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The classical double copy relates exact solutions of gauge, gravity, and other theories. Although widely
studied, its origins and domain of applicability have remained mysterious. In this Letter, I show that a
particular incarnation—the Weyl double copy—can be derived using well-established ideas from twistor
theory. As well as explaining where the Weyl double copy comes from, the twistor formalism also shows
that it is more general than previously thought.
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Introduction.—The study of fundamental physics is
dominated by (non-Abelian) gauge theories, which underly
particle physics, and general relativity (GR), which
describes astrophysics and cosmology. Intriguing similar-
ities between these theories have emerged in recent years,
and I will here concentrate on the classical double copy that
provides a map between solutions of different field equa-
tions, itself inspired by a similar procedure for (quantum)
scattering amplitudes [1,2]. In general, one can only relate
classical solutions at a fixed order in perturbation theory
[3–38]. However, in some cases it is possible to make
statements about exact solutions [39–69]. In particular, the
Kerr-Schild double copy of Ref. [39] relates certain
algebraically special spacetimes in GR to an exact solution
of the gauge theory field equations. The latter is referred to
as the single copy of the given gravity solution, and there is
also a zeroth copy, which produces a solution of so-called
biadjoint scalar field theory. A second exact classical
double copy is the recent Weyl double copy of Ref. [50],
which I discuss below. This relies on a well-known
formalism (see, e.g., Refs. [70–72]) which recasts the usual
tensorial field equations for electromagnetism and GR in
terms of two-component spinors πA and their complex
conjugates πA0 . Every spacetime index of a tensor field can
be converted to a pair of spinorial indices (and vice versa)
by contracting with Infeld–van der Waerden symbols σμAA0 .
Furthermore, spinors with multiple (un)primed indices can
always be decomposed into sums of products of Levi-
Civita symbols and fully symmetric spinors. For example,
the field strength tensor of electromagnetism has the
spinorial translation

Fαβ → FAA0BB0 ¼ ϕABϵA0B0 þ ϕ̄ABϵA0B0 ; ð1Þ

where the symmetric spinors ϕAB and ϕ̄A0B0 turn out to
correspond separately to the anti-self-dual and self-dual
parts in spacetime. In GR, we will be concerned with
vacuum spacetimes, for which the Riemann tensor reduces
to the Weyl tensor, with spinorial translation

Cαβγδ → ΨABCDϵA0B0ϵC0D0 þ Ψ̄A0B0C0D0ϵABϵCD; ð2Þ

such that ΨABCD (Ψ̄A0B0C0D0) is the self-dual (anti-self-dual)
part, and the former is called the Weyl spinor. The vacuum
electromagnetic and GR equations are special cases of the
general massless free-field equation

∇AA0
ϕAB…E ¼ 0; ∇AA0

ϕ̄A0B0…E0 ¼ 0; ð3Þ

where ϕAB…E is assumed symmetric, with 2s indices for a
field of spin s, and ∇AA0

is the appropriate spinorial
translation of the spacetime covariant derivative. Any
symmetric spinor factorises into a symmetrized product
of one-index principal spinors, allowing one to classify
solutions of different theories. Electromagnetic spinors are
null (non-null) if their principal spinors are (non)propor-
tional. Weyl spinors with no common principal spinors are
called Petrov type I, and the possible patterns of degeneracy
f2; 1; 1g, f3; 1g, f2; 2g, and f4g are types II, III, D, and N,
respectively.
Given two (possibly equal) electromagnetic field

strength spinors ϕAB and ϕ̃AB, the Weyl double copy of
Ref. [50] states that one may construct a Weyl spinor
according to the rule

