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Abstract
This paper reports an intelligent approach for modeling and optimisation of filling system design (FSD) in the case of sand
casting process of aluminium alloy. In order to achieve this purpose, physics-based process modeling using finite element method
(FEM) has been integrated with artificial neural networks (ANN) and genetic algorithm (GA) soft computing techniques. A three-
dimensional FE model of the studied process has been developed and validated, using experimental literature data, to predict two
melt flow behaviour (MFB) indexes named ingate velocity and jet high. Two feed-forward back-propagationANN-based process
models were developed and optimised to establish the relationship between the FSD input parameters and each studied MFB
index. Both ANN models were trained, tested and tuned by using database generated from FE computations. It was found that
both ANNmodels could independently predict, with a high accuracy, the values of the ingate velocity and the jet high for training
and test data. The developed ANN models were coupled with an evolutionary GA to select the optimal FSD for each one. The
validity of the found solutions was tested by comparing ANN-GA predictionwith FE computation for both studiedMFB indexes.
It was found that error between predicted and simulated values does not exceed 5.61% and 6.31% respectively for the ingate
velocity and the jet high, which proves that the proposed approach is reliable and robust for FSD optimisation.
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Abbreviations
ANN Artificial neural networks
CAD Computer-aided design
FEM Finite element method
FFBP Feed-forward back-propagation
FSD Filling system design
GA Genetic algorithm
logsig Log-sigmoid transfer function
MFB Melt flow behaviour
MSE Mean square error
PSO Particle swarm optimisation
purelin Linear transfer function

trainlm Levenberg-Marquardt training algorithm
traingdx Gradient descent with momentum and adaptive

learning rate training algorithm
tansig Tan-sigmoid transfer function
SQP Sequential quadratic programming
VOF Volume of fluid
3DSP Three-dimensional sand printing
LPC Low-pressure casting
EPSC-VL Expendable pattern shell casting process with

vacuum and low pressure

1 Introduction

The study of filling stage in sand casting process is of great
significance since it directly affects casting quality.
Inappropriate filling of castings usually generates surface ox-
ide film entrainment that can cause 80% of the total effective
casting problems [1]. Indeed, the design of filling systems is
considered as a key point in sand casting, which we need to
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pay special attention, since it permits to control the melt flow
behaviour (MFB) in the mould cavity. Hence, it is critical to
design proper filling systems to control the liquid metal flow
during the mould filling stage by reducing the velocity at
ingate below the entrainment threshold (0.5 m s−1) [2–4].

In the past decades, several researchers have experimented
with a number of parameters for design of filling systems
based on the basic principles of fluid dynamics. Most of the
current design knowledge on these systems are derived from
trial-and-error approaches [5, 6], water modelling [7, 8] and
numerical simulations [9–11].

Regarding the relative experimental difficulties encoun-
tered to visualise hot liquid metal flow in a mould and given
that kinematic viscosity of most molten metals is similar to
water [7, 12], numerous researchers have experimented with
water models using transparent moulds made of Perspex [7] or
acrylic [13]. However, to overcome the limitations of water
analogs, more accurate visualisations have been realised using
real-time X-ray imaging during mould filling stage [14, 15].
However, this technique is very expensive and only offers
qualitative information of the fluid flow. In addition, it de-
mands prototype moulds that are not only expensive but also
have limited geometrical flexibility that makes such tech-
niques challenging and extremely time consuming. Indeed,
in order to overcome the abovementioned drawbacks, some
authors have proposed a novel qualitative method based on
the use of embedded Internet of Things (IoT) sensors. This
method permits to monitor the melt flow velocity in 3D sand
printing (3DSP) mould during the filling stage [16] with more
reasonable cost and flexibility.

In order to reduce casting defects such as gas entrapment,
oxide bifilms and porosity, filling systems are typically
analysed and optimised using computational modelling, sta-
tistical models and soft computing techniques like genetic
algorithm (GA) or a combination of these methods [17, 18].
Jezierski et al. [19] have performed a series of computational
simulations with a step-by-stepmodified gating system design
to decrease the velocity of the metal entering the mould cavity
and to reduce the possibility of bifilm creation. The direct
gradient optimisation algorithm, sequential quadratic pro-
gramming (SQP), has been proposed by Esparza et al. [20]
to solve 2D and 3D volume of fluid (VOF) method gating
system problems for two design variables. In addition, further
studies have focused on the optimisation of the geometrical
descriptors such as radii of the ingates and runner to minimise
liquid metal velocity using evolutionary computations, viz.
GA [21], Pareto front-based multiobjective optimisation [22]
and a multiobjective culture-based quantum-behaved particle
swarm optimisation (PSO) [23].

At the same time, some authors have focused their studies
on revising conventional FSD as an alternative to the optimi-
sation of conventional filling system [24, 25]. An offset sprue
with a double perpendicular turn at the sprue/runner junction

was shown as an effective solution in reducing melt turbu-
lence [24]. However, fluid flow through double perpendicular
bend is more prone to forming low-pressure vortexes at the
junction that leads to oxide formation [24]. More recently,
several non-conventional gating system designs have been
introduced to optimise casting performance thanks to the
mould design opportunities offered by 3DSP technology. In
this context, Sama et al. [25] have studied the opportunity to
improve the quality of castings by allowing fabrication of
complex gating systems with conical helix sprue via 3DSP.
They demonstrate that numerically optimised gating systems
by SQP-constrained optimisation algorithm have the potential
to significantly improve both mechanical and metallurgical
performance of parts made by sand casting since the metal
flows in a smoother way at the bottom of the sprue [16, 25].

Beyond sand casting process, several authors have focused
their studies on the control of the MFB during the filling stage
for other casting processes. For example, Bedel et al. [26]
have investigated the geometrical effects on filling dynamics
in low-pressure casting (LPC) process and they proposed new
rules to avoid bifilm defects for making reliable LPC process.
In addition, Jiang et al. [27] have studied the influence of
several process parameters, viz. casting temperature, gas flow
rate, vacuum level and gas pressure, on the filling ability of
A356 aluminium alloy in expendable pattern shell casting
process with vacuum and low pressure (EPSC-VL). These
authors have found that the filling ability of A356 alloy main-
ly depends on the value of the gas flow rate. These authors
also demonstrated, when they studied the influence of the gas
flow rate on filling ability of A356 alloy in appropriate filling
specimens [28], that the filling length increases with increas-
ing the value of the gas flow rate and/or the cross-section of
the filling specimen.

