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Abstract 

Twisted bilayer graphene probed with nano-optics 

 Sai Swaroop Sunku 

 

 The discovery of strongly correlated electronic phases in twisted bilayer graphene 

has led to an enormous interest in twisted van der Waals (vdW) heterostructures. While twisting 

vdW layers provides a new control knob and never before seen functionalities, it also leads to large 

spatial variations in the electronic properties. Scanning probe experiments are therefore necessary 

to fully understand the properties of twisted vdW heterostructures. 

In this thesis, we studied twisted bilayer graphene (TBG) with two scanning probe 

techniques at two twist angle regimes. At small twist angles, our nano-infrared images resolved the 

spatial variations of the electronic structure occurring within a Moiré unit cell and uncovered a 

quantum photonic crystal. Meanwhile, with nano-photocurrent experiments, we resolved DC 

Seebeck coefficient changes occurring in domain walls on nanometer length scales. At larger twist 

angles, we mapped the twist angle variations naturally occurring in our device with a combination 

of nano-photocurrent and nano-infrared imaging. Finally, we also investigated different materials 

for use as nano-optics compatible top gates in future experiments on TBG. Our results 

demonstrate the power of nano-optics techniques in uncovering the rich, spatially inhomogeneous 

physics of twisted vdW heterostructures.
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Chapter 1: Introduction 

 Optical spectroscopy has established itself as a powerful and insightful probe of the 

wide variety of electronic phases in condensed matter systems (1). In conventional optical 

spectroscopy, the diffraction limit determines the size of the smallest observable features. Recent 

developments in nano-optics have led to sub-diffractional probes that can achieve orders of 

magnitude better spatial resolution. In this thesis, we use such a deeply sub-diffractional technique 

known as scattering scanning near-field optical microscopy (scattering SNOM) (2, 3) and a closely 

related variant, nano-photocurrent imaging (4), to study twisted bilayer graphene (TBG). 

 

1.1 Graphene and twisted bilayer graphene 

1.1.1 Graphene, two-dimensional materials and van der Waals heterostructures 

Graphene is an allotrope of carbon consisting of atomically-thin two-dimensional sheets. 

Graphite, the more commonly known carbon allotrope, can be thought of as layers of graphene 

stacked over each other. Monolayer graphene, consisting of a single sheet of carbon atoms, was 

first isolated in 2004 (5) and has been extensively investigated in the years since (6, 7). Graphene 

sheets with multiple layers such as bilayer and trilayer graphene have also been comprehensively 

studied. In this chapter, we focus on monolayer graphene (MLG) and bilayer graphene (BLG). 

Monolayer graphene consists of carbon atoms arranged in a honeycomb lattice, as shown 

in Fig 1.1(A). The low-energy band structure consists of cones located at the 𝐾𝐾 and 𝐾𝐾′ points in 

the Brillouin zone (BZ) (Fig 1.1(B)). Because the linear energy dispersion is reminiscent of the 

solution to the Dirac’s equation, the cones are often called Dirac cones. The 𝐾𝐾 and 𝐾𝐾′ points are 

also referred to as different valleys. Bilayer graphene (BLG) consists of two graphene sheets (Fig 
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1.1(C)). The electronic structure of BLG is tunable with electric field. Fig 1.1(D) shows a schematic 

of the BLG band structure for different combinations of displacement fields above and below the 

graphene layer. With no displacement fields, the band structure at low energies is approximately 

parabolic (8). If equal displacement fields are applied above and below the graphene layer, a finite 

band gap Δ is opened (8–10). The carrier density in the BLG layer can be controlled independently 

of Δ by the difference between the top and bottom electric fields. Typically, such electric fields are 

applied by metallic gates placed above and below the graphene layer. 

Research into graphene has led to the discovery of a broad variety of two-dimensional (2D) 

materials. A very incomplete list includes hexagonal boron nitride (hBN), semiconductors such as 

the transition metal dichalcogenides (TMDs) MoS2
  and WS2, superconductors such as NbSe2, and 

ferromagnets such as CrI3 (11). 2D materials can be isolated to form atomically thin sheets because 

the atoms within the layers form strong covalent bonds and the layers themselves are held together 

by weak van der Waals forces. 2D materials have attracted intense interest because their properties 

are highly tunable. The extremely thin nature of 2D materials allows their properties to be easily 

modified by electrostatic gates, as demonstrated above for the case of bilayer graphene. Because 

2D materials have no ‘dangling bonds’ in the third dimension, they can be arbitrarily stacked over 

other 2D materials with no concerns of lattice mismatch. Such heterostructures, called van der 

Waals (vdW) heterostructures (Fig 1.1(E)) (12), have drawn comparison to an atomic scale LEGO 

set. 
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Figure 1.1 | Electronic structure of monolayer and bilayer graphene. (A) Schematic of the atomic 

structure of monolayer graphene. The grey circles represent carbon atoms. (B) Left: The first 

Brillouin zone of MLG. The special points known as the 𝐾𝐾 and 𝐾𝐾′ points are marked in orange. 

Right: A schematic of the low energy band structure of MLG at the 𝐾𝐾 and 𝐾𝐾′ points. (C) Schematic 

of the atomic structure of naturally occurring bilayer graphene. 𝐷𝐷𝑏𝑏 (𝐷𝐷𝑡𝑡), 𝜖𝜖𝑏𝑏 (𝜖𝜖𝑡𝑡) and 𝐸𝐸𝑏𝑏 (𝐸𝐸𝑡𝑡) refer 

to the displacement field, dielectric constant and electric field below and above the graphene layer. 

(D) Schematic of the low energy band structure close to 𝐾𝐾 and 𝐾𝐾′ points for different 

configurations of displacement fields. 𝐸𝐸𝐹𝐹 is the Fermi energy and Δ is the energy gap. (E) Schematic 

illustration of van der Waals heterostructures. Figure from (12). 

 



 

4 
 

1.1.2 Twisted bilayer graphene and its electronic structure 

 

Figure 1.2 | Twisted bilayer graphene at large twist angles. (A) Schematic depiction of two 

twisted graphene sheets. The periodicity of the resulting moiré pattern 𝜆𝜆𝑀𝑀 is also depicted. (B) The 

Brillouin zone of TBG. The BZs of the individual graphene layers rotated by twist angle 𝜃𝜃 are 

represented as blue and red hexagons respectively. The 𝐾𝐾 and 𝐾𝐾′ points of the individual layers are 

also marked. The BZ of the resulting TBG structure is the smaller black hexagon. The band 

structure along the grey line is shown in (C). (C) Schematic band structure of TBG without (left) 

and with (right) interaction between the two MLG layers. (D) A plot of the reduced Fermi velocity 

of TBG for twist angles above the first magic angle. 𝑣𝑣∗ and 𝑣𝑣 are the Fermi velocities of TBG and 

MLG respectively. Figure from (13). 

 

A recent development in the field of two-dimensional materials is the discovery of yet 

another control knob for tuning the electronic properties of vdW heterostructures: the relative 

twist angle between neighboring layers. Graphene and hBN have the same crystal structure but 

with a slightly different lattice constant. Placing graphene on a hBN substrate leads to a long-range 
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periodic pattern called a moiré pattern. At small twist angles, a bandgap appears in MLG and a 

long-sought phenomena known as the Hofstadter’s Butterfly has been observed (14–17). 

Bistritzer and MacDonald were the first to apply a similar principle to two sheets of 

graphene (13). They predicted that when two graphene layers are twisted relative to each other (Fig 

1.2(A)), the band structure of the resulting heterostructure is dramatically affected (13). 

Specifically, they predicted that at low energies, the electronic structure of twisted bilayer graphene 

resembles that of monolayer graphene but with a smaller, twist angle-dependent Fermi velocity 

(Fig 1.2(D)). This change in Fermi velocity is the direct result of hybridization between the Dirac 

cones in neighboring graphene layers (Fig 1.2(C)). They also predicted that at a series of ‘magic’ 

twist angles, the Fermi velocity would approach zero, leading to localized carriers and the 

possibility of strongly correlated phenomena. 

The dramatic confirmation of these predictions in 2018 by the group of Pablo Jarillo-

Herrero, who discovered correlated Mott-like insulating states (18) and superconductivity (19) at 

the first magic angle of 𝜃𝜃 ~ 1.1° has fueled enormous interest in TBG and twisted vdW 

heterostructures. Further experiments have discovered strange metal behavior (20), nematicity 

(21), ferromagnetism (22) and quantum anomalous Hall behavior (23) in TBG. Similar 

experiments on twisted TMDs have also discovered correlated insulating states (24). 

The schematic in Fig 1.2(A) assumes that the graphene layers are perfectly rigid, which is a 

reasonable approximation for twist angles much greater than 1 degree. At smaller twist angles, 

transmission electron microscopy (TEM) images show a domain structure separated by domain 

walls (Fig 1.3(B)). Large scale elastic simulations show that the formation of the domains is driven 

by the difference in the stability of different atomic stackings in bilayer graphene (Fig 1.3(A)) (25, 

26). The most stable stacking for bilayer graphene is called the Bernal stacking or AB/BA stacking 
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(Fig 1.3(A)). This stacking is realized in bulk graphite and entails half of the carbon atoms in top 

layer (A sublattice) lying directly above carbon atoms in the bottom layer (B sublattice). Since the 

A and B sublattices are labeled arbitrarily, AB and BA stacking simply correspond to a switching 

of the sublattices. In AA stacking, all carbon atoms in the top layer lie directly on top of other 

carbon atoms in the bottom layer (Fig 1.3(A)). AA stacking is known to be less stable than Bernal 

stacking. Therefore, the minimal energy TBG structure maximizes the area of the AB and BA 

domains and minimizes the area of the AA stacked regions. This shrinking of AA domains and 

expansion of AB and BA domains is also termed atomic relaxation. 

Atomic relaxation also modifies the electronic structure of small angle TBG. Bernal stacked 

BLG is topologically trivial with a total Chern number of 0. However, when Bernal stacked BLG is 

gapped, the Chern number at the 𝐾𝐾 and 𝐾𝐾′ valleys are 1 and -1 respectively (27). At the interface 

between AB and BA stacking, the Chern number changes by a total of 2 at each valley. Therefore, 

two topologically protected states must be localized to the boundary (27–30) per valley. 

Such domain walls between AB and BA stacking also occur as defects in naturally exfoliated 

bilayer graphene (31–34). The only back scattering channel for these states is scattering from 𝐾𝐾 

valley to 𝐾𝐾′ valley which is known as intervalley scattering. Since intervalley scattering is strongly 

suppressed at low temperatures, these states have a significantly longer mean free path, as 

confirmed by transport experiments (26, 32). 
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Figure 1.3 | Twisted bilayer graphene at small twist angles. (A) Schematic illustration of 

the AB and BA stackings. (B) Local out-of-plane displacement of the graphene layers obtained 

from large scale elastic simulations. Figure from (25). (C) Top: Large area transmission electron 

microscopy (TEM) image of TBG with a twist angle 𝜃𝜃 = 0.1°. Figure from (26). Bottom: A zoom-

in view of the domain wall showing a width of ~6 nm. Figure from (31). (D) A schematic showing 

the change in the atomic stacking at the domain wall. The topologically protected states localized 

to the domain wall are represented by red and pink arrows. (E). The dispersion of the topologically 

protected states. The left and right panels correspond to 𝐾𝐾 and 𝐾𝐾′ valleys. 

 

1.2 Scattering SNOM and plasmon polaritons 

1.2.1 Scattering SNOM 

Scattering scanning near-field microscopy (scattering SNOM) or nano-infrared imaging is 

a deeply sub-diffractional scanning optical microscopy technique based on the atomic force 

microscope (AFM). A schematic is shown in Fig 1.4(A). Incident light (𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖) polarizes the apex of 

the tip and induces a dipole of magnitude 𝑝𝑝𝑧𝑧. This tip dipole interacts with the sample to produce 



 

8 
 

an image dipole inside the sample. Because of the near-field interaction between the tip and image 

dipoles, some of the incident light is scattered into the far field (𝐸𝐸𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡) which is then detected with 

a conventional detector (2, 3). The tip is typically metallic which leads to an enhanced electric field 

at the apex due to antenna or lightning rod effects (35). The spatial resolution of scattering SNOM 

is only limited by the radius of curvature of the metallic tip and can be as small as 5 nm (36). 

A major experimental challenge in scattering SNOM is the suppression of background 

signals that arise from light scattered off other parts of the tip and the sample. Several techniques 

are used in combination to isolate the near-field signal that arises from the apex of the tip. The 

most important technique is operating the AFM in tapping mode and demodulating the signal 

from the optical detector at a harmonic of the tip tapping frequency. Because the near-field 

interaction between the tip and image dipole decays exponentially with the tip-sample distance 

and the background stays relatively constant, the higher harmonics overwhelmingly contain the 

near-field signal of interest. Demodulation at the second to the fifth harmonic are used in typical 

experiments. 

The scattered field 𝐸𝐸𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡 is proportional to the dipole moment of the tip 𝑝𝑝𝑧𝑧 and is directly 

related to the dielectric constant 𝜖𝜖 of the sample being studied. However, careful modeling is 

necessary to extract 𝜖𝜖 from the measured 𝐸𝐸𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡 since 𝐸𝐸𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡 is also strongly affected by the geometry 

of the tip (35). 
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Figure 1.4 | Scattering SNOM and plasmons in graphene. (A) Schematic of scattering SNOM. 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐸𝐸𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡 are the incident and scattered fields, 𝜖𝜖 is the substrate dielectric constant and 𝑝𝑝𝑧𝑧 is 

the 𝑧𝑧 component of the dipole moment of the tip. (B) Dispersion relation for SPPs in graphene 

with chemical potential 𝜇𝜇 = 2400 cm−1 which corresponds to a carrier density 𝑛𝑛 = 6.5 ⋅

1012 cm−2. The vertical dashed line represents the momentum that the tip most strongly couples 

to. Figure from (37). (C) SNOM image of propagating SPPs launched by a gold antenna. Figure 

from (38). (D) SNOM image showing plasmons reflected by atomic scale grain boundaries in 

monolayer graphene. Figure from (39). (E) SNOM image showing SPPs reflected by AB-BA 

domain walls in bilayer graphene. Figure from (33). 
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1.2.2 Plasmon polaritons in graphene 

The solutions to Maxwell’s equations at the interface between materials with dielectric 

constant of opposite signs include a mode confined to the interface. The electric field of this mode 

decays exponentially away from the interface on both sides. The origin of the negative dielectric 

constant can be due to any resonance in the material. This hybrid light-matter mode is known as 

a surface polariton. The polariton wavelength can be orders of magnitude smaller the wavelength 

of light in vacuum, making polaritons promising for various nano-photonics applications (40). 

The most commonly investigated form of surface polaritons are the surface plasmon 

polaritons (SPPs) where the negative dielectric constant arises from the metallic nature of the 

material. However, phonon polaritons and exciton polaritons arising from strong phonon and 

exciton resonances respectively, have also been investigated experimentally (41, 42). Several other 

forms of polaritons have been predicted theoretically (43, 44). 

Graphene, being an excellent electrical conductor, was predicted to sustain SPPs at infrared 

frequencies (45). This prediction was verified by scattering SNOM experiments which 

demonstrated a confinement factor of >50 and SPP lifetime of about 0.1 ps, both of which were the 

highest known for infrared plasmonics at that time. Experiments on graphene encapsulated with 

hBN (46, 47) and at low temperatures (38) have shown that the SPP lifetime in graphene can reach 

1.6 ps and clarified the scattering mechanisms responsible for SPP dissipation in graphene. 

Propagating SPPs appear directly in SNOM images as fringes. They can be launched by 

gold antennas which directly couple to the incident infrared light, as shown in Fig 1.4(C). SPPs can 

also launched by the metallic tip which can then detect the same SPPs if they are reflected by 

physical boundaries such as the edge of a graphene sheet (48, 49). Purely electronic, atomic scale 

boundaries are also capable of reflecting SPPs, as shown in Figs 1.4(D) and 1.4(E). In Fig 1.4(D), 
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the defects are grain boundaries in monolayer graphene grown by chemical vapor deposition 

(CVD) (39) and in Fig 1.4(E), the defects are domain walls between AB-stacked and BA-stacked 

graphene discussed in Section 1.1.2 (33, 34). Despite the atomic scale of the defects, the optical 

conductivity change at the defect is strong enough to cause significant reflection of SPPs which can 

be detected with SNOM. 

AB-BA domain walls are predicted to host more exotic SPPs. Theoretical calculations 

predict that the domain walls host one-dimensional SPPs propagating along the domain walls. 

Because of the reduced scattering of the topological states along the domain walls, the lifetime of 

the 1D SPPs is expected to approach 100 ps (50, 51). Such 1D plasmons have not yet been observed 

in experiment. 

 

1.3 Photocurrent and nano-photocurrent in graphene 

1.3.1 Photothermoelectric effect in graphene 

In most materials, the predominant dissipation source for excited electrons is electron-

phonon (e-ph) coupling where the hot carriers emit phonons and decay to a lower energy state. 

However, this coupling is weak in graphene compared to typical three dimensional metals because 

of the very small Fermi surface of graphene (52, 53). Such weak e-ph coupling leads to long lived 

hot carriers in graphene (54). Therefore, when such hot carriers in graphene encounter spatial 

variations in Seebeck coefficient, they generate thermoelectric voltages. Laser light incident on 

graphene generates hot carriers and the resulting thermoelectric currents are the dominant source 

of photocurrent in graphene. This mechanism has been termed the photothermoelectric effect 

(PTE) and is illustrated schematically in Fig 1.5(A). 
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Figure 1.5 | Nano-photocurrent in graphene. (A) Schematic of photocurrent generation in 

graphene. The green and orange rectangles represent regions with different Seebeck coefficient 

and the red spot represents the incident laser beam. (B) Carrier density dependence of conductivity 

and Seebeck coefficient for monolayer graphene. (C) Scanning photocurrent image of a graphene 

pn junction obtained by scanning a diffraction limited laser spot. The measured photocurrent is 

maximal at the junction. Figure from (55). (D) Schematic of nano-photocurrent imaging. (E) 

Representative nano-photocurrent image showing a significantly improved spatial resolution in 

comparison to (C). Panels (D) and (E) from (4). 

 

The Seebeck coefficient in graphene can be modified by physically changing the graphene 

layer (e.g. an interface between monolayer and bilayer graphene). However, the strongly gate 

tunable conductivity of graphene also leads to a gate dependent Seebeck coefficient (56, 57), as 

shown in Figure 1.5(B). Therefore, a graphene junction with different carrier densities on either 
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side can generate photocurrent, as shown in Figure 1.5(C). This effect was used to conclusively 

show that the PTE mechanism dominates the photocurrent generation in graphene (55, 58). 

Scanning photocurrent experiments also show complex spatial patterns. A theoretical formalism 

known as the Shockley-Ramo formalism (59) has been developed to predict the spatial 

photocurrent patterns. We discuss this formalism in more detail in Chapter 4. 

 

1.3.2 Nano-photocurrent measurements on graphene 

The early photocurrent experiments used a focused laser spot that was diffraction limited 

(55, 60). Therefore, their spatial resolution was limited, as can be seen in Fig 1.5(C). Later, the same 

experimental setup used for scattering SNOM was used to perform photocurrent experiments 

which led to a significantly higher spatial resolution limited only by the properties of graphene 

(Figs 1.5(D) and 1.5(E)). This technique has since been called nano-photocurrent (4). Since 

photocurrent experiments on graphene are sensitive to the DC Seebeck coefficient, nano-

photocurrent imaging can be thought of as a complementary technique to scattering SNOM. 

 

1.4 Outline 

In this thesis, we used scattering SNOM and nano-photocurrent imaging, to study twisted 

bilayer graphene (TBG) in two different twist angle regimes: 𝜃𝜃 < 0.5° (small) and 𝜃𝜃 > 0.5° (large). 

The boundary between the two regimes roughly corresponds to a moiré period equal to the spatial 

resolution of our nano-optics probes. Therefore, in the small twist angle regime, we resolve 

variations within the moiré unit cell while in the large twist angle regime, we measure the electronic 

properties of TBG averaged over the moiré unit cell. 
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Chapter 2 details our scattering SNOM study of small twist angle TBG. We imaged the 

atomic relaxation and the spatially inhomogeneous features within the moiré unit cell of TBG. Our 

experiments and modeling showed that the periodic moiré pattern acts as a photonic crystal for 

propagating SPPs. Chapter 2, in full, is a reprint of “Photonic crystals for nano-light in moiré 

graphene superlattices” by S. S. Sunku, G. X. Ni, B. Y. Jiang, H. Yoo, A. Sternbach, A. S. McLeod, 

T. Stauber, L. Xiong, T. Taniguchi, K. Watanabe, P. Kim, M. M. Fogler, D. N. Basov, Science 

362:1153 (2018). The dissertation author was the co-primary researcher and author of this 

material. 

In Chapter 3, we studied TBG in the large angle regime. We developed a method to locally 

determined the twist angle of TBG with nano-photocurrent experiments and confirmed the 

measured twist angles with nano-infrared imaging. Chapter 3, in full, is a reprint of “Nano-

photocurrent Mapping of Local Electronic Structure in Twisted Bilayer Graphene” by Sai S. Sunku, 

Alexander S. McLeod, Tobias Stauber, Hyobin Yoo, Dorri Halbertal, Guangxin Ni, Aaron 

Sternbach, Bor-Yuan Jiang, Takashi Taniguchi, Kenji Watanabe, Philip Kim, Michael M. Fogler, 

D. N. Basov, Nano Letters 5:2958 (2020). The dissertation author was the co-primary researcher 

and author of this material. 

In Chapter 4, we study small twist angle TBG with nano-photocurrent imaging. Our 

experiments provided insight into the nanoscale variations in Seebeck coefficient that occur at the 

domain walls in small angle TBG. Chapter 4, in full, is a reprint of “Hyperbolic enhancement of 

photocurrent patterns in minimally twisted bilayer graphene” by Sai S. Sunku, Dorri Halbertal, 

Tobias Stauber, Shaowen Chen, Alexander S. McLeod, Andrey Rikhter, Michael E. Berkowitz, 

Chiu Fan Bowen Lo, Derick E. Gonzalez-Acevedo, James C. Hone, Cory R. Dean, Michael M. 



 

15 
 

Fogler, D. N. Basov, to appear in Nature Communications. The dissertation author was the co-

primary researcher and author of this material. 

A dual gated structure is essential for studying the rich physics that appears in gapped 

bilayer graphene including the 1D plasmons discussed in Section 1.2.2. In Chapter 5, we investigate 

monolayer graphene and MoS2 as potential candidates for a nano-optics compatible top gate and 

identify their strengths and weaknesses. Chapter 5, in full, is a reprint of “Dual-gated graphene 

devices for near-field nano-imaging” by Sai S. Sunku, Dorri Halbertal, Rebecca Engelke, Hyobin 

Yoo, Nathan R. Finney, Nicola Curreli, Guangxin Ni, Cheng Tan, Alexander S. McLeod, Chiu Fan 

Bowen Lo, Cory R. Dean, James C. Hone, Philip Kim, D. N. Basov, to appear in Nano Letters. The 

dissertation author was the co-primary researcher and author of this material. 
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Chapter 2: Quantum Photonic Crystal 

2.1 Introduction 

Graphene is an atomically thin plasmonic medium that supports highly confined plasmon 

polaritons, or nano-light, with very low loss. Electronic properties of graphene can be drastically 

altered when it is laid upon another graphene layer, resulting in a moiré superlattice. The relative 

twist angle between the two layers is a key tuning parameter of the interlayer coupling in thus 

obtained twisted bilayer graphene (TBG). We studied propagation of plasmon polaritons in TBG 

by infrared nano-imaging. We discovered that the atomic reconstruction occurring at small twist 

angles transforms the TBG into a natural plasmon photonic crystal for propagating nano-light. 

This discovery points to a pathway towards controlling nano-light by exploiting quantum 

properties of graphene and other atomically layered van der Waals materials eliminating need for 

arduous top-down nanofabrication. 

When light of wavelength 𝜆𝜆0 travels through media with periodic variations of the 

refractive index, one witnesses an assortment of optical phenomena categorized under the notion 

of a photonic crystal (61). The additional periodicity imposed on light can trigger the formation of 

a full photonic band gap (62) and may also produce chiral one-dimensional (1D) edge states (63) 

or exotic photonic dispersions emulating that of Dirac and Weyl quasiparticles (64). In principle, 

the photonic crystal concept is also applicable for controlling the propagation of “nano-light”: 

coupled oscillations of photons and electrons confined to the surface of conducting media and 

referred to as surface plasmon polaritons (SPPs) (48, 49, 65). The wavelength of SPPs, 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆, is 

reduced compared to 𝜆𝜆0 by up to three orders of magnitude (66). However, this virtuous 
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confinement poses challenges for the implementation of the nano-light photonic crystals by 

standard top-down techniques (67, 68). 

Graphene has emerged as an extremely capable plasmonic medium in view of ultra-strong 

confinement, quantified by  𝜆𝜆0/𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 1000 (66) attained in the regime of weak loss (38, 47). 

