) to evaluate

whether the number of dimensions (N1 and N2) are sufficient to represent the data.

Examining N1 is straightforward as the model parameter α1 captures the variance of the

lower layer traits. Regarding N2, while there is not one specific parameter capturing the

relevance of the upper layer traits, we can compute a pseudo-α1
m for each upper trait m

using the components of the weight matrix W1 that map to relevant lower level traits (see

Appendix A.6.7 for details). Finally, examining the posterior estimates of α1 and

pseudo-α1
m—and observing that some traits have been “shut down” by the model—we

corroborate whether N1 and N2 are “large enough” for any specific dataset.

These insights are further developed in Appendix A.6.7 where we explore the

dimensionality of the DEF component by analyzing the results of estimating the FIM on
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simulated data, where we know how many traits are needed. There we show how the

performance of the model remains largely unchanged by the additional dimensions (on either

N1 or N2) after the relevant number of traits are accounted for. We also show how the

posterior estimates of the variances of the weights (α1 and pseudo-α1
m) are diagnostic of

relevant and non-relevant traits.11

To sum, we take a hybrid approach to model selection in which we make sure that the

number of pre-specified dimensions is large enough—phenomenon that can be validated from

the model parameters—while we rely on the priors of the model to ensure regularization.

1.4.1.5 Bringing it all together

We briefly discuss how each part of the model contributes to the desired goals and how the

FIM compares with alternative approaches to overcome the cold start problem. In essence,

the model comprises a demand and an acquisition model, whose individual-level parameters

are projected into a lower-dimensional space through a two-layered DEF component. The

lower layer of the DEF captures the relevant correlations among the individual-level

parameters while reducing the dimensionality of those vectors. An alternative approach to

link the acquisition and demand parameters could be through using traditional full

hierarchical Bayesian priors (e.g., multivariate Gaussian). Such an approach would assume

that all individual-level parameters (βyi and βai ) are distributed jointly according to a flexible

multivariate distribution which parameters capture all the potential correlations among the

variables. However, this full hierarchical approach would require require the model to
11The posterior distribution of α andW1 from real world data sets would not display as clear cut distinction

between those traits that are meaningful and those that are not compared to our simulation analyses. We
come back to this point when discussing the specification of the FIM for our empirical application.
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estimate a very high-dimensional correlation matrix which can become computationally

expensive, especially as the number of acquisition variables increases. On the contrary,

because the FIM includes ARD priors for the lower layer of the DEF, the model only allows

for “relevant” correlations to emerge, automatically reducing the dimensionality of the

individual-level parameters. This is a desirable feature not only because the number of

acquisition variables could be large, but also because some of the acquisition variables are

likely to be correlated among each other.12

The upper layer of the DEF, and in particular, the non-linear link function gpxq that

relates the higher-level traits with the lower-level traits allows the model to capture a wide

range of relationships— linear and non-linear—among the variables of interests. A simpler

specification of the FIM would be one that does not incorporate the second layer and

therefore imposes linear relationships among the individual parameters. Such a nested

version of the FIM would be equivalent to a “supervised” factor analysis or Bayesian PCA

where the latent traits are extracted from the acquisition variables as well as from the

demand model. The limitation of such a (nested) approach is that the model would lose its

accuracy at forming first impressions the moment the assumption of linearity does not hold,

either because acquisition variables relate to demand parameters in a non-linear way, or

when two (or more) acquisition variables interact in their relationship with the demand

parameters. As we show in Section 1.4.4, our FIM specification (that includes the second
12An alternative but similar specification for the model could be a two-step approach that first reduces

dimensionality among the acquisition variables (i.e., connecting z1i to βai ) and then connects those factors
with future demand. We choose to connect the lower level of the DEF model with both components jointly
in order to be robust to the possibility that the residual variance of the acquisition variables not explained by
the main factors of the first step is predictive of demand behavior; and to inform the choice of factors that
are predictive of demand behavior, as in supervised topic models (Mcauliffe and Blei, 2008), and therefore, to
overcome redundancy and irrelevance of acquisition variables simultaneously.
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layer) captures several forms of relationships (including linear, interaction effects, and

maximum function) without the need for specifying those relationships a priori. This is a

very desirable property of the model because managers/reseachers/data scientists generally

do not know the exact form of the relationships among the variables of interest.

Finally, a different approach to overcome the cold start problem could be to simply

specify the individual-level demand parameters (βyi ) as a direct function of the acquisition

variables (Ayi ). Such a specification would resemble a typical demand model with

interactions, or a multi-level (hierarchical) model in which βyi are a function of the observed

Ai and some population distribution (Rossi et al., 1996; Allenby and Rossi, 1998; Ansari and

Mela, 2003; Chan et al., 2011). While a linear model is attractive for its simplicity and ease

of interpretation, such an approach becomes intractable when the parameter space for the

acquisition variables increases. Moreover, if the underlying relationships between the

acquisition variables were not linear (or did not follow the specified relationship, due to

variable transformation), the model will fail at inferring individual-level demand parameters

for newly-acquired customers with certain level of accuracy. In addition, specifying the

demand parameters as a direct function of the acquisition characteristics prevents the

researcher from using acquisition characteristics that have missing observations. This is a key

benefit that provides modeling acquisition characteristics as an outcome, as opposed to a

direct function (we show this benefit by incorporating acquisition characteristics with

missing observations in our empirical application in Section 1.5).

To conclude, Figure 1.3 shows the graphical model for the FIM, connecting all the

individual components. We propose a model of demand and acquisition characteristics where

the individual-level parameters of each of these sub-models are projected into a
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Figure 1.3: Graphical model of first impressions
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lower-dimension space via a DEF component. The specification of the demand sub-model is

general such that the modeling framework can be applicable to a wide range of business

contexts. The sub-model for acquisition characteristics enables the model to control for

market conditions or firm-initiated actions that can potentially shift the type of customers

that are acquired over time. If these shifts were not captured, the model would not be able

to differentiate market conditions from customer underlying preferences. Regarding the DEF

component, there are three main benefits of using a two-layered DEF to connect both types

of individual-level parameters. First, the model provides dimensionality reduction, avoiding

the curse of redundancy and irrelevance of variables among the acquisition variables. Second,

the model allows for flexible relationships (e.g., non-linear relationships) among the model

components. Third, the model can incorporate acquisition characteristics with missing

observations, as these are modeled as outcomes which are easily handled using a Bayesian

estimation framework. These benefits will become clearer in Sections 1.4.4 through 1.5,
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when we compare the predictive accuracy of the FIM with that of several alternative

specifications.

1.4.2 Estimation and identification

We estimate the model using full Bayesian statistical inference with MCMC sampling. We

sample the parameters from the posterior distribution which is proportional to the joint,13

p
`

tz1i , z
2
i u
I
i“1,W

y,Wa,W1, µy,µa,σy,σa,ba, tyi1:T , Aiuiq “
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ppz1i | z
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i ,W

1
q
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¨

«
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i“1

ppz2i q

ff

¨ ppWy,Wa,W1,µy,µa,σy,σa,baq. (1.9)

In particular, we use the No U-Turn Sampling (NUTS) Hamiltonian Monte Carlo algorithm,

implemented in the Stan probabilistic programming language (Carpenter et al., 2016;

Hoffman and Gelman, 2014), which is freely available, and facilitates the use of this model

among researchers and practitioners.14

Regarding the identification of the model parameters, the demand and acquisition

parameters (βyi , σy, βai and σa) are identified, provided the functional forms described in

(1.1) and (1.2) are well specified. On the contrary, not every single parameter of the DEF

component is fully identified. [Lower layer ] The parameters that link the lower layer of the
13All details about the prior distribution ppWy,Wa,W1,µy,µa,σy,σa,baq are presented in Appendix

A.3.2.
14The code is available from the authors.
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DEF with βyi and βai are identified up to a rotation, similar to a traditional factor analysis

model. Specifically, the scales of the lower layer trait (z1i ) and weights (wy and wa) are

identified through the priors scales. Small rotations are identified by the sparsity of the ARD

priors (see Appendix A.3 for details) — these priors favor the activation of fewer traits,

avoiding the rotation of a large trait into smaller ones. Orthogonal rotations are not fully

identified due to possible sign change in traits and label switching. However, we can obtain

behavioral insights from the lower layer of model—e.g., what trait(s) are most predictive of

specific behaviors—by carefully rotating the lower layer traits and weights parameters

across draws to maintain a consistent interpretation of these parameters (see Appendix A.4

for details). [Top layer ] The top layer of the DEF and the parameters that link the top and

lower layer are not identified. This is similar to deep neural networks, in which the lower

layer is a combination of the values of the upper layer and the weights linking them. In our

model specification, this translates to the value of the top layer (z2i ) not being identified as

different combinations of z2i and w1 could generate the same value for z1i . Most importantly,

this lack of identification in the DEF component does not preclude the model from uniquely

identifying the individual-level demand parameters βyi (as corroborated in Sections 1.4.4 and

1.5), which is the main goal when overcoming the cold start problem.

1.4.3 Model inferences for newly acquired customers

Recall that the main purpose of the model is to assist firms in the task of making inferences

about how individual customers will behave in the future (e.g., how they will respond to

marketing interventions), based on the observed behaviors at the moment of acquisition.
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Intuitively, that process would works as follows: A new customer is acquired and the firm

observes their behaviors at the moment of acquisition. At that point, and given the firms’

prior knowledge of the market (i.e., the model parameters and market conditions), the firm

makes an inference about that particular customer’s latent traits, which are then used to infer

the individual-level parameters that will determine their demand (e.g., how likely is it that

the customer will purchase in the future, their responsiveness to marketing interventions).

More formally, we want to infer ppβyj |Aj,Dq for customer j who was not in the

training sample, for whom we observe acquisition characteristics Aj, and where

D “ tyi1:Ti , Aiu
I
i“1 comprises the calibration data. Denoting

Θ “ tµy,µa,Wy,Wa,W1,σy,σa,bau the population parameters and Zj “ tz
1
j , z

2
ju, we can

write ppβyj |Aj,Dq by integrating out over the parameters Θ and Zj, and using the

conditional independence properties of our model. That is,

ppβyj |Aj,Dq “
ż

ppβyj ,Zj,Θ|Aj,Dq ¨ dZj ¨ dΘ

“

ż
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“
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fi
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«
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ppβyj |Zj,Θ, Ajq ¨ ppZj|Θ, Ajq ¨ dZj

fi

ffi

fl

¨ ppΘ|Dq ¨ dΘ. (1.10)

The last equation suggests that if the number of customers in the calibration data is large,

we can approximate the posterior of the population parameter with focal customer j by the

posterior distribution obtained without the focal customer j. In other words, adding one
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more customer would not significantly change the posterior of the population parameters.

This approximation is very useful in practice because it allows us to draw from ppΘ|Dq using

the calibration sample, and draw the individual parameters of the focal customer j once this

customer has been acquired, without the need to re-estimate the model to incorporate Aj.

(See Appendix A.5 for a description of the corresponding algorithm.)

1.4.4 Model performance

Before applying the new modeling framework to the empirical context, we need to

demonstrate the accuracy of the model at inferring the individual-level parameters for

newly-acquired customers. Because individual-level parameters are, by definition,

unobserved, we perform this task using a simulation analysis in which we know the exact

values of βyj and can therefore evaluate the model’s ability at recovering the true parameters

using (1.10). Unlike other simulation exercises, the goal of this analysis is not to confirm

that the model can recover the (population) parameters. Rather, we use simulations to

demonstrate that the proposed model is able to recover customers’ individual-level

parameters accurately, even when the data generating process for those individual-level

parameters is not known, and possibly different from the modeling assumptions. In reality,

marketers (and researchers) never know the exact relationship between acquisition

characteristics and future demand parameters, therefore, having a flexible model that

performs well in a variety of contexts is of critical importance. (We briefly describe the main

aspects of the simulation design while including all details in Appendix A.6.)
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We generate three scenarios for the underlying relationship between acquisition

variables and demand parameters. In each scenario, customers are “endowed" with a set of

demand parameters that follow a specific relationship with their observed acquisition

characteristics, namely (1) linear, (2) quadratic/interactions (allowing the relationship

between one acquisition variable and the demand parameters to vary depending on the value

of other acquisition characteristics), and (3) positive-part (forcing the relationship between

acquisition characteristics and demand parameters being zero for low values of the

acquisition characteristic). Given those individual-level demand parameters, customer

transaction history is simulated for 2,200 customers. We use 2,000 customers to estimate the

model, and the remaining 200 customers to evaluate the accuracy of the model at inferring

demand parameters for newly-acquired customers. Specifically, only using the acquisition

characteristics for these 200 customers, we use the model to infer their individual-level

demand parameters, and compare those estimates with the true values.

We compare the performance of the FIM with that of three other specifications: (i) a

HB-linear model, where individual demand parameters are specified as a linear function of

the acquisition characteristics (this corresponds to the simulated data under the linear

scenario), (ii) a full hierarchical model, where demand and acquisition parameters are jointly

distributed according to a multivariate Gaussian distribution with a flexible covariance

matrix, and (iii) a Bayesian PCA model. As discussed in Section 1.4.1.5, the Bayesian PCA

model is a nested specification of the proposed FIM (in which the second layer does not

exist) whereas the full hierarchical model and HB-linear specifications reflect alternative

(simpler) ways in which past research has modeled these types of data. To measure the

accuracy of each model, we compare the predicted posterior mean vs. the actual values for
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the demand parameters (both the intercept and the effect of the covariates) of the 200

out-of-sample customers. Table 1.1 includes the results for all models across all scenarios.15

We also include the results of estimating a hierarchical Bayesian (HB) demand-only model in

which acquisition characteristics are not incorporated, to have a reference of how much error

one would obtain by simply predicting the population mean.

Table 1.1: Accuracy of predictions of demand parameters for (out-of-sample) cus-
tomers

Scenario 1 Scenario 2 Scenario 3
Linear Quadratic/interactions Positive part

R-squared RMSE R-squared RMSE R-squared RMSE

Intercept
HB demand-only 0.001 6.703 0.020 7.624 0.007 8.514
Linear HB 0.988 0.734 0.711 4.113 0.783 4.056
Full hierarchical 0.988 0.735 0.704 4.164 0.781 4.091
Bayesian PCA 0.988 0.736 0.706 4.484 0.780 4.329
FIM 0.988 0.738 0.888 2.661 0.928 2.987

Effect of covariates
HB demand-only 0.005 2.562 0.004 4.589 0.001 4.604
Linear HB 0.986 0.303 0.258 3.969 0.736 2.363
Full hierarchical 0.986 0.303 0.258 3.970 0.733 2.378
Bayesian PCA 0.986 0.301 0.245 4.364 0.738 2.752
FIM 0.986 0.302 0.515 3.229 0.745 2.325

First, under a true linear relationship (Scenario 1), the FIM predicts the individual

parameters as good as the benchmark models. The RMSE of the FIM is comparable to the

benchmark models, and the R-squared is equal to the benchmark models. This result verifies

that the FIM does not overfit the training data or, in other words, that the additional model

complexity—even when not needed—does not hurt the accuracy of predictions for

customers outside the calibration sample. Second, when the relationship among the model

parameters is not perfectly linear (Scenarios 2 and 3), the FIM significantly outperforms the

benchmark models in all dimensions. In particular, the R-squared of the FIM is higher than

that of the benchmarks, demonstrating that the model is superior at sorting customers based
15See Appendix A.6.3 for more details about the specification of the benchmark models and Appendix A.6.4

for details on the performance metrics.

45



on their demand parameters. Moreover, the RMSE for the FIM is substantially lower than

that of the benchmarks, indicating that the proposed model predicts the exact magnitude of

customer parameters (e.g., purchase probability, sensitivity to marketing actions) more

accurately than any of the benchmarks. These results hold when we examine the model “at

scale”, when we significantly increase the amount of data collected by the firm and also add

standard regularization techniques (e.g., LASSO) to the benchmark models. (Please see

Appendix A.6.8 for details.)

To help understand what drives the greater accuracy of these predictions, we further

explore the results for Scenario 3 (when the true relationship is positive-part). The first row

of Figure 1.4 shows the scatter plot of the predicted (pβyj1) versus actual (β
y
j1) individual

demand intercepts from each model, which displays the superior performance of the FIM, as

detailed in Table 1.1. The second row of Figure 1.4 shows the predicted and actual demand

intercepts as function of the first acquisition variable for each model. The blue dots show the

true relationship between these two variables (i.e., positive-part) whereas the red dots

correspond to the relationship estimated by the model. These plots evidence that the FIM

can better recover the positive-part relationship between the acquisition variables and the

demand parameters.
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Figure 1.4: Model performance for Scenario 3: positive-part individual results of
intercept. The first row shows the scatter plot of the individual true vs.
posterior mean for each model. The second row shows the individual
posterior mean (red) and true (blue) as a function of acquisition variable
1 (A1).
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Finally, to better understand which aspect of the model is responsible for this

accuracy of predictions, we compare the BPCA and the FIM model more closely, allowing

both specifications to vary the dimensionality of their latent components. Such an analysis

indicates that the presence of the second layer of the DEF component is contributing

significantly to the improvement in accuracy for scenarios where the relationship is not linear.

The results suggest that incorporating that second layer, even if specified with low

dimensionality, allows the model to flexibly capture the non-linear relationship between

acquisition and demand parameters. (Please see full details in Appendix A.6.6.)
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To sum, these analyses demonstrate the effectiveness of the FIM at overcoming the

cold start problem. We have shown that the FIM can accurately infer customer parameters

using only acquisition data, even when such a model is not used to simulate the true

parameters. While the benchmark models fail to form accurate inferences of newly-acquired

customers when the underlying relationships among variables are not perfectly linear, the

FIM is flexible enough to reasonably recover those parameters. This latter point is of great

importance because in reality the researcher/analyst never knows the underlying

relationships among variables. Therefore, having a flexible model able to accommodate

multiple forms of relationships is crucial to accurately infer customers’ parameters.

1.5 Empirical application

1.5.1 Data and model specification

Our focal firm is an international retailer that sells its own brand of beauty and cosmetic

products (e.g., skincare, fragrance, haircare).16 Customers can only purchase the company’s

products via owned stores, either offline (the company owns “brick and mortar” stores across

many countries) or online (with one online store per country). While the company is present

in many countries, most marketing functions (e.g., promotional campaigns, product

introductions) are centralized and therefore operations are very consistent across markets.

Like most other companies, the focal firm records the transactions of all individual

customers, along with other information about the CRM activities, such as direct marketing

campaigns and email marketing activities.
16The authors thank the Wharton Customer Analytics Initiative (WCAI) for providing this data set.
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1.5.1.1 Transactional data

We obtain individual-level transactions for registered customers in the six major

markets—USA, UK, Germany, France, Italy, and Spain. We observe customers from the

moment they make their first purchase (starting in November of 2010). At the point of

purchase, customers are asked to provide their name, email, and address so that they can

receive promotions and other marketing communications from the firm.We track their

behavior up to 4 years after that date (ending in November of 2014). We have 13, 473

customers, with a minimum of 3 and a maximum of 51 periods of individual observations,

resulting in 287, 584 observations.17 During this time, we observe a total of 15, 985 repeated

transactions (i.e., the average number of transactions per customer is 2.19; or 1.19 repeated

transactions). In addition to the behavior of the 13, 473 registered customers, we collect data

on all purchases made by “anonymous” customers in all six markets— i.e., those who never

shared their identity with the firm. While their behavior is not included in our main analysis

(the firm can neither track their future behavior nor communicate with them via email or

mail), we use these anonymous transactional data to extract product-level information which

will be used to augment the cold start data and to control for shocks in distribution channels

that affect the timing of the introduction of new products in specific markets.

We specify demand as a logistic regression where yit “ 1 if customer i transacts at

period t, and yit “ 0 otherwise. Specifically, f yp ¨ |q from (1.1) is defined as

ppyit “ 1q “ logit´1
“

xyit
1
¨ βyi ` δrec ¨ Recencyit ` αm

‰

, (1.11)

17A period corresponds to exactly 28 days. We do not use a calendar month as our unit of analysis because
we want to have the same number of days in all periods.
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where we control for latent attrition using recency as a covariate (Neslin et al., 2013)18 and

include market-level fixed effects to capture differences in purchase frequencies across

countries (i.e., in this case rxyit “ rx
y
it,Recencyits and σy “ tδrec, α1, . . . , αM´1u, with M the

number of markets).

1.5.1.2 Marketing actions

The firm regularly sends emails and direct marketing to registered customers. The content of

these promotional activities is set globally (i.e., the same promotional materials are used

across countries, translated to the local language), though their intensity is set by market

(e.g., the USA tend to send more emails than France).19 In addition to promotional activity,

the company uses product innovation as a marketing tool. Like other major brands in this

category, the focal retailer regularly adds extensions and/or replacements to their product

lines. The sense among the company managers is that such an activity not only helps in

acquiring new customers but also keeps current customers more engaged with the brand.

When the company introduces a new product, it does so in all markets simultaneously.

There is, however, some variation across markets regarding when new products were

introduced. Conversations with the company confirmed that such variation is due to

differences (and random shocks) in the local distribution channels.

While direct and email marketing are observed at the individual level (we denote them

by DM and Email, respectively), the availability of new products is not observed at a granular
18As discussed in Section 1.4.1.1, the proposed FIM can accommodate different demand specifications

such as “buy-til-you-die” models or HMMs. For our empirical application, we corroborate that adding recency
is sufficient to control for latent attrition, which reduces the estimation time when compared with adding a
probabilistic latent absorbing state (e.g., Chan et al., 2011).

19We only observe email activity sent after September 2012. Therefore, we will only consider customers
acquired after that date for the estimation of the model.
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level. We create a new product introduction variable (Introd) by combining point-of-sale

data (at the SKU level) with a firm-provided SKU list of new products. Specifically, we

obtain the list of all new products introduced during the period of our study. We identify the

SKUs for all products in that list and infer inventory in each market from all purchases

observed in that particular market (including all 304,497 transactions from “anonymous”

customers). We assume that a new product was introduced in a market at the time the first

unit of that SKU was sold. We then create a period/market-level variable representing the

number of new products that were introduced in each market in each time period.

Table 1.2: Summary of time-varying marketing actions.

Marketing action Statistic Mean SD N

Across observations 3.267 4.686 287,584

Email Indiv. average 4.272 3.612 13,473
Indiv. st. dev. 3.404 1.790 13,473
Indiv. coeff. of variation 1.425 1.082 13,336

Across observations 1.006 1.889 287,584
Direct Indiv. average 1.329 1.018 13,473
Marketing Indiv. st. dev. 1.731 0.769 13,473

Indiv. coeff. of variation 2.031 1.205 13,455

Across observations 0.923 1.264 287,584
Products Indiv. average 0.657 0.532 13,473
introduced Indiv. st. dev. 0.755 0.534 13,473

Indiv. coeff. of variation 1.354 0.478 11,927

Table 1.2 shows the summary statistics for the marketing actions summarized across

observations and across individuals. For the latter, we summarize individual average,

individual standard deviation, and the individual coefficient of variation. The variation in

these data is very rich both across customers and within customers.
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We define the vector of demand time-variant covariates xyit as the intercept,

firm-initiated marketing actions, and seasonal factors such as holiday periods,

xyit
1
“

„

1, Emailit, DMit, Introdmpiqt, Seasonmpiqt

1

,

where Email, DM, and Introd are the marketing actions, and Season is a dummy variable

that equals 1 for the winter holiday, and 0 otherwise.20

Given the business nature of our application, the information provided by the firm

about how the managers conduct their marketing actions, the rich longitudinal and

cross-sectional variation in our data (Table 1.2), and our model specification, we argue that

the potential endogenous nature of the marketing actions is not a main concern in this

research (see Appendix A.7.1 for details). Nevertheless, in situations where these conditions

do not hold (due to different strategic behavior by the firm or for data limitations), the

demand model should be adjusted to account for the firm’s targeting decisions. Given the

flexibility of our modeling framework, those adjustments would merely involve extending the

demand model to capture unobserved shocks between firm’s actions and individual-level

responsiveness (Manchanda et al., 2004) or adding correlations between firm decisions and

unobserved demand shocks through copulas (Park and Gupta, 2012), depending on how

these actions are determined by the firm. Those changes would only affect the demand

(sub)model and not the overall specification of the FIM.
20We compute such a variable for each market separately because the exact calendar time for the holiday

period varies across countries. For example, in the USA the holiday “shopping” period covers Thanksgiving
week until the last week of December (i.e., the end of Christmas), whereas in Spain the only holiday season
corresponds to Christmas, which starts at the end of December and ends after the first week of January.
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1.5.1.3 (Augmented) acquisition characteristics

Transaction characteristics: We compute Avg.Price as the total amount in euros of the

ticket divided by the number of units bought at the first transaction; Quantity is the total

number of units bought at the first transaction; Amount is the total amount in euros of the

ticket at the first transaction;21 Discount is a dummy variable that equals 1 if the customer

received discounts in the first transaction, and 0 otherwise; Online is a dummy variable that

equals 1 if the first transaction was made online, and 0 otherwise. We also create a Holiday

dummy variable that equals 1 if customer made their first transaction during the winter

holiday period and 0 otherwise (analogously as the time-varying covariate Season).

Product characteristics: Directly from the observed product characteristics, we create a

10-dimensional vector that indicates whether the basket includes a product from a Category,

including Body care, Face care, Hair care, Toiletries, etc., as defined by the focal company.

Moreover, given that product innovation is very important in markets of beauty and

cosmetic products, we create a NewProduct dummy variable that equals 1 if the customer

bought a product that had been introduced in the 30 days prior to the purchase, and 0

otherwise. We also include the average Size of the packages in the basket, operationalized as

relative size with respect to other products in the same sub-category, and a Travel dummy

which equals 1 if the basket includes products on travel size, and 0 otherwise.

Latent representation of shopping baskets: As described in Section 1.3.2, we characterize each

customer’s first purchase by computing moments of the products included in their shopping

basket. The resulting product embeddings in our empirical application is a 6-dimensional
21We transform the Avg.Price and Amount variables using a log function, and the Quantity variable with

a log-log function.
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vector that represents the position of each product in a similarity space, which we call the

“nature” of a product. Once those product embeddings are created, we create BasketNature,

computed as the “average” product purchased, and BasketDispersion, computed as the

element-wise standard deviation across products in the same basket, with missing values

when the first purchase includes only one product.22

Formally, the vector of acquisition characteristics is specified as follows,

Ai “ rAvg.Pricei, Quantityi, Amounti, Discounti, Onlinei, Holidayi,

.......Categoryi, NewProducti, Traveli, Sizei,

.......BasketNaturei, BasketDispersionis.

The variation in the acquisition data is very rich (Table 1.3). For example, 22% of the

sample was acquired over the holiday period, and 30% of first transactions included at least

one discounted product, 35% included products in the face care category. The standard

deviations of price, number of items purchased, amount, relative size, and basket dispersion

are large, reflecting the heterogeneous behavior of customers across the six markets. Note

that several of these acquisition characteristics are missing for some customers— for example,

products for which the package size could not be retrieved from the data have missing

Package Size observations, baskets that include single items have missing

BasketDispersion observations, and so forth. These missing observations do not present a

challenge in the estimation of the FIM— i.e., there is no need to eliminate observations or
22In addition, if a first transaction of a customer includes only SKUs of products that were not purchased

in any transaction of those anonymous customers’ transactions used for generating the product embeddings,
then both BasketNature and BasketDispersion will have missing values as well.
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to input population averages—because of the way the acquisition characteristics enter the

probabilistic model in (1.2).

Table 1.3: Summary statistics of selected acquisition characteristics.

Variable Description Mean SD N

Avg. price (e) Average price per unit, in euros 11.642 10.237 13,473
Quantity Total number of units purchased 4.934 5.298 13,473
Amount (e) Total ticket amount, in euros 39.567 38.433 13,473
Holiday Whether customer was acquired during the Holiday 0.220 ´´ 13,473
Discount Whether discounts were applied in transaction 0.302 ´´ 13,473
Online Whether the transaction was online 0.176 ´´ 13,473
New product Whether a new product was purchased 0.431 ´´ 13,473
Travel Whether a travel-size product was purchased 0.397 ´´ 13,473
Package Size Average size of products (relative to its subcategory) 1.080 0.701 13,352
Avg. BasketDispersion Average basket dispersion across all dimensions 1.338 0.660 9,928
Face Care Whether a product in the Face Care category was purchased 0.352 ´´ 13,473
Hair Care Whether a product in the Hair Care category was purchased 0.120 ´´ 13,473
Note: For the sake of simplicity, we omit the descriptive statistics for the 6 BasketNature variables and 8 remaining product categories.
We also aggregate the BasketDispersion variables, by averaging across all dimensions of the word2vec representations. Missing values
correspond to first purchases including products with missing information and for the case of BasketDispersion, those with only one item
in the basket.

Table 1.4: Correlations among selected acquisition characteristics.

Avg. Quantity Amount Size Holiday Discount Online New Travel Face
price product care

Avg. price 1.000
Quantity -0.330
Amount 0.251 0.594
Size 0.396 -0.238 0.038
Holiday -0.082 0.179 0.090 -0.027
Discount -0.200 0.285 0.184 -0.160 0.055
Online -0.241 0.411 0.168 -0.097 0.056 -0.049
New product -0.036 0.250 0.248 -0.055 0.068 0.066 0.106
Travel -0.350 0.347 0.122 -0.348 0.088 0.289 0.009 0.149
Face care -0.066 0.366 0.298 -0.113 0.051 0.096 0.483 0.177 0.083
Hair care -0.124 0.261 0.121 -0.091 -0.016 0.084 0.266 0.139 0.063 0.155

Note: We dropped missing values in pairwise computations only.

