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Abstract

In this thesis, we present a novel mathematical model-based approach to optimize
loading schemes of isometric resistance training (RT) sessions for different training
goals. To this end, we develop a nonlinear ordinary differential equation model
of the time course of maximum voluntary isometric (MVIC) force under external
isometric loading. To validate the model, we set up multi-experiment parameter
estimation problems using a comprehensive dataset from the literature. We solve
these problems numerically via direct multiple shooting and the generalized Gauss-
Newton method. Moreover, we use the proposed model to examine hypotheses
about fatigue and recovery of MVIC force. Then, we mathematically formulate key
performance indicators and optimality criteria for loading schemes of isometric RT
sessions identified in sports science and incorporate these into multi-stage optimal
control problems. We solve these problems numerically via direct multiple shooting
and structure-exploiting sequential quadratic programming. We discuss the results
from a numerical and sports scientific point of view. Based on the proposed model,
we additionally formulate the estimation of critical torque as a nonlinear program.
This allows us to reduce the experimental effort compared to conventional testing
when estimating these quantities. Furthermore, we formulate multi-stage optimum
experimental design problems to reduce the statistical uncertainty of the parameter
estimates when calibrating the model. We solve these problems numerically via
direct single shooting and sequential quadratic programming. We discuss the
solutions from a numerical and physiological point of view. For our approach,
a small amount of data obtained in a single testing session is sufficient. Our
approach can be extended to more elaborate physiological models and other forms
of resistance training once suitable models become available.
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Zusammenfassung

In dieser Arbeit stellen wir einen neuen mathematischen modellbasierten An-
satz zur Optimierung von Belastungsschemata isometrischer Krafttrainingsein-
heiten für verschiedene Trainingsziele vor. Dafür entwickeln wir ein nichtlineares
gewöhnliches Differentialgleichungsmodell des Zeitverlaufs der maximalen willent-
lichen isometrischen Kraft unter externer isometrischer Belastung. Um das Mo-
dell zu validieren, stellen wir Mehrfachexperiment-Parameterschätzprobleme auf
und verwenden einen umfassenden Datensatz aus der Literatur. Wir lösen diese
Probleme numerisch mit der Mehrzielmethode und dem verallgemeinerten Gauß-
Newton-Verfahren. Weiterhin verwenden wir das entwickelte Modell um Hypothe-
sen bezüglich Ermüdung und Erholung der maximalen willentlichen isometrischen
Kraft zu untersuchen. Danach formulieren wir Leistungskennzahlen und Optima-
litätskriterien für Belastungsschemata isometrischer Krafttrainingseinheiten ma-
thematisch, die in den Sportwissenschaften identifiziert wurden, und binden diese
in mehrphasige Optimalsteuerungsprobleme ein. Wir lösen diese Probleme nume-
risch mit der Mehrzielmethode und sequentieller quadratischer Programmierung.
Wir diskutieren die Resultate aus numerischer und sportwissenschaftlicher Sicht.
Basierend auf dem entwickelten Modell, formulieren wir zusätzlich die Schätzung
von

”
Critical Torque“ als nichtlineares Programm. Dies erlaubt es uns den ex-

perimentellen Aufwand gegenüber einer konventionellen Schätzung zu reduzieren.
Weiterhin formulieren wir mehrphasige Versuchsplanungsprobleme, um die stati-
stische Unsicherheit der Modellparameter beim Kalibrieren des Modells zu redu-
zieren. Wir lösen diese Probleme numerisch mit dem Einfachschießverfahren und
sequentieller quadratischer Programmierung. Wir diskutieren die Resultate aus
numerischer und physiologischer Sicht. Mit unserem Ansatz ist eine geringe Men-
ge an Daten, die in einer einzigen Testeinheit erhoben werden kann, ausreichend.
Unser Ansatz kann auf umfangreichere physiologische Modelle und andere For-
men des Krafttrainings erweitert werden sobald geeignete Modelle zur Verfügung
stehen.
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Introduction

Motivation

Resistance training (RT) is a popular choice among athletes, rehabilitation pa-
tients, and the general public to improve physical performance. Benefits of RT
include increased muscular strength and endurance, improved body composition,
or enhanced functional capacity and quality of life [Williams et al., 2007]. To opti-
mize results, individualized RT is necessary [Fleck and Kraemer, 2014]. Therefore,
training variables such as exercise selection, frequency, volume, or intensity need
to be adjusted to the trainee and the training goals. These adjustments are com-
monly performed by the trainee or a coach via trial-and-error [Clarke and Skiba,
2013].

To complement such a manual decision-making, many research areas like chem-
ical or mechanical engineering have adopted methods from scientific computing,
e.g., modeling, simulation, and optimization (MSO). For this reason, scientific
computing is often considered to be the third pillar of methodology in science next
to theory and experiment [Oberkampf and Roy, 2010]. Nevertheless, sports sci-
ence and exercise physiology are only slowly realizing the potential of model-based
approaches [Arandjelović, 2017]. In particular, reports of applications covering
loading schemes for resistance training are very limited.

A model-based optimization of loading schemes for RT could provide valuable
impulses for practitioners and complement the predominantly manual program
design. By calibrating the model to the trainee, personalized parameters are ob-
tained. Then, optimized RT programs could be computed specifically for this
trainee, exercise, and training goal based on a key performance indicator (KPI)
included in the model. Furthermore, a comparison of effective loading schemes
in practice and algorithmically optimized loading schemes could help to identify
the driving stimuli for adaptations, e.g., the contributions of mechanical loading,
metabolic stress, and muscle damage to hypertrophic adaptations [Schoenfeld,
2010], or the effect of different mechanical stimuli on strength and power adapta-
tions [Crewther et al., 2005]. Moreover, RT programs could be designed to induce
the same level of metabolic disturbances. This would allow to increase the compa-
rability between training approaches, e.g., between blood flow restriction training
and conventional training.

Contributions

In this thesis, we present a novel mathematical model-based approach to optimize
loading schemes of RT sessions for different training goals. The main contributions
in the fields of mathematics, applied physiology, and sports science are as follows.
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Introduction

Proposal of a novel mathematical model-based approach to optimize
loading schemes of RT sessions for different training goals

To complement the manual decision-making of trainees and coaches in RT plan-
ning, an algorithmic optimization of loading schemes appears promising. However,
two fundamental challenges arise. First, mathematical or computational modeling
is not well-established in the RT literature and therefore only few phenomenologi-
cal models are available [Arandjelović, 2017] of which – to the best of our knowledge
– none are suitable for our purpose (see Chapter 7). Thus, a new model is neces-
sary. Second, the physiological processes taking place in the human body during
and after RT are not fully understood by researchers and data for these phenomena
is only sparsely available – especially for long-term adaptation processes. Hence, a
first principles modeling approach directly connecting the loading schemes to RT
outcomes seems to be practically infeasible. Thus, we propose a novel approach.
First, we model the varying force capacities of a trainee during a training session
depending on the loading scheme. Then, we mathematically formulate key per-
formance indicators and optimality criteria for isometric RT sessions identified in
sports science and incorporate these into multi-stage optimal control problems.
Based on these problem formulations, we can then optimize the loading schemes.
For our approach, a small amount of data obtained in a single testing session is
sufficient. This renders an optimization of RT sessions feasible. Details on this
approach are given in Chapter 7.

Development of a nonlinear ordinary differential equation model of
the time course of maximum voluntary isometric contraction force

To algorithmically optimize the loading schemes of RT sessions, a model-based
prediction of the time-dependent force capacities of the trainee is necessary. Such
a dynamic model should satisfy several prerequisites (see Chapter 8). However,
to the best of our knowledge, a suitable model is not available. Therefore, we
develop a nonlinear ordinary differential equation (ODE) model of the time course
of maximum voluntary isometric contraction (MVIC) force of a muscle group. As
input, the model takes the absolute external isometric load over time and gives
the resulting MVIC force capacities of the muscle group as output. The states of
the model separate the fast and the slow processes of muscle fatigue and recovery
[Carroll et al., 2017]. Their dynamics are based on physiological principles and
phenomenological observations. The intrinsic parameters of the model describe the
fatigue and recovery properties of the muscle group under consideration and can
be identified solely through force measurements. The model is based on previous
work by Freund and Takala [2001] and Fayazi et al. [2013]. Due to the chosen
structure, it is suitable for our purpose. A parametrization of the input function
furthermore allows to use the trainee’s effort as input, which enables a simulation
of maximum efforts. This results in an additional coupling of the states. Details
on the proposed model are given in Chapter 8.
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Numerical validation of the proposed model in a multi-experiment
parameter estimation setting based on a comprehensive real-life data
set

To ensure a practical benefit of the proposed model for sports scientists and exer-
cise physiologists, a validation of its descriptive and predictive abilities is necessary.
We use published data of the time course of MVIC force of the elbow flexors un-
der different loading schemes. To the best of our knowledge, we compile the most
comprehensive dataset in the literature for this purpose. As data of the available
single experiments is not sufficient for a reliable model calibration, we formulate a
multi-experiment parameter estimation problem using a subset of the available ex-
periments. The resulting weighted least-squares problem constrained by an ODE
system is transcribed to finite-dimensional form via the direct multiple shoot-
ing method [Bock, 1987] and solved with the reduced generalized Gauss-Newton
method [Bock, 1987; Schlöder, 1988]. We quantify the uncertainty of the parame-
ter estimates and use the calibrated model to predict the remaining experiments.
This approach guarantees reliable parameter estimates and an efficient estimation
procedure, which is necessary when scaling our approach to multiple muscle groups
and individuals. We cross-validate our results by interchanging experiments in the
calibration and prediction sets. The model is able to describe and predict the data
with a mean absolute error of 0.02 to 0.04 %. Details on the validation process
are given in Chapters 3 and 8.

Physiological analysis of the time course of MVIC force via numerical
simulations

To examine or validate hypotheses about the time course of MVIC force under
different loading schemes, extensive experimental effort is necessary (see, e.g., the
works of Rozand et al. [2015] or Rashedi and Nussbaum [2017]). We demonstrate
how numerical simulations of the calibrated model can be used to reduce the
experimental effort. Namely, we examine the history-dependence of force recovery
[Rashedi and Nussbaum, 2017] and the influence of the force-time integral on
fatigue [Rozand et al., 2015]. Such simulations complement the experimental work
of practitioners and contribute to the understanding of fatigue and recovery of
MVIC force. Details on these numerical simulations are given in Chapter 9.

Mathematical formulation of KPIs and optimality criteria for different
training goals of isometric RT sessions as multi-stage optimal control
problems

The sports science literature identifies four so-called ”trainable characteristics” for
RT – muscle strength, muscle mass, muscle endurance, and muscle power [Amer-
ican College of Sports Medicine, 2009]. However, due to the obstacles mentioned
above, the proposed model does not link the training input directly to these train-
ing goals. Therefore, we mathematically formulate multi-stage optimal control
(OC) problems to model KPIs and optimality criteria identified in the sports
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science and exercise physiology literature for the loading schemes. We choose
multi-stage OC problems as these reflect the RT reality of grouping a session into
sets and repetitions. Furthermore, this multi-stage setting allows a straightfor-
ward extension to other contraction modes once suitable data becomes available.
The KPIs we identify from the literature and which can be used in the model
are intensity, volume, time-under-tension, and fatigue. Using these different KPIs
and variants thereof, enables us to analyze how sensitive the optimized loading
schemes are to changing the training goals. Details on the mathematical setup of
the OC problems are given in Chapters 2 and 10.

Numerical solution of the proposed OC problems with subsequent
sports scientific analysis of the optimized isometric RT sessions

To solve the multi-stage optimal control problems, we employ a first-discretize-
then-optimize strategy. We transcribe them to a finite-dimensional form via the
direct multiple shooting method and solve the resulting nonlinear program with
a structure-exploiting sequential quadratic programming method [Bock and Plitt,
1984; Leineweber et al., 2003a,b]. We choose this approach as we need an efficient
and flexible framework to solve many of these OC problems for different individuals
and different training goals. Furthermore, the control discretization of the direct
approach reflects common practice in RT, where external loading is constant during
a set. This allows a direct interpretation of the computed solutions by trainees
and coaches. Moreover, we analyze these solutions and compare their structure
to prevailing RT practice. Details on the numerical solution process of the OC
problems are given in Chapters 2 and 10.

Formulation of critical torque estimation as nonlinear program to
reduce the experimental effort compared to conventional methods

Critical torque is an important fatigue threshold in exercise physiology and can be
used to analyze, predict, or optimize performance [Craig et al., 2019]. However, its
practical estimation is rather costly and several testing sessions on separate days
are necessary. We formulate the estimation of critical torque as a nonlinear pro-
gram (NLP). This enables us to determine these quantities with substantially less
experimental effort compared to conventional approaches. Details on the model-
based estimation of critical torques are given in Chapter 11.

Mathematical formulation of optimum testing sessions as multi-stage
optimum experimental design problems to reduce the experimental
effort for model calibration

Before an individualized algorithmic optimization of loading schemes is possible,
the model needs to be calibrated to the subject’s muscle group. To reduce the
experimental effort when calibrating the model, we set up multi-stage optimum
experimental design (OED) problems. These non-standard optimal control prob-
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lems operate on the variance-covariance matrix of the underlying parameter es-
timation problem and thus allow us to minimize the uncertainty of the resulting
parameter estimates [Körkel, 2002]. We choose to minimize their average variance
and ensure that the practical realization of an experiment is correctly represented
by the mathematical formulation. Details on the mathematical formulation of the
multi-stage OED problems are given in Chapters 4 and 12.

Numerical solution of the proposed OED problems with subsequent
physiological and numerical analysis of the optimized testing sessions

Due to their non-standard structure, the multi-stage optimum experimental de-
sign problems with continuous measurements are challenging to solve [Bock et al.,
2013]. Furthermore, we need to ensure a possible transfer of the numerical solu-
tion into practice. We choose to transcribe the OED problems to finite-dimensional
form via the direct single shooting method and solve the resulting NLP with a se-
quential quadratic programming method [Körkel, 2002]. We choose this approach
as we need an efficient and flexible framework to solve many of these OED prob-
lems for different individuals. Moreover, the control discretization of the direct
approach reflects common practice in RT, where external loading is constant dur-
ing a set. This allows a direct interpretation of the computed solutions by trainees
and coaches. We analyze these solutions and compare their structure to prevailing
testing practice. Our approach allows to calibrate the model in a single testing
session. Furthermore, we demonstrate how the parameter uncertainties propagate
through the model and influence other quantities of interest, e.g., critical torque.
Details on the numerical solution of the multi-stage OED problems are given in
Chapters 4 and 12.

Publications

Results of this thesis have been peer-reviewed and published in:

• Herold et al. [2018]: J. L. Herold, C. Kirches, and J. P. Schlöder. A phe-
nomenological model of the time course of maximal voluntary isometric con-
traction force for optimization of complex loading schemes. European Jour-
nal of Applied Physiology, 118(12):2587–2605, 2018. doi: 10.1007/s00421-
018-3983-z. URL https://doi.org/10.1007/s00421-018-3983-z.

• Herold and Sommer [2020a]: J. L. Herold and A. Sommer. A model-
based estimation of critical torques reduces the experimental effort com-
pared to conventional testing. European Journal of Applied Physiology,
2020. doi: 10.1007/s00421-020-04358-w. URL https://doi.org/10.1007/

s00421-020-04358-w.

• Herold and Sommer [2020b]: J. L. Herold and A. Sommer. A mathematical
model-based approach to optimize loading schemes of isometric resistance
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training sessions. Sports Engineering, 2020. doi: 10.1007/s12283-020-00337-
8 URL https://doi.org/10.1007/s12283-020-00337-8.

Computing environment

All results of this thesis were obtained on a machine with a quad-core Intel Core
i7-6700K CPU @ 4.00 GHz and 32 GB memory running Ubuntu 18.04 LTS. The
maximum number of available threads was 8.

Thesis overview

This thesis is structured into three main parts. Following this introduction, in
the first part, we derive the mathematical problem formulations chosen for our
approach and present the numerical solution methods chosen. This includes notes
on optimal control, multi-experiment parameter estimation, and optimum exper-
imental design for multi-stage ODE models. In the second part, we introduce
basic concepts of RT and present possible KPIs for isometric RT sessions. In the
third part, we present the results obtained in this thesis in the order listed above.
We end this thesis with a conclusion and an outlook on possible further research
directions.
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Chapter 1

Dynamic processes

In this chapter, we introduce dynamic processes modeled by ordinary differential
equations (ODEs). In the first section, we present the general notation for the
ODE models used in this thesis. In the second section, we discuss how we handle
possibly occurring explicit switches.

Here and in the following chapters, we expect the reader to be familiar with the
basics of nonlinear optimization and the numerical solution of ODEs – in particular
with backward differentiation formulas and Runge-Kutta-Fehlberg methods. We
refer to the books of Nocedal and Wright [2006], Hairer et al. [1993], and Hairer
and Wanner [1996] for a comprehensive introduction to these topics.

1.1 Ordinary differential equation models

Many dynamic processes in nature can be modeled by autonomous systems of
ODEs given in the form

d

dt
x(t) = f(x(t), u(t), q, p). (1.1)

Here, d
dt denotes the total derivative w.r.t. variable t. The differential states x :

[0, T ]→ Rnx describe the evolution of the system on the time horizon t ∈ [0, T ] ⊂ R
and the laws of the system are modeled by the right-hand side
f : Rnx × Rnu × Rnq × Rnp → Rnx , representing, e.g., lactate kinetics during
exercise. Furthermore, the model contains parameters p ∈ Rnp , which describe
internal properties of the system, e.g., buffering capacity of the trainee’s muscle
group. These parameters can usually not be measured directly and therefore have
to be estimated from measurement data. We refer to Chapter 3 for an introduction
to parameter estimation.

Additionally, the system can be controlled externally. In this work, we use
piecewise constant control functions u ∈ PC0 on a chosen grid {τ con

i }0≤i≤ncon

with u(t) = wi ∈ Rnu for t ∈ [τ con
i , τ con

i+1] ⊆ [0, T ] and constant control quantities
q ∈ Rnq describing, e.g., the force generated by the muscle group or joint angles
which are constant during the exercise. Chapter 2 gives an introduction to optimal
control.

1.2 Handling explicit switches

ODE models can contain so-called switches, which induce a discontinuous jump
in the differential states or a change of the right-hand side and therefore of the
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Chapter 1 Dynamic processes

model dynamics. We distinguish between explicit and implicit switches.
Explicit switches (also called externally forced switches or time events) occur at

a priori known time instances during the process, e.g., when the trainee changes the
contraction mode from concentric to eccentric. Explicit switches can be handled
by stopping and restarting the integration at those time points. If necessary,
sensitivity updates need to be provided.

In contrast, implicit switches (also called internally forced switches or state
events) occur at a priori unknown time instances when certain conditions on the
states are satisfied, e.g., when muscle glycogen is depleted. Implicit switches are
more challenging to handle and several approaches have been proposed, e.g., by
Bock [1987], Mombaur [2001], Kirches [2006], Albersmeyer [2010], or [Meyer, 2020].
Again, sensitivity updates need to be provided need if necessary.

In this thesis, we use a multi-stage approach [Leineweber et al., 2003a] for the
optimization of such systems, which is suitable when the sequence of model changes
is known a priori. In the next chapter, we introduce the concept of multi-stage
optimal control problems tailored to our needs.
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Chapter 2

Optimal control

In this chapter, we introduce the specific formulation of multi-stage optimal control
(OC) problems used in this thesis and the numerical methods used to solve these
problems.

In the first section, we formulate the multi-stage OC problems. In the second
section, we introduce the direct multiple shooting approach to reduce the opti-
mization problems to finite-dimensional form. In the third section, we give an
overview on sequential quadratic programming (SQP) used to solve the result-
ing nonlinear programs (NLPs). In the last section, we discuss how to efficiently
generate derivatives necessary for these algorithms.

For an overview on the topic, we refer to the work of Leineweber et al. [2003a,b],
which is based on the work of Bock and Plitt [1984], and the references therein.

2.1 Multi-stage optimal control problems

Often, it is desirable to steer the system (1.1) in such a way that a certain objective
functional Φ(x) ∈ R is min- or maximized, e.g., min- or maximizing the accumu-
lation of metabolites during a training session. To this end, the control functions
u and the control quantities q are used. During the process, certain constraints
have to be satisfied by the system, e.g., a certain heart rate may not be exceeded.
We model this by the inclusion of path constraints

0 ≤ c(t, x(t), u(t), q, p) ∈ Rnc . (2.1)

Initial conditions are given by

x(0) = x0(q, p) ∈ Rnx . (2.2)

To deal with possible changes in the right-hand side, we divide the time interval
into ns subintervals called stages. The corresponding model components on stage
i ∈ {1, . . . , ns} are denoted by a superscript. The stages are defined on time
intervals [0, T i]. Continuous transitions between model stages are modeled by

xi+1(0) = xi(T i). (2.3)

Possible dimensional changes or discontinuous state jumps could be incorporated
by special transition function and stages [Leineweber et al., 2003a].

The multi-stage optimal control problems in this thesis can be formulated as

min
xi(·),ui(·),qi

Φ(xns(Tns)) (2.4a)
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Chapter 2 Optimal control

s.t. x1(0) = x0(q1, p) (2.4b)
ns∑
i=1

T i ≤ CT (2.4c)

and for i ∈ {1, . . . , ns − 1} :

xi+1(0) = xi(T i) (2.4d)

and for i ∈ {1, . . . , ns} and t ∈ [0, T i] :

d

dt
xi(t) = f i(xi(t), ui(t), qi, p) (2.4e)

0 ≤ ci(t, xi(t), ui(t), qi, p). (2.4f)

The stage durations T i are either part of the control quantities qi or fixed, in which
case the constraint (2.4c) and the upper bound CT ∈ R can be neglected. The
performance index Φ is of Mayer type and is only evaluated at the end of the last
stage. Performance indices of Bolza or Lagrange type are reformulated as Mayer
type in this thesis.

2.2 Numerical solution via direct multiple shooting

Several approaches exist to solve the OC problems formulated above. In this work,
we choose a direct multiple shooting approach introduced by Bock and Plitt [1984],
which transcribes the problems to finite-dimensional form. The resulting nonlinear
programs are then solved with structure-exploiting methods, which we discuss in
the next section. In the following, we give a short overview of the basic ideas. We
use a single-stage problem for illustration.

