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Abstract. In this paper we study a remarkable simplicial complex X
on countably many vertexes. X is universal in the sense that any count-
able simplicial complex is an induced subcomplex of X. Additionally,
X is homogeneous, i.e. any two isomorphic finite induced subcomplexes
are related by an automorphism of X. We prove that X is the unique
simplicial complex which is both universal and homogeneous. The 1-
skeleton of X is the well-known Rado graph. We show that a random
simplicial complex on countably many vertexes is isomorphic to X with
probability 1. We prove that the geometric realisation of X is homeo-
morphic to an infinite dimensional simplex. We observe several curious
properties of X, for example we show that X is robust, i.e. removing any
finite set of simplexes leaves a simplicial complex isomorphic to X. The
robustness of X leads to the hope that suitable finite approximations of
X can serve as models for very resilient networks in real life applications.
In a forthcoming paper [8] we study finite approximations to the Rado
complex, they can potentially be useful in real life applications due to
their structural stability.

1. Introduction

In the 1920’s, P. S. Urysohn constructed a remarkable complete, separa-
ble metric space U , which is known as the Urysohn space. The space U is
universal in the sense that it contains an isometric copy of any complete,
separable metric space. Additionally, the Urysohn space U is homogeneous
in the sense that any partial isometry between its finite subsets can be ex-
tended to a global isometry. The properties of universality and homogeneity
determine U uniquely up to isometry, see [17] for a detailed exposition.

The Rado graph Γ is another notable mathematical object, which can also
be characterised by its universality and homogeneity. The graph Γ has
countably many vertexes, and it is universal in the sense that any graph
with countably many vertexes is isomorphic to an induced subgraph of Γ.
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Moreover, any isomorphism between finite induced subgraphs of Γ can be ex-
tended to the whole of Γ (homogeneity). The properties of universality and
homogeneity determine Γ uniquely up to isomorphism. One may mention
the surprising robustness of Γ: removing any finite set of its vertexes and
edges produces a graph isomorphic to Γ. We refer to [5] for a comprehensive
survey.

Erdős and Rényi [7] showed that a random graph on countably many ver-
texes has the following characteristic property with probability one: given
finitely many distinct vertexes u1, . . . , um, v1, . . . , vn there exists a vertex
which is adjacent to u1, . . . , um and nonadjacent to v1, . . . , vm. It is not dif-
ficult to see that the Rado graph Γ is the unique countable graph possessing
the characteristic property, and hence a random countable graph is isomor-
phic to Γ with probability 1; this result explains why Γ is sometimes called
“the random graph”. Rado [13] suggested a deterministic construction of Γ
in which the vertexes V (Γ) are labelled by integers N and a pair of vertexes
labelled by m < n are connected by an edge iff the m-th digit in the binary
expansion of n is 1. This same graph construction implicitly appeared in
an earlier paper by W. Ackermann [1], who studied the consistence of the
axioms of set theory.

The Rado graph Γ and the Urysohn space U are related. Any graph de-
termines a metric on the set of its vertexes, where the distance between a
pair of distinct vertexes is either 1 (if they are connected by an edge) or 2
(otherwise). Thus, the Rado graph Γ admits an isometric embedding into
U ; it can be viewed as a restricted version of the Urysohn space limited to
metric spaces with the metric taking values in the set {0, 1, 2}.

In this paper we study a high-dimensional generalisation of the Rado graph
which we call the Rado simplicial complex X. The complex X has countably
many vertexes and is universal in the sense that any countable simplicial
complex is an induced subcomplex of X. Additionally, X is homogeneous,
i.e. any two isomorphic finite induced subcomplexes are related by an auto-
morphism of X. Moreover, X is the unique (up to isomorphism) countable
simplicial complex which is both universal and homogeneous. The 1-skeleton
ofX is the Rado graph Γ. We introduce a characteristic property of the Rado
complex called ampleness, which generalises the characteristic property of
the Rado graph. We show that a random simplicial complex on countably
many vertexes (in a certain regime) is isomorphic to X with probability 1.
We also give explicit deterministic constructions of the Rado complex. The
geometric realisation of the Rado complex X is homeomorphic to an infinite
dimensional simplex.

We observe several curious properties of X, for example we show that if the
set of vertexes of X is partitioned into finitely many parts, the simplicial
complex induced on at least one of these parts is isomorphic to X. The link
of any simplex of X is isomorphic to X. One of the key properties of X is its
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robustness: removing any finite set of simplexes leaves a simplicial complex
isomorphic to X.

Modern network science uses high-dimensional simplicial complexes for mod-
elling complex networks of many objects whose interactions can occur in
groups of two or more objects; the pairwise interactions can be recorded by
representating the system by a graph, while higher order interactions require
exploiting simplicial complexes of dimension ≥ 2 (see [2] for a recent survey
with a vast list of references, including applications to social systems, neu-
roscience, ecology, and others). The robustness of X leads to the hope that
suitable finite approximations of X can serve as models for very resilient
networks in real life applications. We also expect that, like expanders and
other combinatorial objects that can be constructed probabilistically, the
Rado complex X developed in this paper can also be relevant for proving
lower bound and impossibility results for certain (algorithmic) tasks. In a
forthcoming paper [8] we study finite simplicial complexes with “limited”
robustness and topological properties of their geometric realisations.

The Rado complex X can be viewed as the limit of a finite random simpli-
cial complex in the medial regime, studied in [9]. Informally, finite random
simplicial complexes in the medial regime are subcomplexes of the Rado
complex X induced on a random subset of n vertexes. It was proven in [9]
that, with probability tending to 1, such simplicial complexes are quite spe-
cial; for example, they have dimension ∼ log2 lnn + log2 log2 lnn and have
vanishing Betti numbers in dimensions ≤ log2 lnn+c, where c is a constant.
Note however that by universality any finite simplicial complex arises as an
induced subcomplex of X.

