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Abstract: Case isolation is a strategy with the potential to curb infectious disease epidemics.
Expressions for the stability boundary of a case isolation scheme defined through the proportion
of the infectious population that it isolates with a given delay have recently been established.
Here we quantify how this stability boundary moves when heterogeneity of the inter-individual
contact network increases, and explain the underlying mechanism through insightful examples.
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1. INTRODUCTION
1.1 Background

Early in an epidemic of a previously unknown disease,
transmitted through a previously unknown pathogen, it
can happen that existing pharmaceutical treatments are
not applicable or efficient. This was the case with COVID-
19, caused by the pathogen SARS-CoV-2. In early 2020
countries across the world experienced exponential in-
creases in detected SARS-CoV cases, hospitalizations and
ICU admittance due to COVID-19, and ultimately related
deaths. While statistics are still debated one year later, as
exemplified through Oliver (2021), it stood clear early on
that pharmaceutical treatment and clinical care would not
alone suffice to curb the epidemic outbreak.

The exponential increase of detected SARS-CoV-2 cases,
and particularly of COVID-19 related deaths, during early
2020 resulted in governments implementing schemes to
reduce the number of probable transmission events. Such
schemes are within infectious disease epidemiology referred
to as non-pharmaceutical interventions (NPIs for short),
and can be partitioned into two categories:

e Recommendations or legislation aimed at decreasing
inter-individual contact rates;

e Schemes for case isolation through testing, and pos-
sibly contact tracing.

The former includes, for example, discouraging unneces-
sary in-person interaction, banning large gatherings, clos-
ing schools or imposing societal lockdowns. The effective-
ness of such interventions is still poorly understood. In par-
ticular, we have illustrated a lack of practical identifiability
of individual NPT effectiveness from data obtained during
the first European COVID-19 wave in Soltesz et al. (2020).
This was the case despite a simplistic model formulation
and optimistic assumptions on uncertainty in data.

In light of the above, case isolation schemes have gained
attention. In contrast to NPIs aimed at reducing contact
rates in general, the case isolation schemes target reduction
of contacts involving infectious individuals, as schemati-
cally illustrated in Fig. 1. If successfully implemented, they
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Fig. 1. Schematic illustration of a case isolation scheme.
The infectious proportion of the population I is par-
titioned into one isolated (quarantined) proportion @,
and one proportion Iix. The proportion I, inter-
acts with the susceptible proportion S, and this in-
teraction is governed by the mixing parameter 5. The
transition rate from the infectious I to the removed
(recovered or deceased) proportion R is . We will
focus on analysing how the design of the case isolation
scheme that partitions I into I, and @ affects the
evolution of the epidemic.

could be the key to an open society where lockdowns are
replaced by regular testing. Under such schemes, a posi-
tive test results in case isolation. The effectiveness of the
scheme can then be further increased by complementing
systematic testing with contact tracing.

Notably, such a scheme has been demonstrated effective in,
for example, New Zealand, as described by Robert (2020).
At times when the case isolation scheme was deemed in-
sufficient, New Zealand authorities instead enforced strict
societal lockdowns.

The question we consider here is under what circumstances
a case isolation scheme alone is sufficient to stabilize the
epidemiological trajectory. We first derive criteria for an
idealized case of a homogeneously interacting population,
and then investigate how interaction heterogeneities affect
these criteria.

1.2 Preliminaries

We consider a closed population. This is an optimistic ap-
proximation, since there will be no import cases within the
model. The population is partitioned into susceptibles, in-
fectious and removed (recovered and permanently immune
or deceased) proportions. Here, we will not distinguish
between being infected and being infectious. However, the



results we are about to present can easily be extended to
cater for this distinction.

If the proportion of infectious goes to zero, the strategy has
been successful. The question we consider is how large the
infectious proportion can grow, relative to the susceptible,
in order for a case isolation strategy to remain effective.

To answer this, we consider the setting early in an epi-
demic, where the proportion of susceptibles is much larger
than the infectious and removed, respectively. This allows
us to disregard herd immunity effects. Another way to put
it is that in an interaction between two individuals where
one is infectious, the other is susceptible (with probability
one).

Furthermore, we realistically assume the considered time
window for our model to be short compared to the typical
duration of immunity. This means that we neglect any
flow from the removed to the susceptible sub-populations.
As with distinguishing between infected and infectious
individuals, introducing such reflux dynamics into the
model we propose is straightforward, should the considered
disease differ in this aspect from SARS-CoV-2.

