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ABSTRACT

Regionalized Models with Spatially Continuous Predictions at the Borders

by

Jadon S. Wagstaff, Master of Science

Utah State University, 2021

Major Professor: Brennan Bean, Ph.D.
Department: Mathematics and Statistics

Traditional spatial modeling approaches assume that data are second-order stationary,

which is rarely true over large geographical areas. A simple way to model nonstationary data

is to partition the space and build models for each region in the partition. This has the side

effect of creating discontinuities in the prediction surface at region borders. The regional

border smoothing approach described in this thesis ensures continuous predictions by using

a weighted average of predictions from regional models. The weights are based on the

shortest distance from the observation to each region boundary, with greater weight given

to observations that are within or near the boundaries of a region. The R package remap

is an implementation of the regional border smoothing method that builds a collection of

spatial models given a data set with spatial points, a set of polygon regions, and a modeling

approach to apply in each region. Special consideration is given to distance calculations that

make remap package scalable to large problems. Improvements in accuracy using the remap

package, as opposed to global spatial models, are illustrated using one national-level and

one state-level dataset. These accuracy improvements, coupled with their computational

feasibility, illustrate the efficacy of the remap approach to modeling nonstationary data.

(61 pages)
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PUBLIC ABSTRACT

Regionalized Models with Spatially Continuous Predictions at the Borders

Jadon S. Wagstaff

Creating maps of continuous variables involves estimating values between measurement

locations scattered throughout a geographic region. These maps often leverage observed

similarities between geographically close measurements, but may also make predictions

using other geographic information such as elevation. The relationship between the available

geographic information and the variable of interest can vary with location, especially when

mapping large areas like a continent. A simple way to account for the changing relationship

is to divide the space into different sub-regions and model the relationship at each region.

The naive implementation of this approach has the side effect of making sudden changes

in predictions at the borders of each region. This thesis describes a novel regional border

smoothing method that allows for the formation of a continuous map built with regional

models. The method is implemented and available to the public through the open source R

package remap. Improvements in model accuracy are demonstrated using a national scale

and a state scale dataset.
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CHAPTER 1

INTRODUCTION

Regression methods attempt to characterize the relationship between predictor vari-

ables and a response variable. When observations exhibit spatial autocorrelation, geographic

location can be leveraged to improve predictions of the response variable by considering ob-

served values of the response variable at nearby measurement locations. Typical spatial

statistical models assume that the covariance between two observations can be modeled as

a function of location difference, i.e., the relationship needs to be second-order stationary.

For sufficiently large distances, the stationarity assumption often fails.

The simplest way to effectively employ traditional spatial modeling approaches using

nonstationary data is to partition the global region into smaller sub-regions that are locally

stationary and create separate statistical models for each region. The naive implementation

of this approach leads to noncontinuous predictions at the borders of each region. Previous

attempts to smooth out discontinuities at region boundaries often involved taking weighted

averages of local regional model output where the weights of each local model prediction

or covariance structure are a function of the distance between a new observation and the

centers of each region (Fuentes, 2001; Fuentes & Smith, 2001; Gosoniu et al., 2009; Gosoniu

et al., 2006; Konomi et al., 2014). While the center based approach may be appropriate

for symmetrical regions, it may not be appropriate for oddly shaped or disjoint regions not

well approximated by their centers. In some cases, a region may not even contain its center.

The center based approach also fails to respect major geographic features that can cause

sharp changes in response variables over very short distances.

The regional border smoothing approach described in this thesis is a novel method

that uses a weighted average of predictions from local models, but gives weight to regional

models based on the nearest distance to the border of each region rather than distance to

the center of each region. With this method, regions may be chosen that more naturally
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Fig. 1.1: Before (top) and after (bottom) regional border smoothing is applied to regional
models where predictions are linear combinations of longitude and latitude. The gray line
shows predicted values along the 0.7°N transect. Left region predicts lon− lat+ 1, bottom
region predicts lat− lon+ 1.4, and right region predicts lon− lat+ 0.7. Smoothing zone is
30 km (≈ 0.27°).

reflect local climate and topography with smoothing only occurring near the borders of each

region. Figure 1.1 shows an example of the regional border smoothing approach applied to

three regions with different spatial models.

The R package remap is a General Public License implementation of this regional

border smoothing method that scales well to large problems (Wagstaff, 2021). Using remap,

regional border smoothing is applied to two different modeling problems. The first problem

is a national set of 50-year ground snow loads and the second problem is modeling April
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1st snow water content for Utah. Mapped values from both projects show improvement

in model accuracy using the regional border smoothing approach over global models for a

variety of spatial modeling approaches.

The figures and tables in this thesis are made using the R programming language (R

Core Team, 2020). Figures are created with the tidyverse (Wickham et al., 2019), gridExtra

(Auguie, 2017), cowplot (Wilke, 2020), and maps (Becker et al., 2018) packages. The sf

(Pebesma, 2018), nngeo (Dorman, 2020), and raster (Hijmans, 2020) packages are used to

manipulate spatial data. Kriging models are built with automap (Hiemstra et al., 2009)

and generalized additive models are built with mgcv (Wood, 2011).

1.1 Background

There are many proposed methods to model nonstationary data using locally stationary

models. Haas (1990a, 1990b) describes a moving window approach where only data within

a pre-specified bounding box are used to fit a local dependence structure and then make

predictions. This process is computationally intensive and may not result in continuous

predictions.

Fuentes (2001) and Fuentes and Smith (2001) propose a method for nonstationary

problems where a global covariance structure that changes continuously as a function of

location is used in a Gaussian process model. The data are first partitioned into locally

stationary regions. A global covariance structure is calculated by taking a weighted average

of regional covariance structures. Weights are based on the distance from the prediction

location to a point in each region, usually the center. Regions are either given a priori or

by using subgrids chosen using the Bayesian information criterion.

Applications of local partition modeling approaches include Kim et al. (2005), who

describe a method to deal with sudden changes in spatial covariance structure that occur

between layers of rock strata. The spatial domain is partitioned into independent regions

using Voronoi Tesselations (Green & Sibson, 1978), with each region fit using an independent

Gaussian model. The resulting global model has sharp changes at the borders of each

region, which was desirable in that context. Konomi et al. (2014) illustrate a decision



4

tree based method for partitioning the spatial domain when modeling global Ozone levels.

Heaton et al. (2017) use a hierarchical clustering method to partition the spatial domain

for temperature data in Houston, TX. The hierarchical clustering method has the benefit of

creating a partition that more naturally follows changes in the covariance structure rather

than partitioning the space into symmetrical blocks or spheres.

Gosoniu et al. (2009) and Gosoniu et al. (2006) provide an additional application of

local partitioning models mapping malaria risk using a priori partitions of West Africa.

The 2006 study uses three large rectangular regions and the 2009 study uses agro-ecological

regions to partition the spatial domain. In these studies, spatial random effects are modeled

as a weighted sum of regional stationary effects based on the distance to region centroids.

The authors note problems with sudden changes at region borders as a result of using region

centroids for the weighted sum of effects.

