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Abstract 

Several ferritic-martensitic labora
tory melts with a varying chromium con
tent of 9 - 14 wt.% and delta-ferritic 
quantities ranging from o - 25% were in
vestigated by means of impact-testing. 
The negative influence of delta-ferrite 
(>0.5%) on the mechanical properties can 
be explained by the formation of dendri
tic M23 c 6-precipitates around the delta
ferrite grains. The development of these 
dendrites was studied as a function of 
the cooling kinetics using dilatometric 
and metallographic measurements and by 
SEM (scanning electron microscopy) and 
TEM (transmission electron microscopy) 
investigations. 

Key words: Dual-phase steel, stainless 
steel, martensite, ferrite, microstruc
ture, precipitates, dendrites, scanning 
electron microscopy, transmission elec
tron microscopy, continuous cooling 
transformation diagram, impact bending 
test. 
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Introduction 

Martensitic-ferritic steels were 
chosen in addition to austenitic stain
less steels as an alternative core struc
tural material for nuclear power plants. 
As far as the aspect of safety, is con
cerned, a high impact toughness and low 
ductile-to-brittle transition temperature 
(DBTT) are important prerequisites for 
this application. Furthermore, the ma
terial should be easily workable and ma
chinable, e.g., by hardening or welding. 
For this purpose, about 2 or 3% delta
ferrite seems to be reasonable. Higher 
delta-ferrite contents, however, have 
negative effects on yield stress and ten
sile strength. Up to now, t he influence 
of de lta-ferrite has only been described 
in a contradictory manner (1, 2, 6 , 7 , 8, 
9 , 10) . 

Within the framework of an investi
gation program of laboratory melts, mar
tensitic steel with different contents of 
delta-ferrite were studied. All materials 
were subjected to impact testing with a 
view to obtain a sufficient data on 
fracture behaviour during dynamic loads. 
The emphasis was put on the analysis of 
the influence of delta-ferrite and its 
grain boundary carbides. Both, structure 
and fracture surfaces of impact tested 
samples were investigated systematically 
with regard to the mechanical properties. 

Experiment 

On the basis of the heat resistant 
Nb-containing steel DIN 1.4914, a dual
phase system of martensite and ferrite 
was manufactured by varying the chromium 
content from 9 up to 14 wt .%. The de
tailed chemical compositions of the labo
ratory melts are shown in Table 1. Delta
ferrite contents of o, 0.5, 5, 20 and 25% 
were achieved. The dependency of delta
ferrite quantities of the alloying ele
ments on the basic structure of cr-Ni
stainless steels is shown by the Schaeff
ler diagram given in Fig.l. 
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Table 1. The chemical composition of the 
alloys [wt. %]. 

Charg . Nr. (1 C 2 C3 C4 cs C6 

C 0.1 3 0.13 0.13 0.135 0.14 0.14 

Si 0.38 0.34 0.34 0.34 0.33 0 .30 

Mn 0.66 0.65 0.62 0.61 0.60 0 .62 

p 0.006 0 .006 0 .005 0.006 0.006 0.006 

s 0.004 0.004 0.004 0.005 0.004 0.004 

Cr 9.15 10.03 11 .03 12 .10 13 .00 14.00 

Ni 0.67 0.65 0.63 0.65 0.64 0.64 

Mo 0.61 0.60 0 .59 0 .59 0.59 0.58 

V 0.28 0.28 0.26 0.28 0.26 0.27 

Nb 0.1 8 0.17 0.17 0.19 0.18 0 .18 

Al 0.075 0.100 0.070 0 .097 0.090 0 .085 

B 0.005 0.005 0.004 0.0046 0.004 0 .004 

N 0.006 0.004 0.005 0.004 0 .004 0.005 

Co 0.005 0 .005 0.004 0.004 0.002 0.002 

Cu 0.01 0.01 0 .014 0.015 0 .01 0.014 

Ti 0.005 0.006 0.005 0 .006 0.006 0 .006 

6-fe rr ite 0 0 0.5 5 20 25 
content[%] 

JO,-------,----,---,-----,----,---,,--------,------, 

A 

A+ 8-F 

10 20 25 30 35 

Chromium-equi va lent [¾J 

in wt. 0/, : Cr• 2Si•1.5Mo•5V•S.SAl•1,75Nb• 1.STi •0.75W 

Fig .1. Schaeffler diagram. Effect of 
alloying elements on the basic structure 
of Cr-Ni stainless steels; A= austenite, 
M = martensite, c'i -F = delta-ferrite, 
Cl ... . C6= melts Cl, C2, C3, C4, C5, C6. 

