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ABSTRACT

Design of Miniaturized Sweeping Langmuir Probe and Electric Field Probe for the

SPORT Mission

by

Nathan P. Tipton, Master of Science

Utah State University, 2021

Major Professor: Charles M. Swenson, Ph.D.
Department: Electrical and Computer Engineering

The Scintillation Prediction Observation Research Task (SPORT) is a joint United

States of America and Brazil 6U CubeSat mission. The US is providing the science instru-

ments and the spacecraft launch. Brazil is providing the spacecraft bus, integration, and

operations. Utah State University will provide four instruments for the mission as part

of the US contribution in a suite called the Space Weather Probes (SWP). These instru-

ments are the Sweeping Langmuir Probe (SLP), the Electric Field Probe (EFP), and the

Sweeping Impedance Probe (SIP). Higher frequency components of the SLP and EFP will

be observed through a Wave Spectrometer (WS). These instruments will provide measure-

ments of electric fields, temperature, and density of ionospheric plasma. This thesis will

describe the design, implementation, testing and calibration of the SLP, EFPs, and WS for

the SPORT mission. A summary of results is also presented to show fulfillment of mission

and instrumentation requirements.

(100 pages)
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PUBLIC ABSTRACT

Design of Miniaturized Sweeping Langmuir Probe and Electric Field Probe for the

SPORT Mission

Nathan P. Tipton

The Scintillation Prediction Observation Research Task (SPORT) is a joint United

States of America and Brazil 6U CubeSat mission. The US is providing the science instru-

ments and the spacecraft launch. Brazil is providing the spacecraft bus, integration, and

operations. Utah State University will provide four instruments for the mission as part

of the US contribution in a suite called the Space Weather Probes (SWP). These instru-

ments are the Sweeping Langmuir Probe (SLP), the Electric Field Probe (EFP), and the

Sweeping Impedance Probe (SIP). Higher frequency components of the SLP and EFP will

be observed through a Wave Spectrometer (WS). These instruments will provide measure-

ments of electric fields, temperature, and density of ionospheric plasma. This thesis will

describe the design, implementation, testing and calibration of the SLP, EFPs, and WS for

the SPORT mission. A summary of results is also presented to show fulfillment of mission

and instrumentation requirements.
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CHAPTER 1

INTRODUCTION

The ionosphere is part of Earth’s upper atmosphere existing between approximately 80

and 1000 km in altitude. It is the Earth side of the edge of space where satellites orbit. The

ionosphere is defined by the freely moving ions and electrons in what is called a plasma, a

state of matter consisting of both charged and neutral atoms of a gas. These ionized atoms

are created by a process called photoionization that occurs when high energy photons from

the sun, X-rays, UV, and shorter wavelengths dislodge electrons from neutral gas atoms of

the Earth’s upper atmosphere. This creates a positively charged ion from the atom and

frees a negatively charged electron. The total number of electrons and ions in the ionosphere

are approximately equal given that they are originally both components of a neutral atom

and the ions are singly ionized. The physics of the ionospheric plasma is complex because

it is a charged gas that interacts with both electric and magnetic fields while its motions

and density variations can create these fields. The weather of the ionosphere, defined by

winds, temperature, and density changes within it, changes daily. The ionosphere’s weather

is driven by both the terrestrial weather below and by the solar wind coming from the

Sun. The study of these processes is called Space Weather and involves complex computer

models and a variety of observations of the ionosphere including ground-based radars and

satellites carrying dedicated space weather instrumentation. The radio communications

from satellites must pass through the Earth’s ionosphere to reach radio antennas on the

surface of the earth. Radio waves interact with the freely moving electrons in the ionosphere

through the oscillating electric field of the electromagnetic wave. If the radio waves are of

high enough frequency, then the inertia of the electrons does not let them interact with

the radio waves allowing them to pass through the ionosphere unaffected. Lower frequency

waves interact strongly with the electrons and will be refracted, reflected, or absorbed

depending on the frequency of the waves and the conditions of the ionosphere. Satellites
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generally use 100 MHz or greater frequency radio waves for communications which typically

only experience some minor refractive bending of their ray paths. However, there is an

extreme space weather event that happens near the equator of the Earth at night that

affects even high frequency communications. Bubbles of low-density plasma originating at

the bottom of the ionosphere rise in plumes that are tens of kilometers across and hundreds

of kilometers high over the period of a few hours. These structures interfere with the

radio waves causing rapid variations in signal power called scintillations. The process of

scintillation is similar to light passing through water. When water is still and calm, it is

transparent to light but when it is disturbed with bubbles, it is no longer transparent and the

ability to see through the water is hindered even though both air and water are transparent

to light. Severe scintillation conditions can prevent a GPS receiver from locking on to the

signal and can make it impossible to calculate a position. Less severe scintillation conditions

can reduce the accuracy and the confidence of positioning results. Plasma bubbles impact

low-latitude countries, such as Brazil, by disrupting everyday navigation or limit potential

GPS use in precision farming and self-driving vehicles. The triggering mechanism for plasma

bubbles is of great scientific interest given that bubbles do not happen every night or at

every longitude around the Earth.

1.1 SPORT Mission

The Scintillation Prediction Observation Research Task (SPORT) is a joint 6U CubeSat

mission between the United States of America (USA) and Brazil. The science goals of this

space weather mission are to investigate the conditions that lead to the formation of plasma

bubbles.The scientific instrumentation si being developed by organizations in the USA:

Utah State University (USU), University of Texas - Dallas (UTD), Goddard Space Flight

Center (GSFC). In Brazil, the organizations are Instituto Tecnológico de Aeronáutica (ITA)

and Instituto Nacional de Pesquisas Espaciais (INPE), who will provide the spacecraft,

flight computer, and ground station. The SPORT program was selected by NASA HQ in

December of 2016. USA partners received funding in the fall of 2017. Funding for Brazil

was received in early 2018. The required U.S.A.-Brazil Framework Agreement allowing the
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two countries to work together was ratified in April 2018 and was signed in early in 2019.

Delivery of the completed USA instruments to Brazil is expected in early June and July

2020 with a possibility of earlier integration for the instruments being provided by USU.

Delivery of the spacecraft for launch is expected to occur by December 2020, with launch

occurring in the last quarter of 2021.

1.1.1 SPORT Science Overview

The SPORT mission has two specific questions it is trying to answer to understand the

preconditions leading to equatorial plasma bubbles and scintillation.

1. What is the state of the ionosphere that gives rise to the growth of plasma bubbles

that extend into and above the F-peak at different longitudes?

2. How are plasma irregularities at satellite altitudes related to the radio scintillations

observed passing through these regions?

Answers to these questions will improve the ability to predict the formation of plasma

bubbles and understand the conditions which develop anomalies in the ionosphere at low

latitudes near the equator and lead to scintillations of radio signals.

The SPORT satellite will be used to address the first science question by making

measurements of the state of the ionosphere when the satellite is in the region where plasma

bubbles are thought to be triggered. On the next satellite orbit, the Earth’s rotation moves

that longitude sector to east and later into the night where fully formed bubbles might

be present. A GPS receiver will be used to detect if bubbles have occurred by looking

for scintillations on GPS signals coming from that direction. The data from many periods

will be compared to look for patterns of why bubbles occur or do not occur at different

longitudes around the Earth’s equator. The second science question will be addressed

by using measurements of the plasma density at the SPORT satellite produced at higher

sample rates that have previously been obtained. This will permit the characterization

of turbulence created by plasma bubbles with scale sizes down to 200 m. Radio receivers

on the ground in Brazil will record the scintillation pattern on waves that pass through
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the ionosphere and these will be compared to the satellite measurement of the turbulent

plasma. Once verified using available data in the Brazilian sector, the same procedures can

be applied at other longitudes to produce a global description of scintillation due to plasma

bubbles.

1.1.2 Science Measurement Objectives

The SPORT mission is carefully laid out with instruments selected to provide the

measurements needed for the science mission. Table 1.1 provides a compact form of the

science questions and relation to the measurement requirements of the SPORT spacecraft

instrumentation. These requirements are used to develop measurement requirements for

each of the individual payloads of the satellite.

Table 1.1: SPORT Science Measurement Objectives

The instruments on the SPORT spacecraft are: the Ion Velocity Meter (IVM), the

Compact Total Electron Content Sensor (CTECS), the Electric Field Probe (EFP), the

Sweeping Langmuir Probe (SLP), the Sweeping Impedance Probe (SIP), and the Magnetic
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Field probe(Fluxgate).

The Ion Velocity Meter is provided by the University of Texas at Dallas (UTD). The

instrument measures the motion of the ions, or winds, within the ionospheric plasma. The

Compact Total Electron Content Sensor (CTECS) is provided by the Aerospace Corpora-

tion. CTECS is a GPS receiver that is used to detect both scintillation and obtain electron

density profiles using radio occultation techniques. Goddard Space Flight Center is pro-

viding the Magnetic Field probe. This instrument will measure the ambient magnetic field

using a fluxgate magnetometer deployed on the SLP boom. Utah State University is pro-

viding the EFP, SLP, and SIP. The SIP measures the absolute electron density local to the

spacecraft. The SLP measures relative plasma density, temperature, the floating potential,

and space potential. The EFP measures one component of the vector DC and AC electric

fields.

