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A B S T R A C T   

Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, 
soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion 
hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling charac
teristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed 
bibliometric analysis, including investigation of collaboration networks and citation patterns, should be con
ducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database 
contains information about citation characteristics and publication type. Here, we investigated the impact of the 
number of authors, the publication type and the selected journal on the number of citations. Generalized boosted 
regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion 
modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the se
lection of the soil erosion model has the largest impact on the number of publication citations, followed by the 
modelling scale and the publication’s CiteScore. Some of the other GASEMT database attributes such as model 
calibration and validation have negligible influence on the number of citations according to the BRT model. 
Although it is true that studies that conduct calibration, on average, received around 30% more citations, than 
studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a 
clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, 
soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the 
research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an 
additional focus should be given to field measurements, model calibration, performance assessment and un
certainty of modelling results. The results of this study indicate that these GASEMT database attributes had 
smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest 
that these attributes should be given additional attention by the soil erosion modelling community. This study 
provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate 
the influence of their paper.   

1. Introduction 

Systematic bibliometric analyses can be useful analytical tools to 
gain a better understanding of research patterns (e.g., journal, author, 
country) and characteristics of research fields (Wu et al., 2015). Recent 
applications have shown that such analyses can be used to recognize 
emerging topics (Small et al., 2014), study cooperation networking in 
research (Wagner et al., 2015) or gain in-depth insight into a research 

topic (Tang et al., 2020). Moreover, a joint search in the SCOPUS 
database for article titles, abstracts and keywords containing “biblio
metric analysis” or “citation analysis” in January 2021 yielded over 40, 
000 documents with a clear upwards trend in number of published items 
in the last years. 

Literature analysis as a tool is gaining popularity among interdisci
plinary academic fields such as earth sciences. For instance, Liu et al. 
(2012) performed a bibliometric study of earthquake research during 
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1900–2010, Wu et al. (2015) performed a bibliometric analysis in order 
to study global research trends in landslides during 1991–2014, and 
Emmer (2018) studied research on natural hazards worldwide during 
1900–2017. Gariano and Guzzetti (2016) reviewed published papers 
that investigated the past, current, and future (expected, projected) 
impact of climate change on landslides. Moreover, Reichenbach et al. 
(2018) conducted a critical review of statistical methods for landslide 
susceptibility modelling and associated terrain zonation. They used a 
database of 565 articles published in peer-reviewed international jour
nals from January 1983 to June 2016 and identified by a systematic 
search of the Web of Science database using a set of keywords and 
criteria as evidence. A recent bibliographic review of landslide suscep
tibility provides insights on the trends and journal performance in field 
of geomorphology (Pourghasemi et al., 2018). Therefore, these studies 
indicate that different fields that are part of the earth science field can 
gain knowledge about the field based on these kinds of analyses. 
Moreover, the analyses can also identify steps forward. 

The research topics of soil degradation and erosion in the field of 
earth sciences are studied from many points of view and are highly 
relevant to a wide audience of researchers. They range from the climate 
change perspective (Lal, 2019) to sustainable agriculture production 
(Tarolli et al., 2019) to understanding sediment transport, water fluxes 
and extreme storm events at catchment scales (Keesstra et al., 2018; 
Lizaga et al., 2019) to investigating the impact of soil erosion on 
biogeochemical cycling (Lugato et al., 2016; Quinton et al., 2010; Tan 
et al., 2020), or the modelling of soil erosion (Batista et al., 2019; Bor
relli et al., 2018; Panagos and Katsoyiannis, 2019; Ricci et al., 2018). 
Moreover, there are other emerging topics such as the use and abuse of 
biocides on soil erosion, agricultural and forest management practices to 
reduce soil erosion rates or experimental studies at small scales. A 
literature review on research trends and hotspots in soil erosion from 
1932 to 2013 was performed by Zhuang et al. (2015) using the Science 
Citation Index (SCI) database. According to this study, soil research has 
rapidly increased since 1990 with major contributions from the USA and 
Europe before 2001, and additionally from China and Australia since 
2001. They also discovered through co-citation analysis that soil erosion 
research mainly focuses on three aspects as follows: soil erosion 
modelling, soil erosion estimates using caesium-137 and the impact of 
soil erosion on the environment. Niu et al. (2014) used a keyword 
analysis to discover that “evolution”, “water”, “soil(s)", and “model” 
were consistent hotspots in sediment-related research in earth science 
during 1992–2011. To investigate how soil erosion model evaluation is 
approached in soil erosion research, Batista et al. (2019) compiled a 
database of 550 papers published between 1958 and 2018 that were 
selected by querying the Web of Science using the query “soil erosion 
model”. However, Batista et al. (2019) did not conduct a detailed bib
liometric investigation and focused on a much smaller number of papers 
than the GASEMT database (Borrelli et al., 2021) that was used in this 
study. Therefore, to extend these studies, we performed a bibliometric 
analysis based on the enhanced version of the GASEMT database (Bor
relli et al., 2021). The main goal of this paper was to investigate how soil 
erosion modelling study characteristics (i.e., study scale, mathematical 
model used, validation/calibration etc.) and related bibliometric char
acteristics (number of co-authors, country of affiliation, book chapter vs. 
journal paper, etc.) influence the impact of a given publication measured 
by the number of citations. Moreover, potential bibliometric networks 
(i.e., journals, countries) that are part of the constructed database were 
also analysed. Specifically, we evaluated the following questions:  

a) How is the number and geographic origin of the authors and the 
publication’s CiteScore related to the number of citations?  

b) Which mathematical models are widely applied and used as a 
reference when cited in the literature, and how do the other 
modelling framework characteristics affect the impact of the publi
cation as measured by the number of citations?  

c) How can a study of citation patterns and clusters help recognize 
interrelated countries and determine who the leading countries and 
leading journals are that publish research results in the soil erosion 
modelling field? 

2. Methods 

Bibliometric analyses require extensive datasets that contain suffi
cient number of records and period covered. To gain a better under
standing of the global application of soil erosion prediction models, a 
group of more than 60 soil erosion scientists from more than 20 coun
tries all around the world comprehensively reviewed relevant peer- 
reviewed research literature on soil erosion prediction modelling in 
the 1994–2018 period (Borrelli et al., 2021). As a result, the ‘Global 
Applications of Soil Erosion Modelling Tracker (GASEMT)’ database was 
created (Borrelli et al., 2021). Additional information about the con
structed database and results of the study can be found in Borrelli et al. 
(2021). GASEMT database is available to users as part of the publication 
(Borrelli et al., 2021). 

2.1. GASEMT database enhancement 

In this study, the analysis of the GASEMT database was enhanced by 
investigating the relationship between soil erosion modelling and bib
liometric characteristics. For this purpose, for the 1697 publication en
tries (3030 modelling records) that are included in the GASEMT 
database, the number of citations from the Scopus database was added. 
The number of citations indicates the citation status in September 2019 
when they were downloaded. Additionally, the Scopus CiteScore2018 
was added to the database for all sources with a CiteScore in 2018; 

CiteScore2018 =
Citations2017 + Citations2016 + Citations2015

Publications2017 + Publications2016 + Publications2015
, (1)  

where “citations” and “publications” mean the number of citations and 
citable items published in a specific year, respectively. Additionally, the 
number of authors of each publication was also added to the database. 
Moreover, for each document type (i.e., journal, conference proceeding 
or book series), the main (i.e., listed first) sub-subject area from the 
Scopus database was extracted. This, information was semi- 
automatically extracted from the Scopus database based on matching 
paper titles in the GASEMT and Scopus. 