The double vacuum melted material 
was supplied as 25 mm square bars . From 
these bars Charpy-V-notched (CVN) samples 
(Iso-V-samples in accordance with DIN 
50117) were machined with the notch being 
perpendicular to forging direction. The 
CVN samples were austenitized at 1075 °C 
for a period of 30 min, cooled in air, 
tempered at 7oo · c for 2 hand again sub
jected to air cooling. 

The CVN-impact energies of all melts 
are given as a functipn of test tempera
ture. The samples were tested at tempera
tures ranging from -so· to +160°C to de
termine the DBTTs (Ductile To Brittle 
Transition Temperature). 
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The CVN-samples were examined by in
strumented impact-bending tests (13) . As 
a result, a load-time curve is obtained, 
which is then converted into a load
bending curve. The area integral under 
the load-bending curve corresponds to the 
energy spent on the sample during the 
test. Samples with the same impact energy 
can differ considerably while subjected 
to load-bending. 

Additionally, a second series of 
test melts was prepared to investigate 
the cooling kinetics or structural deve
lopment at different cooling velocities 
after austenitization. Dilatometric mea
surements of the melts were carried out. 
On the basis of the changes in volume, 
the tranformation of structure, inclu
sions and carbides can be determined. 
After heating to 1075 °C, the material was 
quenched, e.g. , in NaOH, or cooled very 
slowly by means of furnace-cooling . The 
change in the structure was studied by 
dilatometric measurements and can be 
shown in the CCT ( continuous cooling 
transformation) diagram. 

The fracture modes of the broken 
samples were determined using the scan
ning electron microscope (SEM; SEM 505, 
Philips) equipped with an energy disper
sive x-ray analyzing system (EDX; EDAX). 
The structures of the materials were in
vestigated by light microscopical (LM), 
SEM and transmission electron microscopi
cal (TEM) methods . The hardness was mea
sured by Vickers. 

Metallographic c uts were prepared 
from the melts after they had been sub
jected to standard he a t treatments as 
well as from the samples with the differ
ent cooling velocities. To show the dif
ferent phases and carbides, the cuts were 
polished and etched using an alcoholic 
picric acid ( 4 00 ml ethyl alcohol, 10 g 
picric acid, 6 ml hydro c hloric acid). 
With this solution depth etching was car
ried out to make visible the structure of 
the delta-ferrite and the carbides. 

In addition, chemical extractions 
were performed with the same chemical so
lution. After the complete dissolution of 
the matrix and partial dissolution of the 
delta-ferrite, the carbides were collec
ted by filtering. This extract was ana
lysed by x-ray diffraction methods. 

The microstructure of ultra-thin 
samples was studied using TEM (EM 400T, 
Philips), equipped with EDX (EDAX) and 
STEM-technique (Scanning-TEM). A 10 vol% 
perchloric acid in 70 vol .% ethyl alcohol 
and 20 vol. % ethylene glycol solution was 
used as the elctrolyte (11). The investi
gations were carried out at room
temperature and 27 Volts using TENUPOL 
polishing device. The 3 mm-TEM-samples of 
this material are strongly ferromagnetic. 
It was therefore necessary to minimize 
their mass to reduce the influence on the 
astigmatism in the TEM . Using 1 mm diame
ter punch, the thin area around the hole 
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was punched out. The 1 mm diameter sam
ples were then fixed between a sandwich
cu-grid. 

Experimental Results 

As can be seen in Fig.2, the charpy 
impact energy curves can be divided into 
the regions of the lower shelf, the tran
sition temperature (DBTT) and the upper 
shelf. The fracture of samples of the lo
wer shelf is transgranular and mostly 
brittle. At transition temperature the 
fractures appear in a mixed mode, as is 
evident in Fig.3B. The rims of the frac
ture areas are ductile (Fig.4A) and only 
the central part which covers about 50% 
of the fracture surface, is brittle. But 
in higher SEM-magnifications ductile dim
ples are indicated by the abrupt drops 
between the cleavage areas in the centre 
of the fracture surface, Fig.5A. This 
mode is termed transgranular mixed frac
ture. The fractures of the upper shelf 
are mostly ductile. The surface is cov
ered with transgranular dimple forma
tions. 

The DBTT values can be determined 
from the charpy impact curves as 50% of 
the upper shelf value minus the lower 
shelf value, Fig.2. With increasing chro
mium content, the DBTT temperatures in
crease . The upper shelf energie decreases 
from 230 to 150 Joule. There is only one 
exception to the general observation: the 
melt with a 11 wt.% chromium content 
(0.5% delta-ferrite), which shows the 
best behaviour with respect to the DBTT, 
Fig.6. 