Figure 1.1 shows the location of all the science payloads on the SPORT spacecraft and

the organization responsible for the instrumentation development.
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USU - Sweeping Impedance
Probe

USU - Electric Field Probe
Sensor 1

USU - Sweeping Langmuir
Probe

GSFC - Magnetometer

Aerospace - GPS

USU - Electric Field Probe
Sensor 2

UTD RPA - Drift Meter

Fig. 1.1: SPORT Spacecraft and instruments

1.1.3 The USU Space Weather Probes

The Space Weather Probes(SWP) is the name of the collection of instruments and

measurements provided by USU. The SWP is composed of the Sweeping Langmuir Probe

that produces both DC current measurements in the electron saturation region and IV

curves from a voltage sweep. The Electric Field Probe provides a monitor of the floating

potential of the spacecraft during the voltage sweep of the Langmuir Probe and provides

a measurement of the electric field along one axis. The wave Spectrometer is an on-board

computation of both the high frequency electron density and electric field wave spectrum.

The Sweeping Impedance Probe provides observations of fundamental plasma resonances

that occur at RF frequencies. Table 1.2 provides a summary of the science requirements for

the USU SWP. These requirements are a flow down from the SPORT Science Measurement

Requirements of Table 1.1.
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Table 1.2: SPORT science requirements and objectives for Electric Field Probe and Sweep-
ing Langmuir Probe

Parameter EFP SLP SIP

Scientific Measurement

Requirements

Electric Fields

1. ±45 mV/m range

2. 1.1 mV/m precision

Waves

1. 10 km - 200 m sampling

Plasma Density

1. 103 to 107 p/cm3 range

2. 103 p/cm3 precision

3. 1 km sampling

Waves

1. 10 km - 200 m sampling

Plasma Density

1. 103 to 107 p/cm3 range

2. 103 p/cm3 precision

3. 200 km sampling

Measurement

Objectives

0.1 to 500 mVm, 1%

Vi (derived): 20 m/s

∆Ne :10 to 107cm−3, 5%

∆Ni : 103 to 109cm−3,5%

Te : 200 to 5000 K

Vf : ±10 mV to ±12 V

Vn : ±10 mV to ±12 V

Ni : 103 to 109cm−3,5%

1 km sampling

DC - 40 Hz DC - 40 Hz, 25 s/sweep DC - 40 Hz, 25 s/sweep

16 spectral bins

20 Hz to 15 kHz

16 spectral bins

20 Hz to 15 kHz

The SPORT mission is being implemented using a 6U spacecraft that has limited mass,

power, and telemetry resources. A conceptual design of the SPORT mission was contained

in the original proposal to NASA including an allocation of resources for the USU space

weather probes. The power allocation was 0.7 W orbit average with an on-orbit telemetry

collection allocation of 3502 bits/s while the mass allocation from the proposal was 320

grams. An interface control document was developed as part of the detailed design process

of the space weather probes. New allocations were developed as the probe designs matured

for the utilization of resources. The mass resources are presented in Table 1.3 and describe

the low-mass probes and hinges as well as the mass of the electronics board. The not to

exceed mass was 234 grams and the measured values of the components came in 8% less

than the value allocated. Mass has not been a critical resource for the SPORT mission.

The spacecraft telemetry resources were not considered a critically tight resource for SPORT.

The proposed X-band downlink data rate and ground stations provided more than 100%
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margin at the conceptual design stage. The not to exceed allocation for the space weather

probes was 40 kbits/s of continuous telemetry while the proposed utilization was 26.5 kbit-

s/s. These allocations are presented in Table 1.5 and show that the margin on the telemetry

allocation was 34%.

Power has generally been the most critical resource for the SPORT mission and also

for the Space weather probes. The probe was designed to run from an unregulated voltage

source in the range of 12 to 16.8 and the not to exceed allocation for the probe was a

current draw of 140 mA. This gave a power consumption of 1.68 W orbit average power

or more than twice the conceptual design value. What was more surprising was that the

actual current draw exceeded this amount by 11% as shown in Table 1.4. The reason for

this over budget on power has not been definitively determined but appears to be related

to the current draw of the analog section of the Langmuir probe.

Table 1.3: USU SWP Mass Allocation

Mass

Experiment Component Quantity Current Mass Per Unit (g)

Main PCBA with Daughterboard 1 57

SLP Boom without Hinge 1 31.8

EFP Boom without Hinge 2 12

SIP Boom without Hinge 1 46.5

Boom Hinges 4 14

Total Mass (g) 215.3

Total Mass NTE (g) 234

Total Margin 8%
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Table 1.4: USU SWP Power Allocation

Power

Voltage Supply Current (mA) NTE (mA) Margin

Unregulated @ 12V 155 140 -11%

Unregulated @ 16.8 V 118 106 -11%

5V 0.0025 0.005 50%

3.3V 3.8 8 53%

Table 1.5: USU SWP Telemetry Rate Allocation

Telemetry Rate

Interface Current (bps) NTE (bps) Margin

SPI to spacecraft 26483 40000 34%

1.2 Instrument History and Literature Review

The USU SWP is both the miniaturization and the collection of multiple science in-

struments onto a single electronic circuit board. Historically these have been separate

instrumentation packages when flown on spacecraft but with the development of miniature

spacecraft in the form of CubeSats there has been a need to similarly miniaturize the scien-

tific probes for measuring the space environment. The designs of the SWP are an evolution

of the designs and lessons learned from multiple past missions. We briefly review the most

recent history contributing to the USU SWP development

1.2.1 Past Langmuir Probes

Langmuir probes have been used for many years as the primary method for in-situ

measurement of the ionospheric plasma density and temperature. Langmuir probes have

been flown on both sounding rockets and satellites by many organizations and the tech-
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nique for measuring space plasma temperature and density has been reviewed by Brace. [1]

Utah State University has a history of flying Langmuir probes together with Impedance

probes on sounding rockets stretching back 60 years. The USU SWP draws from Langmuir

probe designs which have recently been flown on both the Dynamic Ionosphere CubeSat

Experiment (DICE) and the Auroral Spatial Structures Probe (ASSP).

Dynamic Ionosphere CubeSat Experiment (DICE)

DICE was a CubeSat mission to study the Earth’s ionosphere developed by ASTRA

and USU/SDL which was funded by the NSF and launched by NASA. The mission consisted

of two identical 1.5U CubeSats launched into a high inclination low Earth orbit in 2011.

Both spacecraft carried two spherical Langmuir probes deployed from each end of the 1.5U

CubeSat to measure plasma densities from 1 x 104cm−3 to 2 x 107cm−3. The probes had

a dynamic range of ±50uA and sensitivity of 1.525nA. The DICE Langmuir probes had

a power budget of 40 mW. The probe sensors were 1.27cm gold plated aluminum spheres,

positioned 13 cm away from top of spacecraft and 21 cm away from the center. [2–4]

Auroral Spatial Structures Probe (ASSP)

The Auroral Spatial Structures Probe was a NASA sounding rocket mission launched

in 2015 to study the Earth’s electric and magnetic fields during an Aurora. The mission

was composed of a main payload and six cylindrical sub payloads that were approximately

6 inches in diameter and 5 inches tall. Each sub payload had a fixed bias Langmuir probe.

The sensor was a 1-inch sphere positioned on a mast and aligned with the spin axis of the

sub payload. The Main payload had multiple fixed bias Langmuir probes collecting from

six different segments of a cylinder sensor. This configuration was called a fast temperature

probe. A separate sweeping Langmuir probe was also included collecting from a cylindrical

tip sensor. [5]

1.2.2 Past Electric Field Probes

The double-probe class of in-situ electric field instruments has been used for decades
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to observe electric fields in the space environment (Fahleson 1967). It operates by making

measurements of the potential difference between two isolated, separate conductive sensors

immersed in the plasma that are electrically isolated from the spacecraft electronics. Electric

Field double Probes have been also flown on DICE, ASSP and the STORMS sounding

rocket.

Dynamic Ionosphere CubeSat Experiment (DICE)

Two boom sets of Electric field probes utilizing the Double probe technique were used

on the DICE spacecraft. Probe measurements were filtered using an analog chain before

being digitized and sent to the onboard FPGA. The probe had a power consumption limit

of 40 mW and an area limit of 16cm2. The probes used gold plated spheres with a 1 cm

diameter. The booms were wire booms the deployed to 5m from center of spacecraft and

10m tip to tip. [2, 3]

Auroral Spatial Structures Probe (ASSP)

Each of the six sub payloads and the main payload of ASSP carried a crossed set of

Electric Field probes. The sub payload used wire booms and the main payload had a set

of rigid folding booms.

The instrumentation and the wire boom system were derived from the DICE mission. [5]

The electronics made use of the INA116 developed by Burr-Brown as an ultra low input

bias current instrumentation amplifer as implemented for DICE.

