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Species inhabiting warm-edge populations of their distribution are suggested to be at the forefront of global warming due to
reduced fitness, limited gene flow and living close to their physiological thermal limits.  Determining the scale that governs
thermal niche and the functional responses of habitat-forming species to environmental stressors is critical for successful
conservation efforts, particularly as coastal ecosystems are impacted by global change. Here, we examine the susceptibility of
warm-edge populations to warming, in the habitat-forming macroalga, Hormosira banksii, from south-eastern Australia. We use a
quantitative breeding design to quantify intraspecific variation in thermal performance (growth, ontogenic development and
photosynthetic efficiency) of different genotypes sourced from sites at the equatorward distributional edge (warm-edge) and
those towards the center of its distribution (non-edge). The genetic diversity and structure of H. banksii was also examined using
microsatellite markers amongst the same sites. Our results found contrasting thermal performance in growth and development
which depended on local scale thermal environment rather than distribution origin. Contrarily, warm-edge germlings grew
optimally in lower temperatures and had narrower thermal breadth compared to non-edge germlings. Warm-edge germlings
however, showed greater plasticity to tolerate high light indicated by a greater proportion of energy being dissipated as
regulated nonphotochemical quenching (Y(NPQ)) than nonregulated nonphotochemical quenching (Y(NO)). Overall genetic diversity
was lower at the warm-edge sites with evidence of increased structuring and reduced gene flow in comparison to the non-edge
location. Evidence of genetic structuring was not found locally between high and low shore within sites. Together, these data
suggest that non-edge populations may be “thermally buffered” from increased temperatures associated with ocean warming.
Warm-edge populations of H. banksii, however, may be vulnerable to warming, due to narrower thermal breadth and sensitivity
to higher temperatures, with genetic impoverishment through loss of individuals likely to further reduce population viability.  

   

  Contribution to the field

The resilience of species to persist in global warming depends on the range of functional responses produced by genotypes and
phenotypes within its distribution. Previous research has identified warm-edge populations to be thermally tolerant but
genetically impoverished making them more susceptible to environmental change due to the reduced range of functional responses.
In marine macroalgae, there is limited research that pairs thermal tipping points with genetic diversity and determining the
spatial scale in which global warming will have the greatest effect on physiology. Here, we conducted thermal performance curves
using germlings from the habitat-forming, intertidal macroalga Hormosira banksii, from warm-edge and non-edge populations and
multiple spatial scales (regional, local and individual) to test whether warm-edge populations are susceptible to future warming
and whether this was related to population genetic structure. Contrarily, warm-edge populations presented greater thermal
sensitivities and narrower thermal breadth to increased temperatures. We propose that thermal history and origin of the
individual governs thermal niche, however, warm-edge populations may be facilitating their resilience to short-term
environmental stress by actively dissipating a greater proportion of excess energy away from photosystems. Lower genetic
diversity and gene flow at warm-edges, however, may constrain responses to environmental change over the longer term.
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Abstract 21 

Species inhabiting warm-edge populations of their distribution are suggested to be at the forefront of 22 

global warming due to reduced fitness, limited gene flow and living close to their physiological thermal 23 

limits.  Determining the scale that governs thermal niche and the functional responses of habitat-24 

forming species to environmental stressors is critical for successful conservation efforts, particularly 25 

as coastal ecosystems are impacted by global change. Here, we examine the susceptibility of warm-26 

edge populations to warming, in the habitat-forming macroalga, Hormosira banksii, from south-eastern 27 

Australia. We use a quantitative breeding design to quantify intraspecific variation in thermal 28 

performance (growth, ontogenic development and photosynthetic efficiency) of different genotypes 29 

sourced from sites at the equatorward distributional edge (warm-edge) and those towards the center of 30 

its distribution (non-edge). The genetic diversity and structure of H. banksii was also examined using 31 

microsatellite markers amongst the same sites. Our results found contrasting thermal performance in 32 

growth and development which depended on local scale thermal environment rather than distribution 33 

origin. Contrarily, warm-edge germlings grew optimally in lower temperatures and had narrower 34 

thermal breadth compared to non-edge germlings. Warm-edge germlings however, showed greater 35 

plasticity to tolerate high light indicated by a greater proportion of energy being dissipated as regulated 36 

nonphotochemical quenching (Y(NPQ)) than nonregulated nonphotochemical quenching (Y(NO)). 37 

Overall genetic diversity was lower at the warm-edge sites with evidence of increased structuring and 38 

reduced gene flow in comparison to the non-edge location. Evidence of genetic structuring was not 39 

found locally between high and low shore within sites. Together, these data suggest that non-edge 40 

populations may be “thermally buffered” from increased temperatures associated with ocean warming. 41 

Warm-edge populations of H. banksii, however, may be vulnerable to warming, due to narrower 42 

thermal breadth and sensitivity to higher temperatures, with genetic impoverishment through loss of 43 

individuals likely to further reduce population viability.   44 

 45 
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1. Introduction 46 

Anthropogenic mediated climate change is already having profound impacts on the physiology and 47 

distribution of many species worldwide (Pecl et al., 2017; IPCC 2018). By the end of this century, 48 

anthropogenic increases in atmospheric greenhouse gases will have increased ocean and air 49 

temperatures by 1.5 - 2 °C with global mean surface temperatures already warmed by 0.87 °C during 50 

the decade 2006 – 2015 (IPCC 2018).  In the last decade, the prevalence of extreme climate events 51 

(heatwaves, droughts, floods, cold spells and storms) has caused further loss of populations and 52 

poleward shifts in distribution as species are being pushed past their physiological thresholds (Hawkins 53 

et al., 2009; Burrows et al., 2014; Poloczanska et al., 2016; Smale et al., 2019). Persistence in the face 54 

of a warming climate will require physiological plasticity and adequate genetic diversity for natural 55 

selection to act upon (Sgrò and Hoffmann, 2004; Reusch et al., 2005; Hoffmann and Sgrò, 2011; 56 

Wernberg et al., 2018; Gurgel et al., 2020). 57 

 58 

Understanding how global warming and future extreme climate events will impact species requires 59 

knowledge of species’ thermal niche and underlying genetic diversity across its distribution. Thermal 60 

niche is developed through acclimation and adaptation to temperatures experienced throughout a 61 

species life history which can vary with space and time (for a review see Bennett et al., 2015). For 62 

instance, thermal limits will differ for central and marginal populations as thermal regimes vary across 63 

a species geographical range (Sunday et al., 2012; Bennett et al., 2019). Thermal breadth is also 64 

influenced by the range of temperatures experienced throughout a species life history (Sunday et al., 65 

2012). The climate variability hypothesis suggests that a positive relationship exists between thermal 66 

breadth of an organism and climate variability with increasing latitude. Therefore, populations in 67 

higher latitudes will have a greater thermal breadth as individuals experience a greater range in 68 

temperatures, than those closer to the equator (Stevens, 1989). Thus, cooler populations are suggested 69 

to be more resistant to warming as they have a broader thermal breadth compared to warmer 70 

populations (however see Bennett et al., 2015). As thermal limits often govern species range 71 

boundaries, and individuals are pushed beyond their physiological limits, the fitness of individuals 72 

therefore diminish towards distributional limits (Sagarin and Gaines, 2002; Thomas et al., 2004; 73 

Hampe and Petit, 2005; Pearson et al., 2009). 74 

 75 

Reduced fitness at range margins often coincides with reduced gene flow and connectivity, habitat 76 

fragmentation (local separation of populations) and reduced effective population sizes. These can result 77 

in decreased genetic diversity (the range of functional responses provided by genotypes and 78 

phenotypes) and increase genetic differentiation between populations (Hampe and Petit, 2005; Eckert 79 

et al., 2008; Coleman et al., 2011a; Wernberg et al., 2018). The decrease in genetic diversity towards 80 

range limits has been documented extensively in plants and animals (Hampe and Petit, 2005; for a 81 

review see Eckert et al., 2008). Such patterns may also exist at the local scale over strong, but small-82 

scale environmental gradients, where individuals live in habitat mosaics or where they may be spatially 83 

or temporally segregated.  (Helmuth et al., 2006; Harley, 2008).  Species inhabiting edge distributions 84 

are at the forefront of climate change, as they are already restricted by environmental factors and living 85 

close to their physiological limits (Parmesan, 2006; Smale and Wernberg, 2013; Pecl et al., 2017). 86 

Without adequate genetic diversity, potential selection for tolerant genotypes may be limited.  87 

 88 

Investigating the spatial scale at which variation in environmental stressors will most strongly influence 89 

fitness is needed to determine impacts on biological systems (Helmuth et al., 2014).  Species’ 90 

distributions can often span thousands of kilometres and individuals can be exposed to wide variation 91 

in environmental regimes at different spatial scales; regionally among latitudes, and locally, among 92 

habitats within a single location. Factors such as local climate and topography within a habitat can 93 

translate to mosaics of “hotspots” and “coldspots” (Helmuth et al., 2006). For sessile organisms, 94 
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morphological differences among individuals add to local habitat topography and daily fluctuations in 95 

exposure, all of which can shape differing physiological thresholds (Helmuth and Hofmann, 2001; 96 

