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Abstract: We are interested in evaluating the state of drivers to determine whether they are attentive
to the road or not by using motion sensor data collected from car driving experiments. That is, our
goal is to design a predictive model that can estimate the state of drivers given the data collected
from motion sensors. For that purpose, we leverage recent developments in topological data analysis
(TDA) to analyze and transform the data coming from sensor time series and build a machine learning
model based on the topological features extracted with the TDA. We provide some experiments
showing that our model proves to be accurate in the identification of the state of the user, predicting
whether they are relaxed or tense.

Keywords: Morse theory; topological data analysis; machine learning; time series; smart driving

1. Introduction

While there have recently been considerable advances in self-driving car technology,
driving still relies mainly on human factors. Even in self-driving mode, human drivers
must often make decision in a fraction of a second to avoid accidents. Therefore, it is still
of utmost importance to develop systems capable of discerning if the human driver is
attentive or not to the road conditions. In general, the so-called advanced driver assistance
systems (ADAS) [1,2] are systems that are able to improve the driver’s performance, among
which, adaptive speed limiters, pedestrian detectors [3], and cruise controllers are some
of the most popular systems. Fatigue alerting systems are among the most useful among
ADAS systems, and the aim of this work is to contribute to the development of such a
system based on a systematic analysis of drivers in actual driving conditions.

The estimation of the driver’s condition (degree of attention to the road, fatigue, etc.)
is a very important factor to ensure safety in driving [4,5]. A recent review on the topic can
be found in [6]. The goal of this work is to extract behavior patterns from car user data to
be able to accurately estimate their state. We used data obtained by the laboratory of prof.
Hyung Yun Choi at Hongik University in Seoul. His experiment involved the application
of mechanical stimulation to people seated in an automobile.

Our main goal is to extract patterns of behavior from experimental data so as to allow
us to learn the most relevant factors affecting driver’s attention to the situation of the road.

In the present work, we combine some tools from Morse theory [7] and topological
data analysis (TDA) with all of the associated concepts and methods (e.g., Betti numbers,
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homology persistence, barcodes, persistence images, etc.) [8], most of them introduced
and employed later in order to analyze and classify the experimental data. This allows us
to introduce concepts as barcodes, that is, persistent and life-time diagrams in a similar
way to how they are used in persistent homology. Our main goal is to predict car user
behavior following a supervised approach [9]. Instead of considering an original sensor
signal as the quantity of interest, we focus on its topological features. In this sense, the
framework proposed in this paper allows us to unveil the true dimensionality of data or,
in other words, the actual number of factors affecting driver’s performance. Thus, we
model a sensor signal as a dynamical system, and, therefore, our approach seems to be
better at describing its properties, or rather its variations, such as extrema, patterns, and
self-similarity, than other approaches. We note that our approach is, in some senses, similar
to that followed by Milnor and Thurston [10] in the study of the combinatorial properties
of dynamical systems by combining tools from automata theory.

The structure of the paper is as follows: In Section 2, we describe the material and
methods employed in this work. Particular attention is paid to the process of data acquisi-
tion and the description of time series and data curation. In Section 3, we present the main
results of this work, and we discuss the main consequences in Section 4. As a complement,
in Appendix A, we thoroughly illustrate the process of computing persistence images for
the data of interest.

2. Material and Methods

In this section, we describe the collection and preprocessing of the experimental data.
In Section 2.1, we describe the data acquisition, and in Section 2.2, we provide a description
of the time series. Section 2.3 is devoted to data preprocessing. The mathematical tools
used to describe the times series at a topological level are explained in Section 2.4. Finally,
the image classification methodology is given in Section 2.5.

2.1. Data Acquisition

Our proposed predictor directly uses the data collected from the experiments. The data
acquisition process involves measuring the response of human behavior when an excitation
is applied to the seat. Figure 1 shows the location of the sensors in the experiments.

Figure 1. Scheme of the data acquisition process showing the location of the sensors.

The excitation signal is an angular acceleration imposed on the seat of the user. This ac-
celeration is an oscillating chirp function with a frequency range of 1 to 7.5 Hz on the X axis
in rotation. The linear acceleration a = (ax, ay, az) and angular velocity ω = (ωx, ωy, ωz)
were measured in both the head and the seat by two IMU (Shimmer inertia measurement
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unit (IMU) sensors) at 256 Hz. By observing the floor excitation signals, we noted that the
excitation is purely rotational around the X-axis—see Figure 2.