Plasmonic properties of graphene can be readily controlled by carrier density (48, 49), dielectric 

environment (47, 69) and ultrafast optical pulses (46). Here, we have explored and exploited yet 

another control route based on the twist angle 𝜃𝜃 between neighboring graphene layers (26, 69–73). 

In TBG, the local stacking order changes smoothly across the narrow solitons separating AB- from 

BA- domains (31), as revealed (Fig. 2.1(B)) by dark field (DF) transmission electron microscopy 

(TEM). Previous nano-IR experiments on isolated solitons in Bernal-stacked bilayer graphene 

(BLG) have shown that SPPs in BLG are scattered by the solitons (33, 34) analogous to the 

scattering of SPPs by grain boundaries in monolayer graphene (39).  Therefore, a regular pattern 

of such solitons (Fig. 2.1(B)) is expected to act as a periodic array of scatterers thus fulfilling the 

key pre-condition for nano-light photonic crystal. Unlike all previous implementations of 

photonic crystals (74, 75), our approach exploits local changes in the electronic band structure of 

the plasmonic medium, a quantum effect, to control optical phenomena. We explored this novel 

and fundamentally quantum approach for manipulating plasmons via direct nano-imaging 

experiments, modeling and theory. 
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Figure 2.1 | Nano-light photonic crystal formed by a network of solitons in twisted bilayer 

graphene. (A) Schematic of the infrared nano-imaging experimental setup. AB, BA, AA label 

periodically occurring stacking types of graphene layers. (B) Left: Visualizing the nano-light 

photonic crystal formed by the soliton lattice. The contrast is due to enhanced local optical 

conductivity at solitons. Right: Dark-field transmission electron microscopy image of a twisted 

bilayer graphene sample showing contrast between AB and BA triangular domains. The dashed 

white hexagons represent unit cells of the crystals. (C) Electronic band structure of a single 

infinitely long soliton (only the K valley is shown). Chiral 1D states are depicted in orange. Optical 

transitions such as those indicated by the red arrow are responsible for the enhanced local 

conductivity at the location of solitons. (D) Experimental (solid) and calculated (dashed) near-

field signal 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) across a single soliton line. Calculation parameters are frequency 𝜔𝜔 =

1180cm-1, Fermi energy 𝜇𝜇 = 0.3eV, interlayer bias 𝑉𝑉𝑖𝑖 = 0.2V and dimensionless damping 𝜂𝜂 =

0.2 (see text). 
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2.2 Nano-infrared imaging of single domain walls 

Infrared nano-imaging (Fig. 2.1(A)) is central to unveiling the physics of a quantum 

photonic crystal for plasmons. In our experiments, infrared light at frequency 𝜔𝜔 = 1/𝜆𝜆0 is focused 

on the apex of a metallic tip. The amplitude of the backscattered signal 𝑠𝑠(𝜔𝜔) and its phase 𝜙𝜙(𝜔𝜔) 

are recorded using an interferometric detection (Section 2.6). When 𝜔𝜔 is close to the optical 

phonon of the SiO2 substrate, as in Fig. 2.1(B), IR nano-imaging effectively reveals local variations 

of the optical conductivity ((37), Section 2.6). In Figure 2.1(B), we observed a six-fold pattern of 

bright line-like features with even stronger contrast at the intersections. A dark field TEM image 

of a similar TBG sample also reveals the same six-fold symmetry with features matching the nano-

IR data. The periods of both patterns are consistent with the moiré length scales anticipated for a 

nominal twist angle of ~ 0.1o. An accurate estimate of the periodicity 𝑎𝑎 for our device can be 

directly read off the near-field image: given the observed 𝑎𝑎 ≃ 230 nm we obtain a twist angle of 

𝜃𝜃 ≃ 0.06o (Section 2.6). We therefore conclude that the near-field image constitutes a direct 

visualization of the solitonic lattice. 

The nano-IR contrast at the solitons is the result of topological changes to the electronic 

structure. When inversion symmetry is broken by an application of a perpendicular displacement 

field using the back gate, the Bernal stacked AB and BA domains reveal a bandgap (10) and the 

valley Chern number at K and K’ valleys is ±1 (76). As the stacking order evolves across the soliton, 

the Chern numbers also change sign. The difference in Chern number leads to topologically 

protected one-dimensional states along the soliton (27, 28). The key implication of this band 

structure effect (34) is that optical transitions from the topologically protected states to empty 

states above the Fermi level prompt an enhanced conductivity at the soliton (Fig. 2.1(C)). 
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Consistent with this view, resistivity experiments signal ballistic electron transport along the 

solitonic channels (26, 32). 

Our qualitative understanding of the near-field contrast is corroborated by modeling. The 

near-field amplitude and phase profiles, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) and 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥), 𝑥𝑥 is the coordinate normal to the 

soliton, depend on the Fermi energy 𝜇𝜇, the interlayer bias 𝑉𝑉𝑖𝑖 and the plasmonic damping rate 𝜂𝜂 

(Section 2.6.4). These latter profiles obtained for isolated solitons (33, 34) were fully elucidated by 

combining electronic structure calculations, scattering theory, and numerical modeling of the tip-

sample coupling (34, 77). Figure 2.1(D) shows the calculated 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) using parameters that most 

closely correspond to the experiment in Fig 2.1(B). 

 

2.3 Nano-infrared imaging of the quantum photonic crystal 

We now discuss the impact of periodically varying conductivity in TBG on propagating 

plasmon polaritons. In our experiments, SPPs of wavelength 𝜆𝜆𝑝𝑝 of the order of the soliton 

periodicity 𝑎𝑎 are introduced by the metallic tip (Figure 2.1(A) and Refs. (46, 47)). In order to launch 

propagating polaritons, we choose 𝜔𝜔 to be away from phonon resonances. In this regime, the 

scattering of SPPs by the solitons produces fringes in both 𝑠𝑠(𝜔𝜔) (48, 49) and 𝜙𝜙(𝜔𝜔) (78) 

corresponding to standing waves. Two-dimensional (2D) maps of both observables are displayed 

in Figure 2.2. We obtained these images in different regimes of 𝜆𝜆𝑝𝑝/𝑎𝑎 by tuning the gate voltage 𝑉𝑉𝐺𝐺 

and/or 𝜆𝜆0. All images are dominated by maxima and minima in the nano-IR contrast, indicating 

the presence of constructive and destructive interference of SPPs triggered by the solitonic lattice. 
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Figure 2.2 | Plasmon interference patterns and superposition model analysis. (A, C) Nano-IR 

images obtained for 𝜆𝜆𝑝𝑝 = 135 nm and 282 nm. (B, D) Near-field amplitude and phase images 

calculated using the superposition model (introduced in the text). The model parameters used to 

obtain the images are: (B) 𝜇𝜇 = 0.23eV, 𝑉𝑉𝑖𝑖 = 0.3V, 𝜂𝜂 = 0.2 (D) 𝜇𝜇 = 0.35eV, 𝑉𝑉𝑖𝑖 = 0.1V, 𝜂𝜂 = 0.2. 

The dashed-line hexagons represent the boundaries of a single unit cell and the magenta bars 

represent the SPP wavelengths. 

 

The Fourier analysis of the 𝑠𝑠(𝜔𝜔) images shown in Figures 2.3 (A, B) supports our 

conjecture of a photonic crystal. We denote the magnitude of the 2D spatial Fourier transform of 

the 𝑠𝑠(𝜔𝜔) image as �̃�𝑠(𝑞𝑞). Figure 2.3(A) shows �̃�𝑠(𝑞𝑞) extracted from the spatially varying conductivity 

image displayed in Figure 1(B) and is seen to have six-fold rotational symmetry. This symmetry is 

preserved in the �̃�𝑠(𝑞𝑞) images obtained by transforming data in Figure 2.2 in the regime where our 
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structures support propagating SPPs. Figure 2.3(B) shows the line profiles taken along one of the 

high-symmetry directions for all �̃�𝑠(𝑞𝑞) images. The peaks in all the images are anchored at the same 

momenta in Fourier space, indicating that the periodicity of the polaritonic nano-IR patterns 

matches that of the moiré lattice. Our nano IR imaging and its Fourier transformed patterns thus 

give further evidence of plasmonic interference in the soliton crystal formed in TBG. 

 

2.4 Modeling and tunability of the photonic crystal 

For a quantitative analysis of the SPP interference, we introduce a superposition model. In 

this simplified model, we neglect multiple scattering of plasmons by these domain walls and 

disregard any interaction of the domain walls at their intersections. In other words, we treat the 

domain walls as interpenetrating and decoupled objects. We compute the near-field signal 

produced by a single (infinitely long) soliton as accurately as realistically possible via microscopic 

calculations of the electron band structure, optical conductivity, and tip-sample coupling (34, 77). 

The superposition model takes as a basic input the profiles of the near-field amplitude 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) and 

phase 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) (Fig 2.1(D) and Section 2.6.4) for a single soliton. It is easy to see that the 2D soliton 

lattice consists of three one-dimensional periodic arrays rotated in-plane by 120o with respect to 

one another. Consider one such array where solitons located at equidistant positions 𝑥𝑥𝑘𝑘. Within 

the superposition model, this array produces the complex near-field signal equal to the sum 

∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 − 𝑥𝑥𝑘𝑘)𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥−𝑥𝑥𝑘𝑘)
𝑘𝑘 . Since 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) is rapidly decreasing away from the solitons, it is 

sufficient to keep only a few nearest-neighbor terms in this summation. The signal from the 

remaining one-dimensional arrays is calculated in a similar way. The superposition of all these 

signals yields the images displayed in Figures 2.2(B) and 2.2(D). This procedure yields a close 

correspondence between the experimental data and the model in both amplitude and phase. 



 

23 
 

 

 

Figure 2.3 | Properties of the graphene-based quantum photonic crystal. (A) Fourier transform 

�̃�𝑠(𝑞𝑞) of the photonic crystal image with no propagating SPPs (as in Fig. 2.1(B)). (B) Line profiles 

of �̃�𝑠(𝑞𝑞) taken along the white dashed line in (A) for the crystal devoid of propagating SPPs and for 

the same crystal with propagating SPPs of various wavelengths 𝜆𝜆𝑝𝑝. The curves are vertically offset 

for clarity. (C) Plasmonic band structure for dimensionless scattering strength 𝑡𝑡 = 0.02 defined 

the text; 𝑡𝑡 = 0.02 most closely corresponds to the experimentally studied crystal. (E) Plasmonic 

band structure for 𝑡𝑡 =  0.2 showing the formation of a full plasmonic gap. (D) Near-field signal 

calculated for a point source at an AA vertex. The left half shows 𝐺𝐺0, the near-field signal computed 

for the empty lattice (𝑡𝑡 = 0). The right half depicts the ratio �̅�𝐺0.02 = 𝐺𝐺0.02/𝐺𝐺0,  where 𝐺𝐺0.02 is the 

signal for 𝑡𝑡 = 0.02. (F) Near-field signal ratio �̅�𝐺0.2 = 𝐺𝐺0.2/𝐺𝐺0 where 𝐺𝐺0.2 is the signal for 𝑡𝑡 = 0.2. 

The frequency in both (D) and (F) corresponds to the plasmon momentum, 𝑞𝑞𝑝𝑝 that satisfies 

�𝑞𝑞𝑝𝑝𝑎𝑎  = 2.23, shown by the dashed lines in (C, E). When this frequency is outside (inside) the 
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band gap, the plasmonic patterns are delocalized (localized) and weakly (strongly) anisotropic, cf. 

panel D (panel F). See Section 2.6.7 for details of these calculations. 

 

A key feature of moiré photonic crystal is its tunability. The periodicity of the crystal, 𝑎𝑎, 

can be continuously varied by changing the twist angle (26) and the SPP-soliton scattering strength 

can be modulated by the carrier density and the interlayer bias (34). In order to illustrate the 

tunability, we introduce the dimensionless scattering strength  

𝑡𝑡 =
1
𝑎𝑎
� 𝑑𝑑𝑥𝑥 
∞

−∞

𝜎𝜎𝑠𝑠(𝑥𝑥) − 𝜎𝜎0
𝜎𝜎0

 , (2.1) 

that governs the interaction between the SPPs and the solitons. Here 𝜎𝜎𝑠𝑠(𝑥𝑥) is the local infrared 

conductivity along the direction perpendicular to the soliton and 𝜎𝜎0 is the asymptotic value of this 

conductivity far away from the soliton (34, 77). Note that parameter 𝑡𝑡 governs the long-range 

behavior of the SPP waves scattered by a soliton. The details of the short-range behavior (an 

example of which is shown in Figs. 2.1(D) and 2.2(B), 2.2(D)) depend, in general, on the exact 

profile 𝜎𝜎𝑠𝑠(𝑥𝑥). However, the plasmon band structure is predominantly sensitive to the long-range 

processes, so a single parameter 𝑡𝑡 suffices. We now evaluate the plasmonic band structure in 

momentum space for selected 𝑡𝑡 values using a reciprocal-space method ((79), Section 2.6). Figure 

2.3(C) shows the band structure for parameters that correspond most closely to our current 

experiment (𝑎𝑎 = 230 nm, 𝑡𝑡 = 0.02); we notice that the plasmonic gap is insignificant. However, a 

larger scattering strength that is likely to be attained in future experiments does yield a full band 

gap arresting plasmonic propagation (Figure 2.3(E)). We also remark that a point-like source in 

plain graphene launches an isotropic cylindrical wave (Figure 2.3(D), left half) whose amplitude 

decays asymptotically as the square root of the distance. While the decay is expected to be the same 
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for a plasmonic crystal at frequencies within the plasmonic bands, the rotational symmetry of the 

waves must reduce to comply with the symmetry of the crystal.  The reduction to six-fold symmetry 

for our crystal can be revealed by dividing the signals with and without the crystal pointwise 

(Figure 2.3(D), right half). In contrast, excitations at frequencies inside the bandgap must be 

localized, showing exponential decay of the amplitude away from the source. We also predict that 

the localized states are strongly anisotropic, yielding signal distributions resembling snowflakes 

(Figure 2.3(F)) or three-pointed stars (Figure 2.1(A) and (Section 2.6)). To generate patterns of 

this kind, one can add point-like plasmonic emitters, e.g., small gold disks (80) to the system. 

 

2.5 Conclusion 

The nano-light photonic crystal devised, implemented and investigated in this work is 

unique in several ways. First, the local variation of the response is rooted in topological electronic 

phenomena occurring at the solitons at variance with commonplace classical photonic crystals 

based on locally perforated media. Second, its key parameters (periodicity and band structure) can 

be continuously tuned electrostatically and/or nanomechanically (17) and do not require 

extremely challenging top-down fabrication. In closing, we remark that it would be interesting to 

explore the regime close to the charge neutrality, where the solitons are predicted to host 1D 

plasmon modes (34, 50). In this regime our structure would act as a 2D network or possibly, a 

controllable circuit capable of routing such 1D plasmons. 
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2.6 Supplementary Material 

2.6.1 Materials and Methods 

2.6.1.1 Device fabrication 

Twisted bilayer graphene was produced by the ‘tear-and-stack’ dry transfer technique as 

detailed in Ref (26). First a layer of boron nitride (BN) is picked up using an adhesive polymer 

poly(bisphenol A carbonate) (PC) coated on a stamp made of transparent elastomer 

polydimethylsiloxane (PDMS). A large flake of monolayer graphene is identified and the BN flake 

is used to tear the graphene flake into two and pick up one half. The substrate is then rotated by a 

controlled angle and the second half of the graphene flake is picked up. The entire stack is then 

placed on a clean silicon dioxide/silicon substrate. The thickness of the BN used for the device in 

this work is 6nm. 

 

2.6.1.2 Infrared nano-imaging 

 Infrared nano-imaging was performed with a commercial scattering-type scanning near-

field optical microscope (Neaspec GmbH) based on a tapping mode atomic force microscope. Our 

light source was a quantum cascade laser obtained from DRS Daylight Solutions, tunable from 900 

cm-1 to 1200 cm-1. The light from the laser was focused onto a metallic tip oscillating at a tapping 

frequency of around 250 kHz with a tapping amplitude of around 60 nm. The scattered light was 

detected using a liquid nitrogen cooled HgCdTe (MCT) detector. To suppress far-field background 

signals, the detected signal was demodulated at a harmonic 𝑛𝑛 of the tapping frequency. In this 

work, we used 𝑛𝑛 = 4. 
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2.6.2 Visualizing the soliton lattice 

As shown in Figure 2.1(B), we were able to visualize the soliton lattice by measuring 𝑠𝑠(𝜔𝜔) 

at 𝜔𝜔 = 1180 cm-1. In Figure 2.4(A), we show a color plot of the imaginary part of the reflection 

coefficient Im(𝑟𝑟𝑝𝑝) for our heterostructure when the graphene stacking configuration is Bernal 

stacking. By comparing the polaritonic dispersion at the three frequencies used in this work (905 

cm-1, 940 cm-1 and 1180 cm-1), we see that at the highest frequency, the group velocity of the 

polariton is highly suppressed (Section 2.6.2). Furthermore, the damping of the polariton is also 

highest at 1180 cm-1. Figure 2.4(B) shows line profiles at 905 cm-1 and 1180 cm-1. The broad 

maximum at 1180 cm-1 indicates that the polariton damping is high at this frequency. The 

combination of these two effects leads to a very short propagation length for the polariton at 1180 

cm-1 and results in the soliton appearing as a single bright line in our nano-infrared images. 

 

 

Figure 2.4 | Polariton dispersion. (a) Color plot of the imaginary part of the Fresnel reflection 

coefficient for p-polarized light 𝐼𝐼𝐼𝐼(𝑟𝑟𝑝𝑝) for the heterostructure studied in this work when the 

graphene stacking is Bernal stacking. (b) Plot of Im(𝑟𝑟𝑝𝑝) as a function of 𝑞𝑞 at 905 cm-1 and 1180 

cm-1. 
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The magnitude of the near-field contrast is known to be a complicated functional of the 

optical conductivity of the sample and the tip-sample coupling. The latter may sensitively depend 

on the exact geometry of the tip and other experimental parameters (35, 81). While a higher local 

conductivity typically leads to a higher near-field signal, in general, there is no simple quantitative 

relation between the two. Extensive numerical modeling (similar to (34)) is necessary for a 

quantitative comparison between the experimental data and the expected 𝜎𝜎𝑠𝑠(𝑥𝑥) − 𝜎𝜎0. 

Note also that “brightest” regions of the obtained images are centered at intersections of 

solitons (the “vertices”). Within our “superposition” approach, this property follows simply from 

the fact that the scattering signal at a vertex has strong contributions from all three intersecting 

walls. We certainly do not think that this approximation is physical, i.e., we do not think that 

domain walls at a vertex run straight through one another without any interaction. Nevertheless, 

our simulations based on the superposition approximation are in a qualitative agreement with 

the data, see Fig. 2.9. Additional dedicated experiments and theoretical calculations would be 

necessary to understand the structure of the vertex and its near-field response. This is a 

challenging problem that goes beyond the scope of the present work. Note, for example, that the 

plasmon wavelength is much longer than the characteristic physical dimension of the vertex. It is 

therefore quite difficult to resolve the microscopic structure of a vertex with the plasmon nano-

imaging. 
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Figure 2.5 | Location and direction of gold electrode launched plasmons. (a) Schematic cross 

section of the device studied in this work. (b) Optical microscope image of the device. The red 

polygon encloses the twisted bilayer region and the orange polygon encloses the photonic crystal 

region. The green square indicates the region investigated in Figure 2.2 and the first two columns 

of Figure 2.3. The grey square indicates the region measured in the fourth column of Figure 2.5. 

Scale bar 10 µm. 
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Figure 2.6 | Determination of the plasmon wavelength. The leftmost two columns show 𝑠𝑠(𝜔𝜔) 

and 𝜙𝜙(𝜔𝜔) images for various values of 𝜆𝜆𝑝𝑝. Images from panels (a) and (e) are shown in Figure 2.2. 

Black scale bar 400 nm. The magenta bars represent the SPP wavelength. The measured region is 

shown as a green square in Figure 2.5(B). The third column shows images of the electrode launched 



 

31 
 

plasmons under the same conditions. The bright yellow feature visible on the left of the images in 

this column is the gold electrode. White scale bar 400 nm. The measured region is shown as a gray 

square in Figure 2.5(B). The rightmost column shows the line-profile taken along the red line in 

the third column and averaged over a width of 80 nm. The red stars mark the first three minima. 

𝜆𝜆𝑝𝑝 is extracted by taking the average of the spacing between these minima. 

 

2.6.3 Estimating the twist angle 

For twisted bilayer graphene, the periodicity of the Moiré pattern 𝜆𝜆𝑀𝑀 and the twist angle 𝜃𝜃 

are related by 𝜆𝜆𝑀𝑀 = 𝑎𝑎0/[2 sin(𝜃𝜃/2)] where 𝑎𝑎0 = 0.246 nm is the lattice constant of monolayer 

graphene. From Figure 2.1(B), we extract the periodicity to be approximately 230 nm and this 

corresponds to the twist angle of 0.06o. Since the Moiré periodicity is significantly longer than the 

inter-atomic spacing, the lattice is incommensurate despite the atomic relaxation (25).  

 

2.6.4 Nano-IR images at other values of 𝝀𝝀𝒑𝒑 

In this section, we show the nano-IR images taken at values of 𝜆𝜆𝑝𝑝 other than those shown 

in Figure 2.2. First we describe our method for extracting 𝜆𝜆𝑝𝑝. We investigated a different region of 

the sample where we were able to images plasmons launched by a gold electrode (Figure 2.5). The 

fringes from the electrode-launched plasmons are known to have the same periodicity as the 

plasmon wavelength (38, 82). The raw data is shown in Figure 2.6. At the bottom of each image, a 

three-peaked structure is present corresponding to a single shear soliton (33, 34). The presence of 

this soliton to confirms that the region above the soliton is Bernal-stacked bilayer graphene with 

zero twist angle. 
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We now comment on plasmonic lifetimes and quality factors of our devices. The devices 

studied in this work are proof-of-concept devices. Their plasmonic lifetimes are below the record 

values reported in the literature (38, 47) but nevertheless sufficiently long for us to demonstrate 

rich interference patterns. To compare the lifetime in our device with values in the literature, we 

define the quality factor for plasmons: 𝑄𝑄 = Re(𝑞𝑞𝑝𝑝)/Im(𝑞𝑞𝑝𝑝) where 𝑞𝑞𝑝𝑝 is the complex plasmon 

momentum. Based on the extracted line profiles in Figure 2.5, we estimate that 𝑄𝑄~ 10 in our case. 

This value is typical for devices where the graphene is directly on SiO2 (48, 49). We note that 

previous works on high-quality, fully hBN-encapsulated monolayer graphene (MLG) 

heterostructures has shown that the plasmonic lifetime is limited by the dielectric properties of the 

hBN and not by the graphene itself (38, 47). Therefore, we expect that lifetimes similar to the 

record-high values reported for MLG heterostructures, 𝑄𝑄 ~ 125 (38), can also be achieved in 

twisted bilayer graphene heterostructures. 

 

2.6.5 Superposition model 

The Bernal-stacked bilayer graphene regions in our sample possess an electronic gap. 

Inducing a bandgap in bilayer graphene requires the breaking of inversion symmetry and a single 

gate is sufficient for this purpose (83–85). However, the limitation of a single gate is that it is not 

possible to independently tune the bandgap and the Fermi energy. 
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Figure 2.7 | Schematic illustration of the superposition model. (A) The soliton lattice can be 

decomposed into three sublattices each of which consist of solitons parallel to each other. Each 

sublattice is highlighted by a different set of colored lines. (B) The real and imaginary parts of the 

conductivity across the soliton. (C) Near-field profile due to plasmons scattering off a single 

isolated soliton calculated for 𝜇𝜇 = 0.23eV, 𝑉𝑉𝑖𝑖 = 0.3V, 𝜂𝜂 = 0.2 (corresponding to Figure 2.2(B)). 

(D) Schematic illustration of the solitons in the sublattice highlighted in (A). The red arrows 

illustrate the reduction in spacing between the solitons. (E) Schematic demonstrating the 

superposition of the near-field profiles as the solitons are brought closer together. (F) Schematic 

of the final result after superposition. (G), (H) and (I), (J) Similar schematics as (D) and (F) after 

the addition of the second and third sublattice respectively. 
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The model images in Figure 2.2 were created by superposing the simulated near-field 

response 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠  of a single soliton. Functions 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)  and 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) were found by calculating 

the conductivity profile 𝜎𝜎𝑠𝑠(𝑥𝑥) due to the soliton from the Kubo formula and using it as the input 

to our custom electromagnetic solver. This procedure is described in detail in our previous work 

(34) and references therein. An example of the profile 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) we used is shown in Figure 2.6(C). 

