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Abstract. We study local (the heat equation) and nonlocal (convolution type problems
with an integrable kernel) evolution problems on a metric connected finite graph in which
some of the edges have infinity length. We show that the asymptotic behaviour of the
solutions to both local and nonlocal problems is given by the solution of the heat equation,
but on a star shaped graph in which there is only one node and as many infinite edges as in
the original graph. In this way we obtain that the compact component that consists in all
the vertices and all the edges of finite length can be reduced to a single point when looking at
the asymptotic behaviour of the solutions. For this star shaped limit problem the asymptotic
behaviour of the solutions is just given by the solution to the heat equation in a half line with
a Neumann boundary condition at x = 0 and initial datum (2M/N)δx=0 where M is the
total mass of the initial condition for our original problem and N is the number of edges of
infinite length. In addition, we show that solutions to the nonlocal problem converge, when
we rescale the kernel, to solutions to the heat equation (the local problem), that is, we find
a relaxation limit.

1. Introduction

The aim of this paper is to study solutions to diffusion equations both local and non-local
in a metric graph. A metric graph is by definition a combinatorial graph where the edges,
denoted by {ej} are considered as intervals of the real line {Ij} with a distance on each one
of them. These edges/intervals are glued together according to the combinatorial structure.
We assume here that at least one of the edges is not bounded (it has infinite length).

Metric graphs have received lot of attention in recent years both from the point of view of
pure mathematicians and also from potential applications. The name quantum graph is used
for a graph considered as an one-dimensional singular variety and equipped with a differential
operator (local or in some cases nonlocal). There are several reasons for studying quantum
graphs. They naturally arise as simplified (due to reduced dimension) models in mathematics,
physics, chemistry, and engineering (e.g., nanotechnology and microelectronics), when one
considers propagation of waves of various nature (electromagnetic, acoustic, etc.) through a
quasione-dimensional system (often a mesoscopic one) that looks like a thin neighborhood of
a graph. We refer to the survey [35] and references therein.
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Let Γ be a metric graph Γ = Γf ∪ Γ∞ where Γf is made from the finite length edges of
the graph Γ whereas Γ∞ collects all the infinite edges. First of all in this paper, we introduce
∆Γ, the Laplace operator on a metric graph Γ. Associated to the Laplacian we have an initial
valued problem; the classical heat equation on Γ. This problem is well-posed and its solutions
decay as time goes to infinity in a similar way as the solutions of the Cauchy problem on the
whole line [25], [20], [34]. We prove that the asymptotic behaviour (in terms of the existence
of an asymptotic profile) of those solutions is comparable to the solution of the classical heat
equation in the half line with Neumann boundary conditions at x = 0 and initial data at
t = 0 given by a multiple of a Dirac mass at x = 0.

Theorem 1.1. Let u the solution to the heat equation in Γ with integrable initial datum.
Then, for any 1 ≤ p ≤ ∞,

t
1

2
(1− 1

p
)‖u(t) −UM (t)‖Lp(Γ∞) → 0, as t→ ∞,

and

t
1

2 ‖u(t)−UM (t)‖Lp(Γf ) → 0, as t → ∞,

where M is the total mass of the initial datum and

(1.1) UM (x, t) =
2M

N
t−

1

2

{
G(x/

√
t), x ∈ Γ∞,

G(0), x ∈ Γf .

Here G(s) is given by the classical Gaussian profile,

G(s) =
1√
4π
e−

s2

4 .

Notice that here the classical Gaussian profile appears as UM (x, t) is the solution to the
heat equation in a half-line with Neumann boundary conditions.

Now, let us turn our attention to nonlocal diffusion equations with a convolution kernel.
Equations of the form

(1.2) ut(x, t) = (J ∗ u− u)(x, t) =

∫

R

J(x− y)u(y, t) dy − u(x, t),

and variations of it, have been recently widely used to model diffusion processes. Here, and
in what follows, J : R 7→ R+ belongs to L1(R) ∩L1(R, |x|2) and is assumed to be symmetric,
J(z) is non-increasing for z > 0, nonnegative in R and strictly positive in neighbourhood of
the origin. To simplify a little the statements we will also assume that A = 1 where

A :=
1

2

∫

R

z2J(z)dz <∞

and comment on the general case when appropriate. Notice that, when ϕ is a smooth
function, a simple Taylor expansion gives

ε−3

∫

I
J
( |x− y|

ε

)
(ϕ(y)− ϕ(x))dy ≈

(
1

2

∫

R

J(z)z2dx

)
ϕxx(x)

for x an interior point of an interval I. As a consequence for a general A the limit profiles
should be rescaled correspondingly.
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When J has unit integral, as stated in [21], if u(x, t) is thought of as a density at the point
x at time t and J(x−y) is thought of as the probability distribution of jumping from location
y to location x, then

