
ElasTest, an Open-source Platform to Ease End-to-End
Testing

Boni Garcı́a, Micael Gallego, Francisco Gortázar and Luis López

Universidad Rey Juan Carlos,
Calle Tulipán S/N, 28933 Móstoles, Spain

{boni.garcia, micael.gallego, francisco.gortazar, luis.lopez}
@urjc.es

Abstract. The demand for larger and more interconnected software systems is
constantly increasing, but the ability of developers to satisfy this demand is not
evolving accordingly. The most limiting factor is software Verification and Va-
lidation (V&V), which typically requires very costly and complex testing pro-
cesses. The objective of the ElasTest project is to significantly improve the effi-
ciency and effectiveness of the testing process and, with it, the overall quality of
large software systems. To that aim, ElasTest provides an integrated solution for
end-to-end test automation along the development life cycle, including test case
management, deployment, instrumentation, and monitoring for different kind of
applications, including web and mobile.

1 Introduction

Testing large distributed and heterogeneous software systems on cloud based platforms
is increasingly complex. This kind of software systems aggregates different distribu-
ted components, which are typically built and run based on Infrastructure as a Service
(IaaS) combined with operation tools and services such as Continuous Integration (CI),
container engines, or service orchestrators. The complete assessment of these systems is
challenging since developers face with many different problems, including the difficulty
to test the system as a whole due diversity of individual components, or the coordina-
tion of these components due to the distributed nature of the system [1]. Recent surveys
confirm the existence of a significant gap between the current and the desired status of
test automation for distributed heterogenous system, prioritizing the relevance of test
automation features for these systems [2].

Software testing is a broad term encompassing a wide spectrum of different con-
cepts [3]. Depending on the size of the System Under Test (SUT) and the scenario in
which it is exercised, testing can be carried out at different levels. In their overview of
cloud testing survey, Incki et al. categorize test levels in four dimensions [4]:

– Unit: individual program units are tested. Unit tests typically focus on the functio-
nality of individual objects or methods.

– Integration: units are combined to create composite components. Integration tests
focus on the interaction of different units.

– System: all of the components are integrated and the system is tested as a whole.

GarcÃ a B., Gallego M., Gortazar F. and LÃşpez L.
ElasTest, an Open-source Platform to Ease End-to-End Testing.
DOI: 10.5220/0007904700030021
In Challenges and Opportunities in ICT Research Projects (EPS Madrid 2017 2017), pages 3-21
ISBN: 978-989-758-309-4
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

3



– Acceptance: final users decide whether or not the system is ready to be deployed in
the production environment. These tests can be seen as functional testing performed
at system level by final users or customers.

The first three levels (unit, integration, and system) are typically carried out during
the development phases of the software life cycle. These tests are typically performed
by different roles of software engineers, i.e. programmers, testers, Quality Assurance
(QA) team, etc. Using the classical definition of Verification and Validation (V&V) by
Barry Boehm, this part is known as verification, and its aim is to ensure that the software
meets its stated functional and non-functional requirements, i.e., its specification (“are
we building the product right?”). On the other side, the fourth level (acceptance) is a
type of user testing in which potential or real users are usually involved to asses if their
expectations about the SUT are met. Using again the Boehm’s classical definition of
V&V, this part is known as validation (“are we building the right product?”) [5].

As illustrated in figure 1, these tests levels are usually depicted as a pyramid [6]. In
the base of the pyramid we find the unit test, which are theoretically the most numerous
types of tests in a software projects. Unit tests are supposed to be easy to develop and
quick to execute. As we ascend to the upper levels, we find other types of tests, which
are increasingly smaller in number, but also harder to develop and slower to be executed.
Moreover, the capability to automate the different tests has a direct relationship with
the different levels. Thus, acceptance testing is unlikely to be fully automated, since the
evaluation of the final consumer always comprises some kind of human intervention.
Development testing, on the other side, i.e. unit, integration and system tests, can and
should be automated.

Fig. 1. Testing levels and its relationship with V&V [7].

There is a special type of system tests called end-to-end. In this approach, the final
user is typically impersonated, that is, simulated using automation techniques. These
tests typically drive an application through its user interface, checking that the applica-
tion returns the expected results. On the one hand, this test can very valuable since they
assess automatically a software system in the same way that real users do. On the other
side, these tests are prone to lead potential problems, such as brittle logic, expensive to
write, and time consuming to run [8]. This situation can lead to the ice-cream cone anti-

4

EPS Madrid 2017 2017 - Challenges and Opportunities in ICT Research Projects

4



pattern, in which manual tests (which should be a reduced number on the top) increases
its number more and more, while the number of down level automated tests (integration
and unit) is reduced [9].

All in all, this piece of research contributes in the domain of end-to-end test automa-
tion (i.e. system tests in which the user is impersonated) for large complex distributed
applications in cloud environments. To make easier this process for software practiti-
oners, we have created an open source platform called ElasTest. As we will discover,
ElasTest provides an integrated solution for test automation along the development life
cycle, including test case execution, deployment, instrumentation, and monitoring for
different kind of applications, including web and mobile.

