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Abstract 
In this article we introduce Kurento, an open source WebRTC media server and a set of client APIs 
aimed to simplify the development of applications with rich media capabilities for the Web and 
smartphone platforms. Kurento features include group communications, transcoding, recording, mixing, 
broadcasting and routing of audiovisual flows, but also provides advanced media processing capabilities 
such as computer vision and augmented reality. It is based on a modular architecture, which makes it 
possible for developers to extend and customize its native capabilities with third party media processing 
algorithms. Thanks to all this, Kurento can be a powerful tool for Web developers who may find natural 
programming with its Java and JavaScript APIs following the traditional three-tiered Web development 
model. 

Introduction 
WebRTC is the umbrella term for a number of emerging technologies and APIs having the ambition of 
bringing Real-Time Communications (RTC) to the Web. WebRTC standardization bodies are investing 
huge efforts on addressing most of the problems of creating client-side WebRTC implementations for 
the Web [1]. Thanks to this, both Chrome, Firefox, and Opera browsers support it. This means that, at 
the time of this writing, around 2 billion devices enjoy built-in WebRTC capabilities. This number is 
expected to grow during the next few years as Edge and Safari browsers are creating their WebRTC 
implementations. 
Originally, most WebRTC applications were based on peer-to-peer communication models. However, 
the use of WebRTC media servers and infrastructures for making richer applications is becoming 
common practice. There is not a formal definition of what a media server is and different authors use the 
term with different meanings. In this article, we understand that a media server is just the server side of a 
client-server architected media system. In the same way database servers provide data persistence 
capabilities to Web applications, media servers provide multimedia capabilities to media-enabled 
applications. Following this definition, media server technologies emerged in the 90’s catalyzed by the 
popularization of digital video services. Most of these early media servers were specifically conceived 
for providing multimedia content distribution and transport in two main flavors: streaming media servers 
and RTC media servers. 
Streaming media servers [2] provide media distribution capabilities through transport protocols designed 
for reliability that tend to relax latency requirements. This means, among other things, that these 
protocols typically recover from packet loss in the network through iterative retransmissions. The QoS 
provided through them is convenient for one-way applications such as VoD (Video on Demand) or live 
streaming, where the media information travels from sources to destinations but there is no real-time 
feedback communication. 
RTC media servers [3], in turn, are designed for bidirectional communications. Due to this, the transport 
protocols they implement are designed for low latency and packet retransmissions are not always useful 



for recovering form losses. In these services, the full duplex media information exchange is used to 
provide conversational interactions among users. Due to this, this type of media servers is typical in 
audio and video conferencing systems. Most available RTC media servers are designed and optimized 
for providing one of the following capabilities: 

• Group communication capabilities: These refer to the ability of enabling groups of users to 
communicate synchronously. Most group videoconferencing services require them.  

• Media archiving capabilities: These are related to the ability of recording multimedia streams 
into media repositories and of recovering them later for visualization. Services requiring 
communication auditability or persistence use them. 

• Media bridging: This refers to providing media interoperability among different network 
domains having incompatible media formats or protocols. These are used, for example in 
WebRTC gateways, which interconnect WebRTC browsers with and legacy VoIP systems. 

Following this, in this article we concentrate our attention on RTC media servers introducing Kurento, 
an open source WebRTC media server and a set of client APIs making simple the development of 
advanced video applications for Web and smartphone platforms. Kurento is the Esperanto term for the 
English word 'stream'. We chose this name because we believe the Esperanto principles are inspiring for 
what the multimedia community needs: openness and universality. Kurento modular architecture 
contributes to the state-of-the-art by following a holistic approach, meaning that it has been designed for 
providing, in an integrated way, all types of server-side media capabilities. This includes the three-
specified above but also further ones, such as augmented reality, media content analysis or arbitrary 
media processing; which enable novel use cases for rich person-to-person, person-to-machine and 
machine-to-machine communications. 
The structure of this article is as follows. In the next section, we present an overview of the background 
of this work. Next section introduces the main features of Kurento. Then, a case study aimed to evaluate 
the scalability of Kurento is depicted. Finally, we summarize the main conclusions of this piece of 
research. 