We will focus on criteria for stabilization of the epidemic
trajectory. We will refer to a case isolation scheme as
stabilizing if it eventually empties the infectious sub-
population, without being aided by the herd immunity
effect as introduced in Topley and Wilson (1923).

Note that this stability condition does not specify per-
formance in the sense that it allows for an arbitrarily
large infectious sub-population in the transient during
which the infectious sub-population is emptied. As such,
this stability condition constitutes a bare minimum. Any
practically feasible strategy would need to fulfill it with
some performance margin, as further elaborated in Pates
et al. (2021).

Finally, we need to formalize our case isolation scheme.
Here we will utilize a simple yet versatile model that
quantifies the proportion of those infected on a given day
that is subsequently isolated by the scheme Tyclay days
later.

This can be readily re-parameterized into, for example, the
frequency with which individuals are tested, compliance to
the scheme, logistic delays and specificity of the employed
test for infection.

2. CASE ISOLATION IN HOMOGENEOUS
POPULATIONS

2.1 Fundamental limitations
Assuming that the population is large, so that quantiza-

tion effects become negligible, we can model the trajectory
of the epidemiological state through

g[8 1 0
Sor|=11|8SUI-Q)+|-1|~I, S+I+R=1. (1)
dt | g 0 1

This is a slight variant of the traditional SIR model of
Kermack and McKendrick (1927), where as usual S, T
and R denote the proportions of the population that
are susceptible, infectious and removed. The transitions
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Fig. 2. Illustration of the stability boundary for the
model in (1)-(2). The model is stable if and only
if (Ro,YT4elay) lies below the corresponding o curve.
That is, at least a proportion « of persons becoming
infectious on a particular day need to be isolated
Tyelay days later, given a natural recovery rate is

~ days™!.

between the states are governed by two rates that model
the effect of disease spread and recovery, with mixing
and recovery parameters $ and -y, respectively. Note in
particular that the mixing rate has been adjusted to
account for the effect of isolating infectious individuals.

More specifically, ) denotes the proportion of the popu-
lation that is both infectious and isolated, and the rate
that describes the spread of the disease has been modified
so that the spread is only driven by interactions between
the remaining infectious population and the susceptible
population (the SS(I — Q) term).

While simple, the formulation in (1) has a strength in
that it allows various feedback strategies for regulating
disease spread to be stated and analysed within a standard
framework. Suppose, for example, that we wish to analyse
the effectiveness of isolation schemes, in which infectious
individuals are isolated as soon as they are identified as
infectious. Arguably the simplest way to model this is
through the feedback law

Q(t) = ae_’YTdelayI(t — Tdelay)~ (2)

In words this equation states that the isolated population
at time t is equal to some proportion 0 < a < 1 of
the infectious population Tyelay days in the past L. This
captures to a first approximation the two most important
features of a case isolation scheme, namely, how quickly
infectious individuals are identified and isolated (Tqclay),
and what proportion of cases are found («).

It is important to note here that cases in this context is
equivalent to infectious individuals. This should not be
confused with detected cases. For example, a detection rate
of 80 % imposes an upper bound of @ = 0.8. Particularly,
a = 1 could only be achieved in a population where all
cases are detected and every individual complies to the
scheme.

L The e~ "Tdelay term is correcting for the fact that some of the
infectious population will have recovered over these Tqelay days
(recall that @ is the sub-population that is both infectious and
isolated).



By analysing (1)—(2) together we can begin to build our
intuition for how the isolation scheme parameters o and
Tqelay affect disease spread for a disease with parameters 3
and «y. For example (as is well known) if no isolation occurs
(o = 0), then at the start of an epidemic the infectious
population will initially grow exponentially according to
I(t) ~ eB=1t,,

where Iy is the size of the initial outbreak. A natural
question is then how large o must be (or how short
Thelay) before the period of exponential growth can be
averted. This was the question studied in (Pates et al.,
2021, §2.1.2), where it was shown that the equations (1)
(2) are locally asymptotically stable in a population in
which S > [ if and only if

«Q
ldeela <In < — ) . (3)
v 1-Ry!

In the above Ry = 3/~ is the basic reproduction number
of the disease in the absence of isolation measures.

The specific trade-off between parameters and delay im-
plied by (3) is shown in Fig. 2. This figure can be used to
quickly assess the amount of delay that can be tolerated
before instability, and hence exponential growth, occurs.

For example, with « = 0.8, Ry = 3 and v = 0.1,
parameters chosen to be representative for SARS-CoV-2,
the stability condition becomes

Tdelayv <0.18, = Tdelay < 1.8 days.