It is clear from the previous discussion that research in
casting process has been made toward achieving near-
optimal solutions while attempting to keep the computational
cost as low as possible. Trial and error methods, based on
accumulated hands-on experience, are quicker and easier to
implement but they do not necessarily always provide the
optimal solution. Gradient-based methods provide near-
optimal designs with higher computational costs. The evolu-
tionary computing techniques may lead us toward the optimal
designs and solutions but are computationally very time-
consuming [18]. The coupling of the evolutionary GA with
surrogate models, based on ANNmethods, appears as a useful
way to provide the optimal design with an acceptable cost.

In this work, a FE model of a conventional FSD with dou-
ble perpendicular bend was developed and validated using
experimental literature data. The possibility to build ANN
models for predicting two different MFB indexes inside the
mould cavity during the first stage of the filling process, from
a set of FE computations, was tested and discussed. Then, the
valid ANN models, which can act as a surrogate model, were
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coupled with a GA searching technique to optimise the values
of the FSD parameters. Finally, relevance and applicability of
the proposed intelligent approach, in FSD modelling and op-
timisation, were evaluated and discussed for each studied
MFB index.

2 FE modelling and simulation of the sand
casting process

2.1 FE model setup

2.1.1 Mould design of the case study

The conventional filling system with double perpendicular
bend studied in this paper was adopted from refs. [16, 29].
The relevant dimensions of the model used in sand casting
process are illustrated in Fig. 1. The design parameters SA,
SB, SB and SC for the sprue, and GE and GF for the gate were
selected as the variables of the studied FSD. All CAD models
were created using CATIA® V5 software before being
imported in the FE simulation code.

2.1.2 Numerical modelling

In this study, a fully coupled three-dimensional thermo-hy-
draulic fluid flow with phase transformation model was per-
formed via ProCAST® FE software to simulate and analyse
the melt flow inside the mould cavity during filling stage. The
FE model was chosen to make numerical computations closer
to the experimental conditions and to ensure that all selected
combinations of FSD parameters allow a complete filling of
the mould cavity (without misrun defect). The following as-
sumptions were made in the developed model: (i) the liquid

metal was incompressible Newton fluid, (ii) the filling of mol-
ten metal is a non-isothermal flow accompanied by heat trans-
fer losses and (iii) the effect of oxide film formation is not
considered.

The thermodynamic behaviour and the flow field evolu-
tion, in sand mould filling process, were modelled by the
mass, momentum and energy equations as follows [30]:

Continuity equation

∇⋅u ¼ 0 ð1Þ

Navier-Stokes (momentum) equation

ρ
∂u
∂t

þ u⋅∇ð Þu
� �

¼ ∇⋅μ ∇uþ ∇uð ÞT
h i

−∇P þ ρg ð2Þ

Energy equation

ρCp
∂T
∂t

¼ ∇⋅ k∇Tð Þ þ ρL f
∂ f s
∂t

ð3Þ

where ρ is density, t is time, μ is dynamic viscosity, P is
pressure, g is gravitational acceleration component, u is veloc-
ity vector, T is temperature, Cp is specific heat, k is thermal
conductivity, Lf is latent heat and fs is solid fraction. The
equilibrium calculations at the liquid/solid interface are made
by assuming an infinite diffusion in the liquid phase and no
diffusion in the solid phase according to Guilliver-Scheil
equation (Eq. 4) [31].

f s Tð Þ ¼

0 if T > T liq

1 if T < T sol

1−
T−T f

T liq−T f

� �1= kp−1ð Þ
otherwise

8>>>><
>>>>:

ð4Þ

Fig. 1 CAD of the studied filling
system with the variable
dimensions (in red colour)
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where kp is partition coefficient, Tf is freezing temperature,
Tsol is solidus temperature and Tliq is liquidus temperature.

Dirichlet boundary conditions are prescribed for the energy
equation in the form of specified temperature values at the
boundary. Natural boundary conditions take the following
form [32, 33]:

−k
∂T
∂n

� �
¼ qþ ha T a−Tð Þ ð5Þ

where q is specified values of boundary heat flux, ha is con-
vective heat transfer coefficient (mould/air) under natural con-
vection and Ta is ambient temperature. The liquid metal/
mould interface heat transfer is taken into account by the fol-
lowing equation:

−k
∂Tmetal

∂n

� �
interface

¼ hi Tmetal−Tmold
� �

interface
ð6Þ

where n is the outer normal of the cast surface, h is convective
heat transfer coefficient at the interface, and Tmetal and Tmold

are respectively the liquid metal and the sand mould
temperature.

In this study, ProCAST® FE software uses a VOF algo-
rithm [34] to compute the location and movement of the fluid
front. An order parameter (F), known as a “pseudo-concentra-
tion” function [31, 35], having a value of unity in the fluid and
zero outside is used to track the free surface position. The
domain over which the Navier-Stokes equations were solved
is defined by the following equation:

∂F
∂t

þ u⋅∇ð ÞF ¼ 0 ð7Þ

During the filling stage, the fluid front is advanced within
each element by solving the fluid momentum equations
(Eq. 2) and, then, adjusted to satisfy mass conservation.
A proprietary VOF algorithm computes the local curva-
ture of the advancing front by assessing the degree of fill
for neighbouring elements in accordance with Eq. 7.
Based on this information, an adjustment to the pressure

field along the free surface can be computed taking into
account the effects of surface tension [36]. The coupling
between mould filling and the thermal problem is
achieved by solving the thermal equation (Eq. 3) using
an implicit time-stepping schema at the end of each
time step of the fluid momentum (Eq. 2) and advection
(Eq. 7) equations, which allows one to consider the
actual position of the front of the filling material. The
conservation equations were solved using a fully implic-
it time-stepping scheme since they provide good stabil-
ity and rapid convergence for very large time steps
when equilibrium models are used for the evolution of
the solid fraction [37; 38]. Further details of the numer-
ical model are given in the user manual of ProCast®
[39].