The GASEMT database includes studies published between 1994 and 
2018. To account for the impact of the different number of years from 
the publishing date, the decision was made to use the normalized 
number of citations, which was calculated for each publication as: 

Normalized citations=
Totalnumber of citations

Number of years fromtheyear whenstudywaspublished
.

(2) 

Therefore, we have added the following attributes to GASEMT: 
CiteScore2018, total number of citations, number of authors, normalized 
citations, document type and the main Scopus sub-subject area. The 
enhanced GASEMT database including the bibliographic data is avail
able in the European Soil Data Centre (ESDAC; Panagos et al., 2012). 

2.2. Generalized boosted regression trees (BRT) 

To investigate the impact of different soil erosion modelling char
acteristics on the gained number of citations, the generalized boosted 
regression trees (BRT) model was used. This model is able to estimate 
the relative impact of different variables on the target variable. BRT is a 
machine learning tool. This model has been used successfully in 
different fields for activities such as calculating the relative impact of 
variables on evapotranspiration (Maček et al., 2018), investigating 
impact of different meteorological variables on rainfall interception 

N. Bezak et al.                                                                                                                                                                                                                                   

https://esdac.jrc.ec.europa.eu/


Environmental Research 197 (2021) 111087

4

variables (Zabret et al., 2018) or predicting topsoil organic carbon 
(Veronesi and Schillaci, 2019). A detailed description about the method 
is provided by Elith et al. (2008) and Ridgeway (2019). The BRT 
modelling was conducted using the ‘gmb’ package (Greenwell et al., 
2019) in the statistical software R (R Core Team, 2017). In our case, the 
target variable was the normalized number of citations, which was 
calculated using Eq. (2). The following variables were used as an input 
for the BRT model: number of authors, publication’s CiteScore in 2018, 
publication type, Scopus sub-subject category, and from the GASEMT 
database:  

- erosion agent (e.g., water, wind, water and wind, etc.),  
- name of the soil erosion model used, modelled period (e.g., present, 

past, future),  
- time resolution (e.g., daily, monthly, annually),  
- continent of model application,  
- modelled area (e.g., forest, arable land),  
- scale of the study (e.g., plot, hillslope, catchment),  
- type of field soil sampling, model calibration and model validation. 

For the BRT analysis, the following parameters were used: a) the 
minimum number of trees was 1,500, b) the minimum number of ob
servations in the terminal target node was 10, c) the learning rate was set 
to 0.005, d) the number of cross-validation folds was 5, and e) the 
Gaussian distribution was used as a loss function. As a result, the BRT 
model calculated the relative impact of input variables. The relative 
impact was determined by considering the number of times that the 
variable was used for splitting trees and weighted by squared 
improvement of the model as a result of the splitting procedure that was 
averaged over all of the trees (Elith et al., 2008; Friedman et al., 2000). 

2.3. Bibliometric networks 

To analyse the bibliometric networks, the VOSviewer software was 
used (Van Eck et al., 2010; van Eck and Waltman, 2010; VOSviewer, 
2019; Waltman et al., 2010). VOSviewer is a freely available software 
that can be used for visualizing bibliometric networks that include 
journals, individual publications, authors affiliations, etc. (VOSviewer, 
2019). To visualize bibliometric networks, part of the GASEMT data
base, which also appears in the Clarivate Analytics Web of Science 
database (i.e., the overlap between Scopus and Web of Science was 
approx. 70%) was used. Moreover, Schillaci et al. (2018) also found 
approximately 60% agreement between Scopus and the Web of Science 
as a result of the systematic search. The reason for selecting part of the 
GASEMT database was to take into consideration only more eminent 
publications since Scopus also covers journals that are not indexed in 
Web of Science and other document types such as conference pro
ceedings. The following analyses were conducted (VOSviewer, 2019):  

a) the citation, bibliographic coupling and co-citation analysis of 
sources (e.g., journals),  

b) the citation, co-authorship and bibliographic coupling analysis 
among countries,  

c) the citation and bibliographic coupling analysis of the most 
frequently used soil erosion models. 

Co-authorship analysis investigates the relatedness of items based on 
the number of co-authored documents (VOSviewer, 2019). Moreover, 
citation analyses define the relatedness of items based on the number of 
times they cite each other (VOSviewer, 2019). Furthermore, biblio
graphic coupling expresses the relatedness of items based on the number 
of shared references (VOSviewer, 2019). Finally, co-citation analyses 
determine the relatedness of items based on the number of times they 
are cited together (VOSviewer, 2019). The difference between biblio
graphic coupling and co-citation is that the former links two items that 
both cite the same document while the latter links two items that are 

both cited by the same document (VOSviewer, 2019). 
Full counting was used and documents with a large number of au

thors were not ignored. Full counting means that each co-authorship, co- 
citation, etc. has the same weight (VOSviewer, 2019). To improve the 
readability of network visualization, we used certain thresholds to 
remove less frequent entries (specific selected threshold values are 
mentioned in section 3). For example, in the case of co-authorship 
among countries, there were many countries with few entries that 
would worsen the readability of the network. For visualization, network 
visualization style was used where items were represented by a label and 
a circle. Moreover, the size indicated the weight of an item (i.e., the 
larger the circle, the higher the weight and vice-versa). Additionally, the 
colour of the item indicates the cluster to which the item belongs. A 
detailed description of the clustering techniques in VOSviewer is pro
vided by Waltman et al. (2010). Additionally, lines represent links 
among items. We used a maximum of 1000 lines, which means that the 
1000 strongest connections are shown (VOSviewer, 2019). Furthermore, 
the distance between items also shows their relatedness. Therefore, the 
closer the items are together, the stronger their relatedness (VOSviewer, 
2019). 

3. Results and discussion 

Using the enhanced GASEMT database and the methodology 
described in section 2, the impact of different variables on the total and 
the normalized number of citations was investigated. In section 3.1, the 
differences among different document types, the Scopus sub-subject 
categories, and the relationship between the number of authors and 
the publication’s (i.e., source) CiteScore is discussed. In the section 3.2, 
the relative impact of the different variables on the normalized number 
of citations is estimated using the BRT model. In section 3.3, a detailed 
evaluation of the most cited papers is performed and in the last section 
various characteristics of the bibliometric networks are visualized and 
discussed (section 3.4). 

3.1. Publication type, journal selection and number of author’s impact 

It is evident that most (i.e. 89%) of the soil erosion modelling papers 
that are included in the Scopus database were published in peer- 
reviewed journals (Table 1). Moreover, journal publications also 
receive, on average, a considerably larger number of citations than book 
series and conference proceedings (Table 1). Accordingly, the average 
normalized number of citations for journal publications, book series and 
conference proceedings is 2.78, 0.42 and 0.22, respectively. The mean 
number of citations of the journal articles was 5.4-fold that of book se
ries and 11.2-fold that of conference proceedings and similarly, but 
slightly more pronounced was the variation for the normalized citations 
(6.6-fold and 12.6-fold, respectively). A similar relationship was also 
observed by other researchers. For example, a difference between the 
citation rates of papers published in journals and in books or conference 
proceedings was also observed by Mikoš (2018), who studied 3426 book 
chapters from 52 landslide-related books published by Springer Nature 
from 2005 to 2018, in the earth sciences category, and he also observed 
that articles in conference proceedings were not cited as often as journal 
articles. The reported average number of citations in these 52 books was 
0.86 citations per year and chapter. 