2.2.1 Discretization of the control functions

First, the time horizon [0, T ] is divided into ncon control intervals

0 = τ con
0 < τ con

1 < · · · < τ con
ncon−1 < τ con

ncon
= T (2.5)

on a chosen control grid {τ con
i }0≤i≤ncon

. Usually, a suitable discretization of the
control functions is then chosen on these intervals. However, as we use piecewise
constant control functions, this is not necessary in this work. For the remain-
der of this chapter, we append the values wi ∈ Rnu of the piecewise constant
control functions in front of the control quantities, which then yields a vector
q ∈ Rnconnu+nq .

2.2.2 Parametrization of the states

Furthermore, we introduce a shooting grid {τms
i }0≤i≤nms

and shooting variables
si ∈ Rnx with 0 ≤ i ≤ nms. These shooting variables serve as initial values for
a decoupled solution of the ordinary differential equation (ODE) system on these
intervals. We denote the solution of the ODE on the i-th shooting interval by
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2.2 Numerical solution via direct multiple shooting

x(t; si, q, p) with 0 ≤ i ≤ nms − 1 and t ∈ [τms
i , τms

i+1]. Adding so-called matching
conditions

x(τms
i+1; si, q, p)− si+1 = 0 for 0 ≤ i ≤ nms − 1 (2.6)

to the problem then again ensures the continuity of the state trajectories in the
solution. Thus, simulation and optimization of the system are performed simulta-
neously.

Single shooting can be seen as a special case of multiple shooting with nms = 1.
Here, only the control variables q are subject to optimization and the states are
treated as dependent variables. Thus, simulation and optimization are performed
as separate tasks.

2.2.3 Discretization of the constraints and objective

Next, the constraints

0 ≤ c(t, x(t), q, p) ∈ Rnc . (2.7)

are discretized to hold pointwise on a grid. Here, we choose this grid to be identical
with the shooting grid:

0 ≤ c(τms
i , si, q, p) ∈ Rnc for 0 ≤ i ≤ nms. (2.8)

In general, this does not need to be the case.
Last, evaluating the Mayer-type objective Φ(x(T )) then corresponds to evalu-

ating Φ(snms
) at the last shooting node.

2.2.4 Resulting nonlinear program

Taken together, the resulting NLP reads as

min
s,q

Φ(snms
) (2.9a)

s.t. c(τms
i , si, q, p) ≥ 0 for 0 ≤ i ≤ nms, (2.9b)

x(τms
i+1; si, q, p)− si+1 = 0 for 0 ≤ i ≤ nms − 1, (2.9c)

s0 = x0(p, q). (2.9d)

The structure of this NLP can be exploited efficiently. We refer to Section 2.3.1
for some short remarks.

2.2.5 Advantages over other approaches

The direct multiple shooting approach offers several advantages over other ap-
proaches, which is why we choose it here. Direct methods circumvent the problem
of formulating necessary optimality conditions in function space or finding suitable
initial guesses for states and co-states when using indirect methods. Moreover, di-
viding the time interval into smaller intervals allows to reduce the nonlinearity of
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the problem and reduce the error propagation on longer time intervals. This lifting
allows for a more stable behavior compared to other direct methods, e.g., direct
single shooting. Furthermore, due to the decoupling on the shooting intervals, the
integration of the ODE can be parallelized in a straightforward manner.

2.3 Sequential quadratic programming

To solve the NLPs obtained by transcribing the OC problems to finite-dimensional
form, we employ structure-exploiting sequential quadratic programming. For a
thorough introduction to SQP methods, we refer to the book of Nocedal and
Wright [2006] and the references therein.

The resulting NLPs are of the general form

min
v

f(v) (2.10a)

s.t. g(v) = 0, (2.10b)

h(v) ≥ 0, (2.10c)

with v ∈ Rnv , f : Rnv → R, g : Rnv → Rng , and h : Rnv → Rnh . For the algorithm
to work reliably, we require f, g, and h ∈ C2. The Lagrangian of this problem is
defined as

L(v, λ, µ) = f(v)− λ>g(v)− µ>h(v) (2.11)

with Lagrange multipliers λ ∈ Rng and µ ∈ Rnh .

Algorithm 1 illustrates a basic line search SQP method to solve these problems.
Here, we solve a linearly constrained quadratic problem (QP) at the current iterate
to obtain a search direction. Using a suitable globalization strategy, we determine
a new iterate along this direction and repeat this step until a previously determined
convergence criterion is satisfied.

Algorithm 2 illustrates a basic trust region SQP method to solve these problems.
Here, we solve a linearly constrained quadratic problem at the current iterate until
we obtain a sufficiently better iterate by adjusting the trust region radius. Again,
we repeat this step until a previously determined convergence criterion is satisfied.

Several aspects have to be worked out in detail before Algorithms 1 and 2 can
be used in practice. Some important aspects are:

• The linearly constrained quadratic program can be solved by a variety of
methods, e.g., active set or interior point methods. Active set methods
exhibit favorable warm start properties, when similar QPs are solved se-
quentially. In this thesis, we use the active set methods QPOPT [Gill et al.,
1995] and SQOPT [Gill et al., 2005].

• The globalization strategy has to be specified. We use a line search method
on augmented Lagrangian merit functions [Gill et al., 2005] and a boxstep
trust region approach [Leineweber, 1999].
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2.3 Sequential quadratic programming

Algorithm 1 Line search sequential quadratic programming

1: Require an initial guess (v0, λ0, µ0) and a convergence criterion.
2: Set k = 0.
3: while the convergence criterion is not satisfied do
4: Compute f(vk), g(vk), and h(vk) as well as the Jacobians F = ∇vf(vk),

G = ∇vg(vk), and H = ∇vh(vk) evaluated at the current iterate and an
approximation L of the Hessian of the Lagrangian ∇2

vvL(vk, λk, µk).
5: Solve the linearly constrained quadratic program

min
∆v

1

2
∆v>L∆v + F∆v (2.12a)

s.t. G∆v + g(vk) = 0, (2.12b)

H∆v + h(vk) ≥ 0, (2.12c)

to obtain ∆v and the Lagrange multipliers λQP and µQP.
6: Determine a step size α ∈ (0, 1] by a suitable globalization strategy.
7: Set

vk+1 = vk + α∆v, (2.13a)

λk+1 = λk + α(λQP − λk), (2.13b)

µk+1 = µk + α(µQP − µk). (2.13c)

8: Set k = k + 1.
9: end while

10: Return the solution (v̂, λ̂, µ̂) = (vk, λk, µk).
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Algorithm 2 Trust region sequential quadratic programming

1: Require an initial guess (v0, λ0, µ0), an initial trust region radius δ > 0, and
a convergence criterion.

2: Set k = 0.
3: while the convergence criterion is not satisfied do
4: Compute f(vk), g(vk), and h(vk) as well as the Jacobians F = ∇vf(vk),

G = ∇vg(vk), and H = ∇vh(vk) evaluated at the current iterate and an
approximation L of the Hessian of the Lagrangian ∇2

vvL(vk, λk, µk).
5: while vk + ∆v is not sufficiently better than vk do
6: Solve the linearly constrained quadratic program

min
∆v

1

2
∆v>L∆v + F∆v (2.14a)

s.t. G∆v + g(vk) = 0, (2.14b)

H∆v + h(vk) ≥ 0, (2.14c)

‖∆v‖ ≤ δ, (2.14d)

to obtain ∆v and the Lagrange multipliers λQP and µQP.
7: if vk + ∆v is sufficiently better than vk then
8: Choose a trust region radius δ′ ≥ δ.
9: else

10: Decrease the trust region radius δ′ < δ.
11: end if
12: Set δ = δ′.
13: end while
14: Set vk+1 = vk+∆v and the multipliers λk+1 and µk+1 depending on whether

the trust region constraint is active.
15: Set k = k + 1.
16: end while
17: Return the solution (v̂, λ̂, µ̂) = (vk, λk, µk).
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2.4 Generating derivatives

• A convergence criterion needs to be defined. We use the so-called Karush-
Kuhn-Tucker (KKT) tolerance [Hoffmann et al., 2014] and the maximum
complementarity gap [Gill et al., 2005].

• The approximation of the Hessian has to be chosen. This is usually real-
ized by update formulas, which reduce the computational effort compared to
computing the exact Hessian or ensure positive definiteness. We choose lim-
ited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates – either
block-wise [Leineweber, 1999] or full [Gill et al., 2005].

2.3.1 Structure exploitation for multiple shooting

Due to the artificially introduced shooting variables, the dimensions of the resulting
NLP increase. However, the structure of the NLP can be exploited. To this end, a
condensing algorithm [Bock and Plitt, 1984] is used before solving the QP, which
eliminates the shooting variables and the matching conditions. This reduces the
computational effort for solving the QP and renders it similar to an effort necessary
for single shooting. The shooting variables and the multipliers for the matching
conditions can then be computed recursively. For certain problem types, other
variants of condensing can be more efficient. Kirches et al. [2012], e.g., proposed
a complementary condensing approach for OC problems with many controls, e.g.,
arising from convexifying mixed-integer OC problems.

Furthermore, tailored block updates are employed to preserve the diagonal block
structure of the Hessian [Bock and Plitt, 1984; Leineweber, 1999].

2.4 Generating derivatives

To use the derivative-based SQP method – and the generalized Gauss-Newton
method introduced in the following chapter, we need to provide the derivatives of
the model functions as well as the sensitivities of the states.

2.4.1 Derivatives of the model functions

We apply two different methods for generating derivatives of the model functions –
automatic differentiation (AD) and finite difference approximations. Other meth-
ods for generating derivatives of the model functions include, e.g., analytic dif-
ferentiation by hand, symbolic differentiation via computer algebra systems, or
complex step differentiation.

For AD, the function under consideration is represented as a composition of
elementary operations, for which the derivatives are provided analytically. Re-
peatedly applying the chain rule then allows to compute the derivative of the
composite function. Not considering potential rounding errors, the thus deter-
mined derivatives are exact. Depending on the desired type of derivatives, one
evaluates the computational graph of the function either in forward or backward
direction. A further variant of AD is the propagation of Taylor polynomials. For a
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comprehensive introduction to the topic of AD, we refer to the book of Griewank
and Walther [2008].

Furthermore, one-sided

∂f

∂x
(x) =

f(x+ h)− f(x)

h
+O(h) (2.15)

or central finite difference approximations

∂f

∂x
(x) =

f(x+ h)− f(x− h)

2h
+O(h2) (2.16)

are obtained to approximate the derivatives of a model function.
Second-order derivatives are obtained by applying these methods to the first-

order derivatives.

2.4.2 Sensitivities of the states

Apart from derivatives of the model functions, we need to provide the sensitivities
Gv(t) = dx

dv (t), with v = (s, q, p) representing the shooting variables, the discretized
control functions and control quantities, and the parameters. Furthermore, the
sensitivities Gp are explicitly part of the optimum experimental design (OED)
problems introduced in Chapter 4.

One approach to obtain those sensitivities is to set up the variational differential
equations and solve the system

d

dt
x(t) = f(x(t), v) (2.17a)

d

dt
Gv(t) =

∂

∂x
f(x(t), v)Gv(t) +

∂

∂v
f(x(t), v) (2.17b)

x(0) = x0(v) (2.17c)

Gv(0) =
d

dv
x0(v) (2.17d)

simultaneously. This is equivalent to using internal numerical differentiation (IND)
[Bock, 1981] to generate the sensitivities. The main idea of IND is to fix the adap-
tive components of the integrator and to differentiate the discretization scheme.
This yields the exact derivatives of the approximate solution of the nominal ODE.

For higher order sensitivities

Gvw(t) =
dGv

dw
(t) =

d2G

dvdw
(t), (2.18)

with w = (s, q, p), we can use the same approach. This is, e.g., necessary when
computing Gpq for solving the OED problems of Chapter 4.

Another approach is to use external numerical differentiation – a finite difference
approximation obtained by integrating the nominal trajectory with perturbed val-
ues. This is straightforward to implement but suffers serious drawbacks concerning
numerical precision.
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Parameter estimation

In this chapter, we introduce the specific formulation of multi-experiment param-
eter estimation (PE) problems and the numerical methods used to solve these
problems.

In the first section, we formulate the multi-experiment PE problems. In the
second section, we present the constrained nonlinear least-squares (NLS) problem
resulting from the multiple shooting discretization. In the third section, we intro-
duce the generalized Gauss-Newton (GGN) method used to solve these problems.
In the last section, we present an approach to examine the statistical quality of
the parameter estimates.

For an overview on the topic, we refer to the book of Bard [1974] and the papers
of Bock et al. [2007, 2013] – which are based on the dissertation of Bock [1987] –
and the references therein.

3.1 Multi-experiment parameter estimation problems

For the ordinary differential equation (ODE) model (1.1) to be able to accurately
describe real-world processes, we need to calibrate the model and provide estimates
of the parameters p ∈ Rnp . As these usually can not be measured directly, one
conducts experiments and fits the model to measurement data η ∈ Rnm .

We assume the model to be correct and the measurement errors εj to be additive,
independent, and normally distributed with expected value µj = 0 and standard
deviation σj > 0. Consequently, the nm measurements ηj can be modeled as

ηj = hj(tj , x
∗(tj), q, p

∗) + εj , j = 1, . . . , nm, (3.1)

where hj : [0, T ] × Rnx × Rnq × Rnp → R denotes the measurement function, tj
the time of the measurement, p∗ the ’true’ but unknown parameter values, and x∗

the corresponding states. Note that different measurements could be conducted
at the same point in time. Following these assumptions, the maximum likelihood
estimator of p∗ can be obtained [Bard, 1974] by solving the weighted NLS problem

min
p,xk,i(·)

1

2

ne∑
k=1

nk
s∑

i=1

nk,i
m∑

j=1

(
hk,ij (tk,ij , xk,i(tk,ij ), qk,i, p)− ηk,ij

σk,i
j

)2

(3.2a)

s.t. for k ∈ {1, . . . , ne} :

xk,1(0) = xk,10 (qk,1, p) (3.2b)
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and for k ∈ {1, . . . , ne} and i ∈ {1, . . . , nk
s − 1} :

xk,i+1(0) = xk,i(T k,i) (3.2c)

and for k ∈ {1, . . . , ne}, i ∈ {1, . . . , nk
s}, and t ∈ [0, T k,i] :

d

dt
xk,i(t) = fk,i(xk,i(t), uk,i(t), qk,i, p). (3.2d)

Here, the superscript k denotes the experiment under consideration and the su-
perscript i denotes the model stage. Since the experiments are already conducted,
the control functions uk,i and quantities qk,i are known during the parameter
estimation. The same holds true for the stage durations T k,i.

3.2 Numerical solution via direct multiple shooting

We use a single-experiment single-stage problem for illustration of the numerical
solution. The transcription of the infinite-dimensional PE problem is done as
described in Section 2.2 for the optimal control problem. Here, the resulting
constrained NLS problem takes the form

min
s,p

1

2

nm∑
j=1

(
hj(tj , x(tj ; sk(j), q, p), q, p)− ηj

σj

)2

(3.3a)

s.t. x(τms
i+1; si, q, p)− si+1 = 0 for 0 ≤ i ≤ nms − 1, (3.3b)

s0 = x0(p, q), (3.3c)

with 0 ≤ k(j) ≤ nms chosen such that tj lies in the shooting interval [τms
k , τms

k+1].
Depending on the chosen shooting grid and type of measurements, we can ad-

ditionally initialize parts of the shooting variables with measurement data. This
allows for a better convergence behavior compared to other direct methods, e.g.,
direct single shooting.

3.3 Generalized Gauss-Newton method

To solve the constrained NLS problems obtained by transcribing the PE problems,
we employ the generalized Gauss-Newton method [Bock, 1987; Schlöder, 1988].
The NLS problems can be written in the general form

min
v

1

2
‖F1(v)‖22 (3.4a)

s.t. F2(v) = 0, (3.4b)

with v ∈ Rnv , F1 : Rnv → Rn1 and F2 : Rnv → Rn2 . Again, we require F1 and
F2 ∈ C2 for a reliable performance of the algorithm.

Algorithm 3 illustrates the basic idea of the GGN. Therefore, we solve a lin-
earized constrained least-squares problem at the current iterate to obtain a search
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Algorithm 3 Generalized Gauss-Newton method

1: Require an initial guess v0 and a convergence criterion.
2: Set k = 0.
3: while the convergence criterion is not satisfied do
4: Compute F1(vk) and F2(vk) and the Jacobians J1 = ∇vF1(vk) and J2 =

∇vF2(vk) evaluated at the current iterate.
5: Solve the linearized constrained least-squares problem

min
∆v

1

2
‖F1(vk) + J1∆v‖22 (3.5a)

s.t. F2(vk) + J2∆v = 0. (3.5b)

for the increment ∆v.
6: Determine a step size α ∈ (0, 1] by a suitable globalization strategy.
7: Set vk+1 = vk + α∆v.
8: Set k = k + 1.
9: end while

10: Return the solution v̂ = vk.

direction. Using a suitable globalization strategy, we determine a new iterate and
repeat this step until a previously determined convergence criterion is satisfied.

The linearized constrained least-squares problem (3.5) can be solved analyti-
cally using only first-order derivative information [Bock, 1987]. This avoids the
computationally expensive calculation of the Hessian necessary for other methods.
As globalization strategy, we choose the restricted monotonicity test [Bock et al.,
2000], which has shown favorable results in practice. Other approaches are possi-
ble as well, e.g., line search approaches on suitable merit functions [Nocedal and
Wright, 2006].

The constrained NLS problem could also be solved by other methods, e.g., se-
quential quadratic programming or the Levenberg-Marquardt method. However,
the GGN possesses some beneficial statistical properties which guarantee reliable
parameter estimates, i.e., it is typically not attracted by statistically unstable lo-
cal minima [Bock, 1987]. The latter property is necessary to ensure the predictive
capability of the calibrated model and can therefore be seen as an advantage over
other solution methods for least-squares problems, although this might not be
apparent at first.

3.4 Sensitivity analysis of the solution

Since the measurement data η is subject to random measurement errors, the so-
lution v̂ of problem (3.4a) is a random variable [Bock, 1987]. Assuming

rank J2 = n2, (constraint qualification) (3.6a)

rank J = nv, (positive definiteness) (3.6b)
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with

J =

(
J1

J2

)
, (3.6c)

one can approximate [Bock, 1987; Janka, 2015] its variance-covariance matrix by

C =
(
I 0

)(J>1 J1 J>2
J2 0

)−1(
I
0

)
∈ Rnv×nv . (3.6d)

It can be shown that the variance-covariance matrix of the constrained problem
projected on the upper left (nv−n2)×(nv−n2) part equals the variance-covariance
matrix C = J>1 J1 of the unconstrained problem [Janka, 2015]. This is a desired
property, as the multiple shooting discretization which induces the equality con-
straints in our case, is chosen arbitrarily. Thus, the variance-covariance matrix of
PE problem (3.2) can be approximated by

C = (J>J)−1 ∈ Rnp×np . (3.7a)

with

J =



J1,1
1

J1,1
2

. . .

J1,2
1

J1,2
2

. . .

J2,1
1

J2,1
2

. . .


∈ Rnm×np , (3.7b)

the rows given as

Jk,i
j =

1

σk,i
j

(
∂hk,ij

∂xk,i
Gk,i

p (tk,ij ) +
∂hk,ij

∂p
(tk,ij )

)∣∣∣∣∣
p=p̂

∈ Rnp , (3.7c)

and nm =
∑ne

k=1

∑nk
s

i=1 n
k,i
m being the total number of measurements. Here, the

sensitivities of the model states w.r.t. the parameters are denoted byGp(t) = dx
dp (t).

To increase readability, we partially omitted function arguments.
The approximation C describes a confidence ellipsoid around the estimates p̂.

Different criteria Φ(C) can then be used to measure the statistical quality of the
estimates [Pukelsheim, 1993]. Often used criteria are, e.g.,

• the A-criterion: ΦA(C) = 1
np

tr(C),

• the D-criterion: ΦD(C) = det(C)
1

np ,

• the E-criterion: ΦE(C) = max{λi | λi eigenvalue of C},
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3.4 Sensitivity analysis of the solution

• and the M-criterion: ΦM (C) = max{Cii | i ∈ {1, . . . , np}}.

These criteria can be interpreted geometrically with regard to the confidence el-
lipsoid. The A-criterion is proportional to the mean half-axis, the D-criterion to
the volume of an enclosing box, the E-criterion to the largest principal half-axis,
and the M-criterion to the longest edge of an enclosing box.
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Chapter 4

Optimum experimental design

In this chapter, we introduce the specific formulation of multi-stage optimum ex-
perimental design (OED) problems and the numerical methods used to solve these
problems.

In the first section, we formulate the multi-stage OED problems. In the second
section, we present the nonlinear program (NLP) resulting from the single shooting
discretization of these problems.

For an overview on the topic, we again refer to the papers of Bock et al. [2007]
and Bock et al. [2013] and the references therein. For a more detailed introduction,
we refer to the dissertations of Körkel [2002] and Janka [2015].

4.1 Multi-stage optimum experimental design problems

As shown in the previous chapter, the variance-covariance matrix C = C(u, q, p)
(3.7) resulting from the underlying parameter estimation problem (3.2) depends
on the control functions u, on the control quantities q, and on the current guess
p̂. However, it does not depend on the measurement data η. This enables us to
design experiments which reduce the statistical uncertainty of the estimates. This
idea is illustrated in Figure 4.1.

η2

η1 p2

p1

η̃
η p

p̃

Figure 4.1: Different experimental conditions result in different parameter esti-
mates and confidence regions thereof. The measurement data obtained
by two different experiments are denoted by η and η̃. The correspond-
ing parameter estimates are denoted by p and p̃. Confidence regions
are illustrated by ellipses. Smaller confidence regions increase the prob-
ability of the estimates being close to the ’true’ but unknown value.
Redrawn in modified form from Walter [2012].
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The single-experiment multi-stage optimum experimental design problems in
this thesis take the following form:

min
xi(·),Gi

p(·),ui(·),qi
Φ(C) (4.1a)

s.t. x0(0) = x0(q1, p) (4.1b)

G0
p(0) =

d

dp
x0(q1, p) (4.1c)

ns∑
i=1

T i ≤ CT (4.1d)

and for i ∈ {1, . . . , ns − 1} :

xi+1(0) = xi(T i) (4.1e)

Gi+1
p (0) = Gi

p(T i) (4.1f)

and for i ∈ {1, . . . , ns} and t ∈ [0, T i] :

d

dt
xi(t) = f i(xi(t), ui(t), qi, p)) (4.1g)

d

dt
Gi

p(t) =
∂f i

∂xi
Gi

p(t) +
∂f i

∂p
(4.1h)

0 ≤ ci(t, xi(t), ui(t), qi, p). (4.1i)

The stage durations T i are either part of the control quantities qi or fixed, in which
case the constraint (4.1d) and the upper bound CT ∈ R can be neglected. As
outlined in Section 3.4, several choices for the objective functional Φ are possible.
In this thesis, we choose the A-criterion, which can be also be interpreted as the
mean variance of the parameters. If desired, a weighting of the parameters can be
achieved by an internal scaling of the parameters.