2.1.3 Mesh generation and boundary conditions

In this model, due to the fact that problem is symmetric (ge-
ometry, material, loads and boundary conditions), only half of
the problem was modelled as depicted in Fig. 2(a). The FE
model was meshed using 5,689,563 linear tetrahedral ele-
ments with a mesh size of 1 and 3 mm respectively for the
casting and the mould (Fig. 2(b)). The mesh size was selected
based on mesh refinement study in order to achieve accurate
solutions.

A319 aluminium alloy (Table 1) was employed in this
study to make castings. The sand moulds, initially at room
temperature, were poured with the molten metal at 750 °C.
At this temperature, the density and the kinematic viscosity of
the melt are 2488 kg m−3 and 0.5 10−6 m2 s−1 respectively
[40]. An inlet metal flow rate of 0.3 kg s−1 into the pouring
basin was maintained constant during the filling stage [25].
The casting was cooled to room temperature in air with a
convection coefficient of 10Wm−2 °C−1 applied to all exterior
mould surfaces. In addition, a heat transfer coefficient of
350 W m−2 °C−1 was applied at the metal/mould interface
[41].

Fig. 2 Problem modelling: (a)
CAO of the casting and the sand
mould, and (b) FE mesh
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2.2 FE model validation

In this paper, the FE model presented above was validated by
comparing simulation results to experimental ones. The vali-
dation process includes two steps. The first one was done
using the benchmark test designed by Sirrell et al. [29] to
verify the interface shape evolution of the melt flow inside
the mould cavity, during filling stage, from qualitative point
of view. Nevertheless, for quantitative validation, the melt
flow velocity inside the mould cavity was compared with
experimental local measurements using appropriate sensors
[16].

2.2.1 Qualitative validation

Concerning the aluminium alloy benchmark test, the casting is
a plate made from pure aluminium with a conventional
bottom-gated running system in the mould made of resin-

bonded sand. A metal charge of 2.2 kg was poured into the
pouring basin. The basin was full when filled to a depth of
precisely 40 mm. At this instant, the stopper was lifted out of
the basin, beginning the filling of the sprue with the liquid
metal at a temperature of 700 °C approximately. At this tem-
perature, the density and the kinematic viscosity of the melt
are 2364 kg m−3 and 0.52 10−6 m2 s−1 respectively [42]. More
details about the experimental conditions and parameters are
presented in ref. [29].

The simulation of the experimental test was performed via
the developed FE model described in Section 2.1 after
adapting it to take into account the corresponding geometry
and boundary conditions. Figure 3 shows the progressive in-
terface shape evolution of the benchmark test observed during
the filling process for both experimental (recorded by in situ
X-ray imaging technology) and simulation results. Figure 3c
shows the jet fountaining away from the sprue when metal
enters from ingate in FE simulation which is in close agree-
ment to real-time X-ray radiographic observations shown in
the case of aluminium castings [24, 29]. It is clear that FE
simulation is in a good qualitative agreement with experimen-
tal observations. The small difference observed can be attrib-
uted to the slight variation in the values of thermo-physical
properties, viz. density and kinematic viscosity between A319

Table 1 Chemical composition of A319 aluminium alloy in wt%

Element Si Cu Zn Ni Mn Mg Al

wt% 5 3 1 0.35 0.4 0.1 Remainder

Fig. 3 FE computation versus experiment of the progressive interface shape evolution during the mould filling: a 0.24 s after stopper removal, b 0.5 s, c
0.74 s, d 1 s, e 1.24 s, f 1.5 s, g 1.74 s and h 2 s
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used in FEmodel and pure aluminium. Here, it was found that
the impact of the chemical composition on density and kine-
matic viscosity, considered as the most important thermo-
physical properties that can affect the mould filling ability of
the melt, is negligible.

2.2.2 Quantitative validation

Concerning the quantitative validation, the FE results were
compared to experimental values found by Sama et al.
[16]. The experiment was performed by incorporating sen-
sors into 3D-printed mould for sand casting process. Two
dialog IoT sensors, separated by 102 mm along the run-
ner, were embedded into predefined slots introduced into
the Furan resin-bounded sand mould to calculate the melt
average speed in the runner. Aluminium 319 was poured
into the mould at 750 °C to make castings. More details
about the casting dimensions and the process parameters
are given in ref. [16].

Figure 4 shows the FE simulation results of the melt front
during the filling process at both sensor positions. The average
value of the melt velocity calculated by FE model is 1.26 m
s−1, which is considered as very close to the experimental one
(1.27 m s−1). This result proves that proposed FE model can
predict with a high accuracy the melt flow velocity in the
runner for conventional filling systems.

As a result, and in view of both qualitative and quantitative
validation studies performed above, the developed FE model
was approved since it can predict the MFB during the filling
stage in sand casting process. Indeed, this model was retained
to simulate the melt flow in the mould cavity for a combina-
tion of FSD parameter values.

2.3 Database generation and description

In sand casting process, the number of FSD parameters that
can influence the MFB in the mould cavity is relatively large
[43] which make the computation of all combinations of the
studied FSD parameters, viz. SA, SB, SC, SD, GE and GF (see
Fig. 1), impractical and difficult (i.e. performing casting com-
putations by varying one-factor-at-a-time is cost intensive).
Consequently, sampling techniques can be an alternative to
cover the entirely experimental space with an acceptable cost
[44] that usually permits to ensure good generalisation for the
ANN model after training phase. Currently, there are multi-
tude of sampling methods available in literature to explore the
experimental space, such as stratified sampling, probability
sampling and sequential sampling as Taguchi method
[45–47]. Taguchi’s orthogonal arrays are recognised to be
useful in evaluating a small number of sample points consid-
ering interaction between the studied variables [48]. Hence,
Taguchi orthogonal array (L25) was applied in this work to
generate the different training cases for the ANN-based surro-
gate model. In addition, five additional cases were added to
the database for testing the generalisation and ANN model.
All studied FSD parameter combinations and their corre-
sponding ingate velocity and jet high values are summarised
in Table 2.

In this study, identical inlet fluid, boundary conditions and
mesh dimensions were applied for all simulation cases, to
determine the two MFB indexes as shown in Fig. 5. Given
the high velocity gradient of the ingate melt outflow depicted
in Fig. 5(a), several virtual probes were placed on the melt
near the ingate top surface. Then, the average value of the
measured ingate velocity was calculated according to
Fig. 5(b). The determination of the jet high is simpler
since it consists of measuring the distance between the

Fig. 4 FE simulation of the melt front position during the runner filling
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ingate top surface and the highest point that jet can reach
(Fig. 5(c)).