The remainder of this chapter is structured as follows. Section 2 provides a brief
overview in the state of the art on end-to-end testing. Section 3 provides a complete
description of the ElasTest platform. In order to validate our proposal, a case study using
a videoconferencing web application as SUT has been performed. The description and
results of this case study are contained in section 4. Finally, the conclusions and future
work are presented in section 5.

2 Background on End-to-End Testing

End-to-end testing is kind of system verification in which impersonated users interact
with the SUT, emulating the real operation of the system while assessing the expected
behavior. Therefore, this kind of testing is strongly related with the type of SUT. One
of the most pervasive kind of software systems nowadays are web applications, being
Selenium1 the most popular open source solution for web testing automation. In this
domain, Selenium WebDriver is capable of drive automatically real browsers, such as
Chrome, Firefox, Opera, Edge, Safari, etc., using different programming languages,
such as Java, C#, Python, Ruby, PHP, Perl, or JavaScript [10]. To that aim, Selenium
WebDriver makes calls to the browser using each browsers native support for automa-
tion. The language bindings provided by Selenium WebDriver communicates with a
browser-specific binary which acts as a bridge with the browser. The communication
between the WebDriver script and the driver binary is done with JSON messages over
HTTP using the so-called JSON Wire Protocol. This mechanism, originally proposed
by the Selenium team is being standardized in the W3C WebDriver recommendation
[11]. In addition to the official Selenium implementation for the WebDriver recommen-
dation, there are different alternatives, for instance:

– WebDriverIO2 is a custom implementation for the W3C WebDriver API written in
JavaScript and distributed through the Node.js package manager (npm).

– Nightwatch.js3 is a Node.js based custom implementation of W3C WebDriver API.
It provides a clean syntax to automate browser user actions.

1 http://www.seleniumhq.org/
2 http://webdriver.io/
3 http://nightwatchjs.org/

5

ElasTest, an Open-source Platform to Ease End-to-End Testing

5



– Protractor4 is an end-to-end framework for Angular and AngularJS applications. It
has been built on the top of WebDriverJS, which is the official JavaScript imple-
mentation of Selenium WebDriver. Protactor provides extra locator strategies and
built-in waits for Angular applications.

Another major component of the Selenium framework is called Selenium Grid. This
component allows remote execution of Selenium WebDriver on distributed machines.
The architecture of Selenium Grid is composed by a group of nodes, each running on
different operating systems and with different browsers. Then, a central piece called
hub (also known as Selenium Server) keeps a track of the nodes and proxies requests to
them.

There are several alternatives to carry out end-to-end testing of mobile applications.
For instance, Appium5 is an open source test automation framework for use with na-
tive, hybrid and mobile web applications. Appium has been built on the top of Selenium
Grid, and it allows to drive iOS and Android apps using the W3C WebDriver protocol.
In Appium, instead of web browsers, mobile devices are registered in a central compo-
nent called Appium Server. Following the Selenium Grid approach, the Appium Server
is remotely controlled by means of W3C WebDriver messages, typically used by test
scripts which use the WebDriver API [12]. Similarly, Selendroid6 is also based on Se-
lenium Grid to drive automatically Android native, hybrid, or mobile web applications.
Both Appium and Selendroid can be used on mobile emulators and real devices.

All in all, the use Selenium Grid to drive remote browsers and mobile devices is also
becoming a de facto standard nowadays. The major problem testers face is the proper
provisioning of different type of browsers and mobiles, of different versions and opera-
tive systems. For that reason, many companies are growing business models basing on
exposing this kind of capabilities through Software as a Service (SaaS) models, such
as:

– Saucelabs7 is a cloud solution to support remote testing based on supporting many
combinations of platform (Linux, Windows, Mac OS X, Android, iOS), browser
(Chrome, Firefox, Opera, etc.), and browser versions (including beta and develop-
ment releases).

– BrowserStack8 is another cloud provider for mobile and desktop browsers across
different browser (Chrome, Firefox, Edge, Opera, etc.), operating systems (Win-
dows and Mac OS X) and mobile devices (iOS, Android, Windows Phone).

– Browserling9 is a live interactive testing service that provides cross-browser testing
for web applications.

– Nightcloud10 is a cloud-based platform being developed by the Nightwatch.js team.

4 http://www.protractortest.org/
5 http://appium.io/
6 http://selendroid.io/
7 https://saucelabs.com/
8 https://www.browserstack.com/
9 https://www.browserling.com/

10 https://nightcloud.io/

6

EPS Madrid 2017 2017 - Challenges and Opportunities in ICT Research Projects

6



In recent times, end-to-end testing solutions are evolving around Artificial Intelli-
gence (AI) and Machine Learning (ML) approaches [13]. In this new wave, we find the
following projects:

– Test.AI11 incorporates an AI brain to Selenium and Appium tests, allowing to iden-
tify screens and elements dynamically in any application, automatically driving it
to execute test cases defined following a Behavior-Driven Development (BDD) ap-
proach. As a result, it provides a test report with verdicts about the application
functionality, user experience design (UX) and performance.