ΨABCD ¼ 1

S
ϕðABϕ̃CDÞ; ð4Þ

where SðxÞ is a scalar field. This procedure was argued to
hold for arbitrary type D vacuum spacetimes in Ref. [50],
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where the scalar S could then be found in particular
examples by matching both sides of Eq. (4). All of these
solutions have the property that they linearize the Einstein
equations, so that the derivative in Eq. (3) may be taken to
be in flat space.
Applications of the double copy range across many

different areas of physics, including new methods for
investigating gravitational waves and/or insights into quan-
tum gravity (see, e.g., Ref. [73]), connections between
gauge and gravity theories and fluid dynamics [61,74],
relations between novel optical systems and gravity
[75,76], and studies of magnetic monopoles and topology
[54]. But quite how general the double copy is, and where it
ultimately comes from, have up until now remained
mysterious [77], with many open questions: (i) Why is it
possible to formulate an exact double copy in position
space, when the original procedure for amplitudes [1,2] is
in momentum space? (ii) How can one systematically fix
the scalar function SðxÞ, and is there a well-defined
procedure for the inverse zeroth copy that relates this
to a gauge theory solution? (iii) Can one generalize the
Weyl or Kerr-Schild double copies to curved spacetime
(see Refs. [42,43,79] for related work)? (iv) Can one
generalize the Weyl double copy to less algebraically
special cases (i.e., other Petrov types)? We will be
able to answer all of these questions, by traveling to
twistor space. Twistor methods have been highly successful
in the study of scattering amplitudes (see, e.g.,
Refs. [80–84]). The present study, however, constitutes
the first application to the exact double copy of classical
solutions.
Twistor space and Penrose transforms.—Twistor space

(see, e.g., Refs. [71,85,86]) T corresponds to the set of
solutions of the twistor equation

∇ðA
A0ΩBÞ ¼ 0 ⇒ ΩA ¼ ωA − ixAA

0
πA0 ; ð5Þ

where the second equation gives the general solution in
Minkowski space. We may thus associate solutions of
Eq. (5) with four-component objects (“twistors”) contain-
ing a pair of spinors:

Zα ¼ ðωA; πA0 Þ; ð6Þ

whose Minkowski space “location” is defined by ΩA ¼ 0.
From Eq. (5), this implies the incidence relation

ωA ¼ ixAA
0
πA0 ; ð7Þ

which is invariant under rescalings Zα → λZα. Thus, twist-
ors obeying Eq. (7) are points in projective twistor space
PT . A fixed point xμ in Minkowski space maps to a
complex line in PT , corresponding to the celestial sphere
of null directions at xμ. Considering the conjugate equation
to Eq. (5), we may also define dual twistors Wα and an

inner product ZαWα, which turns out to be conformally
invariant. Then the Penrose transform

ϕA0B0…C0 ðxÞ ¼ 1

2πi

I
Γ
πE0dπE

0
πA0πB0…πC0 ½ρxfðZαÞ� ð8Þ

relates holomorphic twistor functions fðZαÞ in PT (i.e.,
involving no nonconstant dual twistors) with spacetime
fields, where ρx denotes restriction to the celestial sphere of
spacetime point xAA

0
in PT and Γ is an arbitrary contour

separating any poles. For consistency, the function fðZαÞ
must be homogeneous under twistor rescalings with degree
ð−n − 2Þ, where n is the number of indices appearing on
the left-hand side. Equation (8) solves the spin-n massless
field equation of Eq. (3), except for the scalar case, which
instead satisfies the conformally invariant wave equation
with Ricci scalar R:

�
□þ R

6

�
ϕ ¼ 0: ð9Þ

The Weyl double copy from twistor space.—I can now
state the main result of my Letter, namely, a derivation of
the Weyl double copy from twistor space. Consider a pair

of homogeneity-4 twistor functions ffð1;2ÞEM g, which will

necessarily correspond to electromagnetic solutions ϕð1;2Þ
A0B0

in spacetime by Eq. (8). One may then combine them with a
homogeneity-2 function fscal (corresponding to a spacetime
scalar ϕ) to make a homogeneity-6 function according to

fgrav ¼
fð1ÞEMf

ð2Þ
EM

fscal
: ð10Þ

This leads to a (linearized) gravity solution ϕA0B0C0D0 in
spacetime, implying that there will be some sort of
spacetime relationship between electromagnetic, scalar,
and gravitational fields. My claim is that, for suitable
functions, this is precisely the mixedWeyl double copy [87]