Consistent with the challenges mentioned in Section 1.3.4, some acquisition

characteristics are correlated with each other (Table 1.4)—e.g., customers who purchased

many items paid less per item (correlation“ ´0.330), and those who bought on discount also

paid slightly lower than those who paid full price when they were first acquired

(correlation“ ´0.200). Online first purchases tend to include more items in the basket

(correlation“ 0.411) and contain products in the face care category (correlation“ 0.483).
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While it is to be expected that some of these variables will be correlated, as they capture

different behaviors incurred by the same customer, some of these correlations might also

arise from the market conditions at the moment in which a customer was acquired (e.g., if

the company introduces all of its new products during the holiday, customers with

Holiday“ 1 will also have NewProduct“ 1 and vice versa).23 As discussed in Section 1.4.1.2,

our modeling framework separates these two types of correlations by incorporating firm’s

market-level actions, xampiqτpiq, that potentially affect these acquisition behaviors.

Specifically, we include market-level CRM activities such as number of emails

(MarketEmail), DMs (MarketDM),24 and the number of products introduced by the firm

(Introd) in that period.25 That is,

xampiqτpiq “

„

MarketEmailmpiqτpiq, MarketDMmpiqτpiq, Introdmpiqτpiq

1

.

Because the span of the acquisition data covers 4 years from 6 different markets, we have

substantial variation (longitudinal and cross-sectional) to separate any firm-related
23If not accounted for, the latter case could be potentially problematic because the model would not

be able to separate the predictive power of being a “holiday customer” from that of being a “new product
customer.” And, if the company were to change its policy in the future (e.g., introducing new products in
June), our model inferences about just-acquired customers could be misleading.

24We calculate market-level number of emails and DMs as the average number of emails and DMs sent in a
particular period to customers in that market. Note that the focal customer i cannot receive these marketing
communications before being acquired, thus these variables are computed using the set of already existing
customers at that time.

25Note that the number of products introduced in a particular period enters both the demand and the
acquisition model (xyit and xampiqτpiq, respectively). This is not problematic because the objective is different
on each component. In the demand model, this variable captures the effect of introducing products at a
particular period on the purchasing behavior of an existing customer for that particular period. In the
acquisition model, this variable serves as a control for extracting the component of the acquisition variables
that reflects individuals’ traits. For example, the fact that a customer bought a new product on their first
transaction could be a signal of customers traits, and/or a consequence of more products being introduced by
the firm when the customer was acquired.
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systematic relationship among acquisition characteristics from correlations induced by

customers’ underlying preferences.

1.5.2 Estimation

We apply our modelling framework to this retail context to show how a firm can make

meaningful inferences about newly acquired customers. The firm would do so by calibrating

the FIM using historical data from its existing customers and making inferences about newly

acquired customers for whom only the acquisition characteristics are observed.

We restrict our analysis to periods in which the firm was engaging in marketing

activities, which span from October 2012 to November 2014 (N “ 8, 985 customers). In

order to mimic the problem faced by the firm, we estimate the model with the transactional

behavior of (existing) customers up to April 2014 and use those estimates to form first

impressions for customers acquired after April 2014, using only their acquisition variables.26

Specifically, we split all customers into three groups: Training, Validation, and Test. We

randomly select customers that were acquired before April 2014 to use in our Training

sample (N “ 5, 000) and use their behavior prior to April 2014 to train the models.

Regarding the dimensionality of the FIM, and following the approach discussed in

Section 1.4.1.4, we find that N1 “ 13 and N2 “ 5 are enough to recover the meaningful

correlations present in our data. The posterior distribution of α is concentrated close to the

origin for a set of lower level traits, indicating that N1 “ 13 is high enough to capture the

traits that directly affect the demand and acquisition parameters. Similarly, the posterior
26We chose this date to reasonably balance the amount of data we need to estimate the model, with the

sample size remaining for the prediction analysis.
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distribution of the computed pseudo-α shows that at least one upper level trait is not

relevant for impacting the lower level traits, suggesting that N2 “ 5 is enough to capture the

upper level traits.27 (For further details see Appendix A.7.6.)

We also select another set of customers acquired during the same period for our

Validation sample, which we will use to compare the predictive accuracy of the models at

estimating demand (N “ 1, 000). Finally, we use the remaining customers acquired before

April 2014, and combine them with those acquired after April 2014 to form our Test sample,

which we will use to identify valuable customers and to inform our targeting policy

(N “ 2, 985).28

Similarly as in Section 1.4.4, we estimate all models (linear HB, Bayesian PCA and

FIM) using NUTS in Stan.29 We also estimate a set of probability models (also estimated

with Stan) that have been proposed in the literature to model these type of data as they

explicitly account for latent attrition (e.g., Chan et al., 2011; Schweidel and Knox, 2013;

Schweidel et al., 2014). For completeness, we test multiple specifications varying the inclusion

of time-varying covariates in the transaction process and time-invarying covariates in the

attrition process, namely (1) Linear model with marketing actions + logistic attrition process

(without acquisition covariates), (2) Linear model (without marketing actions) + logistic

attrition with acquisition covariates, and (3) Linear model with marketing actions + logistic

attrition with acquisition covariates (see details in Appendix A.7.2). Finally, we estimate two
27For robustness, we estimate another FIM specification with N2 “ 2 instead, and we find that all upper

traits are relevant, suggesting that N2 “ 2 may not be enough to capture the non-linear relationships present
in the data.

28Ideally, we would like to test our targeting policies using only customers acquired after the calibration
period. However, given the low incidence of purchases in this empirical context, we would not observe such a
group of customers for a long enough period to have reliable data to validate our predictions.

29We do not show the Full hierarchical model given its similar performance to the linear-HB specification.
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Machine Learning (ML) methods widely used for supervised learning (i.e., whether a

customer transact) namely a feed-forward deep neural network (DNN) and a random forest

(RF). Both ML models include time-varying covariates, acquisition characteristics, and

market-conditions at the moment of acquisition. (See details in Appendix A.7.7 for details

about the packages used for estimation of the ML methods and related model specifications.)

1.5.3 Results

1.5.3.1 Parameter estimates

Table 1.5 shows the population mean and standard deviation of each of the demand

parameters. Customers in the sample have a low propensity to transact on average

(βyintercept “ ´3.110). Email and direct marketing communications have a positive average

impact on purchase (βyemail “ 0.111 and βydm “ 0.121, respectively), whereas product

introduction effects are not significant on average. Finally, customers return to transact more

on holiday periods (βyseason “ 0.361). In Section 1.5.4 we explore the observed heterogeneity

in these components (captured by the FIM) as well as the implications for the managers of

the firm.

Table 1.5: Parameter estimates of FIM.

Demand Posterior statistics
parameter Post. mean Post. sd PCI 2.5% PCI 97.5%

Pop. mean ´3.110 0.051 ´3.205 -3.024Intercept Pop. std. dev. 0.364 0.086 0.245 0.549

Pop. mean 0.111 0.026 0.061 0.163Email Pop. std. dev. 0.167 0.031 0.110 0.235

Pop. mean 0.121 0.028 0.067 0.174DM Pop. std. dev. 0.137 0.023 0.094 0.182

Pop. mean ´0.058 0.048 ´0.164 0.024Product introductions Pop. std. dev. 0.213 0.046 0.128 0.310

Pop. mean 0.361 0.072 0.235 0.502Season Pop. std. dev. 0.362 0.065 0.245 0.505
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Another set of interpretable parameters of the FIM are the posterior estimates of the

lower layer of the DEF component. Properly rotated, these parameters could be used to

interpret the latent factors that connect acquisition characteristics and demand parameters.

For the sake of brevity, in this section we focus on the model performance at solving the cold

start problem and include those interpretable results in Appendix A.7.3.

1.5.3.2 Comparison with the benchmark models

Unlike the simulation exercise, in the empirical application we do not know the true value of

the demand parameters (βyi ), and therefore have to rely on the model predictions to evaluate

the quality of the model. We compare the (out-of-sample) accuracy of the FIM predictions

with those of the benchmark models in Table 1.6.30 (For completeness, the performance of

all models on the Training sample is presented in Appendix A.7.4.) The FIM outperforms

all the nested and latent attrition benchmarks in out-of-sample fit (i.e., Log-Like) as well as

at making predictions at the observation, customer, and period level. This results not only

corroborate the results presented in Section 1.4.4, now on a real-world setting, but also

indicate that in this application, the traditional CLV models that explicitly model attrition

do not outperform the Linear HB model with recency, even when including the acquisition

variables as time-invarying covariates (e.g., Chan et al., 2011). Not surprisingly, the DNN

method provide the most accurate results when looking at in observation level RMSEs, with
30Arguably one should test these performance metrics on a different set of customers for which we selected

the FIM specification. However, most FIM specifications deliver a similar performance on this Validation
sample, and thus, would perform similarly well against the benchmark models. More importantly, the main
performance test of the FIM is whether it can better identify valuable customers, which we perform using the
Test sample in Section 1.5.4.
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the FIM doing as well as the RF. However, when looking at customer- and period-level

RMSE, the FIM outperforms all of the above models.

Table 1.6: Comparison with benchmark models (Validation sample).

Log-Like RMSE

Model Observation Customer Period

Linear HB ´2134.6 0.247 1.307 4.570
Latent Attrition w/ Acq. ´2367.4 0.249 1.403 4.951
Latent Attrition w/ Mktg. Actions ´2194.1 0.250 1.361 4.499
Latent Attrition w/ Acq.+Mktg. Actions ´2384.5 0.253 1.421 4.722
Bayesian PCA ´2010.0 0.240 1.184 4.240
Feed-Forward DNN ´´ 0.235 1.095 7.468
Random Forest ´´ 0.236 1.118 6.783
FIM ´1927.0 0.236 1.046 4.058

These analyses demonstrate that the FIM outperforms the benchmark models at

accurately inferring individual-level demand parameters when only acquisition characteristics

are available. The benefits of the proposed model are most salient when the underlying

relationship between the acquisition characteristics and the parameters governing future

demand are not linear, as it is the case for many empirical applications. In the next section

we illustrate the managerial value of these predictions and discuss other insights (provided

by the model) that are of managerial relevance.

1.5.4 Overcoming the cold start problem

First, we investigate how accurately the firm can identify “heavy spenders” using only the

data from their first transaction. We do so by leveraging the information from customers in

the Test sample. Specifically, we combine the estimates of the models (calibrated with the

Training sample) and the acquisition characteristics observed for customers in the Test

sample, and infer their individual-level demand parameters (see Appendix A.7.5) to predict

each individual’s expected number of transactions. We then compare these inferences with
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their actual behavior using two sets of prediction metrics (Table 1.7). First, we compute the

RMSE on the individual-level average number of transactions per period.31 Second, based on

each individual’s expected number of transactions, we flag whether a customer belongs to

the top 10% and top 20% of highest average number of transactions and report the

proportion customers correctly identified/classified in each group.32 For reference, we

compare those figures with what a random classifier would predict (shown in the last row).

Table 1.7: Identifying valuable customers using Test customers.

% customers correctly classified
Model RMSE Top 10% Top 20%
Linear HB 0.157 0.151 0.253
Latent Attrition w/ Acq. 0.520 0.113 0.207
Latent Attrition w/ Mktg. Actions 0.303 0.213 0.248
Latent Attrition w/ Acq.+Mktg. Actions 0.242 0.090 0.191
Bayesian PCA 0.138 0.208 0.313
Feed-Forward DNN 0.098 0.349 0.450
Random Forest 0.106 0.193 0.310
FIM 0.131 0.401 0.477
Baseline (random) – 0.100 0.200

– (0.067,0.127) (0.170,0.230)
Note: The proportion of top spenders is computed by predicting over the observed periods, computing the
average number of transactions per period, and selecting customers with highest predicted values.

As Table 1.7 shows, the FIM can predict reasonably well the value of customers: the

FIM has a lower RMSE than the Linear HB and the Bayesian PCA models, only

outperformed by the RF and the DNN. Moreover, Linear HB and BPCA are significantly

better than the baseline at identifying valuable customers, which proves that acquisition

characteristics carry valuable information to predict the value of customers. Nevertheless,

the FIM significantly improves the identification of valuable customers over the benchmark

models, including the DNN, being able to correctly identify 40.5% of customers in the Top

10% and 47.7% of customers in the Top 20%. These results are consistent with the notion

that, because the FIM captures the non-linearities in the relationship between acquisition

31Using our notation, the individual level average number of transactions per period is sYi “
1
Ti

řTi

t“1 yit.
32We make predictions and compute recovery rates for each draw of the posterior distribution and report

posterior means and 95% CPI.
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characteristics and future demand parameters, it does an excellent job—significantly better

than the benchmarks—at sorting customers based on their expected value inferred from

their acquisition characteristics.

Similarly, a firm would use the FIM to identify which customers are the most

sensitive (or least sensitive) to marketing interventions; information that will be instrumental

in increasing the effectiveness of its marketing actions (e.g., Ascarza, 2018). Unfortunately,

our data does not enable us to quantify the exact value that the focal firm could extract

from a FIM-based targeting approach— ideally, one would run a field experiment to test the

effectiveness of targeting policies based on the predictions of the FIM. Nevertheless,

combining the results from Section 1.4.4, where we demonstrate the model’s ability to

predict the (individual-level) demand intercept as well as the sensitivity to the covariates,

with the results in Table 1.7, where we corroborate some of those findings in our empirical

application, we are confident that implementing targeting policies based on predictions of the

FIM would generate incremental revenues to the firm. We trust that future research will be

able to quantify these benefits empirically.

Second, we use the FIM results to explore the acquisition variables that better

characterize “heavy spenders” (separately from light users), customers with “high sensitivity

to email” (from those who are better left out in the email campaigns), and those who are

“most sensitive to direct marketing” campaigns. Based on the model predictions, we split

customers from the Test sample in three groups: Top 10%, Middle 80% and Bottom 10% for

each of the three categories and summarize the average value of each of the (standardized)

variables observed at the moment of acquisition. Figure 1.5 shows the results when sorting

customers on the basis of expected future value. Several interesting findings emerge:
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Consistent with the patterns observed when exploring the predictive power of the acquisition

variables (Figure 1.1) we find that the Top 10% heavy spenders are less likely to be acquired

during the holiday period, more likely to being acquired offline, and tend to buy expensive

and discounted products in their first purchase, compared to those at the Bottom 10%. They

are also characterized to buy certain types of products, as indicated by the high chance to

include Perfume and Hair products in their first transaction (less likely to contain products

in the Body Care, Home and Services categories), as well as by a high score in dimension 4

of the product embeddings.33

Figure 1.5: Acquisition characteristics for customers with top/middle/low CLV.
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We repeat the analysis now sorting customers based on their predicted sensitivity to

email (Figure 1.6) and predicted sensitivity to DM (Figure 1.7). Consistent with the
33This dimension is related to products such as “Grape Line Showers” and “Olive Harvest Conditioner,”

see Table A1 in Appendix A.1.

64



previous findings, several acquisition characteristics exhibit a non-linear relationship with the

sensitivities to marketing actions. Both the Top 10% and Bottom 10% email sensitivity

groups are less likely to buy in the Body Care category during their first transaction,

compared with the remaining 80% of customers in between. Customers who are the most

sensitive to email marketing are more likely to be acquired online, buy less expensive

products, and fewer units at their first purchase. With respect to DM, low sensitive

customers buy fewer units and more expensive products in their first transaction, while high

sensitive customers are more likely to buy relatively small sized products, recently

introduced products, and products in the Perfume Category at their first purchase.

Figure 1.6: Acquisition characteristics for customers with top/middle/low sensitivity
to Email.
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Figure 1.7: Acquisition characteristics for customers with top/middle/low sensitivity
to DM.
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Finally, we use the inferred demand parameters from these test customers to explore

the relationships between the magnitude of the demand parameters and the acquisition

characteristics. Figure 1.9 shows the individual level posterior mean of the demand

parameter vs. the acquisition characteristics for a set of demand parameters and acquisition

characteristics. In particular, we find that these plots corroborate that there are non-linear

relationships that the model allows to uncover.34 Figure 1.8 explore possible interactions by

presenting box plots of individual level posterior mean demand parameters and pairs of

discrete acquisition characteristics. The model replicates the model-free insights shown in

Figure 1.2: (1) the relationship between the intercept and whether the customer was

acquired during the winter holiday season (Holiday) depends on whether the customer
34Note, that these plots show marginal relationships of demand parameters and acquisition characteristics

(i.e., one at a time) where indeed the model cover relationships accounting for all acquisition characteristics.
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purchased a travel-sized product (Travel Size), and (2) the relationship between the

intercept and whether the customer purchased discounted products at acquisition

(Discount) depends on whether the customer purchased a recently introduced product (New

Product). Moreover, the model not only captures these relationships for the intercept but

also for other demand parameters. For instance, the holiday season lift is higher for

customers that were acquired during a past holiday season compared to those that were not,

but this difference is considerably larger for those that did not purchased a travel-sized

product when acquired. Also, the differences in email sensitivities across customers that

received discounts on their first purchase only exist for those who purchased a recently

introduced product at acquisition.

Figure 1.8: Demand parameters (posterior mean) vs. some binary acquisition charac-
teristics.
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1.6 Conclusion

We have developed a modeling framework (FIM) that, leveraging information collected when

customers are acquired, enables firms to overcome the cold start problem of CRM. Using a

probabilistic machine learning approach, the model connects underlying acquisition and

demand parameters using a set of hidden factors modeled via deep exponential families. The

multi-layer structure with flexible relationships among layers enables the researcher or

analyst to be agnostic about the (assumed) underlying relationship among variables. The

hidden factors automatically extract relevant information from existing data— i.e., identify

the traits that relate acquisition characteristics with future outcomes—overcoming the

challenge (commonly faced by firms) of maintaining significant amounts of redundant and

irrelevant data in their customer databases.

We have illustrated the benefits of using the FIM in a retail setting. First we have

shown how the focal firm can further leverage its existing database to augment the cold start

data using readily-available techniques. We have further demonstrated how subtle signals

extracted from the augmented data by the FIM enables the focal firm to make

individual-level inferences about just-acquired customers, for example, distinguish high-value

customers from those unlikely to purchase again and those most and least sensitive to

marketing interventions, such as email campaigns or direct marketing. We leverage the

model predictions to identify characteristics of first transactions that are predictive of

customer behavior in future periods. For example, compared to the rest, Top 10% heavy

spenders are more likely to be acquired online and their first purchases to be expensive and
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discounted products, and customers identified as most sensitive to email marketing to also be

more likely to be acquired online but buy less expensive products, and their first purchases

to be of fewer units.

These findings suggest that firms can meaningfully categorize customers based on

characteristics of their first transactions. We believe this approach to customer segmentation

to be promising in relying neither on sometimes difficult to obtain customer-provided data

(Dubé and Misra, 2017) and nor on external sources of data that could pose privacy concerns.

The resulting insights can be used both to prune acquisition data and inform decisions about

the types of variables worth collecting from customers that make a first transaction or first

visit a company’s website. Our research shows that firms leave value on the table by not

fully leveraging the multiple behaviors observed when a customer makes a first transaction,

and provides a general framework for extracting meaningful but hard-to-pinpoint

relationships imprinted in subtle ways in “cold start” data.

While this research highlights the value of using the FIM to tackle the cold start

problem of CRM, it is also important to acknowledge some limitations of the present

research. The simulation analyses enabled us to validate the accuracy of the model at

inferring individual-level parameters, but doing so in an empirical setting, in which only

realized purchases are observed, is more difficult. We leave it to future research to examine

and quantify the effectiveness of targeting policies based on the predictions of the FIM.

Regarding the model specification, we investigated model performance using linear and

logistic specifications for the demand and acquisition models. Although the proposed FIM is

extremely flexible so as to be adaptable to other modeling frameworks, we have not

empirically tested the model’s performance in more complex structures. The current model
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estimation is computationally feasible for datasets with thousands of customers, dozens of

time periods, and a handful of variables (as in our empirical application). Although the

model scales readily to situations with more acquisition variables, increasing the sample size

to, for example, millions of customers will increase estimation time substantially,

constraining the ability to gauge customers’ first impressions in a timely manner. For such

cases, variational inference might be a better way to estimate and use the model.

A natural extension to this research would be to investigate a wider range of

acquisition characteristics and the relevance thereof to customers’ first impressions in

different contexts. The results of our empirical application could be built on to further

augment the data from first purchases and incorporate other acquisition characteristics that,

although not currently collected (e.g., whether the customer visited the store alone or with

family), could be valuable in identifying which marketing actions are most likely to increase

future sales. We encourage further research to investigate these research settings and identify

additional drivers and methods that might help companies overcome the cold start problem.

The main goal of this work being to provide a flexible model that overcomes the cold

start problem, we have not formally investigated the latent traits that drive all the observed

behaviors. It would be relevant for researchers and marketers to identify individual traits

that characterize shopper behavior, to which end customer behavior in a variety of contexts

could be measured and estimated in a unifying FIM framework. We hope that this research

opens up new avenues for understanding “universal” shopping traits and identifies the

behaviors that best relate to those generalizable findings.
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Figure 1.9: Demand parameters (posterior mean) vs. some continuous acquisition
characteristics.
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Chapter 2

The Customer Journey as a Source of In-
formation

This essay forms the basis of a working paper of the same name jointly authored with Eva

Ascarza and Oded Netzer.
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Abstract

In high involvement purchases such as flights, insurance, and hotel stays, firms often observe

at most only a handful of purchases during a customer lifetime. The lack of multiple past

purchases presents a challenge for firms to infer individual preferences. Moreover, customers

in these industries often look for products that satisfy different needs depending on the

context of the purchase (e.g., flights for a family vacation vs. flights for a business trip),

further complicating the task to understand what a customer might prefer in the next

purchase occasion. Fortunately, in such high involvement purchases, these settings also

collect other pieces of information; prior to a purchase, firms often have access to rich

information on the customer journey, over the course of which, customers reveal their

journey-specific preferences as they search and click on products prior to making a purchase.

The objective of this essay is to study how firms can combine the information collected

through the customer journey —search queries, clicks and purchases; both within-journeys

and across journeys—to infer the customer’s preferences and likelihood of buying, in

settings in which there is thin purchase history and where preferences might change from one

purchase journey to another. We build a non-parametric Bayesian model that links the

customer clicks over the course of a journey, and across journeys, with the customer’s history

of purchases. The model accounts for what we call context heterogeneity, which are

journey-specific preferences that depend on the context in which the journey is undertaken.

We apply our model in the context of airline ticket purchases using data from one of the

largest travel search websites. We show that our model is able to accurately infer preferences

and predict choice in an environment characterized by very thin historical data. We find
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strong context heterogeneity across journeys, reinforcing the idea that treating historical

journeys as reflecting the same set of preferences may lead to erroneous inferences.

Keywords: Customer Journey, Bayesian Non-parametrics, Clickstream Data, Cus-

tomer Search.

74



2.1 Introduction

In purchase of high involvement products such as flights and hotels stays, firms often observe

at most only a handful of purchases during a customer lifetime. The short history of past

purchases presents a challenge for firms who want to infer customer preferences; in particular,

whether the customer will buy, and if so, what product will they buy. Moreover, in these

settings, even when firms observe multiple purchases per customer, it is often the case that

different purchase occasions are aimed at satisfying different customer needs (e.g., leisure

versus business travel). As a result, it is not obvious how to aggregate information across

purchase occasions in a meaningful way. To mitigate the thin historical data on the

customer’s past purchases, firms in these contexts often have access to rich information

about the customer journey prior to purchase. In particular, firms not only observe the

initial search query, but also the clicking steps the customer makes until making purchase.

We argue and demonstrate that, in these settings, firms can use the customer

purchase journey—search queries, clicks and purchase the customer makes while in the

market for a product—as a source of information to overcome both the lack of historical

purchase data and to account for context changing preferences. During the course of a

purchase journey, the customer reveals information in two ways. First, the customer types

the search query, hence allowing the firm to infer the particular need the customer is looking

for in the current purchase journey. Second, as the customer clicks on certain products but

not on others, the customer starts to reveal his/her more stable as well as purchase

journey-specific preferences. For example, if Adam is searching for a flight from Chicago to
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Orlando, observing that he is adding children to the query may provide information that this

flight will be purchased for family vacation, which may inform about Adam’s stronger

preferences for non-stop flights as he wants to avoid making connections with the kids. Then,

as Adam clicks on a non-stop American Airlines flight the firm may infer Adam’s preferences

towards American Airlines, especially if Adam’s purchase history is short. The firm can use

this information to continue showing relevant products to Adam. Moreover, even if Adam

decides to wait and not buy in that moment, the firm can use this information to

recommend certain flights through re-targeting efforts, and/or to show these flights at the

top of the page the next time Adam searches for the flight from Chicago to Orlando.

Accordingly, the objective of this paper is to study how firms can use the customer

journey path from search to transaction as a source of information and combine it with,

possibly one or a few, past journeys to infer the customer’s preferences and likelihood of

buying. To do so, we build a non-parametric Bayesian model that links the customer query

with the clicks over the course of a journey, and integrates that information across journeys,

and across the customer’s history of purchases.

The model accounts for what we call context heterogeneity, which are journey-specific

preferences that depend on the context in which the journey is undertaken. We model the

journey decisions on what to search, what to click and what to buy to be both a function of

customers’ stable preferences and the unique needs of the context of the trip. Intuitively,

contexts are unobserved segments that capture need-specific preferences that are shared for

different journeys across customers. We uncover those contexts non-parametrically using a

Pitman-Yor process as prior for the distribution of contexts in the population. Our model

allows for creation of new contexts that have not been previously observed as new journey
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observations arrive. Our model also allows for preferences over products to express

differently when customers click early on in the process versus when they choose to buy.

To infer journey-specific preferences, our model leverages three sources of information

to estimate the customer’s preferences in each particular purchase journey: (1) within

journey’s behavior (e.g., the customer query and what the customer search for and clicked on

in the focal journey); (2) past journeys’ behavior (e.g., what the customer clicked on and

purchased in past journeys); and (3) across customers’ behavior (e.g., what other customers

with similar search behavior clicked on and purchased). The within journey information,

particularly click information, allows us to identify the unique journey-specific preferences.

The past journeys’ information (not only past purchases but also searches and clicks) allows

us to inform the customer’s stable preferences. Finally, the information across customer

augments the, possibly thin, information from the two other sources with data from a host of

customers with similar context-specific preferences. Thus, in an environment with infrequent

purchases, but with observed interactions throughout the customer journey, our model allows

us to leverage across customer information with within journey information to augment the

relatively thin or non-existent historical data.

We estimate our model in the context of airline ticket search and purchases, using

data from one of the largest online travel website. For each journey we observe the query

search, and, if made, clicks and a purchased flight for a sample of active customers who

searched for flight tickets from May 2017 to November 2017. These customers have on

average fewer than 6 journeys each, result in 0.81 purchases per customer on average. Note

that even when the journey does not end up in a purchase, these journeys contain valuable

information as customers click on products, providing signals of their preferences.
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We find strong context heterogeneity across journeys such that over time, customers

search for multiple contexts, reinforcing the idea that a model that treats historical journeys

as reflecting the same set of preference may lead to erroneous inferences. While we find that

customers have negative sensitivity to price, as well as to the number of stops or the length

of the flights, the extent to which customers care about these attributes heavily depends on

the context. We uncover 19 different contexts for customers’ travel, with an average of 3.30

contexts per customer for customers with more than one journey. Those contexts vary in

terms of their search queries (e.g. who is the customer flying with, where and when is the

customer flying, and when is the customer searching), as well as their preferences for product

attributes (e.g. price, number of stops, length of flight and departing and arrival times). The

different contexts capture different trip purposes, and customers exhibit different preferences

depending on the purpose of their trip. For example, a customer who searches for short

domestic business trips—characterized by a flight that is less likely to include a weekend,

without children or multiple adults, and not searching far in advance of the departing

date— is less price sensitive and prefer return flights that arrive in the evening. In a different

context, customers who search for long distance vacations with their families are more price

sensitive, have stronger preferences for non-stops, and strongly prefer avoiding a return flight

that departs between midnight and sunrise.

We compare our full model that accounts for context heterogeneity, past journeys and

the information collected during the current journey to a host of nested models that do not

consider some of these components. We show that leveraging the customer journey as a

source of information helps the firm predict more accurately whether the customer is going

to purchase. Moreover, for customers who buy, our model also outperforms the benchmark
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models at predicting the type of flight the customer is likely to purchase. We also show the

benefits of our model in cases in which the identity of customers cannot be tracked/stored,

for example due to privacy reasons. We show that when queries and clicks are observed, even

a model that cannot identify a customer identity (i.e. treating every customer as if s/he were

a new customer) can alleviate the lack of purchase history to estimate preferences using

context information inferred from search queries and clicks. This benefit of our model is

particularly relevant given the recent concerns regarding consumer privacy, which often

limits firms’ ability to store historical data at the individual level.

Beyond our empirical application (i.e., travel websites), our model can be useful in

other industries, with high involvement purchase and involved customer journeys such as

cars and durable goods, which also exhibit thin individual purchase history. Experiential

purchases such as hotel stays, restaurants reservations, food delivery and media consumption

often involve purchase journeys with varying contexts and needs. We believe that our

empirical setting is one of the complex situations as it contains all these aforementioned

challenges one needs to address to infer preferences accurately at the journey level. Sub

components of our model could be generalizable to other settings in which only some of the

challenges take place.

The rest of the paper is organized as follows. We start in Section 2.2 by providing a

review of relevant literature. We describe our empirical context and the data in Section 2.3.