4.2 Numerical solution via direct single shooting

We use a single-stage OED problem for illustration of the numerical solution via
single shooting. The transcription of the infinite-dimensional OED problem is done
as described in Section 2.2 for the optimal control problem. Here, the resulting
NLP takes the form

min
s,q

Φ(C) (4.2a)

s.t. c(τms
i , si, q, p) ≥ 0 for 0 ≤ i ≤ nms, (4.2b)

s0 = x0(p, q). (4.2c)

For the single shooting approach, a reformulation of the nonstandard objec-
tive functional, which is nonlinearly coupled in time, is not necessary compared
to a direct multiple shooting approach [Janka, 2015]. A sequential quadratic
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4.2 Numerical solution via direct single shooting

programming (SQP) method with limited memory Broyden-Fletcher-Goldfarb-
Shanno (BFGS) updates is chosen to solve the resulting NLP as it does not require
the computation of second order derivatives. Due to the objective functional op-
erating on the variance-covariance matrix – and thus the sensitivities – of the
underlying parameter estimation problem, already the first order derivatives are
challenging to compute. SQP methods usually need less function and derivative
evaluations compared to interior point methods and perform favorably when only
first order derivatives are available [Gill et al., 2015], which is a further reason for
our choice.
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Resistance training
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Chapter 5

Basic concepts of resistance training

In this chapter, we present the basic concepts of resistance training (RT). In the
first section, we give a definition of RT. In the second section, we summarize the
possible goals and different types of RT. In the third section, we explain how
to describe an RT program. In the fourth section, we present the principles of
specificity, progression, and periodization.

For a comprehensive introduction to the multifaceted topic of RT, we refer to
the book of Fleck and Kraemer [2014]. If not mentioned otherwise, we follow their
work in this chapter.

5.1 Definition of resistance training

The American College of Sports Medicine [2013] defines RT as ”a form of physical
activity that is designed to improve muscular fitness by exercising a muscle or a
muscle group against external resistance.”

5.2 Goals and types of resistance training

According to the American College of Sports Medicine [2009], trainable character-
istics include

• muscle strength – the maximum force or torque that a muscle can produce,

• muscle mass / hypertrophy – the amount of muscle tissue,

• muscle power – the amount of work that a muscle can perform in a certain
time interval,

• and muscle endurance – the ability of the muscle to withstand prolonged
loading.

Apart from these primary characteristics, RT offers a variety of health benefits,
e.g., increased functional capacity and quality of life, or improved body composi-
tion [Williams et al., 2007]. Furthermore, improvements in RT can also transfer
to sports-specific skills [American College of Sports Medicine, 2009]. In practice
however, RT programs are commonly designed to increase (or maintain) a subset
of the trainable characteristics.

RT is characterized by exercising muscles. The different contraction modes are

• isometric – where no movement of the joint occurs,
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• concentric – where a shortening of the active muscle occurs

• and eccentric – where a lengthening of the active muscle occurs.

Isometric contractions are also called static contractions. Concentric and eccentric
contractions are summarized as dynamic contractions.

Based on the exercises performed, RT can be categorized into the non-mutually
exclusive types [Fleck and Kraemer, 2014]

• dynamic constant external resistance (DCER) training – also called isoiner-
tial or isoload training, where force is produced against a constant external
resistance during a dynamic movement, e.g., when lifting a dumbbell,

• variable resistance training – where force is produced against a varying ex-
ternal resistance during a dynamic movement, e.g., when using resistance
bands or certain RT machines,

• isokinetic training – where the joint angular velocity is constant during a
movement,

• isotonic training – where the force exerted by the muscle (group) is constant
during a movement, often used as a misnomer for DCER training,

• and isometric training – where only isometric contractions are performed.

5.3 Describing a resistance training program

Classically, six variables are used to describe RT programs of a single exercise
[Toigo and Boutellier, 2006]:

• intensity – defined by absolute load, repetition maxima, velocity, rating of
perceived exertion, or similar,

• number of repetitions – a repetition is defined as one complete motion of the
exercise,

• number of sets – a set is defined as a group of repetitions,

• inter-set rest – the duration of rests between two adjacent sets,

• training frequency – the number of training sessions,

• and duration of the training program.

Additionally, the ambiguous terms volume, defined as the sum of repetitions over
all sets, or volume load, defined as the sum of load times repetitions over all sets,
are often used as variables of RT programs.

However, as Toigo and Boutellier [2006] showed, the classical variables are not
sufficient to allow for a unique description. Therefore, further variables are pro-
posed:
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• cadence – the temporal distribution of isometric, concentric, and eccentric
parts of the motion,

• inter-repetition rest – the duration of rests between repetitions in a set,

• time-under-tension (TUT) – the accumulated contraction time, which can
also be calculated from the number of repetitions and cadence,

• muscular failure – whether or not muscular failure was reached during the
training session,

• range of motion – usually described by lower and upper bounds on the joint
angles,

• inter-session rest – the duration of rests between training sessions,

• and execution of the exercise – the anatomical definition of the exercise.

Not all of these variables are relevant for or applicable to all types of RT. For an
isometric RT exercise, for example, only the joint angle (given by the execution of
the exercise) and not the range of motion needs to be specified.

Commonly, a variety of exercises is performed by the trainee. Then, possible
interactions between the exercises (e.g., working the same muscle group) have to be
considered. A combination of their descriptions then yields the full RT program.

5.4 Principles of specificity, progression, and periodization

Three principles are commonly followed when designing RT plans [Fleck and Krae-
mer, 2014].

First, for RT, the principle of a ”specific adaptation to imposed demands (SAID)”
applies, which states that results are specific to the RT program employed. Thus,
RT has to be individualized to optimize the desired results.

Second, to elicit further adaptations, a continuous increase of stress placed on
the body is necessary. This principle is termed progression and can be achieved
by various means, e.g., increasing intensity, increasing volume, or decreasing rest.

Third, periodization denotes a planned variation of training variables – most
commonly training intensity and volume – with various goals in mind, e.g., to
manage fatigue or to avoid overtraining and injury. Periodization can take several
forms, e.g., linear with monotonous changes to the training variables for several
weeks or nonlinear (also called undulating) with more frequent non-monotonous
changes possibly on a daily basis. However, although commonly used in practice,
it is still much debated whether or not there are any advantages of non-periodized
compared to periodized approaches or in-between the various forms of periodiza-
tion [Harries et al., 2015; Williams et al., 2017, 2018; Nunes et al., 2018; Grgic
et al., 2017, 2018a; Evans, 2019].
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Chapter 6

Key performance indicators for loading schemes
of isometric resistance training sessions

In this work, we examine loading schemes for isometric resistance training (RT)
sessions of a single exercise. Therefore, this chapter provides an overview of key
performance indicators (KPIs) for isometric RT sessions based on recommended
loading schemes to increase the four trainable characteristics muscle strength,
mass, power, and endurance. We follow the recent reviews of Oranchuk et al.
[2019] and Lum and Barbosa [2019] if not mentioned otherwise. We assume the
exercise and the joint angle to be previously determined.

In our setting, a loading scheme compromises the RT variables intensity, number
of repetitions, number of sets, inter-set rest, inter-repetition rest, and duration of
the contractions. From these variables, we can furthermore calculate time-under-
tension (TUT) and the force-time integral (FTI) defined as the integral of load over
time. The FTI is often used as an analogue for physical work during isometric
contractions, where no actual work is performed [Rozand et al., 2015]. TUT
corresponds to volume in dynamic constant external resistance (DCER) training.
FTI corresponds to volume load in DCER training.

The literature on isometric RT is not as comprehensive as on the more commonly
used DCER training. Thus, to fill potential gaps and enable comparisons, we
also report results for DCER training in the following. For this, we follow the
position stand of the American College of Sports Medicine [2009] if not mentioned
otherwise.

6.1 Increasing maximum strength

Maximum strength can be defined in various ways. For isometric RT, maximum
voluntary isometric contraction (MVIC) force and MVIC torque are commonly
used. The equivalent for DCER training used in practice is the one repetition
maximum (1RM) – the maximum load which can be lifted for one repetition.

To increase maximum strength, the American College of Sports Medicine [2009]
recommends high loads for DCER training, i.e., 60 – 70 % of the 1RM for 8 – 12
repetitions for novice to intermediate trainees and 80 – 100 % of the 1RM for
advanced trainees. This advantage of high loads has been confirmed by other
authors, e.g., in the meta-analysis of Schoenfeld et al. [2017]. For isometric RT
however, Oranchuk et al. [2019] found no benefit of higher contraction intensities
in their systematic review. In contrast, Lum and Barbosa [2019] concluded in
their narrative review that isometric RT should be performed at 80 – 100 % of
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MVIC force with sustained contractions of 1 – 5 s and a total contraction time of
30 – 90 s per sessions to increase maximum strength.

Apart from intensity, RT volume (or volume load) seems to drive strength gains
[Grgic et al., 2018b] for DCER training. Similarly, for isometric RT, Lum and
Barbosa [2019] postulate that the magnitude of strength gains could be determined
by total TUT per training session. TUT can be manipulated by the number of
sets, the number of repetitions, and the contraction durations. FTI, the equivalent
of volume load, furthermore depends on contraction intensity.

Schott et al. [1995] demonstrated that longer sustained contractions resulted in
greater increases of isometric strength. For DCER training, Grgic et al. [2018c]
note in their review that rest intervals longer than 2 min might be required to
optimize strength development for advanced trainees. Both observations might be
based on a higher possible training volume or intensity when using longer rests.

6.2 Increasing muscle mass

Changes in muscle mass can be detected by various methods, e.g., circumference,
magnetic resonance imaging, computerized tomography, ultrasound, biopsy, dual
energy X-ray absorptiometry, or densitometry [Schoenfeld et al., 2016].

Oranchuk et al. [2019] note in their review that higher training volumes seem to
be better for inducing muscle hypertrophy. A similar dose-response relationship
has been advocated for DCER by Krieger [2010].

Training intensity does not seem to influence the hypertrophic adaptations for
DCER if all sets are performed to momentary muscle failure [Schoenfeld et al.,
2017]. Oranchuk et al. [2019] noted similar results for isometric RT if volume is
equated. However, Lum and Barbosa [2019] recommend contractions at 70 – 75 %
of MVIC force sustained for 3 – 30 s and a total TUT of 80 – 150 s per session.

6.3 Increasing muscle endurance

For DCER training, muscle endurance can be measured by repetitions to failure
at a prescribed intensity [Campos et al., 2002]. For isometric RT, endurance times
at submaximal intensities are commonly used [Vøllestad, 1997].

To increase muscle endurance in DCER training, the American College of Sports
Medicine [2009] recommends light to moderate loads (40 – 60 % of 1RM) for a
high number of repetitions (more than 15) and short rests (shorter than 90 s). For
advanced trainees, the American College of Sports Medicine [2009] furthermore
recommends multiple sets to achieve a higher training volume. For isometric RT,
Lum and Barbosa [2019] find that prolonged contractions might be beneficial to
increase muscle endurance. Here, submaximal intensities allow a greater TUT.
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6.4 Increasing power

In RT, power is commonly measured as the product of force and velocity. Mean
and peak power are both of interest for practitioners. According to the American
College of Sports Medicine [2009], the neuromuscular contributions to maximum
muscle power are the maximum rate of force development (RFD), force production
at slow and fast contraction velocities, stretch-shortening cycle performance, and
coordination of movement pattern and skill. Assuming a transfer from isometric to
dynamic muscle performance, isometric RT can then influence power by increasing
maximum force and the maximum RFD. However, such a transfer seems to be
limited [Wilson and Murphy, 1996; Oranchuk et al., 2019].

To increase power by DCER training, the American College of Sports Medicine
[2009] recommends maximizing strength and light loads (0 – 60 % of 1RM) moved
at fast contraction velocities with 3 – 5 min inter-set rest and 3 – 5 sets per exercise.
To improve isometric RFD, Oranchuk et al. [2019] find that ballistic or explosive
contractions are more beneficial than gradually increasing contraction intensities.
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Chapter 7

General outline of the approach

In this chapter, we present the general outline of our approach and explain the
reasons for our choices. In the first section, we discuss necessary prerequisites
for a model to be used for an algorithmic optimization of loading schemes. In
the second section, we provide an overview of model-based approaches used to
simulate or optimize an individual’s response to single resistance training (RT)
sessions or to long-term RT plans in terms of strength, power, muscle mass, or
local muscular endurance by varying the loading scheme. In the third section, we
explain how our novel approach allows to work with small amounts of data.

Remark. We emphasize that substantial parts of Herold and Sommer [2020b]
have been incorporated into this chapter either with only slight changes or without
any changes.

7.1 Prerequisites for a suitable model

To enable a real-life application for practitioners, the model used should fulfill
several criteria. First, the inputs and outputs of the model, which correspond to
the training plan and training responses of the trainee, have to be interpretable
for practitioners. As such, using quantities that reduce the dimensionality of the
training input [Toigo and Boutellier, 2006] is not desirable. For example, using
only volume load (defined as weight × number of repetitions × number of sets)
[Bird et al., 2005] to describe the loading scheme of an RT session provides no in-
formation about the intensity distribution and is therefore unsuitable. Second, the
parameters of the model should be identifiable through commonly available data,
e.g., from force measurements, to avoid an overly laborious model calibration.
Third, due to the high number of possible training inputs, the model should be
suitable for high-dimensional optimization, i.e., for derivative-based optimization
(see Part I). Fourth, the model should allow to incorporate real-life constraints
into the optimization problem, e.g., days or weeks off [Schaefer et al., 2015]. Last,
the model should be assessed for its predictive capability. We classify a model
as predictive if it has been fit to a subset of the available data and the resulting
parameter estimates can be used to predict the remaining data. We emphasize
this, as the terminology is sometimes used differently and models are already
classified as predictive if they fit the whole dataset, a property we call descrip-
tive. However, overparameterization or other model deficiencies might diminish
the model’s capability to predict unknown datasets. Benzekry et al. [2014], for
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example, demonstrated this issue illustratively for tumor growth modeling. Fur-
thermore, fit and prediction should be evaluated by suitable measures [Spiess and
Neumeyer, 2010] and should not be judged based on the plots alone, as those are
heavily depending on the chosen visualization.

7.2 Literature overview

Banister et al. [1975] introduced a model based on the assumption that each train-
ing load induces a negative effect (fatigue) and a positive effect (fitness) on per-
formance. As the original paper can not be found easily, we refer to Calvert et al.
[1976] for a description of the model. The ordinary differential equation (ODE)
model has been adopted for various settings and several modifications have been
proposed. The model is commonly known as Banister model or Fitness-Fatigue
model and predominantly given in a time-discrete formulation. Busso et al. [1990,
1992] fitted variants of the Banister model to data from Olympic weightlifters.
The authors used weighted weekly training volume as input and clean and jerk
performance as output and tried to derive correlations between model components
and various hormones. However, the predictive capability of the model was not
tested, i.e., the whole dataset was used for fitting the model. Model variants
were furthermore used by Philippe et al. [2015] to describe the response of rats to
resistance training. In a subsequent work, the authors used exponential growth
functions for this purpose [Philippe et al., 2019]. In both works, model prediction
was not tested.

Mader [1988, 1990] developed an ODE model of the active adaptation and reg-
ulation of protein synthesis on a cellular level. The model uses intensity of the
functional activity as input and gives protein mass as an indicator of functional
capacity as the most important output. The model is able to describe supercom-
pensation as well as overtraining, which is demonstrated by simulating different
scenarios. An extended version of the model has been proposed by Ullmer and
Mader [1992]. None of the variants were experimentally validated.

Gatti et al. [2008] computed training plans for shoulder rehabilitation by deter-
mining the optimal number of sets per exercise for increasing maximum isometric
strength given a time constraint. Two different objective functions were examined
and compared to current practice. No statements about training intensity were
made.

Gacesa et al. [2010] used a nonlinear dynamic system to separately fit fatigue
data and muscular growth data of the triceps brachii. The predictive capability
of the model was not tested.

Arandjelović [2010] introduced a model of neuromuscular adaption to resistance
training. In this model, the so-called capability profile of an athlete is modified
depending on the execution of an exercise. The author subsequently used simu-
lations to examine the influence of using fixed loads or accommodating loads on
the training stimulus. Furthermore, the author proposed a framework to calibrate
the model from video data [Arandjelović, 2013a, 2017]. The model was found
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to successfully predict performance in the bench press and the squat. Resistance
training can then be adjusted via trial-and-error by inspecting the simulated adap-
tations. Additionally, Arandjelović used the model to examine training strategies
to overcome the sticking point of an arm curl [Arandjelović, 2011], to examine
the influence of externally supplied momentum on the hypertrophy stimulus of
a shoulder lateral raise [Arandjelović, 2013b], and to examine different loading
mechanisms of a Smith machine [Arandjelović, 2012]. Although these three stud-
ies are mainly of biomechanical nature, we mention them here, as they specifically
aim at increasing force or muscle mass by a model-based examination of possible
adaptations.

Wisdom et al. [2015] proposed ODE models of muscle adaptation to chronic
overstretch, overload, understretch, and underload and compared those models to
experimental data. The predictive capability of the models was not tested. Zhou
et al. [2018] used similar dynamics to describe hypertrophy and atrophy of a muscle
fiber given as cross-sectional area with muscle activation level as input. After
fitting their model to experimental data, the authors simulated muscle atrophy
during a spaceflight and how different exercises could serve as countermeasures.

Torres et al. [2017] extended an energy balance model to account for the hy-
pertrophic effects of resistance training and used the model for simulation studies.
Moreover, the model was fit to data from elderly subjects following a resistance
training routine. Resistance training input is described via a single scaling variable
and has no direct interpretation in terms of volume, intensity, or frequency.

Remark. Here, we do not include work that is restricted to the biomechanical
analysis of RT exercises, the description of muscular fatigue during RT, or general
models of the training-performance relationship without a specific application to
RT, as a thorough literature overview including these fields of research is far beyond
the scope of this work. However, we would like to mention that substantial work
has been done in these fields – either close or synergetic to ours. For example,
model-based approaches are stronger established in endurance sports to analyze
optimum pacing strategies [Atkinson et al., 2007; Zignoli and Biral, 2020], training
strategies [Eriksson et al., 2016], or long-term adaptations [Wood et al., 2005].
Furthermore, as soon as a suitable extension of the model to dynamic movements
is available, possible synergies could arise from existing works which analyze and
compute optimum movements [Eriksson and Nordmark, 2011; Hatz, 2014]. For the
interested reader, we refer to these exemplary works and the references therein.

7.3 Working with small amounts of data

The works presented above do not fulfill all criteria necessary for an algorithmic
optimization of loading schemes to be used in practice. In most cases a thorough
validation of the model is lacking. Two issues provide the main reasons for this.
First, adaptation processes to RT are not fully understood by researchers (see, e.g.,
the review by Wackerhage et al. [2019] on stimuli and sensors of hypertrophy or
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the review of Crewther et al. [2005] on stimuli for strength and power adaptation).
Second, data on adaptation processes is only sparsely available, as most studies are
based on small sample sizes (see, e.g., the review by Schoenfeld et al. [2016]) and
cover only a few weeks of training [Jones et al., 1989]. Additionally, a continuous
monitoring of adaptations is often too laborious [Brown et al., 2017] or taxing on
the trainees [Zourdos et al., 2016].

Thus, we propose a novel approach. First, we model the varying force capacities
of a trainee during a training session depending on the loading scheme. Then, we
mathematically formulate key performance indicators and optimality criteria for
isometric RT sessions identified in sports science and incorporate these into multi-
stage optimal control problems. Based on these problem formulations, we can then
optimize the loading schemes.
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Chapter 8

Developing a mathematical model of the time
course of maximum voluntary isometric
contraction force

In this chapter, we describe and validate the proposed ordinary differential equa-
tion (ODE) model. In the first section, we discuss our choice of maximum vol-
untary isometric contraction (MVIC) force as indicator of muscle fatigue. In the
second section, we give necessary prerequisites for a model to be used in our ap-
proach. In the third section, we provide a literature overview of mathematical and
computational models to predict the time course of MVIC force during voluntary
isometric contractions. In the fourth section, we demonstrate that a new model is
necessary, as existing models suitable for our intentions do not perform satisfac-
torily. In the fifth section, we present the proposed model. In the sixth section,
we validate our model with a comprehensive set of published data. In the seventh
section, we discuss our results. In the eighth section, we mentions limitations and
future directions for research. In the ninth section, we draw conclusions for this
chapter.

Remark. We emphasize that substantial parts of Herold et al. [2018] have been
incorporated into this chapter either with only slight changes or without any
changes.

8.1 Quantifying muscle fatigue

Muscle fatigue is defined as an exercise-induced reduction in the ability to generate
force or power [Gandevia, 2001] and multiple task-specific mechanisms contribute
to this complex phenomenon [Enoka and Duchateau, 2008]. These mechanisms
are categorized as peripheral (arising distal from the neuromuscular junction) or
central (originating at spinal or supraspinal level). For a comprehensive overview
of the physiological mechanisms, we refer to the works of Allen et al. [2008] and
Gandevia [2001].

Due to this complex nature, several criteria can be used to measure muscle
fatigue, e.g. the MVIC force. MVIC force is defined as the force that can be
measured during an MVIC effort. To distinguish between peripheral and central
contributions, one can furthermore superimpose external stimuli during MVIC
efforts either electrically to the nerve trunk or to the muscle belly [Shield and
Zhou, 2004], or magnetically to the motor cortex [Todd et al., 2003]. The result-
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ing force increment then provides information about the origin of fatigue. Other
measurement possibilities are, for example, the maximum voluntary power, the
rate of force development, the one-repetition-maximum, or the repetition strength
[Brown and Weir, 2001; Vøllestad, 1997; Rodŕıguez-Rosell et al., 2017].