Next we comment on relations with previously known results. Theorem 3
of Rado [13] suggests a construction of a universal uniform hypergraph of
a fixed dimension `. Equivalently, uniform hypergraphs can be understood
as simplicial complexes of a fixed dimension ` having complete (` − 1)-
dimensional skeleta.

In [3] Blass and Harary study the 0-1 law for the first order language of
simplicial complexes of fixed dimension ` with respect to the counting prob-
ability measure. They show that a typical `-dimensional simplicial complex
has a full (` − 1)-skeleton. In [3], the authors introduce “Axiom n”, which
generalises the characteristic property of the Rado graph; it is a special case
of our notion of ampleness.

When this paper was nearly completed we became aware of the 2013 preprint
[4], revised in 2018; as far as we know, it has not been published yet. Paper
[4] applies the methods of mathematical logic and model theory to study the
geometry of simplicial complexes; it uses language very different from ours.
A well-known general construction of model theory is the Fräıssé limit for
a class of relational structures possessing certain amalgamation properties,
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see [10]. The Fräıssé limit construction, when applied to the class of all finite
simplicial complexes, produces a simplicial complex F on countably many
vertexes which is universal and homogeneous, i.e. it is a Rado complex in
the terminology of this paper. The universality of the Fräıssé limit F is
stated with respect to finite simplicial complexes, but this is equivalent to
the countable version of universality as appears in Definition 1, see Remark
11.

In [4] the authors study the group automorphisms of F and state that any
direct limit of finite groups and any metrisable profinite group embeds into
the group of automorphisms of F . Besides, [4] contains a proof that the geo-
metric realisation of F is homeomorphic to an infinite-dimensional simplex,
a result which we independently establish below in Section 5. The authors
of [4] also consider a probabilistic approach and claim the 0-1 law for first
order theories. We were unable to fully understand the construction of their
probability measure and the related proofs.

Although the current paper and [4] study the same object, the motivation,
language, and methods of this paper are totally different compared to [4],
and the current paper and [4] perfectly complement each other. For us
the Rado complex is a model of an astonishingly stable network, and our
notion of ampleness (which does not appear in [4]) is crucial in illustrating
its resilience.

The authors thank the anonymous referees for their helpful comments.

2. The Definition of the Rado complex

2.1. Basic terminology. A simplicial complex X is a set of vertexes V (X)
and a set of non-empty finite subsets of V (X), called simplexes, such that
any vertex v ∈ V (X) is a simplex {v} and any subset of a simplex is a
simplex. A simplicial complex X is said to be countable (finite) if its vertex
set V (X) is countable (finite). The symbol F (X) stands for the set of all
simplexes of X. For a simplex σ ∈ F (X) we shall also write σ ⊂ X.

Two simplicial complexes are isomorphic if there is a bijection between their
vertex sets which induces a bijection between the sets of simplexes.

The standard simplex ∆n has the set of vertexes {1, 2, . . . , n} with all non-
empty subsets as simplexes. Another standard simplex is ∆N; its vertex set
is N = {1, 2, . . . } and all non-empty finite subsets of N are simplexes.

A simplicial subcomplex Y ⊂ X is said to be induced if every simplex σ ∈
F (X) with all its faces in V (Y ) belongs to F (Y ). The induced subcomplex
Y ⊂ X is completely determined by the set of its vertexes, V (Y ) ⊂ V (X).
We shall use the notation Y = XU where U = V (Y ).
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For a vertex v ∈ V (X) the symbol LkX(v) stands for the link of v; the latter
is the union of simplexes σ of X with v /∈ σ and vσ ⊂ X.

Definition 1. (1) A countable simplicial complex X is said to be universal if
every countable simplicial complex is isomorphic to an induced subcomplex
of X. (2) We say that X is homogeneous if for every two finite induced
subcomplexes XU , XU ′ ⊂ X and for every isomorphism f : XU → XU ′

there exists an isomorphism F : X → X with F |XU = f . (3) A countable
simplicial complex X is a Rado complex if it is universal and homogeneous.

It is clear that the 1-skeleton of a Rado complex is a Rado graph; the latter
can be defined as a universal and homogeneous graph having countably
many vertexes, see [5].

Theorem 2. Rado simplicial complexes exist and any two Rado complexes
are isomorphic.

The following property is a useful criterion of being a Rado complex:

Definition 3. We shall say that a countable simplicial complex X is ample
if for every finite subset U ⊂ V (X) and for every simplicial subcomplex
A ⊂ XU there exists a vertex v ∈ V (X)− U such that

LkX(v) ∩XU = A.(1)

Remark 4. Condition (1) can equivalently be expressed as

XU ′ = XU ∪ (vA),(2)

where U ′ = U ∪ {v} and vA denotes the cone with apex v and base A. In
the literature the cone vA is sometimes denoted by v ∗A, understood as the
simplicial join of the vertex v and the complex A.

Remark 5. Suppose that X is a simplicial complex with countable set of
vertexes V (X). One may naturally consider exhaustions U0 ⊂ U1 ⊂ U2 ⊂
· · · ⊂ V (X) consisting of finite subsets Un satisfying ∪Un = V (X). In order
to check that X is ample as defined in Definition 3 it is sufficient to verify
that for every n ≥ 0 and for every subcomplex A ⊂ XUn there exists a vertex
v ∈ V (X)− Un satisfying LkX(v) ∩XUn = A.

Remark 6. Suppose that X is an ample simplicial complex. Given finitely
many distinct vertexes u1, . . . , um, v1, . . . , vn ∈ V (X), there exists a vertex
z ∈ V (X) which is adjacent to u1, . . . , um and nonadjacent to v1, . . . , vn. To
see this we apply Definition 3 with U = {u1, . . . , um, v1, . . . , vn} and A =
{u1, . . . , um}. This shows that the 1-skeleton of a Rado complex satisfies
the characteristic property of the Rado graph [5]. This also shows that
ampleness is a high dimensional generalizaton of this graph property.