ϕA0B0C0D0 ¼
ϕð1Þ
ðA0B0ϕ

ð2Þ
C0D0Þ

ϕ
: ð11Þ

I have here synchronized my notation with Eq. (3), but
ϕA0B0C0D0 and ϕ are the conjugates of the quantities ΨABCD
and S, respectively, appearing in Eq. (4). In order to
determine the functions we must use in Eq. (10), we
may rely on the observation that if a twistor function
has an mth-order pole, its corresponding spacetime field
has an ðn −mþ 1Þ-fold principal spinor, where n is the
number of spinor indices (see, e.g., Ref. [71]). We may then
choose the function fscal to have poles at the same locations
in twistor space as the functions fEM and fgrav, and we may
choose the order of the poles in each case so as to reproduce
Eq. (11) in spacetime. To see how this works, consider the
functions
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fm ¼ ½QαβZαZβ�−m
m!

≡ 1

m!

�
N−1ðxÞ

½ξ − ξ1ðxÞ�½ξ − ξ2ðxÞ�
�−m

; ð12Þ

for some constant dual twistorQαβ, wherem ¼ 1, 2, and 3 for
the scalar, electromagnetic, and gravity cases, respectively. In
the second equation, I have chosen homogeneous coordinates
πA0 ¼ ð1; ξÞ, ξ ∈ C. The resulting roots in ξ and normaliza-
tion factor NðxÞ gain their position dependence from the use
of the incidence relation of Eq. (7). One then finds that the
Penrose transform in the general spin (m − 1) case is

ϕA0B0…C0|fflfflfflffl{zfflfflfflffl}
ðm−1Þ indices

¼ NmðxÞ
2πi

I
Γ
dξ

ð1; ξÞA0 ð1; ξÞB0…ð1; ξÞC0
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ðm−1Þ factors

ðξ − ξ1Þmðξ − ξ2Þm
: ð13Þ

The contour Γ is defined on the Riemann sphere of ξ and is
such that it must separate the poles at ξ ¼ ξ1 and ξ ¼ ξ2.
Choosing to enclose the first of these poles, one finds
spacetime fields

ϕ ¼ NðxÞ
ξ1 − ξ2

; ϕA0B0 ¼ −
N2ðxÞ

ðξ1 − ξ2Þ3
αðA0βB0Þ;

ϕA0B0C0D0 ¼ N3ðxÞ
ðξ1 − ξ2Þ5

αðA0βB0αC0βD0Þ; ð14Þ

where the principal spinors occurring in these equations are
given by

α ¼ ð1; ξ1Þ; β ¼ ð1; ξ2Þ: ð15Þ
It is evident that the fields of Eq. (14) obey Eq. (11), as
required. Furthermore, the gravity field in Eq. (14) is clearly of
type D, where the right pattern (2, 2) of degenerate principal
spinors arises from choosing two distinct third-order poles for
fgrav in twistor space.
To illustrate the above, we may consider a simple special

case of Eq. (12), namely, the self-dual Schwarzschild-
Taub-NUT solution, which is generated by choosing [88]

Qαβ ¼
1

2

0
BBBB@

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1
CCCCA: ð16Þ

One then finds

ξ1;2 ¼
−z� r
ðxþ iyÞ ¼

x − iy
z� r

; NðxÞ ¼ i
ffiffiffi
2

p

ðxþ iyÞ ; ð17Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the spherical radial coordi-

nate. From Eq. (14), the biadjoint scalar function ϕ
associated with this solution is given by