Harley, 2008; Clark et al., 2018). Studies have also suggested that variation at the scale of an individual 97 

can have a greater effect on physiology than broad scale differences observed over kilometres (Helmuth 98 

et al., 2002; Helmuth, 2009). Consequently, species declines in response to increasing environmental 99 

stress may not occur evenly across their range (Helmuth et al., 2006; Pearson et al., 2009; Miller et al., 100 

2019), yet understanding intraspecific variation in tolerance is required to predict future species 101 

distributions. 102 

 103 

The rocky intertidal has been suggested to be a sentinel habitat for global warming, primarily due to 104 

resident organisms being already close to their thermal limits (Stillman and Somero, 2000; Somero, 105 

2005). Habitat-forming macroalgae are particularly important primary producers in this habitat due to 106 

their role as ecosystem engineers through modifying local environmental conditions and providing 107 

resources (Dayton, 1972; Jones et al., 1994) that can strongly facilitate associated biodiversity (Schiel, 108 

2006; Bishop et al., 2009).  As macroalgae are sessile organisms, they cannot move to avoid heat stress 109 

so must physiologically tolerate, adapt or perish in the face of climate change.  Studies on the effects 110 

of temperature in governing species distribution and warm-edge ranges are becoming more apparent 111 

in macroalgal dominated communities (Pearson et al., 2009; Martínez et al., 2012; Ferreira et al., 2014; 112 

Bennett et al., 2015; Mota et al., 2018; King et al., 2019). Temperature is a fundamental determinant 113 

of algal fitness as it regulates photosynthesis as well as enzymes that govern metabolic activity 114 

(Allakhverdiev et al., 2008; Falkowski and Raven, 2013). Due to this,  photosynthetic health has been 115 

widely used to assess thermal tolerance in photosynthetic organisms including many plants and 116 

macroalgae (Pearson et al., 2009; Smolina et al., 2016; Wernberg et al., 2016). Photosynthetic 117 

performance, in turn, can be evaluated by chlorophyll a fluorescence measurements, specifically the 118 

maximum quantum yield (Fv/Fm) and investigation of energy dissipation pathways (Genty et al., 1989; 119 

Kramer et al., 2004; Schreiber, 2004).  120 

 121 

Variation in thermal response among marine macroalgae has been mostly studied in the context of 122 

determining how lethal temperatures set distributional limits both across species ranges and vertically 123 

on the shore (Schonbeck and Norton, 1978; Hartnoll and Hawkins, 1985; Davison and Pearson, 1996). 124 

On regional scales, individuals inhabiting warm range-edge populations closer to the equator have been 125 

shown to have greater thermal tolerances due to exposure to higher temperatures throughout their life 126 

history (Mota et al., 2018). Photosynthetic health of macroalgae at warm-range limits also reflect 127 

greater thermal tolerances indicating greater ability of warm-edge thalli to maintain maximum quantum 128 

yield of PSII (FV/FM) in higher temperatures than in cool-edge populations (Mota et al., 2018). Warm-129 

edge populations are often fragmented and reduced in size (Coleman et al., 2011b, 2011a; Zardi et al., 130 

2015), suggesting that these populations are physiologically stressed towards range limits (Araújo et 131 

al., 2011) and may be less resilient to prolonged exposure to extreme climate events (Wernberg et al., 132 

2016; Mota et al., 2018). Variation in thermal response on the local scale, among vertical heights on 133 

the shore, is well known and is related to daily tidal regimes and topography, and the ability to 134 

effectively photosynthesize during periods of increased desiccation and thermal stress (Schonbeck and 135 

Norton, 1978; Dring and Brown, 1982; Davison and Pearson, 1996; Williams and Dethier, 2005).  Less 136 

well understood is the contribution of heritable genetic variation in thermal tolerance, required if there 137 

is to be any local adaptation to a given thermal regime or evolution of increased tolerance with 138 

increasing temperatures. Relatively few studies have experimentally identified heritable genetic 139 

variation in seaweeds with families showing the potential for adaptation to changes in environment 140 

associated with climate change (Clark et al., 2013; Al-Janabi et al., 2019; Mabin et al., 2019). 141 

 142 
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Southeastern Australia has been identified as a climate change hotspot (Lough and Hobday, 2011; 143 

Hobday and Pecl, 2014) and is therefore an ideal location to study the effects of global warming on the 144 

genetic diversity and physiology of marine macroalgae. The east coast of Australia follows a north 145 

(equatorward) to south (poleward) thermal gradient with a natural warm to cold water transition, and 146 

serves as the main conduit for gene flow for many sessile marine species within coastal ecosystems 147 

(Coleman et al., 2011b). Hormosira banksii, is a dominant, habitat-forming macroalga found on rocky 148 

shores in Australia and New Zealand and spans >3000 km of coastline from the northern distributional 149 

edge Skennars Head in New South Wales to Albany in Western Australia (Womersley, 1987; Huisman, 150 

2019)  as well Tasmania, and the North and South Island of New Zealand (Nelson, 2013). Towards the 151 

equatorward distributional limits, percent cover decreases from 80% at Minnie Water to 20% at 152 

Angourie and 25% at Skennars Head, with H. banksii mostly found in rockpools at the distributional 153 

limits (personal observation). It is dioecious and has a monophasic life cycle with oogonium 154 

development found in mature conceptacles in every season, producing gametes potentially every low 155 

tide (Osborn, 1948). Further, gamete dispersal is less than 10 m (Bellgrove et al., 1997), and has been 156 

documented to have limited gene flow (Coleman et al., 2011a, 2019) with local adaptation recently 157 

identified in thermally different regions on the south coast of Australia (Miller et al., 2019). Previous 158 

research on thermal performance of H. banksii is limited, but has identified increased thermal 159 

sensitivity through decreased photosynthetic yield of PSII, smaller morphology and lower percent 160 

coverage of thalli (~20%) in adult thalli of warm-edge populations of H. banksii (Clark et al., 2018). 161 

Less is known about how populations of H. banksii within the equatorward range edge of this species 162 

will respond to elevated temperatures and extreme climate events, given limited gene flow and 163 

inhabiting physiological stressful environments. 164 

 165 

In this study, multiple performance traits of the ecologically and functionally important intertidal 166 

macroalga, Hormosira banksii, were quantified to assess variation in thermal tolerance and genetic 167 

structuring at three nested spatial scales: among locations, among heights on the shore and among 168 

individual genotypes within a shore, to determine the vulnerability of warm-edge populations to 169 

climate warming.  We aimed to (1) assess the thermal performance of individuals (2) determine 170 

whether genetic variation in traits are heritable, and (3) determine the genetic diversity and connectivity 171 

of warm-edge versus non-edge populations of H. banksii to assess the role of thermal history and 172 

adaptation in providing resilience to global warming.  173 

 174 

2. Methods 175 

2.1. Study locations and collection of model organism  176 

For genetic diversity analysis, H. banksii populations were sampled during the austral autumn (April – 177 

May 2014) in two eastern Australian regions: a warm-edge region encompassing two locations, 178 

Angourie (29º28’41.51” S, 153º 21’ 49.53” E) and Minnie Water (29º46’34.23” S, 153º18’07.43” E) 179 

at the northern warm-edge of its distribution, and a non-edge region within the center of its range, 180 

encompassing two locations, Pearl Beach (33º32’57.70” S, 151º18’32.36” E) and Bilgola Beach 181 

(33°38’54.48” S, 151°19’39.59” E), approximately 460 km further south (Fig.1). For thermal response 182 

experiments, H. banksii was collected from two populations each within the mentioned regions (Minnie 183 

Water and Pearl Beach). At the time of sampling, H. banksii was the dominant, intertidal macroalgal 184 

species (60-80% percent cover) in all locations except Angourie which had 20% percent cover.  185 

 186 

2.2. Thermal exposure at different spatial scales 187 

Data from multiple sources was used to demonstrate average air and sea surface temperatures (SST) 188 

experienced at each warm-edge (Minnie Waters) and non-edge (Pearl Beach) location (Fig S2).  SST 189 

detected by satellite (MODIS-Aqua), was obtained via GIOVANNI (NASA GES DISC) using a 4 km2 190 

area (Minnie Water -29.5 °S, 29.0 °S 153.4 °E 153.9 °E; Pearl Beach -33.844 °S, -33.441°S, 151.296 191 
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°E, 151.671 °E) for years between 2003-2014.  Local weather stations were used to estimate average 192 

minimum, maximum air temperature as well as mean number of days above 35 °C at each location 193 

(Bureau of Meteorology (BOM), Australian Government, http://www.bom.gov.au; Terry Hills station 194 

from 1954-2014 and Yamba from 1877-2014)). Data reflect average temperatures recorded from when 195 

station became operational. To document the temperature variability locally within H. banksii beds at 196 

each location, single HOBO® pendant loggers (Onset®, USA) were drilled into the substrate at high 197 

and low tidal heights and temperatures were recorded between April and July 2014 (Fig. S3). Data only 198 

overlapped for 7 days in June 2014 due to some loggers going missing, therefore were only used to 199 

view the temperature variability within each shore height at each location and were not compared 200 

between locations.  201 

 202 

2.3. Assessment of genetic diversity 203 

To assess genetic structure of populations, 32 thalli (approximately 1 m apart) were haphazardly 204 

sampled from the low and high shore at each location within each of the regions. High shore thalli were 205 

selected based on tidal exposure, local topography and drainage patterns to ensure they contrasted with 206 

low shore thalli, which were immediately adjacent to the water’s edge. Collection at low and high tidal 207 

heights were separated horizontally by ~ 5 – 10 m above the low tide mark.  Extraction of genomic 208 