There are 23 journals that have more than 10 papers where most of 
the articles were published in CATENA followed by journals such as 
Land Degradation & Development, Journal of Hydrology, Geo
morphology, Hydrological Processes, Environmental Earth Sciences, 
Earth Surface Processes and Landforms, Soil & Tillage Research, Geo
derma, Journal of Soil and Water Conservation, Environmental Moni
toring and Assessment, Science of the Total Environment, Transactions 
of the ASABE, Water Resources Management, Environmental Manage
ment, Journal of Hydrologic Engineering, Natural Hazards, Arabian 
Journal of Geosciences, Journal of Environmental Management, 
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Environmental Modelling & Software, International Journal of Sediment 
Research, Agriculture, Ecosystems and Environment and Hydrological 
Sciences Journal. As a first observation, soil erosion modellers publish 
their studies in a wide range of journals. 

Regarding the journals receiving the highest number of normalized 
citations, we found Science of the Total Environment, followed by 
Geomorphology, Journal of Hydrology, Land Degradation & Develop
ment, Environmental Modelling & Software and CATENA. Furthermore, 
Scopus also relates journals with primary Scopus sub-subject categories. 
Fig. 1 shows Scopus sub-subject categories where more than 50 publi
cations (per category) were found in the database. There are ten cate
gories and most of the papers were published in the “Water Science and 
Technology” (e.g., Journal of Hydrology, Hydrological Processes) and 
“Earth-Surface Processes” categories (e.g., CATENA, Geomorphology). 
These two categories had approximately 200 publications each, the 
“Geography, Planning and Development” category had approximately 
130 publications and the remaining categories had from 50 to 90 papers 
each. Fig. 1 also shows the relationship between the mean number of 
normalized citations per publication and the mean CiteScore in 2018 of 
the category where the mean was calculated considering CiteScores for 
all journals in a specific category. It is interesting to note that there is no 
clear relationship between the average category CiteScore and the mean 
normalized citations in the field of soil erosion modelling. Therefore, it 
seems that if a soil erosion modelling paper is published in a sub-subject 
category that is not a primary focus of the researchers that are pub
lishing in this field, that this kind of paper receives, on average, fewer 
citations (e.g., “General Environmental Science” sub-subject category). 
Therefore, other topics in this category seem to be more influential than 
soil erosion modelling. Additionally, articles that were published in 
journals such as SOIL that are included in the “Soil Science” category 
have, on average, fewer citations than articles included in the “Water 
Science and Technology” and “Earth-Surface Processes” categories. This 
observation is partly due to the higher visibility of a published paper in a 

more focused journal than in a general one. Researchers that publish 
their papers in SOIL journal focus on other aspects of soil erosion and not 
purely on modelling. Thus, such papers are not included in the GASEMT 
since the focus of the database is on the modelling (Borrelli et al., 2021) 
(i.e. this journal has less than 10 entries in the database). It is also true 
that the average CiteScores for these categories are relatively similar and 
range between 1.2 and 1.8. Similarly, Mikoš (2017) performed a com
parison between the top 20 journals in 2016 from the SCI-expanded 
category “Engineering, geological” and their ranking in the CiteScore 
metrics in the category “Geotechnical Engineering and Engineering 
Geology”. Using the Web of Knowledge tool Essential Science Indicators, 
the annualized expected citation rates for papers in three selected 
research fields for all years (average) were as follows: for Engineering 
6.82 citations/paper, for Geosciences 11.34 citations/paper, and for 
Multidisciplinary 13.29 citations/paper. Therefore, other scientometric 
studies have also shown that differences among scientific disciplines 
exist. 

Furthermore, the relationship between the number of citations and 
the publication name (i.e., source) from CiteScore was also analysed 
(Fig. 2). As expected, papers that are published in journals with higher 
CiteScore metrics also have, on average, more citations (Fig. 2). How
ever, this dependence is rather weak and (R2 between the normalized 
number of citations and publication name CiteScore is 0.2) yet statisti
cally significant with the selected significance level of 0.05 (p-value <
0.0001) where a value of 1 would indicate a perfect linear dependence 
between these two variables. Papers with a very high number of 
normalized citations such as Panagos et al. (2015) (i.e., the highest 
normalized number of citations) or Cerdan et al. (2010) were published 
in journals with CiteScore values in the range of 3–6 while others 
appeared in journals with high CiteScore values > 6 (Borrelli et al., 
2017; Quinton et al., 2010; Van Oost et al., 2007). Likewise, papers 
published in journals with very low impact (i.e., CiteScore below 1.5) 
did not receive more than five citations per year. Furthermore, there is 

Table 1 
Differences in the mean and percentiles (50th, 75th, 99th percentile) for the total and normalized number of citations for different publication types.  

Publication type Mean number of citations (50th, 75th, 99th 
percentile) 

Mean normalized number of citations [per year] (50th, 75th, 99th 
percentile) 

Percentage of entries in the 
database [%] 

Peer-reviewed 
journal 

25.7 (13.5, 31.3, 162) 2.78 (1,8, 3.7, 15.7) approx. 89 

Book Series 4.8 (1.5, 4.8, 31) 0.42 (0.2, 0.4, 2.5) approx. 1 
Conference 

Proceedings 
2.3 (1, 3, 17) 0.22 (0.1, 0.3, 2.3) approx. 10  

Fig. 1. Scopus sub-subject categories with more than 50 publications that are included in the GASEMT database. The x-axis shows the mean number of normalized 
citations per publication and y-axis shows mean Scopus sub-subject category CiteScore for the year 2018. Point size indicates the number of papers in per category. 
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no paper with more than 60 normalized citations per year in the ana
lysed GASEMT database (Fig. 2). Articles published in journals with a 
CiteScore between 1.5 and 3 can have either a low number or a medium 
number of normalized citations (Fig. 2). Therefore, we agree with Seglen 
(1998) that scientific papers receive their citations largely independent 
of the journals in which they appear, i.e., the journal impact is deter
mined by the articles, not vice versa. However, we found only 2 articles 
having >20 normalized citations in the Citescore range 1.5–3. Never
theless, we cannot exclude that the soil erosion modelling scientific 
community may have a prejudice against considering articles from 
journals with low CiteScores. 