The following property of ample complexes will be useful in the sequel.
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Lemma 7. Let X be an ample complex and let L′ ⊂ L be a pair consisting of
a finite simplical complex L and an induced subcomplex L′. Let f ′ : L′ → XU ′

be an isomorphism of simplicial complexes, where U ′ ⊂ V (X) is a finite
subset. Then there exists a finite subset U ⊂ V (X) containing U ′ and an
isomorphism f : L→ XU with f |L′ = f ′.

Proof. It is enough to prove this statement under an additional assumption
that L has a single extra vertex, i.e. |V (L)| − |V (L′)| = 1. In this case L is
obtained from L′ by attaching a cone wA where w ∈ V (L)− V (L′) denotes
the new vertex and A ⊂ L′ is a subcomplex (the base of the cone). Applying
the defining property of the ample complex to the subset U ′ ⊂ V (X) and
the subcomplex f ′(A) ⊂ XU ′ we find a vertex v ∈ V (X) − U ′ such that
LkX(v) ∩ XU ′ = f(A). We can set U = U ′ ∪ {v} and extend f ′ to the
isomorphism f : L→ XU by setting f(w) = v. �

Theorem 8. A simplicial complex is Rado if and only if it is ample.

Proof. Suppose X is a Rado complex, i.e. X is universal and homogeneous.
Let U ⊂ V (X) be a finite subset and let A ⊂ XU be a subcomplex of the
induced complex. Consider an abstract simplicial complex L = XU ∪ wA
which obtained from XU by adding a cone wA with vertex w and base A
where XU ∩wA = A. Clearly, V (L) = U∪{w}. By universality, we may find
a subset U ′ ⊂ V (X) and an isomorphism g : L→ XU ′ . Denoting w1 = g(w),
A1 = g(A) and U1 = g(U) we have XU ′ = XU1∪w1A1. Obviously, g restricts
to an isomorphism g|XU : XU → XU1 . By the homogeneity property
we can find an isomorphism F : X → X with F |XU = g|XU . Denoting
v = F−1(w1) we shall have XU∪{v} = XU ∪ vA as required, see Remark 4.

Now suppose that X is ample. To show that it is universal consider a
simplicial complex L with at most countable set of vertexes V (L). We may
find a chain of induced subcomplexes L1 ⊂ L2 ⊂ . . . with ∪Ln = L and
each complex Ln has exactly n vertexes. Then Ln+1 obtained from Ln by
adding a cone vn+1An where vn+1 is the new vertex and An ⊂ Ln is a
simplicial subcomplex. We argue by induction that we can find a chain of
subsets U1 ⊂ U2 ⊂ · · · ⊂ V (X) and isomorphisms fn : Ln → XUn satisfying
fn+1|Ln = fn. If Un and fn are already found then the next set Un+1 and
the isomorphism fn+1 exist because X is ample: we apply Definition 3 with
U = Un and A = fn(An) and we set Un+1 = Un ∪ {v} where v is the
vertex given by Definition 3. The sequence of maps fn defines an injective
map f : V (L) → V (X) and produces an isomorphism between L and the
induced subcomplex Xf(V (L)).

The fact that any ample complex is homogeneous follows from Lemma 9
below. We state it in a slightly more general form so that it also implies the
uniqueness of Rado complexes. �
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Lemma 9. Let X and X ′ be two ample complexes and let L ⊂ X and L′ ⊂
X ′ be two induced finite subcomplexes. Then any isomorphism f : L → L′

can be extended to an isomorphism F : X → X ′.

Proof. We shall construct chains of subsets of the sets of vertexes U0 ⊂
U1 ⊂ · · · ⊂ V (X) and U ′0 ⊂ U ′1 ⊂ · · · ⊂ V (X ′) such that ∪Un = V (X),
∪U ′n = V (X ′), XU0 = L, XU ′0

= L′, and |Un+1 − Un| = 1, |U ′n+1 − U ′n| = 1.
We shall also construct isomorphisms fn : XUn → XU ′n satisfying f0 = f
and fn+1|XUn = fn. The whole collection {fn} will then define a required
isomorphism F : X → X ′ with F |L = f .

To constructs these objects we shall use the well known back-and-forth pro-
cedure. Enumerate vertexes V (X) − V (L) = {v1, v2, . . . } and V (X ′) −
V (L′) = {v′1, v′2, . . . } and start by setting U0 = V (L), U ′0 = L′ and f0 = f .
We act by induction and describe Un, U ′n and fn assuming that the objects
Ui, U

′
i and fi : Ui → U ′i have been already defined for all i < n.

The procedure will depend on the parity of n. For n odd we find the smallest
j with vj /∈ Un−1 and set Un = Un−1 ∪ {vj}. Applying Lemma 7 to the
simplicial complexes L = XUn , L′ = XUn−1 and the isomorphism fn−1 :
XUn−1 → X ′U ′n−1

we obtain a subset U ′n ⊂ V (X ′) containing U ′n−1 and an

isomorphism fn : XUn → X ′U ′n extending fn−1.

For n even we proceed in the reverse direction. We find the smallest j
with v′j /∈ U ′n−1 and set U ′n = U ′n−1 ∪ {v′j}. Next we applying Lemma 7

to the simplicial complexes L = X ′U ′n , L′ = X ′U ′n−1
and the isomorphism

f−1
n−1 : X ′U ′n−1

→ XUn−1 . We obtain a subset Un ⊂ V (X) containing Un−1

and an isomorphism f−1
n : X ′U ′n → XUn extending f−1

n−1. �

Corollary 10. Any two Rado complexes are isomorphic.