Most of the methods discussed so far create a global covariance structure from local

covariance structures of Gaussian process models (Fuentes, 2001; Fuentes & Smith, 2001;

Heaton et al., 2017; Kim et al., 2005; Konomi et al., 2014). Each method has a different way

of smoothing regional transitions that are specifically tied to their methodology. Many of the

methods use a Bayesian framework that requires computationally expensive Markov chain

Monte Carlo simulations (Gosoniu et al., 2009; Gosoniu et al., 2006; Heaton et al., 2017;

Kim et al., 2005; Konomi et al., 2014). Many of the techniques are only applied to purely

spatial data rather than multivariate data (Heaton et al., 2017; Kim et al., 2005; Konomi

et al., 2014). This literature review highlights the lack of methodologies that allow for

smooth transitions between partitions and works for multiple modeling techniques. There

is also a general lack of software available to handle nonstationary data.

The regional border smoothing method described in this thesis can be thought of as

stitching together images to form a larger image with no sharp changes. The approach

is similar to those used to combine black and white images from microscopes into a larger

image (Thévenaz & Unser, 2007). Individual microscope images are aligned and the overlap-

ping regions are smoothed by taking a weighted average of the overlapping pixel brightness.
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The weights are based on the distance from the pixel to the outer edge of each image with

more weight being applied to pixels closer to the center of an image.

The process described in this thesis provides a simple way of combining regional model

predictions to form a continuous global prediction surface. The method can be applied to

problems that are not strictly spatial. For example, Osborne and Suárez-Seoane (2002)

show that building models for partitioned space can improve the accuracy of large scale

species distribution models. The regional border smoothing method works for any model

that produces a continuous prediction. A software implementation of the method described

in this thesis is available through the R package remap on the Comprehensive R Archive

Network (CRAN) (Wagstaff, 2021).

The remainder of this thesis proceeds with a description of the regional border smooth-

ing approach in Chapter 2. This is followed by Chapter 3 which describes the available

functions and tools in the remap package and Chapter 4 with two demonstrations of the

software on a state and national-level dataset. These demonstrations show the utility of the

remap package in producing smooth estimates when applied to large geographical problems

with irregularly shaped partitions.
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CHAPTER 2

THE REGIONAL BORDER SMOOTHING APPROACH

Regional border smoothing is the process of using regional models to make predictions

that are globally continuous. Regional border smoothing may be used on any spatially

referenced data (XXX) in conjunction with a modeling approach and a finite set of regions Rp

where each Rpi ∈ Rp, i = 1 . . .m, is a closed set of points contained in the region of interest

R. The intention is that Rp is a set of non-overlapping polygons with shared borders and
m⋃
i=1
Rp = R, but these are not necessary conditions. While Rp does not meet the strict

definition of a partition, Rp will be referred to as a partition throughout this thesis.

The border smoothing approach described in this thesis was originally designed for

regression-based models (such as kriging), but can be used with virtually any modeling

approach that predicts a continuous response. This technically includes classification tech-

niques that make continuous probability predictions prior to classifying based on a proba-

bility threshold. Presumably, the predictions from a chosen modeling approach will result

in continuous predictions as a function of location.

Modeling regions are defined by the borders of Rp. The data contained by a modeling

region Rpi are used to inform a distinct regression model (fpi(XXX)) for that region. In some

cases it may be desirable to include observations near each Rpi when building regional

regression models. In these cases, data within Rpi and possibly within a buffer zone around

each modeling region R∗pi are used to build each fpi(XXX) (Figure 2.1). Using points within

a buffer zone that extends beyond the region boundaries avoids edge extrapolation when

using a regional model for interpolation in the smoothing zones of neighboring regions. See

Section 2.1 for additional details.

Simply making predictions within each Rpi using each corresponding fpi(XXX) results

in noncontinuous predictions at region boundaries. Regional border smoothing results in

continuous predictions for the entire space by taking a weighted average of the predictions
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Fig. 2.1: Example of a region’s buffer zone. A model is built for the red region using all
observations within a buffer zone (red dashed line). Red dots are observations used to build
the red region’s model.

provided by each fpi(XXX). The smoothed global prediction surface is continuous, but not

necessarily differentiable (see Section 2.2).

2.1 Smoothing at Borders

Let ŷ1, ŷ2, ..., ŷm represent predictions from regional models fp1(xxx∗), fp2(xxx∗), ..., fpm(xxx∗)

for location of interest xxx∗ where xxx∗ represents both spatial and non-spatial information. A

final prediction ŷ′ is calculated by the weighted average of each ŷ, i.e.,

ŷ′ =
w(d1|S)ŷ1 + w(d2|S)ŷ2 + ...+ w(dm|S)ŷm

w(d1|S) + w(d2|S) + ...+ w(dm|S)
. (2.1)

The weights are calculated based on the smallest great-circle distances (d1, d2, ..., dm)
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Fig. 2.2: Example of how predictions change as location approaches a region border. In
this example S = 50, the region on the “left” side of the border predicts a constant value
of one and the region on the “right” side of the border predicts a constant value of two.

between the location of xxx∗ and the boundaries of Rp1 ,Rp2 , ...,Rpm . If xxx∗ is located within

a region, the distance between xxx∗ and that region is 0. The weight w(di|S) given to ŷi is

non-zero when di is within some threshold S, i.e.,

w(di|S) =


(
S−di
S

)2
di ≤ S

0 di > S.

(2.2)

Consider now the special case when a prediction is made in region j and di 6=j > S,

then w(di 6=j |S) = 0 and Equation 2.1 reduces to ŷ′ = ŷj . As prediction locations in region

j approach Rpk , then the weight of ŷk increases gradually and ŷ′ =
ŷj+((S−dk)/S)2ŷk
1+((S−dk)/S)2

. At

the border of regions j and k, ŷ =
ŷj+ŷk

2 . Finally, as prediction locations progress into Rpk ,

weights for yij decrease gradually to zero and ŷ′ =
((S−dj)/S)2ŷj+ŷk
((S−dj)/S)2+1

. Figure 2.2 shows a

simple example of how predictions change across region borders. All locations within S of

a region are referred to as the smoothing zone for that region.

2.2 A Note on Smoothing

The “smoothing” described throughout this thesis refers to smoothing in the colloquial

sense. A continuous prediction surface is created with a steady transition between regions.

The prediction surface is not always differentiably smooth. If a region is not convex, the

rate of change in the distance to a region can shift suddenly at locations that are equidistant
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Fig. 2.3: Example of where predictions are not differentiable near non-convex regions. The
gray line shows predicted values along the 0.5°N transect. The bottom region predicts a
constant value of one and the top region predicts a constant value of two. Smoothing zone
is 40 km (≈ 0.36°).

to different parts of the region. Figure 2.3 shows an example of a prediction surface near a

non-convex region where the prediction surface is not differentiably smooth.

Since each region is a closed set of points, di is continuous. It therefore follows that

the weight function w(di|S) described in Equation 2.2 is continuous as limx→0+ w(x|S) =

w(0|S) = 1 and limx→S− w(x|S) = w(S|S) = 0 for x ∈ [0,∞) and S > 0. Since Equation

2.1 includes the multiplication and addition of continuous functions, it is guaranteed to

have max (w(di|S)) > 0 as long as xxx∗s is within S units of any Rp and it follows that ŷ′ is

also continuous. Given continuous predictions as a function of location for each region, the

regional border smoothing method is guaranteed to be continuous for any location within

the smoothing zone of at least one region. Once all di > S, then the denominator of y′ is

equal to zero, which means y′ is no longer well-defined. As long as all of the data XXX are

located within Rp, any prediction location outside of Rp is spatial extrapolation that is

generally discouraged.
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CHAPTER 3

REMAP

The R package remap (Wagstaff, 2021) is an implementation of the regional border

smoothing approach to spatial modeling. The function remap creates a set of regionalized

models given:

• A set of spatially referenced observations (projected or geographic).