∫
R
J(y − x)u(y, t) dy = (J ∗ u)(x, t) is the rate at which individuals

are arriving at position x from all other places and −u(x, t) = −
∫
R
J(y − x)u(x, t) dy is the

rate at which they are leaving location x to travel to all other sites. This consideration, in
the absence of external or internal sources, leads immediately to the fact that the density u
satisfies equation (1.2). These kind of nonlocal equations are used to model very different
applied situations, for example in biology (see [10], [36]), image processing ([32], [24]), particle
systems ([7]), coagulation models ([22]), etc.

Our next goal is to study nonlocal evolution problems with a convolution kernel on the
metric graph Γ, that is, we deal with

(1.3)





ut(t, x) =

∫

Γ
J(d(x, y))(u(t, y) − u(t, x))dy, x ∈ Γ, t > 0,

u(0, x) = u0(x), x ∈ Γ.

Here d(x, y) is the natural distance in Γ, see Section 2. Now, particles can jump inside
the graph from position x to position y according to the probability kernel J(d(x, y)) (an
interpretation similar to the one previously given also holds here). Notice that particles may
jump from one edge to another when the distance between points in the edges makes J(d(x, y))
positive.

For general nonlocal problems of this kind we refer to [41] that contains closely related
results concerning existence and uniqueness of solutions and for different problems of this
kind in the Euclidean setting to [12, 14, 16, 17, 23, 26, 30, 28] and the book [1]. For the decay
rate and the asymptotic profile in the real line (that coincides with the ones for the local heat
equation) we refer to [14]. For a class of kernels that give exponential decay we quote [31].

Here, we show that nonlocal problems are closely related to the local heat equation. In
fact, one can obtain solutions to the heat equation by approximating them by solutions to
nonlocal problems. To see this, for a rescaling parameter that acts in the kernel, ε > 0,
considering Jε(d(x, y)) = ε−3J(d(x, y)/ε), we deal with a relaxation limit for this nonlocal
evolution problem and obtain that its solutions converge to the solutions of the local one
when ε goes to zero.

Theorem 1.2. It holds that the solutions to the rescaled nonlocal problem with a fixed initial
datum verify

uε ⇀ u weakly in L2([0,∞), L2(Γ)).

where u is the unique solution to the heat equation in Γ with the same initial condition.

Also we obtain the decay of the solutions to the nonlocal problem on metric graphs, and
realize that the asymptotic behaviour of those solutions is comparable to the solution of a
related problem with the classical heat equation that we studied first.

Theorem 1.3. Let 1 ≤ p < ∞ and u0 ∈ L1(Γ) ∩ Lp(Γ). For any 1 ≤ q < p the solution to
(1.3) satisfies

t
1

2
(1− 1

q
)‖u(t)−UM (t)‖Lq(Γ) → 0, as t→ ∞,

where the asymptotic profile UM is given by (1.1).



4 L. I. IGNAT, J. D. ROSSI, AND A. SAN ANTOLIN

We end this introduction with a very brief description of the methods used to prove our
results. Notice that here we can not use the Fourier transform as in [14, 27] instead for the
proof of the asymptotic behaviours, both for the local and the nonlocal problems, we have
to rely on energy and rescaling methods, see [29, 26] and also [11]. This scaling argument is
delicate since it changes the graph in which the rescaled solution is defined. When we pass
to the limit what remains is the unbounded part of the graph, while the finite edges collapse
to a single point. This is the main reason why the asymptotic behaviour (both for the local
and nonlocal cases) is given by the Gaussian profile in a half line with the total mass equally
distributed according to the number of edges of infinite length. For the relaxation limit we
use ideas from [1, 26] where a compactness result is proved (see the Appendix at the and of
this paper).

Related works concerning shrinking of a finite part of the graph can be found in [4, 9].
Remark that in our rescaling procedure every edge of the graph is rescaled, while in the
previously mentioned references only some edges are changed.

The paper is organized as follows: first, in Section 2 we introduce some notations and
include the definition of the Laplcian in the graph; in Section 3 we collect more precise
statements of the main results of this paper (making clear the meaning of ∼ and the hypothesis
on the initial datum in Theorems 1.1 and 1.3). The proofs are postponed to the next two
sections. Section 4 is devoted to the study of the local problem (the heat equation), and in
Section 5 we tackle the nonlocal problem proving the relaxation limit and the asymptotic
behaviour. Finally, Section 6 is an appendix where we include a compactness lemma that is
needed when studying the relaxation limit for the nonlocal equation.