ϕ ¼ i

r
ffiffiffi
2

p : ð18Þ

This agrees with the function SðxÞ presented in Ref. [50],
up to an overall normalization constant. However, their
function SðxÞ is itself defined only up to an overall
constant, so this is not a problem. Furthermore, given
the principal spinors of Eqs. (15) and (17), one may convert
to the Kerr-Schild form of the classical double copy by
contracting each with the relevant Infeld–van der Waerden
symbols [70] to obtain the spacetime vectors:

k�μ ∝
�
1;� x

r
;� y

r
;� z

r

�
: ð19Þ

These are indeed the two possible choices of null
vector entering the Kerr-Schild double copy approach of
Ref. [39].
In general, the Weyl double copy becomes especially

elegant in twistor space: It relies on simple products of
scalar functions, whereas the spacetime fields involve
products of lower-rank spinors followed by symmetrization
over indices. However, the twistor space formulation is
much more than a simple rewriting. Once one has found the
set of functions in Eq. (12) for use in Eq. (10), the known
properties of the Penrose transform guarantee that there
exist corresponding spacetime fields and that these obey the
Weyl double copy. Furthermore, the functional form of
Eq. (12) is sufficient to produce the self-dual part of the
most general type D vacuum solution [89,90] and, thus,
encompasses the solutions considered in Ref. [50]. Hence,
the twistor framework provides a derivation of both the
form and the previously considered scope of the Weyl
double copy. In doing so, it also explains why the Weyl
double copy (and its related Kerr-Schild counterpart)
operate directly in position space, as it is the latter that
arises from the Penrose transform.
My argument here is confined to linearized equations of

motion only, due to the limitations of the Penrose trans-
form. However, for the type D vacuum solutions considered
in Ref. [50], all of them linearize their respective field
equations, so that the Weyl double copy can be promoted to
an exact statement. It may also be generalized, in principle,
to arbitrary conformally flat background spacetimes, for-
malizing previous exploratory work in this direction
[42,43]. To see this, note that the twistor description is
manifestly conformally invariant (as stated above), so that,
upon obtaining the spacetime fields of Eq. (14), one may
transform each one to a given background spacetime
according to the usual conformal transformation rules for
multi-index spinors [71]. The resulting fields can then be
interpreted as related by the double copy in the new
background.
The inverse zeroth copy.—As mentioned above, it has

not previously been clear how to fix the scalar function that
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appears in the Weyl double copy. In both this and the Kerr-
Schild approach, it is also not obvious how to precisely
formulate an inverse zeroth copy that relates a given scalar
field to corresponding gauge and gravity solutions. The
latter contain extra kinematic information (associated with
the principal null directions of the field strength and Weyl
tensor, respectively) that appears entirely absent in the
biadjoint theory. The twistor approach solves this problem:
The principal null directions of the gauge and gravity fields
are uniquely fixed by the poles of the corresponding twistor
space functions, as evidenced directly in Eq. (15). What is
more, this information is already present in the scalar
function (m ¼ 1) of Eq. (12). The twistor picture thus
reveals, for the first time, how the biadjoint field “knows”
about the structure of the resulting gauge and gravity fields.
Beyond type D solutions.—So far, we have reproduced

the type D Weyl double copy of Ref. [50], by choosing a
particular set of functions [Eq. (12)] for use in Eq. (10).
However, we can clearly allow for a more general set of
functions to be used, and in doing so the twistor language
allows us to extend the Weyl double copy to solutions other
than Petrov type D.
To find a concrete example, we may use a particularly

well-studied class of holomorphic twistor functions,
namely, elementary states (see, e.g., Ref. [71]), which
consist of ratios of factors of the form ðAαZαÞ, where Aα is a
constant dual twistor. Such functions were originally
motivated as alternatives to plane-wave states in examining
scattering processes via twistor space but have been
reconsidered in a recent series of papers [76,91–95], where
they are shown to give rise to topologically nontrivial
configurations of electromagnetic and gravitational fields,
where the field lines form torus knots. Knotted magnetic
fields are of great interest due to their potential role in
stabilizing nuclear fusion processes and for stellar structure
[96]. Furthermore, finding gravitational counterparts of
interesting electromagnetic solutions may guide experi-
mental efforts to emulate gravitational waves [97].
In particular, consider the Penrose transform pair [94]