An overview of the flow velocity mapping of the molten
metal captured during the filling process, for all studied cases,
at the highest value that melt jet can reach is shown in Fig. 6. It
is clear that most jets obtained for the studied cases fountain
away from the sprue which proves that melt flow is turbulent
except the case nos. 1 and 26, i.e. the melt flow behaviour
seems near laminar flow conditions. For turbulent flow, when
the mixing between streams is assumed as complete, the
reflected wave compressed in the end of the runner experi-
ences momentum only from the direction of the sprue. Then,
as soon as the reflected wave reaches the gate, it expands
rapidly into the gate, and, with momentum from the direction
of the sprue, the jet fountains to the right [29].

Figure 7 shows that the variation of the jet high versus the
ingate velocity can be followed by a power law with a value of
correlation coefficientR = 0.934. In addition, the extrapolation
of the power law to the ingate velocity threshold (0.5 m s−1)
indicates that the value of the jet high is 15.14 mm. This value
is very close to the natural sessile drop height value of alu-
minium liquid metal reported in literature (about 13 mm) [49].
This result confirms once more the consistency of the built FE
model and the highly significance of the chosen MFB
indexes in rheological characterisation of the melt flow
inside the mould cavity. Thus, both MFB indexes were
monitored during the filling process to study the ability to
build ANN-based surrogate models allowing the predic-
tion of the melt flow behaviour, and then the optimisation
of the FSD parameters.

Table 2 The FSD parameter
combination and their
corresponding MFB indexes

Data
case no.

Sprue Gate Ingate velocity
(m s−1)

Jet high
(mm)

SA SB SC SD GE GF

Training data (train +
validation)

1 155 19 5 12 35 5 0.93 32.82

2 155 21 7.5 14 40 7.5 1.17 42.15

3 155 23 10 16 45 10 1.44 55.76

4 155 25 12.5 18 50 12.5 1.48 57.98

5 155 27 15 20 55 15 1.56 64.85

6 170 19 7.5 16 50 15 1.22 54.30

7 170 21 10 18 55 5 1.54 62.89

8 170 23 12.5 20 35 7.5 1.48 61.69

9 170 25 15 12 40 10 1.34 52.04

10 170 27 5 14 45 12.5 1.29 43.65

11 185 19 10 20 40 12.5 1.57 68.33

12 185 21 12.5 12 45 15 1.19 53.22

13 185 23 15 14 50 5 1.54 57.73

14 185 25 5 16 55 7.5 1.31 45.71

15 185 27 7.5 18 35 10 1.60 66.29

16 200 19 12.5 14 55 10 1.33 45.39

17 200 21 15 16 35 12.5 1.55 70.82

18 200 23 5 18 40 15 1.35 55.52

19 200 25 7.5 20 45 5 1.65 65.52

20 200 27 10 12 50 7.5 1.45 56.12

21 215 19 15 18 45 7.5 1.75 73.16

22 215 21 5 20 50 10 1.42 62.92

23 215 23 7.5 12 55 12.5 1.24 50.46

24 215 25 10 14 35 15 1.55 70.94

25 215 27 12.5 16 40 5 1.80 69.67

Test 26 155 19 5 12 35 15 0.87 31.18

27 170 25 7.5 14 45 10 1.35 47.32

28 185 21 10 18 55 5 1.69 68.41

29 200 27 12.5 20 50 12.5 1.67 75.14

30 215 23 15 16 40 7.5 1.63 71.68
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3 Soft computing for FSD optimisation

3.1 ANN model development

The application of ANN as a prediction tool by a wide range
of industrial fields has been on the increase, due to their capa-
bility to make use of learning algorithm and recognise input/
output relationship for non-linear complex process. However,
its accuracy depends on some factors as the structure of the
network [50] (i.e. the number of the hidden layers and neurons
in each layer) and the learning algorithm used in training
phase [51, 52]. Since several training algorithms are used in
neural network applications, it is difficult to predict the best
one in terms of accuracy for a given problem. A number of
factors, including the complexity of the problem, the number
of datasets used in training and the number of weights and
biases in the network, seem to have an influence [53]. Indeed,
two different back-propagation training algorithms, viz.
Levenberg-Marquardt (trainlm) and Gradient descent with
momentum and adaptive learning rate (traingdx), were applied
in this study to test their performances for several numbers of
neurons in the hidden layer ranged from 4 to 20. The devel-
opment of the neural network architecture was performed
using Matlab® 8.2 (R2013b) software.

In order to optimise the ANN topology, the data presented
in Table 2 were divided in three sets. The first twenty cases’
data (70% of the total data) were used to train the ANN by
computing the gradient and updating the network weights and
biases. The next five cases’ data (15% of the total data) were
used for validation. The error on the validation set was mon-
itored during the training process. The validation error usually
decreases during the initial phase of training. Then, once the
network begins to over fit the data, the training is stopped and
the network weights and biases were saved at the minimum of
the validation set error. This is known as the early stopping
method. The last dataset (15% of the total data) was not in-
volved in the training phase; however, it is useful for testing
ANN model generalisation capability.

Prior to any ANN training process and in order to cancel
the difference between input values, the data must be normal-
ised over the range [0–1] to reach a faster training phase and
reduce the probability of being stuck in local minima. The
method used in this paper was min-max scaling (Eq. 8).

xi ¼ x−xmin

xmax−xmin
ð8Þ

where xmax and xmin are the maximum and minimum number
of data and xi is the normalisation value of the data i.

Fig. 5 The numerical results obtained from the case no. 11: (a) ingate velocity (m s−1), (b) nodal velocities of the melt near the gate top surface and (c) jet
high (mm) calculation
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During the training phase, the normalised input data values
were fed to the input nodes in a feed-forward back-propaga-
tion (FFBP). Then, a hidden layer node, the function of which
is to intervene between the external input and the network
output, adds up the weighted input (w) received from each
input data associated it with a bias (b) according to Eq. 9
and then passes the result (Sum) on the nodes of the next
hidden layer or the output, through transfer function.