• A set of spatially referenced polygons defining the regions.

• A desired buffer zone distance.

• A modeling function to apply to observations in each region.

Predictions can be made on new observations given a regionalized model and the smooth-

ing parameter smooth used for weighted averages in smoothing zones (variable S in Equa-

tion 2.2). Detailed descriptions of function parameters can be found in the package doc-

umentation which is also available in Appendix A.1. Some working examples using the

remap package are provided via the vignette which accompanies the package and avail-

able in Appendix A.2. The development version of the code for remap can be found at

https://github.com/jadonwagstaff/remap.

3.1 Calculating Distances

The weights for regional predictions require the distances from all observations to

the boundary of each region. The modeling process of the remap function also requires

the distances from all observations to the boundary of each region to assign the correct

observations to each regional model. The process of fine-tuning a model can result in

recalculating these distances many times. To avoid recalculating distances, the function

redist is included in the remap package to pre-compute the distances from a given set of

https://github.com/jadonwagstaff/remap
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observations to a given set of regions. These pre-computed distances can be supplied as a

parameter to the remap function to reduce computational time while fine-tuning models.

Calculating distances in the remap package takes advantage of tools already available

for spatial analysis in the R package sf (Pebesma, 2018). The function sf::st distance is

used to find either Euclidean or great-circle distances depending on the spatial projection

of the locations and regions. The sf::st distance function uses the S2 library (Google,

2020) when calculating great-circle distances. The S2 library is designed specifically to

efficiently compute distances between nearby objects given large sets of geographic data.

Regardless, calculating distances can still take a lot of computational time if the regions are

complex and/or there are a lot of observations.

The näıve approach to regional border smoothing is to find all distances between each

location and each region. This approach may be necessary during the modeling process if

any region does not contain a required minimum number of observations (see Section 3.2).

If predictions are being made using new observations, then distances do not need to be

calculated between every observation and every region.

Because the weight for predictions in different regions is zero when the distance to

those regions is greater than the smoothing parameter (Equation 2.2), distances do not

need to be calculated between every region and every prediction location. To determine

which observations require distance calculations, an approximate polygon is constructed

that encompasses the original region plus the smoothing zone around the region. The func-

tion sf::st within is used to determine which observations are within the new polygon

and equivalently, which observations are within the smoothing zone of the original region.

Observations in the approximate polygon become candidates for precise distance calcula-

tions.

An approximate polygon that contains a region and the region’s smoothing zone is

created using the sf::st buffer function. For geographic coordinates, sf::st buffer

requires a buffer value in degrees. Since the great-circle distance between a unit degree

of longitude changes with latitude, Equation 3.1 is used to find c: the shortest distance
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(measured in kilometers) required to move one degree longitude at the observation in the

dataset that is nearest to a geographical pole. λλλ represents the vector of latitudes for each

observation and 6350 km is the radius of the earth at a pole (rounded down). A sufficient

buffer value in degrees for sf::st buffer is calculated by dividing the smoothing zone

length in km by c. The resulting buffered polygon contains all of the observations within

the smoothing zone of the original polygon.

c =
π ∗ 6350

180
∗ cos

(
π ∗max(|λλλ|)

180

)
(3.1)

Assuming each region contains a sufficient number of observations to fit each regional

model, the same process used for reducing the number of distance calculations for model

training can be used to reduce the number of distance calculations required for model

predictions. (See Section 3.2 for a description of what happens when the observations in a

region fall below a minimum sample size threshold.) The function redist is able to restrict

distance calculations to only observations within a certain buffer or smoothing zone of each

region using the max dist parameter. This eliminates the need to calculate distances to

points with a known weight of zero when smoothing.

3.2 Practical Implementation Considerations

Reliable regression results depend upon sufficient sample sizes, which differ based on

the variability of the response and dimensionality of the inputs. A strict (and obvious)

minimum sample size for the remap function is one observation per region, though this

threshold will rarely, if ever, ensure reasonable results. An additional parameter min n is

included in the remap function to specify a minimum number of observations used to build

each model. If a region and the buffer around that region do not contain the minimum

number of observations specified, the min n observations closest to the boundaries of the

region are used to train that region’s model.

The remap package has the ability to make predictions outside of all modeling regions.

If the prediction location is within the smoothing zone of a region, then Equation 2.1 is still
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Fig. 3.1: Example of what happens when predictions are made outside of any modeling
region. The gray line shows predicted values along the 0.6°N transect. The dashed gray line
shows predicted values along the 0.95°N transect. The left region predicts a constant 0, the
bottom region predicts a constant 2, and the right region predicts a constant 4. Smoothing
zone is 35 km (≈ 0.32°).

used and the nearest region will have the most weight. If the prediction location is outside

the smoothing zone of all regions, then the model from the closest region is used to make

a prediction. This may result in non-continuous transitions in predictions when the closest

region changes across geographic space, but this is only possible at locations outside of the

smoothing zone of all regions. As a general rule, extrapolation of predictions to locations

beyond those represented in the input data is not recommended. See Figure 3.1 for a visual

depiction of how predictions behave outside of all modeling regions.

The ability to predict outside of all regions means that the remap package can make

smooth predictions across small gaps at polygon borders, provided the gaps are no larger

than two times the smoothing zone distance. This encourages the use of rgeos::gSimplify

(Bivand & Rundel, 2020) or sf::st simplify (Pebesma, 2018) to simplify complex poly-

gons and ease the computational burden associated with distance calculations, even if those

simplifications slightly compromise the topology of the original geometry.
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CHAPTER 4

APPLICATIONS

4.1 National Snow Load Example

Snow loads are obtained from weather stations throughout the United States in the

National Oceanic and Atmospheric Administration’s (NOAA) Global Historical Climatology

Network (Menne et al., 2012). Snow loads are either measured directly, or estimated from

measured snow depth using a depth to load conversion model. Engineers have historically

used estimates of 50-year ground snow loads when designing structures. The 50-year snow

load is traditionally obtained by fitting a probability distribution to yearly maximum snow

load measurements and extracting the 98th percentile. A recent effort by the American

Society of Civil Engineers has resulted in a new set of 50-year ground snow loads at 7964

measurement locations. The 50-year loads are calculated in a similar manner to Bean

et al. (2018), except yearly maximum snow loads are fit to the generalized extreme value

distribution instead of the log-normal distribution.

4.1.1 Building a Geospatial Snow Load Model

Building design requirements call for continuous maps that estimate design loads be-

tween measurement locations. This has historically been accomplished using various map-

ping techniques (Bean et al., 2019; Liel et al., 2017; Tobiasson et al., 2002). The problem is

that the relationship between predictor variables and snow load can change drastically on a

continental scale. For example, the typical loads at 5000 feet elevation in the Rocky Moun-

tains of Colorado are much lower than typical loads at 5000 feet in the Cascade Mountains

of Washington State. Commonly used geospatial models for mapping are not well suited

for the nonstationary nature of this problem.

Geographic regions defined by the US Environmental Protection Agency (EPA) define
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regions with similar ecology and climate called eco-regions (Commission for Environmen-

tal Cooperation, 1997). The eco-regions provide a natural partition of the conterminous

United States and give no regard to political boundaries. Snow load can be modeled using

observations within each eco-region where the relationship between predictor variables and

the response is more consistent on a local level. The remap package facilitates modeling in

separate eco-regions and creates a smooth model on the national scale.