The three adjustable parameters in this model, chemical potential 𝜇𝜇, the interlayer bias 𝑉𝑉𝑖𝑖 and the 

plasmonic damping rate 𝜂𝜂, were tuned until a good match with the experimental images was 

obtained. The scattering strength 𝑡𝑡 was then computed from 𝜎𝜎𝑠𝑠(𝑥𝑥) via Eq. (2.1). The conductivity 

𝜎𝜎𝑠𝑠(𝑥𝑥) is in fact anisotropic and complex. Thus, instead of a single parameter 𝑡𝑡, one should in 

principle discuss two parameters, 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦. For Figure 2.2(B), where 𝜇𝜇 = 0.23 eV and 𝑉𝑉𝑖𝑖 = 0.3 V, 

these scattering parameters are 𝑡𝑡𝑥𝑥 = −0.032 − 0.027𝑖𝑖 and 𝑡𝑡𝑦𝑦 = 0.022 − 0.015𝑖𝑖, which produces 

the band structure shown in Figure 2.7(A). For Figure 2.2(D), where 𝜇𝜇 = 0.35 eV and 𝑉𝑉𝑖𝑖 = 0.1 V, 

the scattering parameters are 𝑡𝑡𝑥𝑥 = −0.011 − 0.011𝑖𝑖 and 𝑡𝑡𝑦𝑦 = 0.025 − 0.002𝑖𝑖,  which produces 

the band structure shown in Figure 2.7(B). Since Figure 2.3 was meant to be a qualitative 

illustration, we presented the results for two simple isotropic examples, 𝑡𝑡 ≡ 𝑡𝑡𝑥𝑥 = 𝑡𝑡𝑦𝑦 = 0.02 (panel 

C) and 0.2 (panel E). 

 

For the structures we study, it is safe to assume that the Bloch minibands are so closely 

spaced in energy that they do not produce any observable effects. This is because the electron Fermi 

wavelength is very short compared to the period of the soliton crystal: a few nanometers compared 

to several hundred nanometers. In other words, for electrons, unlike plasmons, the periodic 

potential of the soliton crystal can be considered a slowly varying, adiabatic perturbation. 
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Therefore, the energy width of the Bloch minibands and minigaps is exponentially small. The good 

agreement between the experimental data and our “superposition model” further suggests that the 

latter model, which neglects the Bloch minibands, is nevertheless adequate in the regime of very 

small twist angle studied here.  

The plasmon wavelength corresponding to the above Fermi energies are of the order of 

several nanometers. Non-local effects in the optical conductivity are only appreciable when the 

Fermi wavelength becomes comparable to the plasmon wavelength. Therefore, they can be 

neglected in our system.  Such effects can become important when the plasmonic crystal is 

fabricated in proximity to a metallic gate (86). 

In principle, plasmons can be launched when incident light scatters off any inhomogeneity 

present in the system, e.g., the solitonic lattice itself. We do not include this in our model of the 

near-field contrast because it must be a negligibly small effect. Indeed, even scattering of plasmons 

into plasmons by the solitons is weak (𝑡𝑡 ≪ 1). Coupling of free-space photons to plasmons must 

be even weaker.  Indeed, a good agreement between the experiment and the model leads us to 

conclude that polaritons launched by the tip and/or metallic contacts dominate our images. 
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2.6.6 Comparison of line profiles from experiment and superposition model 

  

Figure 2.8 | Comparison of line profiles from experiment and superposition model. (a) 

Schematic showing the high-symmetry points of the real space hexagonal unit cell. (b, c) 

Experimental (b) and corresponding superposition model (c) line profiles for 𝜆𝜆𝑝𝑝 = 135nm. (d, e) 

Experimental (d) and corresponding superposition model (e) line profiles for 𝜆𝜆𝑝𝑝 = 282nm. 

 

We further compared the experimental data with the superposition model by extracting 

line profiles from the images. In Figure 2.8(A), we label the high symmetry points of the real-space 

hexagonal unit cell. We then take line profiles along the paths between these points for both the 

experimental images and the images obtained from the superposition model. The comparison of 

line profiles is shown in Figure 2.8(B)-(E). 
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2.6.7 Fourier analysis of the scattering amplitude 𝒔𝒔(𝝎𝝎) images 

 

Figure 2.9 | Fourier analysis of the interference patterns. (a, b) Top: Fourier transforms of the 

experimental near-field amplitude, �̃�𝑠(𝑞𝑞) for 𝜆𝜆𝑝𝑝 of 135nm and 282nm Bottom: Fourier transforms 

of the near-field amplitude obtained from the superposition model. (c) Fourier transform of the 

bare crystal imaged experimentally (Fig 2.1(C)). (d) Line-profiles extracted from the experimental 

Fourier amplitude for the bare crystal and for different values of 𝜆𝜆𝑝𝑝 taken along the white dashed 

line shown in (c). The black vertical dashed lines show the periodicities of the bare crystal. Scale 

bar 10µm-1. The intense peak at the origin has been artificially removed from the experimental 

data. 

 

Figures 2.9(A) and 2.9(B) show a comparison the Fourier transform of the near-field 

amplitude images obtained from experiment and the superposition model. All Fourier transforms 

show six-fold hexagonal symmetry, as expected from the symmetry of the crystal. Figure 2.3(B) 
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shows a plot of the line-profiles of the Fourier transforms taken along one of the high-symmetry 

directions. We notice that the peaks in the Fourier transforms always occur at the same positions 

as the peaks in the bare crystal. The only change in the line-profiles is the relative intensity of the 

peaks. This result shows that the periodicity of the near-field amplitude pattern at all plasmon 

wavelengths retains the periodicity of the bare crystal. 

 

2.6.8 Plasmonic band structure 

The plasmonic band structure can be derived directly from the equation for the 

quasistatic plasmon potential 𝜙𝜙(𝑟𝑟) for a periodically varying conductivity tensor 𝜎𝜎(𝑟𝑟), 

𝜙𝜙(𝑟𝑟) = −�
1
𝜅𝜅𝑟𝑟
� ∗ 𝛻𝛻�⃗ ⋅ �

1
𝑖𝑖𝜔𝜔
𝜎𝜎(𝑟𝑟)∇��⃗ 𝜙𝜙(𝑟𝑟)� ,    𝑟𝑟 = (𝑥𝑥,𝑦𝑦). 

(2.2) 

The elements of the periodic conductivity tensor can be written in terms of reciprocal lattice 

vectors 𝑄𝑄𝑖𝑖,  

𝜎𝜎𝛼𝛼𝛼𝛼(𝑟𝑟) = 𝜎𝜎0 �𝛿𝛿𝛼𝛼𝛼𝛼 + �Σ𝛼𝛼𝛼𝛼�𝑄𝑄�⃗ 𝑖𝑖�𝑒𝑒𝑖𝑖𝑄𝑄
�⃗ 𝑖𝑖⋅𝑟𝑟

𝑖𝑖

� , {𝛼𝛼,𝛽𝛽} ∈ {𝑥𝑥,𝑦𝑦} 

where 𝜎𝜎0 is the background conductivity. The potential 𝜙𝜙(𝑟𝑟) has the Bloch form 

𝜙𝜙𝑘𝑘(𝑟𝑟) = �𝑐𝑐𝑖𝑖�𝑘𝑘�⃗ �𝑒𝑒𝑖𝑖�𝑘𝑘
�⃗ +𝑄𝑄�⃗ 𝑖𝑖�⋅𝑟𝑟

𝑖𝑖

. 

Equation (2.2) then becomes an eigenproblem. In 𝑘𝑘-space, 

𝐻𝐻𝐻𝐻 = 𝑞𝑞𝑝𝑝𝑎𝑎𝐻𝐻, 

where the elements of 𝐻𝐻 are 

𝐻𝐻𝑖𝑖𝑖𝑖 =
1

��𝑘𝑘�⃗ + 𝑄𝑄�⃗ 𝑖𝑖��𝑘𝑘�⃗ + 𝑄𝑄�⃗ 𝑖𝑖�
�𝑘𝑘�⃗ + 𝑄𝑄�⃗ 𝑖𝑖� ⋅ �Σ⃡�𝑄𝑄𝑖𝑖 − 𝑄𝑄𝑖𝑖� + 𝛿𝛿𝑖𝑖𝑖𝑖� ⋅ �𝑘𝑘�⃗ + 𝑄𝑄�⃗ 𝑖𝑖�, 

the eigenvector 𝐻𝐻 has elements 𝐻𝐻𝑖𝑖 = ��𝑘𝑘�⃗ + 𝑄𝑄�⃗ 𝑖𝑖� ⋅ 𝑐𝑐𝑖𝑖 , and the eigenvalue is 𝑞𝑞𝑝𝑝𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑖𝑖
2𝜋𝜋𝜎𝜎0

𝑎𝑎. 
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Figure 2.10 | Plasmonic crystal model (a) Lattice of domain walls in real space. 𝑅𝑅1 and 𝑅𝑅2 are 

the primitive lattice vectors, and 𝑎𝑎 is the periodicity of the walls. (b) In 𝑘𝑘-space the crystal is 

represented by the Bragg peaks (red dots), where 𝑃𝑃1 and 𝑃𝑃2 are the primitive reciprocal lattice 

vectors. 

 

In our model the crystal is composed of the superposition of domain walls in three 

directions with a periodicity 𝑎𝑎, as shown in Fig. 2.10(A). Each domain wall is assumed to have an 

isotropic conductivity profile, 

𝜎𝜎wall(𝑥𝑥⊥) = 𝜎𝜎0 �1 +
𝑡𝑡𝑎𝑎

√2𝜋𝜋𝑤𝑤
⋅ exp �−

𝑥𝑥⊥2

2𝑤𝑤2� �  

where the wall width 𝑤𝑤 = 6 nm (31) and 𝑥𝑥⊥ is the perpendicular distance to the wall. 
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Figure 2.11 | Plasmonic band structures calculated using the parameters from superposition 

model. (A) Band structure corresponding to Figure 2.2(C) calculated using the following 

parameters: 𝜇𝜇 = 0.23 eV, 𝑉𝑉𝑖𝑖 = 0.3 V, 𝑡𝑡𝑥𝑥 = −0.032 − 0.027𝑖𝑖 and 𝑡𝑡𝑦𝑦 = 0.022 − 0.015𝑖𝑖. (B) 

Band structure corresponding to Figure 2.2(D) calculated using the following parameters: where 

𝜇𝜇 = 0.35 eV and 𝑉𝑉𝑖𝑖 = 0.1 V, 𝑡𝑡𝑥𝑥 = −0.011 − 0.011𝑖𝑖 and 𝑡𝑡𝑦𝑦 = 0.025 − 0.002𝑖𝑖. 

 

The dimensionless scattering strength 𝑡𝑡, assumed constant over all frequencies, is defined 

as 

𝑡𝑡 =
1
𝑎𝑎
� 𝑑𝑑𝑥𝑥 
∞

−∞

𝜎𝜎wall(𝑥𝑥) − 𝜎𝜎0
𝜎𝜎0

 . 

(Same as Equation (2.1)). We then have 

Σ⃡�𝑄𝑄�⃗ 𝑖𝑖� = 𝑡𝑡�1 + 2𝛿𝛿𝑄𝑄𝑖𝑖,0� exp�−
𝑤𝑤2𝑄𝑄𝑖𝑖2

2
� ⋅ 𝐼𝐼,𝑄𝑄�⃗ 𝑖𝑖 ∥ {𝑃𝑃�⃗1,𝑃𝑃�⃗2,𝑃𝑃�⃗1 + 𝑃𝑃�⃗2}, 

where 𝐼𝐼 is the identity matrix and 𝑃𝑃�⃗1 and 𝑃𝑃�⃗2 are the primitive reciprocal lattice vectors, Fig. 

2.10(B). The eigenvalues 𝑞𝑞𝑝𝑝𝑎𝑎 can now be calculated numerically given a grid of 𝑄𝑄�⃗ 𝑖𝑖, which is 

chosen large enough that the results are independent of the grid size.  
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The plasmon wave around a 𝛿𝛿-function impurity located at 𝑟𝑟′ is given by the Green’s 

function, 

𝐺𝐺(𝑟𝑟, 𝑟𝑟′) = �
𝑑𝑑2𝑘𝑘

(2𝜋𝜋)2 𝑒𝑒
𝑖𝑖𝑘𝑘�⃗ ⋅�𝑟𝑟−𝑟𝑟′��𝐺𝐺�𝑘𝑘�⃗ ,𝑘𝑘�⃗ +𝑄𝑄�⃗ 𝑖𝑖

𝑒𝑒−𝑖𝑖𝑄𝑄�⃗ 𝑖𝑖⋅𝑟𝑟′ ,
𝑖𝑖

 

where 

𝐺𝐺�(𝐸𝐸) = [𝐻𝐻 − (𝐸𝐸 + 𝑖𝑖0+)]−1. 

Given an eigenvalue 𝐸𝐸, the location 𝑟𝑟′, and the scattering strength 𝑡𝑡, the wave function 

𝐺𝐺(𝑟𝑟, 𝑟𝑟′) can be found. The Green’s function can also be used to simulate the SNOM image, with 

the tip replacing the impurity as both the launcher and the detector. The SNOM signal is then 

|𝐺𝐺(𝑟𝑟, 𝑟𝑟)|. To account for the finite size of the tip, we add the factor 𝐹𝐹�𝑘𝑘�⃗ � = 𝑘𝑘2𝑒𝑒−2𝑘𝑘𝑘𝑘 to the 

integral(81) so that 

𝐺𝐺tip(𝑟𝑟) = �
𝑑𝑑2𝑘𝑘

(2𝜋𝜋)2 𝐹𝐹(𝑘𝑘�⃗ )�𝐺𝐺�𝑘𝑘�⃗ ,𝑘𝑘�⃗ +𝑄𝑄�⃗ 𝑖𝑖
𝑒𝑒−𝑖𝑖𝑄𝑄�⃗ 𝑖𝑖⋅𝑟𝑟𝐹𝐹�𝑘𝑘�⃗ + 𝑄𝑄�⃗ 𝑖𝑖�.

𝑖𝑖

 

Here 𝑑𝑑 = 30 nm is the radius of curvature of the SNOM tip. 

 

2.6.9 Defect state located around the AB-region 

In Figure 2.3(D) and 2.3(F), we showed the localized modes that arise from a point defect 

located at the AA region. A similar source at the center of the AB region leads to a three-fold 

symmetric pattern, as shown in Figure S9. The difference in the patterns directly reflects the 

difference in the symmetry of the plasmon wavefunction around that region and are helpful in 

visualizing the effect of the lattice on propagating plasmons. 

We further comment that the observation of the localized plasmon patterns would require 

improvements to the experiment. First, since 𝑡𝑡 ∝ (𝜇𝜇𝑎𝑎)−1, where 𝜇𝜇 is the chemical potential of the 
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TBG, the scattering strength can be increased by lowering 𝜇𝜇 and increasing 𝑎𝑎. In our experiment 

𝜇𝜇 ≃ 0.25 eV and 𝑎𝑎 ≃ 230 nm, so a scattering strength of 𝑡𝑡 = 0.2 at the same frequency can be 

achieved, for example, by reducing 𝑎𝑎 to 70 nm and 𝜇𝜇 to 0.08 eV. A top gate may also be required 

to maintain the same value of perpendicular displacement field. Second, plasmonic damping can 

be reduced by fully encapsulating the TBG and performing the experiment at low temperature 

(38). 

 

 

Figure 2.12 | Plasmon wave function |𝐺𝐺(𝑟𝑟, 𝑟𝑟′)| around an impurity located at the center of the 

triangular AB region, 𝑟𝑟′ = (0, 2𝑎𝑎/3), normalized to the empty-lattice wave function. 

Parameters: = 0.2, �𝑞𝑞𝑝𝑝𝑎𝑎 = 2.23. 
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Chapter 3: Mapping the Twist Angle with Nano-Optics 

3.1 Introduction 

We report a combined nano-photocurrent and infrared nanoscopy study of twisted bilayer 

graphene (TBG) enabling access to the local electronic phenomena at length scales as short as 20 

nm. We show that the photocurrent changes sign at carrier densities tracking the local superlattice 

density of states of TBG. We use this property to identify domains of varying local twist angle by 

local photo-thermoelectric effect. Consistent with the photocurrent study, infrared nano-imaging 

experiments reveal optical conductivity features dominated by twist-angle dependent interband 

transitions. Our results provide a fast and robust method for mapping the electronic structure of 

TBG and suggest that similar methods can be broadly applied to probe electronic inhomogeneities 

of moiré superlattices in other van der Waals heterostructures. 

The relative twist angle 𝜃𝜃 between proximal atomic layers is emerging as an extremely 

capable control parameter in van der Waals (vdW) heterostructures including twisted bilayer 

graphene (TBG). The twist leads to a spatial variation of the atomic stacking of proximal layers 

with the period given by 𝜆𝜆𝑀𝑀 = 0.246 nm/(2 sin(𝜃𝜃/2)) (13). The resultant structure is referred to 

as a moiré superlattice. The electronic structure of such a superlattice consists of a large number 

of minibands (11, 87), exhibiting strong 𝜃𝜃-dependent Van Hove singularities in the density of 

states (13, 88, 89). When 𝜃𝜃 is close to 1.1° (𝜆𝜆𝑀𝑀 ≈ 13nm), the lowest energy minibands in TBG 

specimens become nearly flat. At such “magic angle”, TBG is found to host unconventional 

correlated electronic phases (18–20, 22). 

The electronic structure of TBG is not spatially uniform. Within the Moiré unit cell, changes 

in the atomic stacking lead to differences in the local density of states that have been observed by 
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scanning tunneling microscopy (STM) experiments (90–93). At small twist angles, where atomic 

relaxation leads to a periodic array of topologically protected states (25, 26), scanning nano-

infrared (Ref (94), Chapter 2) and STM (73) experiments have directly visualized such states. At 

larger length scales, variations in 𝜃𝜃 itself have been observed with multiple techniques. Low 

temperature transport experiments carried out as a function of the carrier density reveal a drop in 

conductivity when the four lowest energy minibands (which are nearly spin-valley degenerate) are 

completely filled (89, 95) and the chemical potential reaches the superlattice band edge (SBE). The 

carrier density at the SBE, 𝑛𝑛𝑠𝑠 = 8/(√3 𝜆𝜆𝑀𝑀2 ), is governed by the superlattice period, and so, by 𝜃𝜃. 

In such transport experiments done on different parts of the same TBG device, the drop in 

conductivity appeared at different carrier densities, indicating a change in 𝜃𝜃 across the device (96). 

STM (90, 92), transmission electron microscopy (TEM) (26), scanning superconducting quantum 

interference device (SQUID) (97) and scanning single electron transistor (SET) (98) experiments 

have confirmed that the electronic structure variations persist down to sub-micron scales. 

Moreover, experiments on magic-angle TBG suggest that reducing such fluctuations can reveal the 

intrinsic transport properties of TBG (99). Taken together, these observations suggest that 

understanding the variations in electronic structure of TBG on a nanometer length scale is crucial. 

Here we report that a nascent optoelectronic probe, scanning photocurrent nanoscopy (4, 

100, 101), can map the DC conductivity of TBG as a function of carrier density, and thereby its 

twist angle, with a resolution better than 20 nm. In our experiments, the DC photo-generated 

current across the device is measured as a function of the position of a sharp metallized tip (Fig. 

3.1(A)) (4). Room-temperature photocurrent imaging has been previously used to study 

excitations such as plasmon polaritons  (100, 101) and phonon polaritons (102) in other van der 

Waals materials. A crucial new element of our approach was performing the experiments at 
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cryogenic temperatures, which allowed us to visualize the insulating states in TBG (89, 95). We 

further augmented our photocurrent results with room temperature nano-infrared imaging 

experiments. In tandem, our infrared and photocurrent data lead to a consistent interpretation of 

all the observables in terms of TBG twist-angle domains. 

 

3.2 Nano-photocurrent at the interface between twisted bilayer and monolayer 

graphene 

Our nano-photocurrent experiments rely on the photothermoelectric effect, the dominant 

mechanism for photocurrent generation in graphene layers (55, 59). At the boundary between 

MLG and TBG, which we studied in this work, the magnitude of photocurrent is proportional to 

the difference in Seebeck coefficients of MLG and TBG. By exploiting this relationship, we 

determined the twist angle of the TBG region immediately adjacent to the boundary. We then 

performed carrier density dependent nano-infrared measurements which validated our nano-

photocurrent results and provided further insight into the interband transitions that dominate the 

optical properties of TBG. 
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Figure 3.1 | Nano-photocurrent imaging of multi-domain twisted bilayer graphene. (A) 

Schematic of the experimental setup. The periodicity of the moiré pattern in TBG is denoted by 

𝜆𝜆𝑀𝑀. (B) Nano-infrared amplitude 𝑠𝑠𝑖𝑖𝑓𝑓 image showing contrast between TBG domains. The red 

lines enclose the TBG region. Scale bar 2µm. (C) Nano-photocurrent image of the same region as 

(B) at 𝑇𝑇 = 300K. Scale bar 2µm. (D) Line profile of nano-photocurrent across the dashed line in 

(C) at 𝑇𝑇 = 300K. 

 

Our TBG structures were fabricated using the standard tear-and-stack method. The full 

devices included a thin top layer of hBN, the TBG, the SiO2 substrate, Si gate, and electrical contacts 

(see Methods). The lack of an underlying hBN layer led to a high carrier density of −1.8 ⋅ 1013cm-2 

(determined through Raman spectroscopy and plasmon wavelength measurements on monolayer 

graphene, Section 3.6.2) even when no bias was applied to the back gate, 𝑉𝑉𝐺𝐺 = 0V. We first 

performed room-temperature infrared nanoscopy (Fig. 3.1(A)), where we focused infrared light of 

frequency 𝜔𝜔 = 920cm-1 onto the tip, detected the backscattered light, and isolated its near-field 
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component 𝑠𝑠𝑖𝑖𝑓𝑓 (35, 81, 103). A representative 𝑠𝑠𝑖𝑖𝑓𝑓 image (Fig. 3.1(B)) demonstrates contrasting 

domains indicating differences in their optical conductivities. Since the optical conductivity 

𝜎𝜎𝑇𝑇𝑇𝑇𝐺𝐺(𝜃𝜃,𝜔𝜔) of TBG is sensitive to 𝜃𝜃 (104, 105), we interpret these domains as regions of distinct 

twist angles, similar to the domains previously observed by STM (90). 

Next, we performed photocurrent nanoscopy. Figure 3.1(C) depicts 𝐼𝐼𝑆𝑆𝑃𝑃  measured in the 

same region as Fig. 3.1(B). We observe two key features. First, the magnitude of the photocurrent 

signal is enhanced when the tip is located over domain boundaries. The magnitude of 𝐼𝐼𝑆𝑆𝑃𝑃  varies 

along the boundaries, as most clearly seen for the boundary between monolayer graphene (MLG) 

and Region B. Second, we observe varying levels of photocurrent within Region A. In Fig. 3.1(D) 

we plot the photocurrent along the dashed line in Fig 3.1(C). The increase in the magnitude of 

photocurrent when the tip is above the boundaries leads to minima with widths of about 200 nm 

each (half width at half minimum) while the remaining features correspond to local variations in 

the photocurrent signal within the domain. 

In general, photocurrent arises from an interplay of optical and transport phenomena that 

occur at different temporal and spatial scales. Two important length scales in our case are the tip 

radius and the cooling length. The former, of the order of 10 nm, sets the size of the field 

enhancement region where non-equilibrium charge carriers are generated and is also the spatial 

resolution of infrared nanoscopy (36). The latter can be a few hundred nanometers or longer in 

graphene, depending on the experimental conditions (58, 59) and determines the size of the “hot 

spot” around the tip where the electron temperature remains elevated. Assuming that 

photocurrent is predominantly due to the photo-thermoelectric effect (PTE) (55, 58), the 

photocurrent scales approximately as 𝐼𝐼𝑆𝑆𝑃𝑃 ∝ Δ𝑇𝑇Δ𝑆𝑆, where 𝛥𝛥𝑇𝑇 is the change in electron temperature 

induced around the tip and 𝛥𝛥𝑆𝑆 is the change in the local Seebeck coefficient 𝑆𝑆 across the hot spot, 
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whose direction determines that of the current flow. The photocurrent generated from the PTE 

also varies on the length scale of the cooling length. Therefore, photocurrent data represent a 

coarse-grained measurement of gradients in Seebeck coefficient. We observe this effect as 

enhanced 𝐼𝐼𝑆𝑆𝑃𝑃  at MLG-TBG and TBG-TBG boundaries due to a discontinuity 𝛥𝛥𝑆𝑆 of the Seebeck 

coefficient across such boundaries. The slower variation in 𝐼𝐼𝑆𝑆𝑃𝑃  along the boundaries is due to the 

changing direction of the current flow which is dictated by the geometry of the electrical contacts 

(Section 3.6.3). The remaining short-range variations of 𝐼𝐼𝑆𝑆𝑃𝑃  seen in Fig 3.1(D) are attributed to 

short-range variations of the optical conductivity. These latter contrasts likely arise from a 

combination of  charge puddles and twist angle variations (97). Further experiments are needed to 

distinguish between these possibilities.  