2. Notations and basic definitions

Before we present our results, we need to introduce some notations and basic definitions
on metric graphs that we will use along the paper. Let Γ = (V,E) be a graph where V is a
set of vertices and E the set of edges. For each v ∈ V we denote Ev = {e ∈ E : v ∈ e}. We
assume that Γ is a finite connected graph. The edges could be of finite length and then their
ends are vertices of V or they have infinite length and then we assume that each infinite edge
is a ray with a single vertex belonging to V (see e.g. [35] for more details on graphs with
infinite edges). Here we assume that we do not have any terminal vertices, that is, vertices
with degree one, and if we have a vertex with degree two, then we just remove it from our
graph. Therefore, we will always assume that the degree of each vertex is greater or equal
than three.

We fix an orientation of Γ, that is, each edge e is oriented. Given an edge e, we denote
by I(e) the initial vertex and by T (e) the terminal one. In the case of infinite edges we have
only initial vertices. We identify every edge e of Γ with an interval Ie, where Ie = [0, le]
if the edge is finite and Ie = [0,∞) if the edge is infinite. This identification introduces a
coordinate xe along the edge e. With this in mind we define a metric in Γ, d(x, y) stands for
the distance between two points in the graph, that is given by the length of the minimal path
that joins them. In case both x and y belong to the same edge we have d(x, y) = |x − y|,
when they belong to adjacent edges, d(x, y) = |x − e| + |y − e| with e the vertex that is
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common to the two adjacent edges, when the minimal path involve three edges we have
d(x, y) = |x− e1|+ |e1 − e2|+ |y − e2|, etc. In the special case when the graph is star shaped
(only one vertex and N edges), we have

d(x, y) =

{
|x− y|, x, y ∈ Ik, k = 1, . . . , N,

|x|+ |y|, x ∈ Ik, y ∈ Ij, k 6= j.

In this way Γ is a metric space that is often named as a metric graph, see e.g. [35].
Moreover, we can write

Γ = Γf ∪ Γ∞

where Γf is made from the finite length edges of the graph Γ whereas Γ∞ collects all the
infinite edges. In the special case in which there is only one infinite edge Γ∞ is just a half
line. Let v be a vertex of V and e be an edge in Ev. We set for finite edges e

j(v, e) =

{
0 if v = I(e),

le if v = T (e)

and

j(v, e) = 0, if v = I(e)

for infinite edges.

We identify any function u on Γ with a collection {ue}e∈E of functions ue defined on the
edges e of Γ. Each ue can be considered as a function on the interval Ie. We will use the
notation u to denote a function in the whole graph Γ and ue to denote the function on the
edge e. In fact, with some abuse in the notation, we will use the same notation ue for both
the function on the edge e and the function on the interval Ie identified with e. For a function
u : Γ → R, u = {ue}e∈E , and f : R 7→ R we denote by f(u) : Γ → R the family {f(ue)}e∈E ,
where f(ue) : e→ R is given by f(ue)(xe) = f(ue(xe)).

We introduce C(Γ) the space of continuous functions on Γ. A function u = {ue}e∈E is
continuous on Γ if and only if ue is continuous on Ie for every e ∈ E, and we have continuity
at the vertices, that is,

ue(j(v, e)) = ue
′

(j(v, e′)), ∀ e, e′ ∈ Ev.

The space Lp(Γ), 1 ≤ p < ∞ consists of all functions u = {ue}e∈E on Γ that belong to
Lp(Ie) for each edge e ∈ E and we endow it with the norm

‖u‖p
Lp(Γ)

=
∑

e∈E

‖ue‖p
Lp(Ie)

.

Similarly, the space L∞(Γ) consists of all functions that belong to L∞(Ie) for each edge e ∈ E
and

‖u‖L∞(Γ) = max
e∈E

‖ue‖L∞(Ie).

The Sobolev space H1(Γ), consists in all functions on Γ that belong to H1(Ie) for each
e ∈ E and

‖u‖2H1(Γ) =
∑

e∈E

‖ue‖2H1(e).



6 L. I. IGNAT, J. D. ROSSI, AND A. SAN ANTOLIN

Sobolev spaces with higher differentiability Hm(Γ), m ≥ 2, can be defined in an analogous
way. The spaces L2(Γ) and H1(Γ) are Hilbert spaces with the inner products

(u,v)L2(Γ) =
∑

e∈E

(ue, ve)L2(Ie) =
∑

e∈E

∫

Ie

ue(xe)v
e(xe)dxe

and

(u,v)H1(Γ) =
∑

e∈E

(ue, ve)H1(Ie) =
∑

e∈E

∫

Ie

due

dx
(xe)

dve

dx
(xe)dxe.