DNA was conducted for a total of 235 individuals. Samples comprised of unfouled apical segments 209 

that were washed in freshwater to remove salts and epiphytes, snapped frozen in liquid nitrogen before 210 

storing in a -80 °C freezer until use. Before DNA extraction, samples were freeze-dried overnight. 211 

Genomic DNA was isolated from 20–30 mg of freeze-dried tissue using the Nucleospin® 96 Plant II 212 

DNA extraction kit (Machery-Nagel, AGRF). Individuals were genotyped using 10 microsatellite loci 213 

as described in Bellgrove et al. (2017). Each 11 µL PCR reaction was set up in which consisted of 5 214 

µL 2 x Multiplex Mastermix (Qiagen), 4 µL Primer mastermix and 2 µL of 1 in 20 diluted genomic 215 

DNA. Primer mastermix consisted of 10 µM reverse primer, 10 µM forward primer and 10 µM unique 216 

fluorophores (FAM, VIC, NED, PET) which tagged the flanking regions of the microsatellites.   217 

 218 

Multiplex PCR reactions were run on a Veriti 96-well thermal cycler (Applied Biosystems) with the 219 

PCR conditions of 95°C for 15 min for denaturing, followed by 40 cycles of 94°C for 30 s, 59°C for 220 

90s, 72°C 60 s, and a final elongation step at 60°C for 30 mins as per the protocol described in Blacket 221 

et al. (2012).  PCR products were checked for amplification using 1.5% agarose gel before fragment 222 

separation was conducted using ABI Genescan 3730 using the size standard LIZ500 (AGRF).  223 

Polymorphisms and allele sizes were visualised and determined manually using GeneMapper (v 4.0, 224 

Applied Biosystems). 225 

 226 

2.4. Effects of temperature on phenotypic traits 227 

To assess how functional thermal responses differed within and across populations, quantitative 228 

breeding designs were set up to partition variance amongst different genotypes (families), amongst 229 

different vertical heights on the shore and between the warm and non-edge location.  Adult thalli were 230 

collected two hours before absolute low tide to prevent desiccation-induced spawning (Gunthorpe et 231 

al., 1995). Thalli were collected from the low shore, directly adjacent to the seaward edge of the rock 232 

platform, and the high shore, in the upper intertidal, 5–10 m vertically distance from low shore region. 233 

Thalli were transported on ice and gametes extracted within 48 hours.  234 

 235 

To induce spawning, thalli were gently agitated in tap water (room temperature), blotted dry, placed 236 

into individual containers and allowed to desiccate at room temperature (Doblin and Clayton, 1995). 237 

After 20 min, gametes were released from conceptacles through osmotic stress and desiccation and the 238 

sex of the thallus identified by the colour of its gametes: olive green for females and orange for males 239 

(Osborn, 1948). As in Clark et al. (2013), three males and three females from each shore height within 240 
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each location were used in a North Carolina II breeding design (Lynch and Walsh, 1998), where each 241 

male was cross fertilised with each corresponding female in a fully factorial design, yielding nine 242 

unique genotypes. Each egg and sperm solution were filtered through nylon mesh (100 µm for egg 243 

solution and 40 µm for sperm solution) to filter out debris and larger algal material before being mixed 244 

to initiate fertilisation. Aliquots of each egg and sperm solution were distributed amongst multiple petri 245 

dishes filled with 0.7 µm (Whatman GFF) filtered seawater containing eight glass coverslips for 246 

zygotes to attach to.  Petri dishes with settled zygotes were then randomly allocated to each of six 247 

temperatures; 22, 24, 26, 28, 30 and 32 °C in a Climatron Plant Growth Chamber (Thermoline 248 

Scientific, Australia). These temperatures are representative of temperatures experienced by both 249 

populations (from climate weather and HOBO pendants) as well as designed to be physiologically 250 

stressful to test thermal performance of intertidal macroalgae in populations at the warmer end of the 251 

distribution. To examine thermal responses under more realistic fluctuating environments and hence 252 

estimate realized rather than fundamental thermal reaction curves, ± 5 °C diel cycle was implemented 253 

(Paaijmans et al., 2013).  This temperature regime was determined from examining field data from the 254 

HOBO® pendant loggers in a pilot study.  Germlings were incubated in a 12:12 hour light cycle at 30 255 

± 5 µmol photons m-2s-1.  256 

 257 

At 120 h after fertilisation, germlings growing on coverslips were removed from temperature 258 

treatments, wet mounted on a microscope slide and photographed using a light microscope (Olympus 259 

BX50, Japan) with AnalySIS imaging software (v 5.0, Japan). Total germling length (defined as 260 

extension along the primary rhizoid axis) was calculated from digital images using Image J (National 261 

Institutes of Health, USA V1.6.0_24).  To examine stages of development, germlings were scored into 262 

five ontogenetic stages: 0 = fertilisation through condensation of the chloroplasts; 1 = protrusion of 263 

germling cell wall to create a pear shape which later develops into the rhizoid; 2 = division of the 264 

germling germinating cell and elongation of a single rhizoid; 3 = elongation of the rhizoid coupled with 265 

secondary and tertiary rhizoid development; and 4 = paraphysis development (apical hairs) on top of 266 

the germinating cell. These equate to stages 1, 2, 3-5 and 6 (a-d), respectively, in Clarke and Womersley 267 

(1981). 268 

 269 

A pulse amplitude modulated fluorometer (Microscope Imaging-PAM, Walz GmbH, Germany) was 270 

used to examine photophysiological traits of multiple germlings in one field of view while returning 271 

individual measurements from each individual. The system comprises a modified epi-fluorescence 272 

microscope (AxioScope.A1, Zeiss) equipped with a modulated LED light source and a photomultiplier 273 

for detection of modulated chlorophyll-a fluorescence.  Germlings attached to cover slips (120 h post 274 

fertilisation) were wet mounted and scanned under green light (non-stimulatory for photosynthesis). 275 

Selection of germlings for measurement involved maximising the number of germlings in a field of 276 

view, as coverslips were discarded after each fluorescence assay. To ensure we obtained high-quality 277 

data across all treatments and limit a potential diel effect in photophysiological assessments, we had to 278 

restrict our photophysiological measurements to one assay per coverslip. Therefore, the coverslip was 279 

briefly scanned to find a field of view where there were numerous germlings sufficiently close together 280 

for simultaneous assessment. Although coverslips had the same zygote density before being randomly 281 

allocated to temperature treatments, the germling density differed at the time of measurement (120 h), 282 

varying between two and eight. Gain settings were adjusted so that base fluorescence (Ft) was between 283 

0.1 and 0.3 for each germling, ensuring fluorescence signals were detectable but not too high to cause 284 

saturation during measurements. To use Ft as a proxy for pigment content, values collected at different 285 

gain settings were standardised to a single gain setting to make them comparable amongst all 286 

germlings. This was done by recording the base fluorescence (Ft) of 120 h old germlings determined 287 

using the full range of gain settings. The increase in Ft with gain was then fitted with a log linear 288 
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regression model (R2 > 0.90) so that Ft could be estimated amongst all germlings, no matter what gain 289 

setting was used to perform the steady-state analysis (Kramer et al., 2004). 290 

 291 

The measurement protocol involved dark adapting germlings for 5 min before a single saturating pulse 292 

of blue light (blue Zeiss LED-Module 470 nm; pulse duration = 0.6 s; pulse intensity > 3000 µmol 293 

photons m-2 s-1; FM determination), followed by a two-step steady-state light curve. The steady state 294 

analysis included consecutive 5 min exposures to actinic blue light of 32 and 113 μmol photons m-2s-1 295 

(sub-saturating and saturating irradiance, respectively, previously determined in a steady state P vs I 296 

fluorescence curve). Saturating pulses of blue light were spaced 30 s apart to monitor FM’ and Ft. Due 297 

to the length of time needed for measurements, photosynthetic traits were only determined for 24, 28 298 

and 32 °C (3 of the 6 temperature treatments) and represented the highest and stressful temperature for 299 

both populations with other two temperatures equally spanning the thermal gradient. 300 

 301 

Maximum quantum yield of photosystem II (PSII), FV/FM, was calculated according to the equation 302 

(FM-FO)/FM (Schreiber, 2004). FV/FM is the measure of photosynthetic efficiency of PSII after dark 303 

acclimation of photosystems (Genty et al., 1989) with greater values (0-1) equating to greater number 304 

of photosystems available for light capture. Effective quantum yield of PSII, ∆F/FM’, was calculated 305 

using (FM'-Ft)/FM'. The proportions of energy being used in photochemistry Y(PSII), regulated non-306 

photochemical quenching Y(NPQ), i.e. energy dissipation through the rapid conversion of xanthophyll 307 

pigments) and unregulated non-photochemical quenching of excitation energy (Y(NO; i.e., heat 308 

dissipation) were calculated for each actinic light level assuming Y(PSII) + Y(NPQ) + Y(NO) = 1 309 

according to (Kramer et al., 2004). To estimate the capacity of germlings to deal with high light, the 310 

relative NPQ between high light (HL) and low light (LL) steps was calculated: 311 

