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ABSTRACT

Underwater images are degraded by blur and colour cast caused by
the attenuation of light in water. To remove the colour cast with neu-
ral networks, images of the scene taken under white illumination are
needed as reference for training, but are generally unavailable. As
an alternative, one can use surrogate reference images taken close
to the water surface or degraded images synthesised from reference
datasets. However, the former still suffer from colour cast and the
latter generally have limited colour diversity. To address these prob-
lems, we exploit open data and typical colour distributions of ob-
jects to create a synthetic image dataset that reflects degradations
naturally occurring in underwater photography. We use this dataset
to train Cast-GAN, a Generative Adversarial Network whose loss
function includes terms that eliminate artefacts that are typical of
underwater images enhanced with neural networks. We compare the
enhancement results of Cast-GAN with four state-of-the-art methods
and validate the cast removal with a subjective evaluation.

Index Terms— Image enhancement, Underwater images, Gen-
erative Adversarial Networks, Image synthesis

1. INTRODUCTION

Generative Adversarial Networks (GANs) [1] are successfully used
in image enhancement tasks such as colour retouching [2], deblur-
ring [3] and colourisation [4]. The success of GANs is made possi-
ble by the availability of training images, such as expert-retouched
reference images [5] or artificially degraded images [3, 4].

An important image enhancement problem is removing the
colour cast from underwater images, whose typical blue or green
cast is caused by the selectively attenuated illuminant in water.
The ambient light attenuated along the vertical depth results in the
varying water colour observed at different depths. Objects are illu-
minated by this attenuated light and the reflected lights are scattered
and absorbed, thus reducing its intensity along the scene-to-camera
distance (range) [6,7]. Hence objects farther from the camera appear
blurred and lack contrast. Moreover, the light scattered towards the
camera veils the object with the water colour.

Underwater image enhancement can use neural networks [8–15]
or physics-based models [9, 16–19]. Neural networks for under-
water image enhancement are trained using images taken closer to
the water surface, which however are still affected by some colour
cast [8]. Alternatively, training images are synthesised with neural
networks [14,15] or from reference images with physics-based mod-
els [9–12]. However, these methods may not consistently model the
physics of the degradation, which increases with the range [9–11],
or the veiling water colour [9,10,12], thus leading to inconsistent en-
hancements. Moreover, while the range of the scene is available in
some datasets [10, 12], such as NYU-D [20] and Middlebury [21],
these datasets depict indoor scenes and have limited colour varia-
tion. Physics-based methods either do not account for the light at-
tenuation along the vertical depth, thus the enhanced images are still

under some colour cast [16–18, 22], or remove the cast with global
white balancing, thus distorting the colour of water regions [19].

In this paper, we propose a neural network-based enhancement
method, Cast-GAN, which uses the trained generator of a GAN to
remove the colour cast from underwater images, without distorting
the colour of water regions. We tailor the loss function of the gener-
ator to the underwater image enhancement problem by encouraging
the enhancement of edges and colours towards the radiance under a
white illuminant. Moreover, using a physics-based model [23], we
synthesise a reference training dataset that reflects the colour degra-
dations in different water types. The resulting dataset is unique in its
ability to consistently account for scattering effects and light attenua-
tion along the depth. Cast-GAN successfully enhances images with
heavy colour casts. We compare Cast-GAN against four methods
that are based on physics-based models or neural networks. Finally,
we validate the cast removal by Cast-GAN with a subjective experi-
ment, which shows a preference for Cast-GAN-enhanced images as
more likely to be taken under white illuminant.

2. PROPOSED METHOD

In this section, we discuss the synthesis of the training images us-
ing a physics-based degradation process. We also propose a loss
function that specifically corrects distortions introduced by an un-
derwater image enhancement process.

2.1. Underwater image degradation

Let I(x, y) be an underwater image and J(x, y) be the radiance of
the same scene under a white illumination, i.e. without the pres-
ence of water. The illuminant on objects at depth D is the ambi-
ent light E(x, y) = e�D , where  is the diffuse attenuation co-
efficient [24]. Pure water mass, which does not contain reflective
objects, has the colour of the ambient light. The colour-casted ra-
diance, E(x, y)J(x, y), is further absorbed and scattered along the
range, r(x, y). The loss in intensity can be described as an exponen-
tial decay modulated by the beam attenuation coefficient, �, as [6]:

t(x, y) = e��r(x,y). (1)

Scattering redirects the propagation path and increases, along
the range, the spatial spread of the reflected light, thus blurring de-
tails of objects farther from the camera. The spatial spread can be
derived from the knowledge of the range and water properties [25].
A portion of ambient light, that is backscattered along the range, in-
creases the water colour cast on objects with ↵

�E(x, y) [6], where ↵
is the scattering coefficient.