Notice that this defines an inner product in H1(Γ).

We now define the exterior normal derivative of a function u = {ue}e∈E at the endpoints
of the edges. For each e ∈ E and v an endpoint of e we consider the normal derivative of the
restriction of u to the edge e of Ev evaluated at j(v, e) to be defined by:

∂ue

∂ne
(j(v, e)) =

{
−uex(0+) if j(v, e) = 0,

uex(le−) if j(v, e) = le.

We now introduce the Laplace operator ∆Γ on the graph Γ. This is a standard procedure
and we refer the interested reader to [15]. The operator ∆Γ has domain

D(∆Γ) =
{
u = {ue}e∈E ∈ H2(Γ) : u continuous and

∑

e∈Ev

∂ue

∂ne
(j(v, e)) = 0 for all v ∈ V

}

and it applies to any function u ∈ D(∆Γ) as follows

(∆Γu)
e = (ue)xx for all e ∈ E.

In other words, D(∆Γ) is the space of all continuous functions on Γ, u = {ue}e∈E, such that
for every edge e ∈ E, ue ∈ H2(Ie), and the following Kirchhoff-type condition is satisfied,

∑

e∈E:T (e)=v

uex(le−)−
∑

e∈E:I(e)=v

uex(0+) = 0 for all v ∈ V.

In the particular case when Γ consists on only one edge these conditions reduce to the classical
Laplacian with Neumann boundary conditions.

The quadratic form associated to ∆Γ is given by

QΓ(u,u) = (ux,ux)L2(Γ)

for all u ∈ D(QΓ) where

D(QΓ) = D((−∆Γ)
1/2) =

{
u = {ue}e∈E ∈ H1(Γ) : u continuous

}
.

In particular D(QΓ) with the H1(Γ)-norm is a Banach space and QΓ(u,u) = −(u,∆Γu) for
all u ∈ D(∆Γ). For other kinds of Laplace operators on metric graphs, we refer to [3, 33].

It is easy to verify that (∆Γ,D(∆Γ)) is a linear, unbounded, self-adjoint, dissipative oper-
ator on L2(Γ), i.e. (∆Γu,u)L2(Γ) ≤ 0 for all u ∈ D(∆Γ). Since

⊕
e∈ΓC

∞
c (Ie) ⊂ D(∆Γ) we

obtain that D(∆Γ) is dense in any Lp(Γ), 1 ≤ p < ∞. The analysis of the operator ∆Γ on
Lp(Γ)-spaces will be discussed in Section 4.
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The main results of this paper are proved by rescaling the solutions with a parameter that
we will call λ, considering uλ(x) = λu(λx). Since the equation is defined on edges that are
either finite or infinite we have to rescale properly not only the solutions of our equations but
also their domain of definition Γλ = (V,Eλ). The graph Γλ is obtained from Γ = (V,E) by
rescaling properly the intervals Iλe that parametrize the edges Eλ of the graph Γλ. We set

Iλe =

{
[0, le/λ], if le <∞,

[0,∞), if le = ∞.

In this way we have Γλ = Γλ
f∪Γ∞ since Γ∞ remains invariant under the above transformation.

3. Main results

In this section we collect the statements of the main results of this manuscript. We postpone
their proofs to the next sections. We also write related literature and motivation to research
in local and nonlocal evolution problems on metric graphs.

3.1. The local evolution problem. Associated with the Laplacian we consider the heat
equation on Γ:

(3.4)

{
ut(t, x)−∆Γu(t, x) = 0, x ∈ Γ, t > 0,

u(0, x) = u0(x), x ∈ Γ.

We point out that the well-posedness for this problem is a direct consequence of Hille-Yosida-
Phillips theorem. For example if the initial data u0 belongs to L1(Γ) then there exists a
unique solution u ∈ C([0,∞), L1(Γ)) and it satisfies

∫

Γ
u(t, x)dx =

∫

Γ
u0(x)dx, ‖u(t)‖L1(Γ) ≤ ‖u0‖L1(Γ).

Moreover, the ultracontractivity of the semigroup generated by the operator ∆Γ gives us that
the solution u also decays when the time increases

(3.5) ‖u(t)‖Lp(Γ) ≤ C(p,Γ)t−
1

2
(1− 1

p
)‖u0‖L1(Γ), 1 ≤ p ≤ ∞.

More details about the well-poesedness of problem (3.4) will be given in Section 4.