We now elucidate the ability of the nano-photocurrent method for characterizing the TBG 

domains using gate voltage dependent measurements. As pointed out above, the photocurrent 

near a TBG-MLG boundary is proportional to the difference in the Seebeck coefficient across the 

boundary: 𝐼𝐼𝑆𝑆𝑃𝑃 ∝ Δ𝑆𝑆 = 𝑆𝑆𝑇𝑇𝑇𝑇𝐺𝐺 − 𝑆𝑆𝑀𝑀𝑀𝑀𝐺𝐺, where 𝑆𝑆𝑇𝑇𝑇𝑇𝐺𝐺 and 𝑆𝑆𝑀𝑀𝑀𝑀𝐺𝐺 are the Seebeck coefficients for TBG 

and MLG respectively. In this work, we will neglect the correlated electron physics in the moiré 

flat bands (18, 96): a valid assumption for all twist angles away from the magic angle. Within this 

assumption, the Seebeck coefficient obeys the Mott formula for both MLG and TBG (Section 3.6, 

(56)): 

𝑆𝑆 = −
𝜋𝜋2𝑘𝑘𝑇𝑇2𝑇𝑇𝑒𝑒𝑠𝑠

3|𝑒𝑒|
1
𝜎𝜎
𝑑𝑑𝜎𝜎
𝑑𝑑𝜇𝜇

 (3.1) 

 

where 𝜎𝜎 is the electrical conductivity of graphene, 𝜇𝜇 is the chemical potential, and 𝑇𝑇𝑒𝑒𝑠𝑠 is the 

electronic temperature. The DC conductivity of MLG, 𝜎𝜎𝑀𝑀𝑀𝑀𝐺𝐺 shows a symmetric dip at the charge 
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neutrality point (CNP) 𝑛𝑛 = 0 (Fig. 3.2(A), top). In turn, 𝑆𝑆𝑀𝑀𝑀𝑀𝐺𝐺 is an odd function of the carrier 

density with peaks above and below the CNP (106) (Fig 3.2(B), top). Similarly, the calculated DC 

conductivity of TBG 𝜎𝜎𝑇𝑇𝑇𝑇𝐺𝐺 (Fig. 3.2(A) bottom) indicates that 𝜎𝜎𝑇𝑇𝑇𝑇𝐺𝐺 has three minima: one at the 

CNP and two more at carrier densities 𝑛𝑛 = ±𝑛𝑛𝑠𝑠 associated with superlattice band edges (89). The 

Mott formula then predicts that the Seebeck coefficient 𝑆𝑆𝑇𝑇𝑇𝑇𝐺𝐺 of TBG should exhibit characteristic 

zigzag-like variations versus carrier density close to 𝑛𝑛 = ±𝑛𝑛𝑠𝑠 (Fig. 3.2(B), bottom). We note that 

direct measurement of the Seebeck coefficient of TBG through conventional thermoelectric 

measurements should also reveal the characteristic zigzag pattern. 

 

 

Figure 3.2 | Photocurrent spectroscopy at the interface between twisted bilayer graphene and 

monolayer graphene. (A) Calculated DC conductivity of MLG and TBG with 𝜃𝜃 = 2.65°. (B) 

Calculated Seebeck coefficients for MLG and TBG with 𝜃𝜃 = 2.65°. The dashed lines correspond 
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to the superlattice band edges and the green area corresponds to the experimentally measured 

range of densities in (C) and (D). (C) A nano-photocurrent carrier density sweep across a MLG-

Region A interface acquired at 𝑇𝑇 = 200K. (D) Gate voltage dependence of the photocurrent at the 

MLG-Region A boundary at 𝑇𝑇 = 200K (white dashed line in (C)). 

 

For moderately small twist angles, the analysis of the photocurrent signal can be further 

simplified. For 𝜃𝜃 > 1°, |𝑛𝑛𝑠𝑠| > 3 ⋅ 1012cm-2, the Seebeck coefficient of MLG at 𝑛𝑛 = ±𝑛𝑛𝑠𝑠 can be 

neglected in a first approximation compared to that of TBG (57, 106), so that 𝐼𝐼𝑆𝑆𝑃𝑃   𝑆𝑆𝑇𝑇𝑇𝑇𝐺𝐺. Since 

𝑆𝑆𝑇𝑇𝑇𝑇𝐺𝐺 changes sign at 𝑛𝑛 = ±𝑛𝑛𝑠𝑠, the photocurrent 𝐼𝐼𝑆𝑆𝑃𝑃  is also expected to change sign as well. 

Detection of such a zero crossing of 𝐼𝐼𝑆𝑆𝑃𝑃  measured locally as a function of 𝑛𝑛 can then be used to 

estimate 𝑛𝑛𝑠𝑠 and thereby the twist angle of TBG. We denote this estimate by 𝜃𝜃𝑆𝑆𝑃𝑃 . 

Nano-photocurrent experiments are robust to device architecture and disorder effects. The 

existence of the zero crossing in 𝐼𝐼𝑆𝑆𝑃𝑃  does not depend on geometric factors such as the position of 

the electrical contacts used to measure 𝐼𝐼𝑆𝑆𝑃𝑃  or the size and relative location of the TBG domains. 

Therefore, we can study multiple twist angle domains across the device with a single pair of 

electrical contacts. Further modelling developed in Section 3.64 shows that the sign change is also 

insensitive to fine details such as disorder strength which affects 𝜎𝜎𝑀𝑀𝑀𝑀𝐺𝐺 and 𝜎𝜎𝑇𝑇𝑇𝑇𝐺𝐺 and a finite value 

of 𝑆𝑆𝑀𝑀𝑀𝑀𝐺𝐺 at 𝑛𝑛 = ±𝑛𝑛𝑠𝑠, so long as 𝜎𝜎𝑇𝑇𝑇𝑇𝐺𝐺 exhibits a minimum at 𝑛𝑛 = ±𝑛𝑛𝑠𝑠. 

Since the SBEs in TBG are observable only at cryogenic temperatures (95), we performed 

nano-photocurrent experiments in a home-built ultra-high-vacuum platform for low temperature 

nano-imaging (107). Figures 3.2(C) and 3.2(D) show the results of such an experiment across a 

MLG/TBG interface at 𝑇𝑇 = 200K.  We see that the interface serves as a strong source of 

photothermoelectric current when the near-field probe is brought within proximity of a few 
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hundred nanometers. Recording 𝐼𝐼𝑆𝑆𝑃𝑃  while scanning repeatedly across this interface and changing 

the bias 𝑉𝑉𝑔𝑔 applied to the gate electrode produces a spatial map of photocurrent at different carrier 

densities.  For this particular MLG/TBG interface, we find a sign change in 𝐼𝐼𝑆𝑆𝑃𝑃(𝑛𝑛) at a density 

𝑛𝑛𝐴𝐴 = −1.58 ⋅ 1013cm-2 corresponding to 𝜃𝜃𝑆𝑆𝑃𝑃 = 2.61° (Section 3.6.2). Further evidence for the 

presence of a SBE at this specific carrier density comes from the observation of line-like features 

in 𝐼𝐼𝑆𝑆𝑃𝑃  close to the sign change that only appear in the TBG region. Such features, previously 

observed in MLG and BLG close to CNP (60, 108), can arise from  spatial inhomogeneities in 

carrier density (4, 108) as well as  local variations in the twist angle (97) which lead to comparatively 

large spatial variations in Seebeck coefficient and serve as local sources of photocurrent. In our 

data, these features are spatially confined to the TBG region and only appear when 𝑛𝑛 is close to 𝑛𝑛𝐴𝐴. 

The totality of these observations suggest that the Seebeck coefficient in TBG reveals spatial 

variations most prominently for carrier densities 𝑛𝑛 ≈ 𝑛𝑛𝐴𝐴, thereby confirming the presence of the 

SBE in Region A at 𝑛𝑛 = 𝑛𝑛𝐴𝐴. 

We applied the same protocol of nano-photocurrent imaging and gate sweeps at the Region 

B-MLG interface (Fig 3.1(C)).  For Region B, we found no sign change at either 𝑇𝑇 = 200K or 𝑇𝑇 =

40K (data shown in Section 3.6.5). By constraining the densities at which the first order and second 

order superlattice band edges appear (Section 3.6.5.2), we conclude that 2.27° < 𝜃𝜃𝑆𝑆𝑃𝑃 < 2.34° for 

Region B. We have, therefore, measured the twist angle for two different regions of our device 

through nano-photocurrent with the same pair of electrical contacts. 

 

3.3 Nano-infrared measurements of large angle twisted bilayer graphene 

The large carrier density and limitations of the back-gate in our device prevented us from 

reaching the CNP or the SBEs for electron-doped Fermi levels in TBG. To confirm that our 



 

52 
 

assignment of 𝜃𝜃𝑆𝑆𝑃𝑃  is accurate, we performed nano-infrared imaging experiments. In nano-IR 

experiments, infrared light incident on the metallic tip launches surface plasmon polaritons in 

graphene (65, 109) which are reflected by physical (48, 49) or electronic boundaries (33, 39, 77) 

and form standing wave patterns that can be directly imaged (48, 49). The wavelength and the 

spatial decay length of the plasmons are directly related to the optical conductivity of the material 

at the energy of the incident light (48, 49, 69).  

 

 

Figure 3.3 | Nano-infrared images of MLG-TBG interface. (A) Amplitude of the backscattered 

light 𝑠𝑠𝑖𝑖𝑓𝑓 images of Region A at three different values of 𝑉𝑉𝐺𝐺, demonstrating the gate voltage 

dependent plasmonic properties. (B) 𝑠𝑠𝑖𝑖𝑓𝑓 image of Region B at 𝑉𝑉𝐺𝐺 = −80V. (C) Line profiles along 

the grey dashed lines in Fig 3.2(A) and 3.2(B) illustrating the difference in the plasmonic fringes. 

Grey solid lines indicate the MLG-TBG boundary. All images were acquired at 𝑇𝑇 = 300K with 

infrared light of frequency 𝜔𝜔 = 920cm-1. 
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Our nano-infrared imaging data taken at a MLG-TBG interface for Regions A and B are 

shown in Fig 3.3. We observe strong fringes on the TBG side of the MLG-TBG boundary, as seen 

in the line profiles in Fig 3.3(C), which we assign to plasmons propagating in TBG that are reflected 

by the MLG-TBG boundary. Plasmons propagating in MLG are also visible as faint fringes on the 

MLG side. The fringes in TBG are gate tunable (Fig 3.3(A)) and are strongly dependent on the 

twist angle (Fig 3.3(B), 3.3(C)), resulting from the optical conductivity of TBG being highly 

sensitive to the carrier density and twist angle. 

We now compare our nano-infrared imaging data to theoretical models. We average the 

measured amplitude of the back scattered light 𝑠𝑠𝑖𝑖𝑓𝑓 in the TBG regions and plot it as a function of 

carrier density. We calculated the optical conductivity of TBG 𝜎𝜎𝑇𝑇𝑇𝑇𝐺𝐺(𝜃𝜃, 𝑛𝑛) at 𝜔𝜔 = 920cm-1 using 

the continuum model ((13), Section 3.6) for the nine commensurate angles between 1.79o and 

3.15o. We then applied a theoretical model of tip-sample coupling (35) to calculate 𝑠𝑠𝑖𝑖𝑓𝑓(𝜃𝜃,𝑛𝑛) from 

𝜎𝜎𝑇𝑇𝑇𝑇𝐺𝐺(𝜃𝜃,𝑛𝑛) (Section 3.6). The results of our calculations are shown in Figure 3.4(B). The 

experimentally measured near-field optical response recorded from TBG in Regions A and B (Fig. 

3.4(A)) are in excellent agreement with the calculations, thereby validating our estimates of the 

twist angle deduced from photocurrent nanoscopy. 
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Figure 3.4 | Optical response of TBG at small angles. (A, B) 𝑠𝑠𝑖𝑖𝑓𝑓 as a function of carrier density 

in experiment (A) and in calculations based on the continuum model (B) at 𝜔𝜔 = 920cm-1. (C) 

Band structures for two different twist angles illustrating the twist angle dependent changes. Grey 

areas represent the range of carrier densities accessed in the experiment. The green arrows 

represent the optical transitions that are suppressed as the carrier density increases.  Solid and 

dashed lines correspond to the solid and dashed paths through the moiré Brillouin zone as shown 

in the inset. (D) Real and imaginary parts of the optical conductivity calculated for 𝜃𝜃 = 2.65° at 

𝑛𝑛𝑚𝑚𝑖𝑖𝑖𝑖 = −1.10 ⋅ 1013cm-2 (solid) and 𝑛𝑛𝑚𝑚𝑠𝑠𝑥𝑥 = −2.48 ⋅ 1013cm-2 (dashed). 

 

3.4 Interband transitions and twist angle dependent nano-infrared signal 

The features observed in 𝑠𝑠𝑖𝑖𝑓𝑓(𝑛𝑛) provide further insight into the band structure of TBG. 

The decrease in 𝑠𝑠𝑖𝑖𝑓𝑓(𝑛𝑛) for 𝜃𝜃 = 2.65° and the dip for 𝜃𝜃 = 2.28° for increasing 𝑛𝑛 indicate the 
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presence of optical transitions that are being tuned by carrier density. Comparison with the 

calculated band structures for TBG at the associated twist angles demonstrates this is indeed the 

case. Figure 3.3(C) presents the band structure for TBG for 𝜃𝜃 = 2.65° and 𝜃𝜃 = 2.28°. The Fermi 

energy 𝐸𝐸𝐹𝐹 range accessible in our experiment is shown in gray, where the upper boundary 

corresponds to 𝑛𝑛𝑚𝑚𝑖𝑖𝑖𝑖 = −1.1 ⋅ 1013 cm-2 and the lower boundary corresponds to 𝑛𝑛𝑚𝑚𝑠𝑠𝑥𝑥 = −2.48 ⋅

1013 cm-2. We see that towards the higher range of attainable 𝐸𝐸𝐹𝐹, transitions between the 

minibands such as those shown by the green arrows are suppressed. This suppression leads to a 

decrease in the real part of the optical conductivity at the probing frequency of 920cm-1 (Figure 

3.3(D)) and a corresponding drop in 𝑠𝑠𝑖𝑖𝑓𝑓(𝑛𝑛) for 𝜃𝜃 = 2.65°.  For 𝜃𝜃 = 2.28°, 𝑠𝑠𝑖𝑖𝑓𝑓(𝑛𝑛) begins to 

increase at 𝑛𝑛 < −1.8 ⋅ 1013cm-2 as transitions between other minibands begin to contribute 

(Section 3.6.6). 

The cryogenic photocurrent nanoscopy technique utilized here can be applied broadly to 

characterize the electronic structure of TBG and its variation across macroscopic structures. 

Photocurrent nanoscopy can also be applied to moiré patterns in other vdW heterostructures. 

When graphene is placed on hBN, twist-angle dependent SBEs, similar to those in TBG, appear 

(17, 110). Photocurrent nanoscopy is well suited to resolve local changes in the twist angle in such 

structures. Domains of different stacking orders in multilayer graphene such as ABC and ABA 

stackings in trilayer graphene (111) can also be probed with nano-photocurrent imaging. Recently, 

evidence for local variations of the excitonic properties due to moiré patterns in transition metal 

dichalcogenide (TMD) bilayers (112–115) has been reported. While far-field photocurrent 

experiments have demonstrated sensitivity to the exciton resonance in TMDs (116), cryogenic 

photocurrent nanoscopy needs to be applied to resolve sub-micron changes in the excitonic 

properties of TMD bilayers. 
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3.5 Conclusion 

To conclude, we have demonstrated the utility of nano-photocurrent technique to locally 

probe the electronic structure of small-angle TBG and to determine its twist angle with nano- and 

mesoscale spatial resolution. The technique detects local variations in the photothermoelectric 

effect in graphene, which is highly sensitive to formation of a superlattice band edge in TBG, thus 

providing a fast, robust and transport-compatible method for evaluating the twist angle of TBG. 

Photocurrent nanoscopy does not require any special device architectures and only necessitates 

optical access to the graphene layers together with a pair of global electrical contacts. Photocurrent 

nanoscopy can also be extended to characterize the electronic structure of other van der Waals 

heterostructures such as multilayer graphene and TMDs. 

3.6 Supplementary Material 

3.6.1 Materials and Methods 

3.6.1.1 Device fabrication 

Our device consists of twisted bilayer graphene fabricated using the tear-and-stack 

technique with the graphene directly on SiO2. First a layer of boron nitride (BN) is picked up using 

an adhesive polymer poly(bisphenol A carbonate) (PC) coated on a stamp made of transparent 

elastomer polydimethylsiloxane (PDMS). A large flake of monolayer graphene is identified and 

the BN flake is used to tear the graphene flake into two and pick up one half. The substrate is then 

rotated by a controlled angle and the second half of the graphene flake is picked up. The entire 

stack is then placed directly on a silicon dioxide/silicon substrate without a bottom BN layer. The 

presence of dopants on the SiO2 surface leads to a high carrier density in graphene even without 
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the application of a gate voltage. The same device was investigated in our previous work on 

photonic crystals (Ref (94), Chapter 2). 

 

3.6.1.2 Infrared nano-imaging 

Infrared nano-imaging was performed with a commercial scattering-type scanning near-

field optical microscope (s-SNOM) based on a tapping mode atomic force microscope from 

Neaspec GmbH. Our light source was a quantum cascade laser obtained from DRS Daylight 

Solutions, tunable from 900 cm-1 to 1200 cm-1. The light from the laser was focused onto a 

metallic tip oscillating at a tapping frequency of around 250 kHz with a tapping amplitude of 

around 60 nm. The scattered light was detected using a liquid nitrogen cooled HgCdTe (MCT) 

detector. To suppress far-field background signals, the detected signal was demodulated at a 

harmonic 𝑛𝑛 of the tapping frequency. In this work, we used 𝑛𝑛 =  3. 
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3.6.1.3 Nano-photocurrent 

Room temperature nano-photocurrent measurements were performed in a commercial s-

SNOM from Neaspec GmbH. Low temperature nano-photocurrent measurements were 

performed in a home-built ultrahigh vacuum chamber (107). The incident laser power was around 

20mW for room temperature experiments and 40mW for low temperature experiments. The 

current was measured using a Femto DHPCA-100 current amplifier. To isolate the photocurrent 

contributions from the near-fields localized under the tip, the measured current was demodulated 

at a harmonic 𝑛𝑛 of the tapping frequency. In this work we used 𝑛𝑛 = 2. The gate sweeps were 

performed by scanning the same line repeatedly while slowly changing the gate voltage. We 

typically swept the gate voltage at a rate of 100mV/sec while the time required to scan a single line 

was about 10 seconds. 

 

3.6.2 Carrier density and superlattice band edges 

3.6.2.1 Estimating the carrier density in our device 

We estimate the carrier density in two ways: plasmon wavelength in monolayer graphene 

and Raman experiments. Both experiments confirm that the carrier density at 𝑉𝑉𝐺𝐺 = 0V is ~ −

1.8 ⋅ 1013cm-2. This extremely large carrier density is likely the result of doping from the SiO2 

surface that the graphene directly sits on. In the room temperature nano-infrared experiments, we 

were able to apply gate voltages between 𝑉𝑉𝐺𝐺 = −80V and 𝑉𝑉𝐺𝐺 = +80V. However for the low 

temperature nano-photocurrent experiments, we could only reach 𝑉𝑉𝐺𝐺 = +70V. 
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Figure 3.5 | Nano-infrared image of MLG used to estimate the carrier concentration. (A) Nano-

infrared image acquired at a MLG edge. (B) Line profile perpendicular to the edge along with a fit 

using 𝜆𝜆𝑝𝑝 = 220nm. (C) Plasmon dispersion for the BN/MLG/SiO2/Si heterostructure. A plasmon 

wavelength of 220nm corresponds to a carrier concentration of 1.78 ⋅ 1013cm-2. 

 

 

Figure 3.6 | Raman measurements on MLG at 𝑽𝑽𝑮𝑮 = 𝟗𝟗V. The position of the G peak is around 

1603cm-1 which corresponds to a carrier density of ~ − 1.75 ⋅ 1013cm-2 (117). 

 

3.6.2.2 Carrier density at the superlattice band edges 

The carrier density at which SBEs occur can be calculated as follows. The first SBE appears 

when the first moiré band is filled. Since the band structure of TBG is four-fold degenerate 
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(including spin and valley), this corresponds to 4 carriers per moiré unit cell. The area of the moiré 

unit cell is given by: 

𝐴𝐴𝑀𝑀 =
√3
2
𝜆𝜆𝑀𝑀2  (3.2) 

 

Therefore, the density at the SBE, 𝑛𝑛𝑠𝑠 is given by: 

𝑛𝑛𝑠𝑠 =
4
𝐴𝐴𝑀𝑀

=
4

√3
2  𝜆𝜆𝑀𝑀2  

=
4

√3
2  �𝑎𝑎2 /sin �𝜃𝜃2��

2

 
 

(3.3) 

where 𝑎𝑎 = 0.246nm is the lattice constant of monolayer graphene. Eq 3.3 provides a direct 

relationship between 𝑛𝑛𝑠𝑠 and 𝜃𝜃 and allows for a determination of 𝜃𝜃 from a measurement of 𝑛𝑛𝑠𝑠. 

 

3.6.3 Large area nano-infrared and nano-photocurrent images 

Large area nano-infrared and nano-photocurrent images are shown in Figure 3.7. The electrode 

configuration for nano-photocurrent experiment in shown in Fig 3.7(A). The electrodes labeled 

‘1’ and ‘2’ served as source and drain respectively. The electrode labeled ‘float’ was left floating. 

Previous work on photocurrent generation in graphene has shown that the measured geometric 

pattern of the photocurrent is strongly sensitive to the geometry of the electrical contacts (59). 

The unusual geometry used here results is responsible for the variations of the measured signal 

across the boundaries, as seen in Figure 3.1(C). 
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Figure 3.7 | Large area images of our device. (A) Nano-infrared image of the amplitude 𝑠𝑠𝑖𝑖𝑓𝑓. 

The bright white regions are the gold electrodes and the numbers indicate the electrode 

configuration used for photocurrent experiments. (B) Nano-infrared image of the phase 𝜙𝜙𝑖𝑖𝑓𝑓. 

The various regions of the sample are marked. ‘Unknown’ refers to regions that we were unable 

to determine the twist angle conclusively. (C) Nano-photocurrent image. The colored lines in (B) 

and (C) correspond to the boundaries of domains with different twist angles. All images were 

acquired at 𝑉𝑉𝐺𝐺 = 0V and at room temperature. 
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3.6.4 Simple model for photocurrent at a MLG-TBG interface 

 

Figure 3.8 | Simple model for photocurrent at a MLG-TBG interface. (A) Seebeck coefficient for 

MLG, TBG and their difference as a function of carrier density. The parameters used are 𝜃𝜃 = 1.59° 

and 𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠 = 1 ⋅ 1011cm-2. The horizontal dashed line represents 𝑆𝑆 = 0 and the vertical dashed line 

represents the SBE for the TBG. (B) A color plot of |𝜃𝜃 − 𝜃𝜃𝑆𝑆𝑃𝑃| as a function of 𝜃𝜃 and 𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠. A 

significant difference between 𝜃𝜃 and 𝜃𝜃𝑆𝑆𝑃𝑃  is only observed for 𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠 > 1011cm-2. 

 

In the following, we develop a simple model for the photocurrent generated at a MLG-TBG 

interface. First, we assume that the resistivity of MLG can be parametrized by a single quantity 𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠 

which is the full-width half-maximum (FWHM) of the resistivity as a function of carrier density 

and is a measure of the disorder in the device: 

𝑅𝑅𝑀𝑀𝑀𝑀𝐺𝐺 = �1 +
𝑛𝑛2

𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠2 �
−1

 

 

For TBG, we can consider three contributions: one from the CNP and two from the SBEs: 

𝑅𝑅𝑇𝑇𝑇𝑇𝐺𝐺 = �1 +
𝑛𝑛2

𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠2 �
−1

+ �1 +
(𝑛𝑛 − 𝑛𝑛𝑠𝑠)2

𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠2 �
−1

+ �1 +
(𝑛𝑛 + 𝑛𝑛𝑠𝑠)2

𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠2 �
−1

. 