Figure 2. Floor excitation: X-axis angular velocity time series.

Several experiences were conducted by nine people by taking into account a set of
six fixed states: driver, passenger, tense person, relaxed person, rigid seat, and SAV (sport
activity vehicle seat). In particular, for each individual, eight experiments for the six
available states were performed:

Class Label
1 SAVRelaxedPassager
2 SAVTensePassager
3 SAVRelaxedDriver
4 SAVTenseDriver
5 RigidRelaxedPassager
6 RigidTensePassager
7 RigidRelaxedDriver
8 RigidTenseDriver

As a consequence, we worked with a sample of 72 experiences, each of them encoded
in a time series (as we explain later). Our goal is to classify the behavior of a generic driver,
assigning one of the two states (tense or relaxed) by using the sensor data.

2.2. Time Series Description

The data acquired from sensors (see Figures 3 and 4) were stored into six-dimensional
time series, for both linear acceleration and angular velocity of the head movement. The
sampling frequency of the data was 256 Hz, and the duration of the experiment was 34 s;
hence, the resulting data dimensionality is 256× 34 = 8704. For each times series, where
1 ≤ t ≤ 8704, we constructed three new times series called the sliding window, embedding
a length of 5800. The first one is given by the times values from t = 1 to t = 5800, the
second is given by the times values from t = 1450 to t = 7250, and, to conclude, the
third time window is defined as from t = 2904 to t = 8704. Each element in the sample
(1 ≤ i ≤ 72) was encoded by means of three six-dimensional time series representing each
of the three sliding windows that we represent in matrix form as follows:

TS3(i−1)+1 =



a`x(1) a`x(2) · · · a`x(5800)
a`y(1) a`y(2) · · · a`y(5800)
a`z(1) a`z(2) · · · a`z(5800)
ω`

x(1) ω`
x(2) · · · ω`

x(5800)
ω`

y(1) ω`
y(2) · · · ω`

y(5800)
ω`

z(1) ω`
z(2) · · · ω`

z(5800)


, TS3(i−1)+2 =



a`x(1450) a`x(1451) · · · a`x(7251)
a`y(1450) a`y(1451) · · · a`y(7251)
a`z(1450) a`z(1451) · · · a`z(7251)
ω`

x(1450) ω`
x(1451) · · · ω`

x(7251)
ω`

y(1450) ω`
y(1451) · · · ω`

y(7251)
ω`

z(1450) ω`
z(1451) · · · ω`

z(7251)





Mathematics 2021, 9, 634 4 of 16

and

TS3i =



a`x(2903) a`x(2905) · · · a`x(8704)
a`y(2903) a`y(2905) · · · a`y(8704)
a`z(2903) a`z(2905) · · · a`z(8704)
ω`

x(2903) ω`
x(2905) · · · ω`

x(8704)
ω`

y(2903) ω`
y(2905) · · · ω`

y(8704)
ω`

z(2903) ω`
z(2905) · · · ω`

z(8704)


.

Here, the matrices have a size of 6× 5800 and 1 ≤ i ≤ 72. This allows us to represent
the information by using a third-order tensor, namely, Z ∈ R216×6×5800 defined by

Zi,j,k := (TSi)j,k

for 1 ≤ i ≤ 216, 1 ≤ j ≤ 6 and 1 ≤ k ≤ 5800. We can identify Zi = TSi for 1 ≤ i ≤ 216.

Figure 3. Sensor data: linear acceleration time series.

Figure 4. Sensor data: angular velocity time series.

2.3. Data Preprocessing

In order to obtain a single series for each observation, we concatenated all of the 6 time
series (linear accelerations and angular velocities) for each observation horizontally and
then created a data frame by stacking the 216 in sample observations.
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The concatenation operation on the multidimensional time series collapsed the last
two dimensions into one dimensional arrays with a length of 5800× 6 = 34,800. The result
is the two-dimensional table of concatenated time series

D =

 vec(Z1,:,:)
. . .

vec(Z216,:,:)

 ∈ R216×34800.