For the majority of scientific disciplines, the citability of publications 
increases with the number of co-authors (e.g., Abramo and D’Angelo, 
2015). Therefore, the relationship between the number of publication 
authors and the normalized number of citations according to the Scopus 
database was investigated (Fig. 3). In general, studies on soil erosion 
modelling are typically conducted in groups of 2–6 co-authors (Fig. 3). 
Moreover, only a few papers were co-authored by more than ten re
searchers (Fig. 3). It seems that in the soil erosion modelling field, a large 
number of authors does not necessarily guarantee a large number of 
citations, and no clear relationship between the number of authors and 
citations per year could be found (Fig. 3). More specifically, the mean 
normalized number of citations per number of authors gradually in
creases from one to eight co-authors and then decreases again in case 
that only studies with 1–12 co-authors were taken into account (there 

are only few studies with more than 12 co-authors). The maximum 
number of mean normalized citations was found in publications with 8 
co-authors (i.e. on average such publication received 4.6 citations per 
year). While much smaller values can be seen for publications with one 
or two authors: 1.4 and 1.9, respectively. Furthermore, the 7 highly cited 
publications with more than 30 citations per year had between 2 and 19 
authors (i.e., Borrelli et al., 2017; Cerdan et al., 2010; Fu et al., 2011; 
Panagos et al., 2015; Quinton et al., 2010; Syvitski and Milliman, 2007; 
Van Oost et al., 2007). All other publications included in the database 
received less than 20 normalized citations per year (Fig. 3). Moreover, 
for the 30 most cited studies in GASEMT the number of authors range 
from 2 to 19 with a mean of 5.7. All single-authored articles have less 
than ten normalized citations per year (Fig. 3). 

In addition, 8.5% of the papers included in the GASEMT database 
(Borrelli et al., 2021) have not yet received any citation. This value is 
close to the value report by Van Noorden (2017) that showed that 
approximately 10% of all published papers are uncited. Moreover, 
Ioannidis et al. (2019) and Van Noorden and Singh Chawla (2019) 
pointed out that the median self-citation rate in their global database 
was approximately 12.7%. According to the GASEMT and the Web of 
Science (WoS) database, 12% of the citations were attributed to 
self-citations, which corresponds well to the median self-citation rate of 
12.7% (Ioannidis et al. (2019); Van Noorden and Singh Chawla (2019)). 
Therefore, both the non-citing papers and the self-citations of soil 
erosion modelling studies are close to the overall statistics of all papers 
published in the WoS. 

3.2. Confounding factors for the number of citations in soil erosion 
modelling 

The impact of different variables included in the enhanced GASEMT 
database (Borrelli et al., 2021) on the normalized number of citations 
was also studied. For this purpose, the boosted regression trees (BRT) 
model was applied. The variables that were included in the BRT model 
are listed in section 2. Quite surprisingly, the soil erosion model selec
tion clearly has the largest relative impact on the normalized number of 
citations. Model selection is followed by the soil erosion modelling scale, 
publication’s CiteScore, Scopus sub-subject category, continent and 
number of authors (Table 2). Other considered variables have, according 
to the results of the BRT model, no significant impact on the normalized 
number of citations (Table 2). The sum of the relative impact of the 
variables soil erosion model used, modelling scale, and publication’s 
CiteScore explained 86.9% of the total variable importance. Next, the 
sub-sections provided discussion about the impact of these variables. 
The impact of the publication’s CiteScore, Scopus sub-subject category 
and number of authors was already discussed in section 3.1. 

3.2.1. Soil erosion model 
It is evident that the largest maximum number of citations include 

studies with RUSLE, WaTEM/SEDEM and USLE applications. However, 

Fig. 2. Relationship between publication name CiteScore for the year 2018 and 
total and normalized number of citations for GASEMT database entries 
including best-fit linear regression functions models. 

Fig. 3. Relationship between the number of authors and total and normalized 
number of citations for soil erosion modelling GASEMT database entries. 

Table 2 
Relative impact of different variables on the normalized number of citations. The 
relative impact was calculated using generalized boosted regression tree (BRT) 
model (section 2.2).  

Variable Relative impact 
[%] 

Soil erosion model used 48.9 
Modelling scale 20.6 
Publication name CiteScore 17.4 
Scopus sub-subject category 9.7 
Continent 3.2 
Number of authors 0.2 
Publication type, erosion agent, modelled area, modelled period, 

model time resolution, field activity, soil sampling, model 
calibration, validation of results 

0  
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evaluating mean normalized citations, only WaTEM/SEDEM shows up 
among the top cited models, while RUSLE and USLE have considerable 
lower means, due to the high application rates with numerous low cited 
studies. There are several studies with more than 12 normalized cita
tions per year that use WaTEM/SEDEM model (Bakker et al., 2008; Feng 
et al., 2010; Quinton et al., 2010; Van Oost et al., 2000; Van Rompaey 
et al., 2005); however, all of them before 2010. The WaTEM/SEDEM is 
followed by the STREAM (e.g., Simonneaux et al., 2015), RHEM (e.g., 
Nearing et al., 2011), RUSLE2 (Sahoo et al., 2016), EROSION 3D (e.g., 
Routschek et al., 2014), EPIC (e.g., Gao et al., 2017), and PESERA (e.g., 
Kirkby et al., 2008) models. STREAM, RHEM, RUSLE2, EROSION 3D, 
EPIC, PESERA are used by less than 1.5% of studies/catchments 
included in the database. If one compares the USLE and RUSLE models, 
the (R)evised USLE model receives, on average, 0.8 more normalized 
citations per year than the original version. It should also be noted that 
the SWAT model is relatively widely used (i.e., in approximately 6% of 
papers in the database) and on average articles using this model receive 
more citations than the RUSLE and USLE models (Table 3). Moreover, 
Borrelli et al. (2021) showed that SWAT has become more popular 
among the soil erosion modellers in the last years. Papers with the 
highest number of annual normalized citations (i.e. > 13) using the 
SWAT model are Betrie et al. (2011), Gessesse et al. (2015) and Yesuf 
et al. (2015). 

In absolute numbers, it can also be seen that the RUSLE model has 
the largest number of total citations (i.e., multiplying normalized cita
tions and percent of database entries), followed by the WaTEM/SEDEM, 
USLE, SWAT and WEPP models. Moreover, the maximum number of 
normalized citations for the RUSLE and USLE models is also high. 
Therefore, many studies apply these models, but in many cases these 
studies are not very well cited. Therefore, the mean normalized number 
of citations is lower as in case of some other models. Additionally, 
Borrelli et al. (2021) concluded that the number of RUSLE model ap
plications is increasing. The same also applies for the total number of 
studies in the GASEMT database as the number of soil erosion model 
studies in the post-2010 is increasing. It should also be noted that some 
of the highest erosion rated were predicted by the RUSLE and USLE 

models (Borrelli et al., 2021). Additionally, the median erosion rates 
predicted by these two models are also larger than for some other model 
(e.g., WaTEM/SEDEM) (Borrelli et al., 2021). Moreover, we investigated 
if the higher average number of citations depends on the self-citations of 
authors that are using specific models. The comparison was performed 
for the WaTEM/SEDEM, SWAT, RUSLE, USLE and WEPP models. 
However, self-citation in the case of specific models was similar where 
the maximum value was characteristic of the RUSLE model with 
approximately 8%. Other models had a self-citation rate of approxi
mately 5%. Moreover, there are also some differences among the Scopus 
sub-subject categories and the most frequently used models. For 
example, the most frequently used models in the Water Science and 
Technology category are RUSLE and USLE, whereas the WaTEM/SEDEM 
model is only used in a small number of studies included in this category. 
A similar pattern can be seen for the Forestry, Geography, Planning and 
Development and General Earth and Planetary Sciences categories. On 
the other hand, in the Earth-Surface Processes category the RUSLE and 
USLE models are used less frequently. Additionally, some differences 
also exist in different publication types. For example, the WaTEM/SE
DEM model is only included in journal publications. Moreover, it seems 
that the USLE model is used in almost half of the publications that are 
published as book series and in approximately 40% of conference pro
ceedings publications. While in case of journals, the USLE is used by 27% 
of publications. A similar pattern can also be seen for the RUSLE model. 
Therefore, one could argue that since USLE and RUSLE only account for 
the gross soil erosion rates, these types of models are more frequently 
published in book series and conference proceedings, and therefore have 
a smaller outreach. On the other hand, models that also account for 
sediment deposition and transport such as the WaTEM/SEDEM model 
could have a larger outreach since more processes are incorporated 
within the model. 