(HLY(NPQ)/LLY(NPQ). A value less than one means there is less NPQ under high light and the 312 

xanthophyll cycle has exceeded its capacity to deal with excess energy. 313 

 314 

 315 

2.5. Statistical analyses 316 

2.5.1. In situ temperature regimes 317 

The difference in temperature variability between high and low shores at each location, temperature 318 

data obtained by HOBO® was tested using Levene’s test of variance. SST recorded for each location 319 

(MODIS-Aqua satellite 2003-2014) was analysed with a two-factor ANOVA to test for differences 320 

between location and months.  321 

 322 

2.5.2. Estimates of genetic diversity and structure  323 

Prior to analyses, genotyping errors such as null alleles, stuttering, dropped alleles, and typographic 324 

errors were checked using MICROCHECKER (Van Oosterhout et al., 2004). Estimates of allelic 325 

frequencies, observed (HO) and expected (HE) heterozygosity and departures from Hardy-Weinberg 326 

equilibrium were conducted in GENETIX (v 4.05.2, Belkhir et al., 2000). For each measure of genetic 327 

variation, univariate analyses of variances (ANOVA) were conducted to test for differences between 328 

locations with between regions (warm-edge and non-edge) as well as between heights on the shore 329 

using PRIMER-E with PERMANOVA (v 6.1.16).   330 

 331 

FIS, the proportion of genetic variance contained in an individual (I) relative to the variance contained 332 

in a subpopulation (S), and FST, the proportion of genetic variance contained in a subpopulation relative 333 

to total genetic variance (T) were estimated using the program FSTAT (v 2.9.3.2, Goudet, 1995) where 334 

Weir & Cockerham’s estimates of FST and pairwise comparisons of shore heights were calculated 335 

within each location. FST estimates the genetic differentiation among populations and ranges from 0 to 336 

1.  FST values of 0-0.05 indicate little differentiation, 0.05-0.25 indicate moderate genetic differentiation 337 
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and values over 0.25 represent pronounced levels of genetic differentiation (Freeland et al., 2011).  FIS 338 

estimates the amount of selfing or inbreeding occurring within a population and ranges between -1 and 339 

1, where negative values represent an excess of heterozygotes and positive values represent an excess 340 

of homozygotes.  FIS estimates were tested for significance using GENETIX.  Linkage equilibrium was 341 

tested using 1000 permutations in FSTAT.  FST estimates among all pairs of populations were 342 

calculated in FSTAT and significance levels of pairwise comparisons were corrected using Bonferroni 343 

correction (Rice, 1989).   344 

 345 

Analysis of molecular variance (AMOVA) was performed using ARLEQUINN (v 3.5.22, Excoffier et 346 

al., 2007) which calculated the percentage of genetic variation attributed among and within each 347 

location.  This analysis was conducted twice to determine variation amongst regions, among locations 348 

within regions and within locations (among individuals).  FST estimates indicated no significant 349 

differences between shore heights, therefore shore heights were pooled for the AMOVA analysis.  350 

Isolation by distance was tested using Mantel tests in IBD WebService (Jensen et al., 2005, 351 

http://ibdws.sdsu.edu) which tests the null hypothesis of no correlation between pairwise geographic 352 

distance and genetic distance matrices.   353 

 354 

2.5.3. Effects of temperature on phenotypic traits  355 

Physiological responses (variation in germling length and ontogenic development) were analysed with 356 

permutational ANOVA, with location (warm-edge and non-edge), height on the shore (low and high) 357 

and temperature (six levels) as fixed factors, and male and female identity as a random factor nested 358 

within each combination of height on the shore and location. For significant location x temperature or 359 

shore height x temperature interactions, main effects were tested with a reduced two-factor ANOVA 360 

to compare each temperature. Tukey’s HSD post-hoc comparisons were conducted on significant 361 

interactions to determine temperature effects.  Thermal breadth was obtained by arbitrarily setting a 362 

threshold of 80% of maximum germling length for each height on the shore and location combination.  363 

Photophysiological traits were analysed using ANOVA with location, height on the shore and 364 

temperature as fixed factors (with the low fecundity of some combinations requiring that males and 365 

females were pooled).  Univariate ANOVAs were conducted in the PERMANOVA routine of Primer-366 

E (v6) and the proportion of variance explained by each factor calculated by least square estimates of 367 

variance components (Anderson et al., 2008). Data was visualised using package ‘ggplot2’ (Wickham, 368 

2009) and post-hoc comparisons were conducted in R Studio (version 1.2.5019) using R (R Core Team, 369 

2020, version 3.6.2 (2019-12-12)). 370 

 371 

3. Results 372 

3.1. Thermal exposure 373 

Mean maximum monthly air temperatures recorded at local weather stations were similar at both 374 

locations, however minimum temperatures were lower at the non-edge location. The warm-edge 375 

location experienced a narrower temperature range, 9.7 to 26.7 °C compared to 4.8 to 27.6 °C at the 376 

non-edge location (Fig. S1a,b)—a difference between max and min air temperatures of 17.0 °C and 377 

22.8 °C, at each location respectively (Fig. S1a, b).  The warm-edge location experienced fewer days 378 

per year where air temperature exceeded 35 °C than the non-edge location (on average ~1 vs ~8 d y-1, 379 

respectively; Fig. S1). Sea surface temperature recorded between 2003-2014 by satellite (MODIS- 380 

Aqua; https://oceancolor.gsfc.nasa.gov/data/aqua/), ranged from 19.4 to 26.7 °C at the warm-edge 381 

location versus 16.3 to 24.4 °C at the non-edge location and were significantly different between 382 

locations (F1 =1619, P<0.001) and months (F11 = 325, P<0.001; Fig. S2c). 383 

 384 

At the local scale, HOBO® sensors recorded similar mean temperatures on the low and high shore at 385 

the warm-edge location (21.9 ± 2.8 °C vs 21.5 ± 3.6 °C, respectively; Fig. S2) as well as the non-edge 386 
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location (16.0 ± 2.4 °C vs 15.3 ± 3.5 °C, respectively; Fig. S2). High shore temperatures were however 387 

more variable than low shore temperatures at both locations (warm-edge: F1,2074= 55.89, P = 0.001; 388 

non-edge: F1,1960, P = 0.001). 389 

 390 

3.2. Genetic diversity and structure 391 

Null alleles were found in warm-edge populations, Minnie Water (MW) and Angourie (ANG) at low 392 

and high tidal heights for locus HB3 but not at any other locations or loci. All analyses were run with 393 

and without HB3 and results were consistent, therefore the locus HB3 was kept in subsequent analyses.  394 

Linkage disequilibrium was not found for any locus and all loci were in Hardy-Weinberg equilibrium 395 

(Table S1).  Amongst the 235 individuals collected, a total of 28 different alleles were genotyped across 396 

10 loci. Total mean (± SD) number of alleles across all locations and shore heights sampled was 26.00 397 

± 1.18 where unique alleles were found at ANG high shore (2 alleles), MW low shore (1 allele) and 398 

BB low shore (2 alleles) populations (Table 1).  The total number of alleles in any single population 399 

varied from 24 to 28 and was similar between regions (F1,79 = 0.055, P = 0.820) amongst all locations 400 

(F3,79 = 0.106, P = 0.967), and between heights on the shore (Table 1; F1,79 = 0.053, P = 0.814).  401 

 402 

Genetic diversity was determined by expected heterozygosity (HE) which was lower in warm-edge 403 

populations (Table 1, Table S1).  A trend for positive (but not significant) FIS values indicated some 404 

selfing or inbreeding at both warm-edge and non-edge populations but a significant deviation from 405 

random mating (negative FIS value) was only found in low shore populations at Pearl Beach, indicating 406 

an excess of heterozygotes (Table S2). 407 

 408 

The overall FST estimate amongst all spatial scales tested was 0.256 indicating high genetic structure, 409 

but genetic structuring diminished from regional to local scales (Table 2).  There was pronounced and 410 

significant levels of genetic structuring between pairs of non-edge (Bilgola and Pearl Beach) and warm-411 

edge populations (Minnie Water and Angourie) with FST values ranging between 0.274 - 0.413 (Table 412 

2). Among non-edge locations  there was moderate and significant genetic structure with pairwise FST 413 

values ranging from 0.150 – 0.190 (Table 2).  Similarly, there was low but significant genetic structure 414 

between locations within the warm-edge region (Minnie Water and Angourie; FST = 0.066 - 0.105 415 

(Table 2)).  Pairwise FST estimates between vertical shore heights were not significantly different at 416 

any location (Table 2). 417 

 418 

There was a large (25.7 %) and significant amount of genetic variation explained by differences in 419 

regions, (warm-edge vs non-edge). Similarly, a large and significant amount of genetic variation 420 

(8.0%) occurred between locations within each region, with the largest amount of genetic variation 421 

(66.3%) amongst individuals within each location (FST = 0.337, P < 0.001).  When shore heights were 422 

pooled within each location, a separate AMOVA revealed greater variation was explained at the scale 423 

of locations (28.0 %) and amongst individuals within each location (72.5%; FST = 0.275, P < 0.001). 424 

There were strong significant relationships between geographic and genetic distance across all 425 

locations (Mantel test: Z = 2620.41, r = 0.924, P = 0.002, Fig. S1) but not within non-edge (Mantel 426 

test: Z = 7.56, r = 0.976, P = 0.113, Fig. S3) or warm-edge regions (Mantel test: Z = 6.90, r = 0.831, P 427 