In Fig. 3A, the load versus bending 
curve is shown together with the corre
sponding fracture, Fig.3B. The drop in 
the curve corresponds to the unstable 
fracture energy in the centre of the 
fracture surface. 

With the increasing delta-ferrite 
content a greater tendency to cleavage 
fracture was observed and DBTT was in
creased. In the middle length cuts, cleav
age fracture was observed preferentially 
in the delta-ferrite grains, Fig. 5B. In 
the ductile parts of the fractures, the 
dimples are formed around the boundary 
carbides. The delta-ferrite as well as 
the martensite formed ductile tips on the 
fracture surface, Fig.4B. 

The melts with a chromium content of 
9 and 10 wt.% show a fully developed mar
tensitic lath structure. In the materials 
with the higher chromium contents, the 
delta-ferrite is visible as large grains 
which are aligned along the forging di
rection. The grain boundaries are lined 
with precipitates. The prior austenitic 
grain sizes in all melts have a diameter 
of 30±10 µm (ASTM grain size= 7.5±1). 

The hardness shown in Fig.7 decrea
ses with higher delta-ferrite contents, 
but the delta-ferrite itself is distinct-
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curves for the different melts. 
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Fig.3. A load versus bending curve of an 
instrumented impact test during RT and 
the corresponding fracture surface for 
the melt C5. 

ly softer than the martensite. 
By TEM the typical martensite lath 

structure can be seen. The delta-ferrite, 
with its massive carbides on the grain 
boundaries is clearly visible, Fig.a. The 
chromium content of the delta-ferrite is 
1-2.5 wt.% higher than that of marten
site, as was determined by EDX (STEM). 
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Fig.4. The ductile deformed delta-ferrite 
(melt C6) nearby the notch, tested at RT, 
A) the fracture surface and B) the mid
dle-length cut. 

Fig.5. The cleavage fracture of the del
ta-ferrite (melt C6) in the centre of the 
fracture, A) the fracture surface and B) 
the middle-length cut. 

Fig.6 . A comparison of the DBTT values of 
the different melts. 

Fig. 7. The hardness of the alloys and 
their phases. 

Fig.a. TEM-micrograph, an overview of the 
carbidic phase boundary delta
ferrite/martensite (melt C5). 

The precipitates are mainly of the M23 c6 
type with two variations: one type has a 
higher chromium content in the metal part 
(60-70 wt.% Cr, 25-30 wt.% Fe, 2-3 wt.% V 
and 3 - 5 wt.% Mo) whereas that of the 
other is reduced (23-26 wt.% Cr, 68-75 
wt.% Fe, 1 wt.% V and 2-2.5 wt.% Mo). The 
first variation is mostly found on the 
delta-ferrite edges. In contrast to this, 
the chromium-depleted phase is observed 
more in the lath grain boundaries of the 
martensite. Another type of precipitate, 
the MX (NbC), is homogeneously distribu
ted in the material, but can also be 
found in rows within the delta-ferrite. 
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Fig. 9. A SEM-micrograph of a dendri tic 
envelopment of a delta-ferrite grain 
(melt C6). 

Fig.lo. A dendritic formation of M23 c6 . 

The analysis of these precipitates was 
confirmed by the x-ray diffraction analy
sis of the chemical extractions. 

Deeply etched specimens played a 
special role with regard to the precipi
tation behaviour. The carbides lie free 
and the surrounding material is dis
solved. In the materials with more than 
5% delta-ferrite, the grain boundary car
bides of the delta-ferrite appear as den
dritic structures. They increase with the 
increasing volume of the delta-ferrite 
portion. In the melt with 25% delta
ferrite the ferrite grains are enveloped 
completely by the dendritic carbides, 
Figs.9 and 10. The dendrite walls have a 
thickness of O. 5-1. o µ,m with an average 
diameter of the ferrite grains of 10 -
20 µ,m. 

These dendritic carbides contribute 
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to a large e xtent to the fracture occur
rence as is recognized by fracture analy
sis (12) . 

Detailed information about the kine
tics and the transformation of the struc
tures can be drawn from the CCT diagrams, 
Fig.11. For each melt eight samples were 
cooled down from 1075 °C. The different 
cooling rates were recorded. They show 
the transformation from austenite (A) to 
martensite (M, M =martensite start, 
Mf=martensite finis1i.). The value of Ms 
decreases with higher chromium content. 
The hardness is shown for each curve. It 
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was not only influenced by the chromium 
content or the delta-ferrite, but also by 
the cooling rate. 