We chose not to filter the signals because the topological sub-level set method should
filter the high-frequency features naturally. We also chose to keep working on acceleration
signals in order to avoid signal deviations after two integrations in time so as to obtain
positions, the sensors not always keeping a zero mean height. Thus, the approach is
completely (topologically) data-based.

The six time series Zi of each observation were collapsed into a single concatenated
time series with a size of 34,800—see Figure 5. The concatenated time series for the 216
observations were then stacked to create the dataset D with a size of 216× 34,800. We also
used binary labels in the chained time series Zi on the two target classes that we were
interested in. In particular, we wrote Z (α)

i where α is "0" for a relaxed driver and “1” for a
tense one.

Figure 5. Tensor reduction of a sensor time series.

2.4. Extracting Topological Features from a Time Series

The idea to extract the topological information regarding the times series is to consider
each sample observation as a piecewise linear continuous map from a closed interval to the
real line. Therefore, we used a construction closely related to the Reeb graph [11] used in
Morse theory to describe the times series at the topological level.

To this end, we consider the time series xt for 0 ≤ t ≤ N− 1 (N ≥ 3) given by a vector

X = (x0, x1, . . . , xN−1) ∈ RN .

we can view X as a function also denoted by X : {0, 1, . . . , N − 1} −→ R defined by
X(i) = xi for 0 ≤ i ≤ N − 1. Here, to study the topological features of X we use the
sub-level set of a piecewise-linear function fX : R −→ R associated with X satisfying that
fX(i) = X(i) = xi for 0 ≤ i ≤ N − 1.

To construct this function, we consider the basis functions {ϕ0, . . . , ϕN−1} of continu-
ous functions ϕi : R −→ R defined by

ϕi(s) :=


s− i + 1 if i− 1 ≤ s ≤ i
i + 1− s if i ≤ s ≤ i + 1

0 if s /∈]i− 1, i + 1[
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where i = 1, . . . , N − 2 and

ϕ0(s) :=
{

1− s if 0 ≤ s ≤ 1
0 if s ∈ [0, 1]

ϕN−1(s) :=
{

s− N + 2 if N − 2 ≤ s ≤ N − 1
0 if s /∈ [N − 2, N − 1[

This allows us to construct a piecewise continuous map fX : R −→ R by

fX(s) =
N−1

∑
j=0

xj ϕj(s),

and also to endow RN with a norm given by

‖X‖ := ‖ fX‖L2(R) =

(∫ ∞

−∞
| fX(s)|2ds

)1/2
.

In particular, we prove the following result, which helps us to identify the time series
given by the vector X in RN with the function fX in L2(R).

Proposition 1. The linear map Φ : (RN , ‖ · ‖) −→ (L2(R), ‖ · ‖L2(R)) given by Φ(X) = fX is
an injective isometry between Hilbert spaces. Furthermore, Φ(RN) is a closed subspace in L2(RN).

Proof. The map is clearly isometric and injective because {ϕ0, . . . , ϕN−1} is a set of linear
independent functions in L2(R).

Here, we describe the maps fX ∈ Φ(RN) at the combinatorial level using the connected
components (intervals) associated with its λ sub-level sets

LSλ( fX) := {x ∈ [0, N − 1] : fX(x) ≤ λ}

for λ ∈ R. For this purpose, we introduce the following distinguished objects related to the
supp( fX) = [0, N − 1] ⊂ R of fX :

• The nodes or vertices denoted by

V := {[0], [1], . . . , [N − 1]}

that represent the components of the vector X,;
• The faces denoted by

F := {[0, 1][1, 2], . . . , [N − 2, N − 1]}

that represent the intervals used to construct the connected components of the sub-
level sets of the map fX. Recall that we consider

[i, i + 1] := {z ∈ R : z = µ xi+1 + (1− µ)xi, 0 ≤ µ ≤ 1} ⊂ R.

Let
λmax = max

s∈[0,N−1]
fX(s) = max

0≤i≤N−1
X(i),

and
λmin = min

s∈[0,N−1]
fX(s) = min

0≤i≤N−1
X(i).

For each λmin ≤ λ ≤ λmax, we introduce the following symbolic λ sub-level set for
the map fX :

LSλ( fX) := {σ ∈ F : f (σ) ≤ λ}
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For λmin ≤ λ ≤ λ′ ≤ λmax, it holds

LSλ( fX) ⊂ LSλ′( fX).