Sum ¼ ∑
n

i¼1
xiwi þ b ð9Þ

The most commonly used transfer functions to solve re-
gression problems are tangent sigmoid “tansig” (Eq. 10),
log-sigmoid “logsig” (Eq. 11) and linear “purelin” (Eq. 12)
[54]. In this study, the performance of the models with

Fig. 6 Flow velocity mapping of the molten metal captured in the filling stage for all studied FSD cases at the highest value of the melt jet

Fig. 7 Ingate velocity versus jet high in the first phase of the filling stage
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different transfer function combinations will be discussed in
the Section 4.2.

tansig Sumð Þ ¼ exp Sumð Þ−exp −Sumð Þ
exp Sumð Þ þ exp −Sumð Þ ð10Þ

logsig Sumð Þ ¼ exp Sumð Þ
1þ exp −Sumð Þ ð11Þ

purelin Sumð Þ ¼ Sum ð12Þ

The learning process works in small iterative steps. The
output is compared to the known output data values, and error
is calculated. After that, small changes are made to the weights
and bias in each layer in order to reduce the error. This cycle is
repeated until the mean square error (MSE) value begins to
over fit the data as explained above. In this study, the MSE
and the correlation coefficient (R), calculated respectively ac-
cording to Eqs. 13 and 14, were used as criteria to compare the
performances of different ANN architectures.

MSE ¼ 1

N
∑
N

i¼1
xi−yNð Þ2 ð13Þ

R ¼
∑
N

i¼1
xi−x

� 	
yi−y

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
xi−x

� 	2
yi−y

� 	2
s ð14Þ

where xi, yN, x and y are the target value, the predicted output,
the average of target values and the average of predicted out-
put, respectively.

3.2 ANN-GA optimisation technique

The best ANN network structure considered as a surrogate
model was then bridged to a genetic algorithm (GA) available
in the optimisation toolbox of Matlab® software to determine
the optimal FSD. The workflow of the coupled ANN-GA
optimisation loop is shown in Fig. 8. This algorithm is an
optimisation technique that belongs to the larger class of evo-
lutionary algorithms, which is inspired by the process of nat-
ural selection. The algorithmworks by repeatedly modifying a
population of individual solutions identified as chromosomes.
At each successive stage, the algorithm selects individuals
from the current population based on their fitness and uses
them as parent chromosomes to produce the next generation
using genetic operators, viz. crossover and mutation. The
method repeats until reaching the stopping criterion and an
optimum solution is evolved. GA technique presents an im-
portant advantage, and it can be used to solve problems with a
high non-linear relationship between process input parameters
and output performances (i.e. the GA optimisation method is
used to converge a global optimum among several possible
local optimums [55]). In this work, the use of ANN-based
surrogate model makes the fitness evaluation much cheaper
compared to high time-consuming FE computations.

4 Result and discussion

4.1 ANN model evaluation

The building of a robust and accurate ANN model is mainly
based on its topology since it can greatly influence the pre-
dicted MFB indexes. The number of neurons in the input and

Fig. 8 Workflow of the FSD with
ANN-GA optimisation loop
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output layers is defined by the studied problem specification.
However, the number of hidden layers and neurons has to be
fine-tuned to have low bias and variance. One hidden layer
ANN is chosen for this study. The number of neurons in
hidden layer was recognised by training several ANN topolo-
gies and selecting the optimal one based on minimisation of
MSE. First, the number of neurons in the hidden layer was
examined for the two-studied training algorithm “trainlm” and
“traingdx” to determine the optimal neuron number for the
ANN models. It was found that the optimal neural number,
for both training algorithms, is 18 and 14 respectively in the
case of ingate velocity and jet high models. Second, both NN
models with their best structure were tested for the remaining
combinations of training algorithms and transfer functions as
summarised in Table 3. Then, the ANN models are evaluated
according to the statistical performance indices MSE and R.
As expected in Table 3, it is obvious that MSE and correlation
coefficient (R) values depend on both training algorithm and
transfer function. The best performances for the ingate veloc-
ity ANN model are found for trainlm training algorithm and
tansig transfer function since it presents the lowest MSE value
(MSE = 1.18 × 10−5 m2 s−2). In addition, it provides a faster
convergence in training phase compared to traingdx algorithm
[56]. Table 3 also displays that the best neural network archi-
tecture for the jet high is found for the trainlm training algo-
rithm and tansig transfer function since it presents the lowest
MSE value of 0.04 mm2.

The predicted versus target results for training and test
datasets are plotted in Fig. 9 for both studied outputs. This
figure reveals a good fit quality between the target and the
predicted data given by both NN models after training phase
since they present a high correlation coefficient (Rtrain of
0.999), i.e. the closer the curve of predicted data to the target
data, the higher the accuracy of the model.

The second phase of ANNmodelling consists of testing the
generalisation capability of both selected ANN models and

verify if they can predict the studied MFB indexes of
any new data not used in the training process. Hence,
ANN models were simulated using test dataset and the
correlation coefficient Rtest was calculated for both MFB
indexes. It is obvious that generalisation capability is ro-
bust for both proposed ANN models given the high value
of Rtest. This outcome shows that twenty-five experiments
are sufficient in practice to build valid ANN models to
predict the ingate velocity and the jet high in the mould
cavity during the first phase of filling stage in sand cast-
ing processes.

4.2 FSD optimisation using genetic algorithm

The developed NNmodels were used for optimisation by GA.
The GA was designed to generate the best fitness function for
each ANN model as presented in Fig. 8. Taguchi DoE ranges
are set as bounds on the six input variables as given by Eq. 15
(all dimensions are in mm) and one hundred individuals with-
in the bounds are chosen in the initial population.