In this work, we examine muscle fatigue by assessing MVIC force. This is moti-
vated by several reasons. First, MVIC force is considered one of the gold standards
for determining muscle fatigue [Vøllestad, 1997], as its measurements are easy to
standardize and to conduct. It is therefore used extensively by physiologists and
sports scientists. Second, although most everyday movements are of a dynamic
nature, isometric contractions contribute to stabilization during those movements
[American College of Sports Medicine, 2009]. For this reason, isometric strength
capacities and especially their connection to possible injuries are of high inter-
est, e.g. in ergonomics [Keyserling et al., 1980; Granata and Gottipati, 2008] or
sports [Leetun et al., 2004]. Third, isometric strength is an important physical
characteristic for a variety of athletes, e.g. wrestlers, gymnasts [Tan, 1999], or
climbers [Fleck and Kraemer, 2014]. Due to the specificity of adaptations, instead
of dynamic exercises, isometric training is favorable for these athletes. Finally,
isometric resistance training can be used as part of a rehabilitation program, e.g.
when joint movements are restricted or not advisable [Kisner et al., 2017].

To be able to describe MVIC force at any point in time, one modifies its defini-
tion to be the force that could theoretically be measured if an MVIC effort were
to be conducted. This allows us to discuss the time courses of MVIC force even
when there are no actual measurements, i.e. during submaximal contractions and
at rest. For a review of these time courses, we refer to the work of Carroll et al.
[2017].

Remark. During isometric contractions, force and torque normalized to base-
line are equivalent. Thus, we do not differentiate between the two terms in the
following.

8.2 Prerequisites for a real-life use of a model

Several mathematical and computational models have been proposed to predict
the time course of MVIC force during voluntary isometric contractions (see next
section) or the behavior of maximal evocable isometric force under external stim-
ulation. As fatigue is highly task-dependent and substantial differences exist be-
tween evoked and voluntary contractions [Maffiuletti, 2010], we do not consider
models created for external stimulation for our approach. Furthermore, we assume
that all models can be applied at joint level and account for peripheral and central
factors contributing to MVIC force generation.

Mathematical optimization problems dealing with the optimal use of MVIC
force capacities are inherently high-dimensional, owing to the large number of
possible combinations of contraction intensities and durations. Thus, derivative-
based methods have to be employed for an efficient solution, which imposes several
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mathematical requirements on model candidates.
As a consequence, we put a special focus on the following criteria necessary for

our intentions:

1. Can the model predict fatigue of MVIC force at joint level under complex
patterns of voluntary isometric contractions, i.e. maximal, submaximal, sus-
tained, and intermittent contractions of varying intensity?

2. Does the model include recovery of MVIC force?

3. Is the model suitable for real-life applications, i.e. is the number of param-
eters low and are all parameters identifiable through MVIC force measure-
ments?

4. Is the model suitable for high-dimensional optimization, i.e. is the model
suitable for derivative-based solution methods?

Many physiology-based models implement a feedback loop with some kind of
proportional-integral-derivative controller to imitate force adjustments by the ner-
vous system and match simulated to target force (see Section 8.3). Unfortunately,
these closed-loop controllers violate the last criterion as they are usually not suit-
able for derivative-based optimization methods without considerable effort spent
on reformulations. From a mathematical point of view, this is the main obstacle
for the use of most existing models. In addition, those models that fulfill the
mathematical criteria do not describe the physiological observations satisfactorily
(see Section 8.11).

8.3 Literature overview

First attempts to quantify the development of muscle fatigue were made around
1960 by Monod and Scherrer [1957, 1965] and Rohmert [1960], who mathematically
described the nonlinear relationship between contraction intensity and endurance
time with algebraic equations. Subsequently, several authors proposed similar
equations or developed joint-specific versions [El ahrache et al., 2006; Frey-Law
and Avin, 2010]. However, these models neither allow to evaluate the time course
of MVIC force for more complex contraction scenarios nor do they include recovery.

Fuglevand et al. [1993] constructed a model of recruitment and rate coding of a
pool of motor units. As the model does not include fatigue effects, it was later on
extended by Dideriksen et al. [2010]. The fatigue-induced changes of the model
require a controller to maintain target force. Potvin and Fuglevand [2017] proposed
another modification to the original model [Fuglevand et al., 1993], which has yet
to be extended to be able to describe force recovery.

Hawkins and Hull [1993] incorporated fatigue effects into a previously developed
fiber based model [Hawkins, 1990]. The model does not describe recovery after
work and employs an if-else structure to account for the recruitment order of
different fiber types.
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Based on the work of Rich [1960] and Deeb et al. [1992], Wood et al. [1997] pro-
posed a model and subsequently used it to minimize fatigue during work schedules
consisting of intermittent contractions with constant intensities and duty cycles.
The least fatiguing setting was found by an exhaustive search through the param-
eter space. Although their approach pursued a similar goal as this work, the fixed
duty cycles impose an undesired limitation on the loading schemes. Similarly,
Marina et al. [2014] developed an algebraic equation to describe the force decay
during an intermittent handgrip protocol. As the equation needs to be tailored to
a specific protocol, it is unsuitable for our purpose as well.

Freund and Takala [2001] constructed a biomechanical model of the forearm and
introduced a simple ODE to account for effects of fatigue and recovery. Ma et al.
[2009, 2010, 2015] utilized similar dynamics but separated fatigue and recovery,
which resulted in a branchwise definition of the ODE’s right-hand-side. Riener
et al. [1996] modeled the effects of fatigue and recovery for externally stimulated
contractions. Although they chose muscle activation as model input, the proposed
dynamics are closely related to the ones of Freund and Takala [2001] and Ma et al.
[2010], which is why we include it here. Fayazi et al. [2013] based their model on
that of Ma et al. [2010], but modeled fatigue and recovery to occur simultaneously
as originally proposed by Freund and Takala [2001] for voluntary contractions and
by Riener et al. [1996] for stimulated contractions. Fayazi et al. [2013] used their
model subsequently to calculate optimal pacing strategies for a cyclist.

Liu et al. [2002] introduced a three-compartment model distinguishing between
active, fatigued, and resting motor-units. Fatigue and recovery effects are repre-
sented by flows between the compartments and brain effort was chosen as model
input. Since brain effort is only known for maximal efforts, the model was later
extended by Xia and Law [2008] by including a controller to account for the re-
cruitment hierarchy of three different fiber types when matching the target force.
A different modification of the original model [Liu et al., 2002] was implemented
by Sih et al. [2012]. The authors expanded the model to four compartments and
reformulated their equations to circumvent brain effort as input. In general, this
allows the model to simulate arbitrary force profiles. Nevertheless, it is still defined
branchwise.

Several authors have extended or modified the model of Xia and Law [2008].
Gede and Hubbard [2014] added a force-velocity dependence and generalized the
model to task level. Furthermore, they removed the fast components of the model
and changed the input to be the amount of active muscle which makes the model
suitable for optimization [Gede, 2014]. However, because of the separate inputs
for each fiber type, the model could only be validated for maximal efforts. Other
modifications to the original model [Xia and Law, 2008], e.g. using time-variant
[Sonne and Potvin, 2016] or contraction-specific [Looft, 2014] parameters, have
been developed as well.

James and Green [2012] used a similar approach as Sih et al. [2012] but assumed
that contractile properties vary as continuous functions of time and motor unit
type. The power output of a single motor unit is defined non-smooth and the
model does not account for force recovery. Callahan et al. [2013, 2016] built a
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comprehensive model of torque generation. The model can be used to describe
voluntary and externally stimulated contractions and uses a controller to match
generated to target torque. Contessa and Luca [2013] developed a model focusing
on motor units containing a feedback loop implemented to regulate the excitation
and match target force.

Only the models proposed by Freund and Takala [2001] and Fayazi et al. [2013]
fulfill our requirements and are thus examined further in this work. In Section
8.11.1, we show that these models can not capture the fast and slow dynamics of
MVIC force observed in the literature [Carroll et al., 2017]. For this reason, a new
model has to be developed.

8.4 Suitable models from the literature

During our literature search, we identified the models proposed by Freund and
Takala [2001] and Fayazi et al. [2013] to be suitable for our intentions. Thus, we
unify their notation and evaluate their performance by fitting them to a subset of
the available data. Due to the later on discussed deficiencies, a new model had to
be developed.

8.4.1 Freund and Takala model

Freund and Takala [2001] modeled fatigue and recovery of MVIC force as

d

dt
xMVIC(t) = p1(1− xMVIC(t))− p2uabs(t) (8.1a)

hMVIC(t) = xMVIC(t). (8.1b)

Here, the state variable
xMVIC : [0, T ]→ R (8.1c)

is defined on the time interval [0, T ] and is equivalent to the current MVIC force
capacity

hMVIC(t) = xMVIC(t). (8.1d)

The absolute external isometric load

uabs : [0, T ]→ [0, 1] (8.1e)

represents the model input. The fatigue rate p2uabs(t) depends linearly on uabs.
The recovery rate p1(1 − xMVIC(t)) depends linearly on the difference between
the current force capacity xMVIC and the maximal force capacity. All states and
inputs are normalized to baseline MVIC force and are thus dimensionless. The
dimensionless parameters p1 ∈ [0,∞) and p2 ∈ [0,∞) determine the maximal
speed of exponential recovery and fatigability of the muscle group. The initial
condition

xMVIC(0) = x0 ∈ [0, 1] (8.1f)

describes the force capacity of the muscle group at t = 0. For an unfatigued
muscle, one chooses x0 = 1.
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8.4.2 Fayazi et al. model

Based on the work of Ma et al. [2010], Fayazi et al. [2013] proposed dynamics
similar to those of Freund and Takala [2001]. Keeping the notation introduced
earlier, the model is given as as

d

dt
xMVIC(t) = p1(1− xMVIC(t))− p2uabs(t)xMVIC(t) (8.2)

hMVIC(t) = xMVIC(t). (8.3)

Thus, the difference to the model of Freund and Takala [2001] is an additional
dependency of the fatigue rate on the current MVIC force. In the model of Ma
et al. [2010], where fatigue and recovery are modeled separately, this factor ensures
a sufficient decrease of fatigability during an MVIC effort.

8.5 Proposed nonlinear ordinary differential equation model

Based on the model of Freund and Takala [2001], we construct a new model given

d

dt
xslow(t) = p1(1− xslow(t))− p2uabs(t) (8.4a)

d

dt
xfast(t) = p3(1− uabs(t))

p4(1− xfast(t))− p5uabs(t) (8.4b)

hMVIC(t) = xslow(t)xfast(t), (8.4c)

where

x : [0, T ]→ R2 (8.4d)

is defined on the time horizon [0, T ] and consists of two state variables xfast and
xslow. Again, all states and inputs are normalized to baseline MVIC force and are
thus dimensionless. The model furthermore contains five dimensionless parameters
pj ∈ [0,∞) for j ∈ {1, . . . , 5} and one input function

uabs : [0, T ]→ [0, 1] (8.4e)

representing the absolute external isometric load. The current MVIC force capac-
ity is denoted by

hMVIC : [0, T ]→ R (8.4f)

and the initial conditions for the states are given by

x(0) = x0 ∈ [0, 1]2. (8.4g)

For an unfatigued muscle, one chooses x0 = (1, 1)>.
A detailed explanation for choosing this model structure is given in Section 8.11.

Table 8.1 summarizes the model components. To increase readability throughout
the rest of this work, the arguments of the states and input functions are omitted
whenever the dependencies are clear.

66



8.6 Formulating a multi-stage variant of the model

Table 8.1: Overview of the model components.

Type Interpretation
xslow State variable Slow component
xfast State variable Fast component
hMVIC Function MVIC force
p1 Parameter Maximal recovery rate of xslow

p2 Parameter Maximal fatigue rate of xslow

p3 Parameter Maximal recovery rate of xfast

p4 Parameter Influence of uabs on recovery rate of xfast

p5 Parameter Maximal fatigue rate of xfast

uabs Input function Absolute external load

8.6 Formulating a multi-stage variant of the model

To simulate maximum voluntary isometric contractions efforts, it is favorable to
substitute

uabs(t) = urel(t)hMVIC(t) (8.5a)

and use

urel : [0, T ]→ [0, 1], (8.5b)

the load relative to the current force capacity, as input. This substitution reflects
the experimental settings of an MVIC effort, during which subjects are asked to
contract maximally (urel = 1) instead of maintaining a certain target force uabs.
It furthermore allows to simulate MVIC efforts without an unnecessarily complex
mathematical description of the non-constant input force uabs and is necessary to
model MVIC efforts for which no measurement values are given (e.g. in experiment
E3a).

However, in contrast to using uabs as input, this substitution only gives a pre-
diction of the absolute external load at a certain level of effort urel by the model
and not the actual absolute external load. Depending on whether the contraction
is submaximal or maximal, we either used uabs or urel to describe the experimental
settings in this work.

We interpret this substitution as switching stages of a multi-stage model in order
to model scenarios, where absolute and relative external force level are prescribed
alternately. If such a switch occurs during an experiment, we denote this change by
different right-hand side functions fabs : R2×R×R5 → R2 and frel : R2×R×R5 →
R2. We thus can summarize the dynamics of the ODE systems above as

d

dt
x(t) = fabs(x(t), uabs(t), p)

=

(
p1(1− xslow(t))− p2uabs(t)

p3(1− uabs(t))
p4(1− xfast(t))− p5uabs(t)

)
(8.6a)
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or

d

dt
x(t) = frel(x(t), urel(t), p)

=

(
p1(1− xslow(t))− p2urel(t)hMVIC(t)

p3(1− urel(t)hMVIC(t))p4(1− xfast(t))− p5urel(t)hMVIC(t)

)
(8.6b)

depending on the input function and right-hand side used. The transition of the
states between the model stages is continuous. Note that during rest periods urel

and uabs are zero and thus both right-hand sides are identical

d

dt
x(t) = frel(x(t), 0, p)

= fabs(x(t), 0, p)

=

(
p1(1− xslow(t))
p3(1− xfast(t))

)
. (8.6c)

Remark. For most scenarios treated in this thesis, it is sufficient to choose one
of the two stages. This choice is apparent from the the problem formulations
and from the plots depicting either uabs or urel as input. Scenarios where both
stages are used are explicitly highlighted in the caption of the plots and can be
furthermore distinguished by depicting both input functions uabs and urel.

8.7 Available data

We use the mean values from several experiments examining muscle fatigue and
recovery of the elbow flexors to evaluate the performance of the models under
consideration. This is necessary, as to the best of our knowledge no study examined
time courses of MVIC force for the same muscle group of a single subject under
different loading schemes.

Data of the following experiments is used:

E1 Taylor et al. [1999] examined a 2 min MVIC effort and a recovery period
lasting roughly 7 min for 8 subjects. Up to 30 MVIC force measurements
are given per subject.

E2 Søgaard et al. [2006] examined a submaximal contraction at 15 % of baseline
MVIC force lasting 43 min and 23 min of recovery for 9 subjects. 29 MVIC
force measurements are given per subject.

E3a Taylor et al. [2000] examined intermittent MVIC efforts of 5 s contraction
and 5 s rest and a 2 min recovery period for 9 subjects. Up to 18 MVIC
force measurements are given per subject.

E3b Taylor et al. [2000] examined intermittent MVIC efforts of 15 s contraction
and 10 s rest and a 4 min recovery period for 9 subjects. Up to 30 MVIC
force measurements are given per subject.
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E3c Taylor et al. [2000] examined intermittent MVIC efforts of 15 s contraction
and 5 s rest and a 4 min recovery period for 8 subjects. Up to 30 MVIC
force measurements are given per subject.

E3d Taylor et al. [2000] examined intermittent MVIC efforts of 30 s contraction
and 5 s rest and a 3 min recovery period for 9 subjects. Up to 17 MVIC
force measurements are given per subject.

E4 Gandevia et al. [1996] examined a 2 min MVIC effort and a subsequent 3
min recovery period for 8 subjects. 13 mean MVIC force values and stan-
dard errors of the means were extracted from the figures with the software
Engauge Digitizer 10.0 [Mitchell et al.].

E5 Smith et al. [2007] examined a 70 min submaximal contraction at 5 % of
baseline MVIC force and the following 29 min of recovery for 8 subjects. 52
MVIC force measurements are given per subject. As the measurement times
are only given for one subject, we used those for the whole sample.

All experiments employed a similar setup (i.e. elbow flexed to 90 degrees, forearm
vertical and supinated [Taylor et al., 1999; Søgaard et al., 2006; Taylor et al., 2000;
Gandevia et al., 1996; Smith et al., 2007]), which justifies a comparison of these
values. To the best of our knowledge, this is the most comprehensive set of data
used to validate a model of the time course of MVIC force.

For each experiment k ∈ {E1, E2, E3a, E3b, E3c, E3d, E4, E5}, we use the
mean values

ηkl =
1

nk

nk∑
i=1

ηkl,i (8.7)

of the nk individual measurements ηkl,i to validate our model. The measurement

errors εkl are assumed to be additive, independent, and identically normally dis-
tributed with mean zero and standard deviation σk

l . We take σk
l to be the corrected

sample standard deviation (SD) of the corresponding mean value ηkl divided by
the square root of the sample size nk, i.e.

σk
l =

√√√√ 1

nk(nk − 1)

nk∑
i=1

(ηkl,i − ηkl )2. (8.8)

Thus, σl
k yields an approximation of the standard error of the mean. For experi-

ment E4, the means and the corresponding standard errors were extracted directly
from the figures. The test contractions interspersed during submaximal contrac-
tions and recovery are described to last 1 – 2 s [Taylor et al., 2000] or 2 – 3 s
[Søgaard et al., 2006]. Therefore, we model those contractions to last 2 s.
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8.8 Multi-experiment parameter estimation problems

We evaluate the models under consideration by fitting them to a subset of the
available data. If a model performs satisfactorily, we furthermore validate it by
using the calibrated model to predict the remaining data. As data of the available
single experiments is not sufficient for a reliable model calibration, we formulate
a multi-experiment parameter estimation problem:

min
p,xk,i(·)

1

2

∑
k∈K

nk
s∑

i=1

nk,i
m∑

j=1

(
hk,ij (tk,ij , xk,i(tk,ij ), p)− ηk,ij

σk,i
j

)2

(8.9a)

s.t. for k ∈ K :

xk,1(0) = xk,10 (8.9b)

and for k ∈ K and i ∈ {1, . . . , nk
s − 1} :

xk,i+1(0) = xk,i(T k,i) (8.9c)

and for k ∈ K, i ∈ Sk
abs, and t ∈ [0, T k,i] :

d

dt
xk,i(t) = fk,iabs(x

k,i(t), uk,iabs(t), p) (8.9d)

and for k ∈ K, i ∈ Sk
rel, and t ∈ [0, T k,i] :

d

dt
xk,i(t) = fk,irel (xk,i(t), uk,irel (t), p). (8.9e)

Here, the calibration set K ⊂ {E1, E2, E3a, E3b, E3c, E3d, E4, E5} contains the
experiments which are used for fitting the model. Furthermore, the sets Sk

abs and
Sk

rel consist of the stages of experiment k which use either uabs or urel as input (see
Section 8.6).

To evaluate the models of Freund and Takala [2001] and Fayazi et al. [2013], we
fit these models simultaneously to the data of E1 and E2. This subset is chosen
as it contains a sustained maximal and a sustained submaximal contraction. To
evaluate the proposed model, we furthermore add the data of E3a and E3c. This
subset is chosen as it contains a sustained maximal, a sustained submaximal,
and two intermittent maximal contractions and enables an identification of the
parameters. The data of the remaining four experiments E3b, E3d, E4, and E5 is
then used to test the predictive capability of the calibrated model.

8.9 Numerical solution via direct multiple shooting

To ensure a practical benefit of our approach, not only mathematical problem
formulations but also the numerical solution methods need to be tailored to the
real-life application. As we aim to calibrate the model for different trainees and
muscle groups, an efficient and reliable solution is necessary. Therefore, we use
specialized methods, which exploit the properties of the problems.
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The optimization problem constrained by an ODE system (8.9) is solved by em-
ploying a first-discretize-then-optimize strategy. We use a direct multiple shooting
approach to reduce the problem to a finite-dimensional form (see Bock [1987]).
We employ three shooting nodes per experiment and use piecewise constant con-
trols. We use DAESOL [Bauer, 1999] for integration of the ODE and sensitivity
generation via internal numerical differentiation [Bock, 1981]. Relative and ab-
solute integration tolerances are set to 10−8 and 10−7. Maximum order is set to
6. Maximum step size is set to 1. The necessary derivatives of the model func-
tions are computed via automatic differentiation with ADIFOR [Bischof et al.,
1998]. The resulting structured nonlinear least-squares problem is solved with
PAREMERA [Kircheis, 2015], an implementation of the reduced generalized Gauss-
Newton method [Bock, 1987; Schlöder, 1988]. Termination criteria for PARE-
MERA is chosen to be ε = 10−3. Both packages are embedded in the optimum
experimental design software VPLAN [Körkel, 2002].

Exemplarily, we give the dimensions of the PE problem used below to calibrate
the proposed model. Several reformulations are necessary. With 35 to 91 control
intervals and 18 to 30 shooting intervals per experiment, the resulting nonlinear
program (NLP) has 221 variables and 208 equality constraints.

8.10 Numerical results

Remark. To increase readability, the plots in this thesis depict the (piecewise
constant) input functions as continuous lines without markers. We emphasize that
the thus resulting vertical lines do not bear any mathematical interpretation, but
are merely included for visualization purposes.

8.10.1 Evaluation of suitable models from the literature

Figures 8.1 and 8.2 and Figures 8.3 and 8.4 illustrate the results of fitting each of
the models of Freund and Takala [2001] and Fayazi et al. [2013] simultaneously to
the data of E1 and E2. Table 8.2 lists the resulting parameter estimates and their
estimated relative standard deviations for both models. The estimated common
factor b2 [Bock, 1987] for those fits is 7.45 for the model of Freund and Takala
[2001] and 7.82 for the model of Fayazi et al. [2013]. Table 8.3 lists the mean
absolute errors (MAE) and weighted residual sum of squares (WRSS) of both fits.