Snow loads are typically assumed to share a log-linear relationship with elevation. This

relationship is modeled directly using ordinary least squares (OLS). A generalized additive

model (GAM) built with the mgcv R package (Wood, 2011) characterizes the log of 50-

year loads as a function of elevation and a spatial smoother called splines on the sphere

(Wood, 2003). Universal kriging interpolates values using a Gaussian process model after

accounting for the log-linear trend in elevation with the automap R package (Hiemstra

et al., 2009). Parameter-elevation regressions on independent slopes model (PRISM) is a

modeling method that uses a form of weighted linear regression to model loads as a function

of elevation (Daly et al., 2002; Daly et al., 2008). The adaptation of PRISM to estimate

snow loads in this thesis is described in Bean et al. (2017).

Some of the methods for mapping snow loads are compared in Table 4.1 using national

scale models and models built with the remap package on EPA Level III Eco-Regions

(Commission for Environmental Cooperation, 1997). There are 86 eco-regions that fall

within the conterminous United States, so 86 separate models are built using the remap

function with a buffer zone of 50 km and a min n of 150 observations. The regional models

are smoothed to a single continuous model using a smooth parameter of 25 km.

The results in Table 4.1 show that the remap package framework improves the cross

validated accuracy of every spatial modeling method. This demonstrates that the remap

package has the ability to generally improve modeling results, as improvements are not

isolated to a single spatial modeling case. Even though the regional models are made up of

86 different regional models, the estimated 50-year loads are smooth across the prediction

surface (see Figure 4.1).
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Model
MSE ×102

Improvement
National Regional

GAM 8.2 5.5 33%
Kriging 7.2 5.9 18%
PRISM 21.0 7.9 62%
OLS 89.3 17.8 80%

Table 4.1: Ten fold cross-validation results from modeling the log of 50-year snow loads.
Mean squared error (MSE) is multiplied by 102 for readability. Improvement is (national -
regional) / national.

Fig. 4.1: Prediction map for 50-year loads from the regional GAM model built with the
remap package. Loads are shown on the log scale. Values are restricted to be within the
range of values observed in the load data.

4.1.2 Building a Snow Load Prediction Grid

National snow load maps require a sufficiently fine resolution to be feasibly used to

design buildings in topographically complex areas. To accomplish this, snow load maps are

created that match the resolution of PRISM climate output (PRISM Climate Group, 2020),

which maps at a 0.8 km resolution for the conterminous United States. This means that

predicted snow loads are calculated at 12,113,556 locations using a model created by the

remap package with 86 different regions. Elevation values for the grid are obtained from

the United States Geological Survey (United States Geological Survey, 2020b).

Since the remap package uses the distances between prediction locations and regions to

make a smooth model, calculating these distances is a potential bottleneck in the prediction
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Fig. 4.2: Results of simplification of eco-regions. The highlighted region is an area with
some of the most severe gaps between polygons. Notice that the width of the gaps are still
much smaller than two times the smoothing parameter (2× 25 km).

process. Also, since the prediction area is so large, geographic coordinates rather than

projected coordinates must be used to find distances. This further increases the bottleneck

since great circle distances require more resources to compute than Euclidean distances.

Simply calculating all distances would have taken over a year to run on a typical desktop

computer, as illustrated in Table 4.2. The test computer used for Table 4.2 has 16 GB of

RAM and an Intel Core I5-4590 CPU which runs at 3.3 GHz.

The first step to reduce the run time for distance calculations is to simplify the polygons

as discussed in Section 3.2. Using a tolerance of 0.1◦with the function sf::st simplify, the
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Remedial steps
Run time in hours

Geographic Projected

None 15000.0∗ 200.0∗

Simplify polygons 44.0∗ 1.4
+ set max dist to 25 km 1.8 1.0
+ run in parallel on 4 cores 1.3 1.0

Table 4.2: Run times for redist to calculate geographic and projected distances from 0.8
km grid points to 86 different eco-regions (polygons) in the conterminous US. Remedial steps
are additive, i.e., each row in the table includes all previous remedial steps. ∗ Approximate
run time based on random sample of 10,000 grid points.

size of the polygons are reduced from 21 MB to 0.2 MB. The results of polygon simplification

are visualized in Figure 4.2. When making predictions, the smooth parameter is set to 25

km; therefore, the max dist parameter of redist can be set to 25 km to further reduce

run time. Finally, combining the previous steps and running in parallel on four cores, the

relevant distances are calculated for all points using great circle distance in about 1.3 hours

(Table 4.2). This tremendous computational speed-up is made possible by the ability of the

remap package to smoothly fill in the gaps that occur in aggressively simplified polygons.

4.2 Utah Snowpack Example

The state of Utah assesses snow water content or snowpack every April 1st to plan

for yearly water resource availability. These measurements are much more variable than

the 50-year snow loads since the values are based on a single measurement at each location

instead of the 98th percentile of a distribution fit to annual maximum values at each location.

This example uses direct measurements of the water content made via Snowpack Telemetry

(SNOTEL) stations included in NOAA’s Global Historical Climatology Network (Menne et

al., 2012). In addition to SNOTEL station data, Snow Course data collected by the National

Water and Climate Center are also included in the dataset (Natural Resources Conservation

Service, 2017). SNOTEL and Snow Course data measure the water equivalent of snow depth

(WESD) and are located in the mountainous areas of Utah above 1777 m elevation. This

negates the need to estimate water content from snow depth, which is typically the case

when measuring snow at non-mountainous locations in the state.
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Fig. 4.3: HUC4 regions (lines) and HUC2 regions (shades) in Utah.

SNOTEL stations and Snow Course data within 100 km of the border of Utah are

included in the dataset. There are 3511 April 1st WESD observations available for modeling

which range from 0 to 1746 mm of water. The observations have 178 unique locations and

span 30 years (1986-2015). Each year is modeled separately with no regard for any temporal

correlations and each year has at least 97 observations.

Models for GAM, kriging, PRISM, and OLS are created using the same model structure

as the national snow load example, but a different response variable. Since there are 142 zero

values for WESD within the data, the log of (WESD + 1) is used as the response variable

for the April 1st snowpack. Predictions are also constrained to be between [1, max(WESD)]

to avoid excessive extrapolation. The regions used for regional modeling are watershed

boundaries defined by the USGS (United States Geological Survey, 2020a). Watersheds

are defined by a hierarchy of hydrologic unit codes (HUC) with a two-digit designation for

continental scale watersheds (HUC2) and a four-digit designation that partitions each HUC2

region (HUC4). There are four HUC2 regions and 12 HUC4 regions within the boundaries

of the state of Utah (see Figure 4.3). A buffer zone of 20 km, a smoothing parameter of 10

km, and a min n of 30 observations are used when modeling both HUC2 and HUC4 regions

with the remap function.
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Model
MSE ×102

State HUC2 HUC4

GAM 85 74(13%) 79 (7%)
Kriging 92 90 (2%) 85 (8%)
PRISM 93 86 (7%) 81(13%)
OLS 140 109(22%) 89(36%)

Table 4.3: Ten fold cross-validation mean squared error from modeling log(WESD + 1) for
Utah snowpack. Mean squared error (MSE) is multiplied by 102 for readability. Improve-
ment in parenthesise is calculated with (state - HUC) / state.