Then, in Section 2.4 we develop our modeling framework to integrate the customer journey as

a source of information to infer preferences. We show the insights from our model as well as

its prediction performance in Section 2.5. Finally, we conclude discussing the generalizability

of our modeling approach, as well as potential limitations and future directions.
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2.2 Relevant literature

The current work contributes to the rich literature in marketing on using transactional and

search data to estimate customers’ preferences at the individual level. On the one hand, the

early days of scanner panel data saw the marketing literature developing methods that allow

researchers to use past-purchase data to infer individual-level preferences (Rossi et al., 1996;

Allenby and Rossi, 1998; Duvvuri et al., 2007; Fiebig et al., 2010). These panel data models

have been widely used by researchers and practitioners in settings where individual

transactions are available. However, there are many business contexts in which observing

several purchases by the same customer is rare (e.g., purchasing a car, or booking a

week-long vacation), preventing these models from estimating individual-level preferences in

a reliable manner, and therefore limiting the manager’s ability to understand and leverage

customer heterogeneity. We extend this literature by incorporating the information from the

customer journey (e.g., search and purchase processes observed from clickstream data) from

current and past purchase occasions; even from those that did not end up in a purchase.

There is a rich literature on consumer search and the use of clickstream data (e.g.,

Montgomery et al., 2004; Kim et al., 2010, 2011, 2017; Ghose et al., 2012, 2014, 2019; Seiler,

2013; Koulayev, 2014; Honka, 2014; Bronnenberg et al., 2016; Honka and Chintagunta, 2017;

Chen and Yao, 2017; De los Santos and Koulayev, 2017; Ursu, 2018) that uses within-journey

information to infer customer preferences and to predict purchase. For example,

Montgomery et al. (2004) find that customers’ browsing behavior can predict future steps in

the browsing process as well as conversion. De los Santos and Koulayev (2017) shows how

80



firms can use data on the current visit to optimize click through rates. Nevertheless, these

studies analyze only the focal journey ignoring the information provided by previous

journeys (for exception see Dong et al., 2019), limiting the model’s ability to capture rich

heterogeneity in customer preferences. In turn, in most of the aforementioned search models,

and partially due to model complexity of these models, unobserved heterogeneity is often

taken into account in a fairly limited manner and is mainly used to unbiasedly account for

substitution patterns in the market that are caused by heterogeneous tastes, rather than

capturing the rich customer heterogeneity both within and across journeys. We extend this

literature by providing a method that integrates within-journey information (i.e., search

queries and clicks from the focal journey), cross-journey information from multiple journeys

by the same customer (i.e., past search queries, clicks and purchases), and journeys from

other customers (i.e., search queries, clicks and purchases from other customers).

There is a fundamental challenge that arises when combining information across

journeys; it is often the case that different purchase occasions are aimed at satisfying different

needs, resulting in customers exhibiting situational-based preferences (Belk, 1975; Dickson,

1982; Holbrook, 1984; Bucklin and Lattin, 1991; Jacobs et al., 2016; DeSarbo et al., 2008;

Liu and Dzyabura, 2017; Thomadsen et al., 2018).1 For example, a customer looking for a

business trip might exhibit different preferences than when searching for a family vacation.

As a result, when inferring customer preferences for a focal journey, it is not clear how we

should integrate the information from within-journey and across journeys in a meaningful

way. At first glance, one would argue that within-journey clicks are more informative than
1Note that situational-based is distinct from dynamics in preferences (e.g., Erdem and Keane, 1996;

Netzer et al., 2008) or from learning models (e.g., Dzyabura and Hauser (2019)) in which customer preferences
may change longitudinally in a systematic way. In our case, situational-based preferences are affected by the
context of each purchase occasion with no particular (or systematic) longitudinal pattern.
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clicks from past journeys; and that past purchases are more relevant than past clicks.

However, how exactly a model should combine all this information is far from obvious.

This paper combines these three research streams and contributes to the literature by

proposing a method to infer customer preferences in settings where there is thin purchase

history—i.e., most customers have not purchased multiple times, some customers have not

even purchased yet—and where preferences might change from one purchase occasion to

another. We do so by jointly modeling information on the full customer purchase journey:

search queries, clicks and purchases; both within-journeys and across journeys.

Our work also relates to the literature on context-dependent product

recommendations (e.g., Sarwar et al., 2001; Hidasi et al., 2016; ?; Yoganarasimhan, 2019).

This growing literature in the areas of computer science as well as in marketing has proposed

diverse machine learning approaches— including item-to-item recommendation approaches

using similarities across products, Recursive Neural Networks, or topic modeling—to

recommend products when there is lack of historical individual-level data. Most of these

methods require the observation of several individuals interacting (e.g., clicking or buying)

with the same set of products, as well as each individual interacting with several products.

Our approach relaxes this stringent requirement, as we extract preferences for attributes and

not only for “entire” products. As a result, our model can be applicable when the product

space is large and includes non-purchased items, and when the number of available products

is growing over time. Additionally, in our application, the context is determined not only by

the product but also by the search occasion environment (e.g., a journey in which a customer

is buying a flight for tomorrow might differ from a journey in which s/he is looking for the

same destination, buy purchasing 2 months in advance).
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Methodologically, our work builds on and contributes to the literature on Bayesian

non-parametric models in marketing (Ansari and Mela, 2003; Kim et al., 2004; Braun and

Schweidel, 2011; Bruce, 2019), and particularly, on models to capture multiple sources of

heterogeneity. For example, Dew et al. (2020) uses hierarchical Gaussian processes to

capture dynamic heterogeneity; and Boughanmi et al. (2019) uses a hierarchical Dirichlet

processes to uncover themes of musical albums that are predictive of success. In this paper,

we introducing to the marketing literature the Pitman-Yor process for inferring

heterogeneous discrete distributions with unknown number of components (e.g., number of

contexts). The Pitman-Yor process (Pitman and Yor, 1997) generalizes Dirichlet processes

by introducing an additional parameter that allows for more flexible patterns of the drawn

discrete distributions.

More generally, this paper relates to previous work that has incorporated other

sources of information when data on the main behavior of interest is thin— for example, by

leveraging preferences from other product categories (Iyengar et al., 2003), by semantically

linking web pages content and clicking to text-based search queries in search engines (Liu

and Toubia, 2018), or by leveraging detailed acquisition data to infer future purchase

behavior (Padilla and Ascarza, 2019). The present research contributes to this stream of

literature by highlighting the value of extracting information from current and previous

customer’s journeys to infer current customer preferences.
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2.3 Empirical setting

We demonstrate the use of the customer journey as a source of information in the context of

airline ticket purchases. We use data on flight search and purchases, from one of the largest

worldwide online travel agencies. The dataset contains each query search, click and

purchased flight for a sample of 5,000 active customers that searched for flight tickets

between May 2017 and November 2017.2 For each web page shown to those customers, we

observe the customer id, the timestamp of when the customer accessed the page, the

parameters of the search query associated with that page, and the list of results, including

the flight attributes (price, length, airline carrier, etc) observed by the customer after

entering the query. We observe a total of 5,285,770 flight offers displayed in 133,012 results

pages, which resulted in 4,053 flight itineraries purchased.

We start by describing how the website works, and how we construct the “customer

journey” in this context, and in particular, the query variables, the click occasions, and the

purchase occasions. We discuss the trade-off in our data between thin historical purchase

data, but rich with journey search observations.

2.3.1 The customer purchase journey of airline tickets

We describe the flow of a typical purchase journey on the website. The purchase journey

starts when the customer lands at the homepage of the website to search for a flight.3 There
2We remove one customer from the analysis for which prices were unobserved for some of this customer’s

journeys.
3Our data does not contain searches on packages (e.g., flight + hotel), and therefore we focus on purchase

journeys over flights only. The model could be easily adapted for trip packages.
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are two types of trips that the customer can choose from: (1) Roundtrip, and (2) One-way.4

For roundtrips the customer includes an origin and a destination, a departure date for the

portion of the trip from the origin to the destination, known as the outbound leg, and a

returning date for the portion of the trip from the destination back to the origin, known as

the inbound leg. Each leg of the trip is composed by either one non-stop flight or multiple

connecting flights. One-ways itineraries have only one direction of travel. Next we describe

the flow of the roundtrip purchase journey as one-way is a nested version of the roundtrip

purchase journey.

Figure 2.1: Flow of the customer purchase journey for roundtrip flights

Insert
query

Outbound
results

Inbound
results

Flight
details

Checkout

Confirmation
page

Query

Clicking occasions

Purchase occasion

4We drop from our analysis the the third type of trip multi-cities trips, as they constitute a very small
portion of the trips.
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Figure 2.1 shows the flow of steps of the roundtrip purchase journey for a roundtrip.

The customer journey has 6 major steps: (1) Insert query, (2) Outbound results, (3) Inbound

results, (4) Flight details, (5) Checkout pages (unobserved in our dataset), and (6)

Confirmation page. At homepage, the customer starts specifying the search query (see

Figure 2.2a) by selecting the type of trip to search for (e.g., roundtrip), and filling multiple

fields (all of them required): origin and destination cities/airports, outbound and inbound

departing dates (i.e., “departing” and “returning dates” in Figure 2.2a, respectively), and

number of travelers. The customer then clicks on the “Search” button, which triggers the

website to search the flight results that match the information from the query. After the

search query is performed, the website displays the set of results for the outbound itineraries

(see Figure 2.2b). Each of these itineraries are fully described by a path of flights that start

at the origin airport and finish at the destination airport. The website clearly displays all

relevant information of the outbound legs of the product search results, including price,5 the

total duration of leg, the marketing airline carrier,6 the number of stops, departing and

arrival times. Except for price, note that at this stage the website does not display

information from the inbound leg.

If the customer clicks on the “Select” button of one of the outbound offers, the

website displays the set of corresponding inbound results for the clicked outbound leg (see

Figure 2.2c),7 For those resulting inbound offers, the website displays the same level of

information displayed for the outbound offers (see Figure 2.2c), including the extra price of
5The price display corresponds to the price of the complete roundtrip itinerary, including the price of the

outbound leg and the cheapest inbound leg that corresponds to the outbound leg
6The operating airline could differ.
7When the website queries the airlines servers, they may return offers for the whole outbound-inbound

itinerary or generate a combination of multiple airlines separately for outbound and inbound legs to construct
outbound-inbound itineraries, in order to find better prices.
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each alternative compared to the minimum price (i.e., the price displayed in the outbound

page of results). Once the customer clicks on the “Select” button of one of the inbound offers,

the website shows a page with the details of all the information mentioned before from both

the outbound and the inbound legs (see Figure 2.2d), as well as the full breakdown of the

price (taxes and fees clearly displayed).

After the customer clicks on “Continue Booking”, the customer fills information about

the passengers and proceeds with the payment steps.8 Finally, after finalizing the purchase

the customer is shown a confirmation page. The one-way purchase journey is very similar,

with the exception that instead of clicking through two set of results (outbound and

inbound), the customer is displayed only one page of results, “One-way results”.
8While we do not observe the customer’s activity in the checkout page, we can track whether s/he

clicked to the next page. In other words, if the customer follows all of these steps, the customer is shown a
confirmation step, which we do observe. This means, if the customer bought the tickets, we do observe that
outcome; but if s/he did not, we would not know at which specific page the customer decided not to purchase
the flight.
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Figure 2.2: Mock-up of purchase journey steps

(a) Examples of query page

Roundtrip Multi-CityOne Way

Flying from
New York (NYC-ALL Airports)

Flying to
Los Angeles, CA (LAX-Los Angeles Intl)

Departing
11/18/2019

Returning
11/23/2019

Travelers
1 Adult

Search

(b) Example of outbound page results

Select your departure to Los Angeles Mon, Nov 18
Prices are roundtrip per person, include all taxes and fees, but do not include baggage fees

6:00pm – 9:33pm 6h 33m (Nonstop) $394
American Airlines JFK – LAX roundtrip
Details & baggage fees v

Select

7:00am – 10:07am 6h  7m (Nonstop) $397
United EWR – LAX roundtrip
Details & baggage fees v

Select

7:30pm – 10:40am 6h 10m (Nonstop) $397
Alaska Airlines JFK – LAX roundtrip
Details & baggage fees v

Select

9:20pm – 12:35am+1 6h 15m (Nonstop) $397
Delta JFK – LAX roundtrip
Details & baggage fees v

Select

(c) Example of inbound page results

Select your return to New York Sat, Nov 23
Prices are roundtrip per person, include all taxes and fees, but do not include baggage fees

Your selected departure Mon, Nov 18 | Change
7:00am – 10:07am 6h  7m (Nonstop) from $397
United EWR – LAX roundtrip

11:15pm – 7:55am+1 5h 40m (Nonstop) + $44
Alaska Airlines LAX – JFK roundtrip
Details & baggage fees v

Select

11:15pm – 9:05am+1 6h 50m (1 stop) + $65 
United LAX – 57m in ORD – EWR roundtrip
Details & baggage fees v

Select

11:30pm – 1:30pm+1 11h 0m (1 stop) + $0
American Airlines LAX – 3h 58m in BOS - JFK roundtrip
Details & baggage fees v

Select

(d) Example of flight details results

Review your trip 

< Change flights

Mon, Nov 18
United
7:00am 10:07am 6h  7m, Nonstop
EWR LAX

Fare rules and Restrictions:
• Pay to choose your seat
• Carry–on bag not allowed

From Liberty Intl. (EWR)
To Los Angeles Intl. (LAX)

Sat, Nov 23
United
11:15pm 9:05am 6h  50m, 1 stop
LAX EWR ORD

Arrives Sun, Nov 24

Fare rules and Restrictions:
• Pay to choose your seat
• Carry–on bag not allowed

From Los Angeles Intl. (LAX)
To Liberty Intl. (EWR)

Continue Booking

Trip Summary
Return: Arrives on 11/24/2019

Traveler 1: Adult $431.29
Booking Fee $0.00

Trip total: $431.29
Rates are quoted in US dollars

Note that, while Figure 2.1 shows a linear purchase funnel, in reality the journey can

be highly non-linear. That is, the customer may go back from each step to enter a

new/revised query, to click on alternative outbound or inbound results, etc. Moreover, this

process does not need to occur during the same internet session, but can occur over the
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course of multiple days (Lee et al., 2018). We create a flexible definition of the customer

journey by combining pages/sessions that belong to the same trip need. This process is not

straightforward because customers sometimes modify the search query aiming to obtain a

new set of products that potentially would satisfy the same need. To allow for a flexible

definition of a journey we combine into a journey session with similar queries that: (1) occur

at different points in time sometime over days and weeks; (2) have departing or arrival dates

within up to 4 days; and (3) have origin or destination to close-by airports and cities within

a 140 miles range (approx. 225 kms.). Accordingly, we use the queries in our data to

construct the journeys. To construct the journey, we combine the different pages each

customer saw within the same journey, sort them by timestamp, and remove all pages within

a journey after a purchase is made, to remove the infrequent behavior of customers checking

prices of the same itinerary after purchase. This process resulted in a total of 28,025

journeys, corresponding to an average of 5.6 journeys per customer.

We believe that our conceptualization of journeys (instead of simply using individual

search queries) better captures the nature of the purchase journey; because searches included

in the rules described above are, most likely, aimed to satisfy the same need for a trip.

Moreover, this broader definition of journey allows us to seamlessly integrate behavior across

sessions that are aimed at covering the same need.
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2.3.2 Extracting information from the data

2.3.2.1 Search queries

Using the query information, we construct several variables that aim to capture in more

details the context of this trip. While some pieces of information are directly provided by the

customer (e.g., destination), others could be indirectly determined. For example, whether

the trip includes weekends can be extracted from the dates, or the trip distance can be

inferred from the origin and destination airports. We combine these variables into a set of

“query variables” that aim to capture information about the journey in four different

dimensions: (1) who is traveling, (2) which market this flight belongs to (origin-destination),

(3) when is the trip, (4) when was the search made. These variables will help inform

preferences capturing journey-specific needs, even for different journeys of the same customer.

Table 2.1 shows these variables and their corresponding summary statistics.

Overall, we observe a great variety of trip characteristics. Among all journeys

customers undertake in our sample, 66% of them are roundtrip (vs. one-ways); in 28% of

cases, customers are searching for more than one adult, whereas in 8% they search for trips

with kids. With respect to the dates of the trip, the average stay for roundtrips is 11.80 days,

37% of journeys are searching for flights during the summer season,11, 3% for the holiday

season12, and 66% of flight searches include stays over weekends. In terms of

origin-destination of the trip, the average trip distance is 3,548 kilometers or 2,205 miles

(e.g., approx. New York to Las Vegas); 59% of journeys are domestic (including US-Canada,
11We define the summer season from June 30th, to September 4th.
12We mark as holiday season stays that include either Thanksgiving, Christmas or New Year’s holidays.
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Table 2.1: Summary statistics of query variables

Query variable Mean SD Quantiles
5% 50% 95%

Continuous
Trip distance (kms) 3,584.16 3,465.07 448 2,269 11,529
Time in advance to buy (days) 50.73 59.82 1 29 182
Length of stay (only RT) (days) 11.80 21.25 2 6 37

Binary
Is it roundtrip? 0.66 . 0 1 1
Traveling with kids? 0.08 . 0 0 1
More than one adult? 0.28 . 0 0 1
Is it domestic?9 0.59 . 0 1 1
Is it summer season? 0.37 . 0 0 1
Holiday season? 0.03 . 0 0 0
Does stay include a weekend? 0.66 . 0 1 1
Flying from international airport? 0.74 . 0 1 1
Searching on weekend? 0.21 . 0 0 1
Searching during work hours? 0.49 . 0 0 1

Categorical
Market

US Domestic 0.51 . 0 1 1
US Overseas 0.18 . 0 0 1
Within North America10 0.15 . 0 0 1
Non-US within continent 0.10 . 0 0 1
Non-US across continent 0.06 . 0 0 1

Type of departure location
Airport 0.88 . 0 1 1
Multi-airport City 0.08 . 0 0 1
Both 0.04 . 0 0 0

within-EU, or within-country flights); 51% are US Domestic, 18% are for US-Overseas trips,

15% are between US and Mexico or Canada and Mexico, 10% of the searches are for

continental trips that do not include the US, and the remaining 6% are for trips across

continents that do not include the US. Finally, with respect to the time between search and

flight, purchase journeys occur, on average, 50.73 days prior to the departing date; 88%

introduce a departing location code for an airport (e.g., JFK), 10% a departing code of a city

(e.g., NYC), and the rest include a departing code that refers to both city and airport (e.g.,

MIA); 21% of the times customers search during the weekend, and 49% during work hours

(defined by local time of departing city).
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2.3.2.2 Click occasions

Once the query is clearly defined, we need to build a set of “click occasions” faced by the

customer. These click occasions are composed by a set of alternatives to click on, and the

outcome of what was actually clicked (or not). There are two types of click occasions: (1)

clicking occasion on a outbound results page (where clicking in a product leads to an

inbound results page), and (2) clicking occasion on an inbound results page (where clicking

in a product leads to flight detail page). We observe and allow in our model the customer to

click on multiple flights from each click opportunity.

For outbound and inbound results pages, by default, results are sorted increasingly in

price.13 Some results may be further filtered using the attribute filters such as by airline or

number of stops or sort the product results using a different sorting mechanism— while

these actions would be valuable pieces of information for inferring preferences, we do not

observe explicitly when these actions are taken because the firm does not record these

actions. Accordingly, we treat filtering results as if customers were searching again.14

Putting all clicks made by the customer, we have a list of pages visited by the

customer: (1) pages in which no product was clicked (e.g., an outbound result page in which

no offer was good enough for the customer, and the customer decided to do another search);

(2) pages in which exactly one offer was clicked; and (3) pages in which the customer clicked

multiple times, either in different offers or in the same offer.15 For the pages in which no
13Analogously, for one way results.
14While, in theory, we could try to infer the filter from the set of results, product attributes are highly

correlated (e.g., all direct flights being of the same airline), making it difficult to pin down which specific
filter was set.

15When a customer clicks on an inbound offer, it opens a new tab, and therefore a customer can click on
several inbound offers from the same outbound page, and open several flight details pages.
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product was clicked, we create a click occasion with outcome of: keep searching if it is not the

last observed page in the journey, or leave if it is the last observed page in the journey (and

no purchase was made).16 For the pages in which offer/s were clicked, we create the click(s)

occasions directly. We label all offers that have been clicked before for all subsequent click

occasions from the same page to account for the fact that a customer has already clicked on

a product, and may be less (or more) likely to click on the same product again.17,18 This

process resulted in 132,665 click occasions, averaging to 4.7 click occasions per journey.

2.3.2.3 Purchase occasion

For each journey, we observe whether it included a purchase or not. We describe the last

steps in the purchase funnel, and how we construct the purchase occasion in our customer

journey.

We create one purchase occasion per journey by creating a set of products that were

likely to be considered for purchase. There are multiple approaches to construct the

consideration set (i.e., alternatives that the customer considers before purchase). One could,

as it is commonly done in the literature, define considered products as those product the

customer clicked on to observe details. This approach seems most appropriate when product

attributes are only revealed once the customer clicks on the details page (e.g., Bronnenberg

et al., 2016), and therefore customers open those pages to observe these unknown attributes

(e.g., photos of the products or reviews). However, in our context, the customer observes
16To avoid labeling censored journeys as a no-purchase journey, we remove the last observed click occasion

in which purchase was not made but the departure date of the flight is after our last day of our observation
period.

17A similar process is used for one-way offers.
18We could also treat the confirmation of purchase page, as a click occasion from the flight details page.

We decided not to this, as the customer has already finished the journey at that point and hence this last
step does not provide additional information.
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most relevant attributes when inspecting the list of (inbound) results. Thus, there is little

incentive for a customer to click on the flight details page for information gathering purposes.

For example, customers on average see 0.5 flight details pages for roundtrips and 0.7 flight

details pages for one-ways. Therefore, considering only flight that were clicked on as being

part of the consideration set would eliminate many flight that were considered without

clicking.

At the other extreme, one could include in the consideration set all products

displayed over the course of a journey. In theory, it is plausible that a customer is

considering all the products that s/he saw prior to purchase as the full information for all

flights is revealed in the results page. For example, a customer can click on an outbound

flight to see a list of corresponding inbound flights, and without clicking on any of those, the

customer has almost full information about the features of those inbound flights. However,

given that most customers are exposed to hundreds of products per journey (189 flights in

average), this approach would be not only unrealistic— it is unlikely that customers consider

all the products displayed but rather a subset of these—but also impractical from a

computational perspective. Including all these alternatives will increase significantly the

computational burden for estimation.

Therefore, we take an intermediate solution by constructing the set of considered

products as a combination of the products that were clicked on and therefore observed in the

Flight details page, plus the top 20 results from outbound and inbound results page. In

other words, we assume a heuristic rule to determine consideration set formation and we

model purchases given that consideration set. Finally, we register the outcome of the
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purchase occasion as a purchase for the product that was chosen, if any, or we register it as a

non-purchase in case no product was purchased.

2.3.2.4 Product attributes

Customers observe multiple product attributes that they consider when making a click and

purchase decision for an offer. For a roundtrip journey, all attributes, except price, are

specific to each leg of the trip. That is, there is a set of attributes that describe the

outbound leg of the trip, and there is the same set of attributes that describe the inbound

(returning) leg of the trip.19. We do highlight that there is an important difference between

leg-specific outbound and inbound product attributes. Outbound offers are shown as the

first step in the journey, and therefore are a more representative sample of offers available in

the market. Inbound offers, on the other hand, are shown only after the customer clicks on

the specific outbound offer. Therefore, inbound attributes can have a different distribution

than their corresponding outbound attributes, as their appearance in the data depends on

the customer clicking on the corresponding outbound flight.

We summarize these attributes in Table 2.2.20 Prices are measured at the whole trip

level. The average offer displayed is priced at $1,547; but offers vary significantly in their

price, with a standard deviation of $3,249. Not only the offers within a journey vary in their

prices, but also journeys have a different price level that strongly depends on

origin-destination and the dates. This variation in price becomes clearer when analyzing the

price of the cheapest offer per journey. The cheapest price displayed per journey has an

average of $698 across all purchase journeys, with a standard deviation of $1,526. This
19For one-way journeys, clearly only one set of these attributes is observed.
20One-way offers are summarized within the outbound component of the table.
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Table 2.2: Summary statistics of product attributes in page results

Product attribute Mean SD Quantiles
5% 50% 95%

Product level attributes
Price 1,547 3,269 196 751 5,320
Cheapest price per journey 698 1,526 98 401 2,117

Outbound level attributes
Length of trip (hours) 11.28 8.49 2.05 8.42 28.60
Shortest length of trip per journey (hours) 5.86 5.05 1.25 4.07 17.08
Number of stops: Non stop 0.20 . 0 0 1
Number of stops: One stop 0.59 . 0 1 1
Number of stops: 2+ stops 0.21 . 0 0 1
Alliance: Alaska Airlines 0.04 . 0 0 0
Alliance: Frontier 0.01 . 0 0 0
Alliance: JetBlue 0.03 . 0 0 0
Alliance: Multiple alliances 0.07 . 0 0 1
Alliance: Other – No alliance 0.07 . 0 0 1
Alliance: OneWorld (American) 0.27 . 0 0 1
Alliance: Skyteam (Delta) 0.27 . 0 0 1
Alliance: Spirit 0.02 . 0 0 0
Alliance: Star Alliance (United) 0.23 . 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.04 . 0 0 0
Dep. time: Morning (5:00am – 11:59am) 0.47 . 0 0 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.31 . 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.18 . 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.05 . 0 0 0
Arr. time: Morning (5:00am – 11:59am) 0.24 . 0 0 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.34 . 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.37 . 0 0 1

Inbound level attributes
Length of trip (hours) 11.08 9.02 1.83 7.92 29.50
Shortest length of trip per journey (hours) 6.17 5.31 1.25 4.27 17.75
Number of stops: Non stop 0.19 . 0 0 1
Number of stops: One stop 0.70 . 0 1 1
Number of stops: 2+ stops 0.11 . 0 0 1
Alliance: Alaska Airlines 0.02 . 0 0 0
Alliance: Frontier 0.02 . 0 0 0
Alliance: JetBlue 0.02 . 0 0 0
Alliance: Multiple alliances 0.02 . 0 0 0
Alliance: Other – No alliance 0.07 . 0 0 1
Alliance: OneWorld (American) 0.51 . 0 1 1
Alliance: Skyteam (Delta) 0.13 . 0 0 1
Alliance: Spirit 0.05 . 0 0 1
Alliance: Star Alliance (United) 0.15 . 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.03 . 0 0 0
Dep. time: Morning (5:00am – 11:59am) 0.65 . 0 1 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.18 . 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.14 . 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.04 . 0 0 0
Arr. time: Morning (5:00am – 11:59am) 0.55 . 0 1 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.19 . 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.23 . 0 0 1

indicates that raw prices may not be a good proxy to capture price sensitivity among our

customers, as prices are only compared within a journey. For example, a New York - Chicago

roundtrip ticket for $600 may be considered expensive for this trip, whereas a roundtrip

flight from New York to Buenos Aires for $800 may be considered a good deal.
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Offers also differ in terms of how long each leg of the trip is. The average outbound

leg of a displayed trip takes 11.28 hours, with a large variation within and across journeys.

The shortest flight per journey takes, on average, 5.86 hours for the outbound leg. Most

displayed flights are one stop flights (59% for outbound legs, and 70% for inbound legs),

whereas nonstop flights account for 20% of outbound offers and 19% of inbound offers.

Airline data is fairly sparse and therefore we aggregate airlines into alliances.

Alliances are group of airlines that share benefits and usually run in “shared codes” (e.g., a

flight from JFK to Madrid that is operated by Iberia might be sold by American Airlies,

British Airways, FinnAir and Iberia, all belonging to the same alliance). The three biggest

alliances are: OneWorld (including American Airlines), Skyteam (including Delta Airlines),

and Star Alliance (including United Airlines). We kept some individual airlines that are not

part of any alliance but represent significant proportion of the displayed offers. Particularly,

for the US domestic market we keep Alaska Airlines, Frontier, JetBlue, and Spirit. We group

all other smaller airlines that are not part of any alliance in “Other - No alliance” category.21

Finally, we label as “Multiple alliances” offers that have connecting flights of different

alliances in the same leg of the trip.22 We find that the big three alliances account for 77% of

all outbound offers, and 79% of inbound offers.

Finally, offers also vary in terms of their departing and arrival times. For most

outbound and inbound legs, the first flight departs in the morning. However, the last

connecting flight of the outbound leg tends to arrive either in the afternoon or the evening,

whereas that for inbound legs, they tend to arrive in the morning.
21There are other smaller regional alliances, but they do not represent a significant portion of the offers in

our dataset.
22This should not be confused with offers that have one alliance for outbound and another for inbound,

which have the corresponding alliance for each leg, outbound and inbound.
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2.3.3 Inferring preferences from purchase journey data

Table 2.3 shows the the total number of customers, journeys, purchases, click steps and

clicked products. We observe a total of 28,025 journeys, for which we aim to estimate

individual-level preferences. The data indeed exhibit lack of past purchase history at the

individual level—while, on average, each customer undertakes 5.606 purchase journeys, the

average number of purchases per customers is 0.81. This piece of evidence highlights the lack

of purchase history that challenges preference estimation using traditional models that rely

on long individual purchase history. Arguably, the lack of past purchases could be caused by

the observation window not be long enough (in our case, 7 months) and therefore a longer

time horizon would solve the problem.23 However, privacy concerns and average lifetime of

cookies tracking customer behavior are often not much longer than our time horizon. For

many high involvement products, customers do not fly as often as they buy certain consumer

package goods such as ketchup, which results in this persistent lack of purchase history. On

the other hand, customers click on products along the journey (on average, 6.46 clicked

products per customer, and 1.15 clicked products per journey). This piece of information is

relevant as we can learn preferences and contexts from customers clicking on products even

when those actions may not end up in a purchase.