STORMS

STORMS was a NASA sounding rocket mission to investigate mid-latitude ionospheric

irregularities associated with terrestrial weather systems. The STORMS SDL/USU pay-

load had 4 Floating Potential probes. The ambient electric field was found by taking the

difference between the probes in post processing due to a higher number of electric field

probes. [6]
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1.2.3 Past Plasma Wave Spectrometers

Plasma Wave Spectrometers do not have a history of being flown on CubeSats due to

implementation complexity and power limitations but have been flown on larger satellites

including Voyager 1, Cassini, and Wind.

Dynamic Ionosphere CubeSat Experiment (DICE

DICE had a spectrometer on the electric field channel. The instrument used a 1024-

point FFT with 4 spectral bins and a frequency range of 16 Hz - 512 Hz. [2, 3]

Voyager 1

The Voyager Plasma Wave System used a 16-channel spectrum analyzer with a fre-

quency range of 10 Hz to 56 kHz. This plasma wave instrument alone used between 1.1-1.6

W of power. The instrument size was 31.8 cm x 18.5 cm x 4.8 cm with a mass of 1.4 kg. [7]

Cassini

Cassini improved on the wave spectrometer from the Voyager spacecraft. The Cassini

plasma wave instrument had 16 logarithmic spaced channels with a range of 10 Hz to 56.2

kHz. The main electronics of this science payload were 5 kg, 41.7 cm x 17.8 cm x 16.8 cm,

and had a peak power consumption of 5.09 W. [8]

WINDS

The WAVES investigation on the WIND spacecraft uses a 1024-point FFT receiver

with a frequency range of DC- 10 kHz implemented with a DSP. The frequency spectrum

is divided into three bands [9]

1.2.4 SPORT Improvements

SPORT will include a cylindrical Langmuir probe with both sweeping and fixed bias

capability, a double spherical Electric Field probe, and a Wave Spectrometer with 16 spec-

tral bins. The SPORT Space Weather Probes is drawing significantly from the designs
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utilized on DICE and ASSP missions. Both DICE and ASSP integrated Langmuir, Electric

field probes, and Magnetic field sensors onto a single circuit board. SPORT will include

an impedance probe. Many of the changes and improvements will be implemented in the

onboard FPGA system on module within the digital signal processing chains as well as

instrument control, data packetization, and time stamping. The amount of filtering on the

SLP and EFP will be increased to reduce noise with most of the filtering occurring in the

FPGA fabric. Signals will be digitized earlier in the processing chain compared to previous

designs. In addition to the added filtering, SPORT will have increased data rates for the

SLP and EFP, thereby providing a more detailed picture of the plasma density and bubble

structure. Another major change compared to previous iterations is the addition of a 16

channel wave spectrometer channel which will be an expanded and improved version of the

DICE spectrometer, allowing for the feasibility of implementation of a Wave Spectrometer

within the limitations of a CubeSat form factor to be explored. The SLP and EFP elec-

tronics, together with the SIP, magnetometer, and real time clock, will be combined on

one 9 cm x 9 cm PCB. For information on the Sweeping Impedance Probe, see the thesis

discussing the development of that instrument for SPORT.

1.3 Thesis Outline

This thesis is documentation of the process undergone during the development of the

Sweeping Langmuir Probe, Electric Field Probe, and Plasma Wave Spectrometer. While

focused on these instruments, additional information on the development of the USU Space

Weather Probes as a whole is provided. Chapter 2 provides an overview of the system

architecture, including power conditioning, mechanical design, and firmware, as well as the

concepts of operation for testing and analysis of data products. Chapter 3 discusses the

Sweeping Langmuir Probe, beginning with a brief overview of the concept of operation.

The rest of the chapter discusses the analog and digital components of the instrument and

all the design, decisions, and analysis involved. The chapter ends with the calibration of

the probes including all methodology and results. The Electric Field Probe and Plasma

Wave Spectrometer comprises Chapters 4 and 5, following the same outline as Chapter 3.
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Chapter 6 contains a summary of the thesis concluding with final Space Weather Probes

performance review, lessons learned, and future work.
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CHAPTER 2

INSTRUMENT ARCHITECTURE AND CONCEPTS OF OPERATION

The Utah State University Space Weather Probes Instrument architecture and the

concepts of operation are presented within this chapter. The high-level objectives for the

SWP were to integrate the previous instrument developments of the DICE and the ASSP

missions into a single printed circuit board that would be mechanically compatible with

the CubeSat standard. The integrated instrument was to be a stand-alone module within a

CubeSat with clean interfaces, its own instrument controller, and an isolated power supply.

Given that the SWP is a suit of instruments, it was desired to have control over each of

the individual components with the ability to power down and control the production of

telemetry through software commands. Within this chapter, we overview the approaches

to the SWP starting with a general review of the instrumentation architectures and then

moving to the mechanical layout and the deployed components. The architecture of the

operational modes is presented, followed by a discussion of the telemetry and telecommand

details. The chapter ends with a detailed discussion of the firmware architecture followed

by a brief discussion of the testing approaches and how the observations of plasma den-

sity, temperature, fields, and waves will be produced to meet the science requirements and

objectives from Table 1.2.

2.1 Architecture of Hardware and Power Conditioning

An architecture diagram of the SWP printed circuit board is present in Figure 2.1.

The concept for controlling the SWP is through the use of an FPGA with an embedded

microcontroller. The FPGA fabric is used to provide the real time control of the instruments

and time stamping of telemetry data while the microcontroller would be used to both format

telemetry packets and to receive telecommands from the spacecraft computer. The analog

components of the electric field probe, the sweeping Langmuir probe, and the sweeping



16

impedance probe are shown on the left in Figure 2.5. These probes interface with the FPGA

via SPI for controlling both their digital to analog (DAC) and analog to digital converters

(ADC) within the instruments. Housekeeping temperature, voltage, and current monitors,

shown at the top in Figure 2.5 pass data to the FPGA controller. The collected telemetry

data is passed to the host spacecraft systems via an SPI protocol interface. Telecommand

from the host spacecraft are also received via the same SPI interface. The programing of the

FPGA and micro controller is through a USB interface and an onboard FTDI programmer

system that is powered from the USB interface.
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Fig. 2.1: Space Weather Instruments hardware architecture
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2.1.1 Instrument Controller FPGA

A Smartfusion2 system-on-chip (SoC) composed of a flash-based FPGA and an ARM

Cortex-M3 processor was selected based on both its low-power and the heritage of Mi-

crosemi’s flash-based FPGAs use in space systems. A System-On-Module (SOM) from

EmCraft was chosen which contains the SmartFusion2 SoC (FGG484 package), 64 MB of

low power DDR memory, 16 MB of flash memory and a 10/100 Ethernet chip. The SOM is

a small (30 mm x 57 mm) mezzanine module that can be either attached to the underside of

the SWP PCB or to development board. This approach of using a SOM was chosen to both

speed software and hardware development. The SOM provides all the power regulation

necessary for operation of the SmartFusion 2 and it’s supporting electronics when provided

with 3.3 volts. The SOM interfaces with the SWP PCB instruments through two 80 pin

inter-board connectors. The overall architecture of the USU SWP hardware is shown in

Figure 2.1.

2.1.2 Instrument Electrical and Power Interface

The science instruments of the SWP make very low-level current and voltage measure-

ments of the plasma in which the spacecraft is immersed in order to meet the scientific

objectives. The measurements are made from deployed probe surfaces with return currents

collected on the spacecraft structures. Therefore, it was decided to completely electrically

isolate the SWP from the spacecraft’s power and communication systems to avoid any noise

that could introduced by ground loops or other spacecraft subsystems. Internally to the

instrument, care was taken to separate analog power and grounds from digital power and

grounds, as well as components on the PCB. Figure 2.2 presents the architecture of the

electrical and power interfaces for the SWP as well as the internal voltages and power

grounding schemes.

The USU SWP have been designed to be powered from an unregulated power bus of the

spacecraft, with an input range of 12 - 16.8V, although the SPORT spacecraft is providing a

regulated 12V input to the SWP. Two isolated DC-DC converters are used to create internal

analog 5V and digital 3.3V power supply rails. The DC-DC converters are controlled with a



18

5V enable line from the spacecraft. The internal analog 5V rail is converted into a precision

reference of 4.096 volts and regulated to produce positive and negative power supplies of

±1.8V and± 4.5V . Dual output linear regulators provide these voltages to lower noise from

the previous voltage regulation stages.

The 3.3V digital voltage is further down converted to 1.8V and used to power the

digital components of the SWP including the SOM, DACs and ADCs.