Table 4.3 shows that the gains in accuracy are more modest in this application than in

the national example shown previously. This is expected as the partitions are on the state

level instead of the national level. Nevertheless, the consistent improvement in accuracy at

various scales using different polygons and input data highlight the general ability of the

remap package to improve predictive accuracy without sacrificing continuity.
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CHAPTER 5

CONCLUSIONS

Partitioning a space for geospatial modeling is a practical approach for handling non-

stationary data; however, smooth transitions in mapped values are a desirable constraint

of many data products, such as the design snow load requirements set forth by the Amer-

ican Society of Engineers. The remap R package provides a ready-to-use framework for

regional models with smooth transitions at region borders that overcomes the computa-

tional difficulties of naive implementations. This package is available on the Comprehensive

R Archive Network (see https://cran.r-project.org/web/packages/remap/index.html) with

the most current version available at https://github.com/jadonwagstaff/remap.

The remap package creates continuous prediction surfaces by weighting regional pre-

dictions based on the proximity to region borders. Smoothing at region borders makes

the package particularly equipped to handle irregularly shaped regions not well represented

by their geographic centers. Because the remap package has the ability to smooth over

small gaps formed when simplifying polygons, computation times can be drastically re-

duced without sacrificing the continuity of the predictions. Methods that automatically

subset the number of required distance calculations further reduce computational times.

This thesis has demonstrated accuracy improvements using the remap package on two sep-

arate datasets with two sets of polygon inputs. These examples highlight the feasibility of

applying the remap framework to spatial regression modeling problems.

https://cran.r-project.org/web/packages/remap/index.html
https://github.com/jadonwagstaff/remap
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APPENDIX A

remap Documentation

A.1 Package Manual

The package manual describes all of the functions in remap, describes their parameters,

and describes the output objects. The manual is printed as it appears at https://cran.

r-project.org/web/packages/remap/remap.pdf.

https://cran.r-project.org/web/packages/remap/remap.pdf
https://cran.r-project.org/web/packages/remap/remap.pdf
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2 predict.remap
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Index 9

plot.remap Plot method for remap object.

Description

Plots the regions used for modeling.

Usage

## S3 method for class 'remap'
plot(x, ...)

Arguments

x S3 object output from remap.

... Arguments to pass to regions plot.

Value

A list that plots a map of the regions used for modeling.

predict.remap Make predictions given a set of data and smooths predictions at region
borders. If an observation is outside of all regions and smoothing
distances, the closest region will be used to predict.

Description

Make predictions given a set of data and smooths predictions at region borders. If an observation is
outside of all regions and smoothing distances, the closest region will be used to predict.

Usage

## S3 method for class 'remap'
predict(object, data, smooth, distances, cores = 1, progress = FALSE, ...)
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print.remap 3

Arguments

object S3 object output from remap.

data An sf dataframe with point geometry.

smooth The distance in km within a region where a smooth transition to the next region
starts. If smooth = 0, no smoothing occurs between regions unless an observa-
tion falls on the border of two or more polygons. (Can be a named vector with
different values for each unique object$region_id’ in ’ object$region’.)

distances An optional matrix of distances between ’data’ and ’object$regions’ generated
by redist() function (calculated internally if not provided).

cores Number of cores for parallel computing. ’cores’ above default of 1 will require
more memory.

progress If true, a text progress bar is printed to the console. (Progress bar only appears
if ’cores’ = 1.)

... Arguments to pass to individual model prediction functions.

Value

Predictions in the form of a numeric vector.

See Also

remap building a regional model.

print.remap Print method for remap object.

Description

Print method for remap object.

Usage

## S3 method for class 'remap'
print(x, ...)

Arguments

x S3 object output from remap.

... Extra arguments.

Value

No return value, a description of the remap object is printed in the console.
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4 redist

redist Get distances between data and regions.

Description

Finds distances in km between data provided as sf dataframe with point geometry and regions
provided as sf dataframe with polygon or multipolygon geometry.

Usage

redist(data, regions, region_id, max_dist, cores = 1, progress = FALSE)

Arguments

data An sf data frame with point geometry.

regions An sf dataframe with polygon or multipolygon geometry.

region_id Optional name of column in ’regions’ that contains the id that each region be-
longs to (no quotes). If null, it will be assumed that each row is its own region.

max_dist a maximum distance that is needed for future calculations. (Set equal to maxi-
mum ’smooth’ when predicting on new observations.)

cores Number of cores for parallel computing. ’cores’ above default of 1 will require
more memory. (Progress bar only appears if ’ cores’ = 1.)

progress If true, a text progress bar is printed to the console. Progress set to FALSE will
find distances quicker if max_dist is not specified.

Value

A matrix where each row corresponds one-to-one with each row in provided ’data’. Matrix columns
are either named with regions from ’region_id’ column of ’regions’ or the row numbers of ’regions’
if ’region_id’ is missing. Values are in kilometers.

See Also

remap - uses redist for regional models.

Examples

library(remap)
library(sf)
data(utsnow)
data(utws)

# Reset CRS in case user has old version of GDAL
sf::st_crs(utsnow) <- 4326
sf::st_crs(utws) <- 4326

# Simplify polygons to run example faster
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remap 5

utws_simp <- sf::st_simplify(utws, dTolerance = 0.01)

# Build a matrix of distances between objects of utsnow and utws
# We will not set max_dist, so all distances will be found
dists <- redist(data = utsnow,

regions = utws_simp,
region_id = HUC2)

head(dists)

remap Build separate models for mapping multiple regions.

Description

Separate models are built for each given region and combined into one S3 object that can be used
to predict on new data using generic function predict(). If a model fails for a region, a warning is
given but the modeling process will continue.

Usage

remap(
data,
regions,
region_id,
model_function,
buffer,
min_n = 0,
distances,
cores = 1,
progress = FALSE,
...

)

Arguments

data An sf data frame with point geometry.

regions An sf dataframe with polygon or multipolygon geometry.

region_id Optional name of column in ’regions’ that contains the id that each region be-
longs to (no quotes). If null, it will be assumed that each row of ’regions’ is its
own region.

model_function A function that can take a subset of ’data’ and output a model that can be used
to predict new values when passed to generic function predict().

buffer The length of the buffer zone around each region in km where observations are
included in the data used to build models for each region. (Can be a named
vector with different values for each unique ’region_id’ in ’region’.)
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6 remap

min_n The minimum number of observations to use when building a model. If there
are not enough observations in the region and buffer, then the closest min_n
observations are used. No minimum if set to 0.

distances An optional matrix of distances between ’data’ and ’regions’ generated by redist()
function (calculated internally if not provided). Note that unless you know that
you have min_n within a certain distance, no max_dist parameter should be used
in redist().

cores Number of cores for parallel computing. ’cores’ above default of 1 will require
more memory.

progress If true, a text progress bar is printed to the console. (Progress bar only appears
if ’cores’ = 1.)

... Extra arguments to pass to ’model_function’ function.

Value

A remap S3 object containing:

models A list of models containing a model output by ’model_function’ for each region.

regions ’regions’ object passed to the function (used for prediction). The first column is ’region_id’
or the row number of ’regions’ if ’region_id is missing. The second column is the region
geometry.

call Shows the parameters that were passed to the function.

See Also

predict.remap - used for predicting on new data. redist - used for pre-computing distances.