Clearly, short isolation times are essential when dealing
with an infectious disease! We also see the importance
of identifying a significant proportion of cases. By the
time o ~ 0.7 (that is, the scheme detects and isolates
70 % of the cases) exponential growth will occur even with
Tdelay = 0.

2.2 Notes on the reproduction number

The reproduction number is a common source to confu-
sion, and therefore deserves explicit attention: In general,
the reproduction number R describes the expected number
of secondary infections caused by one primary infection. It
holds that

infection contact time
x : : - — |, (4
contact time infection

p c d

where

e p € [0,1]: probability of transmission given contact
between a susceptible and infectous individual;

e c € R, : average contact rate between susceptible and
infectious individuals;

e d € R, : average duration of infectiousness.

For the homogeneous population model (1) we have that
B = pcand d = 1/v. It is also evident from (4) that
the reproduction number reveals how much an epidemic
grows, and not how fast. In order to quantify the latter,
the serial interval between infections is needed in addition.
Yet, the reproduction number is more commonly used than
the corresponding growth rate r = 8 — -+ among infectious
disease epidemiologists, which is why we have chosen to
use the former in our parameterization of fundamental
limitations.

The basic reproduction number Ry is the reproduction in
absence of a considered intervention. There is a common
misconception that for a particular pathogen Ry is a uni-
versal constant (that can be looked up in the literature).
Instead it depends on, among other time-varying parame-
ters, the virulence of the pathogen and the societal struc-
ture under consideration. For instance, a particular virus
would typically result in different Ry in a two countries,
or in a city versus a village.

If an intervention is enacted, it is instead common to
talk about the resulting effective reproduction number R,
(sometimes referred to as the time-varying reproduction
number R;), and it really only makes sense to consider Ry
in relation to a particular intervention: R = Ry in absence
of the intervention; R = R, if the intervention is enacted.

It was shown in Pates et al. (2021) that for the case
isolation scheme (2) applied to the model (1) the relation
between Ry and R, is given by

B

R. = Ry (1 — ae*“’Tdcl“*y) , Ro=-—
Y
which is less than 1 if and only if (3) holds.

3. CASE ISOLATION IN HETEROGENEOUS
POPULATIONS

3.1 Fundamental limitations

The model introduced in the previous section assumes a
homogeneously interacting population. This is clearly a
simplification. In reality, the interactions that may lead to
infection are much more complex and hard to model. The
probability to interact with someone at your workplace is
for example much higher than to interact with someone
from a remote country. There is also a time-varying
aspect. For instance, if your workplace issues a work-
from-home guideline to reduce disease transmission, your
probability to interact with someone from your workplace
will typically drop.

Numerous works have been dedicated to modelling the
associated contact network dynamics, with May (2006);
Salathé et al. (2010) and survey Nowzari et al. (2016)
constituting representative examples. The validity of such
network models is hard to verify, and the time-varying
aspects further increases the uncertainty surrounding their
accuracy. We therefore delimit ourselves to a simple but
important question: how does introduction of interaction
heterogeneity alter the requirements on our case isolation
scheme (2), expressed in terms of the isolation proportion
parameter « and associated time delay Tgclay?

To account for contact rate heterogeneity, early models of
infectious diseases (particularly STDs) in May and Ander-
son (1987); May et al. (2001) incorporated a distribution
of contact rates p, = Nj/N being the proportion of the
population of size N, who on average have k contacts
per time unit and in all other regards are homogeneous.
As in Anderson et al. (1986) the corresponding disease
dynamics of the homogeneous case generalize to

i Xip| _ |—kX O] | Xk (5)
dt | Y| | kA =] [ Ve’
where X and Y, denote the number of susceptible and
infectious individuals in partitions k£ = 1,2,...,n, respec-



tively. The parameter A = 8, kY}/ >, kN is the prob-
ability of an infection acquired from any one randomly-
chosen contact—mow more likely to come from the parti-
tion with higher contact rates.

Early on in the epidemic it holds X = Ng, which allows

the collective epidemic dynamics to be written as
Y1 Ny-1 Y1
Y, Ny -2 Ys
i | = L [12...n]—171, O
dt | - > kNE :
A

where I,, is the (n x n) identity matrix. The eigenvalues of
A now determine the trajectory of the epidemic early on.
They are given by —v and

LZMM*VZ& <02+M> -,

2k RNk 4 K
where p = >, kpi, and o = Y, k*py — p? denote the
mean and variance of the contact rates respectively. It
follows that the linearised system about the disease-free
equilibrium (X = Ny for all k) is stable if and only if

2
b (U + u) <1
Y\ p
h

As originally described in May and Anderson (1987) and
May et al. (2001), the adjustment factor » > 1 in (6) thus
increased the mixing parameter 8 = pc of (4) relative to
the homogenous case, where {¢ = p,0 = 0} = h = 1.
Since R « pc = 3, an equivalent interpretation is that the
reproduction number is increased by h.