Our next goal was to quantify the evolution of the above symbolic λ sub-level with.
To this end, we introduce the notion of feature associated with the λ sub-level set LSλ( fX).

We define the set of features for functions in Φ(RN) as

F(Φ(RN)) := {[i, j] ⊂ R : 0 ≤ i < j ≤ N − 1}.

We note that LSλ( fX) ⊂ F ⊂ F(Φ(RN)). Then next definition introduces the notion
of features for a symbolic λ sub-level set as the interval of F(Φ(RN)) constructed by a
maximal union of faces of LSλ( fX).

Definition 1. We suggest that I ∈ F(Φ(RN)) is a feature for the symbolic λ sub-level set LSλ( fX)
if there exists I1, . . . , Ik ∈ LSλ( fX) such that I =

⋃k
j=1 Ik and for every J ∈ LSλ( fX) such that

J 6= Ii for 1 ≤ i ≤ k it holds that I∩ J = ∅. We denote by F(LSλ( fX)) the set of features for the
λ sub-level set LSλ( fX).

A feature for a λ sub-level set LSλ( fX) is the maximal interval of F(Φ(RN)) that we
can construct by unions of intervals in LSλ( fX). To illustrate this definition, we give the
following example:

Example 1. Let us consider the time series

X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

This allows us to construct the map fX as shown in Figure 6. Then, λmin = 7 and λmax = 14,
and we have the following symbolic λ sub-level sets.

LSλ=7( fX) = ∅

LSλ=8( fX) = LSλ=7( fX) ∪ {[5, 6]}
LSλ=9( fX) = LSλ=8( fX) ∪ {[2, 3], [3, 4], [4, 5]}

LSλ=10( fX) = LSλ=9( fX) ∪ {[6, 7], [7, 8]}
LSλ=11( fX) = LSλ=10( fX)

LSλ=12( fX) = LSλ=11( fX)

LSλ=13( fX) = LSλ=11( fX)

LSλ=14( fX) = LSλ=11( fX) ∪ {[0, 1]}.

This allows us to compute the available features for each λ-value:

λ = 7 λ = 8 λ = 9 λ = 10 λ = 11 λ = 12 λ = 13 λ = 14
F(LSλ( fX)) ∅ [5, 6] [2, 6] [2, 8] [2, 8] [2, 8] [2, 8] [0, 8]

Let F( fX) be the whole set of features for fX, that is,

F( fX) = {I : I ∈ F(LSλ( fX)) for some λmin ≤ λ ≤ λmax}.
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Figure 6. The map fX for X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

Example 2. From Example 1, we obtain

F( fX) = {[5, 6], [2, 6], [2, 8], [0, 8]}.

We can represent the map λ 7→ LSλ( fX) from [λmin, λmax] to F( fX) as shown in Figure 7.

Figure 7. The map λ 7→ LSλ( fX) for X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

Let I ∈ F( fX); in order to quantify the persistence of this particular feature for the map
fX, we use the map λ 7→ LSλ( fX) from [λmin, λmax] to F( fX). To this end, we introduce the
following definition: the birth point of the feature I is defined by

a(I) = inf{λ : I ∈ F(LSλ( fX))}
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and the corresponding death point by

b(I) = sup{λ : I ∈ F(LSλ( fX))}.

In particular, we note that a([0, N − 1]) = λmax (see Figure 7). Since a(I) ≤ b(I) < ∞
holds for all I ∈ F( fX), I 6= [0, N − 1], we call the finite interval [a(I), b(I)] the barcode of the
feature I ∈ F( fX) \ {[0, N − 1]}.

Example 3. From Example 1 we consider the features [5, 6] ∈ LSλ=8( fX), [2, 6] ∈ LSλ=9( fX),
and [2, 8] ∈ LSλ=10( fX). Then, the feature [5, 6] has its birth point at a([5, 6]) = 8 and its death
point at b([5, 6]) = 9; the feature [2, 6] has its birth point at a([2, 6]) = 9 and its death point at
b([2, 6]) = 10. Finally, the feature [2, 8] has its birth point at a([2, 8]) = 10 and its death point at
b([2, 8]) = 14. As a consequence, the set

B( fX) := {([5, 6]; 8, 9), ([2, 6]; 9, 10), ([2, 8]; 10, 14)}

of features and its corresponding barcodes contain the relevant information of the shape of fX
(see Figure 7).