Related work 
Modularity in media server architectures 
In software development, the concept of module is typically used for referring to a specific functional 
block that is hidden behind an interface. However, beyond the intuitive idea of a module, we are 
interested in the stronger concept of modularity. 
From a developer’s perspective, an RTC media server is just a platform (i.e. a technology providing 
capabilities to a system designer for programming application on top.) When bringing the concept of 
modularity to platforms, the main idea is to split systems into smaller parts (i.e. modules) so that there is 
strong cohesion within modules and loose coupling among them. Moreover, for having full modularity 
they should comply with the following additional properties [4]: 

• Isolation: when modules operate together in a system, the internal status of a module should not 
directly affect the status of others. 

• Abstraction: the internal state of a module should be hidden for both the system designer and for 
other modules. In software, abstraction is typically achieved through interfaces that limit how the 
module interact with the external world through a limited set of primitives. 



• Composability: those abstract interfaces should enable components to recombine and to 
reassemble in various combinations to satisfy specific users requirements. In other words, 
modules should behave as building blocks and the system designer’s role is to create the 
appropriate interconnection topology among them to provide the desired logic. 

• Reusability: if a module provides a specific capability, any system requiring such capability 
might reuse the module without the need of re-implementing again the capability. 

• Extensibility: the platform should provide seamless mechanisms for creating and plugging 
additional modules extending the exposed capabilities. 

Modularity brings relevant benefits for developers including cost reduction, shorter learning times, 
higher flexibility, augmentation (i.e. adding a new solution by merely plugging a new module), etc. On 
the other hand, a downside to modularity is that low quality modular systems are not optimized for 
performance. This is usually due to the cost of putting up interfaces between modules. 
In this context, and to the best of our knowledge, there is a single scientific reference dealing with 
modular RTC media servers: the Janus WebRTC Gateway [5]. Being Janus indeed modular, it does not 
comply with all modularity requirements, in particular in what refers to composability, that is not 
supported at all (i.e. Janus modules provide specific application logic and cannot be assembled among 
each other) and reusability, which is only partially supported (i.e. in Janus, different modules need to 
provide similar capabilities due to the lack of composability). Hence, we can conclude that one of the 
most relevant contributions of this article is to present a full modular architecture complying with all the 
above-mentioned modularity requirements. Table 1 in next section provides a comparison of each 
modularity dimensions in several RTC media servers. 

Media servers for group communications 
Since their early origins, group communications were one of the most popular applications of 
videoconferencing services. Due to this, today many RTC media servers concentrate on providing such 
capability [6][7]. In current state-of-the-art, there are two widely accepted strategies for implementing 
group communications on RTC media servers: media mixing and media forwarding. 
Media mixing is performed through the Media Mixing Mixer (MMM) Topology, in which multiple 
input media streams are decoded, aggregated into a single output stream and re-encoded. For audio, 
mixing usually takes place through linear addition. For video, the typical approach is to perform video 
downscaling plus composite aggregation to generate a single outgoing video grid. Hence, a participant in 
a group RTC session based on MMM sends one media stream (its own audio and/or video) and receives 
one media stream (the mixed audio and/or video of all participants). As MMM were the common 
topology on H.323, MMM are sometimes informally called MCUs in the literature [8].  
Media forwarding is typically performed through a Selective Forwarding Middlebox topology. RTC 
media servers implementing this topology are sometimes called Selective Forwarding Units (SFU) in the 
literature [9]. An SFUs clones and forwards (i.e. routes) the received encoded media stream onto many 
outgoing media streams. This means that a participant in a group RTC session based on SFUs sends one 
media stream (its own audio and/or video) and receives N-1 media streams (the audio and/or video of 
the rest), being N the total number of participants. For the sake of simplicity, RTC media servers 
implementing the Media Switching Mixer (MSM) topology might also be called SFUs. SFUs and MSM 
share most of its properties being the only difference that each SFU outgoing stream is uniquely mapped 
to one of the incoming streams [10]. 