A comparison of models used for soil erosion assessment in the 
Chinese Loess Plateau (Li et al., 2017) that used eleven empirical and 
process-based models showed that even for regional studies many 
different models are applied. Batista et al. (2019) investigated soil 
erosion models from the performance perspective and found out that 
different models do not systematically outperform each other. Valida
tion or uncertainty evaluation is in many cases as important as the 
choice of a soil erosion model. Therefore, differences in the mean 
number of citations shown in Table 3 cannot be explained with better 
model performance of a specific model. 

3.2.2. Scale and continent impact 
According to the BRT model, the scale of the study and the investi

gated continent have an impact on the normalized number of citations. 
As one could expect, global studies, on average, receive many more ci
tations than studies that are dealing with a specific local catchment or 
even performing soil erosion modelling on a regional scale (Tables 4 and 
5). Examples of highly cited global scale studies are Borrelli et al. 
(2017), Quinton et al. (2010), Syvitski and Milliman (2007), Van Oost 
et al. (2007), Yang et al. (2003). As pointed out by Borrelli et al. (2021) 
global scale studies were published both in mid-nineties (e.g., Batjes, 
1996) and also in the recent years. Moreover, examples of highly cited 

Table 3 
Mean and maximum normalized number of citations where different soil erosion 
models were used. Only models that were used in more than 15 publications are 
shown. Models are sorted based on the percentage of entries in the database.  

Soil erosion 
model 

Mean normalized 
number of citations 
[per year] 

Maximum 
normalized number 
of citations [per 
year] 

Percentage of 
entries in the 
database [%] 

RUSLE 3.1 52 17.1 
USLE 2.3 30.4 13.9 
WEPP 2.8 10.7 6.4 
SWAT 3.1 18 6.2 
WaTEM/ 

SEDEM 
8.9 35.4 4.7 

RUSLE-SDR 1.9 13.7 3.9 
USLE-SDR 1.7 11.3 2.2 
LISEM 2.9 11.8 1.9 
Customized 

approach 
2.6 14.7 1.8 

MUSLE 1.9 6.3 1.7 
AnnAGNPS 2.2 10.4 1.6 
MMF 3.7 5.7 1.6 
RHEM 5.1 7.7 1.5 
Unknown 1.3 8.6 1.2 
USPED 3.2 14.8 <1 
EPIC 3.8 11.7 <1 
RUSLE2 4 11.3 <1 
PESERA 3.7 10.4 <1 
EROSION 3D 3.9 9.1 <1 
GeoWEPP 1.9 4.2 <1 
RUSLE/SEDD 0.8 2.7 <1 
EPM 1.2 2 <1 
STREAM 6.2 8.6 <1  

Table 4 
Mean number of normalized citations per publication based on the continent of 
the study.  

Investigated 
continent/area 

Mean normalized number of 
citations [per year] 

Percentage of entries in 
the database [%] 

Global 17.5 0.8 
Europe 3.8 30.7 
Africa 2.5 8.2 
North America 2.5 20.5 
Oceania 2.3 3.5 
South America 2.1 4.2 
Asia 2.0 32.1  
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soil erosion modelling studies that focused on the continental scale are 
Borrelli et al. (2016), Bosco et al. (2015), Cerdan et al. (2010), and 
Panagos et al. (2015). Furthermore, it is also true that performing 
modelling on a global or continental scale does not guarantee a high 
number of citations since there are also studies with a relatively low 
normalized number of citations (e.g., Batjes, 1996; Borrelli et al., 2015). 
When comparing the mean normalized number of citations for different 
continents, it is evident that studies that focused on Europe, on average, 
receive more citations than studies that focused on catchments/areas 
located in other continents, even though the most studies are conducted 
in Asia (Table 4). The co-citation investigation results are presented in 
section 3.4 and based on these one could also assume that the higher 
average values shown in Table 4 are the result of co-citations. Moreover, 
Borrelli et al. (2021) also showed that higher erosion rates are generally 
characteristic of articles focused on Africa, Asia or even South America 
where areas with very high soil erosion rates can be found. Although it is 
true that some extremely high erosion rates can also be found in Europe 
(Borrelli et al., 2021). Therefore, the calculated erosion rate obviously 
does not have a direct impact on the normalized number of citations. It 
should also be noted that the GASEMT database (Borrelli et al., 2021) 
only included publications that were written in English. Thus, the actual 
number of soil erosion studies focusing on Asia is probably even higher 
(i.e. publications written in Chinese language). Quite interestingly, 
studies that focused on a regional and national scale do not, on average, 
receive more citations than studies that focused on a specific watershed 
or even those with a plot or hillslope scale (Table 5). It should be noted 
that the percentage of database records could impact the mean 
normalized number of citations in cases when these percentages are low. 

3.2.3. Other variables with negligible impact according to the BRT model 
Several other variables were also used as an input to the BRT model, 

but according to the model results, these variables do not have an impact 
on the normalized number of citations (Table 2). It is evident that papers 
focused on tillage and harvest erosion, on average, have slightly more 
citations than studies focused on water or wind erosion (Table 6). 
Multiple examples of highly cited papers focused on these two erosion 
agents can be found (De Alba et al., 2004; Quinton et al., 2010; Ver
straeten et al., 2002). However, it is also true that tillage and harvest 
erosion are only investigated in less than 2% of the publications included 
in the database, and this limits the information that is needed to 
establish efficient management factors in agriculture, that preserve soil, 

yield and profit at the same time. As pointed out by Borrelli et al. (2021) 
these low percentages could be a result of the Scopus search criteria 
used. 

On average, papers receive more citations if they address both the 
future and present or the present and past than papers that only address 
the present or the future (Table 7). Therefore, it seems that if two time 
periods are discussed, this yields on average more citations than if only 
one period is investigated. Moreover, one can also notice that the pre
sent, future and past all yield a relatively similar normalized number of 
citations (Table 7). This is a relatively surprising result because the 
terms “climate change” and “future projections” are hot scientific topics. 
For example, a Web of Science search for the topic “climate change” 
shows that number of papers that mention this topic are significantly 
increasing (i.e., 241 in 1990, 2655 in 2000, 11,630 in 2010 and 33,814 
in 2018). A similar trend can also be found with the search “future 
projections” in the Web of Science. However, in the field of soil erosion 
modelling, focusing on future projections is obviously something that 
does not yield, on average, more citations than focusing on the past or 
present (Table 7). 