The digital communication lines between the SPORT spacecraft and USU SWP are

passed through a digital isolator chip to further isolate the spacecraft grounds from the

instrument grounds. The spacecraft uses 3.3V to power its side of the chip while the SWP

powers the internal side of the isolation chip. Within the USU SWP, a star grounding

scheme was implemented to reduce noise in an attempt to reduce the noise in the sensitive

analog sections. Analog and digital signals were physically kept separate on the circuit card

to reduce EMI. The grounds for the analog and digital components are brought together

only at one single point where they are also connected with the spacecraft electronics and

spacecraft chassis ground. This star ground point can be seen in Figure 2.2 along with the

power conditioning circuitry for the USU SWP.
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Fig. 2.2: Power Conditioning Architecture

2.2 Mechanical Architecture

The SWP consists of four sensors that fold out from its host spacecraft using miniature

hinges together with a single printed circuit board as shown in Figure 2.3. The printed

circuit board follows the PC/104 form factor standard (90 x 96 mm) for dimensions and

mounting holes but does not include the electrical backplane connector called out by the

standard. MMCX connectors are used to connect instruments to the external sensors probes

which are located at the ends of the deployable booms.The mounting locations of the booms

and sensor on the SPORT spacecraft are shown in Figure 1.1. The printed circuit board is
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connected to the spacecraft systems using an Omnetics Nano-D connector which provides

power and communication between the spacecraft and USU SWP. Its mate is provided to

the spacecraft provider as a pigtail connector for integration into the spacecraft as shown

in Figure 2.3.

Fig. 2.3: USU SWP PCBA with Booms

Figure 2.4 details the various connectors placement on the SWP printed circuit board.

Right angle MMCX connectors to coaxial cables are used for signals coming off of the

board to conserve space and simplify cable routing. The Electric Field Probe consists of

four connectors. The center conductors of EFP 1P and EFP 2P are electrically connected

to the probe surfaces while the shields of the cables are driven guards used to reduce the

capacitance of the cables. The connect to the gold-plated cylindrical shield sections just
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below the gold-plated spherical sensors. The center conductors of EFP 1N and EFP 2N

connect to the spacecraft structure while the shields are left isolated and unconnected.

Similar to the EFP, the sweeping Langmuir probe (SLP) center conductor is connected to

the gold-plated 76 mm long needle sensor at the end of the boom and the shield is a driven

guard for the signal. It is connected to a gold-plated cylindrical shield section just below

the needle probe as seen in Figure 2.3. The MMCX connections for the sweeping impedance

probe are similar to the electric field probe in that the center conductor of the SIP A (A for

antenna) is electrically connected to the 234 mm long impedance probe while the electrically

driven shield is a guard which is attached the 50 mm long section at the base of the boom.

The SIP G connector has the center conductor connected to the spacecraft chassis and the

shield is left isolated and unconnected.

The spacecraft interface is through a single Nano-D connector and electrically through

the mounting holes which electrically tie the board star ground to the spacecraft structural

ground (see Figure 2.2). The ethernet header is unused while the micro USB programming

port is to be routed to an external connector on the surface of the spacecraft for late

reprogramming of the FPGA and processor as needed.
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Fig. 2.4: USU SWP board with connectors

2.3 USU SWP Telemetry and Command Concept of Operations

The collection of instruments of the USU SWP produces a number of different types

of data depending on the mode of operation or through onboard data processing. The

approach taken was to use the Consultative Committee for Space Data Systems (CCSDS)

recommended Space Packet Protocol to organize both the telemetry and the telecommand.

The Space Packet Protocol (SPP) is designed as a self-delimited carrier of a data unit (i.e.,

a Space Packet) that contains an Application Process Identifier (APID) used to identify the

data contents and data source. This a well-documented international standard uses a 6-byte

header to identify the source of data as well as the length of the data packet. It is used to

organized the data flowing from the instrument (telemetry) as well as the commands to the

instrument (telecommand) that change operational modes and gains of the SWP.
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2.3.1 Telemetry Concepts

The USU SWP produces 7 different types of SPP in order to meet the science require-

ments and objectives from Table 1.2, the USU SWP will produce the telemetry packets

described in Table 2.1. Status packets provided general information about the SWP instru-

ment including temperatures, current and voltage monitors, and perhaps most important:

timing base synchronization information based on a one pulse per second signal from the

spacecraft and an associated time message. The Science packets contain basic DC mea-

surements at a 100 Hz rate from the Electric Field Probe, Sweeping Langmuir Probe,and

the Magnetometer. The SLP Sweep packets consist of a set of Langmuir probe currents

obtained during a voltage sweep along with associated floating potential measurements from

the Electric Field Probe. The Wave packets contain spectrometer data using an on-board

FFT analysis of both the Sweeping Langmuir Probe and the Electric Field Probe as the

source. The SIP Sweep packets contain the measured in-phase and quadrature components

of the current flowing to the probe over the frequencies defining the sweep. SIP Track

packets contain a measurement of the frequency of the upper hybrid resonance as observed

by the Sweeping Impedance Probe. The final packet type is the Config which reports the

current gain and table data settings within the SWP which can be changed by telecommand

from the ground.
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Table 2.1: USU SWP telemetry packet contents,sizes, and rates

Packet Name Packet Contents Size (bytes) Period (s)

Status Housekeeping data: time synchronization, 108 120

Operating modes, monitors and error flags

Science SLP DC measurements 1812 1

Magnetometer XYZ and temp

SLP Sweep SLP Sweep measurements 10532 120

SIP Sweep I and Q data 3084 120

SIP Track Tracking Frequency 412 1

Wave EFP and SLP Magnitude squared freq. bins 972 1

Config Echo Current gain and Table data settings NA

2.3.2 Telecommand Concepts

The USU SWP obtains commands in the form of SPP formatted packets to change the

operational state of the instruments, reconfigure it, or to pass timing information. Only six

type of packets are recognized as described in Table 2.1. Some packets are only to be used

on the ground for calibration of the instrument while other packets can be used to upload

new tables controlling the SLP voltage sweep and the SIP frequency sweep. The SWP

operates in three different modes, Idle, Science, and Calibrate. The telecommands are used

to switch between these modes. The modes of operation are shown in Figure 2.5 as a state

machine with the telecommands being used to transition between the three states and to

change configuration within states. Time GPS messages can be received in any state and

are used to synchronize the clocks and time stamping systems internal to the SWP with

GPS time during post processing of the telemetry.

Idle

The SWP enters the Idle state on power up. Upon entering the Idle state, a Status

packet is generated to indicate a successful power up and provide initial housekeeping data.

The current SWP configuration is also provided at power up in a generated Configuration
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Table 2.2: Science Mode Measurements

Sweeping Langmuir Probe (SLP)
Electric Field Probe (EFP)

Measurement Technique
1. DC
2. Voltage Sweeps
3. Wave Spectrometer

Sweeping Impedance Probe (SIP)

Measurement Technique
1. Frequency Sweeping
2. Resonance Tracking

Echo packet. The SWP after generating these two packets will wait in Idle state until a

command to switch modes is received. From Idle, the SWP can either be put into Calibrate

mode or Science Mode. The SWP must be in the Idle state before a new configuration can

be applied.

Science

The SWP is normally expected to operate in the Science mode. This mode produces

the telemetry packets previously described in Table 2.1 and is reached by sending a Science

mode command while in Idle. The desired telemetry packets to be produced are selected

by the data bytes in the Science mode command packet. To change the telemetry to be

produced, the SWP must first be put back to Idle and a new Science mode command sent

with the desired packets. Status packets are automatically produced while the SWP are in

Science mode.

Table 2.2 shows the measurements that can be controlled for each instrument. DC is

an operation of the Langmuir probe at a fixed bias with the Electric Field Probe operated

as two floating potential probes that are all simultaneously sampled. Voltage Sweeps is an

operation of the Langmuir probe obtaining a current voltage characteristic over a range

of voltage steps with the Electric Field probe operated as two floating potential probes

simultaneously sampled at each voltage step of the sweep. Wave Spectrometer is an op-

eration of the Electric Field Probe as a double probe along with the fixed bias Langmuir

probe to produce high frequency power spectra.Frequency Sweeping is an operation of the

impedance probe over a range of frequency steps ordered into a sweep. Resonance tracking
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is the operation of the Sweeping Impedance Probe in a closed loop tracking of the occur-

rence frequency of the upper hybrid plasma resonance. The current configuration can be

read while in Science mode without switching back to Idle.

Calibrate

Calibrate mode is not used in flight. This mode is used for checkout, testing and

calibration of the instrumentation during development. Individual parameters configurable

through the uploading of a Configuration packet are also able to be configured individually

while in Calibrate mode. Calibrate mode also provides the ability to manually step through

sweeps of the SLP or SIP. Calibrate mode can only be set from the Idle state.

Idle

Calibrate Science

Science(Mode)
Send: Status

A
Power On

Idle
Send: Status

Calibrate
Send: Status

Idle
Send: Status

WriteConfig(Data)
Send: Config

SLP-EFP 
Parameters

Data
Packet

 Off Status

 DC on Science

Sweeping on SLP_Sweep

 Wave on Wave

SIP
Parameters

Data
Packet

Off Status

Sweeping on SIP_Sweep

Tracking on Tracking

Not 
available 
on-orbit

Send: Status 
Send: Config

Time Message(Data)Time Message(Data)

ReadConfig
Send: Config

ReadConfig
Send: Config

Idle
Send: Status

Time Message(Data)

Fig. 2.5: USU SWP Modes of Operation
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2.4 Firmware Architecture

The firmware consists of both the C-code and the FPGA HDL placed on the Smart-

fusion2 with its embedded ARM Cortex M-3 processor. This ARM processor controls all

the communication with the SPORT spacecraft. It also formats the CCSDS Space Protocol

Packets for telemetry and interprets the telecommand packets. Data is passed back and

forth between the processor and the FPGA fabric via an internal data bus to the Smartfu-

sion2. The processor runs in a single software loop entering a low power idle state at the

end of the loop. When a hardware interrupt is generated, either by the FPGA fabric or by

communications initiated by the spacecraft, the processor is woken and execution resumes.