155≤SA≤215
19≤SB≤27
5≤SC≤15

12≤SD≤20
35≤GE≤55
5≤GF≤15

ð15Þ

The numerical parameter values used in the GA options for
the optimisation runs are enlisted in Table 4. In this optimisa-
tion, the rank method is applied for the fitness scaling, where-
as stochastic uniform is utilised for the selection method in
order to stipulate how the GA chooses parents for the next
generation. From the 100 numbers of population size, two of
them are elite counts and are used in the next generation,
whereas 80% of the remaining population is employed for

Table 3 Transfer function and
training algorithm effect on ANN
model performances

ANN
model

Structure Train
algorithm

Transfer
function (HL)

Performance
achieved (MSE)

Correlation coefficient
(R)

Train Test All
data

Ingate
velocity

[6-18-1] Trainlm tansig 1.18 × 10−5 m2 s−2 0.999 0.998 0.998

logsig 9.55 × 10−5 m2 s−2 0.997 0.995 0.996

Traingdx tansig 1.34 × 10−3 m2 s−2 0.983 0.937 0.979

logsig 2.96 × 10−3 m2 s−2 0.952 0.864 0.938

Jet high [6-14-1] Trainlm tansig 0.04 mm2 0.999 0.996 0.998

logsig 0.81 mm2 0.976 0.998 0.984

Traingdx tansig 3.07 mm2 0.944 0.974 0.954

logsig 13.70 mm2 0.819 0.987 0.863
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the crossover reproduction and 20% is utilised for the muta-
tion reproduction.

The evolution of the best and the mean fitness values with
generations for both ANN-GA models is shown in Fig. 10. It
is clear that convergence is reached, for the first model, after
11th generations (Fig. 10a). The best fitness value is stabilised
at a value of 0.84 m s−1 for the best design parameters as
shown in Fig. 11. It is obvious that design parameters SA,
SC, SD and GE converged to the lower limit of their studied

ranges. Inversely, GF converged towards its upper studied
range value. Finally, the design parameter SB stabilised at
20.3 mm. Before examining this result, it was crucial to test
the validity of the proposed ANN-GA optimal solution with a
FE simulation. It was found that the average value of the
ingate velocity obtained by FE simulation was 0.89 m s−1,
which is considered as fairly close to the ANN-GA predicted
value (Vingate = 0.84 m s−1). The error between predicted and
simulated values does not exceed 5.61%.

Table 4 Computational
parameters of genetic algorithm
used in FSD optimisation

Computational parameters Values

Population size 100

Elite count 2

Crossover fraction 0.80

Number of generations 50

Fitness scaling function Rank fitness scaling

Selection function Stochastic uniform

Crossover function Scattered

Mutation function Constraint dependent mutation function

Direction for migration Forward with migration fraction set at 0.2

Non-linear constrain algorithm Augmented Lagrangian

Fig. 10 Fitness value evolution
over generations for tested ANN-
GA models: a ingate velocity and
b jet high

Fig. 9 Predicted versus target
values for the optimal ANN
models for both studied MFB
indexes a ingate velocity and b jet
high
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The FSD optimised by ANN-GA procedure is very close to
the configuration of the case no. 26 used for testing ANN
model, in which the ingate velocity presents its lowest value
(Table 2). The only difference concerns the design parameter
SB that shall be equal to 19 mm. For this case, the gating ratio
is calculated in accordance with the filling system character-
istic sections (sprue exit area, runner area and gate area) as
shown in Table 5. It is found that the gating ratio is 1:4:7,
which proves that the filling system is classified as
unpressurised system. For such systems, the melt flow rate is
mainly controlled by the area of the choke located at the base
of the sprue (the bottom cross-section) [57]. This result can
probably explain the convergence of the design parameter SB
by the optimisation loop to the value of 20.3 instead of 19mm.
In other words, since the melt flow is always choked by the
base of the sprue, the value of the ingate velocity appears to be
very little sensitive to the design parameter SB, for all the
studied domains, that could be the source of the observed
difference in SB calculation.

Concerning the second ANNmodel, the best fitness plot of
the jet high is reached after more than 40 generations as shown
in Fig. 10b. The jet high has a value of 29.21 mm for the
optimal FSD. The error between the optimal ANN-GA pre-
dicted and FE simulated (case no. 26) jet high values does not
exceed 6.31%,which is considered as acceptable. However, in

order to recognise the source of the gap observed in the value
of the ingate high (GF), which converges to 8.6 mm in ANN-
GA prediction instead of 15 mm in FE simulation (Fig. 11),
the sensitivity of the ANN model to the design parameter GF

was analysed for this optimal case. It was found that the model
sensitivity to the design parameter GF is equal to 3.95%. This
result can explain the gap in the value of the ingate high (GF),
i.e. the model is little sensitive to the input parameter GF.

In view of above discussion, it is clear that both MFB
indexes, the ingate velocity and the jet high, could be used
in sand casting processes to optimise the FSD and control the
melt flow in the mould cavity in order to improve the castings’
quality. However, the use of the jet high as a MFB index
seems to be more suitable for the present method. The use of
jet high index presents the advantage that its determination
from FE simulation is simpler and it is independent from the
post-processing procedure, compared to the ingate velocity, as
mentioned in the Section 2.3.

The proposed intelligent method, based on ANN-GAmod-
el, exhibits several advantages compared to traditional
gradient-based methods. The use of an evolutionary algorithm
permits to solve high non-linear problems and converge to a
global minimum while gradient-based methods can get stuck
in a local minimum since their performances are strongly de-
pending on the initial values of the design variables [18, 55].
In addition, the coupling of the GA with an ANN surrogate
model, trained on a high-fidelity database, makes the evalua-
tion of the fitness value not onlymore accurate than traditional
methods but also much cheaper.

Finally, it should be observed that the paradigm presented
in this study is generic and can be easily extended to suit other
FSD shapes and sizes, with different casting alloys and casting
processes.

Fig. 11 Optimal FSD parameters
obtained with ANN-GA models
compared to the best FE simula-
tion (case no. 26)

Table 5 The area ratios of the optimal FSD predicted with ANN-GA
ingate velocity model

Sprue entry Sprue exit Runner Gate

Area (mm2) 244 (top) 60 (bottom) 240 420

Gating ratio – 1 4 7
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5 Conclusion

In this paper, the application of an intelligent optimisation
method integrating ANN and GA soft computing tech-
niques was proposed to optimise the FSD in sand casting
processes. This approach has a peculiar merit that it is
based on accurate FEM analysis and not on experimental
data collection, which could be costly, time consuming and
subject of error prone. The coupled 3D thermo-hydraulic
modelling of the MFB inside the mould cavity during fill-
ing stage was performed, via ProCAST® FE software, and
validated using experimental literature data. The validation
procedure was carried out in two steps in order to verify the
accuracy of the FE model from qualitative and quantitative
point of view.