– Mabl12 is focused on front-end black-box testing for web applications. It executes
tests using real web browsers capturing different sources of output, including sour-
ces, screenshots, timing information, etc. Then, it analyses the output by means of
ML techniques.

– Endtest13 is a codeless automated testing engine which allows to create automated
tests without having to write any code but using a web wizard. These tests are
later executed in the Endtest own cloud infrastructure. It uses machine learning
techniques to fix and improve existing automated tests.

– Applitools14 is AI-based engine that automatically validates visual aspects for web
and mobile applications. Using applications screenshots as baseline input, Appli-
tools uses AI-powered computer-vision algorithms to detect and report any diffe-
rence found between the real application and the screenshots baseline. Applitools
is available as a public or private cloud-service as well as on premise.

– Testim15 uses machine learning to manage automated tests that can be executed
on multiple web and mobile platforms. Testim focuses on reducing flaky tests and
maintenance. To that aim, Applitools learns from every execution, analyzing in
real-time to keep track of element locators, self-improving the stability of test cases.

– Sealights16 uses machine learning-like technology to analyze both the SUT code
and tests allowing to find out the exact code coverage for the complete test suite,
including unit, integration, security, etc.

3 The ElasTest Approach

The main benefit of end-to-end tests is the simulation of real user scenarios in an au-
tomated fashion. Nevertheless, this kind tests have several important deterrents which
are stopping its wide adoption by software practitioners. First of all, to carry out end-
to-end testing a pre-requisite is to deploy completely the SUT. This introduces extra
effort in the testing process, since the SUT need to be built, deployed, and available
for end-to-end tests to run. Second, end-to-end tests does not isolate failures. Tracing
a failed end-to-end test is usually costly for testers [14], since the underlying fault can

11 https://testaimobile.com/
12 https://www.mabl.com/
13 https://endtest.io
14 https://applitools.com/
15 https://www.testim.io/
16 https://www.sealights.io/

7

ElasTest, an Open-source Platform to Ease End-to-End Testing

7



be anywhere in the software, and finding it is a cumbersome task. Third, the need of
user impersonation in end-to-end tests is also challenging. Testers and DevOps should
provide the proper infrastructure to carry out user impersonation typically in terms of
web browsers and mobile devices. The rapid evolution of these assets forces a con-
stantly updated underlying infrastructure ready to be used by end-to-end tests. Fourth,
sometimes end-to-end tests tend to be unreliable. A test is refereed as flaky when exhi-
bits both a passing and a failing result with the same conditions. There are many root
causes for flaky results, including concurrency, non-deterministic or undefined beha-
viors, infrastructure problems, among others. Due to end-to-end tests asses the whole
SUT at once, flaky results are more likely to occur than in other smaller tests (i.e. unit
or integration). Fifth, compared to other kind of tests, especially unit tests, end-to-end
tests tend to be slow. Last but least, the verification of non-functional aspects from a
end-to-end approach is also challenging. Quality attributes such as performance or sca-
lability are difficult to be properly assessed and efficient end-to-end non-functional tests
are often skipped.

The ElasTest17 project is a European Commission funded project in the context
of the Horizon 2020 Programme (H2020). ElasTest has born with the big ambition of
providing a comprehensive open source platform to ease the process of development,
operation, and maintenance of end-to-end tests for different kind of applications, inclu-
ding web and mobile. To that aim, ElasTest proposes different solutions to the afore-
mentioned problems. Table 1 provides a summary of the ElasTest approach (i.e. known
problems and proposed solution), which are elaborated in the following paragraphs.

Table 1. Known problems in end-to-end tests and solution proposed by Elastest.

End-to-end tests problem ElasTest solution

Costly to create & maintain Comprehensive test management platform through web
interface, REST APIs, and build server integration

Not isolating failures Integrated log analyzer and monitoring tool both during
test execution (online) and after tests (offline)

Difficult to impersonate users SaaS browser/mobile devices with advance QoE capa-
bilities

Unreliable & flaky SUT instrumentation and ML for recommending testing
actions for decision taking

Hard to write & slow to run Test orchestration (divide and conquer approach, pro-
mote reusability)

Difficult for non-functional Reuse instrumentation and orchestration functional ca-
pabilities to other quality attributes

Regarding the problem about the effort needed to create and maintain end-to-end
tests, ElasTest provides a ready to be used open source platform aimed to simplify
this process. To that aim, the platform allows to build a custom testing environment
based on three major concepts, namely System Under Test (SUT), Test Job (TJob) and
Test Support Services (TSS). First, the SUT in the software to be tested. ElasTest uses