Proof. This follows from Theorem 8 with subsequent applying Lemma 9
with L = L′ = ∅. �

Remark 11. In Definition 1 we defined universality with respect to ar-
bitrary countable simplicial subcomplexes. A potentially more restrictive
definition dealing only with finite subcomplexes together with homogeneity
is in fact equivalent to Definition 1; this follows from the arguments used in
the proof of Theorem 8.

3. Deterministic constructions of Rado complexes

3.1. An inductive construction. One may construct a Rado simplicial
complex X inductively as the union of a chain of finite induced simplicial
subcomplexes

X0 ⊂ X1 ⊂ X2 ⊂ . . . , ∪n≥0Xn = X.
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Here X0 is a single point and each complex Xn+1 is obtained from Xn by
first adding a finite set of vertexes v(A), labeled by subcomplexes A ⊂ Xn

(including the case when A = ∅); secondly, we construct the cone v(A) ∗ A
with apex v(A) and base A, and thirdly we attach each such cone v(A) ∗A
to Xn along the base A ⊂ Xn. Thus,

Xn+1 = Xn ∪
⋃
A

(v(A) ∗A).(3)

To show that the complex X = ∪n≥0Xn is ample, i.e. a Rado complex,
we refer to Remark 5 and observe that any subcomplex A ⊂ Xn the vertex
v = v(A) ∈ V (Xn+1) satisfies LkX(v) ∩Xn = A.

3.2. An explicit construction. Here we shall give an explicit construction
of a Rado complex X. To describe it we shall use the sequence {p1, p2, . . . , }
of all primes in increasing order, where p1 = 2, p2 = 3, etc.

The set of vertexes V (X) is the set of all positive integers N. Each simplex
of X is uniquely represented by an increasing sequence a0 < a1 < · · · < ak
with certain properties. Subsequences of a0 < a1 < · · · < ak are obtained
by erasing one or more elements in the sequence.

Definition 12. (1) A sequence a0 < a1 is a 1-dimensional simplex of X if
and only if pa0-th binary digit of a1 is 1. (2) We shall say that an increasing
sequence of positive integers 0 < a0 < a1 < · · · < ak represents a simplex of
X if all its proper subsequences are in X and additionally the pa0pa1 . . . pak−1

-
th binary digit of ak is 1.

Proposition 13. The obtained simplicial complex X is Rado.

Proof. With any increasing sequence σ of positive integers 0 < a0 < a1 <
· · · < ak we associate the product

Nσ = pa0pa1 . . . pak ,

which is an integer without multiple prime factors. Note that for two such
increasing sequences σ and σ′ one has Nσ = Nσ′ if and only if σ is identical
to σ′.

Given a finite subset U ⊂ V (X) and a simplicial subcomplex A ⊂ XU ,
consider the vertex

v =
∑

σ∈F (A)

2Nσ + 2KU ∈ V (X)(4)

where
KU = 1 +

∏
w∈U

pw.

The binary expansion of v has ones exactly on positions Nσ where σ ∈ F (A)
and it has zeros on all other positions except an additional 1 at position KU .
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Note that KU > Nσ for any simplex σ ⊂ XU . In particular, we see that
vertex v defined by (4) satisfies v > w for any w ∈ U .

Consider a simplex σ ⊂ XU . By definition, the simplex vσ with apex v and
base σ lies in X if and only if the Nσ-th binary digit of v is 1. We see from
(4) that it happens if and only if σ ⊂ A. This means that LkX(v)∩XU = A
and hence the complex X is a Rado complex. �

4. Some properties of the Rado complex

Lemma 14. Let X be a Rado complex, let U ⊂ V (X) be a finite set and
let A ⊂ XU be a subcomplex. Let ZU,A ⊂ V (X) denote the set of vertexes
v ∈ V (X)−U satisfying (1). Then ZU,A is infinite and the induced complex
on ZU,A is also a Rado complex.

Proof. Consider a finite set {v1, . . . , vN} ⊂ ZU,A of such vertexes. One may
apply Definition 3 to the set U1 = U ∪ {v1, . . . , vN} and to the subcomplex
A ⊂ XU1 to find another vertex vN+1 satisfying the condition of Definition
3. This shows that ZU,A must be infinite.

Let Y ⊂ X denote the subcomplex induced by ZU,A. Consider a finite
subset U ′ ⊂ ZU,A = V (Y ) and a subcomplex A′ ⊂ XU ′ = YU ′ . Applying
the condition of Definition 3 to the set W = U ∪ U ′ ⊂ V (X) and to the
subcomplex A tA′ we find a vertex z ∈ V (X)−W such that

LkX(z) ∩XW = A ∪A′.(5)

Since XW ⊃ XU ∪ XU ′ , the equation (5) implies LkX(z) ∩ XU = A, i.e.
z ∈ ZU,A. Intersection both sides of (5) with XU ′ = YU ′ and using LkY (z) =
LkX(z) ∩ Y (since Y is an induced subcomplex) we obtain

LkY (z) ∩ YU ′ = A′

implying that Y is Rado. �

Corollary 15. Let X be a Rado complex and let Y be obtained from from
X by selecting a finite number of simplexes F ⊂ F (X) and deleting all
simplexes σ ∈ F (X) which contain simplexes from F as their faces. Then
Y is also a Rado complex.

Proof. Let U ⊂ V (Y ) be a finite subset and let A ⊂ YU be a subcomplex. We
may also view U as a subset of V (X) and then A becomes a subcomplex of
XU since YU ⊂ XU . The set of vertexes v ∈ V (X) satisfying LkX(v)∩XU =
A is infinite (by Lemma 14) and thus we may find a vertex v ∈ V (X) which
is not incident to simplexes from the family F . Then LkY (v) = LkX(v)∩ Y
and we obtain LkY (v) ∩ YU = A. �
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Corollary 16. Let X be a Rado complex. If the vertex set V (X) is parti-
tioned into a finite number of parts then the induced subcomplex on at least
one of these parts is a Rado complex.