= 0.250, Fig. S3).   428 

 429 

3.3. Effects of temperature on germling growth and ontogenesis 430 

Temperature had a strong effect on germling growth, resulting in distinct thermal performance curves 431 

at each location and height on the shore (Fig. 2). Overall, there was a significant location × temperature 432 

interaction (15% of the total variation in germling length explained by this interaction) as well as a 433 

significant shore height × temperature interaction (3 % of total variation; Table 3) and the interaction 434 

between male-female × temperature contribution was 2%. Separate two-factor ANOVAs found 435 
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significant differences for the main effects of location and height on the shore for each temperature 436 

(Table S3) with location × shore height interactions found for germling length at 22, 24, 26,  and 30 437 

°C (Table S3, Fig 2). Among these interactions, Tukey’s post-hoc comparisons were significant 438 

between all location × shore height combinations at each temperature except for some combinations 439 

at 22, 26 and 30 °C (see Table S4 for all pairwise results).  440 

 441 

Thermal breadth, defined as the temperature range in which germling length reached 80% of maximum 442 

germling length, varied at each shore height nested in each location. At the warm-edge population 443 

(MW) germling lengths from both low and high shore demonstrated greatest growth in the cooler range 444 

of temperatures tested (24–26°C)). For overall length, warm-edge high shore germlings, were the 445 

longest at 24 and 26 °C compared to all other heights on the shore tested (mean length ± SD; 408.73 ± 446 

46.03 µm  and 399.49 ± 42.61 µm respectively) and declined significantly in temperatures beyond 26 447 

°C (22 < 24 = 26 > 28 > 30 > 32 °C; P<0.05, Table S5; Fig 2). Similarly, warm-edge low shore 448 

germlings grew optimally at 22- 26°C, (274.03 ± 37.21 µm – 352.52 ± 66.11 µm) with a significant 449 

decline in growth after 26 °C (22 = 24 = 26 > 28 > 30 = 32 °C;  P<0.01, Table S5; Fig 2). For the non-450 

edge population, germling growth was greater in warmer range of temperatures tested. Non-edge high 451 

shore germling growth was sustained across a wider thermal breadth between 22–28°C and low shore 452 

between 24–28 °C (Fig. 2). Non-edge high shore germlings were the greatest between 24 - 28°C 453 

(356.48 ± 43.84 µm – 377.24 ± 33.14 µm) and were significantly longer than other temperatures tested 454 

(22 < 24 = 26 = 28 > 30 > 32 °C; P <0.001, Table S5, Fig 2). Non-edge low shore germlings growth 455 

peaked at 28 °C (204.78 ± 41.44 µm) and were significantly greater than germling length tested at other 456 

temperatures ((22 < 24 = 26 < 28 > 30 > 32 °C; P <0.05, Table S5, Fig 2). For all germlings despite 457 

location or height on the shore, temperatures beyond 28 °C showed significantly reduced growth of 458 

germlings with substantial inhibitory effects at 30 ºC for warm-edge germlings.  At the most extreme 459 

temperature, 32 °C, germlings from the non-edge location grew 3-4 fold slower than at their maxima 460 

and those from the warm-edge location grew 4-5 fold slower.  461 

 462 

At the level of the individual, the effect of temperature varied significantly with male identity for 463 

germling length for shore height and location (temperature × male interaction; Table 3), which  464 

provides evidence of heritable genetic variation in thermal tolerance in different populations of 465 

Hormosira banksii. The effect of temperature also varied with parental identity (a significant 466 

temperature x male x female interaction, Table 3) with ~2% of the variance in growth of all germlings 467 

attributed to the variation in temperature effects among male/female combinations. 468 

 469 

The effect of temperature on the ontogenic development of germlings varied among locations, heights 470 

on the shore and among genotypes (Fig. 3).  Overall, germlings from the warm-edge location developed 471 

more rapidly than those from the non-edge location (significant location × temperature interaction for 472 

stages 0, 3 and 4, Table 4), with up to 60% of warm-edge germlings reaching stage 3 or 4 after 5 days, 473 

in contrast to only 20% from non-edge (Fig. 3a, c). The proportion of warm-edge germlings with 474 

delayed development (i.e. stage 0) increased steadily in temperatures that surpassed the temperatures 475 

optimal for growth (24–26 °C) reaching ~85% at 32 °C.  At the non-edge location, between 5 and 15% 476 

of germlings had delayed development across all temperatures except for high rates of ~40% at 32 °C 477 

(Fig. 3b, d).  Development at 32 °C was characterised by enlargement of the germinating cell rather 478 

than through cell differentiation and rhizoid development.  479 

 480 

The proportion of germlings at any stage, or with delayed development in stage 0, did not vary with 481 

temperature and height on the shore in either location (non-significant temperature × height on shore 482 

interactions, Table 4). However, the effect of temperature varied significantly with male identity for 483 
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the proportion of germlings in stage 2- 4 (genotype by environment interaction; Table 4) indicating 484 

that there is heritable genetic variation in the effects of temperature on rates of ontogenic development. 485 

 486 

 487 

3.4. Effects of temperature on photophysiological traits 488 

Temperature had a direct effect on the photochemical efficiency of PSII at a sub-saturating and 489 

saturating light intensities (LY(II), HY(II), respectively) amongst all germlings, but there were no 490 

significant interactions with location or heights on the shore (Table 5; Fig. 4). Germlings all showed 491 

similar photophysiological responses to increasing temperature, with maximum quantum yield and 492 

photosynthetic efficiency being relatively constant between 24 °C and 28 °C and decreasing at 32 °C 493 

(Fig. 4).  Maximum quantum yield (FV/FM) was generally greater in warm-edge germlings compared 494 

to non-edge germlings but did not differ among heights on the shore or temperature (Fig. 4, Table 5).   495 

 496 

High and low shore germlings used regulated nonphotochemical quenching (Y(NPQ)) as a means of 497 

photoprotection, with Y(NPQ) remaining similar under ambient and high light intensity (Fig 4, Table 498 

5). However, germlings from the warm-edge location diverted more energy proportionally to Y(NPQ) 499 

under high light intensities than those from the non-edge location (Fig. 4; Table 5).  This was also 500 

evident with the ratio of regulated nonphotochemical quenching under ambient and high light (HL: LL 501 

Y(NPQ), Fig. 4, Table 5) where the germlings from the warm-edge location had ratios above 1 502 

(indicating increased regulated quenching of energy at saturating light intensity) compared to 503 

germlings from the non-edge location which had ratios below 1 (indicating increased unregulated 504 

quenching, or potential photodamage under high light).  Baseline fluorescence (Ft), a proxy for 505 

photosynthetic pigment content, was significantly higher in the germlings from the non-edge location 506 

and those from high on the shore (Table 5).  For all photophysiological traits, there were no significant 507 

interactions between temperature and location or height on the shore, indicating that germling 508 

responses to temperature did not vary at regional and local scales (Table 5). 509 

 510 

4. Discussion 511 

Populations inhabiting the warm range edge of distributions are suggested to be at the forefront of 512 

climate change. The increasing prevalence of extreme climate events such as heatwaves may challenge 513 

marine macroalgal dominated populations that have limited physiological plasticity to tolerate 514 

prolonged, elevated temperatures or reduced capacity to adapt (Wernberg et al., 2018; Gurgel et al., 515 

2020).  In this study, germlings of the dominant intertidal macroalga, Hormosira banksii, demonstrated 516 

contrasting thermal performance curves which was governed by the thermal environment from where 517 

they originated rather than their relative distributional origin. Warm-edge germlings had greater growth 518 

rate and development and a narrower thermal breadth, but were sensitive to higher temperatures 519 

compared to non-edge germlings, which grew optimally across a wider range of temperatures. Relative 520 

position on the vertical shore, had a greater influence on thermal physiology and breadth illustrated by 521 

wider thermal breadth for non-edge, high shore germlings. Warm-edge germlings, however, had 522 

greater capacity to regulate excess energy as nonphotochemical quenching (Y(NPQ)) when exposed to 523 

greater temperature and light, suggesting they are less photophysiologically sensitive than non-edge 524 

population germlings. Evidence of heritable genetic variation (significant genotype by environment 525 

interaction) found for growth and development indicate that there is potential for adaptation in thermal 526 

tolerance traits. These physiological responses coincided with lower genetic diversity, restricted gene 527 

flow and evidence of inbreeding at warm-edge populations. This suggests that warm-edge germlings 528 

utilise physiological plasticity to tolerate short-term exposure (hours-days) to environmental stressors 529 

but over longer time scales (years) may potentially be less thermally buffered and at greater risk to 530 

global warming.  531 

 532 

In review



  Sensitivity to warming in rear edge macroalgae 

4.1. Thermal effects of physiology 533 

Thermal history at study locations played an important role in governing thermal tolerances in H. 534 

banksii germlings.  Germlings grew and developed faster in the warm-edge population but in the cooler, 535 

narrower range of temperatures tested, compared to non-edge germlings.  Although previous research 536 

found that 90% of seaweeds displayed population level variation in upper thermal limits (King et al., 537 

2017), which agrees with our findings, the result of increased thermal sensitivity to high temperatures 538 

for warm-edge germling growth is contrary to previous research.  Many studies on marine macrophytes 539 

and invertebrates in lower latitudes were found to be more tolerant of higher temperatures, as they 540 

generally experience greater temperatures throughout their life history (Gerard and Du Bois, 1988; 541 