Examples

library(remap)
library(sf)
data(utsnow)
data(utws)

# Reset CRS in case user has old version of GDAL
sf::st_crs(utsnow) <- 4326
sf::st_crs(utws) <- 4326

# Simplify polygons to run example faster
utws_simp <- sf::st_simplify(utws, dTolerance = 0.01)

# Build a remap model with lm that has formula snow_water = elevation
# The buffer to collect data around each region is 30km
# The minimum number of observations per region is 10
remap_model <- remap(data = utsnow,

regions = utws_simp,
region_id = HUC2,
model_function = lm,
formula = WESD ~ ELEVATION,
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utsnow 7

buffer = 20,
min_n = 10,
progress = TRUE)

# Resubstitution predictions
remap_preds <- predict(remap_model, utsnow, smooth = 10)
head(remap_preds)

utsnow Snowpack at weather stations in Utah on April 1st, 2011.

Description

Water equivalent of snow density (WESD) in mm of water at various location within and surround-
ing the state of Utah. WESD are measured at weather stations within the Daily Global Historical
Climatology Network. April first measurements are used to estimate snowpack for the state of Utah.

Usage

utsnow

Format

An sf points object with 394 rows and 9 variables:

ID Weather station identification code.

STATION_NAME Weather station name.

LATITUDE Latitude of weather station.

LONGITUDE Longitude of weather station.

ELEVATION Elevation of weather station.

HUC2 Largest watershed region containing this weather station (see utws data).

WESD Water equivalent of snow density in mm of water.

geometry sfc points in geographic coordinates.

Source

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily
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8 utws

utws Watershed polygons within the state of Utah.

Description

Watersheds are defined by the United States Geological Survey. Only the largest defines watersheds
are used.

Usage

utws

Format

An sf object with 394 rows and 2 variables:

HUC2 Largest watershed ID’s defined by the USGS.

geometry sfc multipolygon object in geographic coordinates.

Source

https://www.usgs.gov/core-science-systems/ngp/national-hydrography/watershed-boundary-dataset?
qt-science_support_page_related_con=4#qt-science_support_page_related_con

36



Index

∗ datasets
utsnow, 7
utws, 8

plot.remap, 2
predict.remap, 2, 6
print.remap, 3

redist, 4, 6
remap, 3, 4, 5

utsnow, 7
utws, 7, 8

9

37



38

A.2 Package Vignette

The package vignette for remap serves as an extended instruction manual with exam-

ple problems. The vignette is provided as it appears on https://cran.r-project.org/web/

packages/remap/vignettes/Introduction to remap.html.

https://cran.r-project.org/web/packages/remap/vignettes/Introduction_to_remap.html
https://cran.r-project.org/web/packages/remap/vignettes/Introduction_to_remap.html


Introduction to remap
Jadon S. Wagstaff and Brennan Bean

2021-01-03

Introduction
Most spatial modeling approaches work under the assumption that the data used for modeling are stationary.
That is to say, the mean and variance of the response variable are constant in space. This assumption is often
violated, especially when modeling large areas. Sometimes, a nonstationary process can be transformed into a
stationary one by modeling external trends; however, this is not possible to achieve if the external trends are not
constant over space. In such cases, an alternative approach is to partition the space into stationary sub-regions
and model each region separately. The problem with this approach is that continuous response variables will
have discontinuities in the prediction surface at the borders of the regions.

The package remap is an implementation of a regional modeling with border smoothing method that results in a
continuous global model. Border smoothing is accomplished by taking a weighted average of regional model
predictions near region borders. The remap function is also a convenient way to build independent models in a
partitioned space, even if no border smoothing is required for the problem.

Data

To introduce the functionality of remap, we will look at a modeling problem for estimating snow water content in
the state of Utah using water equivalent of snow density (WESD) measurements. The utsnow data that is part of
the package remap contains WESD in mm water measured on April 1st, 2011 at 394 locations within and near the
state of Utah. The utws data in remap is a set of polygons representing watersheds defined by the US Geological
Survey. These watersheds are defined by a hierarchy of hydrologic unit cods (HUC) with a two-digit designation
for continental scale watersheds (HUC2). We will build a regionalized model with remap using HUC2 watershed
regions.

library(magrittr) # For pipe %>% functionality

library(tibble)   # For light data wrangling

library(dplyr)    # For light data wrangling

library(ggplot2)  # For plots

library(maps)     # For a polygon of the state of Utah

library(sf)       # For spatial data manipulation

library(mgcv)     # For GAM modeling

library(remap)

data(utsnow)

data(utws)

# Reset CRS in case user has old version of GDAL 

sf::st_crs(utsnow) <- 4326

sf::st_crs(utws) <- 4326

utstate <- maps::map("state", plot = FALSE, fill = TRUE) %>%

sf::st_as_sf() %>%

dplyr::filter(ID == "utah") %>%
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Basic Models
The remap function requires the following 4 parameters:

data - Observations with a spatial component used for modeling.
regions - Polygons describing the regions used to build each model.
model_function - A function that takes a subset of the data and returns a model.
buffer - Observations are located within and near a region are used to build each model. The buffer
parameter dictates how near an observation must be to a location to be included in that region’s model.

sf::st_transform(crs = 4326)

ggplot(utws, aes(fill = HUC2)) +

geom_sf(alpha = 0.5) +

geom_sf(data = utstate, fill = "NA", size = 1) +

geom_sf(data = utsnow) +

ggtitle("Modeling Data and Regions",

"HUC2 regions are made up of smaller HUC4 regions.") +

theme_void()
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The following parameters are optional:

region_id - A column name of regions which describes which polygons to include in each region. This is
helpful if any region has polygons described in multiple rows in the sf object. The region_id allows for
combinations of smaller polygons into larger regions.
min_n - The minimum number of observations required to build a model in each region. If a region does not
contain enough observations within its border and buffer zone, the nearest min_n observations will be used
for modeling.

In this section, we use some simple linear models to model snow water content in Utah. First a global model
using all data, then a regional model using remap. The WESD measurement in our example data commonly
shares a log-linear relationship with elevation in mountainous western states. Many locations in Utah have a
value of 0 for WESD on April first. Since zero snow values in log transformed variables add another level of
complexity to the modeling process, we remove them for now and make a new dataset called utsnz.

Global Linear Model

The relationship between the log transformed WESD and elevation of utsnz is visualized as:

The resubstitution mean squared error (MSE) for such a model is:

Regionalized Linear Models

The utsnz data describes which watersheds each location falls in with the HUC2 columns. (Note that remap does
not require these columns in the data when building models using the utws regions.) Here is what the relationship
between log(WESD) and elevation looks like for each of the HUC2 regions:

utsnz <- utsnow %>% dplyr::filter(WESD > 0)

ggplot(utsnz, aes(x = ELEVATION, y = WESD)) +

geom_point() +

geom_smooth(method = "lm") +

scale_y_log10() +

theme_minimal()

#> `geom_smooth()` using formula 'y ~ x'

lm_global <- lm(log(WESD) ~ ELEVATION, data = utsnz)

lm_global_mse <- mean((utsnz$WESD - exp(predict(lm_global, utsnz)))^2)

lm_global_mse

#> [1] 121370.7
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The linear models for each HUC2 region seem to fit a little better than the global linear model; however, it looks
like HUC2 region 15 does not have enough data to build a very confident model. Using remap to build models for
each region, some of the nearest observations to HUC2 region 15 are added to build a better model by using the
min_n parameter to set the minimum number of observations per region to 10.