Conceptually the FPGA fabric operates the instruments and collects data, placing into a

FIFO, one per instrument, in what is called a data granule. The fabric then generates an

interrupt for the processor to indicate that a data granule is ready to be collected. A packet

consists of many granules of data which the processor collects over time and formats to

create a complete packet.

On power up of the SWP, the processor runs through initialization. This stage config-

ures all the interrupts, GPIO pins, and FPGA instrument configuration parameters. After

initialization, the processor proceeds with normal operation in the main loop.
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Fig. 2.6: Main processor loop

The main loop, as illustrated in Figure 2.6 checks for any packets complete and ready

to be formatted with a SPP header and placed into an outgoing telemetry buffer. After

checking each of the different packet statuses, the processor enters a sleep mode. The
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processor remains in sleep mode until an interrupt is triggered. After handling the interrupt,

the processor will run through all the checks before entering sleep mode again. This interrupt

driven architecture is used to reduce power consumption in the processor by allowing it to

remain in the sleep mode until needed.

Check APID

1. Set Science Mode
2. Set Calibrate Mode
3. Set Idle Mode
4. GPS Time Packet
5. Config Packet
6. Misc. Calibrate Parameters

CMD PARSE ISR

Command Data Buffer = SPI RX DATA

SPI INTERRUPT

1. Set enable lines and System State
2. Set System State
3. Set System State
4. Update GPS Time value
5. Write new Config parameters
6. Write Calibrate parameter to FPGA

CMD ACTIONS

Fig. 2.7: Processor Commands

The SPORT spacecraft acts as the Master with the USU SWP as the Slave in the SPI

communication. The SWP utilizes an interrupt to determine when the SPORT spacecraft

has sent a command. After checking the checksum on the received command, the APID

is checked. The APID determines the actions taken, whether calling a function, setting a

register, or setting the level of a GPIO pin to the FPGA fabric.
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Fig. 2.8: Function to process granules/packets from granule buffer

The microprocessor and FPGA interface using FIFOs. Each packet type has its own

FIFO. A whole packet is made of many smaller granules. The FPGA writes a granule, a

32-bit word at a time, into the FIFO. When the FIFO is not empty, the FIFO triggers

an interrupt in the microprocessor. The ISR for each FIFO reads out the words from the

FIFO into a granule buffer. In the main loop, a function is called to check each packet’s

granule buffer to determine if a whole granule has been read from the FIFO. The generic

flow of this function is shown in figure X. If the buffer does not contain an entire granule,

the processor returns to the main loop and checks the size of the buffer again on the next

iteration. Once the size of the buffer is greater than or equal to a granule, the processor

parses the buffer, putting the granule into the current packet being formed. Once the last

granule in a packet has been received, the processor copies the packet into a packet buffer.
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Fig. 2.9: Circular buffer for telemetry packets

To prevent data loss due to the SPORT spacecraft not reading from the USU SWP, a

packet buffer stores finished telemetry packets. The buffer architecture is shown in figure

2.9. This packet buffer is a collection of circular buffers, one for each packet type. When

a telemetry packet is created, a packet type counter is incremented. packet type counter

keeps track of number of each type of packet in the buffer. The telemetry packet is then

pushed onto the corresponding circular buffer. When a packet is ready to be sent to the

spacecraft, the packet type counters are checked in the priority order shown in figure2.9.

The packet type of the next packet is determined and used to decide which circular buffer

to pop the packet data from. The data is sent from the circular buffer to the SPI buffer

in preparation for sending to the SPORT spacecraft. Multiple circular buffers were used to

eliminate the complexity of using one circular buffer with varying packet sizes.

2.5 Testing Concepts of the SWP

The USU SWP development and testing occurred in the electronics laboratory spaces

at Utah State University’s Center for Space Engineering. The test area, shown in figure

2.10, is setup with ESD protection, power supplies, and signal generators. A spacecraft

emulator was used for testing the SPI communication interface and debugging. A Faraday

cage with an internal thermal chamber were used for thermal testing. The SWP PCB was

mounted to an internal cold/hot plate that was controlled by an external circulating fluid
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bath.

Faraday Cage

Thermal Testing

Power Supplies

ESD Safe Test
Area

Test Signal
Generators

Fig. 2.10: USU SWP Testbench Setup

The SPORT spacecraft emulator consists of a Raspberry Pi computer with a GPS

receiver and external hard drive. The software on the Raspberry Pi emulates the commu-

nications between the SWP and the SPORT spacecraft. The raw data received from the

SWP is stored on the hard drive and sent to a COSMOS ground station via TCP/IP. The

COSMOS ground station is used for sending commands via the emulator to the SWP and

plotting data received from the SWP in real time. Test sources were used to inject signals

into the SLP, EFP, and SIP. Figure 2.11 shows the test bench setup for the test sources used

during calibration and testing of the USU SWP. Test sources were controlled via MATLAB

and LabVIEW scripts. These scripts also control the data logging of the telemetry on the

Raspberry Pi.
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Fig. 2.11: Testbench Setup

2.6 Data Analysis Concepts

The data analysis concepts for of the USU SWP are illustrated in Figure 2.12 which

overviews the process for converting the raw data into measurements of plasma density,

electron temperature, and measurements of wave power in both density and electric field.

The USU SWP produces various CCSDS Space Packets which contain data that is called

Level 0 and consist of ADC counts, timing, and housekeeping information. The Level 0 data

are processed into Level 1 data which in turn is processed into Level 2 data by using a series

of MATLAB scripts and functions. The Level 0 ADC counts are calibrated into current,

voltages, frequencies, and impedances using the calibrations computed during the thermal

testing of the instrument. These become Level 1 data. The Level 1 data is also registered to

GPS time and combined with ancillary data from the spacecraft, so the lighting, position,

and orientation of the probes are known in both inertial and Earth Fixed reference frames.

The level 1 data is then analyzed using the appropriate probe theory to produce the Level
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2 data consisting of scientific measurements of density, temperature, wave power, magnetic

and electric fields as a function of position and time. These are to be used by the science

community for addressing the SPORT science questions. Level 2 data will be stored by

EMBRACE at INPE and shared with the science community via the existing EMBRACE

web portal.

Data Products

Level 0 Level 1 Level 2

SIP track -    

MAG -   

Ne

Plasma Density

100 Hz

SC Attitude Probe 

Lighting
Sensor Map
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  – Cyclotron Frequency 

  – SIP impedance

   – SIP frequency

       – Electron saturation current

∆Ne – relative electron density
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100 Hz rate

GPS time (Week, 

Seconds)

25 s cadence

100 Hz

1 Hz

SC Currents

Ne

Plasma Density

100 Hz

SLP    vs  

EFP    vs  
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Fig. 2.12: Data Products

The primary measurement of the SWP is the plasma density along the spacecraft track

at 100 Hz, or, given the spacecraft velocity of 7.66 km/s, at a spatial sampling of 76 meters.

This density is computed using three separate techniques. The first and most direct path is

to use the tracking data of the SIP which gives the upper hybrid frequency at 100 Hz. This

is combined with measurements of the local magnetic field to obtain the plasma frequency

from which plasma density is directly obtained. A second method is to use the frequency

sweeps of the SIP and to manually locate the upper hybrid frequency in the probe current
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vs frequency plots. This can only be done at the slow cadence of the SIP sweep which

will be nominally operated at 25 to 120 second period. The SLP DC electron saturation

current measurement is proportional to the electron density and sampled at 100 Hz but only

provides a relative measurement of plasma density. Therefore, this relative measurement will

be continually calibrated using the slower SIP sweeps to produce an absolute measurement

at the required rate. The third method is the least accurate but produces an additional

electron temperature parameter. This method relies on the SLP sweeps and probe theory,

as well as the probe orientation and lighting, to compute the absolute electron density,

temperature, as well as the ion density. These will then be used to calibrate the SLP DC

electron saturation current to produce a 100 Hz plasma density measurement.

The SWP produces a Level 2 data product that is the measurement of both electron

density and electric field wave power. The source of the electron density wave power data

originates from the SLP DC electron saturation current measurement and the electric field

wave power originates from the electric field probes. The powers are determined from

the L1 data by applying the ground-based calibrations to each of the 16 frequency bands

stretching from 25 Hz to 25 kHz and in the case of the electron density, wave power, using

the SIP relative calibration to electron density. The final measurement of interest is a one

dimensional observation of the electric field as determined by the difference between the two

floating probe measurements. This is not reported as a Level 2 data product but will be

used for comparison internal to the SPORT mission with the electric fields as determined

from the UTD drift meter.
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CHAPTER 3

SWEEPING LANGMUIR PROBE

Langmuir probes have been used for many years as a method for in-situ measurement of

plasma characteristics. The probes have been flown on both sounding rockets and satellites.