In current state-of-the-art, RTC most media servers just implement one of the above-mentioned 
topologies and do not provide flexible mechanism for using the rest. Some solutions [4] enable the 
ability to use different topologies as pluggable modules, so that, different applications may use different 
topologies by consuming different module capabilities. In this context, the contributions of this article 
are straightforward: following our holistic approach, our media server offers all topologies in an 
integrated way. This enables a novel feature that we could define as “topology as an API”, in the sense 
that application developers do not need to be aware of the complexities or internal details of MMM, 
MSM or SFUs. They just need to use the media server API modularity features to interconnect the 
appropriate building blocks in the appropriate way for satisfying application requirements. The media 
server takes care of translating the API calls into the corresponding topologies combinations and of 
implementing the required optimizations and media adaptations enabling the appropriate mechanism to 
be used at the right places. 

Transparent media interoperability 
Transcoding media servers exist since long time ago due to the need of achieving interoperability among 
incompatible media systems [11].  Different media systems tend to have different requirements and, due 
to this, specific formats and codecs were conceived during the years for satisfying them. In addition, the 
existence of different commercial interests in the multimedia arena contributed to the emergence of a 
multiplicity of incompatible codecs [12]. As a result, transcoding RTC media servers have been 
traditionally necessary as soon as a service requires interoperability among different communication 
domains. 
This situation has become even more complex with the arrival of WebRTC given that developers 
typically need to interoperate WebRTC services with legacy IP infrastructures and with the phone 
system [13]. Due to this, many RTC media servers provide transcoding capabilities. However, for 
managing them and create interoperable services, developers need to explicitly manage format and 
codec conversions. This is in general a very cumbersome process which is error prone and requires deep 
knowledge about low level details of media representation. 
In this context, a very relevant contribution of this article is to introduce a novel capability, that we call 
the agnostic media, which performs fully transparent transcoding and format adaptations for developers 
over a wide variety of codecs. To understand how this happens, observe that the modularity 
requirements specified above mandate our modules to be composable. This means that application 
developers should be able to freely interconnect them for generating the desired media processing logic. 
From a practical perspective, this means that, for example, a WebRTC endpoint module receiving video 
encoded with the VP8 codec can be connected with an RTP endpoint sending H.264 encoded video. Of 
course, this type of module pipelining requires the appropriate transcodings which, in our case, take 
place without even requiring developers to know they are happening: the agnostic media detects the 
need of a transcoding and performs it transparently in the most optimal possible way. 

Kurento: the WebRTC modular media server  
As stated above, traditional WebRTC applications are peer-to-peer, so that browsers can directly 
communicate without the mediation of any kind of infrastructure. This is enough for creating basic 
applications but features such as group communications, media stream recording, media broadcasting or 
media transcoding are difficult to implement on top of it. For this reason, most interesting applications 
require using a media server. 



Current state-of-the-art WebRTC media servers are typically monolithic pieces of technology that 
cannot be evolved beyond the above three mentioned capabilities. However, there are many interesting 
additional things we can do with real-time media such as augmented reality, computer vision, or alpha 
blending. These kinds of capabilities might provide differentiation and added value to applications in 
many scenarios such as e-Health, e-Learning, security, entertainment, games or advertising just to cite a 
few. Based on these ideas, we have created Kurento Media Server (KMS) as an evolution of current 
state-of-the-art technologies by providing a modular architecture where further capabilities can be 
plugged as modules. This architecture complies with the 5 main characteristics of modularity: isolation, 
abstraction, reusability, composability, and extensibility. 
In order to provide isolation, abstraction, reusability, Kurento introduces the concept of Media Element. 
A Media Element is a module that holds a specific media capability. For example, the media element 
called WebRtcEndpoint holds the capability of sending and receiving WebRTC media streams, the 
media element called RecorderEndpoint has the capability of recording into the file system any media 
streams it receives, the FaceOverlayFilter detects faces on the exchanged video streams and adds a 
specific overlaid image on top of them, etc. As depicted in Figure 1, Kurento exposes a rich toolbox of 
media elements as part of its APIs based on the following classification: 

• We call endpoint to any media element with the capability of communicating media with the 
external world. WebRtcEndpoint, RecorderEndpoint, PlayerEndpoint or RtpEndpoint are some 
examples of endpoints.  