Proof. It is enough to prove the statement for partitions into two parts. Let
V (X) = V1 t V2 be a partition; denote by X1 and X2 the subcomplexes
induced by X on V1 and V2 correspondingly. Suppose that none of the
subcomplexes X1 and X2 is Rado. Then for each i = 1, 2 there exists a
finite subset Ui ⊂ Vi and a subcomplex Ai ⊂ Xi

Ui
such that no vertex v ∈ Vi

satisfies LkXi(v)∩Xi
Ui

= Ai. Consider the subset U = U1 tU2 ⊂ V (X) and
a subcomplex A = A1 t A2 ⊂ XU . Since X is Rado we may find a vertex
v ∈ V (X) with LkX ∩ XU = A. Then v lies in V1 or V2 and we obtain a
contradiction, since LkXi(v) ∩Xi

Ui
= Ai. �

Lemma 17. In a Rado complex X, the the link of every simplex is a Rado
complex.

Proof. Let Y = LkX(σ) be the link of a simplex σ ∈ X. To show that Y
is Rado, let U ⊂ V (Y ) be a subset and let A ⊂ YU be a subcomplex. We
may apply the defining property of the Rado complex (i.e. ampleness) to
the subset U ′ = U ∪V (σ) ⊂ V (X) and to the subcomplex At σ̄ ⊂ XU ′ ; here
σ̄ denotes the subcomplex containing the simplex σ and all its faces. We
obtain a vertex w ∈ V (X)−U ′ with LkX(w)∩XU ′ = At σ̄ or equivalently,
XU ′∪w = XU ′ ∪ wA, see Remark 4. Note that w ∈ Y = LkX(σ) since the
simplex wσ is in X. Besides, YU∪w = YU ∪ wA. Hence we see that the link
Y is also a Rado complex. �

5. Geometric realisation of the Rado complex

Recall that for a simplicial complex X the geometric realisation |X| is the
set of all functions α : V (X) → [0, 1] such that the support supp(α) =
{v;α(v) 6= 0} is a simplex of X (and hence finite) and

∑
v∈X α(v) = 1, see

[16]. For a simplex σ ∈ F (X) the symbol |σ| denotes the set of all α ∈ |X|
with supp(α) ⊂ σ. The set |σ| has natural topology and is homeomorphic
to the affine simplex lying in an Euclidean space. The weak topology on the
geometric realisation |X| has as open sets the subsets U ⊂ |X| such that
U ∩ |σ| is open in |σ| for any simplex σ.

Theorem 18. The Rado complex is isomorphic to a triangulation of the
simplex ∆N. In particular, the geometric realisation |X| of the Rado com-
plex is homeomorphic to the geometric realisation of the infinite dimensional
simplex |∆N|.

The result of Theorem 18 is also stated in preprint [4].
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Note that the geometric realisation |X| of a Rado complex X (equipped
with the weak topology) does not satisfy the first axiom of countability and
hence is not metrizable. This follows from the fact that X is not locally
finite. See [16], Theorem 3.2.8.

The geometric realisation of a simplicial complex carries yet another natu-
ral topology, the metric topology, see [16]. The geometric realisation of X
with the metric topology is denoted |X|d. While for finite simplicial com-
plexes the spaces |X| and |X|d are homeomorphic, it is not true for infinite
complexes in general. For the Rado complex X the spaces |X| and |X|d
are not homeomorphic. Moreover, in general, the metric topology is not
invariant under subdivisions, see [12], where this issue is discussed in detail.
We do not know if for the Rado complex X the spaces |X|d and |∆N|d are
homeomorphic.

The following general statement about subdivisions of simplicial complexes
will be used in the proof of Theorem 18.

Lemma 19. Let (K,L) be a pair consisting of a finite simplicial complex
K and its subcomplex L. Then there is a subdivision K ′ of K with the
following properties: (1) K ′ contains L as a subcomplex, i.e. no simplex of
L is subdivided; (2) L is an induced subcomplex of K ′ and (3) The number
of new vertexes |V (K ′)− V (K)| equals the number of external simplexes of
L in K of positive dimension.

Proof. Recall that a simplex σ ⊂ K is said to be an external simplex of L
if σ 6⊂ L but all proper faces of σ lie in L. A characteristic property of an
induced subcomplex is that all its external simplexes are zero-dimensional.
Based on this remark one can prove Lemma 19 by induction as follows.

Suppose the number of external simplexes of L in K of positive dimension
is N > 0 and let σ be one of such simplexes, i.e. σ ⊂ K, σ 6⊂ L, ∂σ ⊂ L
and finally dimσ > 0. We introduce a new vertex vσ in the centre of σ and
replace the closed star St(σ) by the simplicial cone vσ ∗ (Lk(σ) ∗ ∂σ); this
is similar to the star subdivision as described in [15], chapter 2. We obtain
a subdivision K1 of K having one extra vertex (lying outside L) such that
the number of external simplexes of positive dimension of L in K1 is N − 1.
Repeating this process N times, we arrive at the desired subdivision. At
each step the number of external simplexes of positive dimension is reduced
by one. �

The construction of the proof of Lemma 19 is illustrated on Figure 1. On the
left we see a 2-simplex K with its subcomplex L = [A,B] ∪ {C} consisting
of the interval [A,B] and the vertex C. This subcomplex L is not induced,
it has two external simplexes of dimension one. On the right picture we see
two extra vertexes D and E lying on each of the external simplexes and a
subdivision in which L is an induced subcomplex.
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A B

C

D E

AB

C

Figure 1. The 2-simplex K and its subcomplex L = [A,B]∪
{C} on the left; a subdivision of the complement K − L
producing an induced subcomplex on the right (it is obtained
in two step, firstly by adding the vertex D and secondly by
adding E).