[1] This thesis focuses on miniaturizing the instrument for use on a CubeSat and therefore

will not go into large detail on instrument theory. For a more detailed tutorial of the theory

of Langmuir probes, see Langmuir Probe Measurements in the Ionosphere [10].

3.1 Instrument Overview

A Langmuir probe consists of a metal conductor immersed in a plasma and a voltage

is applied to the probe. The resulting current collected on the probe is measured. This

measurement allows for the I-V curve of the plasma to be determined when the voltage is

swept through a range of values as seen in Fig. 3.1

I	(
am

ps
)

V (volts)

Electron
Retardation

SPACECRAFT V

Fixed-bias DC Langmuir Probe

Sweeping Langmuir Probe

V = +3 volts

V = +3 to -2 volts

+3

-2

Ion Saturation  Electron Saturation 
(geometry dependent) (geometry dependent)

Vf Vp

Fig. 3.1: IV Curve Langmuir Probe
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Fig. 3.2: Location of SLP analog components on the USU SWP PCBA

From this curve, several plasma parameters including electron density, ion density,

and total electron temperature can be obtained due to proportional relationships with the

currents measured. The ion current Ii is proportional to the ion density, Ni. There is also

a proportional relationship between the electron current, Ii and electron density, Ne. The

DC probe measures collected current in the saturation region. This measurement is done

by applying a fixed voltage potential relative to the spacecraft ground. The Sweeping probe

measures collected current at each step of a voltage sweep. Both the DC and Sweeping

probe are affected by changes in the spacecraft floating potential. To account for this

shift, floating potential probes are used to monitor the spacecraft floating potential during

operation of the Langmuir probe. The implementation of the SLP is designed to use less

power and area than previous implementations. The SLP is a combination of an analog

front end and digital components implemented in FPGA fabric. There are two channels

for the SLP, a low gain and high gain channel. The USU SWP Langmuir Probe has two

possible operating modes, DC (Fixed-bias) and Sweeping. Both modes utilize the same

analog front end but differ in the digital components.

3.2 Design and Analysis
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3.2.1 Instrument Requirements

In order to meet the SPORT science requirements, it was determined that the Sweeping

Langmuir Probe would need to be designed to meet the Functional requirements shown in

Table 3.1. The test range used to verify each of these requirements is also shown. More

detail on the testing is provided in the Calibration and Testing section at the end of this

chapter.

Table 3.1: Key SLP Functional Requirements

Parameter Units Requirement Test Range

Output Voltage Range Volts -2 to +3 -3 to +3

High Gain Current Range na -50 to +50 -55 to +55

Low Gain Current Range uA -50 to +50 -55 to +55

Measurement Bandwidth Hz > 40 1 to 50

Sweep Step Sample Rate Hz > 2000 20,000

3.2.2 Analog Design

The SLP consists of an analog front end shared by both channels with a transimpedance

amplifier (TIA), that measures the input current on the probe. The chosen TIA, LTC2057,

is a low noise, zero-drift amplifier with low offset voltage drift from temperature. The

amplifier output Vout is determined by the equation below where Iin is the current into the

TIA, G is the gain of the amplifier, Vbias is the voltage on the probe.

Iin ∗Gtia + Vbias = Vout (3.1)

(Vout − Vbias) ∗Gdiff = Vdiff (3.2)

The next stage takes Vdiff and converts it into a differential signal to drive the ADC. The

input to the ADC is centered around Vref/2. The ADCs are 20 bits, with 220/4.096 counts

per volt.
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Fig. 3.4: Sweeping Langmuir Probe High Gain Channel

Fig. 3.3: Sweeping Langmuir Probe Low Gain Channel

Vbias is produced by a DAC paired with an operational amplifier for bipolar output

operation. The DAC8831 is an ultra-low power, low-noise DAC, with a fast settling time.

The MAX44251 is an ultra-precision, low-noise, low-drift amplifier. This op-amp was chosen

due to its near zero DC offset and low thermal drift. The DAC is controlled by a driver on

the FPGA using SPI to send voltage values. The DAC produces a fixed voltage during DC

mode and uses a look up table for the voltage sweeps during Sweep mode. The DAC is 16

bits with a resolution of 125uV/count.

3.2.3 Digital Design

The digital section of the SLP is implemented in the fabric of the Microsemi Smartfusion

2 FPGA. The FPGA architecture is shown in figure 2.5. A SPI interface is used between

the ADCs and FPGA fabric. To reduce the number of FPGA pins used, the two SLP ADCs

are used in a daisy chain configuration. Daisy chain configuration allows for a reduction of
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Fig. 3.5: Sweeping Langmuir Probe DAC

FPGA pins by sharing one SDO pin with multiple ADCs. The SDO from one ADC is tied

to the SDI of the next. The final ADC’s SDO is tied to the input of the FPGA. The FPGA

clocks the data for all the ADC’s on the chain consecutively with each read.

The SLP Low gain and High gain ADCs sample period is configured using an adjustable

ADC sample timer. The sample timer triggers the SPI drivers to send a conversion command

to the ADCs by asserting the CNV line. A sample is ready from the ADC after a delay of

tconv, which is a max of 320 ns. The SPI driver now clocks the sample data from the ADC.

When the sample data is received, the accumulator WEN signal is asserted, allowing the

accumulators to register the data from the SPI driver. The DC and Sweep channels have

separate banks of identical accumulator modules. The accumulators act as low pass filters

on the Langmuir probe measurements. Each accumulator waits for a trigger to register the

data on the input. There are two adjustable parameters for the accumulator, the number of

samples to skip and the number of samples to sum. Skipping samples provides the ability

to allow for a settling time on each step of the sweep. This can be seen in figure Fig. 3.7,

where two ADC samples occur while the DAC voltage is still settling.
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Fig. 3.6: Timing Diagram for daisy chained ADC from AD4003 Datasheet

Fig. 3.7: DAC settling time and ADC samples

Once the desired number of skipped samples, M, have been discarded, the accumulator

begins to save and sum each ADC sample. After the accumulator has summed the required

number of samples, N, the accumulator’s DONE signal is asserted. The accumulator resets

on the next clock cycle.
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Fig. 3.8: SLP Sample timing
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The Gather and Mask module receives all the data from the accumulators. The Gather

and Mask modules have an adjustable shift parameter, which allows for averaging and

selecting what bits of the accumulator output are used. When each accumulator is done,

the data is saved in a register until all accumulators have been read from. At this point the

DC channel Gather and Mask triggers a magnetometer conversion and reads the current

SysClock value. When a packet granule is ready, which includes all accumulator data, the

magnetometer data, and the SysClock, the granule is fed word by word into the FIFO.

The FIFO asserts the AFULL flag once a complete granule is stored. The AFULL flag

triggers an interrupt in the microprocessor. The microprocessor then reads the granule out

of the FIFO over the APB. The FIFO can store a full telemetry packet’s worth of granules

in the event that the microprocessor is delayed in reading out a granule. The DC and

Sweep channels can be operated independently. However, if both channels are operating

simultaneously, the DC data obtained during a Sweep should be considered unusable. The

Sweep mode of the SLP uses a sweep timer to determine the period between sweeps. The

SLP Sweep Timer also determines the length of each sweep. The sweep timer module counts

the number of ADC samples at each step and triggers the step changes. At each step of

the sweep, the sweep timer sends an address to the SLP Sweep Table module. The table

module reads the step value out of RAM which is then used to set a voltage on the probe

guard by the SLP DAC driver. The EFP ADCs are sampled simultaneously with the SLP

ADCs. The same data processing chain is used for the EFP samples. The EFP provides

the floating potential measurements discussed at the beginning of this chapter.



44

EFP Probe 2 
ADC

SLP  ADC

EFP SPI DRIVER

SLP SPI DRIVER

EFP Probe 1 
ADC

FPGAOn PCB

Accumulator 1 Probe 1

Accumulator 2 Probe 2

Accumulator 3 LG

18 bit

18 bit

29 bit

29 bit

29 bit18 bit

18 bit

18 bit

Gather and Mask DC
Shift values

SLP DAC SPI DRIVER

16 bit
SLP SWEEP DAC

Gather and Mask Sweep
Shift values

FIFO

FIFO

Processor

APB Bus

APB Bus

Magnetometer
Magnetometer SPI 

Driver

ADC Sample Timer
200 kHz

Sweep Table

RAM

20 bit

32 bit

Sysclock

Sysclock

ADDR

APB Bus

FPGA

Accumulator 3 HG

18 bit 29 bit

Accumulator 1 SW 
Probe 1

Accumulator 2 SW 
Probe 2

Accumulator 3 SW LG

Accumulator 3 SW HG

29 bit

29 bit

29 bit

29 bit

Sweep Timer

Table data

SysclockTimer Values

To Wave

Fig. 3.9: FPGA flow diagram for SLP/EFP

3.3 Calibration and Testing

The Sweeping Langmuir Probe was subjected to a number of test to determine if the

instrument meets the functional requirements in Table 3.1 All tests were conducted over a

thermal range as shown in figure 4.6
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Fig. 3.10: Thermal cycling concept