Stillman and Somero, 2000; Kelly et al., 2012; Sunday et al., 2012; Mota et al., 2018).  Air temperature 542 

data collected from local meteorological stations demonstrated that the warm-edge population (Minnie 543 

Water) experience similar annual maximum monthly temperatures as the non-edge population (Pearl 544 

Beach), but warmer minimum monthly temperatures, less seasonal variation and fewer days over 35 545 

°C. This would suggest that the warm-edge population should also be more thermally tolerant. 546 

However, previous research on the effects of desiccation stress on adult thalli of H. banksii from the 547 

same warm-edge site (Minnie Water), adults were also more thermally sensitive to higher temperatures 548 

(Clark et al 2018).  Further, previous research also found a warm-edge macroalgal population was not 549 

more thermally tolerant than cooler populations and proposed that the warm-edge population was 550 

thermally maladapted  (Pearson et al., 2009). The low gene flow and low genetic diversity found in the 551 

warm edge populations of this study may support local adaptation to conditions (discussed in section 552 

4.2), however physiological adaptation and local site effects may also play an important role in shaping 553 

thermal performance (discussed further in this section).    554 

 555 

Our result of narrower thermal breadth of warm-edge population is consistent with the climate 556 

variability hypothesis of narrower thermal breadth towards lower latitudes (Stevens 1989). However, 557 

a recent study of a non-edge population of a subtidal macroalgal species (Scythothalia dorycarpa) had 558 

similar thermal safety margins (defined as the the temperature buffer between an organisms upper 559 

thermal‐tolerance limit and the maximum ambient temperatures it experiences’) to warm-edge 560 

populations but different absolute temperature tolerances, which demonstrated that not all species at 561 

distributional limits have a narrower thermal breadth (Bennett et al., 2015). One explanation for our 562 

result of different thermal breadths for both populations is that intertidal species are exposed to dynamic 563 

environmental stress imposed by the terrestrial and marine environment, opposed to constantly being 564 

submerged, therefore differences such as emersion and air temperature variation may be more 565 

important in shaping thermal niche. The significant difference in thermal breadth in non-edge high and 566 

low shore germlings illustrates how local scale effects in the intertidal can influence thermal 567 

performance.   568 

 569 

Despite locational differences in thermal regimes among locations, germlings of H. banksii 570 

demonstrated similar photophysiological responses to elevated temperatures. Divergence among 571 

locations in the ability to tolerate greater light intensity, however, was found for dissipation of excess 572 

energy. The lack of any interactions between temperature and location for photophysiological 573 

parameters in H. banksii suggests that germlings have a high degree of plasticity, and can adjust their 574 

photosystems to tolerate differences in light and temperature regimes. Despite significant reductions 575 

of growth at 28 °C for warm-edge germlings and 30 °C for non-edge germlings, H. banksii was still 576 

able to maintain a high level of PSII efficiency in ambient and high light intensities across 24 and 28 577 

°C, suggesting acclimation of photosystems (Major and Davison 1998). This result is consistent with 578 

previous studies which also found no significant temperature interactions in photosynthetic response 579 

of macroalgae (Clark et al., 2013; McCoy and Widdicombe, 2019). The adjustment of photosystems 580 

to different temperatures and light intensities to optimise photosynthesis may be an important trait for 581 
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intertidal macroalgae as temperature and light gradients can change rapidly with wave action and tidal 582 

cycles. Furthermore, in locations closer to the equator, light intensity is greater seasonally, therefore 583 

warm-edge germlings may be able to tolerate higher light intensity through phenotypic plasticity 584 

indicated by more energy being dissipated via Y(NPQ) rather than Y(NO), whereas non-edge 585 

germlings are more light sensitive indicated by the greater proportion of Y(NO).  This may also explain 586 

the greater growth reduction at higher temperatures for germlings in the warm-edge location as more 587 

energy is being diverted towards photoprotection rather than to photochemistry. In sporophytes of the 588 

subtidal kelp Ecklonia radiata, physiological performance was maintained in higher temperatures 589 

through an increase in critical light demand (EC) (Staehr and Wernberg, 2009).  This reduction allowed 590 

for similar levels of light limited photosynthesis to be achieved in warm and cool adapted populations 591 

found at different latitudes, consistent with this study.    592 

Growth of germlings from low and high on the shore was also affected by differences in local 593 

temperatures, indicated by significant interactions between height on the shore and temperature.  594 

Temperatures recorded by HOBO pendants in the high shore at both locations were significantly more 595 

variable than low shore temperatures.  These results are consistent with a growing body of research 596 

that suggests that local scale topography and environmental conditions may be more important in 597 

driving physiology and species’ distributions than larger regional effects of climate (Helmuth et al., 598 

2002, 2006; Helmuth, 2009).  For example, local scale topography and environmental conditions 599 

experienced by individuals of the intertidal mussel Mytilus californianus can result in body 600 

temperatures varying between 6 to 13° C within a population at a given time (Helmuth and Hofmann, 601 

2001; Harley, 2008). Consequently, temperatures experienced by individuals may not be easily 602 

predicted by larger scale variation in temperatures (e.g., among latitudes), but instead be a mosaic of 603 

smaller scale hot and coldspots. In this study, the warm-edge location is characterised by large boulders 604 

that can shade H. banksii and trap small pools of water, potentially reducing the stress experienced by 605 

individual thalli in contrast with temperatures experienced on flatter rock platforms such as at the non-606 

edge location. The shore topography at the warm-edge location could thus modify the thermal exposure 607 

of individuals and lead to similar growth rates of germlings from low and high on the shore as found 608 

in this study.  609 

Maintaining thermal tolerance across broader temperatures can be physiologically costly, therefore 610 

germlings may not grow optimally across all temperatures (Huey et al., 2012).  This is demonstrated 611 

by differences in optimal temperatures for germling growth and may reflect increased energy 612 

dissipation (i.e., non-photochemical quenching) and decreased photochemistry (YII) with increased 613 

temperatures and light intensities likely experienced for longer periods during low tide high on the 614 

shore (Davison and Pearson, 1996). In addition, the reduced growth and narrow thermal optima 615 

amongst low shore germlings in both populations may reflect light limited photosynthesis of adults as 616 

they experience longer periods spent submerged compared to those on the high shore, while optimising 617 

growth within a narrow range of temperature that they most commonly experience (Huey et al., 2012).  618 

There were no significant interactions between temperature and height on the shore for photosynthetic 619 

parameters, suggesting phenotypic plasticity for these photophysiological traits. Given that intertidal 620 

macroalgae at different heights on the shore must contend with dynamic variation in light and 621 

temperature during daily tidal cycles, it suggests that photosystems need to be able to rapidly 622 

acclimatise to different light and temperature regimes (Hanelt et al., 1993). Over longer time scales, 623 

adaptation of the population at the local scale involving genotypes tolerant to the prevailing thermal 624 

and light regime may also be important (Hanelt et al., 1993; Al-Janabi et al., 2019).  625 

The potential for adaptation in temperature tolerance traits amongst H. banksii germlings is indicated 626 

by a significant male x temperature interaction for germling length and ontogenic development. This 627 
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is consistent with earlier investigations of this species (Clark et al., 2013) and suggests that as 628 

temperatures increase with global warming, genotypes that are better able to tolerate higher 629 

temperatures will be favoured (Deutsch et al., 2008; Sunday et al., 2012; Fusi et al., 2015). This will 630 

be particularly important for populations that have limited gene flow such as the warm-edge 631 

population. A significant interaction between female identity and temperature was also found for the 632 

proportion of germlings that did not develop (stage 0), suggesting a role for either female genotype or 633 

non-genetic maternal effects in thermal responses. Maternal effects have been identified previously in 634 

different organisms   (e.g. bryozoans, Marshall, 2008; terrestrial plants, Galloway et al., 2009; sea 635 

urchins, Foo et al., 2012; fish, Chambers and Leggett, 2015) and are potentially relevant in H. banksii 636 

where egg size differs among different females (Clark, 2016). Maternal environment may impact the 637 

resources available for reproduction which can affect egg size and growth trajectory of offspring (Wolf 638 

and Wade, 2009). The significant interaction between temperature and parental identity (i.e., male ×  639 

female ×  temperature) suggests that different genotypes are more susceptible to different temperatures.  640 

There were no interactions between temperature and male or female identity for any of the 641 

photosynthetic parameters, suggesting that photosynthesis is highly regulated amongst individuals.  642 

This agrees with previous studies in which no heritable genetic variation was found in H. banksii 643 

photosynthetic traits (Clark et al., 2013). 644 

4.2. Genetic diversity and structure 645 

Consistent with previous studies (Coleman et al., 2011a, 2019; Miller et al., 2019) we found strong 646 

genetic structure between the warm-edge and non-edge regions (~ 500 km apart) as well as isolation 647 

by distance suggesting that dispersal capacity is limited across long distances as well as between 648 

neighbouring populations (> 50 km). Moreover, trends for lower estimates of genetic diversity towards 649 

distributional edges found in this study is in accordance with previous studies of H. banksii across a 650 

longitudinal gradient (Miller et al., 2019) and other macroalgal species (Faugeron et al., 2004; Teixeira 651 

et al., 2016; King et al., 2017; Wernberg et al., 2018).  The observed patterns of lower genetic diversity 652 

at warm-edge populations is suggested to be the result of reduced gene flow and connectivity which 653 

can create isolation among populations and reduce within population genetic diversity (Hampe and 654 