Two MFB indexes, namely ingate velocity and jet high,
were determined based on FE computations for a combination
of FSD parameters. The possibility to build a FFBP neural
network that can be able to predict and optimise the FSD for
each index was studied. The optimal network topology was
determined by several experiments. The best-found structures
for the ingate velocity and the jet high models are respectively
6-18-1 and 6-14-1. Levenberg-Marquardt training algorithm
was selected to train both ANN models, and the activation
functions tansig and purlin were chosen respectively for the
hidden and the output layers. It was found that both ANN
models could predict with a high accuracy the studied MFB
indexes within the studied parameter domains.

The retained ANN models were coupled with GA to
select the optimal FSD. The validity of the found solu-
tions was tested by comparing ANN-GA prediction with
FE computations for both studied MFB indexes. It was
found that errors do not exceed 5.61% and 6.31% respec-
tively for the ingate velocity and the jet high. This result
proves that the proposed intelligent approach provides a
very effective tool to optimise the FSD parameters in sand
casting process. Furthermore, it was agreed that the use of
jet high as a MFB index could be an interesting alterna-
tive of the ingate velocity in FSD optimisation.

Code availability Not applicable.

Author’s contribution AK planned and carried out the simulations. AK
and ME contributed to the analysis of the results and to the writing of the
manuscript.

Data availability Not applicable.

Declarations

Ethics approval and consent to participate Not applicable.

Conflict of interest The authors declare no competing interests.

References

1. Bozchaloei GE, Varahram N, Davami P, Kim SK (2012) Effect of
oxide bifilms on the mechanical properties of cast Al-7Si-0.3 Mg
alloy and the roll of runner height after filter on their formation.
Mater Sci Eng A 548:99–105

2. Sama SR, Badamo T, Lynch P, Manogharan G (2019) Novel sprue
design in metal casting via 3D sand-printing. Addit Manuf 25:563–
578

3. Pradhan AR, Pattnaik S, Sutar MK (2019) Improving the filling
system for a defect free casting: a review. Materials Today:
Proceedings 18:2887–2892

4. Campbell J (1993) Invisible macro defects in castings. Journal de
Physique IV The third European Conference on Advanced
Materials and Processes C7:861-872.

5. Ruddle RW (1956) The running and gating of sand casting. Inst
Met Monogr Rep Ser 19

6. Swift RE, Jackson JH, Eastwood LW (1949) A study of principles
of gating. AFS Trans 57:76–88

7. Renukananda KH, Ravi B (2016) Multi-gate systems in casting
process: comparative study of liquid metal and water flow. Mater
Manuf Process 31(8):1091–1101

8. Cuesta R, Maroto JA, Morinigo D, De Castro I, Mozo D (2006)
Water analogue experiments as an accurate simulation method of
the filling of aluminum castings. Trans Am Foundrymens Soc 114:
137–150

9. Kuo J, Huang P, Lai H et al (2017) Optimal gating system design
for investment casting of 17-4PH stainless steel enclosed impeller
by numerical simulation and experimental verification. Int J Adv
Manuf Technol 92:1093–1103

10. Huang P, Lin C (2015) Computer-aidedmodeling and experimental
verification of optimal gating system design for investment
casting of precision rotor. Int J Adv Manuf Technol 79:997–
1006

11. Sun Z, Hu H, Chen X (2008) Numerical optimization of gating
system parameters for a magnesium alloy casting with multiple
performance characteristics. J Mater Process Technol 199(1-3):
256–264

12. Beckermann C (1992) Water modeling of steel flow, air entrain-
ment and filtration, September, SFSA T&O Conference.

13. Shaikh MBN, Ahmad S, Khan A, Ali M (2018) Optimization of
multi-gate systems in casting process: experimental and simulation
studies. IOP Conference Series: Materials Science and Engineering
IOP Publishing 404 No 1.012040.

14. Sun W, Bates CE (2003) Visualizing defect formation in gray iron
castings using real time X-rays. Trans Am Foundrymens Soc 111:
859–867

15. Juretzko FR, Stefanescu DM (2005) Comparison of mold filling
simulation with high speed video recording of real-time mold fill-
ing. AFS Trans 113:1–11

16. Sama SR, MacDonald E, Voigt R, Manogharan G (2019)
Measurement of metal velocity in sand casting during mold filling.
Metals 9:1079

17. Ingle PD, Narkhede BE (2018) A literature survey of methods to
study and analyze the gating system design for its effect on casting
quality. Mater Today Proc 5:5421–5429

18. Ransing RS, Sood MP (2006) Optimization in castings—an over-
view of relevant computational technologies and future challenges.
Metall Mater Trans B 37:905–911

19. Jezierski J, Dojka R, Janerka K (2018) Optimizing the gating sys-
tem for steel castings. Metals 8(4):266

20. Esparza CE, Guerrero-MataMP, Rios-Mercado RZ (2006) Optimal
design of gating systems by gradient search methods. Comput
Mater Sci 36:457–467

Int J Adv Manuf Technol



21. Dučić N, Ćojbašić Ž, Manasijević S, Radiša R, Slavković R,
Milićević I (2017) Optimization of the gating system for sand cast-
ing using genetic algorithm. Int J Metalcast 11:255–265

22. Kor J, Chen X, Hu H (2009) Multi-objective optimal gating and
riser design for metal-casting, IEEE Control Applications, (CCA)&
Intelligent Control, (ISIC), St. Petersburg 428-433. https://doi.org/
10.1109/CCA.2009.5280821

23. ChenWJ, Lin CX, Chen YT, Lin JR (2016) Optimization design of
a gating system for sand casting aluminium A356 using a Taguchi
method and multi-objective culture-based QPSO algorithm. Adv
Mech Eng 8:1–14

24. Yang X, Din T, Campbell J (1998) Liquid metal flow in moulds
with off-set sprue. Int J Cast Metal Res 11(1):1–12

25. Sama SR, Wang J, Manogharan G (2018) Non-conventional mold
design for metal casting using 3D sand printing. J Manuf Process
34:765–775

26. Bedel M, Sanitas A, El Mansori M (2019) Geometrical effects on
filling dynamics in low pressure casting of light alloys. J Manuf
Process 45:194–207

27. Jiang WM, Fan ZT, Liu DJ, Liao DF, Zhao Z, Dong XP, Wu HB
(2012) Influence of process parameters on filling ability of A356
aluminium alloy in expendable pattern shell casting with vacuum
and low pressure. Int J Cast Metal Res 25:47–52