(6)

The adjustment by the factor i remains valid under the
case isolation scheme (2), since the probability to isolate an
infectious individual is independent of the contact degree
of that individual. Consequently, the stability condition of
Theorem 2.1 in Pates et al. (2021) becomes

1 aﬁh)
Taelay < —In .
delay =y (ﬂh—v

The derivative of the upper bound on the delay with
respect to the coefficient of variation, or relative standard
deviation, ¢, = o/u is

7 [ S <Bzﬁ—hv)] TG

This implies that heterogeneity (¢, > 0) increases the up-
per bound on Tyelay if and only if the reproduction number
of the corresponding homogeneous system (¢ = ) in ab-
sence of control (2) fulfils Ry < 1/h. Sincecco >0 h > 1
this requirement implies that heterogeneity allows for a
longer Tgelay in the control law (2) only if the uncontrolled
system is already stable in the sense that Ry < 1. On the
other hand, and of larger practical importance, the upper
bound on admissible Tyc1ay decreases when heterogeneity
(cy) is increased whenever Ry > 1.

(7)

dh _
de,

In the latter case, one may ask how large the coefficient of
variation can be to allow for a positive delay and a stable
equilibrium (I, R,Q) = (0,0,0) of the linearised model
with the scaled parameter 3. That is,

0.63
0.37

Fig. 3. Illustration of maximum admissible coefficient of
variance ¢, for stabilization using the case isolation
scheme (2) early in an epidemic (when S > I).
In this example, we assume that a proportion « of
the infectious population are isolated without delay
(T4elay = 0). The figure illustrates, for different «, the
relation between the basic reproduction number Ry
of a corresponding homogeneously interacting popula-
tion (in absence of case isolation), and the admissible
¢y. The shaded curve shows what combinations of
Ry and ¢, cannot be stabilized for a« = 0.8. The
horizontal lines at ¢, = 0.37 and ¢, = 0.67 represent
bounds on ¢, for human infectious disease transmis-
sion networks reported in Salathé et al. (2010).

v Ro(]. - a) ’

1
—In (
gl
(8)
where, again, Ry is the basic reproduction number for a
corresponding homogeneously interacting population.

afh
ph—~

Ro>1,a€[0,1 1
>>0 0>1,a€[0,1) 62<

Fig. 3 illustrates this maximum allowed coefficient of
variance ¢, of the contact graph, as a function of the basic
reproduction number and proportion of cases « that are
isolated according to (2).

Revisiting the example from Sec. 2 with v+ = 0.1 and
Ry = 3, the condition (8) reveals that the maximum
coeflicient of variation for which a positive isolation delay
Tgelay > 0 is allowed evaluates as ¢, =~ 0.82. As a
reference, Salathé et al. (2010) reports lower and upper
bounds of 0.37 and 0.63 for ¢, in human infectious disease
transmission contact networks. The corresponding lines
have been added to Fig. 3 and indicate that if Ry = 3
was computed or estimated for a homogeneous population,
delay-free (Tdelay = 0) isolation of a proportion somewhere
in the range 0.6 < o < 0.8 would be required to stabilize
the epidemic under (2).

3.2 Notes on contact heterogeneity

The phenomenon of the effective mixing parameter [ in-
creasing with increased heterogeneity (quantified by the
coefficient of variation ¢,) is also the answer to the ques-
tion “Why your friends have more friends than you do”,
explained with mathematical insight in Feld (1991). The
intuition is that individuals with many contacts are more
likely to get infected, and therefore the infectious pro-
portion of the population will comprise individuals who
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Fig. 4. Simulation of 100 epidemics (grey) over an Erdé&s
Rényi graph where the mean number of connections
to the infectious (black) are shown each day. At the
beginning of the epidemic this amounts to the mean
contact degree p of the graph, but soon stabilizes
at the expectatation u + o2/p of the excess degree
distribution of the network, with o2 being the contact
degree variance of the network.

have more social contacts (higher degree) than those in
the susceptible proportion of the population.