Table 8.2: Parameter estimates and their estimated relative standard deviations
obtained by fitting the models of Freund and Takala [2001] and Fayazi
et al. [2013] simultaneously to the data of E1 and E2. The common
factors of these fits are estimated to be 7.45 and 7.82.

p1 ± SD p2 ± SD
Freund and Takala [2001] 9.20 · 10−3 ± 3.75 % 1.53 · 10−2 ± 3.56 %
Fayazi et al. [2013] 8.66 · 10−3 ± 4.90 % 2.24 · 10−2 ± 4.98 %
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Figure 8.1: Model response obtained by fitting the model of Freund and Takala
[2001] simultaneously to the data of E1 (shown here) and E2. The
top row shows the mean values of the experiments plotted against the
model response for the experimental setting. The error bars represent
the standard errors of the means. Additionally, the relative force input
is illustrated in the bottom row.

Table 8.3: Mean absolute errors and weighted residual sum of squares obtained by
fitting the models of Freund and Takala [2001] and Fayazi et al. [2013]
simultaneously to the data of E1 and E2.

E1 E2
MAE WRSS MAE WRSS

Freund and Takala [2001] 0.04 151.07 0.10 273.72
Fayazi et al. [2013] 0.05 210.97 0.09 234.80

72



8.10 Numerical results

0.6

0.8

1

n
o
r
m

a
li
z
e
d

v
a
lu

e
(
1
)

hMVIC

0

0.05

0.1

0.15

n
o
r
m

a
li
z
e
d

v
a
lu

e
(
1
)

uabs

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

0.5

1

time (s)

n
o
r
m

a
li
z
e
d

v
a
lu

e
(
1
)

urel

Figure 8.2: Model response obtained by fitting the model of Freund and Takala
[2001] simultaneously to the data of E1 and E2 (shown here). The
top row shows the mean values of the experiments plotted against the
model response for the experimental setting. The error bars represent
the standard errors of the means. Additionally, the absolute force input
is illustrated in the middle row and the relative force input is illustrated
in the bottom row. Note that these two input functions result from
using the multi-stage formulation of the model as described in Section
8.6.
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Figure 8.3: Model response obtained by fitting the model of Fayazi et al. [2013]
simultaneously to the data of E1 (shown here) and E2. The top row
shows the mean values of the experiments plotted against the model
response for the experimental setting. The error bars represent the
standard errors of the means. Additionally, the relative force input is
illustrated in the bottom row.
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Figure 8.4: Model response obtained by fitting the model of Fayazi et al. [2013]
simultaneously to the data of E1 and E2 (shown here). The top row
shows the mean values of the experiments plotted against the model
response for the experimental setting. The error bars represent the
standard errors of the means. Additionally, the absolute force input is
illustrated in the middle row and the relative force input is illustrated
in the bottom row. Note that these two input functions result from
using the multi-stage formulation of the model as described in Section
8.6.
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8.10.2 Evaluation of proposed model

Figures 8.5, 8.6, 8.7, and 8.8 depict the results of fitting the proposed model si-
multaneously to the data of E1, E2, E3a, and E3c. Table 8.4 lists the resulting
parameter estimates and their estimated relative standard deviations. The esti-
mated common factor b2 [Bock, 1987] for this fit is 1.87. Table 8.5 lists the mean
absolute errors and weighted residual sum of squares of the fit.
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Figure 8.5: Model response obtained by fitting the proposed model simultaneously
to the data of E1 (shown here), E2, E3a, and E3c. The top row shows
the mean values of the experiments plotted against the model response
for the experimental setting. The error bars represent the standard
errors of the means. Additionally, the relative force input is illustrated
in the bottom row.

Table 8.4: Parameter estimates and their estimated relative standard deviations
obtained by fitting the proposed model simultaneously to the data of
E1, E2, E3a, and E3c. The common factor for this fit is estimated to
be 1.87.

Interpretation Estimate ± SD
p1 Maximal recovery rate of xslow 1.20 · 10−3 ± 7.23 %
p2 Maximal fatigue rate of xslow 2.46 · 10−3 ± 6.04 %
p3 Maximal recovery rate of xfast 2.85 · 10−2 ± 6.44 %
p4 Influence of uabs on recovery rate of xfast 3.99 ± 11.84 %
p5 Maximal fatigue rate of xfast 9.44 · 10−3 ± 2.99 %

Figures 8.9, 8.10, 8.11, and 8.12 illustrate the prediction of the calibrated model
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Figure 8.6: Model response obtained by fitting the proposed model simultaneously
to the data of E1, E2 (shown here), E3a, and E3c. The top top row
shows the mean values of the experiments plotted against the model
response for the experimental setting. The error bars represent the
standard errors of the means. Additionally, the absolute force input is
illustrated in the middle row and the relative force input is illustrated
in the bottom row. Note that these two input functions result from
using the multi-stage formulation of the model as described in Section
8.6.

Table 8.5: Mean absolute errors and weighted residual sum of squares obtained by
fitting the proposed model simultaneously to the data of E1, E2, E3a,
and E3c.

E1 E2 E3a E3c
MAE 0.03 0.03 0.02 0.03
WRSS 66.68 25.82 17.17 80.83
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Figure 8.7: Model response obtained by fitting the proposed model simultaneously
to the data of E1, E2, E3a (shown here), and E3c. The top row shows
the mean values of the experiments plotted against the model response
for the experimental setting. The error bars represent the standard
errors of the means. Additionally, the relative force input is illustrated
in the bottom row.

for the remaining four experiments E3b, E3d, E4, and E5. Table 8.6 lists the mean
absolute errors and weighted residual sum of squares of the predictions.

Table 8.6: Mean absolute errors and weighted residual sum of squares obtained by
using the calibrated model to predict the data of E3b, E3d, E4, and E5.

E3b E3d E4 E5
MAE 0.04 0.03 0.03 0.03
WRSS 47.53 37.86 15.28 41.00
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Figure 8.8: Model response obtained by fitting the proposed model simultaneously
to the data of E1, E2, E3a, and E3c (shown here). The top row shows
the mean values of the experiments plotted against the model response
for the experimental setting. The error bars represent the standard
errors of the means. Additionally, the relative force input is illustrated
in the bottom row.
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Figure 8.9: Model response obtained by simulating the calibrated model for the
experimental settings of E3b. The top row shows the mean values of the
experiments plotted against the model response for the experimental
setting. The error bars represent the standard errors of the means.
Additionally, the relative force input is illustrated in the bottom row.
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Figure 8.10: Model response obtained by simulating the calibrated model for the
experimental settings of E3d. The top row shows the mean values
of the experiments plotted against the model response for the ex-
perimental setting. The error bars represent the standard errors of
the means. Additionally, the relative force input is illustrated in the
bottom row.
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Figure 8.11: Model response obtained by simulating the calibrated model for the
experimental settings of E4. The top row shows the mean values of the
experiments plotted against the model response for the experimental
setting. The error bars represent the standard errors of the means.
Additionally, the relative force input is illustrated in the bottom row.
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Figure 8.12: Model response obtained by simulating the calibrated model for the
experimental settings of E5. The top row shows the mean values of
the experiments plotted against the model response for the experi-
mental setting. The error bars represent the standard errors of the
means. Additionally, the absolute force input is illustrated in the mid-
dle row and the relative force input is illustrated in the bottom row.
Note that these two input functions result from using the multi-stage
formulation of the model as described in Section 8.6.
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8.10.3 Information criteria for model selection

To analyze whether the performance of our proposed model outweighs the in-
creased complexity, we compute the Akaike information criterion (AIC) and the
AICc – a variant of the AIC adjusted to small sample sizes – for the fit of the
three presented models to the data of the experiments E1 and E2. The AIC and
the AICc are chosen since we are comparing unnested models. As we are only
interested in comparing AIC and AICc between the models, we compute these
quantities as

AIC = nm ln(WRSS) + 2np (8.10)

and

AICc = AIC +
2np(np + 1)

nm − np − 1
(8.11)

for our weighted nonlinear least-squares fit [Burnham and Anderson, 2002]. Here,
nm denotes the number of measurements, WRSS denotes the weighted residual
sum of squares, and np denotes the number of parameters.

Table 8.7 shows the results. The minimum value indicates the preferred model.
Note that the proposed model was actually fit simultaneously to the data of ex-
periments E1, E2, E3a, and E3c compared to the models of Freund and Takala
[2001] and Fayazi et al. [2013], which were fit simultaneously only to the data of
experiments E1 and E2.

Table 8.7: AIC and AICc values for the fits of the three presented models to the
data of experiments E1 and E2. The minimum value indicates the
model to be preferred.

Freund and Takala [2001] Fayazi et al. [2013] Proposed model
AIC 361.04 359.89 32.64
AICc 361.26 360.10 33.77

8.10.4 Cross-validation

To evaluate whether our results depend on the chosen subsets of the data, we
cross-validate by repeating the above process for possible combinations without
repetition which separate the data set into calibration and prediction set consisting
of 4 experiments each.

To allow an identification of all parameters, we need to ensure that experiment
E2 is part of the calibration set, as its data contains more valuable information
on a submaximal contraction than the data of experiment E5. Furthermore, due
to inconsistencies of the data of experiment E3b (see the discussion in Section
8.11), we always keep experiment E3b as part of the prediction set. This leaves
30 possible combinations to evaluate.

Table 8.8 and Figure 8.13 summarize the results of the cross-validation.
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Table 8.8: Results of the cross-validation with 30 different combinations of cali-
bration and prediction sets. The table gives the minimum (min), maxi-
mum (max), and median estimate of the parameters pi and the weighted
residual sum of squares (WRSS). The last column additionally gives the
standard deviations (SD) normalized to the values obtained in Section
8.10.2.

min max median relative SD
p1 8.63 · 10−4 1.23 · 10−3 1.10 · 10−3 10.60 %
p2 1.80 · 10−3 2.53 · 10−3 2.33 · 10−3 9.69 %
p3 1.89 · 10−2 3.40 · 10−2 2.75 · 10−2 12.89 %
p4 1.95 4.34 3.59 17.00 %
p5 8.92 · 10−3 1.06 · 10−2 9.43 · 10−3 3.95 %
WRSS 329.44 417.92 341.54 7.62 %
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Figure 8.13: Results of the cross-validation with 30 different combinations of cali-
bration and prediction sets. To visualize the deviations, the parame-
ter estimates pi and the WRSS are normalized to the values obtained
in Section 8.10.2. The whiskers illustrate the minimum and maxi-
mum value. The boundaries of the box illustrate the first and the
third quartiles. The line inside the box illustrates the median.
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8.11 Discussion

8.11.1 Evaluation of suitable models from the literature

When evaluating the fits for the models of Freund and Takala [2001] and Fayazi
et al. [2013] to the data of E1 and E2, the necessity of a new model becomes
clear. The model of Freund and Takala [2001] captures the fatigue development
during the MVIC effort of E1 correctly, whereas the model of Fayazi et al. [2013]
underestimates it slightly. This is caused by combining the fatigue and recovery
branches of Ma et al. [2010] linearly. Both models overestimate fatigue in the
beginning of the submaximal contraction E2 and reach a steady-state too early.
Furthermore, due to their mono-exponential recovery terms, they can not capture
the initially faster recovery after cessation of the contractions.

8.11.2 Structure of the proposed model

Carroll et al. [2017] summarized the properties of the time courses of MVIC force
during and after MVIC efforts and submaximal contractions as follows. During an
MVIC effort, MVIC force usually drops below 50 % of baseline within 1 – 2 min.
In the first 15 – 30 s after the contraction, MVIC force recovers quickly but only
partially. Afterwards, recovery slows down, so that MVIC force reaches around
80 % of baseline after 4 – 5 min. During submaximal contractions, interspersed
MVIC efforts reveal a slow decline of MVIC force depending on the contraction
duration and intensity of the submaximal contraction. During the first minutes
after the contraction, MVIC force recovers quickly but only partially. Further
recovery depends on the duration and intensity of the preceding contraction as
well and might take longer than 30 min.

From a mathematical point of view, this history dependence of recovery required
a more complex model structure than that of Freund and Takala [2001] or of Fayazi
et al. [2013]. Since no input is given to the model during recovery, information
about the preceding contractions had to be either stored in the state variables or
different branches for maximal or submaximal contractions had to be developed.
As our focus was to keep the model suitable for derivative-based optimization
methods, a branchwise definition was undesirable. Consequently, we duplicated
the dynamics of Freund and Takala [2001] and modeled MVIC force as the product
of two state variables xslow and xfast. The product was chosen to represent the
chain of mechanisms leading to force generation. Yet, since this chain includes
complex feedforward and feedback mechanisms, the strict separation is obviously
an oversimplification. The choice of the product is furthermore supported by other
authors who proposed using double-exponential functions to describe the time
courses of fatigue [Deeb et al., 1992] and recovery [Clarke, 1962]. The inclusion
of a second state enables the model to describe different time courses of recovery
after contractions that decrease MVIC force to the same level (see for example
Figures 9.3 and 9.4), while keeping the model structure suitable for our purpose.

The processes summarized in xslow play a bigger role in contractions of long
duration or repeated intermittent ones, as this state fatigues much slower and
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takes longer to recover. Correlations to the Ca2+ sensitivity of the crossbrigdes, to
the Ca2+ release of the sarcoplasmic reticulum [Allen et al., 2008], and to glycogen
depletion [Sahlin et al., 1998] are likely. Furthermore, there is also a long lasting
effect of reduced voluntary activation after prolonged contractions, the reason for
which is currently unknown [Carroll et al., 2017].
xfast pools a variety of mechanisms responsible for a quick onset of MVIC force

reduction and a fast recovery. These mechanisms contribute to a larger degree
during maximal and near maximal contractions and seem to be closely related to
muscle perfusion [Carroll et al., 2017]. Possible factors include metabolite accu-
mulation (e.g. inorganic phosphate) [Allen et al., 2008], firing of group III and IV
afferents [Taylor et al., 2016], or energy deficiency [Sahlin et al., 1998]. Since stud-
ies have established a link between blood occlusion in the muscle (either through
high-intensity contractions or artificially) and impeded recovery [Bigland-Ritchie
et al., 1986; Kennedy et al., 2013], we added a dependency of the recovery rate
on (1 − uabs)

p4 . The exponent p4 determines the contraction intensity at which
total occlusion occurs [Barnes, 1980; Sadamoto et al., 1983]. A similar depen-
dency on activation was proposed by Riener et al. [1996] in the context of external
stimulation. However, they assumed a linear relationship.

8.11.3 Validation of the proposed model

The fit of the proposed model to the data of the experiments E1 and E2 was
improved substantially compared to the models of Freund and Takala [2001] and
Fayazi et al. [2013]. Besides by visually inspecting the plots, this can also be seen
by comparing the mean average errors and weighted residual sum of squares given
in Table 8.3 and Table 8.5. Although more data was used for the entire fit of the
proposed model, the MAE and the WRSS calculated for the experiments E1 and
E2 were smaller than those obtained by fitting the models of Freund and Takala
[2001] and Fayazi et al. [2013]. This was to be expected, as the proposed model
employs five instead of two parameters. Yet, since all parameters could be esti-
mated reasonably well, the model is not overparameterized and an experiment-wise
comparison is justified. Our model is able to capture submaximal contractions,
the initial fast recovery after cessation of a contraction, and the delayed recovery
after prolonged contractions.

Due to the phenomenological nature of the model, most of the estimated pa-
rameter values do not allow a direct physiological interpretation. Nevertheless,
we expect physiological characteristics like fiber type composition, capillarization,
buffering capacity, muscle mass and strength, energy stores, and others to be re-
flected in the dimensionless parameter estimates. An inter-individual comparison
of the estimates from the same muscle group or an intra-individual comparison of
those from different muscle groups might provide interesting physiological insights.
However, to evaluate this hypothesis, more data is needed.

Since the term (1−uabs)
p4 was specifically introduced to mimic blood occlusion

during intense contractions, we compared the estimate of p4 to the values given
in literature. Sadamoto et al. [1983] determined that at a contraction intensity of
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53 % of baseline MVIC force, muscle blood flow in the biceps was arrested. For the
external load uabs = 0.53, the estimated exponent p4 = 3.99 would imply roughly
5 % of the induced blood flow reaching the elbow flexors and providing some kind
of recovery. As we are not only considering the biceps but all elbow flexors, and
as Barnes [1980] found a strength-dependency of the intensity necessary for total
occlusion, this value seems to be consistent with the literature.

Using the estimated parameters, the model is able to predict the data of E3d,
E4, and E5 satisfactorily. Nevertheless, it shows unexpected deficiencies when
simulating experiment E3b. Namely, it can not capture the increasing fatigability
of the subjects during the experiment. The exact reasons are unknown. However,
this increasing fatigability can not be observed during the other experiments of
Taylor et al. [2000]. Furthermore, this increase actually contradicts the size prin-
ciple [Henneman et al., 1965] according to which primarily fatigue-resistant fibers
should be used as the protocol progresses. Thus, fatigability should decrease dur-
ing each contraction and a steady-state should be reached, as can be seen in the
other experiments. Since this experiment additionally shows the largest inter-
subject variability compared to other experiments from the study by Taylor et al.
[2000], we suppose that motivational issues of some subjects were the cause of this
phenomenon. We argue similarly concerning the force drops during the submax-
imal contractions E2 and E5 shortly before the end of the contraction, which are
not captured by the model.

8.12 Limitations and future work

Currently, several aspects require further research before the model can be applied
in the context of dynamic contractions, individual athletes, and different training
goals.

To validate our model, we used the mean values of several experiments. This
was necessary, as to the best of our knowledge no study examined time courses of
MVIC force for the same muscle group of a single subject under different loading
schemes. However, this implies that our work suffers the same drawbacks as all
studies in physiology and sports sciences inferring conclusions from mean values.
The observed fatigue and recovery patterns of the sample mean could be artifacts of
data aggregation [Neyroud et al., 2016] and individual patterns could differ from
the mean [Marina et al., 2014]. Thus, further research with data of individual
subjects and other muscle groups has to be performed. To facilitate the necessary
data acquisition, optimal experiments should be designed. We refer to Chapter 12
for details. Additional data might furthermore allow a more detailed physiological
modeling, e.g. separating different fiber types or distinguishing between central
and peripheral contributions.

The proposed model was specifically designed and validated for isometric con-
tractions. We strongly discourage its use in combination with dynamic contrac-
tions without a thorough validation, as several phenomena which are not described
by the model arise during concentric or eccentric contractions. These include,
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among others, different fatigue and recovery patterns for specific contraction modes
[Linnamo et al., 2000], force enhancement or force depression after preceding dy-
namic contractions [Herzog, 2004; Kosterina et al., 2012], or dependence of fatigue
on joint angle [Place et al., 2005] and angular joint velocity [Morel et al., 2015]. In-
corporating these effects into the model and validating these extensions is subject
of future work.

To realize the full potential of the new model, suitable optimal control prob-
lems have to be developed and solved, e.g. to minimize the risk for work-related
injuries or to maximize the benefits of resistance training. For the latter, current
recommendations from the sports sciences about ’optimal’ training with respect
to maximizing strength, hypertrophy, power, or local muscular endurance have to
be formulated mathematically (see Section 10). Currently, our model does not
incorporate the concept of task failure [Enoka and Duchateau, 2008] except when
MVIC force falls below target force. However, as Neyroud et al. [2013] and others
have shown, task failure can occur even before this threshold is reached. Thus,
to optimize training sessions in which other reasons for task failure than a lack of
MVIC force may arise, a prediction of endurance time has to be incorporated into
the model.

As soon as an extension of the model to dynamic contractions is given, the model
and the suggested optimal control problems could be implemented into existing
works on the optimization of dynamic movements. Eriksson [2008] and coworkers
[Eriksson and Nordmark, 2011], for example, computed optimal movements for
different cost functions with joint torques, muscle tensions, or neural stimulation
as inputs. A combination of such works and ours could result in optimal training
plans for the more commonly used dynamic constant external resistance training
[Fleck and Kraemer, 2014].

8.13 Conclusion

Based on the model of Freund and Takala [2001], we developed a predictive ODE
model of the time course of MVIC force which accounts for the fast and slow
dynamics observed during fatiguing contractions and subsequent recovery [Carroll
et al., 2017]. The model was validated with a comprehensive set of published data
from the elbow flexors [Gandevia et al., 1996; Taylor et al., 1999, 2000; Søgaard
et al., 2006; Smith et al., 2007] and shows promising results.

A special focus of this work was to keep the model suitable for derivative-based
optimization methods. The newly developed model can readily be employed to
optimize complex loading schemes, e.g. work shifts or resistance training plans
(see Section 10). Our work allows to compare the influence of loading schemes
on different muscle groups and individual subjects, once suitable data becomes
available.
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Chapter 9

Analyzing the time course of maximum voluntary
isometric contraction force

In this chapter, we use the calibrated model to examine two observations from the
literature regarding the fatigue and recovery patterns of maximum voluntary iso-
metric contraction (MVIC) force. Since the model was validated with contraction
intensities of 15 % of MVIC force and MVIC efforts, we use those for our simula-
tions. In the first section, we describe the simulated scenarios – the influence of
the force-time integral (FTI) on fatigue and the task-dependency of MVIC force
recovery. In the second section, we present our results. In the third section, we
discuss our results. In the fourth section, we draw conclusions for this chapter.

Remark. We emphasize that substantial parts of Herold et al. [2018] have been
incorporated into this chapter either with only slight changes or without any
changes.

9.1 Simulated scenarios

Rozand et al. [2015] observed that after sustained isometric contractions of the
knee extensors with different intensities and similar force-time integral the induced
level of fatigue did not differ. The FTI on the time interval [0, T ] is defined as

xFTI
def
=

∫ T

0

uabs(t)dt (9.1)

and often used as an analogue for work during isometric contractions, where no
actual physical work is performed. To examine this observation with the calibrated
model, we simulate a 60 s MVIC effort and a submaximal contraction at 15 % of
baseline MVIC force lasting 292.40 s with the same FTI of 43.86.

Rashedi and Nussbaum [2017] observed that recovery was fatigue- and not task-
dependent for intermittent isometric contractions of the index finger. Iguchi et al.
[2008] noticed similar dependencies after sustained isometric contractions of the
quadriceps. To examine this observation with the calibrated model, we simulate a
40 s MVIC effort and a submaximal contraction at 15 % of baseline MVIC force
lasting 2310 s. Both contractions reduce MVIC force to 64.41 % of baseline and
are followed by a 10 min recovery period.

89



Chapter 9 Analyzing the time course of maximum voluntary isometric
contraction force

9.2 Numerical results

Figures 9.1 and 9.2 show the model response obtained by simulating the calibrated
model for a 60 s MVIC effort and a submaximal contraction at 15 % of baseline
MVIC force lasting 292.40 s with the same FTI of 43.86. Both contractions end
before a steady-state is reached. After the maximal contraction, MVIC force is
reduced to 53.21 %. In contrast to this, MVIC force is reduced to 82.37 % after
the submaximal contraction.