Surprisingly, additional field activity or soil sampling does not have a 
significant impact on the mean number of normalized citations of pub
lications included in the database according to the BRT model (Fig. 4). 
Although, the mean normalized number of citations is about 15% higher 
in case that soil sampling activities were conducted. As discussed by 
Borrelli et al. (2021) in-situ soil erosion measurements are the most 
common field activity related to modelling. Moreover, publications 
where the soil erosion model was calibrated receive, on average, 0.8 
more normalized citations per year than publications with no model 
calibration. This is almost 30% higher number of citations for studies 
using calibration methods compared to the ones that do not include 
calibration. It should be noted that only 1/3 of GASEMT entries reported 
model calibration (Borrelli et al., 2021), which can be regarded as a 
relatively low number. Even though recent studies have argued that 
model calibration seems to be the main method for model improvement 
in the soil erosion modelling field (Batista et al., 2019), the soil erosion 
modelling community should give more focus in future to model cali
bration, evaluation and uncertainty assessments. 

Different types of studies can have diverse ways of model calibration 
(e.g., sediment fluxes data at system outlet, remote sensing data). 
Moreover, Borrelli et al. (2021) emphasized that model calibration is 
most frequently performed with LISEM, SWAT, WaTEM/SEDEM and 
MMF (e.g., Bezak et al., 2015). These are also models that account for 
sediment delivery and not only gross erosion rates. SWAT, WaTEM/
SEDEM and MMF are also models that, on average, receive more cita
tions than the more frequently used USLE or RUSLE models (Table 3). 
However, as already discussed, USLE and RUSLE studies can also be 
highly cited (Table 3), but the average values are lower because of the 
low citation rate of book series and conference proceedings where those 
two models are used quite frequently. Additionally, Batista et al. (2019) 
also pointed out that focusing on model validation should be replaced 
with the uncertainty assessment or model evaluation since no model can 
be completely valid because all models are only simplified representa
tions of the environmental processes. This of course also applies to all 
other environmental models (e.g., Beven and Young, 2013). However, 

Table 5 
Mean number of normalized citations per publication based on the scale of the 
study.  

Scale of the soil 
erosion modelling 

Mean normalized number of 
citations [per year] 

Percentage of entries in 
the database [%] 

Global 18.8 0.6 
Continental 10.6 0.4 
Farm/landscape 4.5 0.7 
Regional 2.8 13.7 
Watershed 2.8 58.0 
Plot 2.7 13.4 
National 2.4 2.2 
Hillslope 2.3 10.2 
Unknown 0.9 0.6  

Table 6 
Mean number of normalized citations per publication based on the erosion 
agent.  

Erosion agent in the 
erosion model 

Mean normalized number of 
citations [per year] 

Percentage of entries in 
the database [%] 

Tillage erosion 3.3 1.8 
Harvest erosion 3.1 0.4 
Water 2.9 94.5 
Wind 2.3 2.3 
Water and wind 1.6 0.9  

Table 7 
Mean number of normalized citations per publication based on the investigated 
time period.  

Investigated time 
period 

Mean normalized number of 
citations [per year] 

Percentage of entries in the 
database [%] 

Present and future 3.9 5.9 
Present and past 3.7 8.4 
Present 2.9 52.4 
Future 2.7 3.8 
Past 2.4 26.7 
Unknown 1.9 2.8  
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since model validation is terminology still used in the field, this was 
included in the global review and statistical analysis performed by 
Borrelli et al. (2021). One could argue that model validation does not 
have a significant impact on the mean number of normalized citations 
(Fig. 4). Moreover, validation is performed in about half of the studies 
included in the GASEMT database (Borrelli et al., 2021). Plot-scale 
studies show higher level of validation (evaluation) and calibration 
(Borrelli et al., 2021). Therefore, the focus should always be on model 
validation and in-depth discussion of the results, as the incorrect use of 
model parameters can also lead to incorrect conclusions. However, it 
should be noted that absolute number of studies that report model 
calibration, validation, evaluation is increasing, while on the other hand 
the proportion of these studies in the GASEMT has been decreasing 
(Borrelli et al., 2021). 

Two additional variables, temporal model resolution and modelled 
area, were used as an input to the BRT model. Table 8 shows a com
parison between the mean normalized number of citations for the 
different model temporal resolutions. Regarding the model temporal 
scale, it is evident that if the daily time step is used then such papers, on 
average, receive more normalized citations than publications where the 
model is applied on an annual or monthly time scale (Table 8). These 
differences can be related to the results shown in Table 3 because for 
example, the SWAT model can only be used for a daily time step, and the 
RUSLE and USLE models should be used for annual resolution. The same 
applies for the WaTEM/SEDEM model that can only estimate long-term 
average soil erosion rates (Borrelli et al., 2021). As pointed out by 
Govers (2011), care should be taken when performing soil erosion 
modelling because for example, the USLE model was developed for 
long-term annual soil loss assessments and not for short time period 
calculations. Gessesse et al. (2015) is an example of a study that used a 
daily time step model and has a large number of citations. 

3.3. Most cited papers 

The 20 most cited papers (i.e. top 1%) included in the database were 
analysed in more detail (Bakker et al., 2008; Benavides-Solorio and 
MacDonald, 2001; Betrie et al., 2011; Borrelli et al., 2017; Cerdan et al., 
2010; Fu et al., 2011; Ganasri and Ramesh, 2016; Gessesse et al., 2015; 
Haregeweyn et al., 2017; Leh et al., 2013; Panagos et al., 2015; Parra
s-Alcántara et al., 2016; Prasannakumar et al., 2012; Quinton et al., 
2010; Syvitski and Milliman, 2007; Van Oost et al, 2000, 2007; Van 
Rompaey et al., 2005; Viglizzo et al., 2011; Yang et al., 2003). The 
threshold for the 1% top cited paper in the soil erosion modelling is 14 
normalized citation. The most cited papers were selected based on the 
normalized number of citations. These papers were published in an 
almost 20-year time window. The number of authors ranges from 2 to 19 
with an average of 6.4. Moreover, these papers were published in 17 
different journals, which indicates that none of the journals has a 
dominant impact in the publishing of the most cited papers. If one in
vestigates the affiliations of authors (countries) of these 20 most cited 
paper it is evident that the authors of the most cited papers are mostly 
from Europe or the United States. This presence of EU countries (e.g., 
Italy, Spain, Belgium, United Kingdom, Netherlands, Germany, etc.) 
could partly explain the higher normalized citations of publications that 
investigated EU areas (Table 4), as EU authors focus more on EU 
catchments/areas than on other places. It should be noted that some of 
the 20 most cited papers focus on global scale modelling, which means 
that authors from the EU took more initiatives to address this issue at 
global scale. Additional networking analysis is shown in section 3.4. 
Moreover, investigation of the most frequently used words in the titles of 
the 20 most cited papers about soil erosion modelling revealed that the 
words “land”, “soil”, “erosion”, and “model” could be expected since the 
focus is on soil erosion modelling, but words such as “change”, “impact”, 
“risk” and “assessment” indicate that the most cited papers are either 
focusing on change/variability assessment or risk or impact evaluation. 
Furthermore, only one of the 20 most cited papers investigated a com
bination of present and future while other papers mostly focused on 
present and present and past. 