The degraded radiance captured in I(x, y) is the combination of
the attenuated radiance and backscattered ambient light:

I(x, y) = t(x, y)S
�
E(x, y)J(x, y)

�
+
�
1�t(x, y)

�↵
�
E(x, y), (2)
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where S(·) denotes the scattering process. Pure water mass can be
represented by the ambient light intensity E(x, y).

To create training images that reflect underwater degradations,
we need the radiance under white illuminant, J(x, y), the scene’s
range, r(x, y), and the water properties, which can be obtained from
empirical data [24, 26].

2.2. Reference images
We create the reference images of radiance under white illumi-
nant, J(x, y), by modifying information provided in the SINTEL
dataset [27]. We use the clean pass images that account for light
interacting with and occluded by objects in the scene, generating
specular reflections, shading, and cast shadows, which are added to
the original albedo [27]. The dataset includes the object segmenta-
tion masks and their ranges in full resolution, r0(x, y), stored as the
Z-buffer (Fig. 1).

The limited colour palette in SINTEL does not reflect the colour
distribution in natural images. We recolour the images to ensure
that the overall colour distribution in J(x, y) follows that of natu-
ral images and also the physics of light interactions. To this end,
we sample the colour distribution from the Berkeley Segmentation
Dataset [28] of each object segmentation mask to avoid bias to-
wards large areas such as sky and grass. We fit a Gaussian Mixture
Model (GMM) to the RGB distribution of each segmentation mask,
using the number of components that maximises the ratio of vari-
ances between and within components [29]. We use the ensemble
of all individual GMMs as the overall colour distribution for J(x, y)
and assign an RGB value sampled from the ensembled GMM to each
segmentation in SINTEL images. We preserve the light interactions
by maintaining the lightness values in CIELab colour space in SIN-
TEL [30].

Furthermore, we create pure water regions by assigning the most
faraway objects with J(x, y) = E(x, y). Specifically, we assign re-
gions with r0(x, y) � r⌧ as pure water regions, where r⌧ is cho-
sen to determine the extent of the water region(s) in the image. We
choose the water region(s) to be 10% of the synthesised image by
selecting r⌧ as the 90th percentile of all the ranges in the image.

When synthesising the degraded image I(x, y), we ensure some
radiances from objects in J(x, y) remain after attenuation. How-
ever, most objects in SINTEL have large r0(x, y) values (over 20m),
the distance at which, because of attenuation, most colours will
appear black in water. Instead of using r0(x, y) directly in the
synthesis, we use the relative ranges between objects by normalis-
ing r0(x, y) to [rmin, rmax], whose values determine the attenuation
extent observed in the image. We obtain the range of objects
(with r0(x, y) < r⌧ ) used in the synthesis as

r(x, y) = rmin +
r0(x, y)�min r0(x, y)

r⌧ �min r0(x, y)
(rmax � rmin). (3)

The portion of intensity reaching the camera after attenuation, t(x, y),
is hence

t(x, y) =

(
e��r(x,y) if r0(x, y) < r⌧

0 otherwise
(4)

From the above, we obtain the reference images with unattenu-
ated radiance under white illuminant and their intensity loss due to
attenuation. In the next section, we describe how we implement the
range-dependent scattering that blurs the image.

2.3. Degraded images

We model the range-dependent scattering with Gaussian blurring,
where the spatial spread, w, of the scattered light depends on the

(a) (b)

(c) (d)
Fig. 1. For the synthesis of the training dataset, we use open data
provided in SINTEL [27]. (a) Sample SINTEL image that accounts
for the light interactions between objects in the scene. As the orig-
inal limited colour palette is unsuitable for direct synthesis of train-
ing images, we resample the colour distribution from the Berkeley
Segmentation Dataset [28] and recolour objects. (b) Lightness chan-
nel in CIELab colour space [30] that reflects the light interactions.
(c) Scene’s range normalised to [0, 1]. Faraway regions assigned as
pure water are shown in white. (d) Segmentation masks for objects.
Each colour represents an object with the same reflectance. The syn-
thesised degraded images are shown in Fig. 3.

filter’s variance [25]. We successively apply an additive Gaussian
filter, g(x, y) [31], of variance �2

0 . The cumulative variance, �2,
after k applications is then k�2

0 . For simplicity, we only describe the
scattering process S(·) on J(x, y).