The phases of delta-ferrite ( 8 -F), 
carbide (C), perlite (P), and ferrite 
(F) , and the hardness of metallographic 
cuts were determined. No delta-ferrite 
was found in melts Cl and C2. Some tra
ces, about O. 5%, were detected in melt 
C3. The massive formation of delta
ferrite is indicated by the dilatometer 
curve for a cooling parameter of A =6.6 
( A = Cooling period from aoo · to soo •c in 
10-2sec). The change of the structure can 
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Fig . 12. The SEM-microgr aphs of the deep etched samples according to Fi g . 11 (melt C5). 

be explained by the formation of dendri
tic precipitations at the phase boundary 
betwe en delta-ferrite and martensite. 

After the fastest quenching, the 
delta-ferrite was covered by a few undis
solved carbides, only. Phase boundary li
ning was not observed. With the beginning 
of the slower cooling rates, as indicated 
by the hatched area in the CCT diagrams 
of nelt C4, C5 and C6, the phase bounda
ries were decorated with dendritic car
bides. The same structure of carbides can 
be seen in the deeply etched CVN samples 
of the melts C4, C5 and C6. The dilatome
ter samples of melt C5 are shown in 
Figs .12 A-F. The letters of the SEM
micrographs correspond to those of the 
cooling curves in the CCT diagram of melt 
C5. Nothing will happen during the first 
cooling period from 1075 °C to 600 °C which 
takes about 10 min. During the following 
10 min, the dendritic M23 c15 located at 
the phase boundary grows until a tempera
ture of 350 °C is reached. This tempera
ture marks the completion of the growing 
process. 

Discussion 

Two unexpected results were obtained 
by the impact tests: 
1) The decrease of DBTT as a result of 
smal l delta-ferrite contents (0.5%), 
2) A strong increase of cleavage brittle
ness at higher delta-ferrite contents. 

On the basis of the microscopical 
investigations these results can be in
terpretate as follows: 
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The decisive factor for the initia
tion of a cleavage fracture could be the 
envelopment of the delta-ferrite phase by 
the dendritic carbide precipitates. Car
bide envelopment increases with increa
sing delta-ferrite quant i ties. This can 
cause a crack in the delta-ferrite during 
dynamic loads, which is most likely in
itiated by the grain boundary carbides. 

The favourable effect of smaller 
delta-ferrite contents (0.5%) can also be 
explained. Only a few carbides are formed 
on the phase boundary of the delta
ferrite. The two phases are not divided 
by a carbide wall. The soft delta-ferrite 
has positive influence to the ductility 
of the material. 

The assumption that DBTT is to in
crease with higher chromium content can 
be alleviated by investigations made in 
Japan (5). These experiments showed no 
remarkable effect on impact energy and 
DBTT of alloys with chromium contents of 
3 and 15 wt.%. 

Very often the idea is presumed that 
the dendrites would form in the melt on
ly. But Cahn (3), however, described the 
formation of liquid, gas and solid state. 
It was proved by our investigations, that 
the dendrites in our laboratory melts 
originated from the solid state. The de
velopment of the dendrites in dependence 
of the CCT-curves has been found. Most 
important factor is the cooling rate af
ter the austenitization. At high cooling 
rates, there is no time for dendritic 
formation. Below A= 6.6 no diffusion of 
carbon is observed. There is no doubt 
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that the excess carbon is released by the 
delta-ferrite and that first precipita
tions are formed on the phase boundary 
during the above mentioned cooling pro
cess. These carbides serve as nuclei for 
fast dendr i tic growth. Then, more carbon 
diffuses from the austenite, and the au
stenite around the carbides is transfor
med into ferrite. Between these two pha
ses, a high concentration of carbides oc
curs. The boundary of the delta-ferrite 
will be covered by the dendritic M23c6 
with the newly formed ferrite in between. 

The phenomenon can be explained by 
discontinuous precipitation ( 4) . In the 
CCT diagrams of the melts C4, cs and C6 
(>11 wt.% chromium) hatched areas are 
marked. They indicate the time of growth 
of the carbide/ferrite system. The most 
important mechanism must be carbon diffu
sion. The hardness values decrease which 
is one prerequisite for less dissolved 
carbon in the matrix. The measured values 
were confirmed by approximate diffusion 
calculation. 
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The development of dendritic carbides 

Discussion with Reviewers 

V.Thien: Figure 5: Where is "cleavage 
fracture" visible in the polished cross
section? Where and how can one see that 
dimples occur at grain boundary carbides? 
You mention a transcrystalline mixed 
fracture type; does it not require large 
part of dimple areas? 
A.Vasilev: Are there dimpes between cleav
age areas indeed (in Fig.5A)? 
Author: The cleavage fracture can be seen 
in Fig.5A at the areas marked 1 8-
-ferrite'. In the polished microsection 
(Fig.5B) the cracks in the delta-ferrite 
are visible. These cracks cause plain 
fracture surfaces. 