0.6

0.8

1

n
o
r
m

a
li
z
e
d

v
a
lu

e
(
1
)

hMVIC
xslow
xfast

−10 0 10 20 30 40 50 60 70 80 90 100 110

0

0.5

1

time (s)

n
o
r
m

a
li
z
e
d

v
a
lu

e
(
1
)

urel

Figure 9.1: Model response obtained by simulating the calibrated model for an
MVIC effort (shown here) and for a submaximal contraction with the
same force-time integral. The top row shows the model response and
the relative force input is illustrated in the bottom row.

Figures 9.3 and 9.4 shows the model response obtained by simulating the cal-
ibrated model for a 40 s MVIC effort and a submaximal contraction at 15 % of
baseline MVIC force lasting 2310 s both reducing MVIC force to 64.41 % of base-
line. Both contractions end before a steady-state is reached. At the end of the
maximal scenario, MVIC force recovers to 96.25 %. In contrast to this, MVIC
force recovers to 85.97 % at the end of the submaximal scenario.

9.3 Discussion

In the scenario motivated by Rozand et al. [2015], the induced fatigue is higher
for the maximal contraction than for the submaximal contraction. We therefore
can not reproduce their results for our settings.

In the scenario motivated by Rashedi and Nussbaum [2017], recovery from the
MVIC effort is almost complete after 10 min, whereas recovery from the submax-
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Figure 9.2: Model response obtained by simulating the calibrated model for an
MVIC effort and for a submaximal contraction (shown here) with the
same force-time integral. The top row shows the model response and
the absolute force input is illustrated in the bottom row.
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Figure 9.3: Model response obtained by simulating the calibrated model for an
MVIC effort (shown here) and for a submaximal contraction inducing
the same level of fatigue followed by 10 min of recovery. The top row
shows the model response and the relative force input is illustrated in
the bottom row. Recovery from the MVIC effort is almost complete
after 10 min.
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Figure 9.4: Model response obtained by simulating the calibrated model for an
MVIC effort and for a submaximal contraction (shown here) inducing
the same level of fatigue followed by 10 min of recovery. The top row
shows the model response and the absolute force input is illustrated
in the bottom row. Recovery from the submaximal contraction takes
longer than 10 min.

imal contraction takes much longer. Thus, we can not reproduce their results for
our settings either.

9.4 Conclusion

According to our simulations, it is therefore not advisable to plan loading schemes
based on a generalization of either of these observations. Furthermore, these sim-
ulations emphasize the history dependence of fatigue and recovery patterns, which
could become even more complex following dynamic contractions [Herzog, 2004;
Kosterina et al., 2012]. Therefore, a good state estimation is crucial when working
with muscles that have been active recently.
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Chapter 10

Optimizing loading schemes for different training
goals

In this chapter, we compute optimized loading schemes for different training goals.
In the first section, we formulate the corresponding optimal control (OC) problems.
In the second section, we describe the numerical solution of these problems. In the
third section, we discuss the simulated scenarios. In the fourth section, we present
our results. In the fifth section, we discuss our results. In the sixth section, we
mention limitations and future work. In the seventh section, we give conclusions
for this chapter.

Remark. We emphasize that substantial parts of Herold and Sommer [2020b]
have been incorporated into this chapter either with only slight changes or without
any changes.

10.1 Multi-stage optimal control problems

We use a multi-stage formulation on ns ≥ 2 stages – denoted by superscripts
i ∈ {1, . . . , ns} – to model the resistance training sessions. To include metrics
for the time-under-tension (TUT), the force-time-integral (FTI), and the accu-
mulated fatigue, we extend the model by three states tracking these quantities
xTUT, xFTI, and xfatigue. The general multi-stage optimal control problem can
then be formulated as

max
xi(·),ui

abs(·),T i
Φ(xns(Tns)) (10.1a)

s.t. x1(0) = (1, 1, 0, 0, 0)> (10.1b)

xi(0) = xi−1(T i−1) for i ∈ {2, . . . , ns} (10.1c)
ns∑
i=1

T i = CT (10.1d)

xns

TUT(Tns) ≤ CTUT (10.1e)

xns

FTI(T
ns) ≤ CFTI (10.1f)

and for i ∈ {1, 3, . . . , ns − 2, ns} and t ∈ [0, T i] :

d

dt
xislow(t) = p1(1− xislow(t))− p2u

i
abs(t) (10.1g)
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d

dt
xifast(t) = p3(1− uiabs(t))

p4(1− xifast(t))− p5u
i
abs(t) (10.1h)

d

dt
xiFTI(t) = uiabs(t) (10.1i)

d

dt
xiTUT(t) =

{
0 if uiabs(t) = 0

1 else
(10.1j)

d

dt
xifatigue(t) = 1− hiMVIC(t) (10.1k)

ulow ≤ uiabs(t) ≤ hiMVIC(t) (10.1l)

and for i ∈ {2, 4, . . . , ns − 3, ns − 1} and t ∈ [0, T i] :

d

dt
xislow(t) = p1(1− xislow(t)) (10.1m)

d

dt
xifast(t) = p3(1− xifast(t)) (10.1n)

d

dt
xiFTI(t) = 0 (10.1o)

d

dt
xiTUT(t) = 0 (10.1p)

d

dt
xifatigue(t) = 0, (10.1q)

with CT being the total time and CTUT and CFTI the upper bounds on the to-
tal time-under-tension and the force-time integral. As described in Section 8.5,
hMVIC = xslowxfast describes the current maximum voluntary isometric contrac-
tion (MVIC) force. During odd numbered stages contractions with ulow ≤ uabs

are possible. Even numbered stages are considered rest periods. The duration T i

of each stage is being optimized. We develop specific versions of this general opti-
mal control problem in the following. If not mentioned otherwise, all sessions last
20 min, allow for nc = 25 possible contractions, and have no restrictions on FTI
or TUT. This implies CT = 1200 s, ns = 49 and neglecting Constraints (10.1e)
and (10.1f). Table 10.1 gives an overview of the symbols used in the problem
formulation.

10.2 Numerical solution via direct multiple shooting

As in Section 8.9, we need specialized methods to provide efficient and flexible
solutions for different trainees and training goals.

To solve the problems numerically, we employ a first-discretize-then-optimize
strategy. We use the optimal control software MUSCOD-II [Leineweber et al.,
2003a,b], which originates from the work of Bock and Plitt [1984] and implements
a direct multiple shooting approach. We employ four shooting nodes per stage and
use piecewise constant controls. This discretization reflects the training reality and
allows a direct interpretation of the solution for practitioners. Stage lengths are
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Table 10.1: Overview of symbols used in the multi-stage OC problem (10.1).

Symbol Interpretation
CT Total time
CFTI Upper bound on total FTI
CTUT Upper bound on total TUT
hiMVIC MVIC force
i Stage index
xiTUT Time-under-tension
xiFTI Force-time integral
xifatigue Accumulated fatigue

ns Number of stages
pj Parameters
Φ Objective functional
t Time
T i Stage duration
uiabs External force
ulow Lower bound on uabs

xifast State variable
xislow State variable

initialized to be 5 s for contractions and 45 s for rests. The control uabs is initialized
to 0.8 when applicable. Furthermore, to approximately fulfill uabs ≤ hMVIC on the
whole shooting interval and not only at the shooting node, we replace Constraint
(10.1l) by the two constraints

ulow ≤ uiabs(t) (10.2a)

and

uiabs(t) ≤ hiMVIC(t) +
T i

4

d

dt
hiMVIC(t). (10.2b)

The latter constraint includes a prediction of hMVIC at the end of the shooting
interval based on a linear extrapolation. We use a Runge-Kutta-Fehlberg integra-
tor of order 4 with an error estimator of order 5 for integration of the ordinary
differential equation (ODE) and sensitivity generation via internal numerical differ-
entiation [Bock, 1981]. Integration tolerance is set to 10−8. The necessary deriva-
tives of the model functions are provided by finite difference approximations. The
resulting nonlinear program (NLP) is then solved by a structure-exploiting trust-
region sequential quadratic programming method with limited memory Broyden-
Fletcher-Goldfarb-Shanno (BFGS) block updates of the Hessian. The termination
criterion is set to a Karush-Kuhn-Tucker (KKT) tolerance of 10−6.

Exemplarily, we give the dimensions of OC problem ’K’ treated below. With 50
model stages and 4 shooting intervals on each stage, the resulting structured NLP
has 1155 variables, 1001 equality constraints, and 2410 inequality constraints.
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10.3 Optimized scenarios

In the following, we develop specific versions of the general optimal control problem
(10.1) to model different real-life training sessions (labeled Session A to K). We
refer to Tables 10.2 and 10.3 for a concise overview.
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10.3 Optimized scenarios

10.3.1 FTI-based goals

Resistance training volume is an important determinant of long-term adaptations
[Fleck and Kraemer, 2014]. For isometric contractions, where no actual physi-
cal work is performed, the force-time integral is an often used analogue of work
[Rozand et al., 2015]. Thus, for Session A, we maximize the FTI accumulated
during an RT session without imposing restrictions on the contraction intensity,
i.e., Φ(x) = xFTI and ulow = 0.

To increase maximum strength, high loads are recommended by some researchers,
e.g., by the American College of Sports Medicine [2009]. Therefore, we compute
an RT session, which maximizes the FTI and ensures that the contraction inten-
sity is higher than a minimum threshold intensity. We examine how choosing a
minimum threshold intensity of 70 % and 90 % of baseline MVIC force influences
the solution. For Session B70%, we set Φ(x) = xFTI and ulow = 0.7. For Session
B90%, we set Φ(x) = xFTI and ulow = 0.9.

As an alternative to the full FTI maximized in Session A, one can use the FTI
accumulated above the minimum threshold intensity as an indicator of effective
training volume. For Session C, we thus set ulow = 0 and replace Equation (10.1i)
with

d

dt
xiFTI(t) = uiabs(t)− 0.8. (10.3)

A similar measure has been used by Burnley [2009] when examining work capacity
above critical torque.

For Session D, we examine the influence of the number of possible contractions on
Session B and compute the solution for nc ∈ {5, 6, . . . , 49, 50} possible contractions.
This allows to investigate if more but expectedly shorter contractions allow to
accumulate a higher FTI while ensuring a minimum threshold intensity of ulow =
0.8 and if the additional possible contractions are actually realized in the solution.

Instead of choosing a minimum threshold intensity, we can emphasize higher
loads by evaluating a weighting function on the integrand of the FTI. For demon-
stration purposes, we choose a quadratic weighting function for Session E. There-
fore, we set Φ(x) = xFTI and replace Equation (10.1i) with

d

dt
xiFTI(t) = (uiabs(t))

2. (10.4)

ulow is set to 0. A similar approach has been used by Arandjelović [2013b] to
describe the hypertrophy stimulus of a resistance training set, although he used
a sigmoid function, which can be interpreted as a smoothing of the constraint
ulow ≤ uabs used in Session B.

A similar weighting can be applied to Session C by replacing Equation (10.1i)
with

d

dt
xiFTI(t) = (uiabs(t)− 0.8)2 (10.5)

and setting the objective functional to Φ(x) = xFTI for Session F. In contrast
to Session C, ulow = 0.8 is necessary here, as otherwise uabs = 0 would be the
solution.
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Chapter 10 Optimizing loading schemes for different training goals

10.3.2 Fatigue-based goals

Effects of fatigue, e.g., metabolic stress or increased motor unit recruitment, have
been attributed to trigger and/or positively influence muscle hypertrophy [Schoen-
feld, 2010]. We examine which loading scheme maximizes fatigue, defined as
the accumulated loss of MVIC force over time. Thus, for Session G, we choose
Φ(x) = xfatigue and ulow = 0.

For Session H, we maximize fatigue while ensuring a minimum threshold inten-
sity of 80 % of baseline MVIC force. Therefore, we choose Φ(x) = xfatigue and
ulow = 0.8.

In contrast to maximizing fatigue, it might also be desired to accumulate a
certain amount of work while minimizing fatigue, e.g., during the tapering period
before a competition. For Session I, we exemplarily choose Φ(x) = −xfatigue and
CFTI = 150 s.

10.3.3 TUT-based goals

Several authors have examined time-under-tension as a determinant of acute re-
sponses and long-term adaptations to RT (e.g., Burd et al. [2012] or Schott et al.
[1995]). Therefore, for Session J, we maximize TUT while ensuring a minimum
threshold intensity by choosing Φ(x) = xTUT and ulow = 0.8.

Session J does not take into account the duration of the contractions used to
accumulate the total TUT. However, some author have reported different adapta-
tions to short and long duration contractions with greater hypertrophy occurring
after long duration contractions [Schott et al., 1995]. Thus, to weight the duration
of contractions quadratically, we replace Equation (10.1j) with

d

dt
xiTUT(t) =

{
0 if uiabs(t) = 0

t else
(10.6)

for Session K. All other settings are kept as in Session J.

10.4 Numerical results

10.4.1 FTI-based goals

Figures 10.1 to 10.11 illustrates the model response obtained by simulating Sessions
A to F. Figure 10.7 depicts the objective functional value in dependency of the
number of possible contractions. Figures 10.8 and 10.9 depict the durations of
contractions and rests in dependency of the number of possible contractions. For
all sessions, all 25 possible contractions are realized.
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Figure 10.1: Model response obtained by simulating the calibrated model for Ses-
sion A. The top row shows the model response and the absolute force
input is illustrated in the bottom row.
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Figure 10.2: Model response obtained by simulating the calibrated model for Ses-
sion B70%. The top row shows the model response and the absolute
force input is illustrated in the bottom row.
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Figure 10.3: Model response obtained by simulating the calibrated model for Ses-
sion B90%. The top row shows the model response and the absolute
force input is illustrated in the bottom row.
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Figure 10.4: Model response obtained by simulating the calibrated model for Ses-
sion C. The top row shows the model response and the absolute force
input is illustrated in the bottom row.
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Figure 10.5: Model response obtained by simulating the calibrated model for Ses-
sion D5. The top row shows the model response and the absolute
force input is illustrated in the bottom row.
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Figure 10.6: Model response obtained by simulating the calibrated model for Ses-
sion D50. The top row shows the model response and the absolute
force input is illustrated in the bottom row.

103



Chapter 10 Optimizing loading schemes for different training goals

5 10 15 20 25 30 35 40 45 50

80

100

120

140

number of possible contractions (1)

F
T
I
(
s
)

obj
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possible contractions increases the FTI of the computed solution.
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of possible contractions decreases the durations of contractions and
rests of the computed solution.
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Figure 10.9: Dependency of the durations of contractions (a) and rests (b) on
the number of possible contractions for Sessions D5 to D50. The
horizontal dashed lines illustrate the 1 s mark. Increasing the number
of possible contractions decreases the durations of contractions and
rests of the computed solution.
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Figure 10.10: Model response obtained by simulating the calibrated model for Ses-
sion E. The top row shows the model response and the absolute force
input is illustrated in the bottom row.
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Figure 10.11: Model response obtained by simulating the calibrated model for Ses-
sion F. The top row shows the model response and the absolute force
input is illustrated in the bottom row.
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10.4.2 Fatigue-based goals

Figures 10.12 to 10.14 illustrates the model response obtained by simulating Ses-
sions G to I.
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Figure 10.12: Model response obtained by simulating the calibrated model for Ses-
sion G. The top row shows the model response and the absolute force
input is illustrated in the bottom row.
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Figure 10.13: Model response obtained by simulating the calibrated model for Ses-
sion H. The top row shows the model response and the absolute force
input is illustrated in the bottom row.
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Figure 10.14: Model response obtained by simulating the calibrated model for Ses-
sion I. The top row shows the model response and the absolute force
input is illustrated in the bottom row.
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10.4.3 TUT-based goals

Figures 10.15 and 10.16 illustrate the model response obtained by simulating Ses-
sions J and K.
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Figure 10.15: Model response obtained by simulating the calibrated model for Ses-
sion J. The top row shows the model response and the absolute force
input is illustrated in the bottom row.
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Figure 10.16: Model response obtained by simulating the calibrated model for Ses-
sion K. The top row shows the model response and the absolute force
input is illustrated in the bottom row.

109



Chapter 10 Optimizing loading schemes for different training goals

10.4.4 Durations of contractions and rests

Table 10.4 contains the minimum, the maximum, and the mean durations of the
contractions and rests for all sessions plotted. To a certain extent, this allows to
examine the real-life feasibility of the computed sessions.

Table 10.4: Minimum, maximum, and mean durations of contractions δc and rests
δr for all sessions plotted. To a certain extent, this data allows to
examine the real-life feasibility of the computed sessions.

Session min(δc) max(δc) mean(δc) min(δr) max(δr) mean(δr)
A 19.21 465.46 60.54 1.96 8.76 6.49
B70% 6.24 33.28 11.41 28.63 45.64 38.11
B90% 1.62 9.13 3.04 33.02 56.96 46.83
C 3.71 6.06 4.11 28.90 51.81 45.72
D5 14.94 20.00 17.14 184.96 376.31 278.57
D50 1.70 20.00 3.67 14.38 25.36 20.75
E 16.10 62.36 26.06 7.15 25.63 22.86
F 3.08 6.54 3.52 39.36 73.22 59.45
G 1200.00 1200.00 1200.00 0.00 0.00 0.00
H 4.30 21.76 6.97 20.57 54.54 42.74
I 6.51 12.05 7.25 30.09 48.14 42.45
J 3.69 21.76 6.99 30.57 51.91 42.72
K 5.81 21.76 12.01 42.10 126.68 95.97

10.5 Discussion

10.5.1 Choice of training goals

In general, a model-based approach is limited by the predictive capability of the
employed model and the available numerical solution methods. To enable a practi-
cally feasible approach, the proposed model offers a phenomenological description
of muscular fatigue for different loading schemes. For this reason, we use optimal-
ity criteria for loading schemes identified in sports science to formulate the optimal
control problems.

The three key performance indicators (KPIs) force-time integral, time-under-
tension, and loss of MVIC force can readily be used in the optimal control problem
formulations. Furthermore, we employ variants of these three KPIs to demonstrate
how even slight modifications can change the structure of the solution. This high-
lights how important it is for exercise physiologists and sports scientists to identify
the correct driving stimuli for adaptations in order to design optimized resistance
training (RT) programs. Suitable physiological models would allow a more thor-
ough search, e.g., by incorporating the build up of metabolites as hydrogen ions
and inorganic phosphate or by describing the activation of different fiber types.
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10.5 Discussion

10.5.2 Structure of the computed RT sessions

While the resulting differences between the solutions might seem small at first,
one should keep in mind that these differences accumulate during the course of an
RT plan over weeks and months.

The results of Session D favor a higher number of contractions to accumulate
more force-time integral in this scenario. This is in line with the solutions of most
other sessions, in which all 25 possible contractions are realized. However, this is
not the case for the solutions of Sessions A, F, G, and K. The results of Session
A illustrate that the inclusion of rests is not beneficial during the beginning and
the end of the session for this setting. To enable high contraction intensities,
the solution of Session F consists of only 20 contractions. This is due to the
fact that we weight the contraction intensities proportionally more than in the
solution of Session C, where all 25 contractions are realized. The solution of
Session G describes a sustained MVIC effort, which is caused by choosing the
accumulated loss of MVIC force as training goal. The solution of Session K only
realizes 12 contractions in order to enable longer contraction durations compared to
the solution of Session J. This can be verified by comparing the mean contractions
duration of Session J and K, i.e., 6.99 s and 12.01 s (see Table 10.4).

Except for the solutions of Sessions H, J, and K, all solutions consist exclusively
of MVIC efforts. This was unexpected, as we anticipated that submaximal contrac-
tions might allow a greater accumulation of training volume due to them inducing
less fatigue. It would be interesting to examine if such a behavior also occurs for
dynamic constant external RT. The solution of Session H exhibits an interesting
behavior as the inclusion of a minimum threshold intensity now favors submaximal
contractions compared to the MVIC efforts of the solution of Session G. This is
possibly caused by the longer contraction durations, which then contribute more
to the accumulated fatigue. Session I exhibits the same behavior as the MVIC
efforts reduce the time necessary to accumulate the desired FTI. The same holds
for the solutions of Sessions J and K, where the submaximal contractions allow a
greater time-under-tension. The submaximal contractions are all held until failure.
In case this is not desired, this could be included into the optimization problem
as a constraint. If a minimum threshold intensity was chosen, the MVIC efforts
are held until this intensity is reached (see in particular Session B). Sessions C
and F differ. Here, the contractions are terminated earlier as contractions with
the minimum threshold intensity do not contribute to the chosen training goal.
Session E demonstrates how a focus can be set on higher contraction durations
without the use of a minimum threshold intensity.

A remark from a mathematical point of view: For all sessions, constraints limit
the feasible region of the optimization problems and a large number of these con-
straints is active in the solutions, e.g., maximum or minimum contraction inten-
sities are attained, which is expected in an optimal control context. All chosen
constraints are solely physiologically motivated – no artificial constraints have been
introduced. However, due to the discretization of the constraints within the mul-
tiple shooting approach, the algorithm only guarantees that the constraints are
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met at the shooting nodes. In case of constraint violations between the shooting
grid points, the grid can be refined easily to meet the requirements.

As already noticed during the model development, the grouping of repetitions
into sets is not supported by our results. Instead, the contractions are spread more
evenly over the whole time horizon to allow a greater accumulation of training
volume, i.e., force-time integral. This is a similar approach to variants of so-
called cluster sets [Tufano et al., 2017], which allow to increase training volume
by breaking up the traditional set-repetition structure. Here, the algorithmic
optimization of durations of contractions and rests provides a clear advantage
over intuitive planning.

10.5.3 Real-life feasibility of the computed RT sessions

To ensure the real-life feasibility of the computed RT sessions, several aspects have
to be taken into account. First, the duration of the contractions should not be too
short, as the trainees need time to develop MVIC force. Second, the duration of
the submaximal contractions should not be too long, as the concept of task failure
or limited work capacity is currently not implemented into the model. Third,
the rest periods between submaximal contractions should not be too short, as the
model also does not account for a regeneration of work capacity.

Kawakami et al. [2000] examined 100 intermittent MVIC efforts lasting 1 s
followed by 1 s rest of the triceps surae muscles and reported no problems in
executing this task. Table 10.4 and Figures 10.8 and 10.9 show that our solutions
do not propose durations shorter than 1 s for contractions and rests. Although
a different muscle group was used in the study of Kawakami et al. [2000], their
data demonstrates that such short intermittent contractions might be possible in
general.