Starting from these estimates and using a rescaling procedure we can prove that for a
connected graph with a finite number of edges the long time behaviour of the solution is given
by the same problem in the star-shaped tree that is obtained when the bounded segments,
the compact core of the graph, collapse to a single point. In this case the asymptotic profile is
given by the solution to the classical heat equation in the half line with Neumann boundary
condition at x = 0 and as initial datum at t = 0 a Dirac mass at x = 0. This last solution is
self similar with a well known Gaussian profile. To obtain the limit profile for our evolution
problem, we just repeat this Gaussian profile in any infinite line and multiply by 2M/N ,
being M the total mass, and N the number of infinity length segments.

Theorem 3.1. Let u0 ∈ L1(Γ) and u the solution of the problem (3.4). Then for any
1 ≤ p ≤ ∞

(3.6) t
1

2
(1− 1

p
)‖u(t) −UM (t)‖Lp(Γ∞) → 0, as t→ ∞,
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and

(3.7) t
1

2 ‖u(t)−UM (t)‖Lp(Γf ) → 0, as t → ∞,

where M is the total mass of the initial datum u0 and

(3.8) UM (x, t) =
2M

N
t−

1

2

{
G(x/

√
t), x ∈ Γ∞,

G(0), x ∈ Γf .

3.2. The nonlocal evolution problem. Now, let us look at nonlocal equations on a metric
graph Γ. We consider the evolution problem,

(3.9)





ut(t, x) =

∫

Γ
J(d(x, y))(u(t, y) − u(t, x))dy, x ∈ Γ, t > 0,

u(0, x) = u0(x), x ∈ Γ.

The kernel J ∈ L1(R) ∩ L1(R, |x|2) is assumed to be symmetric, J(z) is non-increasing for
z > 0, J is nonnegative in R and positive in neighborhood of the origin. Notice that we are
not assuming the solution u to the nonlocal evolution problem (3.9) to be continuous, and
hence, we do not impose any condition on the vertices.

The assumption that J ∈ L1(R) guarantees that operator

u 7→ L(u) :=

∫

Γ
J(d(x, y))(u(y) − u(x))dy

is bounded between any Lp(Γ) spaces, 1 ≤ p ≤ ∞. It generates a contraction semigroup in
these spaces which is positive preserving and Markovian. Results about the well posedness
are given in Theorem 5.1.

Both local and nonlocal models are similar in the sense that they share some properties
such as existence and uniqueness of solutions, conservation of the total mass of the initial
datum and the validity of the strong maximum principle. However, solutions to the nonlocal
problem do not have a regularizing effect in time. Solutions are as smooth in space for t > 0
as the initial data are (this fact is due to the integrability of the kernel J). If u0 belongs to
a suitable space X, then u(t) ∈ X for all times and it is no better (there is no regularizing
effect in strong contrast with the local heat equation). This lack of smoothing is a major
difficulty for the analysis of the asymptotic behaviour of solutions since it implies some lack
of compactness of the trajectories, {u(t)}t>0. Since there is a lack of regularizing effect we
cannot analyze the ultracontractivity property in the classical sense ([19]): for initial data in
L1(Γ) \ L∞(Γ) the semigroup is not in L∞(Γ) at any positive time. However, we can prove
that for initial data in L1(Γ)∩Lp(Γ) the solution has a certain decay in the Lp(Γ) norm, see
Theorem 5.2.

3.2.1. A relaxation limit. First, we establish one more evidence to support that the non-
local problem (3.9) and the local heat equation (3.4) are closely related. To this end let us
consider the following relaxation problem: for each ε > 0 consider the problem





uε
t (t, x) = ε−3

∫

Γ
J
(d(x, y)

ε

)
(uε(t, y)− uε(t, x))dy, x ∈ Γ, t > 0,

uε(0, x) = u0(x), x ∈ Γ.
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and analyze the limit problem when ε → 0. We recall that to simplify the presentation we
assume that

(3.10)
1

2

∫

R

z2J(z)dz = 1.

Theorem 3.2. For any u0 ∈ L2(Γ) it holds that

uε ⇀ u weakly in L2([0,∞), L2(Γ)),

where u ∈ C([0,∞), L2(Γ)) is the unique solution of the heat equation (3.4) with the same
initial condition.

Notice that, when u is a smooth function, a simple Taylor expansion gives

ε−3

∫

I
J
( |x− y|

ε

)
(u(y)− u(x))dy ≈

(
1

2

∫

R

J(z)z2dx

)
uxx(x)

for x an interior point of an interval I. What is remarkable here is that in the limit as ε→ 0
we recover the Kirchoff conditions on the nodes without assuming any condition on uε (not
even continuity). For other relaxation limits of this kind we refer to [18, 37] and the book [1]
and references therein.