On average, 14.5% of journeys end with a purchase. This number may seem high for

an online retailer but there are two caveats to this quantity. First, our data correspond to a

sample of active customers and therefore this figure would be lower for the average customer

of the firm. Second, in this paper we adopt a broader definition of a journey, which includes
23Also note that our data include a relatively active set of customers, implying that the lack of past

purchases is even more severe for total user base in this firm.
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Table 2.3: Data summaries, per customer and per journey.

Variable Total Average per...

Customer Journey Purchased
journey

Non-purchased
journey

Mean s.e. Mean s.e. Mean s.e. Mean s.e.

Customers 4,999 . . . . . . . .
Journeys 28,025 5.606 0.072 . . . . . .

Roundtrip 18,469 3.695 0.054 . . . . . .
One-way 9,556 1.911 0.065 . . . . . .

Purchases 4,053 0.811 0.015 0.145 0.002 1.000 . 0.000 .
Click occasions 132,665 26.538 0.351 4.734 0.039 8.632 0.128 4.075 0.038

... in OW search 44,015 8.805 0.246 4.606 0.064 6.094 0.150 4.166 0.070

... in RT outbound 56,355 11.273 0.194 3.051 0.033 5.180 0.132 2.811 0.033

... in RT inbound 16,054 3.211 0.045 0.869 0.012 2.556 0.051 0.679 0.011
Clicked products 32,295 6.460 0.069 1.152 0.013 2.960 0.046 0.847 0.012

... in OW search 6,548 1.310 0.033 0.685 0.012 1.687 0.030 0.389 0.011

... in RT outbound 16,054 3.211 0.045 0.869 0.012 2.556 0.051 0.679 0.011

... in RT inbound 9,693 1.939 0.028 0.525 0.008 1.887 0.035 0.371 0.007

multiple searches for the same customer need, whereas a traditional conversion rate would

treat different search queries, with different variations of airports or dates as different and

independent purchase funnels.24

In each journey, customers click on 1.15 products on average, with this distribution

varying by type of trip. For example, in one-way journeys, customers click on an average of

0.69 one-way itineraries per journey to observe the details page. In roundtrip journeys,

customers click, on average, on 0.87 outbound itineraries per journey to observe their

corresponding inbound flights; and they click on 0.53 inbound results per journey to observe

the full flight details page (1.39 clicked products in total). These figures support our choice

for a more flexible definition of considered products, which includes product viewed in the

outbound and inbound pages as opposed to only clicked products. If one were to treat the

consideration set as the products that the customer saw in the details page, as it is
24We provide an example of why this is the case. If a customer searches for three different sets of (very

close) dates but s/he only purchases in the last search query, a traditional conversion metric that treats all
these searches as independent would summarize this information as 2 non-purchase sessions and 1 purchase
session. Using our broader definition of a customer purchase journey, we would measure 1 single journey with
a purchase.
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commonly done in the consumer search literature, these findings would imply that customers

consider between 0.5 and 0.7 flights per journey, which seems unrealistic.

As expected, there are considerable differences between journeys that end with a

purchase and those that do not. Customers in journeys that end up in a purchase are

exposed to more than twice the amount of occasions for clicking (8.63 vs. 4.07), and they

click on more than three times more products than non-purchase journeys (2.96 vs. 0.85).

Interestingly, journeys that do not end in a purchase still contain clicked products; we argue

that these clicks should inform preferences as well, as these are choices that customers make

about some products but not others.

In summary, while we have very limited information on past purchases, the data at

the journey level is quite rich; in terms of queries, click occasions, and click behaviors. Our

goal is to integrate those behaviors to infer individual preferences for predicting purchases.

We move now to describe our model which integrates these sources of data.

2.4 Model

The main goal of the model is to be able to estimate preferences in contexts in which

individual-level purchase history is likely to be very sparse, and heterogeneity exists both

across consumers and within a customer across journeys. For the sake of clarity and

generalizability, we describe our model in the context of our empirical

application—customers searching for flight tickets. However, we want to highlight that the

proposed model is applicable to other contexts as well. While some components of the model

may be more or less relevant for different applications, each component can be easily
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adjusted to overcome the challenges specific to other settings. For example, the usage of

clicks to inform preferences is widely applicable to most online contexts as firms perfectly

observe customer clicking behavior. The lack of individuals’ purchase history is most relevant

for other high involvement purchases such as cars or durable goods, while journeys with

varying contexts and needs would be most relevant for experiential purchases such as hotel

stays, restaurants reservations, food delivery or media consumption.

In turn, online travel search is among the most complex settings as it contains all

these aforementioned challenges one needs to address. Moreover, in addition to the lack of

purchase history and the changing contexts, the set of available products is extremely large,

and essentially, unique to each customer. The set of available products depends not only on

the origin-destination of the trip and dates, but also on the moment the product is searched,

as availability and particularly prices change dramatically over time. This feature of the

product space rules out classical approaches to recommendation systems, such as matrix

factorization as there is extremely low chance that two customers are exposed to (even less

so, buy) the same offer at the same price.

2.4.1 Model intuition

Before describing the model components in detail, we provide some intuition behind the

main modelling assumptions. We conceptualize the customer purchase journey as a series of

steps that start with a search query, are followed by a series of clicks through different stages

of the purchase funnel, and may finalize, eventually, with a purchase (Figure 2.3). These

behaviors are realizations of the customer overall preferences and the specific needs that s/he
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aims to satisfy. For example, when a customer is searching for a flight, s/he has a trip in

mind, and therefore a specific need that these tickets will satisfy. The customer may be

looking for flights for a honeymoon, for a summer family vacation, or for a business trip to a

nearby city. When inserting the query, the customer would ask for a trip that best matches

that kind of trip (e.g., a honeymoon will likely be a trip for two adults, longer than 4 or 5

days, with an exotic destination). Then, in choosing a flight —clicking on it or eventually

buying it— the customer will have some stable (journey independent) preferences such as

his/her preferences over an airline because s/he is a frequent flyer from that airline. However,

different types of trips could affect the customer’s preferences over flights. For example,

when the customer is looking for a business trip, s/he may be less price sensitive, or when

looking for a summer family vacation s/he may have stronger preferences towards avoiding

connections if s/he is flying with kids.

Figure 2.3: The data generating process

  

Journey                                                                        

Query  Clicks  Purchase 

Customer 
heterogeneity

Context 
heterogeneity

While the trip type or context is unobserved, the firm can infer it from the data,

along with the customer preferences that are consistent across trips. It does so by combining

information across similar purchase journeys (from other customers), clustering them

together in what we define as the context of a journey. At an abstract level, the context of a
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journey represents the unique needs that the customer seeks to satisfy by purchasing a

product in a journey of this type, that are different from the preferences captured by the

individual’s other journeys.

To better understand how the model combines historical data from the focal

customer, with information from other customers with possibly context, Figure 2.4 visually

describes how the model learns from the different sources of data. Let us assume that Adam

is currently going through a flight search (focal journey in the figure), and the firm wants to

predict his actions during the journey, whether he will buy at the end of this journey, and if

so, what product he will buy. Adam’s behavior in this journey will be determined by both

his individual-level stable preferences and the specific needs that he aims to satisfy in this

particular trip (the context). The firm has seen Adam in the past (he has two previous

journeys) and has also observed Kevin, Rachel, and Elizabeth, going through three purchase

journeys each. Taking together Adam’s, Kevin’s, Rachel’s, and Elizabeth’s past journeys the

firm inferred that the population of travelers and journeys belong to one out of many

contexts— in this example we use three contexts, which we identify with three different

colors: east-coast business trip (in blue), summer family vacation (in green), and honeymoon

(in pink). Moreover, customers are different in nature; i.e., each customer has individual-level

preferences that s/he carries for all the journeys that s/he undertakes.

Each purchase journey is composed by: (1) search query, (2) clicks in several steps,

and (3) a purchase decision, which includes the no-purchase alternative. Our model treats

each of these components as an outcome, which depend on the context and the customer’s

stable preferences. While the queries are determined only by the context—e.g., Kevin’s

third and Rachel’s first journeys are both of context East-coast business trip (blue)—clicks
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Figure 2.4: Model intuition
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and purchases are determined jointly by the customer’s stable heterogeneous preferences and

by the context of the journey. Note that, like customer preferences, contexts are unobserved

to the firm and therefore need to be inferred from the behavior. The model infers that

Kevin’s second journey, Rachel’s third journey, and Adam’s second journey are all of the

same context (summer family vacation, in green), because they have similar queries, but also

because they all exhibit similar deviations from the preferences of each customer (e.g., they

were more interested in non-stop flights than they would on average). Customer stable

preferences are inferred from the customer’s consistent behavior across journeys across

contexts.
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The model would learn from all purchase journeys that have already ended and use

these estimates to infer context and preferences for the focal customer and journey.25 Adam

started his focal purchase journey by entering a query, and he has possibly also clicked on

some products along the way. At this point, the firm is interested in inferring Adam’s

purchase preferences for this journey in order to predict whether he will buy, and if so, what

product he will buy. The context of the focal journey is updated based on the prior

distribution of context informed by others customers and Adam’s own past purchases and

the query and clicks of the focal journey. Similarly, Adam’s clicks in the focal journey help

update Adam’s stable heterogeneity preferences, which can be used to predict his choices. It

is through these updates of the context and stable heterogeneity distributions from the query

and clicks in the focal journey that our model leveraged the within journey information and

combines it with historical information from the focal and other customers to predict the

choices in the focal journey. For example, if Adam is flying from NYC to Boston, from

Monday to Thursday, the model can infer that with higher likelihood this journey is an

East-coast business trip. This information may help us determine that Adam’s price

sensitivity for this trip is lower than usual. In addition, Adam will likely click on flights that

are more expensive than what he would usually click on or buy, which will reinforce that he

has a lower price sensitivity for this particular trip, giving the model a stronger signal that

this trip context is likely to be an East-coast business trip. Finally, combining these different

sources of information, the model can now infer Adam’s preferences for purchase in this
25The model knows that a journey has ended when the journey ended up with a purchase, or when

departure date lies within our observation window. Otherwise, the model accounts for censored data as some
journeys may have not ended yet.
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journey, and use them to recommend products that are most relevant to Adam at this

particular point.

2.4.2 Model development

We now present the formal specification of the model. We start by stating the notation and

providing an overview on the multiple components of the model and how we bring all

information together. Then, we describe each component: query, clicks, and purchase,

explain how the model combines these components, and particularly, how we model the

journey’s context. We finalize with the details of the model specification tailored to our

empirical application and a description of our estimation approach.

2.4.2.1 Model overview

We index customers by i P t1, . . . , Iu, their journeys by j P t1, . . . , Jiu, where Ji is the

number of purchase journeys customer i has undertaken, and by t P t1, . . . , Tiju the steps of

customer i in journey j. Our model links queries, clicks and purchases over the course of the

purchase journey.

At a general level, our model has three major components that we model as outcomes:

queries (qij), clicks (ycijt), and purchase (ypij). We are modeling each of these components as

outcomes from distributions that are parametrized by journey-specific parameters. First, we

model the query component by qij „ fqpωijq, where ωij is a journey-specific vector of

parameters for some multivariate distribution fq, that has both discrete and continuous

components. Second, we are modeling each click decision using a choice model, fc, with
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Figure 2.5: DAG of customer journey model
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vector of preferences bij and each journey’s purchase decision using another choice model, fc,

as a function of the same vector of preferences bij.

That is, the model combines clicks and purchases from the same journey by specifying

both components as a function of preferences bij. However, in reality customers may exhibit

different preferences when exploring the options versus when they choose a flight to buy. For

example, a customer may be more likely to click on expensive outbound options to explore

the corresponding inbound offers, but when choosing the actual flight to buy, choose cheaper

flights. To account for such a behavior, we introduce the vector ρ, which only affects the

clicking decision and captures systematic differences in how customers compensate attributes.

107



We leverage information from the customer’s past journeys, by specifying

journey-specific preferences bij to be a function of a vector of stable preferences µi, which

are drawn from the population distribution parametrized by Σ. We further link queries with

clicks and purchases from the same journey by assuming that bij and ωij are a function of a

vector γj, that reflects how a specific trip context affects the query, clicks and purchase

decisions.

Finally, we leverage the data from other customers with similar journeys by assuming

that the context-specific vector γj is drawn from a common distribution of contexts F

shared by all journeys of all customers.26 We can gain intuition by thinking of F as a

histogram, or a distribution of segments of journeys, where each segment is described by how

frequently it appears in the population (π) and the parameters that describe the context in

terms of their meaning for the queries, clicks, and purchase components of the model (θ).

We uncover the contexts non-parametrically from the data, as we describe in Section 2.4.2.5.

2.4.2.2 Query model

We index by m P t1, . . . ,Mu the different types of query variable, where each type variable

m relates to one piece of information (e.g., length of the stay, traveling with kids). Because

these pieces of information were provided by the customer to obtain a set of products results

that match his/her preferences, we treat each query variable as an outcome that depends on

some unobserved component that captures the customer’s need in that journey. Moreover,

treating query variables as an outcome allows us to easily account for missing query
26Technically, as journey j belongs to customer i, γj depends on both indexes i and j. However, we drop

the explicit dependence on i to remark that the vector is capturing journey-level traits that are not informed
by other journeys of customer i
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variables, or query variables that are not valid for some journeys. For example, one-way

journeys do not have a length of stay as the do not have a returning date.

Each type of query variable m could be of type: (1) binary, (2) categorical, (3)

continuous real-valued, or (4) continuous positive-valued. We denote qijm the realization of

query variable m, for customer i and journey j, which we model using a different

distribution fm for each type of variable m by qijm „ fmpωmjq, where ωmj is a journey

specific parameter for query variable m. If query variable m is binary (e.g., whether the

customer is traveling with kids), we model it by

qijm „ Bernoullipωijmq, (2.1)

where ωijm P p0, 1q is a scalar parameter. If query variable m is categorical with N possible

values (e.g., which market does the trip belong to), we model it by

qijm „ Categoricalpωijmq, (2.2)

where ωijm is the vector of probabilities length N , such that ωijmn ě 0 and
ř

n ωijmn “ 1. If

query variable m is continuous real-valued (e.g., the log of the distance of the trip), we then

model

qijm „ N pωijm, σ2
mq, (2.3)
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where ωijm is a scalar representing the mean and σ2
m a positive variance shared across

journeys.27 Finally, if m is continuous positive-valued (e.g., length of stay), we then model it

by

qijm „ exppωijmq, (2.4)

where ωijm is a positive scalar.28

Our model can easily accommodate other distributions if one would aim to capture

specific features of the query variables. For example, Poisson or Binomial distributions for

count variables, and Student’s t-distribution or Cauchy distribution for long-tailed

continuous variables. Our choice of distributions is based on the nature of the query

variables from our empirical application and computational convenience for drawing

efficiently the parameters from the posterior distribution.

We define the vector of query parameters as ωij “
„

ωij1 . . . ωijM

1

. We come back

to these parameters in Section 2.4.2.5 when we relate the unobserved queries component

with the click and purchase preferences in a particular journey.
27We choose to define σm fixed across all journeys, to avoid singularity issue. Like Gaussian Mixture Models

when variances are cluster specific, this model would behave similarly when we cluster non-parametrically
journeys that are of similar characteristics. In these cases, fitting such a model could lead to one cluster
fitting a single specific data point with mean equal to the data point value and variance converging to zero,
leading to singularity in the Gaussian density.

28We choose to model some query variables using an exponential distribution instead of a log-normal
distributions as variables associated with time (e.g., length of stay, time in advance for booking the flights)
tend to be distributed closer to an exponential distribution.
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2.4.2.3 Click model

Along the journey, the customer clicks through pages of product results in a series of steps

from the initial search query, eventually to purchasing or leaving. The customer can navigate

back and forth between clicking on flight options and refining his/her searches. In each step

of the process, the customer decides among: (1) clicking on one of the products to move

further in the journey, (2) continuing to search to receive a new set of results, or (3) leaving

and finalizing the journey without a purchase.

The model accounts for the different types of pages in which a customer can click on

products. For example, in our empirical context, roundtrip flights have two types of pages

where the customer can click on products: “Outbound results page", where the customer

chooses the outbound/departing flight; and “Inbound results page”, where the customer

chooses the inbound/returning flight, whereas one-way journeys only show “One-way results

page”. We denote pptq P t1, . . . , P u the type of page of step t.29 These types of pages differ

in how products are shown as well as what happens next when the customer clicks on one of

the shown products. Accordingly, we allow for different base click rates for outbound,

inbound and one-way clicks.

We model the click decision at step t using a discrete choice model, and we index

choice alternatives by k. We define Kc
ijt as the set of products displayed to customer i in

journey j at step t. The customer faces a decision between: clicking in one a set of products

k P Kc
ijt, continue searching (k “ s), or finish the purchase journey without buying (k “ `).

We denote by ycijt “ k˚ the decision made at step t, with k˚ P Kc
ijt Y ts, `u being the

29For the case of one-way journeys, only “One-way results page” can occur.
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alternative that maximizes utility ucijtk, such that

ucijtk “ α1ijpptq ` x1k ¨ diagpρq ¨ βij ` Z1ijkt ¨ η ` εijtk, for all k P Kc
ijt,

ucijts “ α2ijpptq ` εijtk,

ucijt` “ εijtk, (2.5)

where εijtk „ N p0, 1q are i.i.d. unobserved (to the researcher) components of utilities. The

term α1ijpptq is the intercept that captures the base rate in page type pptq for continuing in

the journey by either clicking or searching as opposed to leaving the journey without a

purchase, and α2ijpptq is the intercept that captures the base rate in page type pptq for clicking

as opposed to searching again. We define α0ij “ rα1ij1, . . . , α1ijP , α2ij1, . . . , α2ijP s the vector

of click intercepts for all types of pages. The vector xk denotes the observed attributes of

product k,30,31 βij is the vector of product attributes preferences, and ρ is a vector of the

same length as βij that captures how product attributes preferences manifest differently in

clicks relative to purchases.32 Setting ρ to 1 corresponds to assuming that the preferences

for attributes affect clicks and purchases decisions in the exact same way. We also allow for a

set of controls Zijkt that may affect click decisions, where η captures their impact on clicks.

With reference to the notation introduced in Figure 2.5, α0ij and βij are part of the

component bij. The vector of product attribute preferences βij, is a key parameter in our
30Formally, the vector xk also depends on customer i, journey j and step t, but we drop the explicit

dependencies of these indexes to keep the notation simpler.
31To mimic the customer behavior, we set to zero the attribute levels of xk that cannot be observed in step

t, this is, inbound attributes for pptq “ “Outbound page”, and outbound attributes for pptq “ “Inbound page”.
32In practice, we can only identify ρ relative to the differences in scales of the error terms in the click

and purchase models. Thas is, if ρ is a vector where all its entries are equal to the same value, we cannot
distinguish ρ from differences in variance of the unobserved component of utility for the click and purchase
models.
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model since, once inferred, it will allow us to recommend products to customers in ongoing

journeys. These preferences are both customer and journey specific. We will describe in

Section 2.4.2.5 how these preferences are related across journeys from the same customer as

well as across journeys from other customers with the same journey context. These

preferences will also play a role in our purchase model, which we describe next.

2.4.2.4 Purchase model

The customer can either buy a product from a subset of displayed products, or not purchase

at all from the website.33 We model the likelihood of purchase as a single decision that

happens once per journey, where the customer chooses among a set of considered products.

Formally, consider customer i in journey j. We index by k P Kp
ij the products

considered for purchase by customer i in journey j, and by k “ 0 the no-purchase in the

website outside option. When we consider the journey as a whole, the customer decides

between purchasing one of the products k P Kp
ij and not purchase any product at all (k “ 0).

We denote by ypij “ k˚ the purchase decision of customer i in journey j, where k˚ is the

alternative in Kp
ij Y t0u that maximizes utility upijk, with

upijk “ τ0ij ` x1k ¨ βij ` εijk, for all k P Kp
ij,

upij0 “ εijk, (2.6)

33Our dataset does not allow us to distinguish between the customer purchasing the product in another
website and no purchasing the product all together. However, ultimately the goal for the firm is that the
customer buys in their website.
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where εijk „ N p0, 1q are i.i.d. unobserved components of utilities of the products. The

element τ0ij is the intercept for purchasing a product, the vector xk contains the attributes of

product k, and βij is the vector of product attribute preferences described in the click model.

Note that, unless the customer makes a purchase, it is difficult to disentangle whether

s/he has already decided not to purchase from the focal firm, or s/he might do so in the

future, making the purchase outcome partially unobserved. In our setting, we can determine

that a customer decided not purchase for many of the journeys because for many journeys

the start of the trips is included in our data period.

2.4.2.5 Combining different sources of information

One of the key objectives of our modeling effort is to combine different sources of

information from the customer journey— i.e., being able to learn from queries, clicks, and

purchases—while recognizing that customers might exhibit journey-specific preferences.

That is, a customer may exhibit different behavior when looking for a flight domestically

versus internationally, or when flying for leisure versus for business. To capture this behavior,

we model these journeys as belonging to one of many journey contexts. These are unobserved

components that capture need-specific preferences that are shared across customers.

Incorporating context-specific preferences presents several methodological challenges.

First, the journey contexts are unobserved and therefore need to be inferred from the data.

These journey contexts are not individual-specific as different customers are likely to be

searching for similar contexts. It is neither the case that customers systematically “transition”

from one context to another (like, for example, in hidden Markov models), challenging

identification because individual behavior in the previous journey does not necessarily inform
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the context in the current journey. Second, we do not know how many contexts are

there—and this number is likely to be different across settings— so ideally, we would like to

learn the number of contexts from the data, without the need to run the model for each

number of contexts. Finally, we want to provide enough flexibility to the model such that it

will be able to capture meaningful contexts that reflect both queries and behaviors (e.g., a

“summer family trip” context that bundles together journeys that are more likely to be

international trips, with more than one adults and with children, which may involve strong

preferences for non-stop destinations and moderate price sensitivity). The intuition is that,

because these journeys share these characteristics, the customers may be interested in

covering similar needs, and therefore, their preferences for products in these journeys may

also be similar. A model that only groups queries will not necessarily help understanding

what the customer is looking for when it comes to product attributes.

To overcome these challenges, we model the journey context as a non-parametric

latent segmentation over journeys across customers, using information from the query

variables as well as the preferences of these journeys that drive clicks and purchases. In

particular, we allow the query parameters ωij to depend on the journey context by specifying

ωij “ γ
q
j ,

where γqj is the context specific vector of query parameters. Note that the query parameters

relate to the individual through the context that individual i uses in trip j. In contrast, click

intercepts α0ij, purchase intercept τ0ij, and product attribute preferences βij are both

customer- and journey context-specific by combining the context preferences and the
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customer specific stable random-effect parameters in an additive manner. Specifically,

bij “ µi ` γ
p
j , (2.7)

where bij is the vector of all click and purchase parameters (bij “ pα0ij, τ0ij,βijq), µi is the

individual-specific vector of click and purchase parameters, and γpj is the context-specific

vector of click and purchase parameters. Finally, we define γj as the vector of all context

specific parameters,

γj “

»

—

–

γqj
l jh n

Query parameters

γpj
l jh n

Click and purchase preferences

fi

ffi

fl

. (2.8)

We account for customer heterogeneity by modeling the individual specific vector of

parameters

µi „ N p0,Σq, (2.9)

where Σ is the covariance matrix. We center the individual specific vector of parameters µi

at zero, in order to leave the context-specific vector γpj to capture the population mean.

2.4.2.5.1 Modeling contexts

We estimate contexts non-parametrically assuming that γj are drawn from an unknown

discrete distribution F , which we call the context distribution (e.g., a histogram of contexts).

We assume that this histogram F is drawn using a Pitman-Yor Process prior. The

Pitman-Yor Process (Pitman and Yor, 1997) is a distribution over infinite almost surely
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discrete measures (e.g., infinite histograms) used in non-parametric Bayesian models. Thus,

we draw the context specific parameters γj from the context distribution F , and we place a

Pitman-Yor process prior on the context distribution F , that is,

γj „ F (2.10)

F „ PYpd, a, F0q, (2.11)

where 0 ď d ă 1 is a discount parameter, a ą ´d is a strength parameter, and F0 a base

distribution over the same space as γj, such that F0 is the mean distribution of F .

Pitman-Yor processes generalize Dirichlet processes; in particular, when d “ 0, the

Pitman-Yor process reduces to a Dirichlet process with concentration parameter a and base

distribution F0 (i.e., PYp0, a, F0q “ DPpa, F0q). This additional parameter allows the drawn

distributions from a Pitman-Yor process to exhibit a power-law, long-tail distributions of

weights in the histogram, as opposed to histograms with weights decaying exponentially

when drawn from Dirichlet processes. This means that the Pitman-Yor process allows for

more distinct mass points in the drawn histogram to appear as new observations come in. In

particular, this feature of the Pitman-Yor proccess allows the model to capture new contexts

that may not have been observed before, contexts that may happen rather infrequently. In

Figure 2.6, we show that as more observations come in, the expected unique number of

clusters grows for both models, but it grows rapidly for the Dirichlet process, and then it

stops growing significantly (d “ 0). In contrast, the Pitman-Yor process allow for more

flexible patterns of how these unique clusters appear in the data. Moreover, using a
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Pitman-Yor process as a prior for our context distribution, similarly to the Dirichlet Process,

allows our model to infer the number of contexts directly from the data.

Figure 2.6: Expected number of clusters from a Dirichlet Process (d “ 0, left) vs. a
Pitman-Yor process (d “ 0.25, middle; and d “ 0.5, right)
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We express the context distribution F in terms of the stick-breaking representation of

the Pitman-Yor process (Ishwaran and James, 2001),

F “
8
ÿ

c“1

πcδθcp¨q (2.12)

θc „ F0 (2.13)

πc “ Vc

c´1
ź

h“1

p1´ Vcq (2.14)

Vc „ Betap1´ d, a` c ¨ dq. (2.15)

This representation allows us to provide some intuition on how this model captures the

contexts non-parametrically, which we illustrate using Figure 2.7.

The distribution F acts as a histogram of contexts, where each location c “ 1, 2, . . . of

the histogram represents a different context (e.g., the summer family vacation, the east-coast
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Figure 2.7: Example of a context distribution drawn from a Pitman-Yor process prior
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γj „ F

• θ1: summer family vacation

• θ2: east-coast business week trip

• θ3: honeymoon

• . . .

business week trip). For any new journey that a customer undertakes, the model would draw

its journey specific parameter γj from this histogram of contexts F . The histogram has two

main set of parameters, the location θc and the context size πc. The locations θc indicate the

set of query, click, and purchase preferences that are associated with context c. The context

size πc represent how likely is context c to be drawn. For example, in Figure 2.7, θ1

represents the set of query parameters, and click and purchase preferences associated with

the summer family vacation context. Accordingly, θ1 would be such that a query is more

likely to consist of more than one adult and children, longer than average stays, and farther

destinations. At the same time, θ1 would capture stronger preferences for non-stop flights,

and moderate price sensitivity. The value π1 “ 0.45, represents that when a new journey is

drawn, it is of context “summer family vacation” with probability 0.45. Similarly, the

“east-coast business week trip” context is drawn with 0.35 chance and so forth.

In summary, our model is able to infer journey-specific preferences using short

historical purchase data. It does so by combining queries, clicks, and purchases, both across

purchase journeys within a customer and across customers with similar purchase journeys.
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In the next section we briefly describe how we specify certain variables in the model tailored

to our empirical context and finish the section outlying our estimation procedure.

2.4.3 Specification of query variables, covariates, and sensitivities

With respect to the query component of the model (qijt in Equations (2.1) through (2.4)),

we use all binary and all categorical variables presented in Table 2.1. We apply a

log-transformation to the query variable “Trip distance” and model it using a Gaussian

distribution according to Equation (2.3). We model “Time in advance to buy”34 using the

exponential distribution in Equation (2.4). Finally, we model the query variable “Length of

stay” using Equation (2.4), allowing for missing values for one-way journeys.

With respect to the covariates in the click and purchase sub-models (Xijt in

Equations (2.5) and (2.6)), we transform price (and length) attributes using

fpxq “ logp1` x´mintxuq, where mintxu is the minimum price (length) of all displayed

offers for that particular click/purchase occasion. We further standardize these variables, by

subtracting the mean and dividing by the standard deviation. In addition, we set the

following base levels for their corresponding categorical attributes: “One stop" for number of

stops, “OneWorld (American)" for alliance, and “Morning (6:00am-11:59am)" for departing

and arrival times. We acknowledge that alternatives being ranked at the top may have

higher probability of being clicked and bought (Ursu, 2018). However, as the firm ranks

products by sorting increasingly by price, we cannot include both price and rank order in the

model, as we cannot disentangle the effect of each of these. Therefore, our price coefficient
34We transform the variable using fpxq “ x` 1, to avoid a zero-valued variable as some journeys search

for same-day flights.
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captures the effect of both price and ranking. This is a limitation of our dataset, not our

model. If products were sorted randomly, we could incorporate both ranking and price

simultaneously in our model to control for higher click rates of products displayed at the top

of the list. That being said, our price coefficient is the appropriate effect of price in our

setting, in which flights are ordered by price.