Yoon et al. [2007] examined endurance times for sustained isometric contractions
of the elbow flexors at 90 degrees joint angle and at 80 % of MVIC force. Although
the experimental setup differed slightly compared to that of the experiments used
for the model validation (forearm horizontal versus forearm vertical to the ground),
the mean endurance times of 25.0 s for men and 24.3 s for women are consistent
with the maximum duration of 21.76 s of our solutions for Sessions H, J, and
K (see Table 10.4). To the best of our knowledge, no prediction of endurance
time or work capacity exists for MVIC efforts. Caffier et al. [1992], for example,
examined MVIC efforts of several muscle groups lasting 10 min and reported no
task failure among the subjects. Thus, it remains to be validated experimentally
if the solutions of Session A, E, and G, which contain sustained MVIC efforts of
long durations, can be realized in practice.

Although several authors have examined the recovery of endurance times (see,
for example, the work of Stull and Kearney [1978] or Kroon and Naeije [1991])
and work capacity (see, for example, the review by [Jones and Vanhatalo, 2017]),
to the best of our knowledge, no model of their time course exists that fulfills
the prerequisites postulated for use in an optimization context. Furthermore, we
are not aware of any experimental data that rejects the feasibility of the solutions
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of Sessions H, J, and K due to too short rests. If this should be the case, lower
bounds on the durations of the rests could be incorporated into the optimal control
problem.

10.6 Limitations and future work

In the following, we discuss limitations of our work and motivate several directions
of future research.

As no fully suitable mathematical model for the more commonly used dynamic
constant external resistance (DCER) training is available, we are optimizing iso-
metric RT sessions. Research shows that the transfer from isometric RT to dy-
namic performance is questionable [Oranchuk et al., 2019]. Therefore, we discour-
age direct transfer of our findings to DCER or other forms of training. However,
an extension of our approach to DCER training is straightforward once suitable
models become available. The same holds true for extensions to other indicators of
muscle fatigue (e.g., power, contraction velocity, or muscular endurance), multiple
exercises, or long-term planning.

Moreover, we are using parameters obtained from the elbow flexors, as so far
those are the only ones available. For this reason, a comparison between muscle
groups or subjects is not possible at the moment. It would be intriguing to calibrate
the model to different muscle groups and subjects and then examine how the
resulting parameters affect the optimized RT sessions. Lievens et al. [2020], for
example, after analyzing fatigue and recovery patterns of MVIC torque of the knee
extensors, conclude that individualizing training might be important to optimize
performance. The authors used proton magnetic resonance spectroscopy to analyze
muscle fiber typology of the gastrocnemius and then classify the subjects into a
slow- and a fast-twitch group for which they expected different patterns. With
a model-based approach, this classification could be formulated as a parameter
estimation problem for which the necessary force measurements could be obtained
in a single testing session. Afterwards, RT sessions could be optimized individually
as proposed in this work.

Since we are using local optimization methods, modified initial guesses do not
necessarily lead to identical results. Vanishing stages in the employed multi-stage
formulation could lead to redundant discretized controls. Thus, the computed
solutions are neither globally optimal nor unique. However, considering the fact
that globally optimal solutions cannot be efficiently computed for problems of
this type, starting from an initial (e.g., empirically derived) training design, the
employed method generates an improved design that is locally optimal.

Last, we acknowledge that the model is validated with data from laboratory
studies. Thus, we face the same problems as the original studies: the transfer
from the laboratory to real-life RT needs to be verified experimentally. To this
end, we outline two potential experimental setups in the following, which could be
conducted together with interested practitioners from the sports sciences.

The first experiment is designed to verify if our model-based approach allows
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to achieve a better objective functional value compared to an intuitive approach.
For illustrative purposes, we choose Session B, which maximizes the FTI while
ensuring a minimum threshold intensity using 25 contractions within 20 min. After
the trainees have familiarized themselves with the dynamometer, a testing session
is conducted to individually calibrate the model to the trainees’ elbow flexors and
obtain reliable parameter estimates [Herold and Sommer, 2020a]. After sufficient
rest, the trainees are asked to intuitively perform a session, which they think to be
optimal for the given task. An optimized session is then computed for each trainee
and after resting sufficiently again, the trainees are asked to perform the optimized
session. This order is chosen to prevent any learning effects. Afterwards, the data
of the two sessions is analyzed and the objective functional values are compared.
Furthermore, the real-life feasibility of the optimized sessions can be evaluated by
computing the deviations of prescribed force and actual force.

After a successful first experiment, a second one could be conducted to examine
whether the chosen objective functional is beneficial for our training goal. How-
ever, this can only be done in comparison to another objective functional. For
illustrative purposes, we compare Sessions B70% and B90% with regard to increas-
ing maximum strength. To this end, trainees with the same level of RT experience
are randomly assigned to three groups – a control group, a group following opti-
mized training protocols for Session B70%, and a group following optimized training
protocols for Session B90%. At the beginning of the experiment, an MVIC force
test is conducted. This test is repeated at the end of the experiment and the
results are analyzed. We emphasize that in this work the sessions are optimized
independently of each other. Therefore, long-term planning has to be determined
by the experimenters. Nutrition and recovery should be adequate and comparable
among the trainees. If desired, the model parameters and the optimized sessions
could be updated at any desired point in time.

10.7 Conclusion

In this work, we demonstrate that a mathematical model-based approach could
provide valuable impulses for practitioners and complement the predominant man-
ual program design of loading schemes for RT. Although, the differences in the
optimized sessions might seem small, one should keep in mind that those accumu-
late during the course of an RT plan over weeks and months.

With our approach, training protocols – either motivated by current practice
or of a more exploratory and unconventional nature – could be examined at a
large scale via forward simulations of the model. The flexible formulation of dif-
ferent training goals in terms of adjusted objective functions allows to evaluate the
performance of training sessions in silico. Thus, training recommendations can be
analyzed and rated w.r.t. their justification and efficiency without the tremendous
testing efforts in actual trials.

As our approach is independent of the underlying model, we encourage re-
searchers to develop and validate models, which are suitable for optimization and
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which connect the training input of different RT types directly to training goals
such as increasing strength and power, hypertrophy, or increasing local muscular
endurance. This would extend the possibilities to set up the optimization prob-
lems and might furthermore help to identify the driving mechanisms for long-term
adaptations. Then, we could exploit the full potential of our approach.

In addition to a large variety of application areas, e.g., biomechanical movement
analysis or the design of sports equipment, our work underlines and demonstrates
the enormous potential of quantitative mathematics to analyze and improve sports
activities.
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Chapter 11

Mathematical model-based estimation of critical
torques

In this chapter, we present how the proposed model can be used to determine sports
scientific key performance indicators at the example of critical torque (CT). In the
first section, we give a definition of critical power (CP) and CT. In the second
section, we formulate the estimation of CT as a nonlinear program. In the third
section, we present our results. In the fourth section, we discuss our results. In
the fifth section, we mention limitations and future work. In the sixth section, we
draw conclusions for this chapter.

Remark. We emphasize that substantial parts of Herold and Sommer [2020a]
have been incorporated into this chapter either with only slight changes or without
any changes.

11.1 Critical power and critical torque

The power-endurance relationship of a constant power task can be described
[Monod and Scherrer, 1965] by

Tlim =
W ′

P − Pc
(11.1)

or equivalently by

P =
W ′

Tlim
+ Pc, (11.2)

where Tlim describes the endurance time of a task conducted at constant power P ,
W ′ describes the curvature constant, and Pc, the pole/asymptote of the function,
is called CP. This relation is illustrated schematically in Figure 11.1. CP can be
interpreted as the maximum power output at which a metabolic steady state can
be obtained [Jones et al., 2019]. It constitutes an important fatigue threshold in
exercise physiology and can be used to analyze, predict, or optimize performance
[Craig et al., 2019]. Therefore, a reliable and economical estimation is of benefit
for athletes, coaches, and exercise physiologists. Its equivalent for isometric or
dynamic muscle contractions is the so-called CT, which we examine in this work.

Critical torque and the curvature constant W ′ are usually estimated from mul-
tiple submaximal constant torque tests to task failure spread over several days.
Burnley et al. [2012], for example, used five trials to determine critical torque of
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Figure 11.1: Schematic illustration of the power-endurance relationship of constant
power tasks (11.2). The curvature of this relationship is determined
by W ′ and its asymptote by Pc. The power that can be sustained for
time Tlim can be obtained through P = W ′/Tlim + Pc.

the knee extensors. For intermittent contractions, CT furthermore depends on the
work-rest ratio of the periodic loading scheme [Broxterman et al., 2014; Jones and
Vanhatalo, 2017], which is commonly quantified by the so-called duty cycle. Thus,
several CTs need to be estimated for an exercise to obtain a detailed description
of the subject. This increases the experimental effort even further.

To reduce the experimental effort, all-out tests have been suggested. Burnley
[2009] examined 5 min of maximum intermittent isometric contractions to deter-
mine critical torque of the knee extensors and showed that end-torque of these tests
closely approximates CT. All-out tests have also been used for other exercises, e.g.,
for plantar flexion [Abdalla et al., 2018] or for handgrip exercise [Kellawan and
Tschakovsky, 2014]. However, some authors have reported a possible overesti-
mation of CP by the equivalent 3-min all-out test [Muniz-Pumares et al., 2018],
which suggests that all-out tests might not be suitable for all subjects or might
need to be adapted individually. Kellawan and Tschakovsky [2014], for example,
used intermittent isometric contractions lasting 1 s with 2 s rest for 10 min, as
they anticipated a longer time to plateau for their experimental setup.

11.2 A nonlinear program formulation of critical torque

Table 11.1 contains an overview of the simulation scenarios used in this chapter.

We compute the highest sustainable torque output of the elbow flexors by solving
the nonlinear program

max
uabs,xslow,xfast

uabs (11.3a)

s.t. 0 = p1(1− xslow)− p2uabs (11.3b)

0 = p3(1− uabs)
p4(1− xfast)− p5uabs (11.3c)
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11.2 A nonlinear program formulation of critical torque

Table 11.1: Overview of simulation scenarios used in this chapter.

Scenario Explanation
IC Intermittent contractions lasting 3 s with 2 s rest
ICmax Intermittent MVIC efforts lasting 3 s with 2 s rest
IC80 Intermittent contractions at 80 % of critical torque lasting 3 s with

2 s rest
IC120 Intermittent contractions at 120 % of critical torque lasting 3 s

with 2 s rest
SC Sustained contraction
SCmax Sustained MVIC effort

uabs ≤ xslowxfast = hMVIC (11.3d)

0 ≤ uabs, xslow, xfast ≤ 1. (11.3e)

Here, we briefly abuse notation and let uabs, xslow, and xfast denote real numbers in
order to obtain the corresponding values of these functions when critical torque is
reached. Constraints (11.3b) and (11.3c) ensure that maximum voluntary isomet-
ric contraction (MVIC) torque does not change further and Constraints (11.3d)
and (11.3e) ensure that the input and the states are feasible.

Exemplarily, we solve the nonlinear program (11.3) for a sustained contraction
(Scenario SC) and for intermittent contractions lasting 3 s with 2 s rest (Scenario
IC) as conducted by Burnley [2009] for the knee extensors. For Scenario IC, we
use

0 = 3(p1(1− xslow)− p2uabs) + 2(p1(1− xslow)) (11.4a)

0 = 3(p3(1− uabs)
p4(1− xfast)− p5uabs) + 2(p3(1− xfast)) (11.4b)

instead of Constraints (11.3b) and (11.3c). This choice approximates that during
one contraction-rest cycle MVIC torque does not change further. The nonlinear
program is solved numerically the sequential least-squares programming algorithm
by Kraft [1988] provided in SciPy 1.2.1 [Virtanen et al., 2020].

We verify our results by simulating the model for a sustained MVIC effort
(Scenario SCmax) and intermittent MVIC efforts lasting 3 s with 2 s rest (Scenario
ICmax) until a plateau of MVIC torque is reached. These simulations correspond
to all-out tests proposed by Burnley [2009]. Thus, the end-test torques provide
estimates of CTs. To terminate our simulations during Scenario SCmax because a
plateau is reached, we demand | d

dtxslow| ≤ 10−6 and | d
dtxfast| ≤ 10−6. To terminate

our simulations during Scenario ICmax because a plateau is reached, we demand
that the torque at the beginning of two adjacent contractions does not differ more
than 10−6. These thresholds are low enough to ensure that a steady state has
been obtained, but do not require excessive computation times. Afterwards, we
compare the computed steady states to the end-test torques of simulated 5-min
all-out tests for both scenarios.
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To illustrate that the thus determined steady states separate domains of con-
traction intensity, we recreate the experimental setting of Burnley et al. [2012] for
the elbow flexors. We simulate intermittent contractions lasting 3 s with 2 s rest at
80 % (Scenario IC80) and at 120 % (Scenario IC120) of the previously determined
critical torque on a time horizon of 60 min or until MVIC torque drops below
target torque.

Finally, to demonstrate the full potential of our approach, we compute the high-
est sustainable torque output of the elbow flexors for intermittent contractions de-
pending on the duty cycle. The duty cycle is defined as the ratio tc/(tc+tr), where
tc denotes the duration of a contraction and tr denotes the inter-repetition rest.
Therefore, we solve the nonlinear program (11.3) for 100 duty cycles distributed
uniformly in [0, 1] and plot the results.

11.3 Numerical results

For Scenario SC, our model-based estimation of CT yields 27.99 % of baseline
MVIC torque. For Scenario IC, the solution is 41.01 % of baseline MVIC torque.

Figures 11.2 and 11.3 show the model response obtained by simulating Scenarios
SCmax and ICmax for 5 min. For both scenarios, a steady state according to our
definition in the previous section is not obtained after 5 min. End-test torques
are 32.59 % of baseline MVIC torque for the sustained contraction and 54.72 % of
baseline MVIC torque for the intermittent contractions. Simulating the scenarios
on a time horizon of 60 min results in steady states. The sustained contraction
levels off at 28.01 % of baseline MVIC torque. The intermittent contractions level
off at 40.89 % of baseline MVIC torque. Both solutions are similar to the results
obtained by solving the optimization problem 11.3. To illustrate the discrepancy
to the end-test torques obtained by the 5-min all-out test, these steady states are
depicted as dash-dotted lines in Figures 11.2 and 11.3.

Figures 11.4 and 11.5 show the model response obtained by simulating Scenarios
IC80 and IC120. During Scenario IC80, MVIC torque approaches a steady state
above the target torque at 52.60 % of baseline MVIC torque. During Scenario
IC120, MVIC torque falls below target torque at t = 773 s.

Figure 11.6 depicts the highest sustainable torque output of the elbow flexors
for intermittent contractions depending on the duty cycle.
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Figure 11.2: Model response obtained by simulating Scenario SCmax for 5 min.
The bottom row illustrates the relative torque input. The dash-dotted
lines represent the steady states obtained by simulating the scenario
until a plateau of MVIC torque is reached.
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Figure 11.3: Model response obtained by simulating Scenario ICmax for 5 min.
The bottom row illustrates the relative torque input. The dash-dotted
lines represent the steady states obtained by simulating the scenario
until a plateau of MVIC torque is reached.

121



Chapter 11 Mathematical model-based estimation of critical torques

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0.4

0.6

0.8

1

time (s)

n
o
r
m

a
li
z
e
d

v
a
lu

e
(
1
)

xslow
xfast

hMVIC

Figure 11.4: Model response obtained by simulating Scenario IC80 for 60 min.
The dash-dotted lines represent the target torques of the intermittent
contractions. The torque input has been omitted for this plot as
due to the high number of intermittent contractions the plot would
become illegible.
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Figure 11.5: Model response obtained by simulating Scenario IC120 until MVIC
torque drops below target torque. The dash-dotted lines represent the
target torques of the intermittent contractions. The torque input has
been omitted for this plot as due to the high number of intermittent
contractions the plot would become illegible.
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Figure 11.6: Highest sustainable torque output of the elbow flexors for intermittent
contractions depending on the duty cycle. The duty cycle denotes the
ratio tc/(tc + tr), where tc denotes the duration of a contraction and
tr denotes the inter-repetition rest.
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11.4 Discussion

Our results show that our approach yields similar estimates for CTs as the all-
out tests proposed by Burnley [2009], if those are conducted for a sufficiently long
duration. On the one hand, this verifies our model-based approach from a practical
point of view. On the other hand, this augments the theoretical justification of the
all-out tests, as the optimization problem 11.3 arises purely from the definition of
CT as the highest sustainable torque output.

Using the experimental setup of Burnley et al. [2012], we can illustrate that the
determined steady states indeed separate domains of contraction intensity. This is
remarkable, as the concept of critical torque was not specifically implemented into
the model but rather emerges naturally. These results underline the importance
of critical torque as an important fatigue threshold in exercise physiology.

Our results also show that the durations needed to actually attain a steady state
for the elbow flexors are longer than the 5 min proposed by Burnley [2009] for the
knee extensors. Yet, durations of 60 min can not be used in real experiments.
Therefore, to a certain degree, an overestimation of critical torque is probable
when using all-out tests. This is in line with other authors who found that the
equivalent 3-min all-out tests might overestimate critical power [Muniz-Pumares
et al., 2018]. In our simulations, this overestimation is more pronounced for the
intermittent contractions than for the sustained contraction. Thus, we propose
that the durations of all-out tests are adjusted to the subject and the exercise if
conventional methods for the estimation of critical torque are used. However, we
emphasize that these adjustments are not necessary when using our model-based
approach.

Previous studies have shown the knee extensors to be more fatigable than the
elbow flexors. For examples, we refer to Vernillo et al. [2017] for a comparison
of MVIC efforts and to Frey-Law and Avin [2010] for an analysis of endurance
times. Our results are consistent with these findings, as the estimated critical
torques of the elbow flexors are higher than the corresponding ones for the knee
extensors. Burnley et al. [2012], for example, report a mean critical torque of
the knee extensors of 34 % of baseline MVIC torque for intermittent isometric
contractions lastings 3 s with 2 s rest. For the same contraction scheme, our
computations yield a critical torque of 41 % of baseline MVIC torque for the
elbow flexors. Moreover, Hendrix et al. [2009a] give a mean critical torque of
17.6 % of baseline MVIC torque for sustained contractions of the knee extensors.
For the same contraction scheme, our computations yield a critical torque of 28 %
of baseline MVIC torque for the elbow flexors.

Different experimental conditions (e.g., joint angles) complicate a straightfor-
ward comparison of our results to other studies examining critical torques of the
elbow flexors. Furthermore, deducing a clear trend from the considered studies
proves to be challenging. Hendrix et al. [2009b], for instance, report a mean crit-
ical torque of 17.6 % of baseline MVIC torque for sustained contractions of the
elbow flexors, compared to a mean value of 26.3 % by Hendrix et al. [2010]. In
contrast, for a continuous isometric contraction of the elbow flexors that can be
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sustained for 60 min, Hagberg [1981] gives a mean contraction intensity of only
8.2 % of baseline MVIC torque and Sato et al. [1984] give only 10.3 % of baseline
MVIC torque. For intermittent isometric contractions lasting 2 s with 2 s rest that
can be sustained for 60 min, Hagberg [1981] reports a mean value of 25.1 % of
baseline MVIC torque. The high variability of reported values points out the need
for further research, as it is unclear whether those result from inter-individual or
from methodological differences.

11.5 Limitations and future work

In the following, we discuss limitations of our work and motivate several directions
of future research.

First, we do not formally prove that the solutions of the optimization problem
(11.3) are approached and obtained during an all-out test for all periodic loading
schemes and parameter values, as this is beyond the scope of this work. Rather
this has to be ensured individually, as we did for the two scenarios examined here.

Second, we can not provide an estimate of the curvature parameter W ′. The
intuitive connection to impulse above end-test torque could not be verified by
Burnley [2009]. Thus, at the moment, if an estimate of W ′ is desired, conventional
submaximal constant power tests to failure have to be employed.

Third, due to the phenomenological nature of the model it does not provide
insight into the metabolic or systemic profile of the subject and the tested mus-
cles. Therefore, it remains to be examined experimentally which mechanisms are
responsible for the model calibrated to the elbow flexors reaching its steady state
later than the knee extensors examined by Burnley [2009].

Fourth, the model is currently limited to isometric contractions only. It would
be interesting to see if a similar steady state behavior emerges naturally after the
model has been extended to isokinetic contractions or contractions with dynamic
constant external resistance. Thus, incorporating a velocity-dependency into the
model could save additional experimental effort when dealing with these contrac-
tions. Morel et al. [2019], for example, showed that the asymptote of MVIC torque
during an isokinetic all-out test depends on the contraction velocity. Intriguingly,
during all-out tests, the time course of power bears strong resemblance with the
time course of torque (see, for example, Figure 1 in Vanhatalo et al. [2007]). This
might indicate a possible application of the model in power-measured exercises.
Eriksson et al. [2016] already demonstrated that a model-based approach is also
feasible for whole-body exercise. The authors developed a mathematical model of
fatigue during whole-body exercise and qualitatively showed that their model can
be used to determine critical power.

Last, we only consider unfatigued muscles. Yet, it is also possible to use our
approach for prefatigued muscles by treating the initial values x0 as additional
parameters during the parameter estimation. Then, studies investigating the in-
fluence of fatigue on CT similar to those of Vanhatalo and Jones [2009] or Clark
et al. [2018] are possible. This might provide further understanding and quantifi-
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cation of the interaction of fatigue and fatigability.

11.6 Conclusion

We are able to estimate CTs for sustained and intermittent isometric contrac-
tions with a model-based approach in a single testing session. This reduces the
experimental effort considerably compared to conventional testing.
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Optimizing testing sessions for model calibration

In this chapter, we compute optimized testing sessions to reduce the experimental
effort when calibrating the proposed model. In the first section, we describe the
experimental setting. In the second section, we formulate the corresponding opti-
mum experimental design (OED) problems. In the third section, we discuss their
numerical solution. In the fourth section, we describe the simulated scenarios. In
the fifth section, we present our results. In the sixth section, we discuss our results.
In the seventh section, we give conclusions for this chapter.

Remark. We emphasize that substantial parts of Herold and Sommer [2020a]
have been incorporated into this chapter either with only slight changes or without
any changes.