For this modeling task, any observation within 20km of a region is to be included in that region’s model using the
buffer parameter. The lm function requires a formula, so formula is added as an extra parameter in remap. Since
remap makes smooth predictions over the entire surface, a smooth parameter is required in the predict function
that dictates the distance from region borders where the smoothing process will start. We set smooth to 10km for
this example.

ggplot(utsnz, aes(x = ELEVATION, y = WESD)) +

facet_grid(HUC2 ~ .) +

geom_point() +

geom_smooth(method = "lm") +

scale_y_log10() +

theme_minimal()

#> `geom_smooth()` using formula 'y ~ x'
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The output of remap returns a list that contains a list of models built in each region and an sf data frame storing
the region polygons. The models for each region can be accessed directly. For example, the coefficients for each
model can be accessed with the following code:

The resulting remap model has a 29.4% reduction in resubstitution MSE using separate linear models for each of
the HUC2 regions rather than the global linear model. This increase in accuracy is likely to be even more drastic
when problems span greater areas, such as a model for an entire continent.

Computational Speedup
Many modeling techniques that partition space depend on the distance between prediction locations and the
center of each region. However, the center is a poor characterization of irregularly shaped regions. The border
smoothing method in remap uses the distances to region borders rather than region centers. This allows for
regions of any shape being used for modeling. Building models and predicting with remap runs fairly slowly for
something as simple as linear models. This is because remap requires distance calculations between each
observation and the region boundaries in both the modeling and prediction steps. This tends to be
computationally expensive with large numbers of points and/or complex region boundaries. This section outlines
the steps taken to ameliorate the computational burden of remap which allow remap to scale to large problems.

Simplifying Regions

Many spatial processes require continuous polygons (i.e. no gaps in region boundaries), which limits the degree
of polygon simplification that can be achieved. One desirable feature of remap is the ability of each model to
make smooth predict outside of polygons within a smoothing zone, which smooths over any small gaps in

t1 <- Sys.time()

lm_huc2 <- remap::remap(

  utsnz, utws, region_id = HUC2, 

buffer = 20, min_n = 10,

model_function = lm, 

formula = log(WESD) ~ ELEVATION

)

lm_huc2_mse <- mean((utsnz$WESD - exp(predict(lm_huc2, utsnz, smooth = 10)))^2)

t2 <- Sys.time()

# mse

lm_huc2_mse

#> [1] 85725.36

# runtime

round(difftime(t2, t1), 1)

#> Time difference of 25.1 secs

sapply(lm_huc2$models, function(x) x$coefficients)

#>                      14           15          16        17

#> (Intercept) 0.557864695 -2.292085274 0.564719359 1.8300546

#> ELEVATION   0.001914744  0.003114987 0.002140786 0.0018686
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polygons that occurs in an aggressive geometrical simplification. Thus, by only preserving the macro structure of
the input polygons, we can greatly speed up distance computations without losing fidelity in model predictions.

Distance calculation time can be dramatically reduced by simplifying the polygons passed to remap using the sf
package st_simplify function. The function gives a warning that can be ignored for our purposes, we are only
trying to preserve the macro structure and the regions are not near any poles. Gaps at region borders appear,
but remap has the ability to predict outside of regions and predictions will remain smooth as long as the gaps
aren’t wider than two times the smooth parameter. Notice how the simplified polygons retain the basic structure of
the original regions:

Simplifying the polygons doesn’t drastically change the computation time in this particular example, but some
regions can contain massive polygons with details that are unnecessary for regional modeling.

redist

The remap and predict functions both internally call a function called redist to calculate distances from points to
polygons. The user can directly use the function redist to pre-compute distances from points to polygons and
use the pre-computed distances as direct inputs in the remap function. The pre-computing step greatly reduces
computational costs if multiple regional models must be made with the same input data and polygons.

utws_simp <- utws %>% sf::st_simplify(dTolerance = 0.05)

#> Warning in st_simplify.sfc(st_geometry(x), preserveTopology, dTolerance):

#> st_simplify does not correctly simplify longitude/latitude data, dTolerance

#> needs to be in decimal degrees

rbind(

  utws %>% dplyr::mutate(TYPE = "Original Watershed Polygons"),

  utws_simp %>% dplyr::mutate(TYPE = "Simplified Watershed Polygons")

) %>%

ggplot() +

facet_grid(.~TYPE) +

geom_sf() +

theme_void()
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Distances from prediction locations need only be computed to polygon boundaries for which the prediction
location falls within their smoothing zone. Buffered polygons can be used to quickly determine candidate
observations for distance calculations in each region. The max_dist parameter of redist can be used to make
these buffered polygons. This drastically reduces the number of points for which distance calculations must be
performed and greatly improves computation times.

The newly created distance matrix can be sent to remap and predict as a parameter. Run the following code and
notice how much faster the remap and predict functions run when the distances are pre-calculated.

The MSE for this model is slightly different than previous regional linear model since the simplified polygons are
being used.

Parallel Code

Since calculating distances to polygons is independent for each polygon, redist can be run in parallel by setting
the cores to a number greater than one. Models are built and make predictions independent of one another so
the remap function and predict method also have a cores parameter for parallel computing. This means that
distance calculations, modeling, and predicting processes can all be run in parallel.

huc2_dist_nz <- remap::redist(utsnz, utws_simp, region_id = HUC2)

head(huc2_dist_nz)

#> Units: [km]

#>            14       15       16        17

#> [1,]  0.00000 330.5847 272.5228 437.81560

#> [2,]  0.00000 428.2982 247.8652 358.01516

#> [3,]  0.00000 236.7842 285.3623 526.89371

#> [4,] 74.03409 386.9778   0.0000  64.61556

#> [5,] 76.54282 324.1539   0.0000 152.82797

#> [6,] 97.67083 175.9193   0.0000 284.43786

t1 <- Sys.time()

lm_huc2 <- remap(

  utsnz, utws_simp, region_id = HUC2, 

buffer = 20, min_n = 10,

model_function = lm, 

formula = log(WESD) ~ ELEVATION,

distances = huc2_dist_nz

)

lm_huc2_mse <- mean(

  (utsnz$WESD -

exp(predict(lm_huc2, utsnz, smooth = 10,

distances = huc2_dist_nz)))^2

)

t2 <- Sys.time()

# mse

lm_huc2_mse

#> [1] 86925.69

# runtime

round(difftime(t2, t1), 1)

#> Time difference of 0.1 secs
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Custom Models
While linear models are great for illustration, many spatial modeling approaches will require more complex
regional model forms. The remap function is flexible enough to handle arbitrary model inputs and outputs, with the
only requirement being that the model output must be compatible for use with the generic predict function and
return a numeric output.

The remap function takes a model_function as a parameter. The model_function must have the following two
features:

Its first unnamed function argument must take a subset of an sf data point object,
The function must output an object with a generic predict function that returns a vector of numeric values.

Note that named function arguments can be supplied at the end of the remap function, as was the case with the
formula argument in the linear model example shown previously. The key is that the first unnamed parameter be
dedicated to data input.

Suppose we want to make a generalized additive model (GAM) that is limited to only making positive predictions.
We also don’t want to predict a number greater than the highest observed response in each region to avoid over
extrapolation. This can be accomplished through wrapper functions for both gam and predict.gam that restrict
predicted values to a specified range.