As with friendships, the contacts considered here are
mutual, translating into an undirected network graph.
Thus, the early spread of the disease is proportional to the
mean number of contacts of a randomly chosen contact of
an infectious individual (node), given by h in (6). Treating
the network as homogeneous (¢, = 0 & h = 1) can
therefore lead to an under-estimation of the reproduction
number by disregarding the growth of the infectious sub-
population, which is fueled by highly connected individuals
that are both more likely to acquire and spread infection.

In Fig. 4 we have illustrated this effect through simulations
of the early stage of 100 epidemics on an undirected
random graph representing a population. The nodes of the
graph represent individuals; the edges contacts.

For the example in Fig. 4, we chose to generate Erdos
Rényi graphs of n = 2 - 10 nodes and M = 5 - 106
undirected edges due to their simplicity, but other types of
graph generation methods could also be used to illustrate
the phenomenon.

The epidemics were each seeded by randomly assigning 10
infectious individuals on day one. This corresponds to I =
5-107% <« § = 1 — I. The transmission probability from
(4), being the per-day probability that an edge between
one infectious and one susceptible node leads to disease
transmission, was set to p = 0.05. The recovery rate from
(1) was set to v = 0.1. Assuming independent interactions,
the probability for a susceptible to become infectious the
next day, given that it has m infectious contacts, is thus

1 _ (1 _ p)nL.

The cumulative infectious proportion was retrospectively
evaluated to satisfy I + R < 0.01 for each of the 100 sim-
ulations, validating the assumption of a fully susceptible

population (or early epidemic stage) on which the stability
analysis has been based.

In Fig. 4 the results from 100 epidemics simulations
are shown. In particular, we see the average number
of contacts of the infectious population throughout the
early stages of the epidemic. From this figure we can
clearly identify how the infectious individuals have a
higher degree of contacts than the general population of
the network. Furthermore, we can see that average number
of contacts of the infectious population tends towards the
expected value of the excess degree distribution, being the
distribution of edges from a node reached by following an
edge.

4. DISCUSSION

In Sec. 2 we characterized the stability boundary (3)
associated with the case isolation scheme (2) as a function
of the basic reproduction number Ry in absence of case
isolation, and a recovery rate -y defined through (1).

In Sec. 3 we then characterized how the stability boundary
is moved if Ry of a homogeneous population is used in (3),
when in fact the population is heterogeneous in the sense
that the coefficient of variation of the contact network c,
is positive, while the mean degree remains unchanged.

Introducing heterogeneity in this way corresponds to mul-
tiplication of the mixing parameter S in (1) with the
scaling factor h = ¢2+1. Since 3 is directly proportional to
Ry, the heterogeneity can be interpreted as increasing the
reproduction number by the corresponding factor. Note
that the same shifting applies for a population partitioned
based on heterogeneity of the infectiousness parameter p.
This makes it possible to apply the same modelling to
account for a variability in infectiousness across variants
of the considered pathogen.

Whether to multiply by the factor h before using Ry in the
analysis comes down to how Ry was estimated from data.
If it was estimated taking the heterogeneity into account
it should not be adjusted, otherwise it should.

In the heterogeneous model (5) proposed in Anderson
et al. (1986), the interaction between individuals with
many and few contacts respectively are stochastic, and
therefore do not correspond to a fixed (time-invariant)
contact graph. For the case of a fixed contact graph, the
stability bound (7) obtained for (5) would be conservative
because of the assumption that the disease can spread
to any contact of an infectious individual. In particular,
an infectious individual cannot re-infect its own infector.
Therefore, when considering epidemics on configurator
model graphs, the shift of the epidemic threshold needs

to be corrected by —1, resulting in h = "—: +p—1, as
further discussed in Newman (2018); Meyers (2007); Kiss
et al. (2017).

Relatedly, clustering of the contact network result in the
bound (7) becoming conservative. When many neighbours
in the network are shared, (e.g. as in small-world networks)
local clustering coefficients in the contact network are
high and voids the assumption that all neighbors of an
infectious node are susceptible. To analytically quantify
how local and global clustering effects affect the stability



bound of the studies case isolation schema along the
lines of Trapman (2007) requires more complex network
models. It falls outside the scope of this contribution, but
constitutes a worthwhile direction for future work.

5. CONCLUSION

While obtaining detailed graph models of (the time-
varying) human contact graphs relevant for infectious
disease transmissions is generally not tractable, control
theoretic analyses can provide qualitative, and to some
extent quantitative criteria for the feasibility of strategies
aimed at halting disease spread. This has been illustrated
here by expressing stability conditions for case isolation
schemes in homogeneous and heterogeneous populations,
as functions of fundamental epidemiological parameters.
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