The spatial spread w of the scattered light along the range around
the pixel position (x0, y0) can be expressed as w2/r3(x0, y0) [25].
We also aim to ensure the spread is proportional to the cumula-
tive variance after successive Gaussian blurring, i.e. w2/�2. To
this end, we decompose the scene, based on range, into N lay-
ers. The farthest objects are in the N th layer and will be the most
blurred. We define the kth 2 {1, 2, ..., N} layer, of the same dimen-
sion as J(x, y), as

Lk(x, y) =

8
><

>:
J(x, y) if

✓
k � 1
N

◆2
3

<
r(x, y)
rmax


✓

k
N

◆2
3

0 otherwise.
(5)

The process is initialised with SN (x, y) = LN (x, y) ⇤ g(x, y),
where ⇤ is the convolution operator. From k = N � 1, we aggre-
gate the unattenuated layer Lk(x, y) and the already blurred layers,
and apply Gaussian blurring as

Sk(x, y) = (Lk(x, y) + Sk+1(x, y)) ⇤ g(x, y). (6)

The scattered light is obtained as S(J(x, y)) = S1(x, y), where the
radiance in Sk(x, y) is effectively blurred k times. Fig. 2 shows
an example of the successive blurring process. When synthesising
the degraded images (Eq. 2), we avoid abrupt intensity changes by
also blurring t(x, y) with the same g(x, y) and layer decomposi-
tion (Eq. 5).

We synthesise the degraded training images for 10 Jerlov water
types, using  from [24] and ↵,� from [26], from the reference im-
ages obtained in Sec. 2.2. To synthesise a dataset with diverse illumi-
nant conditions caused by attenuation along the depth, we randomly
sample D from [0.2 , Dmax] for each synthesised image, where Dmax
ensures the illuminant E(x, y) � 0.05 for all colour channels in the
water type. The minimum D of 0.2 ensures the attenuation along the
depth is visible in the image. For the range, rmin = 0.2 is the mini-
mum range at which an object is in focus, whereas rmax = 20 is the
maximum range before most colours appear black. Fig. 3 shows ex-
ample images from our synthesised training dataset, which contains
690 images for each water type.



k = 7 k = 5

k = 3 k = 1
Fig. 2. The range-dependent scattering blurs scene details and in-
creases the spatial spread of the reflected light, with successive ap-
plications of a Gaussian blur filter. The unattenuated scene is decom-
posed, based on range, into N = 7 non-overlapping layers. Objects
farthest from the camera are in the N th layer. Starting from step
k = 7, we blur the aggregation of the kth layer and layers blurred in
previous steps. Note that the appearance of an object is increasingly
blurred at each step. At the last step, the objects farthest away from
the camera (present in k = 7) are most the blurred, whereas object
that are only present at k = 1 remain sharp.

2.4. Loss function
We aim to train the generator G(·) of Cast-GAN to enhance a de-
graded image under colour cast, I(x, y), to produce an enhanced
radiance J⇤(x, y) = G(I(x, y)) that is similar to the reference unat-
tenuated radiance, J(x, y), under white illumination and without
scattering. The similarity is determined by the loss function. The
discriminator learns to distinguish between J⇤(x, y) and J(x, y).
However, the typical cross-entropy, LGAN, used to encourage the
generator to mislead the discriminator [1], produces images with
checkerboard and droplet artefacts [32]. Fig. 4(a) shows an exam-
ple of GAN enhanced image with only LGAN.

The loss function we propose for Cast-GAN, LCast-GAN, encour-
ages the similarity to reference images by combining four terms:
LCast-GAN = �GANLGAN+�L1LL1+�MSSIMLMSSIM+�percLperc, (7)

where the hyper-parameters �{·} control the balance between the
amount of enhancement and image quality. While these terms have
been used in other enhancement tasks [4,32], we are the first to com-
bine them for underwater image enhancement.