1

ðAαZαÞ1þaðBαZαÞ1þb → ð20Þ

�
2

Ωjx − yj2
�

aþbþ1

AðA0
1
…AA0

b
BA0

bþ1
…BA0

2hÞ; ð21Þ

where a; b ∈ Z, the curly spinors are defined by

AαZα ≡AA0
πA0 ; BβZβ ≡ BB0

πB0 ; ð22Þ

and

Aα ¼ ðμA; λA0 Þ; Bα ¼ ðσA;ψA0 Þ;

Ω ¼ μBσ
B; yAA

0 ¼ i
σAλA

0 − μAψA0

μBσ
B : ð23Þ

For a ¼ b ¼ 0, we obtain the scalar field

ϕ ¼ 2

Ωjx − yj2 : ð24Þ

One may construct twistor functions of homogeneity 4 by
choosing ða; bÞ ¼ ð1; 1Þ or (0,2), leading to the two
respective electromagnetic spinors

ϕð1;1Þ
A0B0 ¼

�
2

Ωjx − yj2
�

3

AA0BB0 ;

ϕð0;2Þ
A0B0 ¼

�
2

Ωjx − yj2
�

3

AA0AB0 : ð25Þ

Using these in the mixedWeyl double copy of Eq. (11), one
can generate a number of different Weyl spinors:

ϕð1;1Þ×ð1;1Þ
A0B0C0D0 ¼

�
2

Ωjx − yj2
�

5

AðA0AB0BC0BD0Þ;

ϕð1;1Þ×ð0;2Þ
A0B0C0D0 ¼

�
2

Ωjx − yj2
�

5

AðA0AB0AC0BD0Þ; ð26Þ

ϕð0;2Þ×ð0;2Þ
A0B0C0D0 ¼

�
2

Ωjx − yj2
�

5

AðA0AB0AC0AD0Þ; ð27Þ

and it is easily checked that these are the fields that arise
upon multiplying the corresponding functions in twistor
space according to Eq. (10) and then performing the
Penrose transform to position space. The first and third
of these examples are Petrov type D and N, respectively.
However, the second (as already noted in Ref. [94]) is
Petrov type III. This thus goes beyond the original
formulation of the Weyl double copy in Ref. [50]. The
price one pays, however, is that such solutions are restricted
to linear level only.
Conclusion.—I have presented a twistor space derivation

of the exact classical double copy that reproduces the Weyl
double copy of Ref. [50], itself equivalent to the Kerr-
Schild double copy of Ref. [39], where they overlap. It
resolves a number of questions, which I labeled above:
(i) the Penrose transform of Eq. (8) relates twistor functions
to spacetime fields in position space, thus explaining why a
position space exact copy is possible; (ii) the scalar function
SðxÞ in Eq. (4) is predicted exactly by the twistor approach,
and its poles in twistor space already know what the
principal spinors in the gauge and gravity solutions will
be, thus providing an explicit interpretation for the inverse
zeroth copy; (iii) conformal invariance of the twistor space
formulation implies that the classical double copy should
immediately generalize to conformally flat spacetimes,
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formalizing the exploratory results of Refs. [42,43], and
where the biadjoint field should obey Eq. (9); (iv) my new
approach leads to Petrov types other than type D (or N),
thereby broadening the scope of the Weyl double copy.
I expect that the twistor language could have a number of

uses, including providing new explicit examples of the
classical double copy and to ascertain its scope [e.g., by
showing which Petrov types are (not) possible]. In line
with the general remarks above, it would be interesting to
formulate explicit examples of double copies in confor-
mally flat backgrounds, including those of astrophysical
relevance. I also note that the twistor language can, in
principle, be extended beyond linear level, using appro-
priate generalizations of the Penrose transform [98,99].
My methods have been manifestly four dimensional.

For higher dimensions, it may be more sensible to use an
ambitwistor approach in which (dual) twistors are placed
on a more equal footing, as has proven useful for scattering
amplitudes [80–84]. In any case, given the role that twistor
theory has played in many different areas of physics and
mathematics [100], I hope that this Letter attracts the
interest of communities who have been previously unaware
of the fascinating subject of the double copy.
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Union Horizon 2020 research and innovation program
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