We further control in our click model (Zijt in (2.5)) for products that were previously

clicked, in order to capture that in click occasions in which a customer revisits a results page,

some products were already clicked before. Theoretically, the sign of this control should be

negative, as most theoretical models rule out multiple clicks on the same product, which

should translate in lower probabilities of clicking on this products again. Our data shows the

opposite pattern—customers are more likely to click on a product they have clicked on

before.

Regarding the sensitivity to these covariates, we assume that customers have the

same preferences for outbound and inbound legs for length of the leg, number of stops, and

alliance and allow them to have different preferences for departing and arrival times, for

outbound and inbound legs. Finally, for computational convenience, we set µi to zero for all

click intercepts and controls (α0ij). One could easily allow for heterogeneity in this

components; our results are robust to this change.
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2.4.4 Model estimation and prediction for partially observed jour-

neys

We estimate the model parameters using a hierarchical Bayesian framework. We draw from

the posterior distribution using Markov Chain Monte Carlo algorithm, specifically, a Gibbs

sampler, as we choose priors that allow to us compute full conditional distributions

analytically for all parameters, and draw them sequentially. We use the stick-breaking

representation of the Pitman-Yor process,35 and we use a blocked Gibbs sampler to be able

to implement a fast sampler that can draw the context parameters in parallel for each

journey (Ishwaran and James, 2001). We estimate our model using 4,000 iterations of

burn-in and 2,000 iterations for drawing the posterior distribution. We assess convergence by

observing the mixing distribution of the parameters. Once we have obtain a sample from the

posterior distribution, we compute predictions for partially observed journeys. That is, using

the queries and clicks of an existing journey, we predict whether the customer will end this

journey with a purchase, and if so, which product s/he will buy.

We draw a sample of 4,500 customers for calibrating the model and leave the

remaining 499 customers for evaluating the model’s performance on “new customers.” In

addition to explore the model performance on hold-out customers, we are predicting ongoing

journeys of existing customers. Therefore, for customers with three purchase occasions, we

leave the last journey out; and for customers with four or more purchase occasions, we leave

the last two journeys out. We will use these held-out journeys to evaluate prediction of

purchase incidence and product choice using different depth of information of the journey.
35The results in this essay are estimated using d “ 0.
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2.5 Results

2.5.1 Model estimates

We start by describing mean level preferences for product attributes as well as base

intercepts of the click and purchase models. As these parameters vary at the journey level,

both across customers as well as across contexts (recall bij “ µi ` γpj from (2.7)), we

compute the population mean estimates of these parameters averaging bij across journeys,

and σb “
a

diagpΣq, the standard deviation capturing the level of customer heterogeneity in

Equation (2.9).36 Results are presented in Table 2.4. As expected, we find that, on average,

customers prefer offers with lower prices and flights (both outbound and inbound) of shorter

length. We find that customers do not prefer significantly more non-stops over one stops, but

they strongly dislike offers with two or more stops. On average, customers prefer OneWorld

alliance over all other alternatives.37 Finally, customers prefer to depart and arrive in the

morning for the outbound leg, while they prefer to depart in the morning and arrive either in

the morning or in the evening for the return leg.

36Customer heterogeneity is not the only source of heterogeneity across journeys for bij . There is another
source of heterogeneity, context heterogeneity, which we describe later.

37This is consistent with American Airlines market share. See https://www.worldatlas.com/articles/the-
largest-airlines-in-the-united-states.html
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Table 2.4: Parameter estimates of click and purchase models. We show the average across customers and contexts (sb)
and standard deviation across customers (σb).

Parameter Variable
sb σb

Posterior Posterior CPI Posterior
mean sd 2.5% 97.5% mean

Click occasions Intercept Click: OW Search -3.158 0.073 -3.242 -3.001 .
Intercept Click: RT Outbound -3.191 0.053 -3.263 -3.086 .α1ij

Intercept Click: RT Inbound -2.563 0.063 -2.671 -2.447 .
Intercept Search: OW Search -1.661 0.034 -1.727 -1.597 .
Intercept Search: RT Outbound -2.455 0.027 -2.513 -2.414 .α2ij

Intercept Search: RT Inbound -2.651 0.036 -2.726 -2.582 .
η Product was clicked before 1.257 0.050 1.161 1.356 .

Purchase τ0ij Intercept Purchase -5.550 0.110 -5.669 -5.326 1.054

Price -0.567 0.008 -0.580 -0.551 0.213
Length of trip (hours) -0.737 0.013 -0.766 -0.709 0.339
Number of stops: Non stop 0.023 0.018 -0.016 0.052 0.541
Number of stops: 2+ stops -1.621 0.013 -1.652 -1.596 0.580
Alliance: Skyteam (Delta) -0.564 0.049 -0.664 -0.510 0.640
Alliance: Star Alliance (United) -0.367 0.041 -0.452 -0.305 0.897
Alliance: Alaska Airlines -0.497 0.032 -0.561 -0.448 0.641
Alliance: Spirit -0.667 0.045 -0.755 -0.588 0.633
Alliance: JetBlue -0.097 0.042 -0.164 -0.025 0.733
Alliance: Frontier -0.130 0.050 -0.229 -0.039 0.591
Alliance: Other – No alliance -0.228 0.041 -0.329 -0.171 0.941

Preferences Alliance: Multiple alliances -1.542 0.015 -1.571 -1.515 0.590
over attributes Outbound dep. time: Early morning (0:00am - 4:59am) -0.638 0.040 -0.705 -0.535 0.836

Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.162 0.017 -0.203 -0.140 0.673
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.226 0.024 -0.263 -0.179 0.795
Outbound arr. time: Early morning (0:00am - 4:59am) -0.835 0.076 -0.943 -0.698 0.823
Outbound arr. time: Afternoon (12:00pm - 5:59pm) -0.160 0.025 -0.216 -0.110 0.621
Outbound arr. time: Evening (6:00pm - 11:59pm) -0.213 0.017 -0.238 -0.170 0.621
Inbound dep. time: Early morning (0:00am - 4:59am) -0.964 0.080 -1.128 -0.848 0.775
Inbound dep. time: Afternoon (12:00pm - 5:59pm) -0.146 0.019 -0.184 -0.113 0.890
Inbound dep. time: Evening (6:00pm - 11:59pm) -0.486 0.049 -0.563 -0.397 0.807
Inbound arr. time: Early morning (0:00am - 4:59am) -0.886 0.155 -1.086 -0.537 0.890
Inbound arr. time: Afternoon (12:00pm - 5:59pm) -0.665 0.047 -0.775 -0.549 0.891

βij

Inbound arr. time: Evening (6:00pm - 11:59pm) -0.078 0.066 -0.240 0.069 0.879
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2.5.2 Contexts in the data

As described in Section 2.4.2.5, the proposed model automatically finds the number of

contexts and provides us with a histogram that represents how often each of the contexts

appears in the data. We find a very rich set of contexts appearing in the data. Figure 2.8

shows the relative size of each context; of the 19 contexts found in the data (i.e., with at

least one journey assigned to them), 15 of these contexts appear in a journey with a

probability higher than 1% (dotted line in Figure 2.8).

Figure 2.8: Posterior mean and 95% CPI of contexts probabilities, πc. To be read,
an average journey has a 4.5% chance to be of Context 1. (Dotted line
marks the 1% chance.)
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Arguably, customers could be stable in terms of the contexts their journeys belong to.

If that was the case, modeling context heterogeneity would not be necessary as customer

heterogeneity could capture those differences. We investigate this issue by computing, per

customer, the number of unique contexts his/her journeys belong to. Figure 2.9 shows the

distribution of customers (number of customers) by number of unique contexts and number
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of journeys per customers.38 The diagonal dashed line represent customers for which all their

journeys belong to different contexts. The horizontal dotted line represent customers for

which all their journeys belong to a single unique context. We can see that the vast majority

of customers have journeys that belong to more than a single context, reinforcing the idea

that context heterogeneity and customer heterogeneity capture different sources of variation

and that both are present in this setting.

Figure 2.9: Number of contexts per customer. Customers on the horizontal (dotted)
line search for flights belonging to only one context, whereas customers
above that line search for more than one context. The size of the circle
represents the number of customers in that group.
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We focus on the 15 most prominent contexts and explore what type of trip each of

these contexts is capturing. To do that, we normalize location parameters θc (from the

stick-breaking representation of the Pitman-Yor process described in (2.13)) which allow us

to compare both the query parameters and the flight preferences across the 15 different
38As our sampling algorithm provide us a posterior distribution of the context assignment for each journey,

for this exercise, we allocate journeys to the context to its posterior mode.

126



contexts. First, for each context c, we compute the posterior mean of each location

parameter θc. Second, we compare these location parameters with the population mean level

of those same parameters, similarly to computing sb, but now we include query parameters as

well. We subtract these two, to measure whether contexts are above or below average on

each of the query parameters, and click and purchase preferences. Finally, we normalize

these differences by dividing by the square-root of the posterior variance across journeys.

This variance is composed by two terms (similarly to ANOVA): (1) within-context posterior

variance of each θc, which measures the posterior uncertainty of each location parameter θc;

and (2) the across-context variance of all θc with respect to the population mean, which

captures how much variance is explained by the differences between contexts. By

normalizing the location parameters, we can now compare contexts with respect to whether

they score higher or lower than average on each of the query parameters and preferences. We

visualize these relative scores in Figure 2.10. A darker color towards black means that the

context is higher than average in that dimension; and lighter color towards white means that

the context is lower than average in that dimension. Mid-gray color means that contexts

does not differ much from the population average. For example, looking at Context 4, this

context represents journeys that would likely include more than one adult and kids

(compared to the average journey), have a high chance to include a weekend, and where

customers show a lower preference of high prices, which means higher price sensitivity.
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Figure 2.10: Posterior mean of context location parameters θc, relative to the average in the population. The top figure
shows how each context deviates from the average with respect to the query variables whereas. The bottom
figure shows deviations with respect to the preferences parameters. Darker (lighter) gray means positive
(negative) deviation from the average in the population.
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Moreover, we identify the top most frequent 50 routes per context (see Figure 2.11)

and, combining the insights from these two figures, describe some of these contexts in further

detail:

• Context 4 - No-hassle family vacations (Central America, Europe and

Middle East): This context represents journeys that are more likely to be roundtrip,

to include children and other adults, to include weekends. Searches for this type of

journeys occur more likely during weekdays. When searching for this type of trips,

customers are more price sensitive, probably because they are paying for more tickets,

have stronger preferences for non-stop flights, most likely to avoid connections as they

travel with kids, and avoid returns that depart in the early morning. Figure 2.11 shows

that the top routes of this context include trips between the US Mexico or Central

America, as well between the US and Europe, and between the US and the middle east.

• Context 2 - Short business domestic trip: This context represents journeys that

are more likely to be one-way, domestic and to close destinations in the US. If they are

roundtrips, the stays are short and unlikely to include weekends. They neither include

kids nor other adults, and searches are made short in advance of the departing date.

For these contexts, customers are less price sensitive, and prefer returns that arrive at

evening. Figure 2.11 confirms that the top routes of this context are mostly US

domestic trips.

• Context 7 - Close-by family getaway: This context represents journeys that are

more likely to be domestic, and to include another adult and children. Customers

search for these trips during the week, and they tend to search with less time in
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advance than the average search. Like those in Context 4, customers are more sensitive

to price and to longer flights, however they tend to prefer the early morning for the

inbound flight. As shown in Figure 2.11, the top routes of this context include mostly

trips within the US, and within Europe (with some exceptions to India and

Philippines).

• Context 10 - US overseas winter couple’s trip: This context represents journeys

that are more likely to be roundtrip, international, to include another adult, are less

likely to occur in the summer-season, and the stays generally include weekends. For

these journeys, customers are more price sensitive, less sensitive to longer flights, but

with stronger preferences for non-stops. Figure 2.11 confirms that the top routes of

this context include trips between the US and Europe, between the US and China or

Japan, and between Europe and northern South America.

Not surprisingly, “short business domestic trips” (Context 2) are very prominent in

the data (from Figure 2.8, almost 14% of journeys belong to this context) whereas “No-hassle

family vacations” and “Close-by family getaways” occur less often (with less then 5% chance

each of them). Note that the lower appearance of family vacations in the data does not

imply that these contexts are irrelevant, as identifying them earlier on will help the focal

firm infer which product offerings will be most preferred in those cases.
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Figure 2.11: Top 50 routes per context

(a) Context 1 (b) Context 2 (c) Context 3

(d) Context 4 (e) Context 5 (f) Context 6

(g) Context 7 (h) Context 9 (i) Context 10

(j) Context 11 (k) Context 13 (l) Context 14

(m) Context 15 (n) Context 17 (o) Context 23

To sum, the model identifies several distinct contexts that most customers search for

when looking for flights. Not only the model provides valuable information about the

characteristics of the contexts and how often these contexts occur in flight searches, but also
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identifies what attributes matter the most in each specific context. This information is very

relevant for the firm as it can better tailor the needs of the customer as s/he is searching

along. Moreover, the firm can leverage this information by identifying cross-selling offerings,

either post-purchase or during-search, that enhance the overall trip (e.g., the resort hotel and

a tour for the family vacation, or the convenient hotel and a car rental for the business

traveler).

2.5.3 Prediction of purchase incidence and product choice

In addition to provide valuable insights about contexts and journey-specific preferences, this

model can also be used to predict purchase incidence, and more importantly, product choice.

This is relevant when the company wants to predict the likelihood of a purchase outcome in

a current journey for example for advertising re-targeting purposes or to prominently display

specific flights at the top of the search screen. In particular, we show how the model gets

updated as the customer provides more information, by allowing the firm to access his/her

past journeys (via cookies), by inserting the query for the current journey, and as the

customer clicks on some options as s/he progresses with the journey.

2.5.3.1 Estimated models

We estimate our (Full) model, as well as four other benchmark models, all of which are

modified versions of our model (see Table 2.5). In the No context model, preferences do not

depend on context. For this reason, this model informs preferences only through clicks and

purchases, and therefore, it does not model queries either. The No cookies model ignores

which journeys belong to each customer, and therefore does not account for customers’

132



heterogeneity (preferences are only a function of context). This model could be thought of as

the privacy model, in which the website does not store information about customer beyond

the focal journey. Finally, the No clicks model does not leverage clicks, but it does model

queries and purchases, and preferences are a function of both customers’ stable preferences

and the context of the journey.

Table 2.5: Estimated models

Heterogeneity
Model name Queries Clicks Customer Context

Full X X X X

Benchmark models
No context . X X .
No cookies X X . X
No clicks X . X X

2.5.3.2 Prediction of purchase outcomes along the journey

The main idea of this exercise is to explore the models’ ability to improve the quality of

predictions as the customer moves along the journey and therefore more information becomes

available. We consider the two main stages of the journey: prediction after query, we assume

that the firm is interested in predicting product choice for a pre-specified journey for which

the customer has just entered a query.39 The information provided by the customer allows

the model to partially infer the context based on the characteristics of the query. While not

incorporated directly, the updated context would inform about journey-specific preferences

because in our model, contexts are also determined by preferences (learned from other

customers who had similar journeys). Then, in the second stage, prediction after query and
39Predicting before that point would not be practical because without a query, the firm cannot retrieve a

set of product results from which to predict purchase.
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clicks, we add the sequence of clicks observed in the current journey (ignoring the click to

purchase) and use them to further update the inference of context and therefore preferences.

In this case, the information on clicked products not only helps updating the inference about

the context, but also helps updating the customer heterogeneity (i.e., stable preferences) as

additional clicks can supplement the thin historical data of the particular customers.

Table 2.6: Posterior mean and standard deviations of AUC for prediction of purchase
incidence for each model using each piece of information from the customer
journey. Higher AUC is better. AUC of 1 corresponds to perfect prediction
while AUC of 0.5 corresponds to pure chance.

Holdout journeys
Prediction (AUC)

Model ...after query ...after query and clicks

Full 0.6043 (0.0102) 0.7406 (0.0066)
No context 0.6003 (0.0090) 0.6359 (0.0047)
No cookies 0.5687 (0.0118) 0.6523 (0.0042)
No clicks 0.6187 (0.0097) 0.6187 (0.0097)

Notes: Higher AUC corresponds to better prediction.

We first analyze the model’s ability to predict purchase incidence, merely, whether the

customer will make a purchase in this current journey (Table 2.6). Starting from the middle

column, predictions after query, most model specifications have similar predicting power

(with AUC of about 0.60) with the No click model being slightly superior.40 Not surprisingly,

the models that either ignore the customer history (No cookies) or do not incorporate the

query information are the specifications that perform the worst at that stage. Now, when the

model starts updating the information collected during the journey the gains from the Full

model are noteworthy, with the AUC increasing from 0.60 to 0.74. It is important to point
40A priori we expected the Full model to perform exactly as the No click specification because, in principle,

they both are inferring from the same information. Our explanation for this slight difference is that as the
No clicks model cannot leverage clicks, it is trained to extract all its predictive ability from queries, whereas
the Full model is trained to balance queries and clicks. As clicks are more informative than queries, the Full
model balances the degree to which queries are exploited for prediction.
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out that this increase in prediction power is not coming from knowing that the customer

keeps clicking during the current journey (i.e., the fact that customers who click more on the

website are more likely to buy and therefore easier to predict). Because if that was the case,

all other model specifications, with the exception of No clicks, should show the same increase

in prediction. Rather, what seems to be happening is that, because the Full model is the

only one able to update both context and customer heterogeneity separately, doing so allows

it to capture journeys’ preferences much more accurately. Intuitively, as new information

becomes available, the model further pins down each customer’s heterogeneity, being able to

better identify the specific needs of this particular journey.

Second, we evaluate the model’s ability at predicting the type of product the

customer will buy. The rationale for this analysis is as follows, if the model can indeed infer

customers preferences, it should also be able to predict which product the customer will

choose. Because in this setting customers are presented with dozens, if not hundreds of

results, predicting the exact product that a customer will buy is practically impossible.

Therefore, instead, we test whether the model is able to predict the attributes of the product

that has been purchased. For example, given that the person purchased a flight in a

particular journey, how accurate does the model predict the alliance? Can the model predict

the price that the customer paid?

Table 2.7 shows the predictions for four main attributes, namely # stops, alliance,

price, and length. (For this analysis we only consider journeys that end up in a purchase.)

Across the four product attributes, the No cookies and No clicks models are those with the

poorest performance, both when predicting right after inserting the query and after having

incorporated click information. Regarding the prediction right after the query, the No
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Table 2.7: Posterior mean and standard deviations of hitrate and RMSE (root mean
squared error) for predictions of product choice per attribute using each
piece of information from the customer journey

Holdout journeys
Prediction (hitrate or RMSE)

Product
attribute

Model name ...after query ...after query
and clicks

Full 0.8332 (0.0110) 0.8727 (0.0057)
Number of No context 0.8360 (0.0096) 0.8516 (0.0061)

stops No cookies 0.8066 (0.0096) 0.8118 (0.0057)
(hitrate) No clicks 0.7862 (0.0122) 0.7862 (0.0122)

Full 0.5394 (0.0152) 0.6270 (0.0095)
No context 0.5406 (0.0124) 0.5746 (0.0074)

Alliance No cookies 0.4707 (0.0110) 0.4960 (0.0082)
(hitrate) No clicks 0.4758 (0.0165) 0.4758 (0.0165)

Full 0.9553 (0.0280) 0.8291 (0.0120)
No context 0.9556 (0.0318) 0.8980 (0.0104)

Price No cookies 1.0423 (0.0137) 1.0178 (0.0062)
(RMSE) No clicks 1.0246 (0.0285) 1.0246 (0.0285)

Full 1.4656 (0.0229) 1.3811 (0.0099)
No context 1.4331 (0.0214) 1.4122 (0.0095)

Length No cookies 1.5078 (0.0117) 1.5001 (0.0068)
(RMSE) No clicks 1.4858 (0.0228) 1.4858 (0.0228)

Notes: Higher hitrate and lower RMSE correspond to better predictions

context model provides the most accurate predictions, with the Full being a close second.

However, the moment we incorporate the clicks, the Full model clearly outperforms all other

specifications. Our interpretation for this result is that, not surprisingly, the component

capturing customer heterogeneity in product attributes is very much predictive of what

attributes the customer will buy—both the Full and No context specifications incorporate

such a component. However, when the model incorporates some clicks from the current

journey, not only that information informs individual heterogeneity, but it also helps the

model infer more accurately what is the context of the current journey.

Taken all together, these two sets of results suggest that customer historical data,

while thin, is very relevant at predicting not only whether the customer will buy, but also

which kind of products customers will buy. It also confirms that clicking data contains a very
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rich source of information which allows the model to separate between customer and context

heterogeneity.

2.5.4 Illustration of how the model infers contexts and preferences

along the journey

Finally, we illustrate how the model updates preferences using the different pieces of

information collected along the customer journey. For this exercise, we select a customer

with two holdout journeys and illustrate how the model updates both the context and the

price sensitivity as new information is available to the firm. In the first (holdout) journey,

the customer searched for one adult and one child roundtrip from Washington DC to

Burlington, VT; departing Friday June 30th, 2017, and returning Wednesday July 5th, 2017.

This customer is considering a trip with a child for July 4th’s weekend to Burlington, which

is a small lake city in Vermont. For the second journey, the customer searched for one adult

roundtrip from Washington DC to Knoxville, TN; departing Wednesday September 20th,

2017, and returning Thursday September 21st, 2017. (See the actual queries in Figure 2.12).
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Figure 2.12: Queries of two holdout journeys from the same customer

Roundtrip Multi-CityOne Way

Flying from
Washington, DC (WAS-ALL Airports)

Flying to
Burlington, VT (BTV-Burlington Intl)

Departing
06/30/2017

Returning
07/05/2017

Travelers
1 Adult, 1 Child

Search

(a) Journey 1: WAS p2017´ 06´ 30q ´ BTV p2017´ 07´ 05q

Roundtrip Multi-CityOne Way

Flying from
Washington, DC (WAS-ALL Airports)

Flying to
Knoxville, TN (TYS-McGhee Tyson)

Departing
09/20/2017

Returning
09/21/2017

Travelers
1 Adult

Search

(b) Journey 2: WAS p2017´ 09´ 20q ´ TYS p2017´ 09´ 21q

For each journey, we show how the model updates its inferences for context and price

sensitivity, at three different stages of the journey: Homepage (before using the query),

Query (after using the query), and Query and clicks (after using the queries and clicks).

We first discuss how the model updates its inference about what context each journey

belongs to (see Figure 2.13). At Homepage the model does not have any information about

the journey; hence, the inference of which context each journey belongs to is equal for these

two journeys and corresponds to the average propensities across the population—the small

differences between first and second journey are simply due to sampling error. Then, the
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Figure 2.13: Posterior distribution of context for each journey example, using each
piece of information from the customer journey.

model incorporates the query information and updates its inference about the context

(second row in Figure 2.13). We see that the probability for contexts 2, 9, 11, or 17 increases

notably, compared to the Homepage step, whereas the probabilities for contexts 1, 10, 13,

139



and 23 decreases almost to zero. This is not surprising as both trips are within the US and

therefore the model infers that these journeys would likely belong to domestic contexts

(recall contexts’ top destinations from Figure 2.11). Importantly, the inference for these two

journeys differ. The second journey, from Washington to Knoxville, is considerably more

likely to belong to context 2 (i.e., short business domestic trip), compared to the first

journey from Washington to Burlington. In these updates, (similarly to updates of posterior

segment membership probabilities in latent class models) the model weights both the

information about the query, as well as, how frequent these journeys appear in the

population. Finally, once clicks are observed, contexts are updated again (by integrating the

information from the clicking component of the model), now showing that the first journey

most likely belongs to context 7 (i.e., close-by family getaway), whereas the second journey is

more likely to belong to context 2 (i.e., short business domestic trip).

We now show how the model updates its inferences about price sensitivity for these

journeys (Figure 2.14). Similarly with context, the inference about price sensitivity is equal

for the two journeys at Homepage, as they both belong to the same customer and the model

is not using any information from the journey. Then, once the model uses each of the queries,

inferences are updated, reflecting how the model updates its inference on which contexts

these journeys belong to. Because the context inferences for these two journeys are

comparable at this stage (middle row in Figure 2.13), both journeys display a similar price

coefficient, which is slight larger than that at the Homepage stage (both histograms move

slightly to the right, particularly the left tail of the distribution). Finally, when the model

observes the clicks, the inference about contexts is more certain and different across the two

journeys, which results in considerably different inferences on price sensitivity. The first
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Figure 2.14: Posterior distribution of price coefficient for each journey example, using
each piece of information from the customer journey.

Journey 1: WAS (2017−06−30) − BTV (2017−07−05) Journey 2: WAS (2017−09−20) − TYS (2017−09−21)
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journey, from Washington to Burlington for which the model uncovers a close-by family

getaway context, shows a more price sensitive journey (more negative coefficient), compared

141



to the second journey, from Washington to Knoxville that the model uncovers as a short

business domestic trip context.

To sum, this exercise illustrates how the model updates its inferences as new

information from an active customer journey is incorporated. It empirically shows that even

for different journeys of the same customer, the model can infer different journey-specific

preferences, highlighting how relevant is to model context heterogeneity in this setting.

2.6 Conclusion and discussion

We propose a Bayesian non-parametric model for query, click and purchase, to infer

customer preferences in settings where historical purchase data is thin. Our model leverages

historical data from the previous journeys, data collected during the current journey, and

information from other customers with similar journeys. The model accounts for what we

call context heterogeneity, which are journey-specific preferences that depend on the context

in which the journey is undertaken. We model the (unobserved) contexts using a Pitman-Yor

process that allow us to uncover non-parametrically the relevant contexts under which

customers undertake purchase journeys.

Applying the model to data from one large travel website, we identify 19 different

contexts that clearly differ in the specific needs customers are trying to satisfy. For example,

one context prevalent in the data is “short business domestic trip.” This context is

characterized by trips between close locations, mostly within the US, including one single

passenger, lower price sensitivity, and stronger preferences for evening arrivals of the

returning trip. In contrast, many other purchase occasions belong to a very different context,
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which we call “No-hassle family vacations.” Unlike the business contexts, customers in family

trips travel with other adults and kids, look for non-stop flights, have higher price sensitivity,

and avoid flights at early morning when returning from their vacations destination.

Interestingly, the same customer searches for different contexts in different points in time.

We find that, among customers who have more than one journey, the average number of

contexts they have searched for is 3.3. This figure confirms that context- and customer

heterogeneity capture different variation and that both are important drivers of behavior.

Our model and findings are relevant to other industries as well. Experiential

purchases such as hotel stays, restaurants reservations, food delivery and media consumption

often involve purchase journeys with varying contexts and needs. Firms in these industries

collect extensive data from the customer journey, very similarly to the example in our

empirical application. Moreover, setting with high involvement products such as cars and

durable goods, also exhibit thin individual purchase history. To the extend firms can observe

behaviors along the purchase journey, our research suggest that those insights will be very

valuable to infer customers’ individual preference.

Our research is not free of limitations. First, our findings regarding context

heterogeneity, and particularly the substantive characteristics of such contexts, are based on

a subset of highly active customers. Arguably, both the number of contexts as well as their

characteristics may vary when using a more representative sample of the customers of the

firm, and therefore, these findings should not be taken as representative of the population of

customers that search for flight tickets in this market. Second, we do not observe when

customers use sorting or filtering tools in the website. If we were to observe these, we could

extend our model to further inform both context and customer heterogeneity by modeling
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such behaviors as outcomes in our model, similarly as we do with the queries and clicks.

Finally, these websites often offer complementary products that are searched for by the

customer to fulfill related needs to those in our settings. For example, customers may also

search for hotels and car rentals for the same trip they are searching for flights tickets. It

may be useful to leverage the information from the context in one category to inform the

others. Our model could be extended to share information on related journeys on different

categories if such data was available.
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Appendix A: Appendix to Essay 1 - Overcoming the Cold Start

Problem of CRM using a Probabilistic Machine Learning Approach

A.1 Augmenting the acquisition characteristics via product embeddings

While one could attempt to directly include the product-level purchase incidence as

acquisition characteristics, such an approach would suffer from high levels of sparsity (i.e.,

unique SKUs are purchased rather infrequently over the first transaction of the customers in

the calibration data). Instead, we rely on embedding models that have been developed to

overcome the challenge that large “vocabularies” have on computing probabilities of

multinomial outcomes. (Specifically, how to efficiently compute/approximate the large

denominator of the softmax). As described in Section 1.3.2, we use the transactional data

from anonymous customers to create product embedding vectors, i.e., vectors representations

of all products available, that captures the nature of products, as perceived by the customers.

In essence, we leverage the co-occurrences of products in customers’ baskets to infer

similarities across products.

A.1.1 Data processing

The anonymous transactions include 304,497 transactions and 4,730 unique product codes

(corresponding to unique SKUs specified by the firm). Many of those product codes are very

similar in nature, as they only reflect slight modifications of the exact same product,
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different sizes, or travel-size packaging. Because those pieces of information are already

captured by the acquisition characteristics (NewProduct, Travel, and Size), we aggregate

the product code to unique combinations of product sub-category (e.g., liquid soap, bath,

beauty oils) and product line (e.g., shea butter, chamomile, fresh-summer). This

characterization of product codes results in 515 unique products in the data.

A.1.2 Word2vec algorithm

To capture latent semantic patterns among products in the same transaction, we use

Word2vec, a word embedding method in Natural Language Processing (NLP), to map words

into numerical vectors. Word2vec is proposed by Mikolov et al. (2013) who develop two

architectures to take advantages of word context: continuous bag-of-words (CBOW) and

continuous skip-gram (SG). The first model predicts a word based on its neighbor words,

and the second model predicts surrounding words based on a given word. We use the SG

model to generate a “product vector.”