We also investigated if any of the papers mentioned above were 
defined as either a highly cited paper or a hot paper according to the 
Essential Science Indicators by Clarivate Analytics. Hot papers, by 
definition, are papers that have been published in the past two years that 
received enough citations in May/June 2019 to put them in the top 0.1% 
of papers in each of the 22 academic fields. On the other hand, highly 
cited papers received enough citations as of May/June 2019 to be in the 
top 1% of the specific academic field based on the field threshold and 
publication year. Moreover, it should also be noted that there are some 
differences in these thresholds for different fields (Mikoš, 2017). Borrelli 
et al. (2017) is defined as hot paper by the above definition. Moreover, 
there are five highly cited papers included in the list of the 20 most cited 
papers in the soil erosion GASEMT database (Borrelli et al., 2021). These 
are Borrelli et al. (2017), Panagos et al. (2015), Cerdan et al. (2010), Fu 
et al. (2011) and Quinton et al. (2010) in the Environment/Ecology, 
Environment/Ecology, Geosciences, Environment/Ecology and Geo
sciences fields, respectively. Moreover, Wang et al. (2012) is a highly 
cited paper in the field of Agricultural Sciences, and according to the soil 
erosion modelling database is in the top 30 most cited papers based on 
the normalized number of citations. This indicates that papers focusing 
on soil erosion modelling are among the most highly cited and top pa
pers in these fields, which shows the relevance of this topic for the wider 
scientific community (e.g. agriculture, ecology, geosciences). 

3.4. Investigation of the relationship among papers about soil erosion 
modelling (VOS viewer) 

Additionally, bibliometric networks using the methodology 
described in section 2.3 were analysed. The next two sub-sections pre
sent bibliometric networks from the perspective of journals and 

Fig. 4. Mean number of normalized citations per publication based on the field 
activity, soil sampling activity, calibration attempt and validation attempt. 
Numbers written at the top of bars indicate the percentage of entries in the 
database. “Yes” means that specific step was done, “No” means that this step 
was not carried out and “Unknown” means that it was not possible to determine 
if the step was done or not based on the information provided in the article. 

Table 8 
Mean number of normalized citations per publication based on the temporal 
model resolution.  

Temporal model 
resolution 

Mean normalized number of 
citations [per year] 

Percentage of entries in the 
database [%] 

Sub-hourly 3.6 6.4 
Daily 3.3 17.9 
Annual 3.0 25.0 
Monthly 2.8 9.0 
Unknown 2.6 31.0 
Event 2.2 6.5 
Hourly 2.1 3.0 
Seasonal 1.8 1.2  
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countries. As mentioned in section 2.3, only part of the database that is 
included in the Web of Science database was used as an input for the 
VOS Viewer software. 

3.4.1. Journals 
A citation analysis of the journals that are included in the soil erosion 

modelling GASEMT database indicates the relatedness of journals based 
on the number of times that they cite each other (Fig. 5; VOSviewer, 
2019). It is evident that six different clusters have been identified (i.e., 
indicated by different colours in Fig. 5). Quite surprisingly, CATENA, 
where most of the papers included in the database are published, is on 
the edge of the central soil erosion cluster and more towards Climatic 
Change and Agricultural and Forest Meteorology. This observation 
confirms assumptions made in the section 3.3 that soil erosion modelling 
papers are also cited in other fields since these two journals are not 
among the 23 journals mentioned in section 3.1. Furthermore, at the 
same time this also means that articles published in CATENA often cite 
papers published by these two journals. However, it is true that CATENA 
has the strongest connection (i.e., line width) with the Journal of Hy
drology, Hydrological Processes and Geomorphology. Moreover, it is 
true that CATENA in comparison to some other journals such as Science 
of Total Environment or Geomorphology receives, on average, less ci
tations (section 3.1). Furthermore, it is also evident that journals are not 
clustered in the same way as they are categorised based on the Scopus 
sub-subject categories. For example, Hydrological Processes is clustered 
together with Land Degradation & Development, Landscape Ecology 
and Soil Science Society of America and not, for example, with the 
Journal of Hydrology or Hydrological Sciences Journal. A similar 
conclusion can be made for some other cluster/journals. Additionally, it 
is evident that journals, whose title starts with the word “environment” 
are clustered together (i.e., dark blue cluster group in Fig. 5). 

A co-citation investigation, which reveals the relatedness of journals 
based on the number of times that journals are cited together (VOS
viewer, 2019), identifies three different clusters (Fig. 6). Stronger con
nections exist between CATENA and Journal of Hydrology, Hydrological 
Processes, Earth Surface Processes and Landforms, Geomorphology and 
surprisingly also with Journal of Soil and Water Conservation (Fig. 6). 
The latter journal has relatively strong connections with Journal of 
Hydrology and Transactions of the ASABE. 

The bibliographic coupling of journals with more than 250 citations 
where this kind of investigation shows the relatedness of journals based 
on the number of shared references (VOSviewer, 2019) shows four 

different clusters (Fig. 7). For example, CATENA has strong connections 
with Geomorphology, Hydrological Processes, Journal of Hydrology and 
Environmental Earth Sciences (Fig. 7). Otherwise, some of the identified 
connections are similar to those shown in Fig. 6. 

3.4.2. Countries 
Bibliographic coupling of countries with more than 12 documents in 

the database was investigated for their relatedness of shared references 
(Fig. 8). It is evident that three clusters have been identified, whereas 
one of the clusters only includes two members (i.e., Japan and Ethiopia). 
Quite interestingly, all European countries, except Turkey, which is 
partly in Europe and partly in Asia, are clustered together. This means 
that authors from Europe usually cite similar references, and these are at 
least to some extent different than the ones that authors from other 
countries are citing. Moreover, some regional European patterns can 
also be seen (i.e., position of the countries in the plot). For example, Italy 
and Greece or Belgium and the Netherlands are located close together. 
Moreover, the connection of the USA with China is stronger than the 
connection with European countries. Bibliographic coupling of organi
zations was also tested and three major clusters appear; first, there is a 
cluster with European organizations (mostly from Belgium and 
Netherlands), second, there is one with mainly Chinese organizations 
and third, there is one with mainly organizations in the USA. Therefore, 
it seems that reference lists in the field of soil erosion modelling are very 
regionally focused. 

Additionally, citation analysis from the country perspective, which 
shows the relatedness of papers based on the number of times that they 
cite each other, identifies two clusters (Fig. 9). It is evident that one 
cluster includes all European countries (except Turkey) and the other 
cluster contains all other countries with more than 12 documents. 
Therefore, the pattern is very similar to the one shown in Fig. 8, which 
indicates that not only do European authors use similar references, but 
these papers are also cited by each other. Therefore, this kind of pattern 
could partly explain the results shown in Table 4, which show that pa
pers focused on European areas/catchments, on average, receive more 
citations. It seems that papers focused on other continents often also cite 
papers from different continents, whereas for Europe this is more 
regionally based. 

The co-authorship of papers from the country’s perspective indicates 
a relatively strong connection between the USA and China (Fig. 10). 
Moreover, four clusters are identified, whereas one of these is composed 
only of European countries. However, France, Germany and the 

Fig. 5. Citation investigation of the journals with more than 250 citations where the network shows the relatedness of journals based on the number of times that 
these cite each other. The size of the circle indicates a weight of the item, the lines indicate the links among items, the distance among items shows their relatedness 
and different colours indicate clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 7. Bibliographic coupling of journals with more than 250 citations where the network shows the relatedness of journals based on the number of shared ref
erences. The size of the circle indicates a weight of the item, the lines indicate the links among items, the distance among items shows their relatedness and different 
colours indicate clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Co-citation investigation of the journals with more than 250 citations where the network shows the relatedness of journals based on the number of times that 
journals are cited together. The size of the circle indicates a weight of the item, the lines indicate the links among items, the distance among items shows their 
relatedness and different colours indicate clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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Netherlands are located in a different cluster than most of the European 
countries. Therefore, co-authorship of documents is slightly more in
ternational, but still, as one would expect, some strong regional con
nections can be detected. A similar investigation was also performed 
from the organizations’ point of view, and in this case, different orga
nizations were more regionally clustered (e.g., Belgium and Netherlands 
organizations together, Chinese organizations together, etc.). Indeed, 
such results likely depend on the research funding in each nation, lan
guage of origin, similarity among environments and ability of the re
searchers to access given research funds. 