It will be interesting to analyze under which conditions on function J we can recover in
the relaxation limit more general operators ∆A,B like the ones described in [33], [3]. These
acts exactly as the laplacian on the edges but there are different coupling conditions at the
vertices of the type Au′(v) + Bu(v) = 0 with suitable conditions under the matrices A and
B. This will be investigated in a future work.

3.2.2. Asymptotic behaviour for the nonlocal problem. In spite of this lack of regu-
larizing effect, in the one dimensional case, when the problem is posed in the whole R, is it
shown in [14] that solutions to the equation

ut(t, x) =

∫

R

J(x− y)(u(t, y)− u(t, x))dy

have the same asymptotic behaviour as solutions to the classical heat equation ut = uxx.
Therefore, we expect that solutions to (3.9) in the graph also have the same asymptotic
behaviour (the same decay bounds (3.5) and asymptotic profile) as solutions to the heat
equation, (3.4), that we analyzed first in Theorem 3.1.

Theorem 3.3. Let 1 ≤ p <∞. For any u0 ∈ L1(Γ) ∩ Lp(Γ) the solution to (3.9) satisfies

‖u(t)‖Lp(Γ) ≤
C(‖u0‖L1(Γ), ‖u0‖Lp(Γ))

(1 + t)
1

2
(1− 1

p
)

, ∀ t > 0.

For any 1 ≤ q < p the asymptotic profile UM is given by (3.8):

(3.11) t
1

2
(1− 1

q
)‖u(t)−UM (t)‖Lq(Γ) → 0, as t→ ∞.

Remark 3.1. The asymptotic profile is the same as the one that we obtained for the local
problem. If we don’t assume 1

2

∫
R
z2J(z)dz = 1, we just let 0 < A = 1

2

∫
R
z2J(z)dz < +∞

and we obtain that the asymptotic profile UA,M verifies Ut = A∆ΓU and U(0) = Mδ0 so
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UA,M (t, x) = UM (At, x). The convergence of the compact part of the graph can be slightly
improved in the following sense: for a fixed 1 < p∗ < p the following holds for any 1 ≤ q ≤ p∗:

t
1

2
(1− 1

p∗
)‖u(t)−UM (t)‖Lq(Γf ) → 0, as t→ ∞.

4. Asymptotic behaviour for the heat equation

Let us consider the heat equation on Γ:

(4.1)

{
ut(t, x)−∆Γu(t, x) = 0, x ∈ Γ, t > 0,

u(0, x) = u0(x), x ∈ Γ.

In this section we show that for a general graph the long time behaviour of the solution
is given by the problem in a star-shaped tree that is obtained from Γ when the bounded
segments, the compact core of the graph, collapse to a single point. In this case the asymptotic
profile is given by the solution in the half line with Neumann boundary condition at x = 0
and initial data a Dirac mass at x = 0 multiplied by an adequate constant that takes into
account the number of infinite edges and the mass of the initial condition (we multiply by
2M/N , being M the total mass, and N the number of infinit length segments).

We now present few well know facts about the semigroup generated by the Laplacian on
metric graphs. For the sake of completeness we prefer to include here some details for the
interested reader. In the L2-setting, using the fact that (∆Γ,D(∆Γ)) is maximal dissipative we
easily obtain that it generates a strongly continuous semigroup of contractions in L2(Γ) that
we denote by S(t). This means that for any u0 ∈ D(∆Γ) there exists a unique solution u(t) =
S(t)u0 of system (4.1) that satisfies u ∈ C([0,∞),D(∆Γ)) ∩ C1([0,∞), L2(Γ)). Moreover
since ∆Γ is self adjoint we also have more regularity on the solution, in particular u ∈
C∞((0,∞),D(∆Γ)). Thus, for any u0 ∈ D(∆Γ) system (4.1) can be written in an explicit
way as follows:

(4.2)





ue ∈ C([0,∞),H2(Ie)) ∩C1([0,∞), L2(Ie)), e ∈ E,

uet (t, x)− uexx(t, x) = 0, x ∈ Ie, t > 0,

for all v ∈ V, ue(t, j(v, e)) = ue
′

(t, j(v, e′)), ∀e, e′ ∈ Ev, t > 0,
∑

e∈E:T (e)=v

uex(t, le−)−
∑

e∈E:I(e)=v

uex(t, 0+) = 0, for all v ∈ V.