Lemma 20. Let X be a Rado complex. Then there exists a sequence of
finite subsets U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ V (X) such that ∪Un = V (X) and for
any n = 0, 1, 2, . . . the induced simplicial complex XUn is isomorphic to a
triangulation Ln of the standard simplex ∆n+1 of dimension n. Moreover,
for any n the complex Ln is naturally an induced subcomplex of Ln+1 and
the isomorphisms fn : XUn → Ln satisfy fn+1|XUn = fn.

Proof. Let V (X) = {v0, v1, . . . } be a labelling of the vertexes of X. One
constructs the subsets Un and complexes Ln by induction stating from U0 =
{v0} and L0 = {v0}. Suppose that the sets Ui and complexes Li with i ≤ n
have been constructed. Consider the subset U ′n+1 = Un ∪ {vi} ⊂ V (X)
where i ≥ 0 is the smallest integer satisfying vi /∈ Un. The induced simplicial
complex XU ′n+1

has dimension ≤ n+ 1. Clearly, the complex XU ′n+1
has the

form XUn ∪ (vi ∗An) for some subcomplex An ⊂ XUn . Applying Lemma 19
to the simplicial pair

(vi ∗XUn , XUn ∪ (vi ∗An)) = (vi ∗XUn , XU ′n+1
)

we obtain a subdivision Ln+1 of the cone vi ∗XUn which contains

XUn ∪ (vi ∗An) = XU ′n+1

as an induced subcomplex. The map

id ∗ fn : vi ∗XUn → vi ∗ Ln
is a simplcial isomorphism. By induction, Ln is a subdivison of a simplex
of dimension n, and hence the simplicial complex Ln+1 is a subdivision of a
simplex of dimension n+ 1 containing Ln as a codimension one face.

Next we apply Lemma 7 to the abstract simplicial complexes Ln+1 and
XU ′n+1

⊂ Ln+1; it gives a subset Un+1 ⊂ V (X) containing U ′n+1 and an

isomorphism fn+1 : XUn+1 → Ln+1 satisfying fn+1|XUn = fn.
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Obviously, we have ∪Un = V (X). This completes the proof. �

Proof of Theorem 18. It follows from Lemma 20. Indeed, the isomorphisms
fn : XUn → Ln of Lemma 20 determine an isomorphism of simplicial com-
plexes f : X → L where L = ∪Ln is a subdivision of the simplex ∆N. Here
f is defined by f |Ln = fn. �

Corollary 21. The geometric realisation |X| of the Rado complex is con-
tractible.

Proof. The Corollary follows from Theorem 18. We also give a short inde-
pendent proof below. Let X be a Rado complex. By the Whitehead theorem
we need to show that any continuous map f : Sn → X is homotopic to the
constant map. By the Simplicial Approximation theorem f is homotopic to
a simplicial map g : Sn → X. The image g(Sn) ⊂ X is a finite subcomplex.
Applying the property of Definition 3 to the set of vertexes U of g(Sn) and
to the subcomplex A = XU we find a vertex v ∈ V (X) − U such that the
cone vA is a subset of X. Since the cone is contractible, we obtain that g,
which is equal the composition Sn → A→ vA→ X, is null-homotopic. �

6. Infinite random simplicial complexes

We show in the following §7 that a random infinite simplicial complex is
a Rado complex with probability 1, in a certain regime. In this section
we prepare the grounds and describe the probability measure on the set of
infinite simplicial complexes.

6.1. Let L be a finite simplicial complex. We denote by F (L) the set of
simplexes of L; besides, V (L) will denote the set of vertexes of L. Suppose
that with each simplex σ ⊂ L one has associated a probability parameter
pσ ∈ [0, 1]. We shall use the notation qσ = 1 − pσ. Given a subcomplex
A ⊂ L we may consider the set E(A|L) consisting of all simplexes of L
which are not in A but such that all their proper faces are in A. Simplexes
of E(A|L) are called external for A in L. As an example we mention that
any vertex v ∈ L−A is an external simplex, v ∈ E(A|L).

With a subcomplex A ⊂ L one may associate the following real num-
ber

p(A) =
∏

σ∈F (A)

pσ ·
∏

σ∈E(A|L)

qσ ∈ [0, 1].(6)

For example, taking A = ∅ we obtain p(∅) =
∏
v∈V (L) qv, the product is

taken with respect to all vertexes v of L.

Lemma 22. One has
∑

A⊂L p(A) = 1, where A runs over all subcomplexes
of L, including the empty subcomplex.
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The proof can be found in §9.

6.2. Let ∆ = ∆N denote the simplex spanned by the set N = {1, 2, . . . } of
positive integers. We shall denote by Ω the set of all simplicial subcomplexes
X ⊂ ∆. Each simplicial complex X ∈ Ω has finite or countable set of ver-
texes V (X) ⊂ N and any finite or countable simplicial complex is isomorphic
to one of the complexes X ∈ Ω.

6.3. Let ∆n denote the simplex spanned by the vertexes [n] = {1, 2, . . . , n} ⊂
N. Let Ωn denote the set of all subcomplexes Y ⊂ ∆n. One has the projec-
tion

πn : Ω→ Ωn, X 7→ X ∩∆n.

In other words, for X ∈ Ω the complex πn(X) ⊂ ∆n is the subcomplex of
X induced on the vertex set [n] ⊂ N.

For a subcomplex Y ⊂ ∆n we shall consider the set

Z(Y, n) = π−1
n (Y ) = {X ∈ Ω;X ∩∆n = Y } ⊂ Ω.(7)

Note that for n = n′ the sets Z(Y, n) and Z(Y ′, n′) are either identical (if
and only if Y = Y ′) of disjoint; for n > n′ the intersection Z(Y, n)∩Z(Y ′, n′)
is nonempty if and only if Y ∩∆n′ = Y ′ and in this case Z(Y, n) ⊂ Z(Y ′, n′).
Note also that for n > n′ and Y ∩∆n′ = Y ′ one has

Z(Y ′, n′) =
⊔
j

Z(Yj , n)(8)

where Yj ⊂ ∆n are all subcomplexes with Yj ∩ ∆n′ = Y ′; one of these
subcomplexes Yj coincides with Y .