Thus, we define the set of barcodes for fX by

B( fX) = {(I; a(I), b(I)) : I ∈ F( fX) \ {[0, N − 1]}}

and its persistence diagram as

PD( fX) :=
{
(a(I), b(I)) ∈ R2 : I ∈ F( fX) \ {[0, N − 1]}

}
(see Figure 8). An equivalent representation of the persistence diagram is the life-time
diagram for fX, which is constructed by means of a bijective transformation T(a, b) =
(a, b− a), acting over PD( fX), that is,

LT ( fX) :=
{
(a(I), b(I)− a(I)) ∈ R2 : I ∈ F( fX)) \ {[0, N − 1]}

}
;

see Figure 9.

Figure 8. Persistence diagram for the map fX when X = (11, 14, 9, 7, 9, 7, 8, 10, 9).
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Figure 9. Life-time diagram for the map fX when X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

In order to determine the grade of similarity between two barcodes from two different
time series, we need to set a similarity metric. To this end, we construct the persistent
image for fX as follows: we observe that LT ( fX) is a finite set of points, namely,

LT ( fX) = {(a1, b1 − a1), . . . , (ak, bk − ak)}

for some natural numbers k ≥ 1 and such that b1 − a1 ≤ b2 − a2 . . . ≤ bk − ak. Then, we
consider a non-negative weighting function w : LT ( fX) −→ [0, 1] given by

w(ai, bi − ai) =
bi − ai
bk − ak

for 1 ≤ i ≤ k.

Finally, we fix M, a natural number, and take a bivariate normal distribution gu(x, y)
centered at each point u ∈ LT ( fX) and with its variance σ id = 1

M max1≤i≤k(bi − ai) id,
where id is the 2× 2 identity matrix. A persistence kernel is then defined by means of a
function ρX : R2 → R, where

ρX(x, y) = ∑
u∈LT ( fX)

w(u)gu(x, y). (1)

We associate with each X ∈ R a matrix in RM×M as follows: let ε > 0 be a non-
negative real number that is sufficiently small, and then consider a square region ΩX,ε =
[α, β]× [α∗, β∗] ⊂ R2, covering the support of ρX(x, y) (up to a certain precision), such that∫∫

ΩX,ε

ρX(x, y) dx dy ≥ 1− ε

holds. Next, we consider two equispaced partitions of the intervals

α = p0 ≤ p1 . . . ≤ pM = β and α∗ = p∗0 ≤ p∗1 . . . ≤ p∗M = β∗.



Mathematics 2021, 9, 634 11 of 16

Now, we put

ΩX,ε =
M−1⋃
i=0

M−1⋃
j=0

[pi, pi+1]× [p∗j , p∗j+1] =
M−1⋃
i=0

M−1⋃
j=0

Pi,j

The persistence image of X associated with the partition P = {Pi,j} is then described
by the matrix given by the following equation:

PI(X, M,P , ε) =

(∫∫
Pi,j

ρX(x, y)dxdy

)i=M−1,j=M−1

i=0,j=0

∈ RM×M. (2)

2.5. Classification

Image classification is a procedure that is used to automatically categorize images
into classes by assigning to each image a label representative of its class. A supervised
classification algorithm requires a training sample for each class, that is, a collection of data
points whose class of interest is known. Labels are assigned to each class of interest. The
classification problem applied to a new observation is thus based on how close a new point
is to each training sample. The Euclidean distance is the most common distance metric
used in low-dimensional datasets. The training samples are representative of the known
classes of interest to the analyst. In order to classify the persistence diagrams, we can use
any state-of-the-art technique. In our case, we considered the random forest classification.