In the context of the Lp-spaces, 1 ≤ p < ∞ there are several papers on the subject. We
refer to recent paper [20] where using a direct method it is proved that more general second
order operators under more general conditions generate a strongly continuous semigroup of
contractions in Lp(Γ), 1 ≤ p < ∞. In particular, ∆Γ with Kirchhoff conditions fulfill the
hypotheses in the previously mentioned reference [20]. Other approaches are possible. For
example, if one starts from the L2-theory and then use interpolation theory one can obtain
similar results. We cite here [38] and [34] where the authors treat graphs with finitely many
edges of finite length but general couplings. Their method allow to first prove that the L2-
semigroup is positive and contractive in L∞(Γ). The proof relays on the characterization in
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[39] based on Kato-type inequalities, i.e.

(4.3) (∆Γu, (|u| − 1)+ sgn(u)) ≤ 0, ∀ u ∈ D(∆Γ).

Observe that when ‖u0‖L∞(Γ) ≤ 1 and we try to show that the solution satisfies ‖u(t)‖L∞(Γ) ≤
1 for all positive time, one derivative in time of ‖(u(t) − 1)+‖2L2(Γ) leads to

1

2

∫

Γ
[(u(t, x) − 1)+]2dx =

∫

Γ
ut(t, x)(u(t, x) − 1)+ sgn(u(t, x))dx = (∆Γu, (|u| − 1)+ sgn(u))

and inequality (4.3) gives the desired result.

A classical argument (see [39, p. 56]) involving Riesz-Thorin interpolation theory shows that
S(t) = et∆Γ can be extended to a strongly continuous semigroup of contractions in Lp(Γ) for
each 2 ≤ p < ∞. By duality et∆

∗

Γ is strongly continuous and contractive for 1 < p ≤ 2. An
approximation on compact sets shows that it is also in L1(Γ). This also follow arguing as in
[2, Section 7.2.1].

A special attention has been paid to the L1 − L∞ estimates of the semigroup. In [25], see
also [38] for compact graphs, it has been proved that

‖u‖L2(Γ) ≤ C‖ux‖1/3L2(Γ)
‖u‖2/3

L1(Γ)

holds for a graph having some infinite edges attached to the compact part of the graph. In
view of [19] these estimates allow to prove the ultracontractivity of the semigroup, i.e.

‖et∆Γϕ‖L∞(Γ) ≤ Ct−1/4‖ϕ‖L2(Γ), ∀ ϕ ∈ L2(Γ).

Duality arguments give us a similar L1 −L2 estimates, which together with the previous one
show an L1−L∞ estimate on the semigroup. This shows that for any ϕ ∈ L1(Γ) the solution
u belongs to C((0,∞), Lp(Γ)) for any 1 ≤ p <∞. In particular we can use the L2-theory for
t > t0 with t0 > 0 arbitrary to obtain regularity properties for the solution and justify all the
formal computations done in the rest of the paper.

Therefore, the following existence and uniqueness result holds.

Theorem 4.1. For any u0 ∈ D(∆Γ) there exists a unique solution u(t) of system (4.1) that
satisfies u ∈ C([0,∞),D(∆Γ))∩C1([0,∞), L2(Γ)). Moreover, for any u0 ∈ Lp(Γ), 1 ≤ p <∞,
there exists a unique solution u ∈ C([0,∞), Lp(Γ)) that satisfies

‖u(t)‖Lp(Γ) ≤ ‖u0‖Lp(Γ) for all t ≥ 0.

Remark 4.1. For any u0 ∈ D(∆Γ)∩L1(Γ), there exists a unique solution u ∈ C([0,∞),D(∆Γ)∩
L1(Γ)).

In the next result we obtain some decay bounds for the solutions.

Theorem 4.2. For any u0 ∈ L1(Γ) the solution of system (4.1) satisfies

‖u(t)‖L1(Γ) ≤ ‖u0‖L1(Γ),

∫

Γ
u(t, x)dx =

∫

Γ
u0(x)dx,

(4.4) ‖u(t)‖Lp(Γ) ≤ C(p,Γ)t−
1

2
(1− 1

p
)‖u0‖L1(Γ), 1 ≤ p ≤ ∞,
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(4.5) ‖ux(t)‖L2(Γ) ≤ C(Γ)t−
3

2‖u0‖L1(Γ),

and an energy estimate

(4.6)

∫ T

0

∫

Γ
u2
x(t, x)dxdt = ‖u(0)‖2L2(Γ) − ‖u(t)‖2L2(Γ).

Proof. The first property is the contractivity in L1(Γ) of the semigroup discussed above.
The mass conservation follows by considering initial data u0 ∈ D(∆Γ) ∩ L1(Γ), proving the
property for these solutions and finally using an approximation argument. Indeed when the
solution is regular we integrate in space variable equation (4.2) to obtain that the mass is
constant in time. Indeed, since u(t) ∈ D(∆Γ) and 1 ∈ D(QΓ)

d

dt

∫

Γ
u(t, x)dx = (∆Γu, 1) = −Q(ux,1x) = 0

The third property follows from [25, Th. 2.].