3.3.1 Calibration Methodology

Gain and Linearity Test with Current Source

The purpose of this test was to determine the gain and offset of the Langmuir probe

over the temperature range and check the linearity of the instrument. The first test was

conducted by driving a known current into the SLP using a current source. The DAC is set

at minimum voltage, zero voltage, and maximum voltage for the probe. The current range

for the High and Low gain channels was verified with a stepped input current. Figure 3.13

shows the results from the Linearity test. Figure 3.14 gives the calibration obtained using

the test data. SLPLG = −2.0165e−04 · ADC + 0.3449 The test results across the range

of temperatures were compared and figure 3.15 shows how the calibration changed with

temperature.
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Fig. 3.11: SLP Test setup with current source
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Fig. 3.12: SLP Gain and Linearity Test input current pattern
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Fig. 3.13: Results of Gain and Linearity Test with Current Source
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Fig. 3.14: SLP Calibration

Fig. 3.15: Calibration vs Temperature

Gain and Linearity Test with Precision Resistors

The purpose of this test was to determine the gain and offset of the Langmuir probe
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Fig. 3.16: SLP Precision Test Resistors

over the temperature range and check the linearity of the instrument. This second test

was conducted using finely calibrated resistors across the SLP to determine the gain and

linearity with more precision.
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Table 3.2: Precision Resistor values with expected current and ADC counts

Resistor Value (k ohm) Current (uA) LG Count

R1 30 100 5.24E+05

R2 51 58.8 5.24E+05

R3 92 32.6 3.42E+05

R4 110 27.3 2.86E+05

R5 130 23.1 2.42E+05

R6 150 20.0 2.10E+05

R7 201 14.9 1.57E+05

R8 300 10.0 1.05e+05

R9 510 5.9 6.17E+04

R10 751 4.0 4.19E+05

R11 3945 0.8 7.97E+05

R12 8237 0.4 3.82E+03

R13 14843 0.2 2.12E+03

R4 26971 0.1 1.17E+03

SLP Frequency Response

The purpose of this test was to determine the frequency response of the Langmuir

probe over the temperature range. Sine waves were input to the SLP over the frequency

range shown in table 3.3.
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Table 3.3: SLP Frequency Steps

Point Frequency (Hz) Hold (s)

1 5 20
2 6 17
3 7 15
4 8 13
5 10 10
6 11 10
7 13 8
8 15 7
9 17 6
10 19 6
11 22 5
12 26 4
13 30 4
14 34 3
15 40 3
16 46 3
17 53 2
18 62 2
19 72 2
20 83 2
21 96 2
22 111 1
23 129 1
24 149 1
25 173 1
26 200 1
27 232 1
28 268 1
29 311 1
30 360 1

Point Frequency (Hz) Hold (s)

31 417 1
32 484 1
33 560 1
34 649 1
35 752 1
36 872 1
37 1010 1
38 1171 1
39 1357 1
40 1572 1
41 1822 1
42 2111 1
43 2447 1
44 2835 1
45 3286 1
46 3808 1
47 4413 1
48 5114 1
49 5926 1
50 6867 1
51 7958 1
52 9223 1
53 10688 1
54 12386 1
55 14353 1
56 16634 1
57 19276 1
58 22339 1
59 25888 1
60 30000 1
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Fig. 3.17: SLP Frequency Response Test setup



54

CHAPTER 4

ELECTRIC FIELD PROBE

4.1 Instrument Overview

Electric Field Probes fundamentally are voltmeters measuring the electric potential

between the probe and spacecraft body. The EFP probe tips are deployed X cm from the

spacecraft body and float to a potential relative to the ionospheric plasma. The EFP allows

for locating the floating potential shown on the I-V curve as seen in Fig. 4.1 when used in

conjunction with the Langmuir Probe.

SPACECRAFT
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) Electron

Retardation

Ion Saturation  Electron Saturation 
(geometry dependent) (geometry dependent)

+             - -             +
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Electric Field Probes

Vf Vp

Fig. 4.1: IV Curve Electric Field Probe

The EFP is also used to measure DC and AC electric fields. [11] Further information

on the operational theory of Electric Field Probes in a plasma can be found in Design, Test,

And Calibration of the Utah State University Floating Potential Probe [6].

4.2 Design and Analysis
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Fig. 4.2: Location of EFP analog components on the USU SWP PCBA

4.2.1 Instrument Requirements

To meet the SPORT science requirements, it was determined that the Electric Field

Probe would need to be designed to meet the Functional requirements shown in Table 4.1.

The test range used to verify each of these requirements is also shown. More detail on the

testing is provided in the Calibration and Testing section at the end of this chapter.

Table 4.1: Key EFP Functional Requirements

Parameter Units Requirement Test Range

Input Voltage Range Volts -1.7 to +1.7 -1.9 to +1.9

Measurement Precision uV < 360 TBD

Measurement Bandwidth Hz 40 50

Input Resistance Ohms R > 1010 R > 1011

4.2.2 Analog Design

The EFP consists of two sensors deployed from the spacecraft. The design builds on
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the EFP used on the ASSP mission. For more information on the EFP design, refer to the

ASSP thesis. /citeFarr-ASSP The Electric field instrument has two analog channels, one

for each probe as seen in figure 4.3

Fig. 4.3: Electric Field Probe 1 Channel

The input of each channel has an instrumentation amplifier (IA). The INA116 from

Texas Instruments, shown in figure 3.3, was chosen due to its extremely low input bias cur-

rent. The inputs to the INA116 are shielded with driven guards to maintain the extremely

low input bias current. The voltage output of the IA is given by equation 3.1 with a gain

determined by equation 3.2.

VIA = (Vin+ − V − in−) ∗G (4.1)

G = 1 +
50kΩ

RG
(4.2)
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Fig. 4.4: EFP INA116 Instrumentation Amplifier Diagram from INA116 Datasheet

4.2.3 Digital Design

The EFP shares the same digital processing as the SLP previously discussed in Chapter

2, section 2.2. The digital gain of the EFP can be adjusted independently from the SLP.
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Fig. 4.5: FPGA flow diagram for SLP/EFP

4.3 Calibration and Testing

The Electric Field Probe was subjected to a number of test to determine if the in-

strument meets the functional requirements in Table 3.1 All tests were conducted over a

thermal range as shown in figure 4.6
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Fig. 4.6: Thermal cycling concept

4.3.1 Calibration Methodology

EFP Gain and Offset

The purpose of this test was to determine the gain and offset of the Electric Field

instrument over the temperature range and to check the linearity of the instrument.
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Fig. 4.7: EFP Gain and Offset Test Circuit

DC voltages were applied to the probes in a test pattern as shown in figure 4.7. The

voltage is first held at 0 volts for 5 seconds. The voltage is then stepped from -2 to 2 volts in

0.1 volt steps with 1 seconds dwells. The test pattern is concluded with a hold at 0 volts for

4 seconds. Figure 4.9 shows the EFP output from the gain and offset test. The calibration

obtained from the test results is shown in figure 4.10. The gain and offset over the range of

tested temperatures is shown in figure 4.11.
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Fig. 4.8: EFP Gain and Linearity Test input voltage pattern

Fig. 4.9: EFP Gain and Offset Test Output
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Fig. 4.10: EFP Gain Calibration
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Fig. 4.11: Gain and Offset vs Temperature

EFP Frequency Response

The purpose of this test was to determine the frequency response of DC Electric Field

instrument over the temperature range and to check the linearity of the instrument. Sinu-

soidal voltages were applied in steps to the probes as shown in the test setup in figure 4.12

using the National Instruments Virtual Bench. The frequency steps used for the test are

given in table 4.2
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Fig. 4.12: EFP Frequency Response Test Circuit
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Table 4.2: EFP Frequency Steps

Point Frequency (Hz) Hold (s)

1 5 20
2 6 17
3 7 15
4 8 13
5 10 10
6 11 10
7 13 8
8 15 7
9 17 6
10 19 6
11 22 5
12 26 4
13 30 4
14 34 3
15 40 3
16 46 3
17 53 2
18 62 2
19 72 2
20 83 2
21 96 2
22 111 1
23 129 1
24 149 1
25 173 1
26 200 1
27 232 1
28 268 1
29 311 1
30 360 1

Point Frequency (Hz) Hold (s)

31 417 1
32 484 1
33 560 1
34 649 1
35 752 1
36 872 1
37 1010 1
38 1171 1
39 1357 1
40 1572 1
41 1822 1
42 2111 1
43 2447 1
44 2835 1
45 3286 1
46 3808 1
47 4413 1
48 5114 1
49 5926 1
50 6867 1
51 7958 1
52 9223 1
53 10688 1
54 12386 1
55 14353 1
56 16634 1
57 19276 1
58 22339 1
59 25888 1
60 30000 1
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EFP Input Resistance

The purpose of this test was to demonstrate that the DC input resistance of the electric

field probe is greater than the required threshold of 1010 Ohms. Figure shows the expected

responses and the threshold required to meet the DC input resistance requirement.

Fig. 4.13: Expected RC delay of calibration capacitor

A calibration resistor of 0.012 uF was used to observe the voltage delay when charged

and the input shunted to ground. First, sensor 1 was connected to the capacitor and sensor

2 grounded. The capacitor was charged to +1.5 volts and the test repeated at -1.5 volts.