 

63 
 

 

We can then use the Mott formula to calculate the Seebeck coefficient for MLG and TBG 

and use that to estimate the difference between the actual twist angle 𝜃𝜃 and the twist angle 

estimated from the nano-photocurrent measurements 𝜃𝜃𝑆𝑆𝑃𝑃 . Figure S3.8(A) shows an example of 

the Seebeck coefficient curves that result from the above model. Figure 3.8(B) shows the 

relationship between |𝜃𝜃 − 𝜃𝜃𝑆𝑆𝑃𝑃| as a function of 𝜃𝜃 and 𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠. From Fig 3.8(B), we see that the 

difference between 𝜃𝜃 and 𝜃𝜃𝑆𝑆𝑃𝑃  is significant only when 𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠 exceeds ~1011𝑐𝑐𝐼𝐼−2. The latest 

generation of high quality encapsulated graphene devices show 𝑛𝑛𝑘𝑘𝑖𝑖𝑠𝑠~109cm-2 (118). Furthermore, 

at small twist angles, the SBEs show finite electronic gaps (119, 120) which would lead to sharper 

changes in the resistance and Seebeck coefficient as a function of the density close to the SBEs, 

leading to a smaller difference between 𝜃𝜃 and 𝜃𝜃𝑆𝑆𝑃𝑃 . Therefore, for practical experiments, 𝜃𝜃 and 𝜃𝜃𝑆𝑆𝑃𝑃  

can be considered to be identical. 
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3.6.5 Photocurrent data for other twist angles and temperatures 

3.6.5.1 Nano-photocurrent data for Region A 𝜃𝜃𝑆𝑆𝑃𝑃 = 2.61° at 𝑇𝑇 = 40K 

 

Figure 3.9 | Nano-photocurrent data for the 𝜽𝜽𝑷𝑷𝑷𝑷 = 𝟐𝟐.𝟔𝟔𝟏𝟏° region at 𝑻𝑻 = 𝟒𝟒𝟗𝟗K. (A) Nano-

photocurrent image. (B) Line profile along the white dashed line in (A). The sign change in 𝐼𝐼𝑆𝑆𝑃𝑃  

occurs at a density of −1.62 ⋅ 1013cm-2 which is very similar to the sign change density at 𝑇𝑇 =

200K of −1.58 ⋅ 1013cm-2 (shown in Figure 3.1). 
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3.6.5.2 Nano-photocurrent data for Region B (2.27° < 𝜃𝜃𝑆𝑆𝑃𝑃 < 2.34°) 

 

Figure 3.10 | Nano-photocurrent data for the 𝟐𝟐.𝟐𝟐𝟐𝟐° < 𝜽𝜽𝑷𝑷𝑷𝑷 < 𝟐𝟐.𝟑𝟑𝟒𝟒° region (A) Nano-

photocurrent image and (B) Line profile at 𝑇𝑇 = 200K. (C) Nano-photocurrent image and (D) 

Line profile at 𝑇𝑇 = 40K. 

 

For this region, we do not observe a sign change in 𝐼𝐼𝑆𝑆𝑃𝑃 . However, we can place bounds on 

the twist angle by considering the range of carrier densities accessible in our experiment. There are 

two possibilities. In the first possibility, the twist angle is so large that the SBE density is greater 

than 𝑛𝑛𝑚𝑚𝑠𝑠𝑥𝑥 . This requirement leads to a bound of 𝜃𝜃𝑆𝑆𝑃𝑃 > 3.21°. The second possibility is that the 

twist angle is so small that the SBE density is below 𝑛𝑛𝑚𝑚𝑖𝑖𝑖𝑖. This requirement leads to a bound of 

𝜃𝜃𝑆𝑆𝑃𝑃 < 2.34°. However, a lower bound may also be established in this case by requiring that the 

second order SBE (observed at smaller angles in (121, 122) and predicted by our calculations in 

Figure 3.12, Section 3.6.6) be above 𝑛𝑛𝑚𝑚𝑠𝑠𝑥𝑥 , leading to the bound 𝜃𝜃𝑆𝑆𝑃𝑃 > 2.27°. Combining the two 

bounds, we get 2.27° < 𝜃𝜃𝑆𝑆𝑃𝑃 < 2.34°. Because this second possibility is a more stringent 
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requirement on 𝜃𝜃𝑆𝑆𝑃𝑃 , we use this requirement earlier in the chapter. The good agreement between 

the nano-infrared signal in Fig 3.3 is further confirmation that our estimate of 𝜃𝜃𝑆𝑆𝑃𝑃  is accurate. 

In the 𝑇𝑇 = 40K data for Region B, we observe a suppression in photocurrent at 𝑉𝑉𝐺𝐺~12V. 

We believe that this effect is likely the result of Region A being at the SBE. Since Region B is located 

away from the electrodes, the photocurrent must flow through Region A to reach the electrodes. If 

Region A were to become gapped, it will lead to an apparent suppression of the photocurrent from 

Region B. 

 

3.6.5.3 Real space nano-photocurrent images of Region A 

 

Figure 3.11 | Real space nano-photocurrent images of Region A and its boundary with MLG. 

(A) Gate voltage dependence of the photocurrent at a Region A-MLG interface (same as Fig 

3.1(E)). (B) Large area near-field phase image (same as Fig 3.7(B)). The yellow rectangle marks the 

region shown in panels C-E. (C-E) Nano-photocurrent image at three different values of 𝑉𝑉𝐺𝐺. The 

photocurrent at the boundary decreases as 𝑉𝑉𝐺𝐺 changes from -20V to +20V as expected from the 

voltage dependence in panel A. Panel A was acquired at 𝑇𝑇 = 200K and panels C-E were acquired 

at 𝑇𝑇 = 160K. 
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3.6.6 Conductivity and Seebeck coefficient calculations 

The DC conductivity and Seebeck coefficient of MLG and TBG were calculated using 

semiclassical Boltzmann theory (123, 124) within the continuum model. We assumed an energy 

dependent scattering rate originating from Coulomb interactions as well as short-ranged scatterers 

and used Eq 2 and Eq 3 from Ref (123). For the temperature range used in our experiments, the 

Seebeck coefficient can be obtained from the conductivity as function of the chemical potential 

using the Mott formula  (Eq 9 of (123)) thus justifying the use of Mott formula also in TBG (Figure 

3.11). 

 
Figure 3.12 | Comparison between Boltzmann theory and the Mott formula. Seebeck coefficient 

of TBG with 𝜃𝜃 = 2.65° calculated using Boltzmann theory and the Mott formula at 𝑇𝑇 = 10K and 

𝑇𝑇 = 100K. The good agreement justifies the use of Mott formula in TBG. 

  



 

68 
 

  

Figure 3.13 | Optical conductivity spectra for different twist angles. (A, B) Band structures for 

twisted bilayer graphene with 𝜃𝜃 = 2.65° and 𝜃𝜃 = 2.28° (same as Fig 3.4(C)). (C, D) Optical 

conductivity spectra for 𝜃𝜃 = 2.65° and 𝜃𝜃 = 2.28° at 𝑛𝑛 = 1.1 ⋅ 1013cm-2 (solid) and 𝑛𝑛 = 2.48 ⋅

1013cm-2 (dashed). (E, F) Re(𝜎𝜎𝑟𝑟𝑒𝑒𝑘𝑘) spectra including only the transitions between the red bands 

in (C, D). 

 

  

Optical conductivity of TBG was calculated again using a continuum model. First, the real 

part of the optical conductivity was obtained by replacing the delta-function by a Gaussian with 

variance of 3 meV. The imaginary part was then obtained from the Kramers-Kronig relation after 

adding the constant background  𝜎𝜎0 = 𝑒𝑒2/2ℏ  for frequencies larger the cut-off frequency set by 

the continuum model (104). The Drude peak in the absorption was neglected due to the large 

relaxation times estimated to significantly exceed 1fs. 

Figure 3.12 shows the optical conductivity spectra of TBG with 𝜃𝜃 = 2.65° and 𝜃𝜃 = 2.28°. 

Fig 3.12(E) and 3.12(F) show the real part of the optical conductivity Re(𝜎𝜎𝑟𝑟𝑒𝑒𝑘𝑘) obtained by 

considering only the two red bands in Fig 3.13(A) and 3.13(B). Re(𝜎𝜎𝑟𝑟𝑒𝑒𝑘𝑘) is suppressed at 𝑛𝑛 =
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2.48 ⋅ 1013cm-2 as compared to 𝑛𝑛 = 1.10 ⋅ 1013cm-2 because the red bands are no longer 

occupied. However, Re(𝜎𝜎) for 𝜃𝜃 = 2.28° still shows a strong peak at 500cm-1 at the higher density. 

This resonance does not arise from the red bands, but is the result of transitions from other moiré-

modified bands at more negative Fermi energies. 

 

3.6.7 Lightning rod model 

We used the lightning rod model (LRM) (35) to calculate the expected near-field amplitude 

of our hBN/TBG/SiO2/Si heterostructure. The inputs for the LRM are the dielectric constants for 

each of the layers, the thicknesses of the layers and the radius of curvature of the tip. We used the 

output of the continuum model calculations for the conductivity of the TBG. For the dielectric 

constants of hBN and SiO2, we used the parametrizations reported in  Ref (125) and Ref (126) 

respectively. We estimated the radius of curvature of the tip to be around 15nm for our nano-

infrared experiments. 
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Chapter 4: Domain walls and their photocurrent response 

4.1 Introduction 

Quasi-periodic moiré patterns and their effect on electronic properties of twisted bilayer 

graphene have been intensely studied. At small twist angle θ, due to atomic reconstruction, the 

moiré superlattice morphs into a network of narrow domain walls separating micron-scale AB and 

BA stacking regions. We use scanning probe photocurrent imaging to resolve nanoscale variations 

of the Seebeck coefficient occurring at these domain walls. The observed features become 

enhanced in a range of mid-infrared frequencies where the hexagonal boron nitride substrate is 

optically hyperbolic. Our results illustrate the capabilities of the nano-photocurrent technique for 

probing nanoscale electronic inhomogeneities in two-dimensional materials. 

Twisted bilayer graphene (TBG), consisting of two graphene sheets rotated with respect to 

each other, has emerged as a tunable platform for studying exotic electronic phases. Transport 

experiments have revealed that when the graphene layers are twisted by a magic angle of 𝜃𝜃 ~ 1.1∘, 

TBG can become a superconductor (19), a correlated insulator (18), or a quantum anomalous Hall 

insulator (22, 23, 127). A key feature of TBG is the moiré superlattice: a long-range variation in the 

atomic stacking arising from geometric interference of the lattice periodicities in the two graphene 

sheets. Scanning probe studies of TBG with 𝜃𝜃 ∼ 1.1∘demonstrated spatial variations in the 

electronic properties occurring on the length scale of tens of nanometers (90–93). 
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Figure 4.1 | Photocurrent in minimally twisted bilayer graphene. (A) A schematic of scanning 

photocurrent setup. The red region represents the hot carriers generated under the tip. (B) Top: 

Seebeck coefficient 𝑆𝑆 profile across a domain wall calculated from first principles (Section 4.5.3). 

The DW is located at 𝑥𝑥 = 0. Middle: perspective view of the experiment showing photocurrent 

generation at the domain wall. The green background represents the Seebeck coefficient profile 

and the blue dots represent carriers generated by thermoelectric effect. Bottom: schematic of the 

BLG band structure across the DW for three different stackings AB, BA and saddle point (SP).  (C) 

Photocurrent  (𝐼𝐼𝑆𝑆𝑃𝑃) image taken with 𝜔𝜔 = 900 cm−1 and 𝑉𝑉𝐺𝐺 = +24 V at 𝑇𝑇 = 300 K. (D) Spatial 

gradient of the photocurrent defined as 𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥 of the data in (C). (E) Line profiles of 𝐼𝐼𝑆𝑆𝑃𝑃  and 

𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥 across a DW (shown as red and magenta lines in (C) and (D)). 
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In minimally twisted bilayer graphene (MTBG), the moiré pattern periodicity is large, e.g., 

140 nm for 𝜃𝜃 ≈ 0.01° and prone to atomic relaxation. In the relaxed state, the Bernal stacked 

domains (AB and BA) dominate while the less stable stacking configurations are reduced to a 

network of narrow domain walls (DWs). TEM measurements have shown that the DWs are 6-9 

nm wide (31). Previous transport (32), nano-infrared (Refs (34, 94), Chapter 2), and STM (128) 

studies have revealed the existence of topological states at the DWs when an electronic bandgap is 

opened by a sufficiently large interlayer bias between the graphene sheets. At smaller interlayer 

biases, the change in the atomic stacking across the DW still leads to a change in the electronic 

properties. 

Scanning nano-photocurrent imaging has emerged as a novel optoelectronic probe capable 

of resolving changes in DC transport properties of graphene with nanometer scale spatial 

resolution (4). Previous nano-photocurrent experiments have resolved charge inhomogeneities 

and grain boundaries in monolayer graphene (4) and mapped variations in twist angle of TBG at 

twist angles 𝜃𝜃 > 1° (Ref (129), Chapter 3). Here we use scanning nano-photocurrent imaging to 

study domain walls in MTBG. We show that the photocurrent patterns arise from DC Seebeck 

coefficient variations occurring at the DWs on a nanometer length scale. We further propose and 

demonstrate a mechanism that utilizes the intrinsic hyperbolicity of the hBN substrate to enhance 

the DW features in photocurrent images. 

 

4.2 Photocurrent imaging at 𝝎𝝎 = 𝟗𝟗𝟗𝟗𝟗𝟗 𝐜𝐜𝐜𝐜−𝟏𝟏 

 Figure 4.1(A) shows a schematic of our experiment. Infrared light is focused onto 

the apex of a sharp metallic tip which enhances the electric field underneath the tip. The enhanced 

field locally generates a photocurrent which we collect through electrical contacts at zero bias. In 
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graphene, the photocurrent arises from electronic inhomogeneities through the 

photothermoelectric effect (PTE), schematically shown in Figure 4.1(B) (55, 58, 60). Photocurrent 

images are acquired by raster scanning the tip across the sample. Our technique overcomes the 

diffraction limit and provides a spatial resolution of about 20 nm while also allowing for 

simultaneous nano-infrared imaging (4). Our device consists of two graphene layers with a 

minimal relative twist encapsulated between 37 nm bottom hexagonal boron nitride (hBN) layer 

and 6nm top hBN layer. The entire stack rests on a 285 nm SiO2/Si substrate with the SiO2 layer 

serving as the gate dielectric. Piezoresponse force microscopy (PFM) (130) before encapsulation 

of the device revealed domain walls with a periodicity of about 500 nm (Section 4.5.1). 

Figure 4.1(C) shows a representative photocurrent image of our device acquired at room 

temperature with laser frequency of 𝜔𝜔 = 900 cm−1. We use a color scheme that enables easy 

identification of the sign of the photocurrent: red and blue represent positive and negative currents 

respectively while white represents regions where the measured current is zero, thus highlighting 

the zero-crossing contours. Some of the zero-crossing contours form easily identifiable lines in the 

𝑦𝑦-direction while others form a meandering pattern. On closer inspection, we find a series of fine 

structures in the photocurrent image that form a hexagonal lattice. These features are more clearly 

revealed in the map of the photocurrent gradient, 𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥, shown in Figure 4.1(D). The 

periodicity of these features is consistent with the domain walls observed in PFM images before 

encapsulation (Section 4.5.1). In the 𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥 image, the vertical domain walls appear to be more 

intense because of the contact configuration used in our experiments, as explained in Section 

4.5.3.1.  The lattice structure and the matching periodicity lead us to conclude that the fine features 

correspond to the domain walls of a relaxed moiré superlattice in TBG. 
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Figure 4.2 | Thermoelectric origin of the photocurrent in TBG. (A - C) Gate voltage dependence 

of the photocurrent (𝐼𝐼𝑆𝑆𝑃𝑃) at 𝜔𝜔 = 900cm−1 and 𝑇𝑇 = 300K. Gate voltage is indicated above each 

panel.  (D) Calculated photocurrent pattern using the Shockley-Ramo formalism (59) with 

material parameters corresponding to 𝑉𝑉𝐺𝐺 = +14V (more details in Section 4.5.3).  The top-right 

inset shows the calculated image of 𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥 (compare with Figure 4.1(D)). 

 

Next, we study the gate dependence of the photocurrent maps as plotted in Figure 4.2(A - 

C). Transport experiments on our device showed that the charge neutrality point (CNP), where 

the carrier density is minimal and the majority carriers change from holes to electrons, occurs at 

𝑉𝑉𝐺𝐺 = +4 V (Section 4.5.1). Photocurrent imaging at the CNP (Fig 4.2(B)) does not show any of the 

features observed in Fig 4.1(C). A comparison of the images at 𝑉𝑉𝐺𝐺 = −12 V (Fig 4.2(A)) and 𝑉𝑉𝐺𝐺 =

+14 V (Fig 4.2(C)) reveals that the photocurrent has identical meandering pattern and fine DW 

features for positive and negative gate voltages except for a sign change. These results show that 

the meandering patterns and the DW features are antisymmetric with respect to the carrier type. 
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As the gate voltage increases further in both the positive and negative direction, we find that the 

patterns weaken and eventually become unresolvable (Section 4.5.2). We note that the carrier 

densities in Figure 4.2 are too low to produce significant plasmonic effects in bilayer graphene 

(Section 4.5.1.2). 

Previous theoretical (58) and experimental (55, 60, 131) investigations have discovered that 

the dominant mechanism for photocurrent generation in graphene is the photothermoelectric 

effect (PTE). In this mechanism, the absorption of incident light generates hot carriers in graphene. 

When the hot carriers encounter variations in the Seebeck coefficient, a thermoelectric voltage is 

generated which drives a current through the sample. The spatial profile of the measured current 

is therefore directly related to the Seebeck coefficient profile in the sample. PTE shows several 

characteristic features in experiments. First, since Seebeck coefficient is antisymmetric with respect 

to the sign of the carriers, the resulting photocurrent patterns also change sign when the carrier 

type changes from holes to electrons (55, 60). Second, the Seebeck coefficient of bilayer graphene 

rapidly diminishes as the carrier density increases (56, 60). Therefore, any variations in the Seebeck 

coefficient and the resulting photocurrent must also become small. Both features are present in 

our data, strongly suggesting that the photocurrent patterns we observe arise from PTE. 

To confirm our hypothesis that the photocurrent arises from PTE and to gain a deeper 

understanding of our results, we calculated the expected photocurrent patterns from PTE. The 

input to these calculations are the Seebeck coefficient profile and the hot carrier temperature 

profile. We computed the former for an isolated domain wall using a generalized Boltzmann 

approach (Section 4.5.3) and the resulting profile is shown in Figure 4.1(B). To compare with our 

experiment, we superposed the one-dimensional Seebeck profiles in a hexagonal pattern to 

generate a two-dimensional lattice of domain walls (Section 4.5.3.4). Next, we computed the spatial 
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profile of the hot carriers. We first computed the electric field at the graphene surface using two 

different models for the tip (1) a "lightning-rod model" in which the tip is represented by a 

conducting hyperboloid and (2) a simplified common approximation of the tip by a vertically 

oriented point dipole (Sections 4.5.3.3 and 4.5.3.4). Since the conductivity of the graphene sheet is 

dominated by the in-plane components, we assumed that the radially symmetric in-plane field, 𝐸𝐸𝑟𝑟, 

governs the generation of hot carriers. We then solved the heat equation to determine the spatial 

profile of the hot carrier temperature (Section 4.5.3.1). 

The Seebeck coefficient profile and the electron temperature profile are sufficient to 

calculate the local thermoelectric voltage for a given tip position. For gapless materials such as 

graphene, the photocurrent collected by distant electrodes also depends on the contact geometry. 

We used the Shockley-Ramo formalism of Ref (59) to include the effects of the contacts and our 

calculation procedures are described in more detail in Section 4.5.3. 

The photocurrent pattern resulting from the hyperboloid tip calculation is shown in Figure 

4.2(D). Our results reproduce the key features of our data including the meandering patterns and 

the fine features at the domain walls. We can now correlate the features in the photocurrent images 

with those in the Seebeck coefficient. The fine features and the zero-crossing contours that form 

straight lines along the 𝑦𝑦-axis arise from the domain walls themselves. On the other hand, the 

meandering zero-crossing contours go across domain walls, and arise from the interference of 

photocurrents generated by neighboring domain walls. The good agreement between calculations 

and data confirms that our photocurrent experiments directly probe the nanometer-scale Seebeck 

coefficient variations present at the domain walls. 

While the first-principles Seebeck coefficient profile produced a photocurrent pattern 

similar to the experiment, we note that our experiment is not sensitive to the fine details of the 
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Seebeck coefficient at the domain wall. In fact, any change in Seebeck on a length scale significantly 

shorter than the spatial extent of the hot carriers (typically called the cooling length (4)) will 

produce a pattern similar to the experiment, as we demonstrate in Section 4.5.3.3. 

 

4.3 Photocurrent imaging at frequencies within the Reststrahlen band of hBN 

  

Figure 4.3 | Domain wall photocurrent patterns in the hBN Reststrahlen band. (A) Gradient of 

photocurrent (𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥) for several frequencies around the hBN Reststrahlen band. (B) 

Experimental line profiles of 𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥 for several frequencies. The black dashed lines are guides to 

the eye. (C) Photocurrent profiles calculated using the frequency dependent electric field profiles. 

The thick solid lines correspond to the hyperboloid tip and the thin dashed lines correspond to the 

point dipole model. The theoretical curves are normalized to their respective maxima. Curves in 

panel (B) and (C) are offset vertically for clarity. 
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So far, the hBN layers which surround the graphene sheet have not played an active role. 

We now show that the optical properties of hBN can be exploited to enhance the photocurrent 

features from the DWs. Over two frequency bands in the mid-infrared, referred to as the lower 

and upper Reststrahlen bands, the permittivity of hBN along its in-plane and out-of-plane 

principal axes have opposite signs (132). Such behavior, known as hyperbolicity, leads to highly 

confined phonon polaritons (41, 44, 65, 132, 133) and hyperlensing effects (134, 135). Here, we 

specifically focus on the upper Reststrahlen band (1376 to 1614 cm-1) where hBN transverse 

dielectric constant in the 𝑥𝑥𝑦𝑦-plane becomes negative (𝜖𝜖𝑡𝑡 < 0). The out-of-plane dielectric constant 

remains positive (𝜖𝜖𝑧𝑧 > 0) and is weakly frequency dependent. 

We performed photocurrent experiments at several frequencies around the upper 

Reststrahlen band and the data is shown in Figure 4.3(A). We observe a clear change in the width 

of the domain wall feature with frequency. Specifically, we find that at the lower end of the 

Reststrahlen band (e.g., 𝜔𝜔 = 1490 cm−1 and 𝜔𝜔 = 1530 cm−1 in Fig. 4.3(A)) the domain wall 

feature is wider compared with pattern below the reststrahlen band (compare, for example,  with 

𝜔𝜔 = 900 cm−1 of Figure 4.1(D)). As the frequency increases, the width of the broad features 

decreases. Finally, at frequencies above the Reststrahlen band (𝜔𝜔 = 1640 cm−1 in Fig. 4.3(A)), the 

width of the feature returns to its value below the Reststrahlen band. Furthermore, at 𝜔𝜔 =

1490cm−1 we observe two faint peaks in between the two stronger peaks. These effects are further 

confirmed by the frequency-dependent line profiles shown in Fig 4.3(B). From the line profiles, we 

see that the fainter peaks at 𝜔𝜔 = 1490cm−1 are approximately coincident with the original peaks 

at 𝜔𝜔 = 1330cm−1 and 1640cm−1. 
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Figure 4.4 | Local electric field and temperature inside and outside the Reststrahlen band. (A) 

In-plane electric field |𝐸𝐸𝑟𝑟|2 at the graphene layer calculated for a hyperboloid tip. The left half 

(dashed lines) shows the field of the tip alone and the right half (solid lines) shows the total field 

from the tip and the substrate. (B) Hot carrier temperature 𝑇𝑇 calculated using the total field from 

(A). (C) Cross section of a hBN slab showing the electric field resulting from excitation by a point 

dipole located above the hBN surface. 1490 cm-1 and 1530 cm-1 are inside and 1640 cm-1 is outside 

the Reststrahlen band, respectively. The dashed line in the 1490 cm-1 image shows the polariton 

propagation. 𝐸𝐸0 and 𝜂𝜂1𝐸𝐸0 represent the magnitude of the in-plane field at the zeroth order and the 

first order maxima respectively. 

 

Since our experiments at 𝜔𝜔 = 900 cm−1 and the related modelling have shown that the 

photocurrent pattern is of PTE origin, any change in the pattern must be due to either a change in 

the Seebeck coefficient profile or the hot carrier profile. The Seebeck coefficient is not expected to 

change with the frequency of light incident on the material in the linear regime and the laser power 

used in our experiment (~20mW, see Section 4.5.1) is too weak to produce a significant non-linear 

effect. Therefore, we are led to conclude that change in the hot carrier distribution must be 

responsible for the observed change in width. 
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The spatial profile of Joule heating power is determined by the electric field profile under 

the tip and the real part of the optical conductivity of bilayer graphene, Re(𝜎𝜎). The frequency 

dependence data of Figure 4.3 was collected at 𝑉𝑉𝐺𝐺 = +10V, where the estimated Fermi energy in 

the Bernal stacked regions is low (𝐸𝐸𝐹𝐹 ≈ 10meV, refer to Section 4.5.1.2) and the optical 

conductivity is dominated by the frequency-independent interband conductivity (136, 137). 

Therefore, we conclude that the electric field profile under the tip must change with frequency 

within the Reststrahlen band in order to reproduce the experimental observations shown in Figure 

4.3. To model the observed change in width, we used the “lightning rod” model and a point dipole 

model to compute the radial electric field at several frequencies around the Reststrahlen band 

(Sections 4.5.3.3 and 4.5.3.4). The photocurrent profiles from our modeling are shown in Figure 

4.3(C) and show good agreement with the experiment. 

The electric field at the graphene layer can be thought of as the sum of two separate parts. 