28. Jiang W, Fan Z, Liu D, Wu B (2013) Influence of gas flowrate on
filling ability and internal quality of A356 aluminum alloy castings
fabricated using the expendable pattern shell casting with vacuum
and low pressure. Int J Adv Manuf Technol 67:2459–2468

29. Sirrell B, Holliday M, Campbell J (1996) Benchmark testing the
flow and solidification modeling of Al castings. JOM 48(3):20–23

30. Jiaqi W, Paixian F, Hongwei L, Dianzhong L, Yiyi L (2012)
Shrinkage porosity criteria and optimized design of a 100-ton
30Cr2Ni4MoV forging ingot. Mater Des 35:446–456

31. Ravindran K, Lewis RW (1998) Finite element modelling of solid-
ification effects in mould filling. Finite Elem Anal Des 31(2):99–
116

32. Lewis RW, Ransing RS (2000) The optimal design of interfacial
heat transfer coefficients via a thermal stress model. Finite Elem
Anal Des 34:193–209

33. Gethin DT, Lewis RW, Tadayon MR (1992) A finite element ap-
proach for modelling metal flow and pressurised solidification in
the squeeze casting process. Int J Numer Methods Eng 35:939–950

34. Swaminathan CR, Voller VR (1994) A time-implicit filling algo-
rithm. Appl Math Model 18(2:101–108

35. Postek EW, Lewis RW, Gethin DT (2008) Finite element model-
ling of the squeeze casting process. Int J Numer Method H 18(3/4):
325–355

36. Mondy L, Rao R, Brooks C et al. (2007) Wetting and free surface
flow modeling for potting and encapsulation, Sandia National
Laboratories Albuquerque, New Mexico 87185 and Livermore,
California 94550.

37. Baoguang S, Xiuhong K, Dianzhong L (2010) A novel technique
for reducing macrosegregation in heavy steel ingots. J Mater
Process Technol 210:703–711

38. Nastac L, Stefanescu DM (1996) Macrotransport-solidification ki-
netics modeling of equiaxed dendritic growth: part II. Computation
problems and validation on INCONEL 718 superalloy castings.
Metall Mater Trans A 27:1996–4075

39. ProCast User Manual Version 2009 (2009) 1. ESI group. The vir-
tual try-out space company

40. Valencia JJ, Quested PN (2008) Thermophysical properties, ASM
handbook: casting ASM Handbook Committee 15:468-481.

41. Sun HC, Chao LS (2009) An investigation into the effective heat
transfer coefficient in the casting of aluminium in a green-sand
mold. Mater Trans 50(6):1396–1403

42. Assael MJ, Kakosimos K, Banish RM, Brillo J, Egry I, Brooks R,
Quested PN, Mills KC, Nagashima A, Sato Y, Wakeham WA
(2006) Reference data for the density and viscosity of liquid alumi-
num and liquid iron. J Phys Chem Ref Data 35:285–300

43. Ktari A, El Mansori M (2020) Digital twin of functional gating
system in 3D printed molds for sand casting using a neural network.
J Intell Manuf. https://doi.org/10.1007/s10845-020-01699-3

44. Levy PS, Lemeshow S (2013) Sampling of populations: methods
and applications. Wiley, Hoboken

45. Robbins H (1985) Some aspects of the sequential design of exper-
iments, Herbert Robbins Selected Papers. Springer, Berlin, pp 169–
177

46. Marshall MN (1996) Sampling for qualitative research. Fam Pract
13(6):522–526

47. Montgomery DC (2017) Design and analysis of experiments.
Wiley, Hobo-ken

48. Roy RK (2001) Design of experiments using the Taguchi approach:
16 steps to product and process improvement. Wiley, New York

49. Campbell J (2015) Complete casting handbook: metal casting pro-
cesses, metallurgy, techniques and design, 2nd edn. Butterworth-
Heinemann, Oxford

50. Gnana SK, Deepa SN (2013) Review on methods to fix number of
hidden neurons in neural networks. Math Probl Eng 6. https://doi.
org/10.1155/2013/425740

51. Awolusia TF, Oke OL, Akinkurolere OO et al (2019) Performance
comparison of neural network training algorithms in the modelling
properties of steel fiber reinforced concrete. Heliyon 5. https://doi.
org/10.1016/j.heliyon.2018.e01115

52. Adeoti O, Osanaiye PA (2013) Effect of training algorithms on the
performance of ANN for pattern recognition of bivariate process.
Int J Comput Appl 69:8–12

53. Coskun N, Yildrim T (2003) The effects of training algorithms in
MLP network on image classification, in Proc. Int Joint Conf on
Neural Netw 2:1223–1226

54. Khayet M, Cojocaru C (2012) Artificial neural network modeling
and optimization of desalination by air gap membrane distillation.
Sep Purif Technol 86:171–182

55. Golberg DG (1954) Genetic algorithms in search, optimization and
machine learning. Addison-Wesley Publishing Company Inc.,
Boston ISBN: 978-0-201-15767-3

56. Demuth H, Beale M (1996) Matlab Neural Network For Use with
MATLAB, User's Guide, Version 4, The Math Works, Inc.

57. Johnson FH, Eyring H, Polissar MJ (1954) The kinetic basis of
molecular biology J, vol 286. Wiley & Sons, Inc, New York

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Int J Adv Manuf Technol

https://doi.org/10.1109/CCA.2009.5280821
https://doi.org/10.1109/CCA.2009.5280821
https://doi.org/10.1007/s10845-020-01699-3
https://doi.org/10.1155/2013/425740
https://doi.org/10.1155/2013/425740
https://doi.org/10.1016/j.heliyon.2018.e01115
https://doi.org/10.1016/j.heliyon.2018.e01115

	Intelligent...
	Abstract
	Introduction
	FE modelling and simulation of the sand casting process
	FE model setup
	Mould design of the case study
	Numerical modelling
	Mesh generation and boundary conditions

	FE model validation
	Qualitative validation
	Quantitative validation

	Database generation and description

	Soft computing for FSD optimisation
	ANN model development
	ANN-GA optimisation technique

	Result and discussion
	ANN model evaluation
	FSD optimisation using genetic algorithm

	Conclusion
	References