LL1 measures the intensity difference between the enhanced and
reference image [4] as LL1 = kJ⇤(x, y)� J(x, y)k1, where k · k1
is the absolute value. LMSSIM, a multi-scale structural similar-
ity, measures the quality of the reconstruction, in terms of lumi-
nance, contrast and structure between J⇤(x, y) and J(x, y) at M
scales [33]. The luminance comparison, l(·, ·), is only at the original
resolution. At each scale m, J⇤(x, y) and J(x, y) are downsam-
pled to half dimensions of the previous scale, starting from the
original resolution (m = 1), denoted by J⇤

m and Jm, respectively.
If we denote the contrast comparison and the structure compari-
son as cm(·, ·) and sm(·, ·), respectively, the multi-scale structural
similarity is defined as [33]

LMSSIM =
h
l(J⇤

1 , J1)
ia MY

m=1

h
cm(J⇤

m, Jm)
ipmh

sm(J⇤
m, Jm)

iqm
, (8)

where a, pm and qm weighs each comparison. The larger the weight,
the more important the component is to the similarity measure.

Finally, we control the image quality explicitly with the so-
called perceptual loss, Lperc, between enhanced and reference im-
age [32]. Lperc uses the intermediate layers of a neural network, �(·),
to extract image features. The more similar the features are, the more

(a) (b)
Fig. 3. A synthesised image for each of the 10 Jerlov water
types [24] for a scene at depth 1.30m under the water surface, and
with the farthest object at 1.65m from the camera. (a) Oceanic wa-
ter (top to bottom: type I, IA, IB, II, III). Red is the most attenuated,
inducing a blue cast. (b) Coastal water (type 1, 3, 5, 7, 9). Blue is
the most attenuated, inducing a green cast.

perceptually similar the images are. The perceptual loss also helps
to suppress checkerboard artefacts caused by the cross-entropy
LGAN [34] and is defined as [32]

Lperc = k�(J⇤(x, y))� �(J(x, y))k22, (9)
where k · k2 is the Euclidean distance.

3. VALIDATION
We validate the proposed loss function with an ablation study and
compare Cast-GAN with four state-of-the-art methods: two neu-
ral networks, namely U-Net Denoising (U-Net) [8] and Underwater
Scene Prior Inspired Image Enhancement (UWCN) [12], and two
physics-based methods, namely Depth-dependent Background Light
(DBL) [16] and Underwater Haze Line (UWHL) [19]. UWHL and
Cast-GAN are the only methods explicitly aiming to remove colour
cast. The trained networks and codes of all methods are available
online, except U-Net, whose results were provided by the authors.

The generator of Cast-GAN consists of 6 ResNet blocks [35],
with parameters initialised by normal distribution to prevent the
vanishing gradient problem. The discriminator is a 70⇥70 Patch-
GAN [4] that determines the similarity between patches in the
enhanced and reference images. The networks are trained with
a learning rate of 1⇥10�5 for 150 epochs, which are then ex-
ponentially decreased to 0 in 150 epochs. In all epochs, to pre-
vent overfitting, only a 436⇥436 patch is randomly selected from
each 1024⇥436 training image. For the loss function, we use
as �(·) the third ReLU layer of the VGG-16 network [36]. LMSSIM
uses M = 5 scales, with p = q = [0.04, 0.29, 0.30, 0.24, 0.13]. We
select as hyper-parameters of the loss function �GAN =1, �L1 =100,
�MSSIM =100 and �perc =10. The large differences in the hyper-
parameters suggest LGAN stabilises over epochs and requires a larger
contributions from the remaining terms to mitigate the artefacts
introduced by LGAN. Cast-GAN was trained for 13 hours on an
NVIDIA Tesla V100 with CUDA 9.0 using the ADAM optimiser.
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Fig. 4. The proposed loss function, LCast-GAN, mitigates the artefacts
of individual components and improves visual quality. (a) Artefacts
include checkerboard effects caused by LGAN and unnatural white
regions caused by LL1 . (b) Using LMSSIM enhances the edges on the
coral. (c) Using Lperc removes checkerboard effects. Note that we
show the areas identified by yellow rectangles in the original image.