Petit, 2005). In addition, as distributional limits often represent the physiological limits of a species, 655 

environmental conditions can impose strong selection pressure resulting in decreased diversity as 656 

environmental conditions and habitat become suboptimal with only tolerant genotypes and phenotypes 657 

persisting at range edges. While we cannot tease apart these mechanisms with the neutral markers used 658 

here, the early life stages of H. banksii from warm-edge populations had a narrower range of thermal 659 

performance compared to populations found within the center of its distribution suggesting that 660 

reduced genetic diversity may constrain responses. With lower genetic diversity, the warm-edge 661 

population may not have the range of the functional responses such as greater tolerance for higher 662 

temperature, however, greater regulated nonphotochemical protection in warm-edge germlings, 663 

suggests that this population may have greater phenotypic plasticity to tolerate dynamic light 664 

conditions.  665 

Moderate gene flow is evident between neighbouring H. banksii populations within each warm-edge 666 

and non-edge region separated by < 50 km.  Dispersal of gametes or zygotes is not a likely method of 667 

long-distance dispersal as fertilised zygotes sink to the substrate and adhere within hours of fertilisation 668 

(Dimartino et al., 2015). Rather, rafting of buoyant dislodged adult thalli which drift with ocean 669 

currents with the aid of air bladders or vesicles has been suggested as the most likely method of long-670 

distance dispersal and has been evident amongst different macroalgal species (Muhlin et al., 2008; 671 

Valero et al., 2011; Bussolini and Waters, 2015; Coleman et al., 2019). There is limited empirical 672 

evidence that supports whether floating thalli contribute to long distance gene flow in H. banksii, 673 
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however a recent study suggests that floating thalli can end up in estuaries where they can grow and 674 

survive (Coleman et al., 2019). The moderate but significant levels of genetic structure between 675 

neighbouring populations within each non-edge and warm-edge region may show restriction in gene 676 

flow possibly due to the existence of physical barriers such as sandy beaches, and mouths of estuaries 677 

which may serve as barriers to gene flow in other macroalgae (Billot et al., 2003; Coleman, 2013). 678 

 679 

Within smaller scales (within 5-10 m), gene flow of H. banksii was not restricted between vertical 680 

heights on the intertidal shore which agrees with other studies on macroalgae (Engel et al., 2004; 681 

Tatarenkov et al., 2005; Teixeira et al., 2016; Bellgrove et al., 2017).  The intertidal is characterised by 682 

steep environmental gradients suggesting selection for stress-tolerant genotypes on high shores may be 683 

an important driver of genetic structure. This has been demonstrated amongst barnacles (Schmidt and 684 

Rand, 2001), gastropods (Johannesson et al., 1995) as well as amongst hybrids of the macroalgae Fucus 685 

vesiculosus and Fucus spiralis (Billard et al., 2010; Zardi et al., 2011).  Nonetheless, the lack of small-686 

scale genetic structure between shore heights found in this study, suggests that gene flow is 687 

unobstructed and that H. banksii zygotes and gametes may be readily dispersed across these smaller 688 

distances (Dudgeon et al., 2001). Studies on the attachment strength of H. banksii zygotes have found 689 

that adhesion to the substrate is not at maximum strength until 24 h after fertilisation suggesting that 690 

zygotes could potentially be dislodged and recruit elsewhere (Dimartino et al., 2015).  Specific habitat 691 

types related to strong environmental gradients within the intertidal have been found to influence 692 

phenotypic divergence independently of genetic structure (Engel et al., 2004; Zardi et al., 2013) Zardi 693 

et al. 2013). Lack of differences at small scales suggest that H. banksii may survive living in different 694 

environmental gradients through phenotypic plasticity rather than genetic differentiation as 695 

documented in F. vesiculosus (Zardi et al., 2013).  This suggests that thermal exposure within the 696 

intertidal may not necessarily select for different genotypes but perhaps genotypes that are highly 697 

plastic.  An alternative explanation is that adaptive genetic differentiation between tidal heights may 698 

exist, but is not apparent in our neutral markers (which only show variation due to dispersal and 699 

connectivity, not selection). Testing this idea would require use of markers such as SNPs which 700 

examine portions of the genome under selection.  701 

 702 

Genetic diversity was found to be lower at warm-edge populations. This is not surprising as these 703 

populations are at the edge of their equatorward distribution, where populations are more fragmented, 704 

conditions are not optimal and macroalgal populations are therefore at their physiological threshold. 705 

The lower genetic diversity found at these populations suggests that these populations may lack the 706 

potential to adapt to future warming and be particularly vulnerable to extreme climate events (i.e. heat 707 

waves).  Previous studies have already shown local extinction in warm-edge populations of macroalgal 708 

populations with extreme climate events which may be a consequence of a smaller gene pool (Araújo 709 

and Williams, 2001; Smale and Wernberg, 2013; Wernberg et al., 2018).  710 

 711 

 712 

5. Conclusions 713 

The results of this study provide evidence that germlings of H. banksii inhabiting populations within 714 

the warm-edge of its distribution may at risk to increases in temperatures associated with global 715 

warming (Fig. 5). The sensitivity to higher temperatures, narrower thermal breadth as well as relatively 716 

low genetic diversity and limited gene flow are all indications of populations that are vulnerable to 717 

warming (Pearson et al., 2009; Mota et al., 2018; King et al., 2019). Significant genotype by 718 

environment interactions found for growth and ontogenic development suggests that there is heritable 719 

genetic variation in growth and development under different temperatures, which could be important 720 

particularly for the warm-edge populations with lower genetic diversity and gene flow. Our 721 
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experimental data show that these warm-edge populations may also be surviving through phenotypic 722 

plasticity by obtaining similar levels of photochemistry through greater levels of regulated non-723 

photochemical quenching (photoprotection) at higher light and temperature than non-edge population, 724 

however over the long-term the genetic impoverishment and reduced gene flow may be problematic as 725 

global warming and extreme climate events continue to push species past their physiological limits. 726 

The prevalence of greater number of hot days (days over 35 °C) in non-edge populations, suggests that 727 

the non-edge population may be at risk to habitat fragmentation.  Greater tolerance to higher 728 

temperatures as well as the significant genotype x environment interactions suggest that non-edge 729 

populations may be locally adapted to local environmental conditions and have heritable genetic 730 

variation in thermal tolerance traits.  Further greater genetic diversity and gene flow suggests that the 731 

non-edge population have greater connectivity and therefore available for genetic rescue from 732 

surrounding populations. 733 

 734 

Contrasting the relative magnitude of within-population variation to variation in thermal responses on 735 

larger spatial scales, this study shows that the interaction between temperature and location comprised 736 

an effect size of 15% of the total variation in growth, the interaction between temperature and heights 737 

on the shore had an effect size of 3%, and the interaction between temperature and male-female 738 

combination had an effect size of 2%. This within-population variation in thermal tolerance will be 739 

particularly important under a changing climate as populations with greater diversity will have a 740 

broader suite of tolerant genotypes for selection to act upon  (Reusch, 2014; Wernberg et al., 2018). 741 

The results of this study and previous research on genetic diversity of H. banksii across its species 742 

distribution (Miller et al 2019) has helped improve predictions of how this species will respond to 743 

ongoing warming and identified potentially sensitive populations. Conservation efforts such as 744 

transplanting tolerant individuals or reseeding to increase genetic diversity in genetically impoverished 745 

populations may aid in providing greater functional resilience to warming climates  (Campbell et al., 746 

2014; Wood et al., 2019; Fredriksen et al., 2020).  747 

  748 
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Figure legends 

 

Figure 1: Map of locations from which H. banksii populations were collected from southeastern 

coast of Australia.  Sea surface Temperature (SST) data reflect average SST taken from 2003 - 

2015 from the Integrated Marine Observing System (IMOS) and used to illustrate coastal 

temperatures.   

 

Figure 2:  Mean (± SD) germling length after 5 days at 6 different temperatures (22, 24, 26, 28, 

30 and 32 ° C) from the warm-edge and non-edge populations. Data from all crosses are pooled. 

(n = 54).  

 

Figure 3:  Percentage of H. banksii germlings reaching stage 1, 2, 3 and 4 or remaining in stage 0 

after incubation at 6 different temperatures (22, 24, 26, 28, 30 and 32 ° C) for 5 days following 

fertilisation. Germlings are from warm-edge (A, C) and non-edge (B, D) populations. White 

columns represent ontogenic stage 0 (fertilisation through condensation of the chloroplasts); dark 

grey is stage 1 (protrusion of germling cell wall to create a pear shape which later develops into 

the rhizoid); medium grey is stage 2 (division of the germling germinating cell and elongation of 

a single rhizoid); light grey is stage 3 (elongation of the rhizoid coupled with secondary and tertiary 

rhizoid development); and black is stage 4 = paraphysis development on top of the germinating 

cell).  Data represent pooled crosses (n= 40) amongst high shore (HS; A, B). low shore (LS; C, D). 