You are right, a transcrystalline 
mixed fracture type requires a large part 
of dimple areas. I chose a picture with a 
higher magnification and with more cleav
age areas. There, I analysed the delta
ferrite parts of the fracture surface. 

Fig.13. Two SEM micrographs of metallogra
phic cuts. 
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The dimple parts can be found mostly in 
the drops of the crack propagation lines, 
e.g., as can be seen in the small picture 
of Fig.3. The dimples around the parti
cles can be seen only in the ductile 
parts of the fracture as shown in Fig.4B. 

V.Thien: The prior austenitic grain sizes 
in all melts should be in the order of 
30±10 µm diameter; can you prove it? 
Author: The micrographs in this paper 
show deformed materials from which it is 
difficult to get an idea of the real 
grain size of the prior austenit. We pre
pared metallographic cuts and investiga
ted them by light microscopy and SEM. Two 
SEM-micrographs (Fig.13) of melts C3 and 
C6 show the prior austenitic grains. 

V.Thien: Hardness increases more with 
chromium content and other carbides, up 
to 12 wt.% Cr (5% delta-ferrite). With 
higher delta-ferrite parts, hardness de
creases because of higher parts of soft 
ferrite phase. 
Author: With the results of the hardness, 
we thought the soft delta-ferrite would 
influence positively the DBTT-values, as 
we found in the melt with 5% delta
ferrite. But we could prove the influence 
of the soft phase is lost in the melts 
with higher chromium content and the for
mation of the massive carbides around the 
delta-ferrite. 

Reviewer I: Is the author sure that the 
morphology of the delta-ferrite is the 
same for all casts and that the only pa
rameter varying is the volume fraction of 
delta ferrite? 
Author: We analysed the chemical compo
sitions by EDX in STEM, too. We detected 
Fe and Cr. In the melt C3 the chromium 
content of delta-ferrite was about 1 wt% 
higher than in martensite. This chromium 
content difference increases up to 2. 5 
wt% in melt C6. The carbon content could 
not be analysed by microprobe because the 
carbides influenced the measurements. 

Reviewer I: Does the fixed tempering 
treatment of 2h/ 700°C produce identical 
changes in dislocation structure in the 
martensite with varying Cr contents? 
Author: We did not analyse the changes in 
dislocation structure. This would be a 
good evidence about the internal stres
ses. We measured only the hardness, as 
shown in Fig.7. 

Reviewer I: What was the purpose of using 
instrumented impact tests since only the 
total absorbed energy values were used? 
Author: This paper describes more the mi
crostructural and fractographical changes 
than the mechanical tests.We have written 
a separate paper about the mechanical be
haviour and the instrumented impact 



E. Materna-Morris 

tests: Anderko A, Schafer L, Materna-
Morris E; Effect of the delta-ferrite 
phase on the impact properties (will be 
published in Proc: 4th Internat. Conf. on 
Fusion Reactor Materials, December 4-8, 
1989, Kyoto, Japan). 

A.Vasilev: What points to a connection of 
dimples with boundary carbides? What 
mechanism of pore initiation takes place 
in this case? Isn · t it the intergranular 
dimple fracture? 
Author: The dimples are formed around the 
big carbides of delta-ferrite/martensite 
boundary, Fig. 4B. They loose their con
nection with the matrix during the defor
mation. This effect can be intensified by 
the different elasticity behaviours of 
the two phases. In this case, we have an 
intergranular dimple fracture, but this 
is only for the delta-ferrite and not for 
the martensite. 

During the transission to more 
brittle fracture portions, we observed 
the cracks in the dendritic carbides and 
in the delta-ferrite. Then, the fracture 
of the delta-ferrite changed to cleavage 
fracture. 

We assume, the energy during crack 
propagation is stored in the carbides and 
the energy can be released promptly to 
the delta-ferrite.The formation of cleav
age fracture depends also on the fracture 
velocity. 

296 


	The Development of Dendritic Carbides in a Dual-Phase martensitic/Ferritic Steel
	Recommended Citation

	tmp.1617035075.pdf._8v9n