Recall that we conducted 9 different experiments, with 24 samples associated with each
one of them corresponding to 3 samples for each of the different experimental conditions:
relaxed rigid driver, relaxed rigid passenger, relaxed SAV driver, relaxed SAV passenger,
tense rigid driver, tense rigid passenger, tense SAV driver, and tense SAV passenger. Their
respective labels are {0, 0, 0, 0, 1, 1, 1, 1}. Therefore, we designed the following training
validation process: The model is trained over 144 samples and evaluated over the remaining
unseen 72 experiments (two-to-one training-to-testing ratio). The split between training
and sampling is achieved using random shuffling and stratification to ensure balance
between the classes. In order to improve the evaluation of the model generalizability, we
also performed a cross-validation procedure following a leave-one-out strategy, consisting
of iteratively training over the full dataset except one sample that was left out and used to
test and score the model. We used the accuracy metric to evaluate the classification model.
We can represent the performance of the model using the so-called confusion matrix: a
2D entries table where elements account for the number of samples in each category, with
the first axis representing the true labels and the second axis the predicted labels. We also
computed the different classification metrics to obtain a more detailed reporting of the
model performances.

3. Results

The trained random forest classifier model for the persistence images has a notably
high accuracy score on the training dataset (144) for both approaches and high accuracy for
the testing dataset (72 samples). This suggests strong differentiation of the images with the
respect to their generating signals, see Figure 10. The scores on the training and testing
are 93 and 83%, respectively. The leave-one-out cross-validation achieved a score of 81%,
indicating a good variance–bias trade-off and good generalization potential of the model.
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Figure 10. Model performance for prediciting the attention state.

4. Discussion

The combination of Morse theory and topological data analysis allows us to extract
information from real data without the need for smoothness or regularity assumption on
the time series. In our case, input data for each experiment were reduced from six-sensor
time series of measurements to one single image containing the persistent pattern for
attention to the road. Using the obtained persistence images as the new inputs, supervised
learning proved to successfully predict the attention state of the driver or passenger.

The procedure used and described in this paper does not involve any additional
pre-processing of the sensor data; is robust to noise and degraded signals; and supports
large quantities of data, which makes it efficient and scalable.

It is important to highlight the fact that while the proposed methodology based on the
TDA (successfully applied in large datasets [9]) seems general and powerful and it was able
to extract the main data features, the validity of the driver behaviors observed in the analyzed
dataset should be carefully checked due to the overly reduced dataset employed (limited to
nine individuals) that does not allow for the full validation of prediction robustness.
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Appendix A

We can illustrate the process of computing the persistence diagrams, the lifetime
diagrams, and the persistence images for the driver time series for each experimental setup:

1. Relaxed driver with SAV seat;
2. Relaxed driver with rigid seat;
3. Relaxed passenger with SAV seat;
4. Relaxed passenger with rigid seat;
5. Tense driver with SAV seat;
6. Tense driver with rigid seat;
7. Tense passenger with SAV seat;
8. Tense passenger with rigid seat.

Figure A1. Relaxed driver with SAV seat.

Figure A2. Relaxed driver with rigid seat.

Figure A3. Relaxed passenger with SAV seat.
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Figure A4. Relaxed passenger with rigid seat.

Figure A5. Tense driver with SAV seat.

Figure A6. Tense driver with rigid seat.

Figure A7. Tense passenger with SAV seat.



Mathematics 2021, 9, 634 15 of 16

Figure A8. Tense passenger with rigid seat.

Appendix B

To better evaluate a classification model, we are interested in quantities that express
how often a sample is correctly or wrongly labelled into a particular class over all the
samples and all the classes:

• A True positive (TP): the correct prediction of a sample into a class;
• A True negative (TN): the correct prediction of a sample out of a class;
• A False positive (FP): the incorrect prediction of a sample into a class;
• A False negative (FN): the incorrect prediction of a sample out of class.

Therefore, we can examine in more detail the classification model performance using
the following metrics:

• The precision P is the number of correct positive results divided by the number of all
positive results.

P =
TP

TP + FP
(A1)

• The recall R is the number of correct positive results divided by the number of all
relevant samples.

R =
TP

TP + FN
(A2)

• The F-1 score is the harmonic mean of precision and recall.

F1 = 2× P× R
P + R

(A3)

• The accuracy A is the number of correct predictions over the number of all samples.

A =
TP + TN

TP + TN + FP + FN
(A4)

We can summarize the presented metrics for our model in the following two reports:

(a) Training set. (b) Testing set.
Figure A9. Classification report.
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