• We call filter to any media element with the capability of processing media. FaceOverlayFilter, 
PointerDetectionFilter or CrowdDetectionFilter are just examples of filters.  

• We call hub to the media elements that make possible group communications: Composite and 
Dispatcher are examples of hubs 

In Kurento jargon, a graph of connected media elements is called a Media Pipeline. In order to achieve 
composability within a Media Pipeline, in the heart of every Media Element there is an internal we find 
a special element called AgnosticBin, which manages the transformations and adaptations needed for 
enabling seamless interconnectivity among different types of Media Elements. The details of this 
element are discussed in next section. 
Finally, in order to implement extensibility, Kurento has been designed as a pluggable media server. 
Developers can create new modules that can be easily installed on Kurento Media Server (such as the 
Extra Filters group in Figure 1). There are two main flavors of Kurento modules: based on GStreamer 
(low-level technology of Kurento Media Server) and OpenCV (recommended to create computer vision 
filters). 



 
Figure 1. Kurento Media Elements toolbox. 

As a result, Kurento Media Server behaves as a complete media middleware that developers can 
leverage for creating WebRTC applications combining real-time media communications and advanced 
media processing. There are other open source WebRTC media servers available that include Jitsi, 
Janus, Medooze and Licode. Kurento is quite unique, as the following comparisons illustrate their 
differences from the perspective of modularity (summarized in Table 1):  

• Jitsi1 is an open source videoconferencing application that is based on a SFU architecture 
enforced by a video router component called Jitsi Videobridge. It exposes a high-level API to 
access to its capabilities. Due to this, Jitsi can be consider to provide abstraction. However, this 
is the only modular aspect of Jitsi that has been designed more as an application than a 
framework. As a result, the Jitsi Videobridge cannot be extended easily nor combined with other 
types of media processing modules in a seamless way. Due to this, extending Jitsi or developing 
applications based on Jitsi beyond the plain room videoconferencing model is quite complex.  

• Janus2 is a general purpose WebRTC gateway released under the GPL license based on a 
modular architecture. Janus philosophy is similar to the one of Kurento and its abstraction and 
isolation properties are equivalent. However, the Janus modular system lacks some relevant 
modularity properties. For example, Janus modules are not composable at all and their 
reusability is very limited because modules provide typically high level functionalities 
comprising a set of capabilities that cannot be “split” and reused independently. In addition, the 
number of modules that Kurento exposes is significantly higher. 

• Medooze3 is a multiparty videoconferencing service based on a MCU. Medozee, as Janus and 
Kurento, has been conceived as a development framework that exposes an API to developers. 
However, it has not been designed with modularity in mind. Due to this, it is not composable and 

                                                 
1 https://jitsi.org/ 
2 https://janus.conf.meetecho.com/ 
3 http://www.medooze.com/ 



cannot provide easily other types of group communication models such as SFU nor any kind of 
media processing modules (i.e. it is not extensible). 

• Licode4 is a videoconferencing application conceived basing in a very similar philosophy to the 
one of Jitsi but isolating further their components as different processes. Hence, as Jitsi, it 
exposes an abstract API for creating applications on top, but it is not really modular and cannot 
be extended seamlessly with further composable capabilities.  

Table 1. Comparison of the modularity dimensions in different media servers. 

 Isolation Abstraction Composability Reusability Extensibility 

Jitsi ✖ ✔ ✖ ✖ ✖ 

Janus ✔ ✔ ✖ ✔ (partial) ✔ 

Medooze ✖ ✔ ✖ ✖ ✖ 

Licode ✔ (partial) ✔ ✖ ✖ ✖ 

Kurento ✔ ✔ ✔ ✔ ✔ 

As a result, we can conclude that Kurento Media Server implements a novel modularity concept in the 
area of RTC media servers and that its properties and features are quite unique and adapt to the needs of 
developers requiring a really modular WebRTC infrastructure. 