The first part is the incident field from the tip and the second part is the field reflected by the hBN 

substrate in response to the tip excitation. The left panels in Figure 4.4(A) show the tip field and 

the right panels show the total field. We see that the tip field is weakly dependent on the frequency 

but the field reflected by the substrate is strongly modified inside the Reststrahlen band. The wider 

electric field leads to a wider hot carrier temperature profile (Figure 4.4(B)) and a broader 

photocurrent pattern (Figure 4.3(C)). 

The origin of this widening is closely related to a previously observed effect in hBN slabs, 

known as hyperlensing (102, 134, 135). In hyperlensing, a sub-wavelength antenna launches 

phonon polariton rays that propagate inside the hBN slab. Here, our tip acts as the antenna. The 

total  in-plane field at the hBN surface can be thought of as a series of concentric rings centered 

below the tip with a radius of 𝑟𝑟𝑘𝑘𝑚𝑚𝑠𝑠𝑥𝑥 for the 𝑘𝑘-th ring. The electric field at the 𝑘𝑘-th ring is given by 
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𝐸𝐸𝑘𝑘 = 𝜂𝜂𝑘𝑘𝐸𝐸0, where 𝜂𝜂𝑘𝑘  is related to the permittivity of the hBN slab and the substrate (Section 

4.5.3.4). The 𝑘𝑘 = 0 ring corresponds to the field from the tip itself with magnitude 𝐸𝐸0 while 𝑘𝑘 =

1, 2, … correspond to phonon polaritons propagating in the hBN slab (see Fig 4.4(C) and Section 

4.5.3.4). Therefore, inside the Reststrahlen band, the zeroth order maximum is frequency 

independent but the higher order maxima are strongly frequency dependent. 

Typically, the magnitude of the field at the 𝑘𝑘 = 1 ring is expected to be smaller than the 

field created directly by the tip (|𝜂𝜂1| < 1). However, for several frequencies inside the Reststrahlen 

band, |𝜂𝜂1| > 1, so 𝐸𝐸1 dominates and leads to a broad frequency-dependent electric field profile 

and photocurrent pattern. The faint central features in 𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥 at 𝜔𝜔 = 1490cm−1 can now be 

understood as arising from 𝐸𝐸0 while the stronger broader features arise from 𝐸𝐸1. In principle, the 

polariton reflections corresponding to 𝐸𝐸2 and higher order terms should be reflected in the 

photocurrent profile. Our simulations suggest that a sharper tip and more widely separated 

domain walls (i.e., smaller twist angle) could reveal such features in future photocurrent 

experiments (Section 4.5.3.4). 

 

4.4 Conclusion 

In conclusion, we have demonstrated that nano-photocurrent experiments are sensitive to 

nanoscale changes in the Seebeck coefficient at the domain walls in MTBG. Our modeling of the 

photocurrent patterns is consistent with experiment. We further demonstrate a hyperbolic 

optoelectronic effect where the domain wall photocurrent patterns are enhanced by the 

hyperbolicity of the hBN substrate. 
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4.5 Supplementary Material 

4.5.1 Materials and Methods 

 

Figure 4.5 | Device fabrication. (A) Piezoresponse force microscopy image of the graphene layers 

before encapsulation showing domain walls. (B) Optical microscope image showing the final 

contact configuration. Scale bar 3μm. (C) Two probe resistance measured using M1 and M3 

contacts as a function of 𝑉𝑉𝐺𝐺 applied to the Si back gate. The dashed line corresponds to 𝑉𝑉𝐺𝐺 = +4V 

which is taken to be the charge neutrality point (Figure 4.2(A)). 

 

The minimally twisted bilayer graphene device was fabricated using the dry transfer 

method. Piezoresponse force microscopy (PFM) (130) was performed before encapsulation to 

ensure that a moiré pattern with a large periodicity was present, as shown in Figure 4.5(A). The 

contact geometry was specifically designed for easy interpretation of photocurrent experiments 

(Figure 4.5(B)). We used the M1-M3 contacts for all photocurrent experiments. 

 

The properties of bilayer graphene depend not only on the carrier density but also on the 

interlayer bias. In our experiment, we have a single Si back gate which allows us to control the 

carrier density accurately. Here, we describe our estimate of the interlayer bias values for different 

gate voltages. First, we assume that the interlayer bias is zero at charge neutrality point 𝑉𝑉𝐺𝐺 = +4V. 
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This assumption is reasonable for the ultra-high quality, doubly-encapsulated devices studied in 

this work (138). 

For a given gate voltage, we can directly calculate the displacement field below the 

graphene layers: 

𝐷𝐷𝑠𝑠𝑠𝑠𝑙𝑙𝑒𝑒𝑟𝑟 =
𝜖𝜖𝑠𝑠𝑠𝑠𝑙𝑙𝑒𝑒𝑟𝑟 𝑉𝑉𝐺𝐺
𝑑𝑑𝑠𝑠𝑠𝑠𝑙𝑙𝑒𝑒𝑟𝑟

 

where 𝜖𝜖𝑠𝑠𝑠𝑠𝑙𝑙𝑒𝑒𝑟𝑟 and 𝑑𝑑𝑠𝑠𝑠𝑠𝑙𝑙𝑒𝑒𝑟𝑟 are the dielectric constant and thickness of the SiO2 dielectric layer. 

Because we have no top gate, the displacement field above the graphene layers 𝐷𝐷𝑢𝑢𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟 = 0 and 

effective displacement field across the graphene is given by: 

𝐷𝐷� = 𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝐷𝐷𝑠𝑠𝑠𝑠𝑙𝑙𝑢𝑢𝑢𝑢
2

= 𝐷𝐷𝑠𝑠𝑠𝑠𝑙𝑙𝑢𝑢𝑢𝑢
2

. 

We use Ref (10) to estimate the interlayer bias 𝑉𝑉𝑖𝑖 from  𝐷𝐷�. To estimate 𝐸𝐸𝐹𝐹, we keep 𝑉𝑉𝑖𝑖 fixed 

and vary the Fermi energy 𝐸𝐸𝐹𝐹 until the carrier density we calculate with a tight-binding model 

matches the value expected from capacitance calculations. Figure 4.6 shows a plot of the estimated 

𝐸𝐸𝐹𝐹 and 𝑉𝑉𝑖𝑖 for several gate voltages. We find that the estimated Fermi energy is linear with gate 

voltage. At small displacement fields, the band structure of bilayer graphene can be well 

approximated to be parabolic (8). In 2 dimensions, a parabolic dispersion leads to a constant 

density of states and a linear dependence of the Fermi energy on carrier density, which is consistent 

with our estimate. We note that the carrier densities considered in this manuscript (Figures 2 and 

3) are too low to produce significant plasmonic effects. In bilayer graphene, plasmons are typically 

observed in nano-infrared imaging for 𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑃𝑃𝐶𝐶𝑆𝑆 > ~30V (71). 
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Figure 4.6 | Estimated Fermi energy and interlayer bias for bilayer graphene with a single gate. 

The dots correspond to specific gate voltages and the red line is a linear fit. 

 

4.5.2 More photocurrent data 

 Here, we describe our analysis methods for the photocurrent data and include all 

of the collected images. The photocurrent signal was demodulated at a harmonic of the tip tapping 

frequency with a lock-in amplifier. The phase offset of the demodulation signal is arbitrary since 

the phase only determines the direction of the current and otherwise does not contain any 

meaningful information. Therefore, for each photocurrent image, we adjusted the phase offset so 

as to maximize the signal in the in-phase component and minimize it in the out-of-phase 

component. Stated more rigorously, 𝑆𝑆𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦),𝑆𝑆𝑠𝑠𝑢𝑢𝑡𝑡(𝑥𝑥,𝑦𝑦) are the raw data images for in-phase and 

out-of-phase lock-in output channels. For an offset phase 𝜙𝜙0, the corrected signal 

𝑆𝑆′𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦),𝑆𝑆′𝑠𝑠𝑢𝑢𝑡𝑡(𝑥𝑥,𝑦𝑦) is the result of rotation by 𝜙𝜙0:  

� 𝑆𝑆′𝑖𝑖𝑖𝑖𝑆𝑆′𝑠𝑠𝑢𝑢𝑡𝑡
� = � cos𝜙𝜙0 sin𝜙𝜙0

− sin𝜙𝜙0 cos𝜙𝜙0
� � 𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑠𝑠𝑢𝑢𝑡𝑡

� 

The offset angle 𝜙𝜙0 is chosen as to minimize the variance of 𝑆𝑆′𝑠𝑠𝑢𝑢𝑡𝑡 across the image. 
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4.5.2.1 𝜔𝜔 = 900 𝑐𝑐𝐼𝐼−1 

 

Figure 4.7 | Photocurrent data for several gate voltages at 𝝎𝝎 = 𝟗𝟗𝟗𝟗𝟗𝟗𝐜𝐜𝐜𝐜−𝟏𝟏. Scale bar 1µm. 

 

Figure 4.8 | Photocurrent gradient for several gate voltages at 𝝎𝝎 = 𝟗𝟗𝟗𝟗𝟗𝟗𝐜𝐜𝐜𝐜−𝟏𝟏. Scale bar 1µm. 
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Figure 4.9 | Photocurrent line profiles at 𝑽𝑽𝑮𝑮 = +𝟐𝟐𝟒𝟒𝐕𝐕. (A) Nano-photocurrent image at 𝑉𝑉𝐺𝐺 =

+24V (same as Figure 4.1(B)). (B) Multiple line profiles across the domain walls. Each profile is 

offset by an arbitrary number for clarity. (C) and (D) same as (A) and (B) but for 𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥. 

4.5.2.2 Frequencies in the Reststrahlen band of hBN 

 

Figure 4.10 | Frequency dependent photocurrent images in the hBN reststrahlen band.  
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Figure 4.11 | Frequency dependent 𝒅𝒅𝑰𝑰𝑷𝑷𝑷𝑷/𝒅𝒅𝒅𝒅 images in the hBN reststrahlen band.  

 

4.5.3 Photocurrent model 

4.5.3.1 Photocurrent calculation 

In gapless materials such as graphene, the spatial photocurrent profiles are described by 

the Shockley-Ramo formalism (59). In this formalism, an auxiliary potential 𝜙𝜙 is defined as 

solution of Laplace’s equation, ∇ ⋅ (𝜎𝜎𝑇𝑇∇𝜙𝜙) = 0 (𝜎𝜎 is the dc conductivity tensor) with the contact 

configuration dependent boundary conditions: 𝜙𝜙 = 1 at current collecting contacts (where the 

current is being measured) and 𝜙𝜙 = 0 at the rest of the grounded contacts. According to the 

Shockley-Ramo formalism, one can show that the measured photocurrent would then be: 

𝐼𝐼𝑆𝑆𝑃𝑃 = �𝑑𝑑2𝒓𝒓′𝑱𝑱𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝒓𝒓′) ⋅ ∇𝜙𝜙(𝒓𝒓′) 

Where 𝑱𝑱𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 is the locally generated photocurrent density. In our case the photocurrent is 

generated through the photothermoelectric effect, and for a tip positioned at a point 𝒓𝒓 would 

therefore yield the following photocurrent reading: 
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𝐼𝐼𝑆𝑆𝑃𝑃(𝒓𝒓) = �𝑑𝑑2𝒓𝒓′ 𝜎𝜎(𝒓𝒓′) 𝑆𝑆(𝒓𝒓′) ∇𝑇𝑇(𝒓𝒓′, 𝒓𝒓) ⋅ ∇𝜙𝜙(𝒓𝒓′) 

where 𝑇𝑇(𝒓𝒓′, 𝒓𝒓) is the temperature at 𝒓𝒓′ as a result of a tip located at 𝒓𝒓 and 𝑆𝑆 is the Seebeck coefficient 

tensor.  

Since we are interested in a 1D domain wall, we can simplify the problem with a quasi-1D 

geometry. We assume that the sample is infinite in the 𝑦𝑦 direction, both 𝜎𝜎 and 𝑆𝑆 are independent 

of 𝑦𝑦, and we have a grounded contact at 𝑥𝑥 = 0 and a collecting contact at 𝑥𝑥 = 𝐿𝐿. We further assume 

that 𝑆𝑆 is diagonal and isotropic. These assumptions yield: 𝜙𝜙(𝑥𝑥) = ∫ 𝑑𝑑𝑥𝑥′𝑥𝑥
0

1
σ(𝑥𝑥′) ∫ 𝑑𝑑𝑥𝑥′𝑀𝑀

0
1

σ(𝑥𝑥′)
� . After 

substitution into the photocurrent expression we get: 

𝐼𝐼𝑆𝑆𝑃𝑃(𝒓𝒓) =
Σ
𝐿𝐿
�𝑑𝑑2𝒓𝒓′ 𝑆𝑆(𝒓𝒓′)

𝜕𝜕𝑇𝑇(𝒓𝒓′, 𝒓𝒓)
𝜕𝜕𝑥𝑥

 

Where Σ ≡ 𝐿𝐿 �∫ 𝑑𝑑𝑥𝑥′𝑀𝑀
0

1
σ𝑥𝑥𝑥𝑥(𝑥𝑥′)

�
−1

. Finally, we assume the shape of the temperature profile to be 

independent of tip position, such that: 𝑇𝑇(𝒓𝒓′, 𝒓𝒓) = 𝑇𝑇(𝒓𝒓′ − 𝒓𝒓). This assumption is justified if the 

absorption and thermal properties are not strongly modulated as a function of position. The last 

assumption formulates the above expression for the measured photocurrent as a 2D convolution 

of two terms such that: 

𝐼𝐼𝑆𝑆𝑃𝑃(𝒓𝒓) =
Σ
𝐿𝐿
�𝑆𝑆 ∗

𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥
� (𝒓𝒓) (Eq 4.1) 

The remaining task in order to calculate the photocurrent is to calculate the temperature 

spatial profile, 𝑇𝑇(𝒓𝒓). We describe it by the diffusion equation: 

−𝜅𝜅∇2𝜏𝜏(𝒓𝒓) + 𝑔𝑔𝜏𝜏(𝒓𝒓) = 𝑃𝑃(𝒓𝒓) (Eq 4.2) 

where 𝜏𝜏 = 𝑇𝑇 − 𝑇𝑇0 is the electronic temperature change relative to a background thermal 

bath at 𝑇𝑇0, 𝜅𝜅 is the in-plane thermal conductivity of graphene, 𝑔𝑔 is the out-of-plane thermal 

coupling to the substrate (both assumed to be spatially uniform for simplicity) and 𝑃𝑃 is the 
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absorbed heat distribution (which is estimate in this study using the lightning rod model as 

described in Section 4.5.3.3). Following (4), the general solution can be obtained by a Green’s 

function approach, where we first solve for the Green’s function 𝐺𝐺 that satisfies the impulse 

response equation: 

−𝜅𝜅∇2𝐺𝐺(𝒓𝒓) + 𝑔𝑔𝐺𝐺(𝒓𝒓) = 𝛿𝛿(2)(𝒓𝒓)  

Where 𝛿𝛿(2)(𝒓𝒓) is the 2D delta function. The general solution to Eq 4.2 for an arbitrary 𝑃𝑃(𝒓𝒓) is then 

given by the convolution 𝜏𝜏 = 𝐺𝐺 ∗ 𝑃𝑃. We can solve for the Green’s function through a Fourier 

analysis. We define 𝐺𝐺��𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦� = ∫ 𝑑𝑑𝑥𝑥∞
−∞ ∫ 𝑑𝑑𝑦𝑦∞

−∞ 𝐺𝐺(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦) to be the Fourier transform 

of 𝐺𝐺(𝑥𝑥, 𝑦𝑦). One can then show that: 

𝐺𝐺��𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦� =
1

4𝜋𝜋2
1

𝑔𝑔 + 𝜅𝜅(𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2)
 

Taking the inverse Fourier transform gives us the Green’s function 

𝐺𝐺(𝒓𝒓) = 𝐾𝐾0 �
𝑟𝑟

�𝜅𝜅/𝑔𝑔
� 

where 𝐾𝐾0(𝑥𝑥) is the 0th order modified Bessel function of the second kind and 𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = �𝜅𝜅/𝑔𝑔 is a 

thermal length-scale which is typically called the cooling length. In our simulations, we used 

𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = 100nm for the room temperature 𝜔𝜔 = 900cm−1 data (Fig 4.2(D)) and 𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = 200nm for 

the 𝑇𝑇 = 200K data in the hBN Reststrahlen band (Figure 4.3(C) and 4.3(B)). 

 Assuming the graphene sheet thermal conductivity of 𝜅𝜅~10−6 W/K (139) and a room 

temperature cooling length of 𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = 100 nm,  the interfacial thermal resistance in our samples is 

about 𝑅𝑅𝑇𝑇 = 1/𝑔𝑔 =  𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠2 /𝜅𝜅 ~ 10−8  m2K/W, comparable to theoretically predicted (140) and 

experimentally measured (141) values. Note that this parameter appears to strongly depend on the 

interface and sample quality. In a previous photocurrent experiment (142), this thermal resistance 

was estimated to be as high as 10−5  m2K/W. 
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 The Shockley-Ramo formalism also provides an explanation for the asymmetry between 

the domain wall 𝑑𝑑𝐼𝐼𝑆𝑆𝑃𝑃/𝑑𝑑𝑥𝑥 profiles along different directions in Figure 4.1. The profiles along the 

𝑦𝑦-direction are significantly stronger because of the 𝜕𝜕𝑇𝑇/𝜕𝜕𝑥𝑥 term in Eq 4.1. The domain walls along 

the other directions contribute less to the convolution in Eq 4.1 and therefore appear weaker in the 

experiment. This behavior is captured directly in Fig 4.2(D). 

 

4.5.3.2 First principles calculations of Seebeck coefficient across the domain wall 

We will analyze the static transport properties across a single AB/BA domain wall. The 

Hamiltonian is adopted from (34) where the optical properties across a single domain wall were 

discussed i.e., we consider the general Hamiltonian of bilayer graphene 

𝐻𝐻 = �𝐻𝐻0 𝑈𝑈†

𝑈𝑈 𝐻𝐻0
� ,𝑈𝑈 = �𝑈𝑈𝐴𝐴𝐴𝐴 𝑈𝑈𝐴𝐴𝑇𝑇

𝑈𝑈𝑇𝑇𝐴𝐴 𝑈𝑈𝑇𝑇𝑇𝑇
�, 

where 𝐻𝐻0 = ℏ𝑣𝑣𝐹𝐹𝜎𝜎 ⋅ 𝒌𝒌 denotes the Hamiltonian of a single layer graphene and 𝑈𝑈 the interlayer 

coupling with 𝑈𝑈𝐴𝐴𝐴𝐴 = 𝑈𝑈𝑇𝑇𝑇𝑇 = 𝑡𝑡1
3
�1 + 2 cos �2𝜋𝜋

3
 𝛿𝛿
𝑠𝑠0
�� ,𝑈𝑈𝐴𝐴𝑇𝑇 =  𝑡𝑡1

3
�1 + 2 cos�2𝜋𝜋

3
 � 𝛿𝛿
𝑠𝑠0

+ 1��� ,𝑈𝑈𝑇𝑇𝐴𝐴 =

 𝑡𝑡1
3
�1 + 2 cos�2𝜋𝜋

3
 � 𝛿𝛿
𝑠𝑠0
− 1��� (143). A single AB-BA domain wall at 𝑥𝑥 = 0 with width 𝑤𝑤 is then 

modeled by the displacement field 𝛿𝛿(𝑥𝑥) = 2
𝜋𝜋

arctan �exp �𝜋𝜋𝑥𝑥
𝑙𝑙
�� + 1. For numerical convenience, 

we add another, independent, single BA/AB domain wall in order to implement periodic 

boundary conditions. 

 The particle current and heat-flow due to electrons is given by (144) 

� 𝐽𝐽
𝑈𝑈��⃗
� = �𝐊𝐊𝟗𝟗 𝐊𝐊𝟏𝟏

𝐊𝐊𝟏𝟏 𝐊𝐊𝟐𝟐
� � 𝑒𝑒∇��⃗ ϕ
𝑇𝑇−1∇��⃗ 𝑇𝑇

� (Eq 4.3) 
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where the tensors 𝐊𝐊𝒍𝒍 with 𝑙𝑙 = 0, 1, 2 read 

𝐊𝐊𝑠𝑠 =
𝑔𝑔𝑠𝑠𝑔𝑔𝑣𝑣
𝐴𝐴

��⃗�𝑣𝒌𝒌,𝑖𝑖 �⃗�𝑣𝒌𝒌,𝑖𝑖
𝑇𝑇 𝜏𝜏𝒌𝒌,𝑖𝑖�𝜖𝜖𝒌𝒌,𝑖𝑖 − 𝜇𝜇�

𝑠𝑠
�−

𝜕𝜕𝑓𝑓𝒌𝒌,𝑖𝑖
0

𝜕𝜕𝜖𝜖𝒌𝒌,𝑖𝑖
�

𝒌𝒌,𝑖𝑖

. 

These quantities depend on the relaxation time 𝜏𝜏𝒌𝒌,𝑖𝑖 and �⃗�𝑣𝒌𝒌,𝑖𝑖 = 〈𝒌𝒌,𝑛𝑛��⃗�𝑣��𝒌𝒌,𝑛𝑛〉 where 𝜖𝜖𝒌𝒌,𝑖𝑖 and |𝒌𝒌,𝑛𝑛〉 

denote the eigenvalues and eigenvectors of the underlying Hamiltonian, respectively with 𝒌𝒌 inside 

the first Brillouin zone. Furthermore, 𝑓𝑓𝒌𝒌,𝑖𝑖
0  denotes the Fermi-Dirac distribution function at 

chemical potential 𝜇𝜇, 𝐴𝐴 denotes the area of the sample, 𝑔𝑔𝑠𝑠 = 𝑔𝑔𝑣𝑣 = 2 the spin and valley 

degeneracy, and �⃗�𝑣� is the velocity operator. Typical transport properties such as the dc conductivity, 

the Seebeck coefficient and the thermal conductivity are then defined by 𝜎𝜎𝑘𝑘𝑖𝑖 = 𝑒𝑒2𝐊𝐊0, 𝑆𝑆 =

−(𝑒𝑒𝑇𝑇)−1𝐊𝐊0
−1𝐊𝐊1, and 𝜅𝜅 = 𝑇𝑇−1(𝐊𝐊2 − 𝐊𝐊1𝐊𝐊0

−1𝐊𝐊1). 

 Eq 4.3 can be generalized to define the local current response i.e., 𝒥𝒥(𝑟𝑟) =

∫𝑑𝑑𝑟𝑟′𝒦𝒦(𝑟𝑟, 𝑟𝑟′)∇χ(𝑟𝑟′) with 𝒥𝒥(𝑟𝑟) = �𝐽𝐽(𝑟𝑟),𝑈𝑈��⃗ (𝑟𝑟)�
𝑇𝑇

 and the corresponding definitions for 𝒦𝒦(𝑟𝑟, 𝑟𝑟′) 

and 𝜒𝜒(𝑟𝑟). We then applied the local approximation (145) which amounts to 𝒦𝒦𝑠𝑠𝑠𝑠𝑖𝑖(𝑟𝑟) =

∫𝑑𝑑𝑟𝑟′𝒦𝒦(𝑟𝑟, 𝑟𝑟′) and obtained the local transport quantities such as the Seebeck coefficient that were 

discussed earlier in the chapter. 

 

4.5.3.3 Electric field profiles using the lightning rod model 

 The electric field relevant for calculating a temperature profile at the graphene layer 

is computed using the lightning rod of probe-sample near-field interaction (35).  Here the near-

field probe is considered as an ideally conducting metallic hyperboloid (roughly conical in shape) 

19 microns in height with a taper angle of about 20 degrees to the probe axis, and a curvature radius 

of 75 nm at its apex.  For a chosen sample configuration comprising a multi-layer stack (here a 7 

nm top hBN layer, nearly charge-neutral graphene bilayer atop a 36 nm hBN slab over an SiO2 
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substrate), a specified probe-sample distance d,  and illumination energy, the model predicts the 

axisymmetric charge distribution 𝜆𝜆(𝑧𝑧) ≡ 𝑑𝑑𝑄𝑄/𝑑𝑑𝑧𝑧 along the probe.  For the ideally conducting 

probe, this charge conforms to the external profile of the probe in a quasi-continuum of rings of 

radius ℛ(𝑧𝑧), where 𝑧𝑧 denotes the probe’s axial coordinate.  From 𝜆𝜆(𝑧𝑧), we evaluate the electric 

near-field from the probe in the graphene plane using the angular spectrum representation: 

𝑬𝑬𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑(𝜌𝜌,𝑑𝑑) = � 𝑑𝑑𝑧𝑧
𝑀𝑀

0
𝜆𝜆(𝑧𝑧)�𝑑𝑑𝑞𝑞 𝑞𝑞 [𝐽𝐽0(𝑞𝑞𝜌𝜌)�̂�𝑧 + 𝐽𝐽1(𝑞𝑞𝜌𝜌)𝜌𝜌�] 𝐽𝐽0(𝑞𝑞ℛ(𝑧𝑧))𝑒𝑒−𝑞𝑞(𝑘𝑘+𝑧𝑧) 

Here 𝜌𝜌 denotes the in-plane radial coordinate from the probe axis, 𝑞𝑞 is a Fourier momentum.  As 

an integral sum of Bessel functions 𝐽𝐽1(𝑞𝑞𝜌𝜌), the radial field 𝐸𝐸𝜌𝜌,𝑝𝑝𝑟𝑟𝑠𝑠𝑏𝑏𝑒𝑒 presents a roughly “donut”-

shaped in-plane distribution as shown in Fig. 4.4.  The total field inclusive of fields reflected from 

the sample is then given similarly by: 

𝑬𝑬𝒕𝒕𝒑𝒑𝒕𝒕𝒕𝒕𝒍𝒍(𝜌𝜌,𝑑𝑑) = � 𝑑𝑑𝑧𝑧
𝑀𝑀

0
𝜆𝜆(𝑧𝑧)�𝑑𝑑𝑞𝑞 𝑞𝑞 �

�1 + 𝑟𝑟𝑝𝑝(𝑞𝑞)� 𝐽𝐽0(𝑞𝑞𝜌𝜌)�̂�𝑧 +

�1 − 𝑟𝑟𝑝𝑝(𝑞𝑞)� 𝐽𝐽1(𝑞𝑞𝜌𝜌)𝜌𝜌�
�  𝐽𝐽0(𝑞𝑞ℛ(𝑧𝑧))𝑒𝑒−𝑞𝑞(𝑘𝑘+𝑧𝑧) 

Here 𝑟𝑟𝑝𝑝(𝑞𝑞) denotes the momentum-resolved Fresnel reflection coefficient for p-polarized fields 

computed for our heterostructure with a transfer matrix method. 