12.1 Experimental setting

Allen et al. [1995] report a mean empirical coefficient of variation of 3.78 % for
individual 2 – 3 s maximum voluntary isometric contraction (MVIC) torque mea-
surements of the elbow flexors in the unfatigued state. The experimental setup
was similar to that used for the model development. To account for the increased
torque variability observed during fatigue [Contessa et al., 2009], we use this value
as absolute standard deviation of the measurement errors. The measurement er-
ror ε of a 2 s MVIC relative torque measurement is thus assumed to be additive,
independent, and identically normally distributed with mean zero and standard
deviation σ2s = 0.0378. The subscript denotes the duration of the contraction.

State of the art force transducers can provide high frequency measurement data.
Hence, we may assume that measurements of MVIC torque can be obtained con-
tinuously if the subject can accurately estimate the applied torque uabs in relation
to its current torque capacity hMVIC, i.e., if the subject can accurately estimate

urel(t) =
uabs(t)

hMVIC(t)
. (12.1)

This yields the measurement function

h(t) = urel(t)hMVIC(t). (12.2)

However, estimating urel for submaximal contractions is a challenging task [Ban-
ister, 1979], which is additionally influenced by fatigue [Jones and Hunter, 1983].
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Therefore, we increase the standard deviation of measurements taken at submax-
imal contractions according to

σ(t) = σ2s(2− urel(t)). (12.3)

For maximum contractions (urel = 1), we again obtain the uncertainty observed
by Allen et al. [1995].

To allow a numerical treatment of the continuous measurements [Janka, 2015],
we choose a sufficiently fine measurement grid (tj)j∈{1,...,nm} and approximate the
corresponding discretized standard deviations by

σj = σ2s(2− urel(tj))

√
2

∆tj
, j ∈ {1, . . . , nm}. (12.4)

Here, ∆tj denotes the duration of the measurement following the grid point tj .

The weighting
√

2
∆tj

is necessary to take into account the coarseness of the mea-

surement grid. For example, doubling ∆tj would then correspond to weighting the
measurement taken at tj twice. This furthermore allows us to treat measurements
of any duration.

Moreover, we introduce a measure of the total time-under-tension (TUT)

ITUT(t) =

∫ t

0

{
0 if urel(τ) = 0

1 else
dτ (12.5)

to allow a fair comparison between different loading schemes. If we verify urel ∈
{0, 1} for our solutions, we can use

ITUT(t) =

∫ t

0

urel(τ)dτ (12.6)

as an equivalent measure.

12.2 Multi-stage optimum experimental design problems

We use a multi-stage formulation on ns ≥ 2 stages – denoted by superscripts
i ∈ {1, . . . , ns} – to model the loading schemes. We define

J =


J1

1

J1
2

. . .
J2

1

J2
2

. . .

 ∈ Rnm×np , (12.7a)

with nm =
∑ns

i=1 n
i
m and

J i
j =

1

σi
j

(
∂hi

∂xi
xip(tij) +

∂hi

∂p
(tij)

)∣∣∣∣
p=p̂

∈ Rnp , (12.7b)
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where the sensitivities of the model states w.r.t. the parameters are denoted by

Gi
p(t) = dxi

dp (t) and the measurement times on stage i are denoted by tij . To track

TUT, we introduce an additional state ITUT defined as in Equation (12.5). The
multi-stage OED problem can then be formulated as

min
xi(·),Gi

p(·),Ii
TUT(·)

ui
rel(·),T

i

1

5
tr((J>J)−1) (12.7c)

s.t. 0.01 s ≤ T i for i ∈ {1, . . . , ns} (12.7d)
ns∑
i=1

T i ≤ CT (12.7e)

Ins

TUT(Tns) ≤ CTUT (12.7f)

x0(0) = (1, 1)> (12.7g)

G0
p(0) = (0, 0)> (12.7h)

I0
TUT(0) = 0 (12.7i)

and for i ∈ {2, . . . , ns} :

xi(0) = xi−1(T i−1) (12.7j)

Gi
p(0) = Gi−1

p (T i−1) (12.7k)

IiTUT(0) = Ii−1
TUT(T i−1) (12.7l)

and for i ∈ {1, 3, . . . , ns − 2, ns} and t ∈ [0, T i] :

d

dt
xi(t) = frel(x

i(t), uirel(t), p) (12.7m)

d

dt
Gi

p(t) =
∂frel

∂xi
Gi

p(t) +
∂frel

∂p
(12.7n)

d

dt
IiTUT(t) = uirel(t) (12.7o)

0 ≤ uirel(t) ≤ 1 (12.7p)

and for i ∈ {2, 4, . . . , ns − 3, ns − 1} and t ∈ [0, T i] :

d

dt
xi(t) = frel(x

i(t), 0, p) (12.7q)

d

dt
Gi

p(t) =
∂frel

∂xi
Gi

p(t) +
∂frel

∂p
(12.7r)

d

dt
IiTUT(t) = 0, (12.7s)

with CT being the upper bound on the sum of all stage durations T i and CTUT

being the upper bound on the sum of all stage-wise TUTs. The lower bounds on
the stage durations T i (12.7d) are necessary to avoid a division by zero in Equation
(12.4), as the stage durations are being optimized. As described in Section 8.5,
hMVIC = xslowxfast describes the current MVIC torque and frel denotes the right-

129
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hand side of the chosen model stage. Minimizing the trace of (J>J)−1 corresponds
to minimizing the average variance of the parameter estimates [Pukelsheim, 1993].
To weight the parameters equally, we scale all parameters to 1 beforehand. Table
12.1 gives an overview of the symbols used in the problem formulation.

Table 12.1: Overview of symbols used in OED problem (12.7).

Symbol Interpretation
CT Upper bound on total time
CTUT Upper bound on total TUT
frel Right-hand side of ODE system
Gi

p Sensitivities of states
hi Measurement function
hiMVIC MVIC torque
i Stage index
IiTUT Time-under-tension
J i Jacobian
ns Number of stages
p Parameters
p̂ Current parameter guess
σi
j Standard deviation of measurement error
t Time
T i Stage duration
tij Measurement time
tr Trace of matrix
uirel External torque relative to current MVIC torque
xi State variables

12.3 Numerical solution via direct single shooting

As in Sections 8.9 and 10.2, we need specialized methods to provide efficient and
flexible solutions for different trainees with individual features.

To solve the problem, we employ a first-discretize-then-optimize strategy. We
use a direct single shooting approach to reduce the problem to a finite-dimensional
form. We use piecewise constant controls, as this discretization reflects the training
reality and allows a direct interpretation of the solution for practitioners. We use
100 measurements per stage. We employ DAESOL [Bauer, 1999] for integration
of the ordinary differential equation system (ODE) and sensitivity generation via
internal numerical differentiation [Bock, 1981]. Relative and absolute integration
tolerances are set to 10−8 and 10−7. Maximum order is set to 6. Maximum step
size is set to 1. The necessary derivatives of the model functions are computed
via automatic differentiation with ADIFOR [Bischof et al., 1998]. The resulting
nonlinear program is then solved with the line search sequential quadratic program-
ming method SNOPT [Gill et al., 2005]. Major optimality tolerance for SNOPT is
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12.4 Optimized scenarios

set to 10−6. The intuitive testing session is used as initial guess. We use the soft-
ware package VPLAN [Körkel, 2002] to carry out all steps. Several reformulations
are necessary to fit the multi-stage setting into the VPLAN framework.

Exemplarily, we give the dimensions of OED problem ’OTS200’ treated below.
Several reformulations are necessary, which yield 2 control functions discretized
on 21 control intervals. On 11 of these intervals 100 discrete measurements are
used to approximate the continuous data acquisition. The resulting nonlinear
program (NLP) has 1142 nonlinear variables, 2 nonlinear constraints, and 1101
linear constraints.

12.4 Optimized scenarios

To illustrate the benefits of OED, we compare the uncertainties of the parame-
ters resulting from an intuitive testing session (Scenario ITS) with those resulting
from algorithmically designed optimized testing sessions (Scenarios OTS200 and
OTS400). Scenario ITS consists of a 3 min MVIC effort followed by 2 s MVIC
efforts at 10 s, 30 s, 1 min, 2 min, 5 min, 10 min, 15 min, 20 min, 25 min, and
30 min after cessation of the sustained MVIC effort to check the time course of re-
covery. Thus, it lasts 1982 s in total, of which 200 s are TUT. This loading scheme
is motivated by comparable sessions conducted to examine fatigue and recovery of
skeletal muscle [Gandevia et al., 1996; Søgaard et al., 2006].

The optimized sessions are computed as described above with Scenario ITS
as initial guess. For Scenario OTS200, to allow a fair comparison, we limit the
maximum number of contractions to 11 (which implies ns = 21), the total time to
CT = 1982 s, and the time-under-tension to CTUT = 200 s as in the intuitive testing
session. On each odd numbered model stage, we use constant controls and employ
nim = 100 discrete measurements to approximate the continuous measurements
of the force transducer. Even numbered stages are considered rest periods. For
Scenario OTS400, we use the same setup but increase the limit of the time-under-
tension to CTUT = 400 s.

Additionally, we demonstrate how the uncertainties of the parameters propagate
through the model. As no measurement data is available, we assume that the intu-
itive and the optimized testing sessions resulted in the same parameter estimates
p but with different standard deviations σp. We then draw 10000 random samples
from N (p, σ2

p) and simulate two different scenarios with these perturbed param-
eters. We redraw realizations with negative parameters, since the model is not
evaluable for those. The probability for which is 0.5 % when using the standard
deviations resulting from the intuitive testing session and 0 % when using those
resulting from the optimized testing sessions. First, we simulate Scenario ICmax
for 60 min, as we have done to estimate critical torque. Second, we simulate a
possible resistance training session consisting of 5 sets of 5 maximum contractions
lasting 5 s with 5 s inter-repetition rest and 120 s inter-set rest (Scenario RTS).
For both scenarios, we then analyze the differences of end-MVIC torque of the per-
turbed settings to the nominal setting p. The kernel density estimates used for this
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analysis were obtained using the gaussian kde function of SciPy 1.2.1 [Virtanen
et al., 2020] with Scott’s rule of thumb for bandwidth selection.

Table 12.2 contains an overview of the simulation scenarios used in this chapter.

Table 12.2: Overview of simulation scenarios used in this chapter.

Scenario Explanation
ITS Intuitive testing session consisting of a 3 min MVIC effort followed

by 2 s MVIC efforts at 10 s, 30 s, 1 min, 2 min, 5 min, 10 min,
15 min, 20 min, 25 min, and 30 min after cessation of the sustained
MVIC effort to check the time course of recovery

OTS200 Optimized testing session lasting 1982 s in total with 200 s
time-under-tension and a maximum of 11 contractions

OTS400 Optimized testing session lasting 1982 s in total with
400 s time-under-tension and a maximum of 11 contractions

RTS Resistance training session consisting of 5 sets of 5 MVIC efforts
lasting 5 s with 5 s inter-repetition rest and 120 s inter-set rest

12.5 Numerical results

Figures 12.1, 12.2, and 12.3 illustrate the loading schemes and the model response
of the intuitive and the optimized testing sessions. Figure 12.4 illustrates the esti-
mated standard deviations of the model parameters and the trace of the variance-
covariance matrix resulting from these sessions.

The loading scheme of Scenario RTS is illustrated in Figure 12.5. Figures 12.6
and 12.7 show the kernel density estimates of the differences of end-MVIC torque
of the perturbed settings to the nominal setting p for both scenarios. Figure 12.4
illustrates the standard deviations of those differences.
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Figure 12.1: Model response obtained by simulating the intuitive testing session
ITS. The bottom row illustrates the relative torque input. All con-
tractions are maximal.
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Figure 12.2: Model response obtained by simulating the optimized testing session
OTS200. The bottom row illustrates the relative torque input. All
contractions are maximal.
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Figure 12.3: Model response obtained by simulating the optimized testing session
OTS400. The bottom row illustrates the relative torque input. All
contractions are maximal.
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Figure 12.4: Estimated standard deviations of the model parameters SD(p) and
trace tr(C) of the variance-covariance matrix resulting from the in-
tuitive (Scenario ITS) and the optimized testing sessions (Scenar-
ios OTS200 and OTS400). All parameters were scaled to 1 for the
OED computations. Furthermore, SD(ICmax) and SD(RTS) denote
the standard deviations of the differences of end-MVIC torque of the
10000 perturbed settings from the nominal setting p using the parame-
ter uncertainties resulting from the intuitive testing session (ITS) and
from the optimized testing sessions (OTS200 and OTS400).
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Figure 12.5: Model response obtained by simulating Scenario RTS. The bottom
row illustrates the relative torque input. This is one of two scenarios
used to examine how the parameter uncertainties propagate through
the model.
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Figure 12.6: Kernel density estimates obtained by analyzing the differences of end-
MVIC torque of the 10000 perturbed settings from the nominal set-
ting p using the parameter uncertainties resulting from the intuitive
testing session (ITS) and from the optimized testing sessions (OTS200
and OTS400). This plot shows the results for Scenario ICmax. The
parameter uncertainties of the optimized testing sessions result in
sharper peaks around the mean value 0.

136



12.5 Numerical results

−0.2 −0.15 −0.1 −5 · 10−2 0 5 · 10−2 0.1 0.15 0.2

0

10

20

30

difference of end-MVIC torque to nominal scenario (1)

d
e
n
s
it
y

(
1
)

ITS

OTS200

OTS400

Figure 12.7: Kernel density estimates obtained by analyzing the differences of end-
MVIC torque of the 10000 perturbed settings from the nominal set-
ting p using the parameter uncertainties resulting from the intuitive
testing session (ITS) and from the optimized testing sessions (OTS200
and OTS400). This plot shows the results for Scenario RTS. The
parameter uncertainties of the optimized testing sessions result in
sharper peaks around the mean value 0.
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12.6 Discussion

Figure 12.4 illustrates that the optimized testing session OTS200 decreases the
uncertainties of all parameters substantially compared to the intuitive session ITS.
Scenario OTS200 consists of a prolonged MVIC effort in the beginning and 8 MVIC
efforts afterwards. Those are of slightly longer duration and distributed differently
than in the intuitive testing session. However, the constraints imposed on the total
time and on the time-under-tension seem to be too restrictive to allow an actual
identification of the parameters.

Therefore, we increase the limit on TUT for the OED problem OTS400. Here,
all parameters can be identified with reasonable accuracy (SD ≤ 10 %). We
acknowledge that a testing session lasting more than 30 min with almost 7 min
of maximum contractions is taxing on the subjects. Nevertheless, we are certain
that the benefit of calibrating the model in a single session outweighs this aspect.
In case a testing session has to be stopped, the measurement data does not have
to be discarded but can be used in a multi-experiment setting [Schlöder and Bock,
1983] for subsequent parameter estimations. This is a further advantage of our
approach.

These scenarios serve as representative real-world examples and the improve-
ments in Figure 12.4 demonstrate what an optimization-based approach to design-
ing experiments is capable of. Depending on the preferences of the experimenters
and the subjects, further experiments could be designed in a straightforward man-
ner reducing the experimental effort considerably.

As the parameters of the model do not bear a direct physiological meaning, de-
signing specific experiments to reduce their uncertainties might seem unnecessary
to practitioners. It is important to keep in mind that the uncertainties of the pa-
rameter estimates propagate through the model and influence other quantities of
interest. Our simulations of the perturbed settings illustrate this influence on the
estimate of critical torque and end-MVIC torque of a potential resistance training
session. Scenario RTS was chosen as a further illustrative example since the model
was designed to optimize such scenarios. The standard deviations in Figure 12.4
and the kernel density estimates of Figures 12.6 and 12.7 demonstrate clearly how
reduced parameter uncertainties improve the model prediction.

12.7 Conclusion

We are able to estimate the model parameters with satisfying accuracy in a single
optimized testing session. This reduces the experimental effort considerably when
calibrating the model to the trainee.
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Conclusion and outlook

In this thesis, we developed a novel mathematical approach to model, simulate,
and optimize loading schemes for resistance training. Our approach allows to
work with small amounts of data, which is common in sports science or exercise
physiology. Using data from the elbow flexors as example, we demonstrated the
full process of collecting data, modeling, calibrating the model by estimating pa-
rameters, analyzing simulations, computing optimal loading schemes for different
training goals, and designing optimal experiments for model calibration. Along
this process, we highlighted and tackled the arising mathematical challenges and
transferred our results to resistance training practice.

Our work underlines the possibilities which can arise by fostering interdisci-
plinary cooperations between sports scientists and applied mathematicians and
creates the foundation for further research once suitable data and models become
available. This includes the validation of the model for individual subjects and
other muscle groups, but also other contraction modes and long-term adaptations
should be taken into account by researchers building on our work. We expect these
extensions to yield significant contributions to the fields of scientific computing on
the one hand and sports science and exercise physiology on the other hand.
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D. Neyroud, J. Rüttimann, A. F. Mannion, G. Y. Millet, N. A. Maffiuletti,
B. Kayser, and N. Place. Comparison of neuromuscular adjustments associated
with sustained isometric contractions of four different muscle groups. Journal of
Applied Physiology, 114(10):1426–1434, 2013. doi: 10.1152/japplphysiol.01539.
2012. URL https://doi.org/10.1152/japplphysiol.01539.2012.

D. Neyroud, B. Kayser, and N. Place. Are There Critical Fatigue Thresholds?
Aggregated vs. Individual Data. Frontiers in Physiology, 7:376, 2016. doi: 10.
3389/fphys.2016.00376. URL https://doi.org/10.3389/fphys.2016.00376.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Op-
erations Research and Financial Enginering. Springer Verlag, New York, 2nd
edition, 2006.

J. P. Nunes, A. S. Ribeiro, B. J. Schoenfeld, and E. S. Cyrino. Com-
ment on: “Comparison of Periodized and Non-Periodized Resistance Train-
ing on Maximal Strength: A Meta-Analysis”. Sports Medicine, 48(2):491–
494, 2018. doi: 10.1007/s40279-017-0824-x. URL https://doi.org/10.1007/

s40279-017-0824-x.

157

https://doi.org/10.11588/heidok.00001796
https://doi.org/10.11588/heidok.00001796
https://doi.org/10.1080/00140136508930810
https://doi.org/10.1080/00140136508930810
https://doi.org/10.1111/sms.12358
https://doi.org/10.3389/fphys.2019.00875
https://doi.org/10.1519/jsc.0000000000002977
https://doi.org/10.1519/jsc.0000000000002977
https://doi.org/10.1152/japplphysiol.01539.2012
https://doi.org/10.3389/fphys.2016.00376
https://doi.org/10.1007/s40279-017-0824-x
https://doi.org/10.1007/s40279-017-0824-x


Bibliography

W. L. Oberkampf and C. J. Roy. Verification and Validation in Scientific Comput-
ing. Cambridge University Press, 2010. doi: 10.1017/cbo9780511760396. URL
https://doi.org/10.1017/cbo9780511760396.

D. J. Oranchuk, A. G. Storey, A. R. Nelson, and J. B. Cronin. Isometric training
and long-term adaptations: Effects of muscle length, intensity, and intent: A
systematic review. Scandinavian Journal of Medicine & Science in Sports, 29
(4):484–503, 2019. doi: 10.1111/sms.13375. URL https://doi.org/10.1111/

sms.13375.

A. G. Philippe, G. Py, F. B. Favier, A. M. Sanchez, A. Bonnieu, T. Busso,
and R. Candau. Modeling the Responses to Resistance Training in an An-
imal Experiment Study. BioMed research international, 2015, 2015. doi:
10.1155/2015/914860. URL https://doi.org/10.1155/2015/914860.

A. G. Philippe, F. Borrani, A. M. Sanchez, G. Py, and R. Candau. Modelling
performance and skeletal muscle adaptations with exponential growth functions
during resistance training. Journal of Sports Sciences, 37(3):254–261, 2019. doi:
10.1080/02640414.2018.1494909. URL https://doi.org/10.1080/02640414.

2018.1494909.

N. Place, N. A. Maffiuletti, Y. Ballay, and R. Lepers. Twitch potentiation is
greater after a fatiguing submaximal isometric contraction performed at short
vs. long quadriceps muscle length. Journal of Applied Physiology, 98(2):429–436,
2005. doi: 10.1152/japplphysiol.00664.2004. URL https://doi.org/10.1152/

japplphysiol.00664.2004.

J. R. Potvin and A. J. Fuglevand. A motor unit-based model of muscle fatigue.
PLOS Computational Biology, 13(6):1–30, 06 2017. doi: 10.1371/journal.pcbi.
1005581. URL https://doi.org/10.1371/journal.pcbi.1005581.

F. Pukelsheim. Optimal Design of Experiments. John Wiley & Sons, 1993. doi: 10.
1137/1.9780898719109. URL https://doi.org/10.1137/1.9780898719109.

E. Rashedi and M. A. Nussbaum. Quantifying the history dependency of muscle
recovery from a fatiguing intermittent task. Journal of Biomechanics, 51:26–31,
2017. doi: 10.1016/j.jbiomech.2016.11.061. URL https://doi.org/10.1016/

j.jbiomech.2016.11.061.

G. Q. Rich. Muscular Fatigue Curves of Boys and Girls. Research Quarterly.
American Association for Health, Physical Education and Recreation, 31(3):
485–498, 1960. doi: 10.1080/10671188.1960.10762056. URL https://doi.org/

10.1080/10671188.1960.10762056.

R. Riener, J. Quintern, and G. Schmidt. Biomechanical model of the human knee
evaluated by neuromuscular stimulation. Journal of Biomechanics, 29(9):1157–
1167, 1996. doi: 10.1016/0021-9290(96)00012-7. URL https://doi.org/10.

1016/0021-9290(96)00012-7.

158

https://doi.org/10.1017/cbo9780511760396
https://doi.org/10.1111/sms.13375
https://doi.org/10.1111/sms.13375
https://doi.org/10.1155/2015/914860
https://doi.org/10.1080/02640414.2018.1494909
https://doi.org/10.1080/02640414.2018.1494909
https://doi.org/10.1152/japplphysiol.00664.2004
https://doi.org/10.1152/japplphysiol.00664.2004
https://doi.org/10.1371/journal.pcbi.1005581
https://doi.org/10.1137/1.9780898719109
https://doi.org/10.1016/j.jbiomech.2016.11.061
https://doi.org/10.1016/j.jbiomech.2016.11.061
https://doi.org/10.1080/10671188.1960.10762056
https://doi.org/10.1080/10671188.1960.10762056
https://doi.org/10.1016/0021-9290(96)00012-7
https://doi.org/10.1016/0021-9290(96)00012-7


Bibliography
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