More specifically, let T “ tT1, T2, ..., THu be the set of transactions,

Q “ tq1, q2, ..., qMu be the set of unique products, V “ tVq1 , Vq2 , ..., VqM |Vqi P RNu be the set

of product vectors. Then, the SG model optimizes V by maximizing the loss function:

L “
ÿ

TiPT

ÿ

qiPQ

ÿ

1ă“jă“M,j‰i

logP pqj|qiq, (A.1)
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where P is the probability of observing product qj given the occurrence of product qi in the

same transaction. The probability function is defined by the softmax:

P pqj|qiq “
eV

T
qi
Vqj

M
ř

k“1

eV
T
qi
Vqk

. (A.2)

A straightforward softmax calculation requires an evaluation of all M products in the

denominator, so we speed up the computation by using hierarchical softmax (Mnih and

Hinton, 2009) to approximate the conditional probability. We implement the model via the

Python package Gensim (Řehůřek and Sojka, 2010) and train the model on anonymous

customers till the loss L is stable. The hyper parameters in Gensim are: sg=1, negative=0,

hs=1, window=10000, min_count=1, random_seed=4. We set a large sliding window size

so that all product combinations are selected.

Figure A1: Model selection for Word2vec: Perplexity when varying the number of
dimensions from 2 to 10.

We calibrate the Word2vec algorithm using N “ 2, 3, ..., 10 dimensions to represent

the set of 515 products available in the data and compare the model performance over the
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number of dimensions (Figure A1). We select the model with 6 dimensions based on the

(lower) rate of decline.1 As a result, we have a matrix of product embeddings that maps each

product to a 6-dimensional vector that represents the position of the product within a

multi-dimensional space that captures product similarities.

A.1.3 Interpreting the product dimensions

One could interpret those dimensions by identifying the products that score high in each of

the dimensions (Table A1). While not all dimensions are easy to interpret, some clearly

capture characteristics defining the nature of the product. For example, looking at the

products that score high in the first dimension, we infer that it represents aromas and items

for the household. The fifth dimension seems to capture kits and other uncategorized items

whereas the sixth dimension represents a specific line of beauty called Fleur Cherie.

In addition to creating the product embeddings that will be used to augment the

data, this methodology can also be used to visualize similarities across products. For

example, Figure A2 visualizes the 40 most popular products in the anonymous data.

Because showing the 6 dimensions would be cumbersome, we apply TSNE (t-distributed

stochastic neighbor embedding; algorithm for dimensionality reduction that is well-suited to

visualizing high-dimensional data) and visualize the data in a two-dimensional space. It

appears to be four clusters representing similarities across these products.

1A company with a larger product space would calibrate the model with a greater number of dimensions
and pick the dimensionality that is best suited for their application.
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Table A1: Top 5 products per dimension of the product embeddings.

Dimension 1 Dimension 2

Furniture-*-Others Immortelle-*-Accessories
Aromachology-*-Accessories Collection De Grasse-*-Accessories
Aromachology-*-Beauty Oils 027-*-Others
Home Fragrance-*-Accessories Collection De Grasse-*-Shampoo And 2in1
Relaxing Recipe-*-Home Perfume Verbena Harvest-*-Conditioner

Dimension 3 Dimension 4

Furniture-*-Others Grape-*-Shower
Orange Harvest-*-Lips Fleur Cherie-*-Concrete-Solid Perfume
Bonne Mere-*-Others Olive Harvest-*-Conditioner
Homme-*-Edp-Edt Shea Butter-*-Body Sun Care
Relaxing Recipe-*-Kits Grape-*-Body Scrub

Dimension 5 Dimension 6

027-*-Others Fleur Cherie-*-Solid Soap
Almond-*-Kits Fleur Cherie-*-Shower
Bonne Mere-*-Kits Bonne Mere-*-Others
Others-*-Lips Fleur Cherie-*-Edp-Edt
Immortelle-*-Moisturizing Treatment Fleur Cherie-*-Moisturizing Treatment

A.1.4 Product mapping for first purchase data

Finally, once the product embeddings are created, we characterize the first purchase from our

focal customers by taking the average of the embeddings of each product in the basket

(BasketNature) and by computing the standard deviation of all products in the basket

(BasketDispersion), which has missing value if the first purchase only included one

product. Note that four products from the first purchase data were not present in the data

from anonymous customers and therefore have missing values in the ProductNature variable

as well.
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Figure A2: Visual representation of the product embeddings

A.2 Brief description of DEFs

DEFs are deep generative probabilistic models that describe a set of observations Di with

latent variables layered following a structure similar to deep neural networks. The lowest

layer describes the distribution of the observations, ppDi|z
1
i ,W

0q “ f
`

Di|W
01z1i

˘

and the

top layers describe the distribution of the layer just below them. As in deep neural networks,

DEFs have two sets of variables: layer variables (z`i) and weights matrices (W`) for the `’th

layer. Each layer variable z`i is distributed according to a distribution in the exponential

family with parameters equal to the inner product of the previous layer parameters z``1i and
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the weights W`, by

ppz`i,k|z
``1
i ,w`

q “ EXPFAM`

´

z`i,k| g`

´

w`
k

1
¨ z``1i

¯¯

` P t1, . . . , L´ 1u,

where z`i,k is the k’th component of vector z`i , w`
k is the k’th column of weight matrix W`,

EXPFAM`p¨q is a distribution that belongs to the exponential family and governs the `’th

layer, and g`p¨q is a link function that maps the inner product to the natural parameter of

the distribution, allowing for non-linear relationships between layers. The top layer is purely

governed by a hyperparameter η, that is, ppzLi,kq “ EXPFAML

`

zLi,k|η
˘

.

Similar to deep unsupervised generative models, DEF models are suitable to find

interesting exploratory structure in large data sets. For example, DEFs have been applied to

textual data (newspaper articles), binary outcomes (clicks) and counts (movie ratings), being

found to give better predictive performance than state-of-the-art models (Ranganath et al.,

2015).
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A.3 Model priors and automatic relevance determination component

We detail the specification of the automatic relevance determination component that creates

sparcity in the weights Wy, Wa, and W1 and the prior distribution.

A.3.1 Automatic relevance determination

Following Bishop (1999) we define α as a positive vector of length N1 (number of traits in

the lower layer z1i ), to control the activation of each trait. Note that Wy is matrix of size

Dy ˆN1, where Dy is the length of the demand parameters βyi ; and Wa is matrix of size

P ˆN1, where P is the length of the acquisition parameters βai .

We assume that the component associated with the n’th row (demand parameter)

and k’th column (trait) of Wy is modeled by:

ppwy
nkq “ N pwy

nk|0, σ
y
¨ αkq (A.3)

where σy is the parameter that captures the variance of the demand model outcome (e.g.,

the variance of the error term in a linear regression). For identification purposes, we assume

σy “ 1 for logistic regressions. For other demand models, σy controls the scale of Wy, and

therefore should be defined accordingly. Note that if the vector of covariates xyit is not

standardized, then this distribution should also consider the scale of the covariates.
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Similarly, we model wa
pk, the component associated with the p’th row (acquisition

behavior) and k’th column (trait) Wa, by:

ppwa
pkq “

$

’

’

’

&

’

’

’

%

N
`

wa
pk|0, αk

˘

if p is discrete

N
`

wa
pk|0, σ

a
p ¨ αk

˘

if p is continuous

, (A.4)

where σap is the variance of the error term in the acquisition model for variable p. This

variable again corrects for the scale of wa
pk so it matches the scale of acquisition behavior p.

Finally, note that matrix W1 is of size N1 ˆN2. We model w1
km, the component

associated with the k’th row (lower layer) and m’th column (higher layer) of W1, using a

sparse gamma distribution:

ppw1
kmq “ Gamma

`

w1
km|0.1, 0.3

˘

(A.5)

A.3.2 Model priors

We model the prior distribution of the set of parameters using

ppWy,Wa,α,W1,µy,µa,σy,σa,baq “ppWy,Wa,α,W1,µy,µa,σy,σa,baq

“ppWy
|α,σyq ¨ ppWa

|α,σaq ¨ ppW1
q ¨ ppαq

¨ ppµyq ¨ ppµaq ¨ ppσyq ¨ ppσaq ¨ ppbaq

In our estimated models, σy is a positive scalar σy when the demand model is a regression

and it does not exist when the demand model is a logistic regression; and σap is a positive
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scalar σap if the p’th acquisition behavior is continuous, and it does not exists if it is discrete.

We use the automatic relevance determination component, described in Appendix A.3.1, for

the terms ppWy|α,σyq, ppWa|α,σaq, and ppW1q. Denoting Nac the number of firm-level

controls for the acquisition model (i.e., dimension of xamτ ), and Pc the number of discrete

acquisition variables, we model the remaining terms by:

ppαq “
N1
ź

k“1

InverseGammapαk|1, 1q,

ppµyq “

Dy
ź

k“1

N pµyk|0, 5q,

ppµaq “
P
ź

p“1

N pµap|0, 5q,

ppbaq “
Nac
ź

n“1

P
ź

p“1

N pbanp|0, 5q,

ppσyq “ logN pσy|0, 1q, (if demand model is a regression),

ppσaq “
Pc
ź

p“1

logN pσap |0, 1q (A.6)
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A.4 Rotation of traits

In order to obtain insights about the traits, we post process the posterior sample by carefully

rotating the lower weights parameters across draws to define a consistent sign and label of

those traits.

First, we define the vectors βyai “

¨

˚

˚

˝

βyi

βai

˛

‹

‹

‚

, and µya “

¨

˚

˚

˝

µy

µa

˛

‹

‹

‚

of length pDy ` P q, and

the matrix Wya “

»

—

—

–

Wy

Wa

fi

ffi

ffi

fl

of size pDy ` P q ˆN1. Second, we rewrite (1.5) and (1.6) as:

βyai “ µya `Wya
¨ z1i . (A.7)

Let D the number of posterior draws obtained using HMC, and d “ 1, . . . , D one draw from

the posterior distribution. For a sample tWya
d , tz

1uiu
D

d“1, where traits may switch signs and

labels, we are interested in constructing
!

ĂWya
d , trz

1
idui

)D

d“1
with “consistent labels and signs”,

such that:

Wya
d ¨ z

1
id “

ĂWya
d ¨ rz

1
id @i, d

Intuitively, we are interested in finding the major traits that explain heterogeneity.

In order to build this sample, we use two steps:

1. Fix labels:
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We obtain the singular value decomposition (SVD) of Wya
d “ Ud ¨Dd ¨V

1
d, where Ud is

an orthogonal matrix of size, pDy ` P q ˆN1, Dd is a diagonal matrix of size N1 ˆN1

with non-negative diagonal values sorted in decreasing order, and Ud is a orthogonal

matrix of size N1 ˆN1. We define xWya
d “ Ud ¨Dd, and pz1id “ V1

d ¨ z
1
id. Note that we

have Wya
d ¨ z

1
id “ Ud ¨Dd ¨V

1
d ¨ z

1
id “

xWya
d ¨ pz

1
id.

This construction allow us to choose the labels of the traits that explain the most

variance in decreasing order, similarly as in Bayesian PCA (Bishop, 2006), which are

unlikely to switch across posterior samples for well behaved samples of the product

Wya
d ¨ z

1
id, which is identified in our model. However, the sign of the traits are not

uniquely determined by the SVD. Note that if we multiply by -1 a column of Ud, and

we also multiply by -1 the same corresponding row of V1
d, then we would also obtain a

valid SVD.2

2. Fix signs:

We are interested in fixing a sign for each traits across draws of the posterior

distribution, however some trait weights may change sign across the posterior. In order

words, the posterior distribution may have its mode close to the origin, and therefore

the weights may take values both positive and negative. Therefore, we choose the sign

of each trait by observing the behavior it impacts the most (demand or acquisition),

and we choose the sign such that the weight of this trait on that behavior does not

change sign across draws of the posterior sample.

2Let rI a diagonal matrix of size N1 ˆN1 where each of its diagonal values are either 1 or -1, then we

have that
´

Ud ¨ rI
¯

¨Dd ¨

´

Vd ¨ rI
¯1

“ Ud ¨ rI ¨Dd ¨ rI ¨V
1
d “ Ud ¨Dd ¨V

1
d.
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More formally, let k “ 1, . . . , N1 a trait (a column of Wya
d ), and npkq the behavior (a

row of Wya
d ) that is most impacted by trait k, which we operationalize by computing

the posterior mean of the absolute value of pwyank, the weight of trait k on behavior n

(i.e., the nk’th component of matrix xWya), and choosing the maximum:

npkq “ arg max
n“1,...,pDy`P q

#

1

D

D
ÿ

d“1

abs
`

pwyank,d
˘

+

(A.8)

Then, we change the sign of the trait so wya
npkqk,d is always positive, by defining rId a

diagonal matrix of size N1 ˆN1, where its k diagonal value is:

prIdqkk “ sign
´

pwyanpkqk,d

¯

Finally, we construct our sample by:

ĂWya
d “ xWya

d ¨
rId @d

rz1id “
rId ¨ pz

1
id @i, d
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A.5 Algorithm for newly-acquired customers

With reference to (1.10), once we have estimated the full model using the calibration data,

we can form first impressions of newly acquired customers using the following procedure:

Algorithm 1 Forming first impressions
Input A sample of the population parameters drawn from the posterior tΘmu

M
m“1

Acquisition characteristics Aj of focal customer j.
Output A sample of βyj drawn from ppβyj |Aj,Dq
for all dÐ 1 : S do

Draw Θd „ p pΘ|Dq from sample tΘmu
M
m“1

Draw Zjd „ p pZj|Θd, Ajq Ź Using MCMC, HMC or VI
Compute βyjd Ð µyd `Wy

d ¨ z
1
jd

end for
Return

 

βyjd
(S

d“1

Note that the step “Draw Zjd „ p pZj|Θd, Ajq” involves sampling from a posterior

distribution for which we do not have access to a closed form distribution. Instead, using the

approximation described in (1.10), we use HMC to approximately sample from this posterior

for each draw Θd „ p pΘ|Dq. Note that as in this sub-model, only Zj of the focal customer j

is unknown, an HMC algorithm that samples from this posterior is computationally fast even

if this algorithm has to be run inside the loop for each value of d.
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A.6 Further details about the simulation analyses

In this appendix we provide further details about the simulation exercise described in

Section 1.4.4

A.6.1 Simulation design

We simulate demand and acquisition behavior for 2, 200 customers. We first simulate

acquisition and demand parameters (βai and βyi respectively), and then use those to simulate

the observed behaviors (Ai and yi1:T respectively). The data from 2,000 customers will be

used to calibrate the models while the remaining 200 individuals will be used to evaluate the

performance of each of the estimated models. For those (hold out) customers, we will assume

that only the acquisition characteristics are observed, we will use each estimated model to

infer customers’ demand parameters and then will compare those inferences with the true

parameters.

For our simulation study, we assume that acquisition and demand parameters are

correlated, that is, observing acquisition behavior can partially inform demand parameters.

For this purpose, we generate the individual demand parameters as a function of the

acquisition parameters. To cover a variety of relationships among variables we use a linear,

quadratic/interactions, and a positive-part (i.e., max) function, therefore exploring linear as

well as non-linear relationships. Furthermore, to test whether the model can account for

redundancy and irrelevance of variables in the acquisition characteristics collected by the

firm, we assume that some acquisition variables are correlated among them and that other

acquisition variables are totally independent of future demand. For clarity of exposition and
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brevity’s sake, we first assume a small number of acquisition variables. Because many

empirical contexts will likely have a large number of acquisition variables, we then extend

the analysis to incorporate dozens of variables and show how the model performs at a larger

scale.

A.6.2 Data generation process

Generate individual-level parameters

First, we generate seven acquisition parameters for seven corresponding acquisition

characteristics. In order to resemble what real data would look like, and to test whether our

model can account for redundancy in the acquisition data (e.g., the number of items

purchased and total amount spent at acquisition being highly correlated), we make some of

these acquisition parameters highly correlated among themselves. We operationalize such a

relationship by assuming that six of the seven parameters are driven by two main factors

fi “

¨

˚

˚

˝

fi1

fi2

˛

‹

‹

‚

, where fi „ Np0, I2q. Furthermore, we set the seventh acquisition parameter to

be independent of other acquisition parameters as well as independent to future demand

parameters. The rationale behind this structure is to resemble the situation in which the

acquisition data includes irrelevant data and therefore test whether the model is robust to

random noise. More specifically,

βaip „ N
`

µap `B1p ¨ fi1 , σ
ba
p

˘

, p “ 1, . . . , 3

βaip „ N
`

µap `B2p ¨ fi2 , σ
ba
p

˘

, p “ 4, . . . , 6

βai7 „ N
`

µa7 , σ
ba
p

˘

, (A.9)
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where βaip is the pth component of acquisition vector βai , µap is the mean of the pth acquisition

parameter; B1p and B2p represent the impact of factors 1 and 2 respectively on the pth

acquisition parameter; and σba “ 0.1 the standard deviation of the uncorrelated variation of

the pth acquisition parameter. The values used to generate factors fi1 and fi2 are presented

in Table A2.

Table A2: True values for factors fi1 and fi2 impact on acquisition parameters (B1p

and B2p).

Acquisition parameter Weight factors

B1p B2p

Factor 1, fi1
Acq. variable 1 3.0 0.0
Acq. variable 2 2.0 0.0
Acq. variable 3 -2.5 0.0

Factor 2, fi2
Acq. variable 4 0.0 3.5
Acq. variable 5 0.0 -2.0
Acq. variable 6 0.0 -3.0

Independent
Acq. variable 7 0.0 0.0

Second, we generate the individual customer parameters for demand; these are the

values that the firm is interested in inferring (βyi . We generate three parameters governing

the demand model: an intercept and two covariate effects. We generate these individual

demand parameters βyik as a function of the acquisition parameters βai , following a general

form

βyik „ N
´

µyk ` gkpβ
a
i |Ωkq, σ

by
k

¯

, k “ 1, . . . , 3, (A.10)

where gkpβai |Ωkq is the function that represents the relationship between acquisition and

demand parameters. Because our goal is to investigate the accuracy of the model (compared
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to several benchmarks) in contexts in which the relationship between acquisition and

demand parameters could take different forms, we vary gk to capture a variety of scenarios:

• Scenario 1: Linear

gkpβ
a
i |Ωkq “ ω

1
k
1
¨ βai (A.11)

This relationship would exist when, for example, customers with a strong preference for

discounted products at the moment of acquisition are also more likely to be price

sensitive in future purchases.

Table A3: Simulated values for ω1
k in the Linear scenario

Variable
Demand variables

Intercept Covariate 1 Covariate 2

ω1
k1 0.30 -0.69 -0.03

ω1
k2 0.86 -0.61 -1.37

ω1
k3 -1.44 -0.35 -0.03

ω1
k4 -0.05 -0.10 0.12

ω1
k5 1.16 -0.06 0.71

ω1
k6 -0.12 0.10 0.93

• Scenario 2: Quadratic/interactions

gkpβ
a
i |Ωkq “ ω

1
k
1
¨ βai ` β

a
i
1
¨ Ω2

k ¨ β
a
i (A.12)

This pattern captures situations in which the relationship between an acquisition

variable and future demand depends on other acquisition-related parameters, or when
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such a relationship is quadratic. For example, it is possible that a strong preference for

discounted products at the acquisition moment relates to price sensitivity in future

demand only if the customer was purchasing for herself/himself, or outside the holiday

period. In that case, the relationship between demand parameters and acquisition

variables will be best represented by an interaction term.
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Table A4: Simulated values for ω1
k and Ω2

k in the Quadratic/Interaction scenario

Variable
Demand variables

Intercept Covariate 1 Covariate 2

ω1
k1 0.30 -0.69 -0.05

ω1
k2 0.86 -0.61 -1.04

ω1
k5 1.16 -0.06 0.36

ω1
k3 -1.44 -0.35 -0.27

ω1
k4 -0.05 -0.10 0.10

ω1
k6 -0.12 0.10 -1.11

Ω2
k11 -0.01 0.06 0.00

Ω2
k22 0.41 0.34 0.00

Ω2
k33 -0.01 0.05 0.00

Ω2
k44 0.01 -0.04 0.00

Ω2
k55 0.17 -0.24 0.00

Ω2
k66 -0.21 -0.11 0.00

Ω2
k12 -0.36 -0.27 0.00

Ω2
k13 -0.01 0.12 0.00

Ω2
k14 -0.05 -0.01 0.00

Ω2
k15 0.11 -0.08 0.00

Ω2
k16 0.08 -0.16 0.00

Ω2
k23 -0.01 -0.18 0.00

Ω2
k24 0.24 0.10 0.00

Ω2
k25 -0.24 -0.29 0.00

Ω2
k26 -0.06 0.04 0.00

Ω2
k34 0.17 0.07 0.00

Ω2
k35 0.14 -0.14 0.00

Ω2
k36 0.36 -0.10 0.00

Ω2
k45 0.08 0.04 0.00

Ω2
k46 -0.17 -0.15 0.00

Ω2
k56 0.29 -0.17 0.00
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• Scenario 3: Positive part

gkpβ
a
i |Ωkq “ ω

1
k
1
¨

¨

˚

˚

˚

˚

˚

˚

˝

maxtβai1, 0u

...

maxtβaiP , 0u

˛

‹

‹

‹

‹

‹

‹

‚

(A.13)

This pattern captures situations in which an acquisition variable relates to future

demand parameters, but only if the former passes a certain threshold. For example,

the number of items purchased at the moment of acquisition might relate to the

likelihood of purchasing again in the category, but only above a certain threshold that

reflects strong parameters for such a category.

Table A5: Simulated values for ω1
k in the Positive part scenario

Variable
Demand variables

Intercept Covariate 1 Covariate 2

ω1
k1 0.34 0.00 0.30

ω1
k2 0.00 0.00 0.86

ω1
k3 0.00 0.00 -1.44

ω1
k4 0.00 0.28 -0.05

ω1
k5 0.00 0.00 1.16

ω1
k6 0.00 0.00 -0.12

For each scenario, we generate the intercept (βyi1) and the effect of the first covariate

(βyi2) according to the functions g1p¨q and g2p¨q as described in equations (A.11)–(A.13), while

maintaining the effect of the second covariate (βyi3) to be a linear function of the acquisition

variables. Furthermore, to compare parameters in the same scale across scenarios, we scale
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demand parameters such that the standard deviation across individuals is equal across all

scenarios.

Simulate individual-level behaviors

Once the individual-level parameters are generated, we simulate behaviors using the

generated acquisition and demand parameters for each scenario, a set of market-level

covariates xampiq for the acquisition model, and individual and time-variant covariates xyit for

the demand model. We assume a Gaussian distribution for all behaviors,

Aip „ Npβaip ` xampiq
1
¨ bap, σ

a
pq, p “ 1, . . . , 7 (A.14)

yit „ Npxyit
1
¨ βyi , σ

y
q, t “ 1, . . . , 20. (A.15)

with σa “ 0.5, xampiq „ N p0, 1q, ba „ N p0, 2q, σy “ 0.5, and xyit „ Bernoullip0.5q.

A.6.3 Estimated models

Given the observed behaviors (Aip and yit) and the covariates (xampiq and xyit), we estimate

the model parameters. In addition to our proposed FIM, we use four benchmark models to

infer βyj : (1) a hierarchical Bayesian demand-only model in which acquisition variables are

not incorporated, (2) a linear model, where individual demand parameters are a linear

function of the acquisition characteristics, (3) a full hierarchical model, where individual

demand and acquisition parameters are jointly distributed according to a multivariate

Gaussian distribution with a flexible covariance matrix, and (4) a Bayesian PCA model,

identical to our proposed model, without the higher layer. For all models we assume the

same linear demand model as in the data generation process, equation (A.15). We describe

these models in more detail.
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Hierarchical Bayesian (HB) demand-only model

This first benchmark is a HB demand-only model that does not incorporate acquisition

variables. That is,

βyi |µ
y,Σy

„ N pµy,Σy
q,

where µy, and Σy are the population mean vector and covariance matrix respectively.

We acknowledge that such a model would fail to provide individual-level demand

parameter estimates for customers that are not in the calibration sample. In other words,

the best this model can provide is to draw the estimates from the population distribution.

We include this benchmark to illustrate the problem of estimating parameters when only one

observation per customer is observed and most importantly, to have a reference of how much

error we should obtain if the model only captured random noise.

Linear HB model

The second benchmark is the linear HB model, which is an extension of the previous model

with the mean demand parameters being a linear function of the acquisition characteristics

and market level covariates. That is,

βyi “ µ
y
` Γ ¨ Ai `∆ ¨ xampiq ` uyi , uyi „ N p0,Σy

q,

where Γ capture the linear explanatory power of acquisition characteristics Ai, and ∆ allows

to control for market-level covariates xampiq.

In this model, we incorporate both acquisition characteristics as well as market-level

covariates to control for firm’s actions that may be correlated with acquisition characteristics
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(e.g. average price paid and promotional activity). Note that this model resembles the first

simulated scenario in which the relationship between acquisition and demand parameters

was assumed to be linear. As such, this model should be able to predict demand parameters

in the first scenario most accurately.

Full hierarchical model

For the third benchmark, we endogenize the acquisition characteristics by modeling them as

an outcome. Similar to our proposed FIM (described in Section 1.4.1), the full hierarchical

model estimates acquisition and demand parameters jointly, with the difference that these

two sets of parameters are modeled using a standard hierarchical model, rather than

connected via DEF models. That is, the full hierarchical model assumes that

βi “

¨

˚

˚

˝

βyi

βai

˛

‹

‹

‚

„ N pµ,Σq,

where µ is the population mean vector of all individual parameters (demand and acquisition),

and Σ is the population covariance matrix of these parameters, capturing correlations within

demand and acquisition parameters as well as across those types of parameters.

Because of the Gaussian specification for βi, this model imposes a linear relationship

between βyi and βai ; this is, the conditional expectation of βyi given βai , is linear in βai . As

such, this model is mathematically equivalent to the linear HB model. However, the full

hierarchical model differs from the linear model if acquisition behavior Ai is not linear in βai

(e.g. logit or log-normal. Moreover, if the number of acquisition characteristics increases, the

full hierarchical model becomes more difficult to estimate due to the dimensionality of the
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covariance matrix. In this simulation exercise we assume a linear (Gaussian) acquisition

model and therefore the linear and full hierarchical models should provide equivalent results.

Nevertheless, this is not the case in the empirical application as we incorporate binary

acquisition characteristics modeled using a logit specification.

Bayesian PCA

The fourth benchmark is the closest to our proposed model, with the omission of the higher

layer of traits (z2i ). Analogously as in our model, we model individual demand and

acquisition parameters as a linear function of a set of traits,

βyi “ µ
y
`Wy

¨ z1i (A.16)

βai “ µ
a
`Wa

¨ z1i . (A.17)

In this Bayesian PCA model, we model the first layer z1i as a vector of independent standard

Gaussian variables,

z1ik „ N p0, 1q.

Note that like the linear HB and full hierarchical specifications, the PCA also imposes a

linear relationship between βyi and βai . However this approach is different from those

because it allows for data dimensionality reduction via the latent factors. Similarly, as in our

proposed model, we use sparse Gaussian priors on Wy and Wa, using an automatic

relevance determination model to automatically select the number of traits.

As discussed in Section 1.4.1.5, the Bayesian PCA model is a nested specification of

the proposed FIM (in which the second layer does not exist) whereas the full hierarchical
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model and HB-linear specifications reflect alternative (simpler) ways in which past research

has modeled these types of data. Figure A3 visually shows how each of these approaches

compares with our proposed modeling framework.

Figure A3: Visualization of the benchmark models

Linear HB

Link individual 
parameters with 

acquisition observables

Full Hierarchical

Draw demand and 
acquisition parameters 

together

BPCA

Link demand and 
acquisition parameters 

via latent factors

A.6.4 Assessing model performance

We calibrate each model using acquisition and demand data for 2, 000 customers. This step

resembles the firm calibrating each of the models (our proposed model as well as the

benchmark models) with the historical data. First, we corroborate that all models are

equally capable of recovering the individual-level parameters for customers in the calibration

sample. In particular, we confirm that the in-sample predictions for βyi are almost perfect for

all model specifications and for all scenarios (see Figure A4 for the in-sample predictions). In
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other words, all models are equally capable of accurately estimating individual-level demand

parameters for in-sample customers.

Figure A4: In sample individual posterior mean vs. true intercepts of the demand
model. Each dot represents a customer from the calibration set. In blue,
the 45 degree line represents perfect predictive power.
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Then, we evaluate the ability of each model to form first impressions of

newly-acquired customers. Under each scenario, we use the estimates of each model to

predict the individual-level demand parameters for the remaining 200 customers, using only

their acquisition data, and compare those predictions with the true values. As explained in

the previous section, this task requires the computation of the individual posterior mean for
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each individual (pβyj “ Epβyj |Aj,Dq) by integrating over the estimated density ppβyj |Aj,Dq,

pβyj “

ż

βyj ¨ ppβ
y
j |Aj,Dqdβyj .

While the procedure described in Section 1.4.3 is valid for all models, the expectation

Epβyj |Aj,Dq can be computed directly for some of the benchmark models, which we do for

simplicity. For example, for the HB demand-only model, this procedure reduces to compute

the expectation of individual draws of βyj from the population mean, which converges to the

posterior mean of the population mean µy. For the linear HB model, it reduces to use the

linear formulation and the posterior mean estimates of µy, Γ, and ∆. For the full hierarchical

model, the Bayesian PCA model, and our proposed FIM, where acquisition is modeled as an

outcome, we compute the posterior of βyj given Aj using HMC as described in Section 1.4.3.