We now turn our attention to the electric fields associated with generating the temperature profile 

relevant for the PTE underlying our photocurrent imaging.  Since photocurrents were obtained at 

the 𝑛𝑛 = 2, 3 harmonics of the probe tapping frequency Ω, the spatially-resolved distribution of 

thermal power deposited in the graphene at these harmonics is given by: 

𝑃𝑃𝑖𝑖(𝜌𝜌) ≈ Re(𝜎𝜎) �𝐸𝐸𝜌𝜌,𝑖𝑖�
2
 

Here 𝜎𝜎 represents the optical conductivity of graphene and 𝐸𝐸𝜌𝜌,𝑖𝑖 denotes the radially polarized total 

field demodulated at harmonic 𝑛𝑛: 

𝐸𝐸𝜌𝜌,𝑖𝑖(𝜌𝜌) ≡
Ω
𝜋𝜋

 � 𝑑𝑑𝑡𝑡 cos𝑛𝑛Ω𝑡𝑡 ⋅ 𝐸𝐸𝜌𝜌(𝜌𝜌,𝑑𝑑 = cosΩ𝑡𝑡)
2𝜋𝜋/Ω

0
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Since the lightning rod model predicts a physically meaningful electric field profile for all probe-

sample distances 𝑑𝑑, the power distribution 𝑃𝑃𝑖𝑖(𝜌𝜌) for 𝑛𝑛 = 2,3 was straightforwardly calculated with 

the relevant products of demodulated field distributions 𝐸𝐸𝜌𝜌,𝑖𝑖(𝜌𝜌) inclusive of reflected fields from 

the sample. 

Figure 4.12 shows the field and temperature profiles for several frequencies. We note that 

the 𝑑𝑑𝑇𝑇/𝑑𝑑𝑥𝑥 profile is qualitatively similar to our observed photocurrent pattern. Let’s say, the 

Seebeck profile is narrow compared to the 𝑑𝑑𝑇𝑇/𝑑𝑑𝑥𝑥 such that it can be approximated as a delta 

function. Then, from Eq 4.1, we see that the photocurrent profile will be identical to 𝑑𝑑𝑇𝑇/𝑑𝑑𝑥𝑥. 

Therefore, we conclude that any Seebeck coefficient profile that is significantly narrower than the 

cooling length will produce a photocurrent pattern that is consistent with our experimental data. 

 

 

Figure 4.12 | Electric field and temperature profiles. (A - C) Radial electric field 𝐸𝐸𝑟𝑟, hot carrier 

temperature 𝑇𝑇 and 𝑑𝑑𝑇𝑇/𝑑𝑑𝑥𝑥 = 𝑥𝑥� ⋅ ∇𝑇𝑇profiles at various frequencies. The tip is located at the origin. 
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4.5.5 Converting 1D profiles to 2D profiles – superposition model 

To convert the 1D profiles calculated in Section 4.5.3.2 into 2D profiles, we used a simple 

superposition model. However, the superposition model may not accurately reproduce the 

Seebeck profile at the AA sites. Here, we compare the relative importance of the domain walls and 

the AA sites to the calculated photocurrent pattern by separating their relative contributions. 

First, we define a mask which is a series of Gaussians centered on the AA sites. Let the 𝑛𝑛 

AA sites be located at {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}. Then, the mask is given by 

𝑀𝑀(𝑥𝑥,𝑦𝑦) = � exp�−
(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2

𝑤𝑤𝐴𝐴𝐴𝐴2
�

𝑖𝑖

 

where 𝑤𝑤𝐴𝐴𝐴𝐴 is the width of the Gaussians. Then we separate the Seebeck coefficient at the AA sites 

by multiplying the Seebeck coefficient from the superposition model by the mask: 

𝑆𝑆𝐴𝐴𝐴𝐴(𝑥𝑥,𝑦𝑦) = 𝑆𝑆2𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑀𝑀(𝑥𝑥,𝑦𝑦) 

The domain wall contribution is then 

𝑆𝑆𝐷𝐷𝐷𝐷(𝑥𝑥,𝑦𝑦) = 𝑆𝑆2𝐷𝐷(𝑥𝑥, 𝑦𝑦)(1 −𝑀𝑀(𝑥𝑥,𝑦𝑦)) 

such that 

𝑆𝑆𝐴𝐴𝐴𝐴(𝑥𝑥,𝑦𝑦) + 𝑆𝑆𝐷𝐷𝐷𝐷(𝑥𝑥, 𝑦𝑦) = 𝑆𝑆2𝐷𝐷(𝑥𝑥,𝑦𝑦) 

Furthermore, since convolution is linear, the following is also true: 

𝐼𝐼𝑆𝑆𝑃𝑃,𝐴𝐴𝐴𝐴 + 𝐼𝐼𝑆𝑆𝑃𝑃,𝐷𝐷𝐷𝐷 = 𝐼𝐼𝑆𝑆𝑃𝑃  

where 𝐼𝐼𝑆𝑆𝑃𝑃,𝐴𝐴𝐴𝐴, 𝐼𝐼𝑆𝑆𝑃𝑃,𝐷𝐷𝐷𝐷 and 𝐼𝐼𝑆𝑆𝑃𝑃  are the photocurrent patterns arising from 𝑆𝑆𝐴𝐴𝐴𝐴, 𝑆𝑆𝐷𝐷𝐷𝐷 and 𝑆𝑆2𝐷𝐷 

respectively. 

Figure 4.20 shows the Seebeck coefficient and photocurrent patterns arising from the 

profiles calculated above. We see that 𝐼𝐼𝑆𝑆𝑃𝑃,𝐴𝐴𝐴𝐴 is simply a series of dipoles centered at the AA sites 

and does not resemble the pattern observed in the experiment. At the same time, 𝐼𝐼𝑆𝑆𝑃𝑃,𝐷𝐷𝐷𝐷 reproduces 

both the meandering pattern as well as the fine features at the domain walls. The spatial patterns 
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in the sum 𝐼𝐼𝑆𝑆𝑃𝑃  are only slight modifications to 𝐼𝐼𝑆𝑆𝑃𝑃,𝐷𝐷𝐷𝐷. Therefore, we conclude that the 1D Seebeck 

coefficient variation across the domain wall is dominant in explaining the observed experimental 

pattern, thus justifying the use of the superposition model. 

 

 

Figure 4.20 | Relative importance of the AA sites and the domain walls to the calculated 

photocurrent pattern. (A) Seebeck coefficient of the AA sites only 𝑆𝑆𝐴𝐴𝐴𝐴 (B) Seebeck coefficient of 

the domain walls only 𝑆𝑆𝐷𝐷𝐷𝐷 (C) Total Seebeck coefficient calculated with the superposition model 

𝑆𝑆2𝐷𝐷. (D – F) Calculated photocurrent patterns for the Seebeck coefficients in (A – C). Scale bars 

500nm. 
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Chapter 5: Nano-optics compatible top gates 

5.1 Introduction 

Graphene-based heterostructures display a variety of phenomena that are strongly tunable 

by electrostatic local gates. Monolayer graphene (MLG) exhibits tunable surface plasmon 

polaritons, as revealed by scanning nano-infrared experiments. In bilayer graphene (BLG), an 

electronic gap is induced by a perpendicular displacement field. Gapped BLG is predicted to 

display unusual effects such as plasmon amplification and domain wall plasmons with significantly 

larger lifetime than MLG. Furthermore, a variety of correlated electronic phases highly sensitive to 

displacement fields have been observed in twisted graphene structures. However, applying 

perpendicular displacement fields in nano-infrared experiments has only recently become possible 

(1). In this work, we fully characterize two approaches to realizing nano-optics compatible top-

gates: bilayer MoS2 and MLG. We perform nano-infrared imaging on both types of structures and 

evaluate their strengths and weaknesses. Our work paves the way for comprehensive near-field 

experiments of correlated phenomena and plasmonic effects in graphene-based heterostructures. 

Graphene-based van der Waals (vdW) heterostructures display a variety of phenomena 

including superior plasmonic properties (38, 48, 49, 65), tunable band structures (13, 14, 88), 

topological edge states (27, 28, 32), and correlated phases such as superconductivity (18, 19). This 

large variety of electronic phases arises because the properties of graphene are strongly tunable by 

electrostatic gates. The optical excitations corresponding to these phases lie in the infrared range 

of the electromagnetic spectrum (7), where the wavelength of light, 𝜆𝜆0, ranges from 1µm to 100µm. 

Probing such heterostructures with conventional far-field optical experiments is challenging 

because of their limited lateral dimensions compared to 𝜆𝜆0. However, tip-based scanning nano-
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infrared experiments can overcome the diffraction limit and achieve a spatial resolution better than 

10nm (37). 

 Nano-infrared experiments have established monolayer graphene (MLG) as an excellent 

platform for plasmonics because of a large confinement ratio 𝜆𝜆0/𝜆𝜆𝑝𝑝 (𝜆𝜆𝑝𝑝 is the plasmon wavelength) 

(44, 45, 65), tunability with an external gate (48, 49) and long lifetimes for the SPPs approaching 2 

ps (38, 47). While MLG is well studied, the plasmonic properties of bilayer graphene are relatively 

unexplored (71). When bilayer graphene is gapped and the Fermi level lies in the gap, exotic 

plasmonic phenomena are predicted to occur. Gapped BLG under photoexcitation is predicted to 

amplify SPPs (146) while domain wall solitons in gapped BLG could host one-dimensional SPPs 

with lifetimes approaching 102 ps (50). 

Nano-infrared experiments have also begun to probe multilayer graphene-based Moiré 

systems that are known to host correlated electronic phenomena such as twisted bilayer graphene 

(TBG) (18), twisted trilayer graphene (TTG) (147) and twisted double bilayer graphene (TDBG) 

(148, 149). The electronic properties of all these systems are strongly sensitive to perpendicular 

displacement field. For example, the correlated insulator phases in TTG and TDBG appear only 

for a limited range of displacement fields (147, 148). 
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Figure 5.1 | Nano-optics measurements on MoS2-gated monolayer graphene. (A) Schematic of 

our nano-infrared experiment and our device. Bilayer MoS2 is contacted by Ti/Au from above 

while the graphene has a side contact made of Cr/Au. (B) Two-dimensional image of the nano-

infrared amplitude 𝑠𝑠 over our device for 𝑉𝑉𝑏𝑏𝑔𝑔 = +80V and 𝑉𝑉𝑡𝑡𝑔𝑔 = 0V. The edges of MLG and MoS2 

are represented by magenta dashed and green dotted line represents respectively. (C) Line profiles 

of the nano-infrared amplitude 𝑠𝑠 across a graphene edge showing plasmon polaritons. Black 

dashed lines represent fits to a damped oscillations model (Section 5.5.3). (D) Calculated imaginary 

part of the reflection coefficient Im(𝑟𝑟𝑆𝑆) matching the two experimental heterostructures: (D) 

BN/MLG/BN/SiO2 (E) MoS2/BN/MLG/BN/SiO2. The bright contour of maximal values 

corresponds to the plasmon mode. The circles in (D) and (E) correspond to experimental data 

extracted from panel (C) (Section 5.5.3). 

 

In transport experiments, perpendicular displacement field can be introduced using an 

evaporated metal layer or a graphite layer as a top-gate in conjunction with a back-gate. While 
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transport (9) and some far-field optical experiments (10, 150, 151) can be performed on such 

structures, they are incompatible with nano-infrared experiments for multiple reasons. First, such 

layers are relatively thick (tens of nm) which make the underlying graphene layer inaccessible to 

nano-optics experiments. When the layers are made thinner, the presence of a high density of high 

mobility free carriers leads to plasmonic effects in the top-gate which modifies and obscures the 

behavior of the underlying graphene layer. 

Recent work has shown that MLG could be used as a top gate to study Moiré patterns in 

vdW heterostructures (152). However, the capabilities and limitations of the top gate were not 

fully explored. While Ref (152) showed that two-dimensional domains in a Moiré pattern could 

be visualized through a MLG top gate, it’s not yet known if the plasmonic phenomena in the 

underlying graphene layer and one-dimensional features such as domain walls in BLG can be 

resolved. In this work, we demonstrate and fully characterize two approaches for nano-optics 

compatible top gates: bilayer MoS2 and MLG. We are able to visualize the plasmons in the MLG 

and TBG layers underneath the MoS2 top-gate. We further demonstrate a depletion of the carrier 

density of the underlying graphene layers with the top-gate through measurements of the 

plasmon wavelength and nano-infrared scattering amplitude. We then explore the use of a MLG 

layer as the top-gate for BLG. The doped MLG layer is a robust top-gate, but has strong optical 

response at mid-infrared frequencies of its own. We therefore explore the possibility of 

selectively probing the underlying BLG through nano-photocurrent imaging and are able to 

visualize domain walls in the BLG layer. Our work paves the way for realization of fully tunable 

vdW devices compatible with nano-optics experiments. 
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Figure 5.2 | Carrier density modulation in monolayer graphene with MoS2 top-gate. (A) Line 

profiles of the nano-infrared phase 𝜙𝜙 for various values of 𝑉𝑉𝑡𝑡𝑔𝑔 at 𝑉𝑉𝑏𝑏𝑔𝑔 = +80V, showing a clear 

change in the plasmon wavelength. The data is scaled and shifted for clarity. Dashed lines follow 

the plasmonic peaks and are used to extract 𝜆𝜆𝑝𝑝. (B) Plasmon wavelength  as a function of the top-

gate voltage 𝑉𝑉𝑡𝑡𝑔𝑔. Circles represent 𝑉𝑉𝑡𝑡𝑔𝑔 ≤ 0V and asterisks represent 𝑉𝑉𝑡𝑡𝑔𝑔 > 0V. Inset shows the 

behavior of the MoS2 top-gate for various 𝑉𝑉𝑡𝑡𝑔𝑔 and 𝑉𝑉𝑏𝑏𝑔𝑔 values. The top-gate is most effective in 

one of the four quadrants and its performance decays quickly in other quadrants. (C) 𝜆𝜆𝑝𝑝 as a 

function of the estimated carrier density in the graphene layer 𝑛𝑛. The data points for 𝑉𝑉𝑡𝑡𝑔𝑔 > 0V 

cluster together because the top-gate is ineffective (described in text). 

 

5.2 Strengths and weaknesses of a MoS2 top gate 

Figure 5.1(A) shows a schematic of our experimental setup. Our first device consists of 

monolayer graphene encapsulated between hexagonal boron nitride (hBN) layers. The thickness 

of the top hBN layer is kept small (2 nm) to allow optical near-field access to the underlying 

graphene layer. A bilayer of MoS2 is then placed on the top hBN layer for use as a top-gate while a 

doped silicon layer underneath the heterostructure serves as the bottom-gate. We chose MoS2 

because it is expected to be transparent to mid-infrared light. We study this device using a scanning 
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nano-infrared microscope where incident light from a quantum cascade laser is focused onto the 

apex of a sharp metallic tip. We used light of frequency 𝜔𝜔 = 1/𝜆𝜆0 = 905 cm-1 for all experiments 

in this manuscript. The amplitude 𝑠𝑠 and phase 𝜙𝜙 of the scattered light are detected with an 

interferometric method (153). The sharpness of the tip provides the momentum necessary to 

launch SPPs which propagate radially outward from the tip. When the SPPs encounter a physical 

(48, 49) or electronic (39) boundary, they are reflected and form a standing wave pattern that we 

directly visualize.  

Figure 5.1(B) shows a two-dimensional map of the nano-infrared amplitude 𝑠𝑠 measured 

on our device with 𝑉𝑉𝑏𝑏𝑔𝑔 = +80V and 𝑉𝑉𝑡𝑡𝑔𝑔 = 0V. The green dotted line marks the edge of the MoS2 

layer such that the area above the line does not contain MoS2. We observe clear fringes parallel to 

the edges of the MLG (marked by magenta dashed lines) throughout the image. These fringes 

confirm that we are able to launch and image SPPs in the MLG layer even when the MLG is 

underneath MoS2. 

A comparison of the fringes above and below the MoS2 boundary in Fig 5.1(B) indicates 

that the plasmon wavelength is smaller in the region with MoS2. In Fig 5.1(C), we plot the line 

profiles extracted across the graphene edge from both regions. The line profiles confirm that the 

plasmon wavelength is reduced to 138 nm under the MoS2 layer (blue line in Fig 5.1(C)) compared 

to 177 nm without MoS2 (orange line in Fig 5.1(C)). This reduction is due to the large static 

dielectric constant of MoS2 and the resulting screening. This change in plasmon wavelength is 

consistent with the calculated change in plasmon dispersion (Fig 5.1(D) and 5.1(E)). 

Figure 5.2 demonstrates the tuning of carrier density in the MLG layer with the MoS2 top-

gate. Figure 5.2(A) shows line-profiles of the nano-infrared phase 𝜙𝜙 for different values of top-gate 

bias 𝑉𝑉𝑡𝑡𝑔𝑔 for a fixed value of back-gate bias 𝑉𝑉𝑏𝑏𝑔𝑔 = +80V. We observe a clear change in the plasmon 
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wavelength as 𝑉𝑉𝑡𝑡𝑔𝑔 is changed. At negative values of 𝑉𝑉𝑡𝑡𝑔𝑔, we observe a decrease in the plasmon 

wavelength which is consistent with a depletion of the carrier density in the graphene layer. When 

𝑉𝑉𝑡𝑡𝑔𝑔 is tuned to +0.3V, we observe an increase in 𝜆𝜆𝑝𝑝. But a further increase in 𝑉𝑉𝑡𝑡𝑔𝑔 to +0.5V does 

not change 𝜆𝜆𝑝𝑝, indicating that the carrier density in MLG does not change (Figure 5.2(B) and 

5.2(C)). This limitation is the result of a pn-junction forming in the MoS2 layer as described below. 

Taken together, our results confirm that we are able to deplete the carrier density in the graphene 

layer which is necessary for realizing gapped BLG. 

We now turn to the BLG region of our heterostructure that is also covered by the MoS2 

top-gate. The BLG in our heterostructure was produced by a ‘tear-and-stack’ technique (Section 

5.51) which resulted in a small twist angle (estimated to be ~0.02o) between the layers and a large 

Moiré pattern. Atomic relaxation leads to the formation of larger domains of Bernal bilayer 

graphene separated by domain walls (26) that host topological states (27, 28, 32). The change in 

optical conductivity arising from the topological states reflects plasmon polaritons leading to 

fringes in nano-infrared experiments (Refs (34, 94), Chapter 2). Changing the carrier density and 

interlayer bias across the BLG changes the optical conductivity across the domain wall and 

modifies the fringe pattern (34). Figure 5.3(B) shows the nano-infrared amplitude over a region 

containing several domain walls for 𝑉𝑉𝑏𝑏𝑔𝑔 = +80V and 𝑉𝑉𝑡𝑡𝑔𝑔 = 0V. We observe features in the 

amplitude that correspond to plasmons reflecting off the domain walls (Refs (77, 94), Chapter 2). 

As we increase 𝑉𝑉𝑡𝑡𝑔𝑔, we observe a clear change in the plasmonic pattern that confirms the changing 

carrier density and interlayer bias in the BLG layer. By demonstrating dual-gating and observing 

propagation of plasmons, we have thus shown the feasibility of performing nano-infrared studies 

of a dual gated system using this approach. 
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Figure 5.3 | Demonstration of top-gating effect in bilayer graphene domain walls. (A) 

Schematic of the heterostructure. (B, C, D) Nano-infrared amplitude image of domain walls in 

BLG for three different top-gate voltages with 𝑉𝑉𝑇𝑇𝐺𝐺 = +80V. Scale bar 400nm. 

 

Next, we discuss the limitations of the TMD top-gate. First, we consider the performance 

of the top-gate at a negative 𝑉𝑉𝑏𝑏𝑔𝑔. Because of the high work function of MoS2, evaporated metals 

typically make n-type contact to MoS2
 (154). The geometry of our device is such that the titanium 

metal contacts to the MoS2 lie outside the graphene region (Fig 5.1(A)). Therefore the contact 

resistance at the Ti/MoS2 layer depends only on 𝑉𝑉𝑏𝑏𝑔𝑔. At a large negative 𝑉𝑉𝑏𝑏𝑔𝑔, the Schottky barrier 

at the Ti/MoS2 junction is too large and renders the top-gate ineffective. Therefore, unless doped 

by local gates (155), the MoS2 top-gate is only functional for positive 𝑉𝑉𝑏𝑏𝑔𝑔 where n-type carriers are 

injected into the MoS2 layer. 

At a fixed, positive 𝑉𝑉𝑏𝑏𝑔𝑔, the region by the contacts remains n-doped and the application of 

𝑉𝑉𝑡𝑡𝑔𝑔 starts to change the carrier density in the MoS2 region directly above the graphene layer. When 

𝑉𝑉𝑡𝑡𝑔𝑔 is negative, the carriers in the MoS2 layer are all n-type. However, as 𝑉𝑉𝑡𝑡𝑔𝑔 becomes positive, the 

MoS2 region above the graphene becomes hole-like. Since the carriers close to the contacts remain 

electron-like, a pn-junction forms in the MoS2 layer along the graphene edge. This pn-junction 

isolates the Ti contacts from the MoS2 region above the graphene layer and causes the top-gate to 
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become ineffective. Taking the effects of the Schottky barrier and the pn-junction together, we 

conclude that the top-gate is most effective only in one of the four quadrants in the 𝑉𝑉𝑡𝑡𝑔𝑔 − 𝑉𝑉𝑏𝑏𝑔𝑔 plane 

and its performance decays quickly in the other quadrants, as illustrated in the inset of Fig 5.2(B). 

 

5.3 Strengths and weaknesses of a monolayer graphene top gate 

To achieve full control over the properties of BLG, we could consider other materials as a 

top-gate. While a p-type TMD such as WS2 can lead to a top-gate that is functional at negative 𝑉𝑉𝑏𝑏𝑔𝑔, 

the pn-junction limitation would still restrict its functionality to just one quadrant in the 𝑉𝑉𝑏𝑏𝑔𝑔 −

𝑉𝑉𝑡𝑡𝑔𝑔 plane. This limitation arises directly because of the electronic bandgap and therefore would be 

present for any semiconductor. Only a gapless ambipolar material, such as monolayer graphene, 

can overcome this limitation. 

We now explore the possibility of using monolayer graphene (MLG) as a top-gate for BLG. 

The ambipolar nature of MLG means that the contacts do not restrict the range of operational gate 

voltages. However, MLG has a strong optical response of its own in mid-infrared frequencies. At 

the same time, if the Fermi energy in the top gate layer is very small, interband transitions in the 

top gate layer will lead to an increased damping that can obscure the plasmonic features in nano-

infrared imaging (Section 5.5.4.1). Therefore, we also explored the nano-photocurrent technique 

which can selectively probe the underlying BLG layer. 
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Figure 5.4 | Monolayer graphene as a top-gate for domain walls in bilayer graphene. (A) 

Schematic of the heterostructure (B, C, D) Nano-photocurrent images for three different 𝑉𝑉𝑡𝑡𝑔𝑔 

showing domain walls in the underlying bilayer graphene. (E) Nano-infrared amplitude image at 

𝑉𝑉𝑡𝑡𝑔𝑔 = 0.7V. Black dashed lines in (B-D) and yellow dashed line in (E) correspond to the boundary 

of the top-gated region. Grey solid lines in (C) indicate the domain walls in BLG. Scale bar 1µm. 