17 http://elastest.io/

8

EPS Madrid 2017 2017 - Challenges and Opportunities in ICT Research Projects

8



Docker containers to configure, build, and deploy SUTs. Docker18 is an open source
software technology which allows to pack and run any application as a lightweight
and portable components called containers. Second, TJobs is the name given in the
ElasTest jargon to the test entities to be executed in ElasTest. TJobs are technologically
neutral. In other words, ElasTest supports tests coded in any language and using any
testing framework. Again, and for the shake of compatibility, ElasTest relies on Docker
container to run the specific tests within a TJob. This way, tests can be implemented in
different technologies such as Java, JavaScript, Python, etc. Finally, TSS are the services
offered by ElasTest to TJobs. TSSs can be seen as the building blocks implementing
specific test capabilities within ElasTest. For the shake of usability, the management of
SUTs, TJobs and TSSs can be done using three different ElasTest’s interfaces:

– Web GUI: ElasTest provides a universal access point through a web interface im-
plemented as a Single Page Application (SPA) with the Angular19 framework. Next
sections provides some examples on how to use this interface.

– REST API: The ElasTest capabilities have been designed to be consumed using
REST (Architectural Styles and the Design of Network-based Software Architec-
ture), which is an architectural style for designing distributed systems. The ElasTest
REST API allows the integration with third-party software in custom ways.

– Jenkins plugin: To facilitate the integration of ElasTest with existing Continuous
Integration (CI) infrastructure, ElasTest provides a Jenkins plugin. Jenkins20 is a
well-known open source build server which supports building, deploying, and au-
tomating any project.

In order to help in locating a fault when a end-to-end test fails, ElasTest provides and
a complete integrated log analyzer tool suite. The idea behind this tool is not solving the
problem on isolating failures (and this is inherent to the nature of end-to-end tests) but to
provide the capability of keeping synchronized trace of the whole logging information
of the SUT components during tests executions. These tools have been designed to work
both during the execution of a TJob (online mode) but also after that (offline mode).

Regarding the difficult to impersonate users, ElasTest provides a custom TSS ena-
bling the impersonation of end-users in their tests through the SUT’s GUI. This service
has been designed to provide full compatibility with external browser/mobile drivers,
but enhanced with extra capabilities, such as event subscription, log gathering, and even
advance media capabilities from the perspective of its incoming perceived Quality of
Experience (QoE) [15] for web-based videoconferencing applications (WebRTC). Me-
asuring QoE is in general a complex topic and this task shall perform the appropriate
research activities for evaluating the most suitable way of doing it, which may involve
simple mechanisms such as evaluation of response-time from the GUI.

Regarding the unreliability or possible flakiness of end-to-end tests, again this pro-
blem is not easily solved since the underlying cause is usually constrained in the boun-
daries of the SUT or the tests. Nevertheless, we believe that ElasTest can contribute

18 https://www.docker.com/
19 https://angular.io/
20 https://jenkins.io/

9

ElasTest, an Open-source Platform to Ease End-to-End Testing

9



to the solution of this problem in two aspects: identification and reduction of unrelia-
ble/flaky end-to-end tests. On the one hand, in order to reduce the number of flaky tests,
we propose to instrument properly the SUT in order to enhance the ability of customi-
zation. In ElasTest we conceive instrumentation as extending the interface exposed by
a software system for achieving enhanced controllability (i.e. the ability to modify be-
havior and runtime status) and observability (i.e. the ability to infer information about
the runtime internal state of the system) [16]. This customization allows to reproduce
or simulate different operational behavior which can be useful to isolate the cause of
test unreliability. On the other hand, in order to reduce flakiness, we propose a cus-
tom recommendation engine for decision taking. This service is based on leveraging
machine learning and cognitive computing techniques for providing two types of fea-
tures. First, plain recommendation, which consists of using conventional recommender
systems that, learning from different sources of data (e.g. past testing suites, test specifi-
cations, SUT specifications, code comments, etc.), recommend the tester about creating
new TJobs or orchestration logic that might be missing in a given test suite. Second,
cognitive computing technologies (such as IBM Watson21) to make possible for Elas-
Test to answer questions made by the developer in natural language in relation to testing
strategies or techniques for a given purpose through the reuse of testing knowledge [17].

Concerning the problem related to the difficulty to write end-to-end and its slow-
ness to be executed, ElasTest cannot implement a magic wand to solve these problems,
since they are closely related to the nature of this kind tests. Nevertheless, ElasTest
proposes a technique to minimize the problem. Our vision is to implement what we
call test orchestration. We understand this concept as a technique for executing tests
in coordination, i.e. to combine intelligently testing units for creating a more complete
test suite following the divide and conquer principle [18]. In ElasTest we concentrate
on testing large software systems created by the orchestration of simple components.
Typically, those software systems are validated using CI tools and methodologies. For
example, imagine one of such SUT providing some kind of service (e.g. through a Web
GUI). This type of application is commonly architected following a microservice mo-
del. Based on it, developers create the application code and, upon some events (e.g.
code commits), a CI system automates the build and deploys the SUT using some cloud
provider services (e.g. cloud orchestration, load balancers, cloud storage, etc.). At this
point the validation of the SUT as a whole takes place). This happens by executing
some jobs or workers that launch monolithic testing processes (i.e. TJobs) that evaluate
some properties of the SUT.