Global GAM Model

The following code tests a GAM model where elevation and splines on the sphere are used as predictors. We
can use the functions written to do a GAM with remap to easily do cross validation on a global model:

gam_limit <- function(data, fml) {

  g_model <- mgcv::gam(fml, data = data)

  upper_lim <- max(data$WESD)

  out <- list(g_model = g_model, upper_lim = upper_lim)

class(out) <- "gam_limit"

return(out)

}

predict.gam_limit <- function(object, newobs) {

if (nrow(newobs) != 0) {

    preds <- predict(object$g_model, newobs)

    preds[preds < 0] <- 0

    preds[preds > object$upper_lim] <- object$upper_lim

return(preds)

  }

return(NULL)

}

# Create vector for cross-validation

set.seed(42)
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This model is much better than either of the basic linear models, even though the GAM accuracy is measured on
cross-validation rather than resubstitution error and the GAM model is also modeling the zero valued
observations.

Regionalized GAM Model

First, the distances are pre-calculated so the distance calculations aren’t repeated 10 different times when doing
cross validation. The distances return a matrix where each row corresponds to each observation in the data. The
cross validation only uses a subset of the data, so the corresponding subset of distances should be passed to
remap during each modeling step.

HUC2 regions are used to build a regionalized GAM models with remap. We will reduce the knots on the splines
on the sphere from 50 to 25 so we don’t need so many degrees of freedom for each model. The min_n can be set
to 35 to allow at least 5 degrees of freedom per model.

cv_k <- sample(1:10, nrow(utsnow), replace = TRUE)

# Initialize predictions

gam_global_preds <- rep(as.numeric(NA), nrow(utsnow))

# Formula for global GAM

global_fml <- WESD ~ s(ELEVATION, k = 5) + s(LATITUDE, LONGITUDE, bs = "sos", k = 50)

# Build and test models with 10 fold cross-validation

for (i in 1:10) {

  index <- cv_k == i

  gam_global <- gam_limit(utsnow[!index, ], fml = global_fml)

  gam_global_preds[index] <- predict(gam_global, utsnow[index, ])

}

# Calculate MSE

gam_global_mse <- mean((utsnow$WESD - gam_global_preds)^2)

gam_global_mse

#> [1] 23875.94

huc2_dist <- remap::redist(utsnow, utws, region_id = HUC2)

# Initialize predictions

gam_huc2_preds <- rep(as.numeric(NA), nrow(utsnow))

# Formula for regional GAMs

gam_huc2_fml <- WESD ~ s(ELEVATION, k = 5) + s(LATITUDE, LONGITUDE, bs = "sos", k = 25)

# Build and test models with 10 fold cross-validation

for (i in 1:10) {

  index <- cv_k == i

  gam_huc2 <- remap::remap(

    utsnow[!index, ], utws, region_id = HUC2,

model_function = gam_limit, 

buffer = 20, min_n = 35,

distances = huc2_dist[!index, ],

fml = gam_huc2_fml
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The HUC2 regionalized GAM has 30.4% better MSE than the global GAM model.

Smooth Predictions
A toy model is best used to show how smooth predictions work since the Utah snow water content models have
extreme values and sharp changes with elevation. The toy model has 3 regional models with contrived response
variables that consists of an affine combination of longitude and latitude values. The left region predicts

, the bottom region predicts , and the right region predicts 

  )

  gam_huc2_preds[index] <- predict(

    gam_huc2, utsnow[index, ],

smooth = 10, 

distances = huc2_dist[index, ]

  )

}

# Calculate MSE

gam_huc2_mse <- mean((utsnow$WESD - gam_huc2_preds)^2)

gam_huc2_mse

#> [1] 16620.54

# Make regions

toy_regions <- tibble::tribble(

~id, ~geometry,
"a", sf::st_polygon(list(matrix(c(0, 0, 2, 0, 6, 3, 4, 10, 0, 10, 0, 0)*.1, ncol = 2, byrow =

TRUE))),

"b", sf::st_polygon(list(matrix(c(2, 0, 10, 0, 10, 4, 6, 3, 2, 0)*.1, ncol = 2, byrow = TRUE))),

"c", sf::st_polygon(list(matrix(c(4, 10, 6, 3, 10, 4, 10, 10, 4, 10)*.1, ncol = 2, byrow = TRUE)))

) %>%

sf::st_as_sf(crs = 4326)

# Manually make a toy remap model

make_toy <- function(x) {

class(x) <- "toy_model"

return(x)

}

remap_toy_model <- list(

models = list("a" = make_toy("a"), 

"b" = make_toy("b"), 

"c" = make_toy("c")),

regions = toy_regions,

region_id = "id"

)

class(remap_toy_model) <- "remap"

# Make a prediction method for toy_model

predict.toy_model <- function(object, data) {

  x <- sf::st_coordinates(data)[, "X"]
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The regions cover the following area:

The remap_toy_model object can now be used to make predictions on the grd object. There are 10201 points in
the grd object but the regions are simple, so it will not take long to find distances. Two predictions will be made,
the SHARP predictions will have a smoothing parameter of zero and the SMOOTH predictions will have a smoothing
parameter set to 30km.

The smooth predictions from the remap object start to become a weighted average of regional predictions when

  y <- sf::st_coordinates(data)[, "Y"]

if (object == "a") {

    y - x

  } else if (object == "b") {

    x - y - 0.4

  } else {

    y - x + 0.3

  }

}

# Make a grid over the regions for predictions

grd <- sf::st_make_grid(toy_regions, cellsize = .01, what = "corners") %>%

sf::st_sf()

ggplot2::ggplot(toy_regions, aes(fill = id)) +

geom_sf(color = "black", size = 1) +

ggtitle("Toy Regions") +

theme_bw()

grd_pred <- grd %>%

dplyr::mutate(SHARP = predict(remap_toy_model, grd, smooth = 0),

SMOOTH = predict(remap_toy_model, grd, smooth = 30),

LON = sf::st_coordinates(.)[, "X"],

LAT = sf::st_coordinates(.)[, "Y"])
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the predictions are within 30km of a region border. The following plots show what is happening with both the
SHARP and SMOOTH predictions at predicted values at all locations and specific plots along the 0.8 degree N line.
Notice how the predictions at the borders of the toy regions are smoothed:

ggplot(toy_regions) +

geom_sf() +

geom_tile(data = grd_pred, aes(x = LON, y = LAT, fill = SHARP)) +

scale_fill_viridis_c(limits = c(-0.3, 1)) +

geom_hline(yintercept = 0.8) +

ggtitle("Sharp Predictions", "Black line corresponds to x-axis of the next plot.") +

xlab("") + ylab("") +

theme_bw()

#> Warning: range backtransformation not implemented in this coord; results may be

#> wrong.

50



ggplot(grd_pred %>% dplyr::filter(LAT == 0.8),

aes(x = LON, y = SHARP)) +

geom_line(size = 1) +

ggtitle("Sharp Predictions at 0.8 degrees N") +

theme_minimal()

ggplot(toy_regions) +

geom_sf() +

geom_tile(data = grd_pred, aes(x = LON, y = LAT, fill = SMOOTH)) +

scale_fill_viridis_c(limits = c(-0.3, 1)) +

geom_hline(yintercept = 0.8) +

ggtitle("Smooth Predictions", "Black line corresponds to x-axis of the next plot.") +

xlab("") + ylab("") +

theme_bw()

#> Warning: range backtransformation not implemented in this coord; results may be

#> wrong.
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The remap package provides a way to build regional spatial models given a set of observations and a set of
regions. The resulting model can make predictions that have no discontinuities at region borders and scales well
to large problems.

ggplot(grd_pred %>% dplyr::filter(LAT == 0.8),

aes(x = LON, y = SMOOTH)) +

geom_line(size = 1) +

ggtitle("Smooth Predictions at 0.8 degrees N") +

theme_minimal()
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