Media Elements architecture 
Kurento Media Server has been implemented in low level technologies based on GStreamer to optimize 
resource consumption. As described before, the key ingredient to provide modularity by Kurento is the 
concept of Media Element. In order to understand how these components internally work, it is worth to 
take a look to the low-level details of their architecture.  
As illustrated in Figure 2, inside a Media Element we find a component called KmsMediaElement, 
which is the base class of all Media Element implementations. In short, a KmsMediaElement provides 
the ability of managing pads and bins. In the GStreamer jargon, a pad is the abstraction used to connect 
different elements, which means that a KmsMediaElement can be connected to other KmsMediaElement, 
thus creating a path through which the media flows. A bin is a GStreamer object representing a chain of 
low-level media processing components. The KmsMediaElement media processing capabilities (e.g. 
crowd detection, face overlay, and so on) are implemented as one of such bins. Finally, we find a special 
bin called AgnosticBin, which is in charge of providing agnostic media, i.e. managing the 
transformations and adaptations needed for enabling seamless interconnectivity of KmsMediaElements. 

                                                 
4 http://lynckia.com/licode/ 



 
Figure 2. Internal structure of a Kurento Media Element. 

The AgnosticBin is a tailor-made bin which is in charge of adapting between different media formats and 
performing the codec adaptation needed by the prospective receivers of the processed media. The source 
pads of the AgnosticBin are then connected with the source pads of the enclosing KmsMediaElement as 
new consumers of media. AgnosticBin is one of the main innovations of the Kurento Media Server in 
relation to GStreamer architecture given that it enables developers to interconnect KmsMediaElement 
with full composability as it clones and adapts the media flows to the specific requirements of each of 
the connected consumers. 

Kurento client and protocol 
Kurento Media Server capabilities are exposed by the Kurento API to application developers. This API 
is implemented by means of libraries called Kurento Clients. These clients exchange JSON-RPC over 
WebSocket messages to control Kurento Media Server (e.g. create a Media Pipeline, connect Media 
Elements, etc.). The format of these messages implement the Kurento protocol. All in all, as shown on 
Figure 3, a developer can use Kurento using the following scenarios: 

a. Using the Kurento JavaScript Client directly in a compliant WebRTC browser. 
b. Using the Kurento Java Client in a Java EE application server. 
c. Using the Kurento JavaScript Client in a Node.js server. 



 
Figure 3. Out-of-the-box Kurento usage scenarios. 

Creating Kurento applications 
From the application developer perspective, and thanks to the composability properties, Media Elements 
are like Lego pieces: the developer just needs to take the elements needed for an application and connect 
them following the desired topology. When creating a Media Pipeline, developers need to determine the 
capabilities they want to use (the Media Elements) and the topology determining which media elements 
provide media to which other media elements (the connectivity). The connectivity is controlled through 
the connect primitive, exposed on all Media Elements. This primitive is always invoked in the element 
acting as source and takes as argument the sink following this scheme:  
sourceMediaElement.connect(sinkMediaElement) 
Following this approach, developers can create applications with media capabilities is a seamless way. 
Figure 4 shows several examples of Media Pipelines together with the screenshot of the application 
implementing each one. First, we can see a group communication application example. This application 
is a N-to-N (i.e. video room) WebRTC communication, supported in Kurento through SFU and MMM 
models. Developers can obtain the SFU model just by interconnecting their WebRtcEndpoints at wish. 
The second example is a 1-to-1 WebRTC application (i.e. a softphone app) with recording capabilities. 
Third, we find a simple example of augmented reality, in which the WebRTC user media is send to 
Kurento Media Server. This media feeds a FaceOverlayFilter, which overlays an image on the top of the 
detected faces in the media. Finally, a computer vision is illustrated with an application with receives the 
live RTSP media of a street cam using a PlayerEndpoint detecting crowds in the media and sent to a 
browser by means of a WebRtcEndpoint in receive-only mode. 



 
Figure 4. Example of applications created with Kurento (Media Pipelines and screenshots). 