Filly, non-functional testing is considered as one of the main unsolved challenges
[19]. In this domain, one of the main contributions of ElasTest beyond state of the art is
the creation of a technique for testing non-functional properties of SUT in a seamless
way. This is materialized by the combination of ElasTest instrumentation and orches-
tration, which enables functional TJob tests to be transformed into non-functional. The
idea is to reuse a functional TJob for evaluating the behavior of the SUT under different
load conditions (e.g. by orchestrating parallel executions of the TJob) or under custom
operational conditions (i.e. by the parallel execution augmentators), so that the resulting
orchestrated SUT may use the timing information for assessing QoE and performance

21 https://www.ibm.com/watson/

10

EPS Madrid 2017 2017 - Challenges and Opportunities in ICT Research Projects

10



(in terms of time-response) under failures, degraded network conditions and load. It is
important to remark that the non-functional validation logic is agnostic to the TJob and
SUT as it is fully maintained by the orchestration rules. This makes such logic fully
re-usable across different TJob and SUT.

3.1 Test Management

This section provides the detail to manage test using two of the main building blocks
introduced before (SUTs and TJobs) from the ElasTest GUI. To manage a group of
SUTs and associated TJobs, ElasTest manages the concept of Project. Figure 2 shows
an screenshot of the ElasTest GUI for a given project.

Fig. 2. Project management on the ElasTest GUI.

ElasTest allows to manage different flavors of SUTs. The first option is to manage
already deployed software somewhere and available through a public URL. In this case,
by default the SUT is not instrumented in any means. Nevertheless, the SUT itself could
install its own instrumentation agents if needed. Moreover, the SUT can be based on
Docker. This option allows to deploy a SUT using Docker containers in two different
ways:

– Using Docker images. The SUT is packaged as a single Docker image hosted in the
official Docker cloud service for distributing containers, called Docker Hub22.

– Using Docker compose, which is a tool for defining and running multi-container
Docker applications. To use this option, the SUT description is done using Docker

22 https://hub.docker.com/

11

ElasTest, an Open-source Platform to Ease End-to-End Testing

11



Compose files (docker-compose.yml). An example of this kind of configura-
tion can be seen on figure 3.

Fig. 3. SUT management on the ElasTest GUI.

The next important asset in ElasTest are of course the test, managed inside ElasTest
as TJobs. In a TJob configuration several parameters need to be specified. First of all,
a TJobs need to select a SUT. Second, the required environment need to be configured,
using a Docker image in which test are executed. Finally, ElasTest need to know how
to run the tests within the container. This is done using a set of commands written in
bash script. Once the TJob configuration is complete, the TJob can be executed. Figure
4 shows an example of a TJob execution. Notice that in ElasTest presents the execution
logs and metrics in real time on the GUI.

3.2 Monitoring

One of the key features of ElasTest is the ability to show and analyze logs and metrics
of all elements involved in a test. This is particularly interesting for end-to-end tests,
which usually involve more complex system architectures in distributed environments.
When a test is executed using ElasTest, the tester can see all that monitoring information
in the same graphical user interface and with advanced analysis features.

Metric information from ElasTest core components (SUTs, TJobs, and TSSs) are
gathered in the monitoring service. This service is based on event streams. Every log and
metric entry is called an event. The collection of events containing information about
the same metric or log is called event stream. Any SUT, TJob or TSS can generate
multiple event streams. All of them can be gathered and visualized by ElasTest by

12

EPS Madrid 2017 2017 - Challenges and Opportunities in ICT Research Projects

12



Fig. 4. TJob execution on the ElasTest GUI.

different charts in real time and stored for further analysis. The ElasTest monitoring
service is offered in three flavors:

– Dockerized Monitoring. When launching tests against a dockerized SUTs, ElasTest
manages the SUT lifecycle itself and use Docker features of logs and stats to au-
tomatically get monitoring information from the container (see example chart in
figure 4).

– Deployed Monitoring. When ElasTest is executing tests against an already de-
ployed SUT, monitoring information can be sent from the SUT to ElasTest using
Beats technology. Beats23 is a platform for single-purpose data shippers created to
work with Logstash24 (server-side data processing pipeline that ingests data from
a multitude of sources simultaneously) and ElasticSearch25 (RESTful search and
analytics engine).

– Custom Monitoring. HTTP POST request can be sent to Logstash in order to pro-
vide custom monitoring information. The body of this POST request is a JSON
message with several fields (timestamp, message, component, etc.) described in
next section.