 

Figure 4: Mean proportion of light energy dissipated by H. banksii germlings amongst three 

complementary PSII pathways: photochemistry (white bars, Y(II); unregulated nonphotochemical 

quenching (grey bars, Y(NO) or regulated nonphotochemical quenching (black bars, Y(NPQ)) and 

potential photodamage, in germlings from warm-edge (A, C, E, G) and non-edge (B, D, F, H) 

populations from high on the shore (A, B, E, F) and low on the shore (C, D, G, H) after incubation 

for 120 h  at three temperatures: 24, 28 and 32 °C. Photophysiological measurements were made 

under two irradiances - low light: 32 µmol photons m-2 s-1 (A-D) and high light 113µmol photons 

m-2 s-1 (E-H). 

 

Figure 5: Conceptual model of summarized data indicating how physiological traits differed 

amongst high and low on the shore as well as between warm-edge and non-edge locations. Thermal 

breadth was determined through arbitrarily setting a threshold of 80% of maximum germling 

length. Optimal temperature for growth was determined through pairwise comparisons. Ontogenic 

staged reached was the furthest developmental stage reached within 120 h. Photosynthetic 

efficiency stated are the overall changes in the proportion of energy dissipated in to unregulated 

nonphotochemical quenching (Y(NO) or regulated nonphotochemical quenching (Y(NPQ)) at 

both light intensities. Temperature data (air and SST) are presented for each location only.  
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Table 1:  The number of individuals sampled (n), total number of alleles (a), mean number of alleles (± SD), unique alleles, observed 

heterozygosity (HO) and expected heterozygosity (HE) for Hormosira banksii for each height on the shore within each of the four 

locations. 

 

               

Location 
Height on the 

shore 
n 

Total number of 

alleles (a) 

Mean number of 

alleles 

Unique 

alleles 
HO HE 

Angourie High 27 26 2.60 ± 1.17 2 0.189 0.256 

 Low 32 25 2.50 ± 0.97 0 0.166 0.250 

Minnie Water High 32 26 2.60 ± 1.07 0 0.201 0.269 

 Low 32 26 2.60 ± 1.26 1 0.197 0.278 

Pearl Beach High 32 27 2.70 ± 0.67 0 0.299 0.310 

 Low 32 24 2.40 ± 0.97 0 0.375 0.315 

Bilgola Beach High 27 26 2.60 ± 0.70 0 0.400 0.396 

  Low 25 28 2.80 ± 0.79 2 0.403 0.399 
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Table 2: Pairwise FST estimates between all pairs of heights on the shore (L and H) and locations Bilgola Beach (BB), Pearl Beach (PB), 

Minnie Water (MW), and Angourie (ANG).  Significant values are highlighted in bold and the adjusted p-value using Bonferroni 

Correction (P < 0.002).  Grey shading shows comparisons between non-edge and warm-edge regions. 

                      

  Warm-edge  Non-edge 

  ANGL ANGH MWL MWH  PBL PBH BBL BBH 

Warm-edge ANGL          
  ANGH 0.002        

 
  MWL 0.066 0.105       

 
  MWH 0.032 0.075 0.000      

 
           
Non-edge  PBL 0.374 0.413 0.276 0.302      

 
  PBH 0.358 0.392 0.286 0.303   0.020   

 
  BBL 0.375 0.387 0.318 0.347   0.150 0.188  

 
  BBH 0.338 0.355 0.274 0.309   0.150 0.190 0.000   
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Table 3:  Results of analysis of variance of Hormosira banksii germling length 5 days (120 h) post fertilisation. Germlings from non-

edge and warm-edge populations at low and high shore heights in 9 different genotypes were grown at 6 temperatures (22, 24, 26, 28, 

30 and 32 ºC).  Location, height on the shore, and temperature are fixed factors, with male and female nested in shore height and location 

as a random factor. Results were achieved using 999 permutations and tested at a significance level of 0.05.   

 
ANOVA Source Germling Length 

 df F P 

Location 1 0.556 0.749 

Height 1 25.701 0.001 

Temperature 5 159.160 0.001 

Location x Height 1 3.871 0.029 

Location x Temperature 5 22.746 0.001 

Height x Temperature 5 5.501 0.001 

Male (Location x Height) 8 6.524 0.004 

Female (Location x Height) 8 1.840 0.163 

Location x Height x Temperature 5 1.976 0.024 

Temperature x Male (Location x Height) 40 1.680 0.027 

Temperature x Female (Location x Height) 40 1.168 0.281 

Male (Location x Height) x Female (Location x Height) 16 3.148 0.001 

Temperature x Male (Location x Height) x 

Female (Location x Height) 
76 2.927 0.001 

Residuals 1080   

Bold denotes significance at P < 0.05 
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Table 4: Results of analysis of variance of the percent of Hormosira banksii germlings in each developmental stages, (stage 0-4) at 

120 h after fertilisation. Germlings from non-edge and warm-edge populations, and from low and high on the shore in 9 different 

crosses were grown at 6 temperatures (22, 24, 26, 28, 30 and 32 ºC).  Location, height on the shore, and temperature are fixed factors, 

with male and female nested in shore height and location as a random factor. Probabilities were calculated using 999 permutations and 

tested at a significance level of 0.05.  

  

  Ontogenic Development 

ANOVA Source Stage 0  Stage 1  Stage 2  Stage 3  Stage 4 

 df F P  F P  F P  F P  F P 

Location 1 0.712 0.596  3.838 0.026  1.754 0.178  8.523 0.003  8.079 0.002 

Height 1 0.320 0.950  0.321 0.944  0.338 0.912  0.286 0.971  0.382 0.895 

Temperature 5 10.595 0.001  10.354 0.001  22.597 0.001  10.430 0.001  9.302 0.001 

Location x Height 1 0.502 0.784  3.528 0.031  3.276 0.046  0.584 0.714  0.605 0.73 

Location x Temperature 5 2.232 0.009  1.222 0.226  0.829 0.653  4.438 0.001  4.055 0.001 

Height x Temperature 5 1.091 0.341  1.336 0.189  0.484 0.986  1.064 0.388  1.110 0.338 

Male (Location x Height) 8 2.803 0.042  1.638 0.192  0.667 0.730  3.932 0.012  4.512 0.004 

Female (Location x Height) 8 2.301 0.060  2.395 0.055  2.709 0.048  1.470 0.239  1.537 0.218 

Location x Height x 

Temperature 5 0.766 0.720  0.500 0.974  1.475 0.102  1.003 0.475  1.117 0.337 

Temperature x Male (Location  

x Height) 40 0.850 0.718  0.977 0.537  1.567 0.050  1.799 0.010  1.952 0.006 

Temperature x Female (Location 

x Height) 40 1.836 0.013  1.326 0.127  1.394 0.104  1.072 0.385  1.284 0.162 

Male (Location x Height) x 

Female (Location x Height) 16 1.382 0.148  1.001 0.452  1.791 0.042  1.105 0.358  1.019 0.439 

Residuals 80                             

Bold denotes significance P < 0.05               
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Table 5:  Results of analysis of variance of the temperature effects on chlorophyll-a fluorescence 

F, maximum quantum yield (FV/FM), complementary photosynthetic pathways of photosynthesis 

Y(II), nonregulated nonphotochemical quenching Y(NO), regulated nonphotochemical quenching 

Y(NPQ) and high light (HL) to low light (LL) ratio of Y(NPQ).  Location, height on the shore and 

temperature are fixed factors. Probabilities were calculated using 9999 permutations and tested at 

a significance level of 0.05. 

 

Source F FV/FM HL:LL YNPQ 

 df F P F P F P 

Location 1 12.17 0.003 4.39 0.050 0.09 0.790 

Height 1 4.83 0.038 1.91 0.178 0.74 0.430 

Temperature 2 1.61 0.222 5.40 0.011 9.35 < 0.001 

Location x Height 1 0.69 0.417 0.09 0.771 0.84 0.397 

Location x Temperature 2 0.82 0.446 0.89 0.433 2.18 0.123 

Height x Temperature 2 0.06 0.938 0.02 0.981 0.46 0.671 

Location x Height x 

Temperature 2 0.10 0.902 0.86 0.4373 0.18 0.872 

Residuals 23               
Source LY(II) LY(NO) LY(NPQ) 

 df F P F P F P 

Location 1 0.46 0.500 3.20 0.091 5.44 0.028 

Height 1 0.56 0.468 0.20 0.666 0.01 0.922 

Temperature 2 8.76 0.001 6.50 0.006 0.89 0.433 

Location x Height 1 1.37 0.255 0.73 0.405 0.01 0.927 

Location x Temperature 2 0.62 0.562 0.40 0.681 0.09 0.918 

Height x Temperature 2 0.26 0.783 0.05 0.947 0.04 0.964 

Location x Height x  

Temperature 2 0.55 0.578 0.10 0.913 0.29 0.755 

Residuals 23               
Source HY(II) HY(NO) HY(NPQ) 

 df F P F P F P 

Location 1 0.52 0.477 6.66 0.016 8.03 0.009 

Height 1 1.47 0.252 0.001 0.982 0.58 0.444 

Temperature 2 25.29 < 0.001 1.70 0.207 3.68 0.044 

Location x Height 1 1.81 0.190 2.68 0.112 0.54 0.467 

Location x Temperature 2 0.44 0.659 0.24 0.783 0.28 0.757 

Height x Temperature 2 1.18 0.327 0.19 0.828 0.74 0.482 

Location x Height x  

Temperature 2 1.11 0.346 0.21 0.809 0.19 0.831 

Residuals 23       
Bold denotes significance at P < 0.05 
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