Let A denote the set of all subsets Z(Y, n) ⊂ Ω (as Y and n vary) and ∅.
The set A is a semi-ring, see [11], i.e. A is ∩-closed and for any A,B ∈ A
the difference B − A is a finite union of mutually disjoint sets from A. We
shall denote by A′ the σ-algebra generated by A.

Example 23. Let U ⊂ N be a finite subset and let L be a simplicial complex
with vertex set V (L) ⊂ U . Then the set {X ∈ Ω;XU = L} is the union of
finitely many elements of the semi-ring A and in particular, {X ∈ Ω;XU =
L} ∈ A′. Indeed, let n be an integer such that U ⊂ [n] and let Yj ⊂ ∆n, for
j ∈ I, be the list of all subcomplexes of ∆n satisfying (Yj)U = L; in other
words, Yj induces L on U . Then the set {X ∈ Ω;XU = L} is the union
tj∈IZ(Yj , n).

6.4. Next we define a function µ : A → R as follows. Fix for every simplex
σ ⊂ ∆N a probability parameter pσ ∈ [0, 1]. The function

F (∆N)→ [0, 1], σ 7→ {pσ}(9)

will be called the system of probability parameters. Here σ runs over all
simplexes σ ∈ F (∆N). We shall use the notation qσ = 1− pσ.
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For an integer n ≥ 0 and a subcomplex Y ⊂ ∆n define

µ(Z(Y, n)) =
∏

σ∈F (Y )

pσ ·
∏

σ∈E(Y |∆n)

qσ.(10)

Let us show that µ is additive. We know that the set Z(Y, n) equals the
disjoint union

Z(Y, n) = tj∈IZ(Yj , n+ 1)(11)

where Yj are all subcomplexes of ∆n+1 satisfying Yj ∩∆n = Y . One of these
subcomplexes Yj0 equals Y and the others contain the vertex (n + 1) and
have the form

Yj = Y ∪ ((n+ 1) ∗Aj)
where Aj ⊂ Y is a subcomplex. In other words, all complexes Yj with j 6= j0
are obtained from Y by adding a cone with apex n + 1 over a subcomplex
Aj ⊂ Y . Clearly, any subcomplex Aj ⊂ Y may occur, including the empty
subcomplex Aj = ∅.

Applying the definition (10) we have

µ(Z(Y, n+ 1)) = µ(Z(Y, n)) · qn+1,

and for j 6= j0,

µ(Z(Yj , n+ 1) = µ(Z(Y, n)) · pn+1 ·
∏

σ∈F (Aj)

p′σ ·
∏

σ∈E(Aj |Y )

q′σ,(12)

where n + 1 denotes the new added vertex and p′σ denotes the probability
parameter p(n+1)σ associated to the simplex (n+1)∗σ (the cone over σ with
apex n+ 1); besides, q′σ = 1− p′σ. Hence we obtain, using Lemma 22:∑

j∈I
µ(Z(Yj , n+ 1))

= µ(Z(Y, n)) ·

qn+1 + pn+1 ·

 ∑
Aj⊂Y

∏
σ∈F (Aj)

p′σ ·
∏

σ∈E(Aj |Y )

q′σ


= µ(Z(Y, n)).

Thus we see that µ is additive with respect to relations of type (11). But
obviously, by (8), these relations generate all additive relations in A. This
implies that µ is additive.

Note that Ω can be naturally viewed as the inverse limit of the finite sets Ωn,
i.e. Ω = lim

←
Ωn. Introducing the discrete topology on each Ωn we obtain the

inverse limit topology on Ω and with this topology Ω is compact and totally
disconnected; it is homeomorphic to the Cantor set. The sets Z(Y, n) ⊂ Ω
are open and closed in this topology, hence they are compact.

Next we apply Theorem 1.53 from [11] to show that µ extends to a proba-
bility measure on the σ-algebra A′ generated by A. This theorem requires
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for µ to be additive, σ-subadditive and σ-finite. By Theorem 1.36 from [11],
σ-subadditivity is equivalent to σ-additivity. Recall that σ-additivity means
that for A = tiAi (disjoint union of countably many elements of A) one has
µ(A) =

∑
i µ(Ai). In our case, since the sets Ai ⊂ Ω are open and closed

and since Ω is compact, any representation A = tiAi must be finite and
hence σ-additivity of µ follows from additivity.

For fixed n we have Ω = tZ(Y, n) where Y runs over all subcomplexes of
∆n (including ∅). Using additivity of µ and applying Lemma 22, we have
µ(Ω) =

∑
Y⊂∆n

µ(Z(Y, n)) = 1. This shows that µ is σ-finite and hence
by Theorem 1.53 from [11] µ extends to a probability measure on A′. The
extended measure on A′ will be denoted by the same symbol µ.

Example 24. As in Example 23, let U ⊂ N be a finite subset and let L be
a simplicial complex with vertex set V (L) ⊂ U . Then

µ({X ∈ Ω;XU = L}) =
∏

σ∈F (L)

pσ ·
∏

σ∈E(L|∆U )

qσ.(13)

Here ∆U denotes the simplex spanned by U . The proof is left to the reader
as an exercise.

7. Random simplicial complex in the medial regime is Rado

In this section we prove that an infinite random simplicial complex in the
medial regime is a Rado complex with probability one.1

Definition 25. We shall say that a system of probability parameters pσ, see
(9), is in the medial regime if there exist 0 < p− < p+ < 1 such that the
probability parameter pσ satisfies pσ ∈ [p−, p+] for any simplex σ ∈ F (∆N).

In other words, in the medial regime the probability parameters pσ are
uniformly bounded away from zero and one.