Figure A5 shows the scatter plot of the predicted (pβyj1) versus actual (β
y
j1) individual

demand intercepts from each model, for each scenario.3 Not surprisingly, the HB

demand-only model that does not incorporate acquisition behavior in the model (top row of

Figure A5) cannot distinguish (hold out) individuals from their population mean. Turning

our attention to the other model specifications, we start analyzing the scenario in which the

relationship between acquisition and demand parameters is linear (left-most column of

Figure A5). Under this scenario, all models are equally capable of predicting demand

estimates for (hold out) customers using only their acquisition data. This result is not

surprising for the benchmark models as their mathematical specification resembles that of

the simulated data. However, when the relationship between the acquisition and demand
3For brevity’s sake, we present the results for one parameter of the demand model (the intercept), but

the results hold for all other parameters as well.
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parameters is not perfectly linear (as it is the case in scenarios 2 and 3), all benchmark

models struggle to predict these individual-level estimates accurately. On the contrary, the

proposed FIM is flexible enough to recover these parameters rather accurately. Note that the

flexibility of the FIM comes at no overfitting cost; that is, even when the relationship is a

simple linear relationship, our model recovers the parameters as well as the benchmark

models, which assume a linear relationship by construction.

Figure A5: Out of sample individual posterior mean vs. true intercepts of the demand
model. Each dot represents a customer from the hold out set; i.e., only
their acquisition characteristics are used to form first impressions about
their individual-level parameters. In blue, the 45 degree line represents
perfect predictive power.
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To explore the differences in accuracy more systematically, we compute two different

measures of fit: (1) the (squared) correlation between true βyj and predicted pβyj (i.e.,

R-squared)—measuring the model’s accuracy in sorting customers (e.g., differentiating

customers with high vs. low value, more vs. less sensitivity to marketing actions)—and the

root mean square error (RMSE)—measuring the accuracy on predicting the

value/magnitude of the parameter itself.

The results are presented in Table 1.1 of the main manuscript, confirming the results

from Figure A5. Under a true linear relationship (Scenario 1), the FIM predicts the

individual parameters as good as the benchmark models. The RMSE of the FIM is

comparable to the benchmark models, and the R-squared is equal to the benchmark models.

However, when the relationship among the model parameters is not perfectly linear

(Scenarios 2 and 3), the FIM significantly outperforms the benchmark models in all

dimensions. In particular, the R-squared of the FIM is higher than that of the benchmarks,

demonstrating that the model is superior at sorting customers based on their demand

parameters. Moreover, the RMSE for the FIM is substantially lower than that of the

benchmarks, indicating that the proposed model predicts the exact magnitude of customer

parameters (e.g., purchase probability, sensitivity to marketing actions) more accurately than

any of the benchmarks.

A.6.5 Interpreting the model parameters and results

To get a better sense of what the model is doing and what its parameters capture, we

explore in detail the model estimates and compare those with the parameters used to

simulate the data. We do so for the linear case, as it is the easiest to interpret the
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relationships among variables. For this particular exercise, we select the FIM with 5

dimensions in the lower layer and 3 in the top layer.4 We start by evaluating the number of

traits captured by the FIM; this is an insight that can be obtained in two ways. First,

looking at the posterior estimates for α, parameters that determined the weights of the lower

layer to check how many dimensions of the lower layer are activated in the model. Second,

by looking at the specific weights, Wy and Wa, between the lower layer and the model

parameters and interpret their meaning based on their magnitude.

We know from the simulations (Section A.6.1) that the data was generated from three

factors: two factors generating 6 acquisition characteristics that relate to demand

parameters, and another independent factor that generated one acquisition variable that was

irrelevant for the demand model. Figure A6 shows the posterior distribution for α. While

the model was specified to have 5 dimensions in the lower layer, it is obvious that the model

only “needs” three, one of which is irrelevant in the demand specification.

Figure A6: Posterior distribution of α
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We show in Table A6 the posterior mean of the rotated weight traits on demand

parameters and acquisition parameters. The first two traits capture most of the variance

across individuals for demand and acquisition parameters, while the other traits capture

residual variance. First, trait 1 captures the correlation among acquisition variables 1
4Results are equivalent for other specifications of the model.
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through 3, whereas trait 2 captures the correlation of acquisition variables 4 through 6.

Second, both traits capture relationships with demand: trait 1 is negatively correlated with

intercept and positively correlated with both covariates, whereas trait 2 is negatively

correlated with intercept and covariate 2 (effect on covariate 1 is not significantly different

from zero).

Table A6: Posterior mean of lower layer weights (Wy and Wa) for FIM.

Variable Trait 1 Trait 2 Trait 3 Trait 4 Trait 5

Intercept -5.55 -2.14 0.04 0.00 -0.00

Covariate 1 2.28 -0.53 0.10 -0.00 0.00

Covariate 2 2.91 -3.63 -0.04 -0.00 0.00

Acq. variable 1 -2.78 0.07 -0.04 -0.01 0.00

Acq. variable 2 -1.84 -0.03 0.02 0.00 0.00

Acq. variable 3 2.30 0.05 -0.02 0.00 -0.00

Acq. variable 4 -0.31 3.40 0.02 -0.01 0.01

Acq. variable 5 0.18 -1.95 0.00 0.01 0.02

Acq. variable 6 0.26 -2.91 -0.05 0.01 0.01

Acq. variable 7 -0.01 0.02 -0.03 -0.02 0.01

Note: In bold parameters such that corresponding CPI do not contain zero

Now, we are interested in comparing these insights with the true values used for the

simulation, specifically how these estimated traits relate to the true factors in the data

generation process. In the data generation process, demand parameters are generated from

acquisition parameters. Instead, the FIM gives us the overall correlation of the traits with

demand parameters, and not the one-to-one relationships between acquisition variables and
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demand parameters. Therefore, in order to assess whether our model can capture the essence

of the insights the “true” effect of factors fi1 and fi2 on acquisition parameters and demand

parameters in Table A7. For the acquisition parameters, these true effects are B1p and B2p

from (A.9) (whose values are shown in Table A2). For the demand parameters, these effects

can be obtained by replacing (A.9) in (A.10), which reduces to ω1
k
1
B1 and ω1

k
1
B2 for the

effects of factors 1 and 2, respectively.

Table A7: True associated effects of factors on demand and acquisition variables.

Demand/acquisition
Variable

Factors

parameter 1 2

Intercept ω1
1
1
Bf 6.20 -2.10

Covariate 1 ω1
2
1
Bf -2.40 -0.57

Covariate 2 ω1
3
1
Bf -2.77 -3.76

Acq. variable 1 Bf1 3.00 0.10

Acq. variable 2 Bf2 2.00 0.00

Acq. variable 3 Bf3 -2.50 0.00

Acq. variable 4 Bf4 0.00 3.50

Acq. variable 5 Bf5 0.00 -2.00

Acq. variable 6 Bf6 0.00 -3.00

Acq. variable 7 Bf7 0.00 0.00

By comparing Tables A6 and A7 we observe that: (1) trait 1 captures the reverse of

factor 1 (pz1i1 « ´fi1); and (2) trait 2 captures factor 2 (pz1i2 « fi2). This result implies that

our model is able to capture and deliver meaningful insights that relate to the true data

generation process.
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A.6.6 Why is the model giving superior performance?

A natural question to ask is, why is the proposed model outperforming the benchmark

models? As described in Section 1.4.1, the DEF component of the proposed model is very

flexible at capturing underlying relationships between the model parameters. Such a property

enables the model to capture non-linear relationships between acquisition characteristics and

the parameters that drive customer demand. This is unlike the benchmarks whose

specification imposes a linear relationship among the variables. As such, even though the

in-sample predictions of all the models are very accurate (Figure A4), when any of the

benchmark models are used to make (out-of-sample) predictions for newly-acquired

customers, the predicted values differ dramatically from the actual values (Figure A5).

To better corroborate that it is the DEF component that brings the non-linearities,

we compare in greater detail the predictions of the BPCA model with those of the FIM. We

pick the BPCA (among the other benchmarks) because that is the only model that is

mathematically nested to our proposed model. In turn, the BPCA is the closest to the FIM,

with the difference that it does not have an upper layer (and its corresponding non-linear

link function). Table A8 shows the squared correlation (true vs. predicted) for Covariate 1 of

the second scenario (Quadratic/Interaction), for the BPCA and the FIM models, as we vary

the number of dimensions. The first column corresponds to the fit of the BPCA model, as

we increase the number of dimensions. We see an improvement in fit as we increase the

number of dimensions from 1 to 2, and to 3; and no improvement after that, with the best fit

obtained being around 0.25. However, the jump in fit is tremendous when we allow the
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Table A8: Squared correlation (true vs predicted) for Covariate 1;
Quadratic/Interaction Scenario.

Dim. Upper layer

Bayesian PCA FIM

Dim. Lower layer 0 1 2

1 0.209 0.207 0.209
2 0.237 0.304 0.306
3 0.257 0.402 0.404
4 0.250 0.539 0.425
5 0.252 0.538 0.641
6 0.250 0.509 0.612
7 0.250 0.451 0.627
8 0.243 0.525 0.571

model to have an upper layer (even if it only includes 1 dimension).5 Such an upper layer is

the model component that allows for flexible relationships relationships. The same results

hold when looking at the third scenario (Positive-part).

To conclude, the upper layer of the DEF—the component that allows the model to

capture non-linear relationships among variables— is responsible for the great improvement

in the model’s ability to predict (out-of-sample) individual-level parameters when the

underlying relationship between acquisition characteristic and the demand parameter is not

linear.

A.6.7 Exploring the number of dimensions per layer

As described in Section 1.4.1.3, we take a hybrid approach to model selection in which we

make sure that the number of pre-specified dimensions is large enough—a phenomenon that

can be validated from the model parameters—while we rely on the priors of the model to

ensure regularization. In this appendix we leverage the simulation results to provide further
5We discuss the importance of the dimensionality of the upper layer in Section A.6.7.
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details about the model selection procedure and to corroborate the two premises that drive

our model selection approach. Specifically, we present empirical evidence that (a) one can

ensure that the model has a “large enough” number of dimensions by examining the

posteriors of the Gaussian ARD priors, and (b) as long as the layers have enough dimensions

to capture meaningful correlations and priors induce sparsity on the weight traits, increasing

the number of dimensions on each layer would only lead to higher computational cost,

without the corresponding loss in out of sample performance.

To illustrate how one can use the posterior of the Gaussian ARD priors to ensure that

the number of dimensions is “large enough,” we revisit the model examined in Section A.6.5

in which the simulated behavior was generated by three factors, one of which had no impact

on the demand parameters, and the FIM specification included 5 traits in the lower layer

(e.g., N1 “ 5). As seen in that section, the FIM results not only recover that data generation

process (Tables A6 and A6), but also informs of the number of dimensions in the lower layer

(Figure A6). In this appendix we expand the results presented in Figure A6 by showing the

posterior estimates for α for FIM specifications with different values for N1 and N2

(Figure A7).

As it is evident from the figure, the model detects that the data was generated from

three latent traits (as long as the FIM is specified with N1 ě 3) and in cases where the FIM

allows for larger dimensionality, the model “shuts down” the rest of the traits. In other

words, regardless of the dimensionality of the top layer (N2), when the number of traits in

the lower layer is not enough, the model does not “shut down” any component. However,

once N1 is large enough (in this case N1 “ 3, as it was used to generate the data), the

posterior mean of α4, α5 and so on, are all close to zero. These results corroborate that the

187



posterior distribution of the Gaussian ARD variances can be used to show when the model

has a “large enough” number of dimensions.

Figure A7: Posterior mean of α as a function of number of dimensions in lower layer
(N1) and upper layer (N2). Components are sorted in decreasing order
per model.
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In contrast to the usefulness of α to detect relevant lower traits, our model does not

have an analogous parameter to explore how many upper level traits are enough to capture

the relevant non-linear correlations. Instead, each component of the upper weight W1, w1
km

(for lower trait k and upper trait m), has i.i.d. sparse gamma priors, which by themselves

induce regularization. In order to summarize each upper level trait in a way that can help us

determine whether they make an impact on those 6 relevant lower layer traits, we compute a

pseudo-α1
m for each upper trait m using the weight matrix W1. Similarly to how the lower

level weights Wy and Wa are related to α (i.e., variance of zero-centered Gaussian

distributions), we compute these pseudo-α1’s by averaging the square of all weights

associated with a fixed upper level trait and those 6 relevant lower level traits, as described

by

pseudo-α1
m “

1

6

6
ÿ

k“1

`

w1
km

˘2
.

We show the posterior this quantity in Figure A8. Not surprisingly, these posterior

distributions are concentrated close to the origin, which suggests that no upper trait is

relevant for this scenario (as the data was generated linearly).

Figure A8: Posterior distribution of pseudo-α1 (Linear scenario).
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More interestingly, we further explore this quantity using a scenario in which the

model requires to capture non-linear relationships, such as the one with Interactions.

Figure A9 shows the posterior of pseudo-α1 for two FIM specifications with different values

of N2. First, Figure A9a clearly shows that the FIM with N1 “ 5 and N2 estimated for the

Interactions scenario, unlike the FIM estimated using the linearly simulated data, has all

three upper traits being relevant in the model. Second, if we estimate a FIM with more upper

traits (N1 “ 5, N2 “ 5) the model starts to “shut down” the less relevant traits, indicating

that such a model is enough to recover the non-linear relationships present in those data.

Finally, we leverage the results of multiple estimated FIM specifications over the

Interactions scenario and show that once the FIM specification contains the dimensions

“needed” by the data, the performance of the model remains the same even if we add

dimensions to the DEF component. To illustrate this phenomenon, we focus on the

performance of the FIM at predicting the parameter for the sensitivity to the first covariate

(bottom half of middle columns in Table 1.1). Figure A10 shows the squared correlation

between simulated and predicted values of the parameter of interest (higher numbers imply

better model performance). The figure shows a notable improvement in performance as we

increase the dimensionality of the lower layer from 1 to 2, 3, and 4. However, once N1 ą 3,

the model performs very similarly as more layers are added to DEF. Similarly, we observe a

radical increase in performance as one increases the dimensionality of the upper layer (from 0

to 1, 2 and 3); reaching a point in which more dimensions do not alter the performance of

the model. In other words, the performance in out-of-sample recovery of demand parameters

flattens, once the model has a “large enough” number of dimensions.
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Figure A9: Posterior distribution of pseudo-α1 (Interactions scenario).

(a) FIM (N1 “ 5, N2 “ 3).
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(b) FIM (N1 “ 5, N2 “ 5).
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A.6.8 Model performance “at scale”

While the analysis thus far assumed a handful number of acquisition variables, many firms

collect a larger quantity of behaviors when a customer makes their first transaction. These

firms do not necessarily know a priori which variables can be most predictive of demand

parameters, and if so, what the underlying relationship between these variables would be. In

this section we show that models that incorporate all interactions fail to recover demand
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Figure A10: Square correlation between simulated and predicted β for Covariate 1 in
Scenario 2: Interaction

parameters when the number of acquisition variables is large, whereas the FIM can

accurately infer these non-linear relationships. We maintain a similar simulation structure,

where acquisition parameters are driven by factors, but instead we now have 5 factors and 60

acqusition behaviors, where acquisition behavior is driven by one and only one factor, and

each factor generates 12 acquisition parameters. We start by describing the simulation

details and their differences to the main analysis in Section A.6.1. Then, we describe the

additional estimated models, specifically those that include interactions. Finally, similarly as

in Section A.6.4, we show the models’ ability to infer demand parameters for out of sample

customers.
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Simulation details

We assume there are 3 demand parameters (intercept and two covariates) and 60 acquisition

parameters, for 60 acquisition characteristics. We generate these acquisition parameters as

being highly correlated among each other by assuming these parameters are driven by one of

five factors fi1, . . . , fi5. Similarly as in Equation (A.9), we generate acquisition parameters

by:

βaip „ N
`

µap `B1p ¨ fi1 , σ
b
p

˘

, p “ 1, . . . , 12

βaip „ N
`

µap `B2p ¨ fi2 , σ
b
p

˘

, p “ 13, . . . , 24

βaip „ N
`

µap `B3p ¨ fi3 , σ
b
p

˘

, p “ 25, . . . , 36

βaip „ N
`

µap `B4p ¨ fi4 , σ
b
p

˘

, p “ 37, . . . , 48

βaip „ N
`

µap `B5p ¨ fi5 , σ
b
p

˘

, p “ 49, . . . , 60, (A.18)

where µap is the mean of the pth acquisition parameter; B`p represent the impact of

factor ` respectively on the pth acquisition parameter; and σp the standard deviation of the

uncorrelated variation of the pth acquisition parameter.

The rest of the simulation design is identical as the simulation in Section 1.4.3, with a

different set of parameters Ω. In order to incorporate noise and to allow for different

acquisition parameters to inform demand parameters, we relate demand parameters only to

a subset of acquisition parameters. Specifically, we choose Ω such that demand parameters

are only affected by acquisition parameters from three out of the five factors. We achieve

this by setting to zero Ω values for the remaining acquisition parameters. The intercept is a
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function of the acquisition parameters from factors 1, 2 and 3 (i.e.,

Ω1p “ 0, @p “ 37, . . . , 60). Covariate 1 is a function of the acquisition parameters from

factors 1, 2 and 4 (i.e., Ω2p “ 0, @p “ 25, . . . , 36, 49, . . . , 60). Covariate 2 is a function of the

acquisition parameters from factors 2, 3 and 4 (i.e., Ω3p “ 0, @p “ 1, . . . , 12, 49, . . . , 60).

Similarly as in the main simulation analysis, Covariate 2 is always a linear function of

acquisition parameters for all scenarios. The values we use for Ω are specific to each scenario:

• Linear: Following (A.11), we define ω1
kp „ N p0, 2q for all non-zero ω1

kp.

• Quadratic/Interaction: Following (A.12), we define ω1
kp „ N p0, 2q for all non-zero

ω1
kp; and Ω2

kpp1 „ N p0, 1q for all non-zero Ω2
kpp1 .

• Positive part: To avoid attenuating the effect of the non-linear function by

combining a large number of non-linear functions of correlated acquisition parameters,

we fix the effect to the intercept and the first covariate as a function of only one

acquisition parameter from each of the three factors that determine that demand

parameter. Following (A.13), we define ω1
3p „ N p0, 2q for all non-zero ω1

3p, and:

ω1
1,1 “ 12.5 ω1

1,13 “ ´8 ω1
1,25 “ 4

ω1
2,1 “ ´7.5 ω1

2,13 “ ´4 ω1
2,37 “ 8.

Finally, to compare parameters in the same scale across scenarios, we standardize demand

parameters such that the population standard deviation is 2.
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Estimated models

In addition to all models described in Section A.6.3, we estimate a Linear HB model where

we include all interactions of acquisition parameters,

βyi “ µ
y
` Γ ¨ rAi `∆ ¨ xampiq ` uyi , uyi „ N p0,Σy

q,

where rAi includes all acquisition characteristics, their squares, and all two-way interactions

among them.

We also estimate a Lasso model with all interactions, which is identical to the Linear

HB model with interactions, but we exchange the Gaussian prior for a Laplace prior to

enforce regularization using a different functional form.

Results

We estimate all models except the full hierarchical model, which is computationally unstable

given that now there are 60 acquisition variables, and therefore we need a 63ˆ63 covariance

matrix. Note that in theory, and in practice as we showed in Section A.6.4, the full

hierarchical model is equivalent to a Linear HB model. Therefore, removing this model from

the analysis does not bias our benchmark.

We show in Table A9 the out of sample prediction of intercept, and the two covariates

under all three scenarios for all models. We replicate the main results from Section A.6.4.

Both the Linear HB and Bayesian PCA models perform well in the Linear scenario. The

FIM performs as good as these models in the Linear scenario, and outperforms these linear
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models in the Quadratic/Interaction and the Positive part scenarios. More importantly, both

models that include all interactions, Linear and Lasso, do not perform well in any scenario.
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Table A9: Model at scale results

Model
Intercept Covariate 1 Covariate 2

R-squared RMSE R-squared RMSE R-squared RMSE

Linear

HB demand-only 0.000 2.018 0.000 2.038 0.000 2.003

Linear HB 0.990 0.198 0.987 0.231 0.983 0.264

Linear with interactions 0.202 4.267 0.166 4.825 0.121 5.265

Lasso with interactions 0.161 5.916 0.115 6.129 0.108 5.561

Bayesian PCA 0.990 0.197 0.988 0.229 0.983 0.265

FIM 0.990 0.206 0.987 0.230 0.983 0.262

Quadratic/Interaction

HB demand-only 0.004 2.060 0.000 2.133 0.007 2.084

Linear HB 0.231 1.808 0.398 1.663 0.994 0.167

Linear with interactions 0.147 4.064 0.201 4.331 0.246 4.125

Lasso with interactions 0.147 4.212 0.211 4.871 0.236 4.181

Bayesian PCA 0.243 1.790 0.408 1.646 0.994 0.167

FIM 0.598 1.456 0.681 1.432 0.994 0.165

Positive part

HB demand-only 0.003 2.010 0.005 2.030 0.017 1.965

Linear HB 0.723 1.059 0.746 1.019 0.990 0.201

Linear with interactions 0.232 3.990 0.165 4.916 0.122 4.414

Lasso with interactions 0.161 4.493 0.088 5.336 0.186 5.032

Bayesian PCA 0.728 1.052 0.747 1.017 0.991 0.196

FIM 0.884 0.699 0.853 0.825 0.991 0.192
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A.7 Empirical application: Additional results

A.7.1 Possible sources of endogeneity in the model components

Like most demand models including firm’s marketing actions, we face the risk of introducing

endogenous variables in our model, potentially preventing us from obtaining unbiased

estimates of the customers’ parameters. If that were the case, the relationships between

acquisition characteristics and demand parameters captured by the model would likely reflect

the firms strategies, and not the true underlying correlations that the FIM intends to

capture.

Given the intended applications for this modeling framework, there are three

mechanisms by which endogeneity concerns would arise: (unobserved) temporal shifts that

systematically affect both the time-varying covariate and the overall demand, static targeting

rules, whereby some customer characteristics (unobserved to the researcher) makes a

customer more/less prone to receive marketing actions, while such a characteristic is also

correlated to other components of the model, and dynamic targeting rules, whereby the

presence/absence of the marketing action is driven by an unobserved customer state, which

is also correlated with the individual propensity to transact with the firm. The former case is

likely to be present if, for example, the firm introduced products or ran specific campaigns

only when periods of lower/higher level of demands were expected. The second case

corresponds to situations in which marketing actions such as e-mails are prioritized to

customers of certain characteristics, for example, those who usually transact online, which is

likely to be correlated with one of the acquisition characteristics. The third case is that in

which the firm targets only customers who exhibit a behavior that is correlated with demand,
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for example, send an email to customers who have visited the online store in the last week,

or those who abandoned a basket before purchase, etc.

First, we explore the extent to which these phenomena might present in our

application. According to the managers of the focal firm, marketing actions are decided in

two steps. First, the firm chooses periods in which it will engage in promotional activity (i.e.,

run a marketing campaign). This decision is made from the headquarters, runs several times

through the year (with special campaigns run during the holidays) and affects all markets

simultaneously. Second, managers in each focal market choose the set of customers who will

receive each campaign, with the proportion of customers not being determined consistently.

The only variable that some markets include in their targeting rules is recency (i.e., time

since last purchase). The introduction of new products follows a similar process— i.e., the

decision being made globally, the implementation affected also by local factors such as

distribution shocks in each of the markets—with the main difference being that the second

step does not vary across customers of the same market.

Therefore, regarding potential (omitted) temporal shifts, the only variable that could

systematically affect the presence/absence of promotional activity in all markets is the

holiday season, which is not omitted as it is included in the model. Regarding (static)

targeting rules, we confirm with the firm and verify with the data that these were not

present in our application. Nonetheless, it is worth noting that when such targeting rules are

present (e.g., the firm contacts customers based on demographic information), because the

model includes unobserved heterogeneity on purchase frequency (first element of βyi ), the

identification of the individual-level sensitivity to promotional activity comes mainly from

individual differences across periods, for which we have rich variation during the four years of
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available data. Finally, regarding dynamic targeting rules, it is indeed the case that some

customers (in the most sophisticated markets) are more/less prone to receive emails and DM

based on their purchase activity. However, our model not only includes unobserved

heterogeneity on purchase frequency—capturing the customers’ base level of activity—but

also includes the recency of purchase, alleviating the endogeneity concerns arising from

potential correlation between the firm’s targeting policies and customers’ propensity to

transact in a particular period.

To conclude, given the business nature of our application, the rich variation in our

data (Section 1.5.1.2), and our model specification, we argue that the potential endogenous

nature of the marketing actions is not a main concern in this research. Nevertheless, in

situations where these conditions do not hold (due to different strategic behavior by the firm

or for data limitations), the demand model should be adjusted to account for the firm’s

targeting decisions. Given the flexibility of our modeling framework, those adjustments would

merely involve extending the demand model to capture unobserved shocks between firm’s

actions and individual-level responsiveness (Manchanda et al., 2004) or adding correlations

between firm decisions and unobserved demand shocks through copulas (Park and Gupta,

2012), depending on how these actions are determined by the firm. Those changes would

only affect the demand (sub)model and not the overall specification of the FIM.

A.7.2 Latent attrition benchmarks models

We estimate three additional non-nested benchmark models (borrowed from the CRM

literature) that do account for latent attrition: (1) Linear model with marketing actions +

logistic attrition process (without acquisition covariates), (2) Linear model (without
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marketing actions) + logistic attrition with acquisition covariates, and (3) Linear model with

marketing actions + logistic attrition with acquisition covariates.

For all the aforementioned models we define purchase incidence (yit) given attrition,

which we denote as hit, and we have that ppyit “ 1|hit “ 1q “ 0, pphit “ 0|hit´1 “ 1q “ 0, and

pphit “ 1|hit´1 “ 0q “ logit´1
“

βhi
‰

,

where βhi is a (scalar) parameter that captures the individual log-odds of attrition. In all

specifications, we model the purchase incidence parameters βyi as a linear function of

acquisition characteristics as described in Appendix A.6.3.

The models differ in the inclusion of marketing actions into the demand given

attrition component and modeling of the attrition parameter βhi as displayed in Table A10.

Table A10: Latent attrition benchmarks models.
Demand Attrition parameter

ppyit “ 1|hit “ 0q βhi
Latent Attrition

w/ Acq. logit´1
rβyi1 ` αms βhi “ µh ` Γh ¨Ai `∆h ¨ xampiq ` u

h
i

w/ Mktg. Actions logit´1
”

xyit
1
¨ βyi ` αm

ı

βhi “ µh ` uhi

w/ Acq.+Mktg. Actions logit´1
”

xyit
1
¨ βyi ` αm

ı

βhi “ µh ` Γh ¨Ai `∆h ¨ xampiq ` u
h
i

Note that in all specifications we model jointly the unobserved individual components of
purchase incidence and attrition parameters by ruyi , u

h
i s „ N p0,Σyhq.

A.7.3 Interpreting the latent traits

Finally, we further explore the posterior estimates of the (lower layer) hidden traits and their

relationship with the demand and acquisition parameters to provide additional insights into

customer traits and behaviors. We begin by analyzing which latent traits capture the most

salient relationships in the data. We do so by exploring the posterior estimates of the
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parameters governing the ARD component of the model and find that six traits carry most

of the “weight” at connecting acquisition and demand parameters. (Please see

Appendix A.7.6 for details.) Then, we investigate the correlations among these traits

(Table A11), exploring whether customers that score high in a particular trait also score high

(or low) in another trait. Note that these traits do not capture segments in the population

(e.g., groups of customers of similar characteristics) but rather traits that capture the

multiple dimensions of customer behavior. In other words, every customer has a score for

each of the traits, being not only possible but very likely that customers score high in more

than one trait. In our data, customers who score high in Trait 4 also tend to score high in

Trait 6 (correlation“ 0.553). On the contrary, those same customers have the tendency to

score low in Trait 5 (correlation“ ´0.268).

Table A11: Posterior mean of correlations across customers of individual lower level
traits z1i .

Trait 1 Trait 2 Trait 3 Trait 4 Trait 5

Trait 1 1.000
Trait 2 -0.144
Trait 3 0.101 -0.113
Trait 4 0.130 0.185 0.170
Trait 5 -0.026 -0.141 -0.057 -0.268
Trait 6 0.129 0.242 0.258 0.553 -0.361

An obvious question to ask is: What do these traits represent? To answer that

question we compute the posterior mean of the weights of each of the rotated trait on each of

the acquisition and demand parameters (Table A12). Looking at the weights to the demand

parameters, we learn that the first trait is the most relevant in explaining heterogeneity in

the base propensity to buy. Scoring high on this “high-frequency” trait also relates to a

positive response to product introductions in future demand. This first trait is negatively

correlated with whether the first purchase was made online and whether that purchase

202



contained a product in the Home category; but positively correlated with whether the

customer purchased a product in the Hair Care category. Interestingly this trait is also

positively correlated with first transaction baskets containing products that score high on

dimension 4 of the Basket Nature product embeddings. Moreover, customers that score high

on this trait are more likely to buy at their first purchase smaller sized products and travel

sized products.