 

Figure 5.4(A) shows a schematic of our heterostructure with a MLG top gate. Figure 5.4(E) 

shows the nano-infrared amplitude image of our device with 𝑉𝑉𝑏𝑏𝑔𝑔 = 0V and 𝑉𝑉𝑡𝑡𝑔𝑔 = +0.7V. The 

yellow dashed line indicates the boundary of the MLG top gate. We observe a nano-infrared 

contrast indicating that the top gate is active but we see no other features, most likely because the 

carrier density in the bilayer graphene is too low (Section 5.5.1.3). Figure 5.4 (A-D) shows the 

results of nano-photocurrent experiments (4) at different 𝑉𝑉𝑡𝑡𝑔𝑔. As 𝑉𝑉𝑡𝑡𝑔𝑔 is increased from zero, the 

nano-photocurrent begins to resemble the photocurrent profiles seen in other twisted BLG 

heterostructures (Refs (156, 157), Chapter 4) and are known to arise from domain walls. Based on 

the periodicity of the Moiré pattern, we estimate a twist angle of ~0.1o. The irregularity of the 

domain wall pattern in Fig 5.4 in comparison to Fig 5.3 is due to strain accumulated during the 
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fabrication process. These results demonstrate that we are able to resolve the domain wall pattern 

in nano-photocurrent through a doped MLG top gate. 

 

5.4 Direct comparison between MoS2 and monolayer graphene top gates 

Finally, we directly compare the properties of MLG and bilayer MoS2 top gates for nano-

infrared experiments with the following hypothetical scenario. We consider an encapsulated 

heterostructure of monolayer graphene with a carrier density of 𝑛𝑛 = 6 ⋅ 1012cm−2 with either a 

MLG top gate (Fig. 5.5(A)) or a TMD top gate (Fig. 5.5(B)). We then vary the carrier concentration 

only in the top gate to observe how strongly the top gate modifies the behavior of the underlying 

graphene layer. The plasmonic dispersions in both cases are shown in Figure 5.5. The dispersion 

changes significantly with a MLG top gate while it remains mostly unchanged in case of the TMD 

top gate. The large change in the dispersion with the MLG top gate is due to strong hybridization 

between the plasmonic modes in the two graphene layers (158–160). The smaller change in 

dispersion with a TMD top gate demonstrates that the hybridization of the plasmonic modes is 

negligible with a TMD top gate. The thickness of the TMD top gate leads to a small but significant 

effect on the plasmonic dispersion, as discussed in Section 5.5.5. These results suggest that a TMD 

top gate allows direct access to the plasmonic phenomena in the underlying graphene layer in 

nano-infrared experiments with minimal obscuring. 

In conclusion, our results demonstrate two near-field compatible top gates for BLG. With 

MoS2, we were able to study plasmons through scattering nano-infrared experiments and 

demonstrate the depletion of carriers in the underlying graphene layers. With a MLG top gate, we 

were able to visualize the domain walls in the underlying BLG through nano-photocurrent 



 

107 
 

experiments. Our work paves the way for exploring the plasmonic properties of gapped bilayer 

graphene with scanning nano-infrared and nano-photocurrent experiments. 

 

 

Figure 5.5 | Direct comparison between the MLG and TMD top gates. (A) Change in the 

dispersion of the plasmonic mode of the heterostructure as the carrier density in the top gate is 

varied for a MLG top gate. (B) Similar plot as (A) for bilayer MoS2 top gate. The thicknesses of the 

top and bottom hBN are 5nm and 30nm respectively and the underlying MLG layer is doped to 

𝑛𝑛 = 6 ⋅ 1012cm−2. 
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5.5 Supplementary material 

5.5.1 Materials and Methods 

5.5.1.1 Device fabrication 

The results shown in Figs 5.1-5.3 were obtained from a MoS2 top-gated device (Device 1) 

consisting of graphene layers encapsulated in hexagonal boron nitride with a MoS2 layer on top. 

The stack was fabricated using the dry transfer method. A poly(bisphenol A carbonate) (PC) 

coated on a stamp made of transparent elastomer polydimethylsiloxane (PDMS). The two 

graphene layers to form the bilayer graphene were assembled by tearing a large single layer of 

graphene and stacking them together. The inherent strain in this process results in one of the layers 

twisting slightly relative to the other layer and leads to the formation of domain walls (26). The 

contacts to the TMD layer were made of titanium while side contacts (161) to the graphene layer 

were made of chromium and gold. 

The MLG top-gated device (Device 2) was also fabricated with the dry transfer method but 

with a poly(propylene carbonate) (PPC) coated stamp. The heterostructure was fabricated in the 

reverse order so that the MLG top-gate was not contaminated by contact with the PPC polymer 

and flipped onto a SiO2/Si chip. After flipping, the heterostructure was annealed in vacuum to 

remove the PPC residue. Electrical contacts to the graphene layers were made with chromium and 

gold. 

The results shown in Fig 5.14 were obtained from another MoS2 top-gated device (Device 

3) that was also fabricated with the dry transfer method. 
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5.5.1.2 Plasmon wavelength and dispersion calculations 

The dielectric constants for MoS2, hBN, and SiO2 used in the reflection coefficient 

calculations of Fig 5.1(D), 5.1(E), and the rest of the manuscript were obtained from Refs (162), 

(132), and (163) respectively. The plasmon wavelength used to plot the crosses was determined by 

the spacing between the fringes in the spatial profiles of the near-field phase (Fig 5.2(A)). 

For the calculations in Figure 5.5, we assumed that the dielectric properties of a doped MoS2 

layer can be described by a Drude model, 

𝜖𝜖 = 𝜖𝜖∞ +
𝜔𝜔𝑝𝑝2

𝜔𝜔2 − 𝑖𝑖𝑖𝑖𝜔𝜔
 

𝜔𝜔𝑝𝑝2 =
𝑛𝑛𝑒𝑒2

𝐼𝐼∗𝜖𝜖∞
 

where 𝜖𝜖∞ and 𝜖𝜖0 are the high-frequency and low-frequency dielectric constants, 𝜔𝜔𝑝𝑝 is the plasma 

frequency, 𝑖𝑖 is the damping, 𝑛𝑛 is the carrier density and 𝐼𝐼∗ is the effective mass of the carriers and 

𝑒𝑒 is the electron charge. We obtained values for 𝜖𝜖∞ from Ref (162): along ab-plane 𝜖𝜖∞ = 15.2 and 

along the c-axis 𝜖𝜖∞ = 6.2. The band structure of TMDs is anisotropic with the out-of-plane 

effective mass expected to be smaller than the in-plane effective mass but is not known accurately. 

Here, we assumed that the effective mass 𝐼𝐼∗was isotropic as a worst case scenario and equal to the 

measured in-plane effective mass 𝐼𝐼∗ = 0.45 𝐼𝐼0 (164), , where 𝐼𝐼0 is the free electron mass. The 

plasmon dispersion is insensitive to 𝑖𝑖 and we used 𝑖𝑖 = 300cm−1, based on Ref (165). 
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5.5.1.3 Bilayer graphene parameter estimates 

 

Figure 5.6 | Band structure of bilayer graphene for different displacement fields. (A) Schematic 

of bilayer graphene with top and bottom displacement fields, 𝐷𝐷𝑡𝑡 and 𝐷𝐷𝑏𝑏, arising from the top and 

bottom gates. (B) Schematic band structures for various combinations of 𝐷𝐷𝑏𝑏 and 𝐷𝐷𝑡𝑡. The bandgap, 

represented by Δ, is determined by 𝐷𝐷� = (𝐷𝐷𝑏𝑏 + 𝐷𝐷𝑡𝑡)/2. 

 

In this section, we calculate the Fermi energy and interlayer bias of bilayer graphene for the 

heterostructures considered in this work. The top and bottom gates produce displacement fields 

above and below the graphene layer given by 𝐷𝐷𝑡𝑡 = 𝜖𝜖𝑡𝑡𝑉𝑉𝑡𝑡𝑔𝑔/𝑑𝑑𝑡𝑡 and 𝐷𝐷𝑏𝑏 = 𝜖𝜖𝑏𝑏𝑉𝑉𝑏𝑏𝑔𝑔/𝑑𝑑𝑏𝑏 where 𝜖𝜖𝑡𝑡, 𝜖𝜖𝑏𝑏 and 

𝑑𝑑𝑡𝑡, 𝑑𝑑𝑏𝑏 are the dielectric constant and thickness of the top and bottom gate dielectrics respectively 

(Fig 5.6(a)). The band structure is affected by a combination of the two displacement fields, as 

shown schematically in Fig 5.6(b). The carrier density in the graphene layer, 𝑛𝑛, is determined by 

the difference 𝐷𝐷𝑏𝑏 − 𝐷𝐷𝑡𝑡 and the band gap Δ is determined by 𝐷𝐷� = (𝐷𝐷𝑏𝑏 + 𝐷𝐷𝑡𝑡)/2 (9, 10). We used 

Ref (10) to convert 𝐷𝐷� to Δ and computed the Fermi energy 𝐸𝐸𝐹𝐹 by varying it until the carrier density 

computed with a tight binding model (34) matched the desired carrier density. The results are 

summarized in Table 5.1. 
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𝑛𝑛 as a function of 𝐷𝐷𝑏𝑏 − 𝐷𝐷𝑡𝑡 𝑛𝑛 =
𝜖𝜖0
𝑒𝑒

(𝐷𝐷𝑏𝑏 − 𝐷𝐷𝑡𝑡) ∗ 1 ⋅ 105 

𝑉𝑉𝑖𝑖 as a function of  𝐷𝐷� Δ = 105 𝐷𝐷� + 11.1 𝐷𝐷�2 − 6.36 𝐷𝐷�3(based on Ref (10)) 

𝐸𝐸𝐹𝐹 as a function of 𝑛𝑛 𝐸𝐸𝐹𝐹 = 1.97 ⋅ 10−14 𝑛𝑛 − 5.32 ⋅ 10−28𝑛𝑛2 + 1.00 ⋅ 10−41 𝑛𝑛3 

(based on the tight binding model of Ref (34)) 

 

Table 5.1 | Polynomial fits for calculating the parameters of BLG for a set of gate voltages. 𝐷𝐷𝑏𝑏, 

𝐷𝐷𝑡𝑡 and 𝐷𝐷� are in units of V/nm, 𝑛𝑛 is in units of cm−2, and Δ and 𝐸𝐸𝐹𝐹 are in units of meV. 

 

 The gate voltages used in Figures 5.4(D) and 5.4(E) correspond to 𝐷𝐷𝑡𝑡 = 0.4 V/nm and 

𝐷𝐷𝑏𝑏 = 0. Based on the fits in Table 5.1, we see that the corresponding BLG parameters are Δ =

21.4 meV and 𝑛𝑛 = 2.21 ⋅ 1012 cm−2. These values correspond to a Fermi energy 𝐸𝐸𝐹𝐹 = 41 meV. 

Given that our probing energy 𝜔𝜔 = 905 cm−1 is equivalent to 112 meV, the Fermi energy is too 

low to prevent interband transitions which occur at frequencies 𝜔𝜔 > 2𝐸𝐸𝐹𝐹. Therefore, we cannot 

exclude the possibility that the reason we see no nano-infrared contrast from the domain walls in 

Figure 5.4(E) is because of the increased damping in the BLG layer. 
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5.5.2 Nano-infrared images at different top-gate voltages 

 

Figure 5.7 | Nano-infrared images of monolayer graphene (MLG) at 𝑽𝑽𝒑𝒑𝒃𝒃 = +𝟖𝟖𝟗𝟗𝐕𝐕 and various 

values of 𝑽𝑽𝒕𝒕𝒃𝒃. The images on the left are the nano-infrared amplitude 𝑠𝑠 while the images on the 

right are of the nano-infrared phase 𝜙𝜙. The magenta lines represent the physical boundary of the 

MLG. The color bar limits for the amplitude images are identical for all gate voltages. The variation 

in the nano-infrared amplitude is consistent with a decrease (increase) of the carrier concentration 

as 𝑉𝑉𝑡𝑡𝑔𝑔 is decreased (increased) (38). 

 

5.5.3 Line profile fits using the damped oscillations model 

The nano-infrared amplitude line profiles were fit using the damped oscillations model 

(47): 

𝑠𝑠 =
cos(2𝑞𝑞𝑥𝑥) exp(−2𝑞𝑞𝑖𝑖𝑥𝑥)

√𝑥𝑥
+ 𝛼𝛼 

cos(𝑞𝑞𝑥𝑥 + 𝜙𝜙) exp(−𝑞𝑞𝑖𝑖𝑥𝑥 + 𝜙𝜙)
𝑥𝑥

. 
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Here, the first term represents plasmons that are launched by the tip and reflected by the graphene 

edge and the second term represents the plasmons that launched by the edge. The edge is assumed 

to be located at located at 𝑥𝑥 = 0. 𝑞𝑞 is the plasmon momentum defined to be 𝑞𝑞 = 2𝜋𝜋
𝜆𝜆𝑢𝑢

, 𝑖𝑖 is the 

damping of the plasmonic wave, and 𝛼𝛼 and 𝜙𝜙 capture the difference in the magnitude and phase 

between the tip-launched waves and the edge-launched waves. The obtained fits are shown in 

Figure 5.7(A) and Figure 5.1(C). The parameters derived from the fits are shown in Figure 5.7(B). 

 

 

Figure 5.8 | Damped oscillations model fits for different top-gate voltages. (A) Nano-infrared 

amplitude line profiles for different top-gate voltages. (B) The plasmon wavelength 𝜆𝜆𝑝𝑝 and the 

damping 𝑖𝑖 extracted from the fits. The red asterisks correspond to the data without MoS2 (red 

curve in Figure 5.1(C)). 

 

5.5.4 Nano-infrared vs nano-photocurrent with an MLG top gate 

In this section, we explore in detail the advantages and disadvantages of nano-infrared 

imaging and nano-photocurrent techniques with a monolayer graphene (MLG) top gate. 
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5.5.4.1 Nano-infrared imaging simulations 

 

Figure 5.9 | Impact of interband transitions in MLG top gate layer on the polaritonic mode. 

Plot showing the imaginary part of the reflection coefficient Im(𝑟𝑟𝑝𝑝) for a MLG/hBN (3 

nm)/MLG/hBN (30 nm)/SiO2 heterostructure. The Fermi energies of the top and bottom graphene 

layers are set to 56 meV (equivalent to 450 cm-1) and 250 meV respectively. 

 

If the carrier density in the MLG top gate is too low, interband transitions in the MLG top 

gate can affect nano-infrared imaging experiments. Figure 5.9 shows the imaginary part of the 

reflection coefficient Im(𝑟𝑟𝑆𝑆) for a a MLG/hBN (3 nm)/MLG/hBN (30 nm)/SiO2 heterostructure. 

The Fermi energy of the bottom layer is 𝐸𝐸𝐹𝐹𝑏𝑏𝑠𝑠𝑡𝑡 = 250 meV which is sufficient to produce a strong 

plasmonic mode. The Fermi energy of the top layer is 𝐸𝐸𝐹𝐹
𝑡𝑡𝑠𝑠𝑝𝑝 = 56 meV which is equivalent in 

energy to 450cm-1. Therefore 𝜔𝜔𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡 = 2𝐸𝐸𝐹𝐹
𝑡𝑡𝑠𝑠𝑝𝑝 = 900cm−1 marks the onset of the interband 

transitions in the top gate and plasmonic mode is damped at higher energies. 

Therefore, for experiments performed at 𝜔𝜔 = 905 cm−1, the MLG top gate is not suitable 

for use in nano-infrared experiments if the Fermi energy and carrier density in the top gate are 
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below the critical values of 𝐸𝐸𝐹𝐹𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡 ~ 56 meV and 𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡 ~ 2.3 ⋅ 1011cm−2. The rather small value of 

𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡 suggests that this limitation will not be a major hindrance for practical experiments. 

 

 

Figure 5.10 | Simulation geometry and example of the calculated electric field. (A) Sketch 

showing the simplified two dimensional geometry used in our COMSOL simulations for the case 

where the tip is stationed directly above the domain wall. (B) Typical results of the COMSOL 

simulation for a heterostructure with no MLG top gate. The oscillatory features in 𝐸𝐸𝑧𝑧 correspond 

to plasmon polaritons excited by the tip. 
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Figure 5.11 | Simulations showing plasmon reflection from domain walls in bilayer graphene 

with and without MLG top gate. Each panel corresponds to a different value of 𝑤𝑤 and 𝑘𝑘, as 

indicated. The domain wall is located at the origin of the x-axis. 

 

Next, we perform simulations to assess the possibility that plasmonic modes in the 

heterostructure will be scattered by domain walls in twisted bilayer graphene (Refs (34, 94), 

Chapter 2). We use a simplified two-dimensional geometry and compute the electric field in the 

electrostatic limit using COMSOL software, as shown in Figure 5.10. We model the tip as a 

perfectly conducting hyperbola with a minimal radius of curvature of 10 nm. The graphene layers 

are modeled as 1 nm thick conducting sheets. To approximate the measured signal in nano-

infrared experiments, we average the out-of-plane electric field 𝐸𝐸𝑧𝑧 over a 4x4 nm2 area under the 

tip. We compute the electric fields for several tip positions to obtain a line profile which can be 

compared with experiment. All calculations are done at a frequency of 𝜔𝜔 = 905 cm−1. 
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The conductivity of the graphene sheets is set to the same value of 𝜎𝜎𝑇𝑇𝑀𝑀𝐺𝐺 such that the 

situation with the MLG top gate corresponds to an equal and opposite carrier density in the MLG 

and BLG layers. We adjust Im(𝜎𝜎𝑇𝑇𝑀𝑀𝐺𝐺) to obtain a plasmon wavelength of ~120 nm with no MLG 

top gate, a value that’s typically observed in experiment (34, 46, 47) and we set Im(𝜎𝜎𝑇𝑇𝑀𝑀𝐺𝐺)/

Re(𝜎𝜎𝑇𝑇𝑀𝑀𝐺𝐺) = 20 (47). In reality, the conductivity at the domain walls in BLG is anisotropic and 

displays several additional features (34). However, a rectangular wall can serve as a good 

approximation (34, 77). Therefore, we represent the domain wall as a rectangular region of width 

𝑤𝑤 and conductivity 𝜎𝜎𝐷𝐷𝐷𝐷 = 𝑘𝑘𝜎𝜎𝑇𝑇𝑀𝑀𝐺𝐺 where 𝑘𝑘 is a multiplicative factor. We assume that 𝑤𝑤 ~ 5 nm 

and 𝑘𝑘 ~ 1.5 are reasonable values based on Figure 5.10 in Ref  (34). Note that larger values of 𝑤𝑤 

and 𝑘𝑘 can only lead to stronger plasmonic reflections from the domain wall. We repeat the 

simulations with and without a MLG top gate and compare the results in Fig 5.11. 

The results in Fig 5.11 show fringes in 𝐸𝐸𝑧𝑧 as the tip is moved away from the domain wall. 

The magnitude of these oscillations is ~5% which is comparable to the experimentally observed 

change in nano-infrared signal without a MLG top gate (Refs (34, 94), Chapter 2). These factors 

taken together lead us to conclude that our 2D simulations are a good approximation to real 

experiments. Finally, the magnitude of the plasmonic reflection with the MLG top gate is 

comparable to the case without a MLG top gate for all values of 𝑤𝑤 and 𝑘𝑘 considered. Therefore, we 

conclude that domain walls in bilayer graphene could be observed underneath a MLG top gate in 

future experiments. 
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5.5.4.2 Nano-photocurrent simulations: 𝐸𝐸𝑥𝑥 at the graphene layer 

 

Figure 5.12 | In-plane electric field with a MLG top gate. (A) Two-dimensional plot of the 

absolute value of the in-plane electric field, |𝐸𝐸𝑥𝑥|. The two dashed white lines represent the two 

graphene layers. 𝐸𝐸𝐹𝐹
𝑡𝑡𝑠𝑠𝑝𝑝 = 37 meV and 𝐸𝐸𝐹𝐹𝑏𝑏𝑠𝑠𝑡𝑡 = 250 meV. (B, C) Line profiles of |𝐸𝐸𝑥𝑥| for the cases 

with and without the MLG top gate for two different 𝐸𝐸𝐹𝐹
𝑡𝑡𝑠𝑠𝑝𝑝. 𝐸𝐸𝐹𝐹𝑏𝑏𝑠𝑠𝑡𝑡 = 250 meV in all cases. 

 

Photocurrent in graphene is generated through the photothermoelectric effect (55, 58, 60). 

The absorption of incident light generates hot carriers in graphene. When the hot carriers 

encounter variations in the Seebeck coefficient, a thermoelectric voltage is generated which drives 

a current through the sample. Since the electronic conductivity of graphene is negligible in the out-

of-plane direction, the in-plane electric field determines the photocurrent response (Ref (156), 

Chapter 4). 

Here, we simulate a heterostructure with monolayer graphene with Fermi energy 𝐸𝐸𝐹𝐹,𝑏𝑏𝑠𝑠𝑡𝑡 =

250 meV. We either include or exclude a MLG top gate and compare the electric field profiles. 

Figure 5.12(A) shows the absolute value of the in-plane electric field |𝐸𝐸𝑥𝑥| and Fig 5.12(B) shows 

the line profiles at the probe graphene layer. The addition of the top gate does not significantly 

affect the in-plane electric field irrespective of its Fermi energy. Therefore, the photocurrent 

patterns produced by any Seebeck coefficient variations in the bottom graphene layer will be 
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similar to those produced by the same Seebeck coefficient variations in typical nano-photocurrent 

with no monolayer graphene top gate. These simulations establish that a monolayer graphene top 

gate can be successfully used for nano-photocurrent experiments under any circumstances. 

 

5.5.5 Thickness dependence of the MoS2 top gate 

 

Figure 5.13 | Thickness dependence of the MoS2 top gate. Change in the dispersion of the 

plasmonic mode of the heterostructure for varying carrier density in the MoS2 top gate. The 

different panels correspond to different thicknesses of MoS2. The legend corresponds to the carrier 

densities in the top gate. Panel (B) here is identical to Figure 5.5(B). 

 

In our experiments, we used a bilayer MoS2 as the top gate since it is easier to make electrical 

contact to multilayer MoS2 than monolayer MoS2 while also minimizing the thickness of the top 

gate. Here, we explore the effect of varying the MoS2 thickness using the heterostructure considered 

in Figure 5.5. Figure 5.13 shows the same plot as Figure 5.5(B) for three different MoS2 thicknesses. 

We see that the monolayer MoS2 shows the largest change in the dispersion while the trilayer MoS2 

shows the least change. Since the areal carrier density in the top gate is fixed, having more layers 
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means that the charge is spread out over a thicker layer, leading to a smaller volume carrier density 

and a smaller screening effect. 

 

5.5.6 Gating of bilayer graphene with MoS2 

 

Figure 5.14 | Gating bernal bilayer graphene with a MoS2 top-gate (Device 3). (A) – (E) Nano-

infrared amplitude images for 𝑉𝑉𝑏𝑏𝑔𝑔 = 0V various values of 𝑉𝑉𝑡𝑡𝑔𝑔. The magenta dashed lines represent 

the boundaries of the BLG layer while the blue dotted lines represent the boundary of a gold 

electrode. Scale bar 2µm. (F) Dependence of the nano-infrared amplitude of the bilayer graphene 

layer on 𝑉𝑉𝑡𝑡𝑔𝑔. The decrease in the nano-infrared amplitude as 𝑉𝑉𝑡𝑡𝑔𝑔 is increased is consistent with an 

increase in the carrier concentration in the BLG layer (38). 

 

In this section, we present nano-infrared data from another bilayer graphene device 

(Device 3) with a MoS2 top-gate. In this device, there were no domain walls. We observed a change 

in the nano-infrared signal when varying the top-gate voltage 𝑉𝑉𝑡𝑡𝑔𝑔.  
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Concluding Remarks 

The discovery of strongly correlated electronic phases in twisted bilayer graphene has led 

to an enormous interest in twisted van der Waals (vdW) heterostructures. While twisting vdW 

layers provides a new control knob and never before seen functionalities, it also leads to large 

spatial variations in the electronic properties. Scanning probe experiments are therefore necessary 

to fully understand the properties of twisted vdW heterostructures. 

In this thesis, we studied twisted bilayer graphene with two scanning probe techniques, 

nano-infrared imaging and nano-photocurrent imaging. At small twist angles, we resolved the 

spatial variations of the electronic structure occurring within a Moiré unit cell. With nano-infrared 

imaging, we showed that the periodic domain walls act as a photonic crystal for propagating 

surface plasmon polaritons (Chapter 2). Meanwhile, with nano-photocurrent experiments, we 

resolved DC Seebeck coefficient changes at the domain walls (Chapter 4). At larger twist angles, 

we mapped the twist angle variations naturally occurring in our device with a combination of 

nano-photocurrent and nano-infrared imaging (Chapter 3). Given that the properties of twisted 

bilayer graphene are strongly dependent on a perpendicular displacement field, we also 

investigated different materials for use as nano-optics compatible top gates in future experiments 

(Chapter 5). 

In conclusion, this thesis demonstrates the key role nano-optics techniques play in 

elucidating the rich physics present in twisted vdW heterostructures. 
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