Theorem 26. A random simplicial complex with countably many vertexes
in the medial regime is a Rado complex, with probability one.

Proof. For a finite subset U ⊂ N and for a simplicial subcomplex A ⊂ ∆U

of the simplex ∆U consider the set

ΩU,L = {X ∈ Ω;XU = L}.(14)

This set belongs to the σ-algebra A′ and has positive measure, see Example
24.

Consider also the subset ΩU,L,A,v ⊂ ΩU,L consisting of all subcomplexes
X ∈ Ω satisfying XU∪v = L ∪ vA. Here A ⊂ L is a subcomplex and
v ∈ N− U .

1Finite simplicial complexes in the medial regime were studied in [9].
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The conditional probability equals

µ(ΩU,L,A,v|ΩU,L) = pv ·
∏

σ∈F (A)

pvσ ·
∏

σ∈E(A|L)

qvσ ≥ p|F (A)|
− (1− p+)|E(A|L)| > 0,

see (13). Note that the events ΩU,L,A,v, conditioned on ΩU,L for various v,
are independent and the sum of their probabilities is ∞. Hence we may
apply the Borel-Cantelli Lemma (see [11], page 51) to conclude that the
set of complexes X ∈ ΩU,L such that XU∪v = L ∪ vA for infinitely many
vertexes v has full measure in ΩU,L.

By taking a finite intersection with respect to all possible subcomplexes A ⊂
L this implies that the set ΩU,L

∗ ⊂ ΩU,L of simplicial complexes X ∈ ΩU,L

such that for any subcomplex A ⊂ L there exists infinitely many vertexes v
with XU∪v = L ∪ vA has full measure in ΩU,L.

Since Ω = ∩U ∪L⊂∆U
ΩU,L (where U ⊂ N runs over all finites subsets) we

obtain that the set ∩U ∪L⊂∆U
ΩU,L
∗ has measure 1 in Ω. But the latter

set ∩U ∪L⊂∆U
ΩU,L
∗ is exactly the set of all Rado simplicial complexes, see

Lemma 14. �

8. Random induced subcomplexes of a Rado complex

In this section we consider a different situation. Let X be a fixed Rado
complex with vertex set V (X) = N. Suppose that each of the vertexes
n ∈ N is selected at random with probability pn ∈ [0, 1] independently of
the selection of all other vertexes. Denote by Xω the subcomplex of X
induced on the selected set of vertexes. Here ω stands for the selection
sequence, one may think that ω ∈ {0, 1}N. Under which condition on the
sequence {pn} the complex Xω is Rado with probability 1?

Applying Borel-Cantelli Lemma we get:

(1) If
∑
pn < ∞ then complex Xω has finitely many vertexes, with proba-

bility 1.

(2) If
∑
pn =∞ then complex Xω has infinitely many vertexes, with prob-

ability 1.

(3) If
∑
qn < ∞ (where qn = 1 − pn) then the set of vertexes of Xω has a

finite complement in N and hence Xω is a Rado complex with probability 1.
In (3) we use Corollary 15.

The following result strengthens point (3) above:

Lemma 27. Suppose that for some p > 0 one has pn ≥ p > 0 for any
n ∈ N. Then Xω is a Rado complex with probability 1.
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Proof. Denote byXn the subcomplex ofX induced on the set [n] = {1, 2, . . . , n} ⊂
N. For a subcomplex A ⊂ Xn consider the set of vertexes

W (A,n) = {v ∈ N− [n]; LkX(v) ∩Xn = A}.
We know that this set is infinite (see Lemma 14) and since each of the
elements of this set is a vertex of Xω with probability at least p > 0 we obtain
(using Borel - Cantelli) that with probability 1 the intersection V (Xω) ∩
W (A,n) is infinite. Hence the set

∞⋂
n=1

⋂
A⊂Xn

{ω; |V (Xω) ∩W (A,n)| =∞}(15)

has measure 1 (as intersection of countably many sets of measure one). Here
we use σ-additivity of the Bernoulli measure. It is obvious that for any ω
lying in the intersection (15) the induced complex Xω is ample and hence
Rado. �

9. Proof of Lemma 22

We obviously have

1 =
∏

σ∈F (L)

(pσ + qσ) =
∑

J⊂F (L)

(∏
σ∈J

pσ ·
∏
σ/∈J

qσ

)
.(16)

In the above sum, J can be also the empty set. Denote by A(J) ⊂ J the set
of all simplexes σ ∈ J such that for any face τ ⊂ σ one has τ ∈ J . Note that
A = A(J) is a simplicial complex, it is the largest simplicial subcomplex of
L with F (A) ⊂ J . We also note that the set of external simplexes E(A|L)
is disjoint from J .

Fix a subcomplex A ⊂ L and consider all subsets J ⊂ F (L) with A(J) = A.
Any such subset J ⊂ F (L) contains F (A) and is disjoint from E(A|L).
Conversely, any subset J ⊂ F (L) containing F (A) and disjoint from E(A|L)
satisfies A(J) = A.

Denoting S(A) = F (L)−F (A)−E(A|L) and I = J ∩S(A) we see that any
term of (16) corresponding to a subset J with A(J) = A can be written in
the form  ∏

σ∈F (A)

pσ ·
∏

σ∈E(A|L)

qσ

 ·
∏
σ∈I

pσ ·
∏

σ∈S(A)−I

qσ

(17)

and the first factor above is p(A), see (6). Hence the sum of all terms in the
sum (16) corresponding to the subsets J with A(J) = A equals

p(A) ·
∑

I⊂S(A)

∏
σ∈I

pσ ·
∏

σ∈S(A)−I

qσ

 = p(A) ·
∏

σ∈S(A)

(pσ + qσ) = p(A).
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We therefore see that the statement of Lemma 22 follows from (16).

On behalf of all authors, the corresponding author states that there is no
conflict of interest.
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