Next, the setup was switched with sensor 2 connected to the capacitor and sensor 1 grounded

and the tests repeated. The input resistance of the Electric field probe is given by equation

3.3.

R =
τ

0.012x10−6
(4.3)
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Fig. 4.14: EFP Input Resistance Test Circuit

The results for this test are shown in figure 4.15. From the results we can see that the

minimum input resistance threshold requirement is satisfied.
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Fig. 4.15: EFP Input Resistance results for board SN4
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CHAPTER 5

WAVE SPECTROMETER

5.1 Instrument Overview

Spectrometers show the spectrum of frequencies present in a signal. [12] Wave spec-

trometers allow for calculating the spectral power of higher frequency components associated

with plasma waves. There is a possible correlation between higher frequency components of

plasma density and the formation of plasma bubbles. The data obtained from the EFP and

SLP can be processed through a wave spectrometer to compute the spectral power. The

EFP and SLP spectrometer channels are used to observe higher frequency components in

16 power spectral bands.

Fig. 5.1: Wave Spectrometer Bins
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Fig. 5.2: Location of Wave components on the USU SWP PCBA

5.1.1 Instrument Requirements

In order to meet the SPORT science requirements, it was determined that the Wave

Spectrometer would need to be designed to meet the Functional requirements shown in

Table 5.1. The test range used to verify each of these requirements is also shown. More

detail on the testing is provided in the Calibration and Testing section at the end of this

chapter.

Table 5.1: Key Wave Functional Requirements

Parameter Units Requirement Test Range

EFP Wave Channels Channels 16 16

SLP Wave Channels Channels 16 16

Frequency Range Hz 30 to 20,000 1 to 30,000

5.2 Design and Analysis
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5.2.1 Analog Design

The wave channel EFP analog front end is connected to both EFP sensors. The two

probes signals are differenced before passing through a high pass filter. The high pass filter

was designed to have a cutoff frequency of 20 Hz. The output from the filter is converted

to a differential signal to drive the ADC using the same driving circuit used previously for

the EFP and SLP channels.
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Fig. 5.3: Wave Channel
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5.2.2 Digital Design

The EFP HF Wave channel ADC is sampled at 200 kHz. The SLG LG channel is

sampled simultaneously. Both the EFP HF and SLP LG samples are averaged by 4 samples,

reducing the sample rate to 50kHz. To reduce the resources in the FPGA both channels

share the same FFT module. A mux is used to control which channel is running samples

through the FFT. Each channel stores 1024 samples in RAM using the FFT Sample Store

module until the FFT is available. When the FFT is ready to process a sample set, the

1024 samples are clocked in at 20 MHz, two samples per clock cycle. The FFT module after

processing the sample set, clocks out the I and Q results at 20 MHz, two samples per clock

cycle. At this point the mux is switched to allow the other channel’s stored samples to be

input to the FFT module. The I and Q results are then summed into 16 spectral bins in

the FFT Bin sum module. Once all the bins have been summed, the output is sent to the

Gather and Mask module. The Gather and Mask module reduces the FFT output words to

24 bits. The bits chosen are shown in the excel calculations in Figure 5.4. These calculations

also show the FFT bins summed in each channel and the corresponding frequency ranges.

The parameters for the wave give us the channel sensitivities shown in figure 5.5.
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Fig. 5.4: Wave Telemetry Calculations

Fig. 5.5: Wave Channel Sensitivities (Boom = 0.8m)
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The Gather and Mask module sums 4 granules each of both the EFP and SLP before

averaging and sending the data to the APB FIFO. The EFP HF Wave channel ADC is the

same ADC used in daisy chain mode for the SLP and EFP channels. For the wave channel,

the ADC is used in normal operating mode.

EFP Probe HF 
ADC

EFP HF SPI DRIVER

FPGAOn PCB

Averager (4 samples)
18 bit

From SLP LG

18 bit

Gather and Mask Wave
FIFO

Processor

APB Bus
ADC Sample Timer

200 kHz
16 bins 37 bit

Sysclock

FPGA

200kHz

18 bit

50kHz

Averager (4 samples)

18 bit

200kHz

FFT Sample Store
(store 1024)

FFT Sample Store
(store 1024)

M
u

x 1024 FFT FFT Bin Sum

RAM

RAM

RAM

18 bit

18 bit

20 MHz

20 MHz
20 MHz

18 bit I/18 bit Q

EFP/SLP

50kHz

18 bit

Config Memory
(Bin upper limits)

24 bit

16 bins EFP
16 bins SLP

EFP/SLP

Fig. 5.6: FPGA flow diagram for Wave Spectrometer

5.3 Calibration and Testing

The Wave Spectrometer is tested and calibrated during the testing and calibration of

the SLP and EFP.

5.3.1 Calibration Methodology

Wave Frequency Response

The purpose of this test is to determine the frequency response of each of the 16 electric

field spectrometer channels. Sine waves are input into both the Electric Field Probes and

the Sweeping Langmuir probe. The frequency was swept from 10 Hz to 100kHz in 100 log

spaced steps per decade. The test was performed with EFP Sensors 1 and 3 to DC source

and 2 and 4 grounded. Figure 5.7 shows a plot of EFP wave data from during a frequency

sweep.
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Fig. 5.7: Wave Spectrometer results from EFP Frequency Sweep
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Fig. 5.8: Wave Spectrometer results from SLP Frequency Sweep
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Fig. 5.9: Wave Spectrometer results from SLP Frequency Sweep
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CHAPTER 6

CONCLUSIONS

6.1 Performance Review

6.2 Lessons Learned and Future Work

6.2.1 Sweeping Langmuir Probe

The SLP has some non-linearity due to the analog front end of the instrument. The gain

of the analog signal causes the signal to run into the common-mode input of the differential

amplifier.

The SLP High gain channel had a potentiometer to trim the gain. However, this did

not work properly and had to be removed from the PCBA. Adding the ability to trim the

HG channel on a future revision would be a desired feature.

The power supply range of the SLP was too low. This caused many complications with

the op-amp rails in the analog front end. The voltage range could be designed to be closer

to ±8v in a future revision.

The data rate of the SLP HG channel could be reduced. Averaging the output of the

HG channel and only providing one measurement per Science packet would be sufficient.

6.2.2 Electric Field Probe

The INA116 has been used on multiple revisions of the Electric Field Probe. However,

this IC is older and takes up a large amount of area on the PCBA. A future revision would

change out the INA116 for a smaller, newer instrumentation amplifier IC.

6.2.3 Wave

Initially the Wave Spectrometer was going to implement a 2048-point FFT on both
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the SLP and EFP channels, with each channel having its own FFT module. This design

had to be modified due to the resource limitations of the Smartfusion 2 M2S025. The SoC

model used did not have enough RAM block for the initial design. Upgrading to the next

model, M2S050, would have provided the needed resources but would have added costs to

the project due to software licensing fees and new hardware.

6.2.4 Overall System

The USU SWP Power conditioning system was revised several types during the design

process to reduce power consumption. In an attempt to reduce power loss, the analog

5V was regulated down to 2.5V before being regulated again down to +- 1.8V. The 2.5V

linear voltage regulator did not work as expected and would become damaged on power up.

Removing this IC was required for the board to operate but increased the power loss from

the 5 to 1.8 V regulation. The Smartfusion 2 SoC was used on an Emcraft SOM daughter

board. The daughter board connected to the main PCBA using two 80 pin connectors.

During development we had several issues with these connectors, causing setbacks to the

project timeline. In a future revision of the SWP, the FPGA would most likely be placed

directly on the main PCBA. The current SOM daughter board did decrease complexity and

speed up the initial development of the SWP. However, there are several components on the

SOM that were either not utilized in this project or were not conducive towards the power

consumption requirements. A specific example of this is the onboard LPDDR memory,

which we had problems developing with and is a suspect of large power consumption.

A future revision without this SOM would be able to eliminate unnecessary components

and change higher power components to further reduce overall system power consumption.

Headers for ethernet and debugging buttons were added to the PCB. However, these were

never used during development. An increased number of LEDs and test points would have

been more useful for debugging. There are some specific points in the circuit where it would

have been convenient to have a test point. During initial bring up of the SWP hardware

it was difficult to determine what ICs were causing high current draw. On the engineering

model of the SWP, it would have been convenient to have more jumpers/0-ohm resistors
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to disconnect the voltage supply to ICs during debugging. The RTC resets on power loss

to a default reset value. This reset value cannot be changed. A different RTC without this

behavior should be selected for a future revision. A more sensitive magnetometer would be

selected in a future revision.
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APPENDIX A

DVD Contents

The DVD included with this thesis includes all files and documents related to the USU

SPORT SWP
USU SPORT SWP

Documents

Schematics

Systems Documents

Calibration Plans

FPGA

State Machines

VHDL

MSS

Software Diagrams

C code

Ground Station

Spacecraft Emulator

Python Scripts

Connection Cable

COSMOS

Labview Scripts

Matlab Scripts
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APPENDIX B

Flow Diagrams
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Fig. B.1: FPGA Flow Diagram for Wave Enlarged
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