3.4.3. Models 
The citation and bibliographic coupling networks of the 12 most 

frequently used soil erosion models was also investigated (Figs. 11 and 
12). It is evident that USLE, RUSLE, USLE-SDR and RUSLE-SDR are 
clustered into one group. This means that publications that discuss or 
apply these models often cite similar literature, and often cite each 
other, and this might be related to an inability of the authors to link their 
results to the newer models. This is an expected result since these 
interrelated models have the same theoretical background and were all 
developed based on the USLE model. The WaTEM/SEDEM model is, in 
both cases, (i.e., citation and bibliographic coupling analysis) clustered 
into a different group although soil loss calculations in this model are 
based on the RUSLE equation (Van Rompaey et al., 2001). In the case of 
the bibliographic coupling analysis (Fig. 11), the MUSLE model is also 
clustered in a one-group member while in case of the citation analysis, 
this model is part of a cluster with more models (Fig. 12). Other larger 
group of models mostly contain physically based models such as WEPP, 
LISEM or RHEM. Therefore, it seems that in terms of citations and 

bibliographic coupling some differences between more empirical-based 
and more physically based soil erosion models exist. Moreover, one 
could also expect that models that only account for the gross soil erosion 
would be clustered together and models that also account for sediment 
delivery would be in a different group. Obviously, this is not the case 
since for example, (R)USLE and (R)USLE-SDR are clustered together 
(Figs. 11 and 12). 

4. Conclusions 

We evaluated 3030 model applications published in 1697 articles 
included in the GASEMT database (Borrelli et al., 2021) in a rigorous 
bibliometric investigation. This study can be used as a metric benchmark 
for future erosion modelling studies as potential authors can measure 
the impact of their paper comparing with the proposed metrics here. 
However, it should be noted that the results presented in the scope of 
this paper should not be regarded as a guideline to prepare a highly-cited 
paper or to propose specific journals, models or other practices related to 
soil erosion modelling. These should be selected based on the aims of the 
study. 

The largest percentage of studies (i.e. around 13% per category) were 
published in the Scopus categories “Earth-Surface Processes” and “Water 
Science and Technology” and these papers have, on average, higher 
number of normalized citations (i.e. more than 3 normalized citations 
per paper). We observed that soil erosion modelling community mostly 
published its studies in journals such as CATENA, Land Degradation & 
Development, Journal of Hydrology, Hydrological Processes or Geo
morphology (i.e. in total around 20% of all studies in GASEMT). How
ever, soil erosion studies are published in a wide range of journals. 

Fig. 8. Bibliographic coupling of countries with more than 12 documents in the database where the network shows the relatedness of countries based on the number 
of shared references. The size of the circle indicates a weight of the item, the lines indicate the links among items, the distance among items shows their relatedness 
and different colours indicate clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 9. Citation of countries with more than 12 documents in the database where the network shows the relatedness of countries based on the number of times that 
these cite each other. The size of the circle indicates a weight of the item, the lines indicate the links among items, the distance among items shows their relatedness 
and different colours indicate clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Co-authorship of papers from the country’s perspective for countries with more than 12 documents in the database where the network shows the relatedness 
of items based on the number of co-authored documents. The size of the circle indicates a weight of the item, the lines indicate the links among items, the distance 
among items shows their relatedness and different colours indicate clusters. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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The journal Citescore has no significant impact on the normalized 
number of citations as their correlation is rather weak yet statistically 
significant (R2 = 0.2; p-value < 0.0001). On the contrary, we noted that 
the model selection and the scale have an impact in the normalized 
number of citations. For instance, the WaTEM/SEDEM model received 
the highest number of normalized citations (i.e. 8.9 compared to 3.1 of 
RUSLE, 2.3 of USLE and 2.8 of WEPP). However, WaTEM/SEDEM is 
applied only to the 4.7% of the studies in GASEMT database compared to 
17.1% of RUSLE, 13.9% of USLE and 6.4% of WEPP. The insights 
emerging from our investigation suggested that studies using more 
empirically based (e.g., USLE) and more physically based models (e.g., 
WEPP) are not citing each other and use different references. 

Furthermore, the WaTEM/SEDEM model is clustered into a different 
group than the remaining most frequently used soil erosion models. 

Regarding the scale, papers evaluating the global scale generally 
receive considerably more citations than papers focused on a conti
nental, national, or smaller scale. However, we also observed that na
tional scale studies, on average, do not receive more citations compared 
to local or watershed ones. Additionally, European studies have more 
citations than publications targeting other continents. European coun
tries have high levels of co-citations and shared references, which could 
partly explain higher citation values. 

The proportion of non-cited papers (i.e. 8.5%) and the share of self- 
citations (i.e. around 10%) of soil erosion modelling community are in 

Fig. 11. Citation network of 12 most frequently used 
soil erosion models where the network shows the 
relatedness of soil erosion models based on the 
number of times that these cite each other. The size of 
the circle indicates a weight of the item, the lines 
indicate the links among items, the distance among 
items shows their relatedness and different colours 
indicate clusters. (For interpretation of the references 
to colour in this figure legend, the reader is referred 
to the Web version of this article.)   

Fig. 12. Bibliographic coupling network of 12 most frequently used soil erosion models where the network shows the relatedness of models based on the number of 
shared references. The size of the circle indicates a weight of the item, the lines indicate the links among items, the distance among items shows their relatedness and 
different colours indicate clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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line with the shares for all papers in Scopus. We observed that journal 
publications, on average in the field of soil erosion modelling, receive 
6–12 times more citations than book series and conference proceedings. 
Soil erosion modelling publications are mostly co-authored by 2–6 
people. Single-authored publications receive, on average, fewer cita
tions. Concerning the co-authorship of publications, we observed some 
connections among some neighbouring countries (e.g., Belgium and 
Netherlands) while some connections were not expected. 

Regarding the impact of field activity, model calibration and vali
dation, the conducted investigations demonstrated that these attributes 
have an impact in increasing normalized annual citations by up to 30%. 
However, these attributes were not recognised as influential in case of 
the BRT model where impact of other attributes (e.g., model selection) 
was larger. 

In a nutshell, this review reveals that soil erosion modelling is an 
important scientific topic, which attracts citations/readership from 
different fields. Additionally, this review identifies that field activity/ 
measurements, model calibration and evaluation using long-term mea
surements are to some extent appreciated by the scientific community, 
but additional focus should be given to these aspects in future. More
over, different sources of uncertainty (e.g., Beven and Young, 2013) or 
study limitations should be presented in relation to the soil erosion 
modelling, which can be regarded as a way forward to have better 
studies that also receive more citations. 
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