23 https://www.elastic.co/products/beats
24 https://www.elastic.co/products/logstash
25 https://www.elastic.co/

13

ElasTest, an Open-source Platform to Ease End-to-End Testing

13



3.3 Log Analyzer

ElasTest provides several tools for analyzing the logs gathered during any TJob execu-
tion. By default, the log information is organized using a tabular format composed by
the following fields (see Figure 5):

– timestamp: Date and time of the log entry.
– message: Actual log entry message.
– level: Logging level of the entry: DEBUG, INFO, WARNING, ERROR, etc.
– component: Component that generated the entry (SUT, TJob)
– stream: Each single component can generate different groups of logs. This value is

used to identify these groups.
– exec: TJob execution identifier.

Fig. 5. Log analyzer on the ElasTest GUI.

ElasTest provides two tools out-of-the-box to analyze the gathered logs. First, the
Filter tool allows to select a group of logging entries, filtering by date, component,
stream, or message. Second, the Mark tool allows to search in the log entries, coloring
the results as shown in Figure 6.

3.4 User Impersonation

In order to expose user impersonation an API in a universal way, ElasTest implements
an extension of the W3C WebDriver API [11]. As presented in section 2, this recom-
mendation is used to drive browsers and mobile devices, by means of a client-server
technology implemented by Selenium and Appium respectively. The vision of ElasTest

14

EPS Madrid 2017 2017 - Challenges and Opportunities in ICT Research Projects

14



Fig. 6. Log marker on the ElasTest GUI.

is to enhance the current support with additional advance capabilities in a seamless and
integrated solution. Moreover, the user impersonation service provided by ElasTest has
been evolved into a fully Software as a Service (SaaS) model so that developers do not
need to take into consideration problems related to computing resources scheduling,
software provisioning or system scaling.

The user impersonation service can be consumed in two main ways. First, using the
ElasTest web GUI, a tester can ask for live browser sessions. As a result, ElasTest allows
to control the browser using an HTML5 canvas element connected to the browser using
Virtual Network Computing (VNC). For a user point of view, the browser is embedded
in the ElasTest GUI, and it can be used to carry out manual web navigation using diffe-
rent kind of browsers, such as Chrome, Firefox, etc. Figure 7 shows an example of live
browser session in the ElasTest GUI.

The second way to use the impersonation service is driven by test logic using
WebDriver. Due to the fact that the user impersonation service is an extension of the
W3C WebDriver, it can be consumed by any existing Selenium client (as described in
section 2). An example of this kind of operating mode is shown in the case study pre-
sented in section 4. In both cases (manual and WebDriver browsers), ElasTest records
of the generated sessions (see figure 8) to watch the interaction/navigation using the
browser.

3.5 ElasTest Architecture

The ElasTest architecture is depicted in figure 9. First of all, we find a component called
ElasTest Test orchestration and recommendation Manager (ETM), which is the access

15

ElasTest, an Open-source Platform to Ease End-to-End Testing

15



Fig. 7. Live browser on the ElasTest GUI.

Fig. 8. Recording sessions in user impersonation services on the ElasTest GUI.

point to the framework. It coordinates all other components exposing different interfa-
ces for consumers, such as a web GUI, a command line interface (which consumes a
REST API), and also an interface with a custom Jenkins plugin.

ElasTest follows a microservices approach, and the component which is responsi-
ble for discovering and operating the different services that ElasTest make available to

16

EPS Madrid 2017 2017 - Challenges and Opportunities in ICT Research Projects

16



tests is called ElasTest Service Manager (ESM). This component is based on the Open
Service Broker API (OSBA)26 for discovering, registering and unregistering services
within the platform. RabbitMQ27 is used as messaging queue for the events communi-
cation among the different services. The management of browsers and mobile devices
for user impersonation as described on section 3.4 is implemented in a component cal-
led ElasTest User impersonation Service (EUS).

One of the key aspects handled out of the box by ElasTest is related with data mana-
gement. During its operation, ElasTest gathers different sources of data from test execu-
tion, including SUT logs, different types metrics (including SUT resource consumption,
packet-loss in the network traffic, or node failures, among others), or custom files issued
by services (such as browser/mobile session recordings carried out by EUS). The com-
ponent responsible for the persistence layer is called ElasTest Data Manager (EDM),
and it has been built on the top of on MySQL28 as relational database, Elasticsearch as
search engine, and Alluxio29 as virtual distributed storage system.

The ElasTest Instrumentation Manager (EIM) provides the capability of instru-
menting the SUT to inject potential system failures like packet-loss, network bandwidth
adjustments to emulate real conditions, CPU bursting, and node failures, to name a few.
To that aim, Beats agents are installed together with the SUT.