Kurento Media Server scalability evaluation 
This section presents an experimental case study aimed to evaluate the scalability of the Kurento Media 
Server. The research question driving this study can be stated as follows: Is KMS capable to support 
large Media Pipelines while maintaining real-time capabilities to applications? 
To address this question, a benchmark application using the Kurento Java client has been developed. 
The aim of this application is to implement a Media Pipeline with a configurable number of N Media 
Elements. As depicted before, the key component to provide interoperability among Media Elements is 
the AgnosticBin. Therefore, in this experiment we use a special kind of Media Element called 
Passthrough, a filter in which the media processing component (see Figure 2) is empty. In other words, 
this media element just provides connectivity (i.e. a couple of raw AgnosticBin components). Our 
application requires two browsers to work: one acting as presenter (i.e. feeding WebRTC user media to 
the KMS) and other one acting as viewer (i.e. receiving the WebRTC media after KMS processing). All 



in all, the Media Pipeline implemented in the applications is the following: WebRtcEndpoint → N x 
Passthrough → WebRtcEndpoint.  
The idea is to execute this application while different key performance indicators are gathered, namely: 
a) internal latency in each Passthrough (this metric is exposed by KMS and can be gathered using the 
client API just asking the Media Element object); b) Number of threads of KMS; c) CPU usage in 
machine hosting KMS; d) RAM memory usage in machine hosting KMS. For the later 3 metrics, a 
custom test component called KmsMonitor has been created to read the current state of the Linux kernel 
(i.e. the /proc folder). In this experiment, the KMS has been hosted in a physical machine with the 
following features: Ubuntu 16.04 64 bits, 8GiB RAM, Intel Quad Core i7 2.00GHz. 
We execute this application with an incremental value of N up to 50 counting 5 by 5. The results are 
depicted on Figure 5. We can see in chart a) of this picture that latency remains in an optimal range. 
Even in the worst case (N=50) the average total internal latency through all the Passthrough media 
elements is quite stable (around 6ms). Regarding the number of threads, the results shows a complete 
linear behavior with slope m=2. This confirms that each new Passthrough consumes a thread per 
AgnosticBin. Finally, both CPU and memory consumption remains stable during this experiment: up to 
80% of CPU and 0.75GiB of RAM memory usage in the worst case (i.e. 50 chained Passthroughs). 
RTC applications imply a hard restriction related to having a low latency (less than 300ms [14]) to allow 
a conversational (bidirectional) communication. Thus, we can conclude that the scalability of the KMS 
in terms of latency is probed due to the fact that very large Media Pipelines can be executed while 
maintaining real-time features to applications. Moreover, in the light of the results we confirm that KMS 
also presents linear performance for the physical parameters (CPU, memory, and number of threads). 
This behavior allows vertical scaling simply increasing the size of the machine hosting KMS (i.e. more 
CPU cores and more memory), and horizontal scalability by adding more KMS instances (typically in a 
cloud environment) [15]. 

 
Figure 5. Kurento Media Server scalability evaluation results. 



Conclusions 
Kurento is an open source WebRTC media server that makes it possible to create media processing 
applications basing on the concept of Media Pipelines, which are created by interconnecting modules 
called Media Elements. Each Media Element holds a specific media capability, whose details are hidden 
to application developers. The Kurento toolbox contains Media Elements capable of, for example, 
recording streams, mixing streams, applying computer vision to streams, augmenting or blending 
streams, etc. In addition, thanks to the pluggable architecture of Kurento, developers can create and plug 
their very own Media Elements. From the application developer perspective, media elements are like 
Lego pieces: one just needs to take the elements needed for an application and connect them following 
the desired topology. This type of modularity is a novelty in the area of RTC media servers.  
Kurento Media Server exposes the capabilities of creating Media Pipelines through a simple network 
protocol based on JSON-RPC. However, for simplifying further the work of developers, we have 
created an abstract client API implementing that protocol and directly exposing Media Elements and 
Pipelines as objects that developers can instantiate and manipulate on client programs. Currently there 
the Java and JavaScript client API are available out-of-the-box for developer. 
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