Table A12: Rotated traits weights’ on acquisition and demand variables

Parameter Trait
1 2 3 4 5 6

Demand (Wy)
Intercept 0.133 0.129 -0.106 -0.072 -0.002 0.024
Email -0.018 -0.016 0.046 0.027 -0.015 -0.004
DM 0.010 0.038 -0.003 -0.001 0.013 -0.004
Product introductions 0.044 0.085 0.001 -0.029 -0.026 0.009
Season -0.025 0.058 0.027 0.085 0.004 0.005

Acquisition (Wa)
Avg. price (log) -0.109 0.022 -0.644 -0.370 0.039 0.313
Amount (log) -0.021 0.076 -0.541 0.305 0.209 0.425
Quantity (log-log) 0.074 0.066 0.050 0.647 0.174 0.130
Package size (log) -0.143 0.052 -0.087 -0.205 0.016 0.217
Holiday 0.029 -0.110 0.053 0.159 0.085 0.170
Discount 0.298 -0.073 0.280 0.414 0.133 0.029
Online -0.382 1.368 0.581 6.830 0.019 0.146
New product 0.007 0.216 -0.283 0.544 0.354 0.234
Travel 0.470 -0.928 0.440 0.724 0.413 0.037
Category: Body Care 0.248 -4.922 -0.112 2.916 -0.072 -0.016
Category: Body Perfume -0.025 0.436 -1.152 0.554 0.462 0.079
Category: Face Care 0.352 0.610 0.051 0.745 0.234 0.718
Category: Hair Care 1.267 1.178 -0.514 1.930 -0.631 -0.595
Category: Home -1.097 -0.051 -0.336 1.836 1.073 -0.417
Category: Kits 0.285 0.227 -0.469 0.803 -0.100 0.225
Category: Make Up 0.377 0.528 0.334 1.149 -0.137 0.001
Category: Others -0.134 0.230 0.623 1.845 0.387 0.029
Category: Services -0.006 0.110 -0.501 5.762 -0.545 0.102
Category: Toiletries 0.239 0.733 0.200 1.190 0.607 -0.268
BasketNature dimension 1 -0.104 -0.022 -0.071 0.083 0.078 -0.112
BasketNature dimension 2 0.042 0.012 -0.011 -0.003 0.110 -0.035
BasketNature dimension 3 0.193 0.082 0.034 -0.040 -0.180 0.153
BasketNature dimension 4 0.200 0.105 -0.021 0.136 -0.167 0.005
BasketNature dimension 5 -0.035 0.003 0.001 0.025 0.009 0.154
BasketNature dimension 6 0.120 -0.017 0.141 -0.102 0.012 0.010
BasketDispersion dimension 1 -0.150 0.012 -0.166 0.256 0.237 -0.238
BasketDispersion dimension 2 -0.033 0.026 -0.105 0.196 0.114 -0.151
BasketDispersion dimension 3 -0.045 -0.094 -0.155 0.379 0.039 -0.120
BasketDispersion dimension 4 0.113 0.086 -0.216 0.406 -0.087 -0.082
BasketDispersion dimension 5 -0.137 0.123 -0.154 0.360 0.155 -0.195
BasketDispersion dimension 6 -0.033 -0.020 -0.159 0.462 0.078 -0.160
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Another interesting trait is number four, which is associated with lower propensities

to buy (intercept) and higher activity during the holiday season (Season variable). This

“holiday-customer” trait is positively correlated with whether customers have been acquired

online and during the Holiday season. This trait is positively associated with less expensive

products and more units on the first transaction. With respect to the type of products

associated with the first purchase, customers that score high on this trait are more likely to

buy in the Body Care, Hair Care and Home categories. (Note that this trait is capturing

some of the correlations among acquisition variables reported in Table 1.4—e.g.,

[Online-FaceCare]“ 0.48—allowing the model to clean redundancies in the acquisition

characteristics and tie the main trait to demand variables.) Finally, this “holiday-customer”

trait is related with very diverse baskets (with respect to the type of products purchased in

the first transaction), as indicated by its positive weights on Basket dispersion in all six

dimensions.

A.7.4 FIM predictive accuracy using in-sample customers

Table A13 shows the performance of all models on the Training sample. The first two

columns show the in-sample fit for each of the models, for which we compute log-likelihood

and Watanabe-Akaike Information Criterion (WAIC) (Watanabe, 2010). Columns 3 through

6 show different measures of out-of-sample prediction accuracy, computed for customers in

the training sample, but using the time periods that were not included in the estimation (i.e.,

periods after April 2014). We compute log-likelihood as well as the root mean square error

(RMSE) for behavioral predictions. In particular, we compare the predicted and actual

number of transactions at the observation level (i.e., at the customer/period level), at the
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customer level, calculating the total number of transactions per customer (in “future”

periods), and at the period level, computing the total number of transactions per period.

While the HB benchmark model fit the in-sample data better than our proposed model, the

FIM outperforms all benchmarks in the out-of-sample predictions. In other words, whereas

the hierarchical models are very flexible at capturing heterogeneity in the training data, such

a model is likely overfitting the data, as reflected in the out-of-sample predictions. On the

other hand, the FIM forecasts the out-of-sample behavior of existing customers with greater

accuracy.

Table A13: Model fit and prediction accuracy for the Training sample

In-sample Out-of-sample (future periods)

Log-Like WAIC Log-Like RMSE

Model Observation Customer Period

HB - Linear ´7843.0 17807.8 ´5511.1 0.202 0.723 62.841
Latent Attrition w/ Acq ´7880.1 17507.7 ´6126.5 0.201 0.750 78.810
Latent Attrition w/ Mktg. Actions ´7781.1 17715.5 ´5786.0 0.206 0.767 74.525
Latent Attrition w/ Acq+Mktg. Actions ´7612.8 17438.2 ´6476.8 0.209 0.812 81.143
Bayesian PPCA ´8482.4 18361.4 ´5137.2 0.191 0.573 35.696
Feed-Forward DNN ´´ ´´ ´´ 0.189 0.556 53.410
Random Forest ´´ ´´ ´´ 0.193 0.616 133.598
FIM (N1 “ 13, N2 “ 5) ´9135.4 18885.7 ´5096.4 0.190 0.533 32.313

Other FIM specifications
FIM (N1 “ 12, N2 “ 2) ´8654.0 18555.7 ´5097.2 0.191 0.558 32.612
FIM (N1 “ 12, N2 “ 5) ´8952.1 18927.6 ´5116.7 0.190 0.541 32.762
FIM (N1 “ 13, N2 “ 2) ´8587.6 18399.0 ´5140.1 0.192 0.578 35.454
FIM (N1 “ 14, N2 “ 2) ´8683.6 18531.9 ´5131.8 0.191 0.561 33.824
FIM (N1 “ 14, N2 “ 5) ´8613.9 18465.3 ´5147.6 0.191 0.571 34.423

A.7.5 Population distribution and individual-level posterior distributions

Figure A11 summarizes the inferred individual posterior distributions of the demand

parameters of Test customers using their acquisition characteristics. The top row of

Figure A11 shows the degree of heterogeneity that the FIM infers. How uncertain are those
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inferences at the individual level? In order to answer that question, for each demand

parameter, we sort customers based on their posterior means, and compute their 95% CPI.

The second row of Figure A11 shows the uncertainty at the individual level that the model

can infer these parameters: each customer is represented horizontally, where the shaded area

shows their 95% CPI and the white line, their posterior mean. Using this figure we can show

that for the case of the intercept of the demand model, can clearly separate some customers

based on their acquisition characteristics: the bottom customers in the figure (i.e., those

with individual posterior means between -2.5 and -2) have clearly higher intercept than the

top customers (i.e., those with individual posterior means around -4) as the 95% CPI of the

latter group does not overlap with the posterior means of the former.

A.7.6 Exploring the latent factors

Figure A12 shows the posterior distribution of weight variances α for each one of the 13

traits. As described in Appendices A.3.1 and A.6.7, each trait parameter αk controls whether

traits are activated by regularizing the weights (Wy and Wa) related to the k’th trait.

We conclude that the first 6 traits carry most of the weight at “connecting”

acquisition and demand variables. (Note that the convergence of these parameters, in

Figure A13, shows no evidence of label switching or rotation of these traits.) This is not to

say that the other traits irrelevant. In turn, those other traits add to the prediction accuracy

of the model. However, for deriving insights from the model parameters, we choose to

explore the handful of traits that carry most of the information.

Following the discussion in Appendix A.6.7, we plot in Figure A14a the posterior

density of the computed pseudo-α for each upper trait for the FIM model used in our
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Figure A11: Population distribution and individual-level posterior distribution for
customers in the Test sample. The top row shows an histogram of
individual-level posterior means for each demand parameter. The bottom
row shows customers sorted by posterior means, where the shaded area
and the white line represent the individual-level 95% CPI and posterior
mean, respectively.
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empirical application (N1 “ 13, N2 “ 5). We find that the relevance of the fifth upper traits

is significantly lower than the relevance of the first three traits. This result suggests that

N2 “ 5 is enough to capture the non-linear correlations present in the data. For robustness,

we estimate another FIM specification with N2 “ 2 instead, and we find that all upper traits

are relevant, suggesting that N2 “ 2 may not be enough to capture the non-linear

relationships present in the data.
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Figure A12: Posterior distribution of α.
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A.7.7 Details on the (Machine Learning) benchmark models

We estimate the Feed-Forward DNN model (hidden layer with ReLu as activation function,

sigmoid output and cross-entropy loss) using package torch in R. We select the value of the

weight decay based on the loss calculated using hold-out data in the training sample. After

evaluating the values“ 0.01, 0.005, 0.001, 0.0005, 0.0001, the value that provides better

performance is 0.0001, which we use to estimate the model on the full training sample using

10 epochs. We set the number of hidden dimensions to 128 after corroborating that larger

dimensionality does not lead to better fit of the model.

We estimate the Random Forest (RF) using the package ranger in R. We finetune

the number of trees (num.trees), number of variables to possibly split at in each node (mtry),

and fraction to sample (sample.fraction) via cross-validation using the training sample. The

resulting values, which we use to estimate the model in the full training data are,

num.trees“ 1000, sample.fraction “ 0.3, mtry “ 6.
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Figure A13: Convergence of α.
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Figure A14: Posterior distribution of pseudo-α1.

(a) FIM (N1 “ 13, N2 “ 5).
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(b) FIM (N1 “ 13, N2 “ 2).
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Appendix B: Appendix to Essay 2 - The Customer Journey as a

Source of Information

B.1 Model priors

We detail the specification of the prior distribution for parameters Σ and ρ, and the

specification for the base distribution of the Pitman-Yor process F0.

We choose the standard Wishart prior for the precision matrix Σ´1,

Σ´1 „Wishartpr0, R0q.

We put Multivariate Gaussian priors on parameter vector ρ,

ρ „ N p1, σ2
ρ ¨ Iq,

centered at 1.0, which reflects that a priori we do not know whether click decisions are made

differently than purchase decisions.

Finally, we put assume a multivariate distribution F0, as a product of distributions

for each of the components of θ. Following the notation in (2.8), consider θq θq and θp the

components of θ that correspond to query parameters and click-purchase parameters. The

location parameters are drawn from θc „ F0pφ0q. We assume the multivariate distribution
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F0 to be defined by

F0pθ|φ0q “

˜

M
ź

m“1

F q
0mpθ

q
m|φ0mq

¸

ˆN pθp|µ0, V0q,

where F q
0m is: a Beta distribution if query variable m is a binary variable described in (2.1)

by F q
0mpφ0mq “ Betapφ0ma, φ0mbq, a Dirichlet distribution if query variable m is a categorical

variable described in (2.2) by F q
0mpφ0mq “ Dirichletpφ0mq, a Gaussian distribution if query

variable m is a continuous variable described in (2.3) by F q
0mpφ0mq “ N pφ0mµ, φ0mσq, and a

Gamma distribution if query variable m is a continuous positive-valued variable described in

(2.4) by F q
0mpφ0mq “ Gammapφ0ma, φ0mbq.

B.2 Blocked-Gibbs sampler algorithm

Our sampling algorithm is based on Ishwaran and James (2001) approximation using the

stick-breaking representation of the Pitman-Yor Process, truncating the infinite mixture by

setting VC “ 1 for a large enough integer C. This approximation allows us to draw context

memberships of different journeys in parallel, which significantly increases the speed of our

sampling scheme.

We denote zj P t1, . . . , Cu the context membership latent variable of journey j that

captures which context journey j belongs to. Consider a set of drawn values for parameters

tzjuj, bij,µi, µi, tu
c
ijtkuijtk, tu

p
ijkuijk, We sequentially update this parameters by,
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1. Draw latent click utilities for alternative k by,1

ucijtk „

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Truncated- N
`

α1ijpptq ` xpk
1
¨ diagpρq ¨ βij, 1, l “ ´8, u “ 0

˘

if ycijt “ `

Truncated- N
`

α1ijpptq ` xpk
1
¨ diagpρq ¨ βij, 1, l “ maxtucijt´k, 0u, u “ 8

˘

if ypij “ k

Truncated- N
`

α1ijpptq ` xpk
1
¨ diagpρq ¨ βij, 1, l “ ´8, u “ maxtucijt´ku

˘

otherwise.

2. Draw latent purchase utilities by,

upijk „

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Truncated- N
`

τ0ij ` xpk
1βij, 1, l “ ´8, u “ 0

˘

if ypij “ 0

Truncated- N
`

τ0ij ` xpk
1βij, 1, l “ maxtupij´k, 0u, u “ 8

˘

if ypij “ k

Truncated- N
`

τ0ij ` xpk
1βij, 1, l “ ´8, u “ maxtupij´ku

˘

otherwise.

3. Draw individual level stable preferences µi. We define a vector of click and purchase

latent utilities for journey j, ruij “
„

tucijtkutk, tu
p
ijkuk

1

, and the corresponding matrix

of covariates

rXij “

»

—

—

–

”

rXc
ijt

ı

t

rXp
ij

fi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

»

—

—

–

0 1 0 0

1 0 0 x1t,1:K ¨ diagpρq

fi

ffi

ffi

fl

t
„

0 0 1 x11:K



fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where rXc
ijt is the matrix of covariates of click occasion t for customer i and journey j

(i.e., intercept dummy variables and product attributes with systematic deviations of

preferences ρ), and rXp
ij is the matrix of covariates for purchase occasion of customer i

1For k “ s is similar, but using the conditional mean α2ijpptq instead.
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and journey j. The columns of each of these matrices multiply α1ijpptq, α2ijpptq, τ0ij , βij ,

respectively; which yields the terms in Equations (2.5) and (2.6).

We also further define rXi and rui as

rXi “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

rXi1

...

rXij

...

rXiJi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, and rui “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

rui1 ´ rXi1 ¨ γ
p
z1

...

ruij ´ rXij ¨ γ
p
zj

...

ruiJi ´
rXiJi ¨ γ

p
zJi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Finally, we draw

µi „ N prµi, rSiq,

where

rS´1i “ Σ´1 ` rX1
i
rXi

rµi “ rSi

´

Σ´1 ¨ 0` rX1
irui

¯

.

4. Draw the vector ρ. We define Xρ
ij by

Xρ
ij “

«

„

1 0 0 x1t,1:K ¨ diagpbijq



tk

ff
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and uρij “

„

tucijtkutk

1

. We further define Xρ “

„

tXρ
ijuij

1

, and uρ “

„

tuρijuij

1

.

Finally, we draw ρ by,.

ρ „ N pµρ, Sρq

where

Sρ
´1
“ σ´2ρ I`Xρ1Xρ

µρ “ Sρ
`

σ´2ρ ¨ 1`Xρ1uρ
˘

5. Draw context membership zj by

ppzj “ c|¨q “
πcLjc

C
ř

c1“1

πc1Ljc1

where Ljc “
´

śM
m“1 ppqijm|θ

q
cmq

¯

¨ p
´

ruij ´ rXijµi|rXijθ
p
j , 1

¯

, ppqijm|θqcmq is the pdf of

query variables as defined in (2.1)-(2.4), and p
´

ruij ´ rXij ¨ µi|rXij ¨ θ
p
j , 1

¯

is the

product of elementwise normal pdf evaluated at each components of ruij ´ rXij ¨ µi with

mean rXij ¨ θ
p
j and variance 1.

6. Draw the query components of context location parameters θqc for each context c. We

denote J pcq the set of journeys j such that zj “ c, and nc the number of journeys in

that set. For each query variable m, we draw θqcm depending on the type of query
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variable modeled in (2.1)-(2.4). If m is binary as described in (2.1), we draw

θqcm „ Beta

¨

˝φ0ma `
ÿ

jPJ pcq
qijm, φ0mb ` nc ´

ÿ

jPJ pcq
qijm

˛

‚.

If m is categorical as described in (2.2), we draw

θqcm „ Dirichlet pφ0m ` nqcmq

where

nqcm “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

ř

jPJ pcq
1pqijm “ 1q

...

ř

jPJ pcq
1pqijm “ nq

...

ř

jPJ pcq
1pqijm “ Nmq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Nmˆ1

,

and Nm is the number of possible values of query variable m.

If m is continuous real-valued as described in (2.3), we draw

θqcm „ N pµ̃cm, s̃cmq
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where s̃´1cm “
“

φ´10mσ ` σ
´2
m

‰

and µ̃cm “ s̃cm
ř

jPJ pcq qijm. Finally, if m is positive-valued

as described in (2.4), we draw2

θqcm „ Gamma

¨

˝φ0ma ` nc, φ0mb `
ÿ

jPJ pcq
qijm

˛

‚.

7. Draw the click-purchase context location parameters θp. We denote by ipjq the

customer journey j belongs to. We define sXc and suc as

sXc “

«

„

rXipjqj



jPJ pcq

ff

, and suc “

«

„

ruipjqj ´ rXipjqj ¨ µipjq



jPJ pcq

ff

.

We draw θpc by

θpc „ N psµc, sScq,

where

sS´1c “ V ´10 ` sX1
c
sXc

sµc “ sSc
`

V ´10 ¨ µ0 ` sX1
csuc

˘

.

8. Draw context probabilities πc, by drawing the stick parameters Vc from

Vc „ Beta

˜

1´ d` nc , a` c ¨ d`
C
ÿ

c1“c`1

nc1

¸

2We use the shape-rate specification of the Gamma distribution (i.e., Gammapα, βq).
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9. Draw population covariance matrix Σ, by

Σ´1 „Wishartpr1, R1q,

where

r1 “ r0 ` I

R1
´1
“ R0

´1
`
ÿ

i

µi ¨ µi
1
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B.3 Parameter estimates per context

B.3.1 Query context location parameters

Context
Parameter Population

mean
1 2 3 4 5 6 7 9 10 11 13 14 15 17 23

Is it roundtrip? 0.667 0.792 0.455 0.667 0.938 0.728 0.538 0.508 0.656 0.976 0.550 0.769 0.755 0.430 0.812 0.724
Is it domestic? (within EU is domestic) 0.577 0.193 0.854 0.636 0.541 0.493 0.475 0.792 0.876 0.225 0.738 0.304 0.290 0.520 0.808 0.411
Flying from international airport? 0.737 0.772 0.649 0.650 0.631 0.784 0.765 0.653 0.621 0.832 0.761 0.858 0.803 0.822 0.714 0.764

Market:
Non-US across continent 0.060 0.158 0.013 0.058 0.084 0.052 0.070 0.018 0.008 0.120 0.027 0.084 0.145 0.056 0.020 0.090
Non-US within continent 0.103 0.105 0.122 0.077 0.065 0.111 0.072 0.133 0.125 0.053 0.215 0.076 0.064 0.155 0.103 0.085
US Domestic 0.494 0.146 0.750 0.578 0.456 0.412 0.413 0.665 0.763 0.186 0.553 0.259 0.250 0.407 0.709 0.362
US North America 0.147 0.170 0.073 0.128 0.196 0.240 0.215 0.097 0.063 0.209 0.131 0.239 0.167 0.173 0.091 0.161
US Overseas 0.195 0.421 0.040 0.160 0.199 0.184 0.231 0.087 0.041 0.431 0.075 0.342 0.374 0.209 0.077 0.302
Airport 0.880 0.862 0.881 0.906 0.934 0.903 0.897 0.852 0.909 0.881 0.875 0.837 0.884 0.835 0.885 0.880

Type of location searched:
Both 0.042 0.078 0.041 0.033 0.021 0.038 0.032 0.053 0.031 0.039 0.035 0.051 0.046 0.060 0.030 0.055
City 0.078 0.060 0.078 0.061 0.045 0.058 0.071 0.095 0.060 0.080 0.090 0.112 0.070 0.105 0.085 0.064
Trip distance (kms) 3820.256 7221.284 2099.494 3452.193 4188.788 3788.162 4161.992 2589.313 2119.567 6558.447 2237.067 5056.982 6198.981 3561.534 2481.910 4715.544

More than one adult? 0.289 0.316 0.243 0.291 0.383 0.344 0.249 0.320 0.293 0.320 0.351 0.277 0.313 0.269 0.280 0.277
Traveling with kids? 0.084 0.094 0.057 0.093 0.152 0.129 0.080 0.102 0.070 0.086 0.126 0.084 0.092 0.077 0.073 0.098
Is it summer season? 0.343 0.255 0.394 0.338 0.372 0.349 0.383 0.310 0.404 0.256 0.383 0.329 0.303 0.365 0.323 0.286
Holiday season? 0.040 0.051 0.028 0.028 0.036 0.055 0.046 0.040 0.024 0.038 0.043 0.046 0.025 0.044 0.053 0.053
Does stay include a weekend? 0.667 0.819 0.478 0.640 0.887 0.708 0.595 0.554 0.617 0.947 0.573 0.766 0.769 0.483 0.745 0.729
Length of stay (only RT) (days) 10.386 16.881 5.446 8.579 9.570 8.656 10.002 8.391 5.112 17.608 7.759 13.687 16.471 15.749 6.588 13.401
Searching on weekend? 0.216 0.217 0.211 0.200 0.192 0.211 0.216 0.179 0.220 0.237 0.240 0.227 0.237 0.228 0.195 0.210
Searching during work hours? 0.487 0.463 0.497 0.542 0.443 0.531 0.480 0.497 0.519 0.494 0.446 0.463 0.478 0.427 0.513 0.459
Time in advance to buy (days) 55.339 67.616 38.060 50.084 62.049 57.785 59.355 44.259 39.881 76.156 47.818 64.167 64.045 52.447 59.501 66.915

Table B1: Posterior mean of query location parameters per context
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B.3.2 Click and purchase context location parameters

Context
Parameter Population

mean
1 2 3 4 5 6 7 9 10 11 13 14 15 17 23

Click intercepts
Intercept Search: OW Search -1.661 -0.934 -1.881 -1.609 3.261 -1.962 -2.091 -1.160 -1.952 -0.986 -2.349 -1.533 -1.401 -2.411 -1.984 -1.645
Intercept Search: RT Outbound -2.455 -2.317 -2.222 -2.212 -2.126 -2.610 -2.383 -2.055 -2.459 -2.341 -3.331 -2.734 -2.331 -2.529 -2.854 -2.323
Intercept Search: RT Inbound -2.651 -2.353 -2.405 -2.342 -2.167 -2.751 -2.406 -2.124 -2.577 -2.474 -3.883 -3.031 -2.437 -2.154 -3.551 -2.553
Intercept Click: OW Search -1.498 -0.597 -2.011 -1.293 -0.771 -1.469 -1.573 -1.372 -1.683 -1.497 -0.660 -1.197 -1.269 -1.346 -2.030 -1.437
Intercept Click: RT Outbound -0.736 0.244 -1.235 -0.634 -0.317 -0.603 -0.816 -0.440 -0.773 -0.701 -0.347 -0.643 -0.520 -0.818 -0.926 -0.737
Intercept Click: RT Inbound 0.087 1.278 -0.731 -0.087 0.474 0.148 -0.428 0.467 -0.293 -0.006 0.733 0.667 0.672 -0.317 0.582 0.047
Control for whether product was clicked before 1.257 1.180 1.411 1.810 0.635 1.673 0.791 1.729 1.711 1.039 1.856 1.067 1.096 1.048 0.946 1.280

Purchase intercept
Intercept Purchase -5.550 -2.909 -6.684 -4.426 -3.898 -5.382 -6.125 -3.428 -5.834 -6.177 -4.754 -4.878 -4.435 -6.285 -6.566 -5.207

Product attribute preferences
Price -0.567 -0.740 -0.480 -0.602 -0.691 -0.633 -0.667 -0.622 -0.494 -0.680 -0.558 -0.495 -0.690 -0.535 -0.436 -0.554
Length of trip (hours) -0.737 -0.605 -0.751 -0.837 -0.627 -0.901 -0.608 -0.941 -0.956 -0.555 -1.339 -0.678 -0.622 -0.615 -0.659 -0.729
Number of stops: Non stop 0.023 0.039 0.032 0.241 0.306 0.170 0.129 -0.027 0.061 0.291 -0.535 -0.225 -0.012 0.083 -0.157 0.304
Number of stops: 2+ stops -1.621 -0.610 -1.979 -1.174 -0.487 -2.053 -1.534 -1.102 -1.422 -1.206 -1.028 -1.529 -0.560 -2.778 -2.414 -2.850
Alliance: Skyteam (Delta) -0.564 -0.192 -0.324 -0.380 -0.457 -0.431 -0.532 -0.032 -0.446 -0.361 -0.327 -0.733 -0.291 -1.661 -1.086 -0.252
Alliance: Star Alliance (United) -0.367 -0.093 -0.231 -0.351 -0.336 -0.213 -0.312 -0.032 -0.262 -0.069 -0.694 -0.549 -0.174 -0.729 -0.774 -0.477
Alliance: Alaska Airlines -0.497 -0.513 -0.416 -0.402 -0.098 -0.426 -0.321 -0.386 -0.243 -0.536 -0.304 -0.195 -0.256 -1.120 -0.709 -1.791
Alliance: Spirit -0.667 -0.636 -0.357 -0.780 -0.990 -1.624 -0.389 -0.462 -0.176 -0.450 -1.651 -0.307 -0.376 -0.661 -0.849 -3.928
Alliance: JetBlue -0.097 -0.378 0.017 -0.656 0.213 -0.003 0.027 0.108 -0.257 -0.127 0.099 -0.237 -0.073 0.043 0.017 -0.013
Alliance: Frontier -0.130 0.398 0.161 -0.205 0.446 -0.372 -0.014 -0.645 -0.225 -0.508 -0.661 0.147 -0.149 0.048 -0.236 -0.535
Alliance: Other – No alliance -0.228 -0.064 -0.068 -0.336 -0.904 -0.106 -0.370 -0.012 0.194 -0.232 -0.492 -0.175 -0.120 -0.878 -0.263 -0.051
Alliance: Multiple alliances -1.542 -0.525 -1.638 -1.971 -1.508 -1.584 -0.974 -1.457 -1.634 -0.879 -2.573 -1.411 -0.701 -3.102 -1.700 -1.604
Outbound dep. time: Early morning (0:00am - 4:59am) -0.638 -0.406 -0.421 -0.103 0.077 0.041 -0.513 0.256 -0.214 -0.249 -2.954 -1.062 -0.324 -1.667 -0.854 -1.347
Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.162 -0.042 -0.053 -0.225 -0.098 -0.166 -0.332 -0.018 0.117 -0.066 0.157 -0.319 0.092 -0.593 -0.352 -0.279
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.226 -0.248 -0.048 -0.224 -0.161 -0.392 -0.471 -0.153 -0.020 -0.285 -0.225 -0.461 -0.058 -0.298 -0.239 -0.239
Outbound arr. time: Early morning (0:00am - 4:59am) -0.835 -0.675 -1.038 -0.386 -1.168 -0.713 -0.683 -0.369 -1.021 -0.693 -0.776 -0.771 -0.658 -0.917 -1.322 -0.265
Outbound arr. time: Afternoon (12:00pm - 5:59pm) -0.160 -0.101 -0.265 0.240 0.145 0.269 -0.009 0.265 -0.098 -0.150 0.080 -0.565 -0.109 -0.480 -0.348 -0.375
Outbound arr. time: Evening (6:00pm - 11:59pm) -0.213 -0.346 -0.457 0.228 -0.049 0.269 -0.116 0.147 -0.227 -0.164 -0.110 -0.151 -0.152 -0.229 -0.527 -0.486
Inbound dep. time: Early morning (0:00am - 4:59am) -0.964 -0.301 -1.054 -0.539 -5.904 -2.102 -0.405 0.359 -1.080 -0.181 -3.157 -1.423 0.183 -0.859 -1.035 -1.551
Inbound dep. time: Afternoon (12:00pm - 5:59pm) -0.146 -0.163 -0.188 0.283 0.181 0.899 0.090 -0.031 -0.143 0.148 -0.331 0.067 0.193 -0.267 -1.531 0.459
Inbound dep. time: Evening (6:00pm - 11:59pm) -0.486 -0.212 -0.331 -0.081 -0.836 0.048 -0.342 -0.205 -0.058 -0.119 -0.381 -1.495 0.060 -0.198 -1.886 0.232
Inbound arr. time: Early morning (0:00am - 4:59am) -0.886 -0.496 -0.212 -0.164 0.189 -1.022 -0.602 -0.423 -0.344 -0.374 -1.746 -2.449 -0.579 -0.897 -2.090 -1.545
Inbound arr. time: Afternoon (12:00pm - 5:59pm) -0.665 -0.063 -0.097 0.095 0.455 -1.008 0.103 -0.070 -0.192 0.125 -0.626 -1.744 -0.515 -0.409 -3.163 -0.509
Inbound arr. time: Evening (6:00pm - 11:59pm) -0.078 -0.005 0.532 0.315 0.705 -0.206 0.454 0.374 0.155 0.283 -0.416 -1.792 -0.280 0.432 -0.905 -0.355

Table B2: Posterior mean of location click and purchase parameters
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