Finally, the ElasTest Platform Manager (EPM) is the component responsible of iso-
lating the ElasTest services from the underlying infrastructure. The supported cloud
infrastructures are OpenStack30, Amazon Web Services31 (AWS), Docker and Kuber-
netes32. Moreover, Open Baton33 is used for orchestrating the SUT and the network
services within the ElasTest platform.

4 Case Study: Testing WebRTC Applications with ElasTest

We have carried out an initial validation of ElasTest based on a case study focused for
WebRTC applications. WebRTC is the umbrella term for a number of emerging techno-
logies that extends the web browsing model to exchange real-time media with other
browsers [20]. Market momentum around WebRTC is growing very fast nowadays, and
therefore, it is imperative for software testers to have a strategy in place in order to
assess WebRTC applications efficiently. Nevertheless, testing WebRTC-based applica-
tions in a consistently automated fashion is a challenging problem. As this case study
shows, the use of ElasTest simplifies the process of testing this kind of applications at
different levels.

26 https://www.openservicebrokerapi.org/
27 https://www.rabbitmq.com/
28 https://www.mysql.com/
29 https://www.alluxio.org/
30 https://www.openstack.org/
31 https://aws.amazon.com/
32 https://kubernetes.io/
33 https://openbaton.github.io/

17

ElasTest, an Open-source Platform to Ease End-to-End Testing

17



Fig. 9. ElasTest architecture.

To carry out this case study we have cooperated with the team developing the pro-
ject OpenVidu34, an open source videoconferencing WebRTC framework. OpenVidu
follows a client-server architecture and therefore is made up by two main components.
On the client-side, the OpenVidu Browser is a JavaScript/TypeScript library which al-
lows to create video calls, join users to them, and send/receive media streams. On the
server-side, the OpenVidu Server receives the operations from clients establishing and
managing the video-calls.

In order to carry out end-to-end tests of WebRTC applications, it is mandatory to use
modern browsers that implement the WebRTC stack, such as Chrome or Firefox. For
that reason, in the OpenVidu project, end-to-end tests have been implemented using Se-
lenium WebDriver. In the testing process carried out by the OpenVidu team, these tests
were executed in a Jenkins CI server. In this server the latest versions of Chrome and
Firefox were installed, and Selenium sessions were executed through a virtual frame-
buffer display server (Xvfb).

The research question driving this case study is the following: Is the ElasTest ca-
pable to ease the end-to-end testing process within the OpenVidu project?. To address
this question, an instance of ElasTest was provided to the OpenVidu team. The idea
was to reuse the existing tests, adapting them to be executed inside ElasTest. Due to
the fact that the existing test suite was based on Selenium WebDriver, few changes was
required in the test logic. The existing codebase was implemented in Java, and there-
fore the required change was related to the specific objects to control browsers (i.e.
ChromDriver for Chrome and FirefoxDriver for Firefox) by remote browser
drivers, called RemoteDriver in Java. These objects require the URL to connect
with the Selenium Server, which is implemented in ElasTest by EUS.

34 http://openvidu.io/

18

EPS Madrid 2017 2017 - Challenges and Opportunities in ICT Research Projects

18



The SUT lifecycle was managed by ElasTest together with the test execution. In
this case study, a Docker Compose script was configured within the ETM, defining
the OpenVidu application under test and its dependencies. Figure 10 provides an ETM
screenshot of the execution of one end-to-end test against the SUT while it is executed
by the EUS. As explained in the section before, once the test finished, a recording of
the session navigation, together the the browser logs is stored persistently in ElasTest.

Fig. 10. Screenshot of ETM/EUS during the execution of a OpenVidu end-to-end test.

All in all, we conclude that the fact that EUS is based on the W3C WebDriver
standard, facilitates its adoption in an existing test codebase. Second, the capability to
provide different types of browsers and version in a seamless and elastic manner is
very valuable for testers, since it avoids to manage directly the infrastructure reducing
the efforts required mainly in DevOps side, and providing valuable assets for testers to
create effective tests. Finally, the capability for storing to the browser session recording
and logging makes a big difference for OpenVidu testers. This feature allows to trace
and debug failed tests in a much more reliable way than before, in which testers were
blind to trace errors of tests executions on their Jenkins infrastructure.

5 Conclusions and Future Work

Modern software systems are increasingly complex. Nowadays, architectures involving
distributed heterogeneous services, cloud native, and microservices are more and more
common. This kind of systems are constantly evolving, forcing to practitioners to invest
relevant efforts to have efficient testing strategies in form and shape.

19

ElasTest, an Open-source Platform to Ease End-to-End Testing

19



End-to-end tests are a special type of system test in which users are impersonated
using automation techniques. This kind of tests are challenging at different levels. First
of all, end-to-end tests are usually costly in terms of be development, operation, and
maintenance. By definition, in order to run end-to-end tests the SUT needs to be de-
ployed in the first place. Therefore, when the SUT is large and complex, relevant efforts
are required as a prerequisite of the actual testing stage. Moreover, end-to-end tests
does not behave efficiently in terms of failure isolation. Also by definition, end-to-end
assess the complete system as a whole just like the final user does. When some failure
happens, the capability to identify the underlying fault can be tricky, especially again
the the SUT is composed by many heterogeneous distributed components.