Fig. 4 shows sample results from the ablation study on the
proposed loss function, LCast-GAN. We tested individually the typi-
cal LGAN for GANs and LL1 for colour intensity similarity. Using
only LGAN introduces checkerboard artefacts that reduce the image
quality, whereas using only LL1 introduces unnaturally bright re-
gions (Fig. 4(a)). Combining the two reduces the bright regions but
results in more visible checkerboard effects (Fig. 4(b)). Adding Lperc
to the combination significantly reduces checkerboard effects,
whereas adding LMSSIM enhances the edges on the corals (Fig. 4(c)).
LCast-GAN, combining the four components, enhances the colour and
the edge details without introducing noticeable artefacts.

Fig. 5 shows sample enhanced images for the methods under
comparisons. Most methods successfully enhance images with
mild colour casts, except UWCN that adds a grey-pink cast to the
scene (Fig. 5(a)). Methods that only address the degradation along
the range have limited performance under heavy casts, showing little
improvement on colour (Fig. 5(b,c)). Although UWHL can remove
the blue colour cast, it overcorrects the colour of the objects to an
unnaturally red appearance. The visibility of objects in images taken
in coastal waters with heavy green casts is very limited (Fig. 5(d,e)).
Both UWHL and Cast-GAN are able to remove the heavy cast and
to reveal details in the scene. In particular, Cast-GAN enhances
the appearance of the scuba diver in the background. Cast-GAN,
however, may reduce details in some regions, such as in the darken
regions in Fig. 5(c).

To validate the colour cast removal ability of Cast-GAN, we
asked participants to select, in a double stimulus test, the image with
objects that look more likely to be pictured under white illumination.
Pairs of images included Cast-GAN against the original, UWHL [19]
against the original, and UWHL [19] against Cast-GAN. Participants
could select either of the images or ‘cannot decide’. We collected
a total of 751 responses from 21 participants on 12 original images.
Table 1 shows that, when compared against the original image, Cast-
GAN is selected by the participants 60.2% of the times. UWHL is

Original

DBL [16]

U-NET [8]

UWCN [12]

UWHL [19]

Cast-GAN

(a) (b) (c) (d) (e)
Fig. 5. Sample enhanced images taken in (a)(b)(c) oceanic water
with blue casts, and (d)(e) coastal waters with heavy green casts.
Note how Cast-GAN removes the cast and enhances details, while
maintaining realistic colours, especially in images with heavy casts.
Since U-Net can only process images of specific resolutions, we se-
lect here the image provided by authors, whose resolution is the clos-
est to the original image’s aspect ratio. For the purpose of visualisa-
tion, images in the same column may have been resized to have the
same width.

Table 1. Results of the subjective experiment. Participants were
asked to select from a pair of images the one whose objects ap-
peared more likely to have been pictured under white illuminant,
or ‘cannot decide’. The higher the preference, the better the cast re-
moval. Cast-GAN is consistently selected over the original image
and UWHL [19].

Image pair Preference (%)
Method 1 Method 2 Cannot decide Method 1 Method 2
Original UWHL [19] 7.7 55.8 36.4
Original Cast-GAN 6.0 33.8 60.2

UWHL [19] Cast-GAN 9.8 18.7 71.5

only selected 36.4% of the times, whereas the original image is se-
lected 55.8% of the times. When compared against UWHL, Cast-
GAN is preferred to UWHL 71.5% of the times. To summarise,
Cast-GAN is consistently preferred.

The complete image enhancement results can be found at
http://cis.eecs.qmul.ac.uk/projects/Cast-GAN.

4. CONCLUSION

We proposed Cast-GAN, a Generative Adversarial Network to re-
move the colour cast from underwater images. We overcome the lack
of training datasets by creating reference images that incorporate the
effects of scattering and attenuation along the depth. We showed that
our synthesised reference dataset, which accounts for the complete
underwater image degradation effects, can improve the performance
of enhancement networks. We assessed the effectiveness of the pro-
posed loss function with an ablation study and validated the cast
removal performance with a subjective evaluation, which shows the
consistent performance of Cast-GAN over state-of-the-art methods.
Cast-GAN can be extended to address other physics-based image
degradations, such as haze, for which reference training images are
unavailable.

http://cis.eecs.qmul.ac.uk/projects/Cast-GAN
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