The ElasTest project strives to improve the end-to-end testing process for large dis-
tributed and heterogeneous software systems. To that aim, we are creating an open
source testing platform providing different solutions to the known weakness of end-to-
end tests. ElasTest provides a comprehensive test management platform through web
interface, REST APIs, and Jenkins integration. In addition, ElasTest provides a fully
integrated log analyzer and monitoring tool which make easier to locate the underlying
fault of failing end-to-end tests. Finally, ElasTest implements a user impersonation ser-
vice the emulation of end-users in their tests through GUI instrumentation. This service
provides full compatibility with external browser/mobile drivers, evolved into a fully
SaaS model so that developers do not need to take into consideration problems related
to computing resources scheduling, software provisioning or system scaling.

At the moment of this writing, ElasTest is still in its infancy, and therefore, some
planned features are yet to be released. Among these features, we find the measurement
of the end-users perceived QoE, the integration of machine learning and and cogni-
tive computing for recommending testing actions for decision taking, or the support of
mobile and sensor devices emulators for user impersonation.

Acknowledgments. This work has been supported by the European Commission un-
der project ElasTest (H2020-ICT-10-2016, GA-731535); by the Regional Government
of Madrid (CM) under project Cloud4BigData (S2013/ICE-2894) cofunded by FSE &
FEDER; and Spanish Government under project LERNIM (RTC-2016-4674-7) cofun-
ded by the Ministry of Economy and Competitiveness, FEDER & AEI.

References

1. Mili, A., Tchier, F.: Software testing: Concepts and operations. John Wiley & Sons (2015)
2. Lima, B., Faria, J.P.: A survey on testing distributed and heterogeneous systems: The state

of the practice. In: International Conference on Software Technologies, Springer (2016)
88–107

3. Bertolino, A.: Software testing research: Achievements, challenges, dreams. In: 2007 Future
of Software Engineering, IEEE Computer Society (2007) 85–103

4. Incki, K., Ari, I., Sözer, H.: A survey of software testing in the cloud. In: Software Security
and Reliability Companion (SERE-C), 2012 IEEE Sixth International Conference on, IEEE
(2012) 18–23

5. Boehm, B.: Software engineering: R & D trends and defense needs. Research Directions in
Software Technology. MIT Press: Cambridge MA (1979)

20

EPS Madrid 2017 2017 - Challenges and Opportunities in ICT Research Projects

20



6. Cohn, M.: The forgotten layer of the test automation pyramid (2009)
7. Garcı́a, B.: Mastering Software Testing with JUnit 5. Packt Publishing (2017)
8. Fowler, M.: Test pyramid (2012)
9. Scott, A.: Introducing the software testing ice-cream cone (anti-pattern) (2012)

10. Vila, E., Novakova, G., Todorova, D.: Automation testing framework for web applications
with selenium webdriver: Opportunities and threats. In: Proceedings of the International
Conference on Advances in Image Processing. ICAIP 2017, New York, NY, USA, ACM
(2017) 144–150

11. Stewart, S., Burns, D.: Webdriver. Working draft, W3C (2017)
12. Shah, G., Shah, P., Muchhala, R.: Software testing automation using appium. International

Journal of Current Engineering and Technology 4 (2014) 3528–3531
13. Noorian, M., Bagheri, E., Du, W.: Machine learning-based software testing: Towards a clas-

sification framework. In: SEKE. (2011) 225–229
14. Myers, G.J., Sandler, C., Badgett, T.: The art of software testing. John Wiley & Sons (2011)
15. ITU-T, R.P.: 10/g. 100 amendment 1,new appendix i–definition of quality of experience

(qoe). International Telecommunication Union (2007)
16. Natella, R., Cotroneo, D., Madeira, H.S.: Assessing dependability with software fault in-

jection: A survey. ACM Computing Surveys (CSUR) 48 (2016) 44
17. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A.A., Lally, A.,

Murdock, J.W., Nyberg, E., Prager, J., et al.: Building watson: An overview of the deepqa
project. AI magazine 31 (2010) 59–79

18. Zelkowitz, M.V., Shaw, A.C., Gannon, J.D.: Principles of software engineering and design.
Prentice-Hall Englewood Cliffs (1979)

19. Orso, A., Rothermel, G.: Software testing: a research travelogue (2000–2014). In: Procee-
dings of the on Future of Software Engineering, ACM (2014) 117–132

20. Loreto, S., Romano, S.P.: How far are we from webrtc-1.0? an update on standards and a
look at what’s next. IEEE Communications Magazine (2017)

21

ElasTest, an Open-source Platform to Ease End-to-End Testing

21