The estimate on the derivative of u follows since ∆Γ is self-adjoint (see [13, Section 3.2,
p.35]). Indeed, for any v0 ∈ L2(Γ) we have that S(t), the semigroup generated by ∆Γ, satisfies
S(t)v0 ∈ D(∆Γ) for any t > 0 and

‖∆ΓS(t)v0‖L2(Γ) ≤ t−1‖v0‖L2(Γ).

Using this property with v0 = S(t)u0 and estimate (4.4) we obtain

‖∆ΓS(2t)u0‖L2(Γ) ≤ t−1‖S(t)u0‖L2(Γ) ≤ C(Γ)t−1t−
1

4 ‖u0‖L1(Γ) = C(Γ)t−
5

4‖u0‖L1(Γ).

Now, since S(t)u0 ∈ D(∆Γ) for any t > 0 we get

〈∂x(S(t)u0), ∂x(S(t)u0)〉 = QΓ(S(t)u0, S(t)u0) = 〈S(t)u0,∆Γ(S(t)u0)〉.
Using the above inequalities on the semigroup we obtain

‖∂x(S(t)u0)‖2L2(Γ) ≤ ‖S(t)u0‖L2(Γ)‖∆Γ(S(t)u0‖L2(Γ) ≤ t−
1

4 ‖u0‖L1(Γ)t
− 5

4‖u0‖L1(Γ),

which gives us the desired estimate. �

Now we are ready to proceed with the proof of our main result in this section, namely
Theorem 3.1.

In order to prove this result we use the method of rescaling the solutions. For any solution
u of system (4.1) we introduce the family uλ : Γλ → R, λ > 0:

uλ(t, x) = λu(λ2t, λx), x ∈ Γλ, t > 0.

It is immediate to see that uλ satisfies the system

(4.7)

{
uλ,t(t, x)−∆Γλuλ(t, x) = 0, x ∈ Γλ, t 6= 0,

uλ(0, x) = u0λ(x), x ∈ Γλ.

If u0 ∈ L1(Γ)∩D(∆Γ) the rescaled solution uλ satisfies a similar equation as (4.2) but on the
rescaled intervals Iλe instead of Ie.
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First, we need to obtain some bounds. From now on we will look for constants that are
independent of λ. We will use the standard notation . to denote a less or equal bound in
which the involved constant does not depend on the relevant quantities.

Lemma 4.1. For any u0 ∈ L1(Γ) the family {uλ}λ>0 satisfies the following uniform estimates
∫

Γ
uλ(t, x)dx =

∫

Γ
u0(x)dx,

(4.8) ‖uλ(t)‖Lp(Γ) ≤ C(p,Γ)t−
1

2
(1− 1

p
)‖u0‖L1(Γ),

and

(4.9) ‖uλ,x(t)‖L2(Γ) ≤ C(p,Γ)t−
3

4 ‖u0‖L1(Γ).

Moreover, for any τ > 0,

(4.10)

∫ T

τ

∫

Γ
u2
λ,x(t, x)dxdt ≤ C(Γ)τ−

1

2‖u0‖2L1(Γ).

Finally, there exists a positive constant C such that for any λ > 1,

(4.11)

∫

Γ∞,|x|>2R
|uλ(t, x)|dx ≤

∫

Γ∞,|x|>R
|u0(x)|dx+

CMt

R2
.

Proof. The first three estimates follow directly from Theorem 4.2. The forth bound follows
by using the energy identity (4.6) with initial data at time τ and the uniform decay of the
L2-norm of uλ.

We prove estimate (4.11) for nonnegative solutions since the general case follows imme-
diately. Let us consider u1λ, . . . , u

N
λ the restriction of uλ to Γ∞. We will prove the desired

estimate only for u1λ since the others cases are similar. Summing the estimates for each ukλ
gives us the desired estimate.

Let us consider a smooth function ψ : (0,∞) → R such that 0 ≤ ψ ≤ 1 and ψ ≡ 0 in (0, 1)
and ψ ≡ 1 in x ∈ (2,∞). We define ψR(x) = ψ(x/R). Multiplying the equation satisfied by
u1λ with ψR and integrating in space and time we obtain:

∫ ∞

0
u1λ(t, x)ψR(x)dx =

∫ ∞

0
u1λ(0, x)ψR(x)dx+

∫ t

0

∫ ∞

0
u1λ(s, x)(ψR)xx(x)dxds

≤
∫ ∞

0
u1λ(0, x)ψR(x)dx+

Mt

R2
‖ψ′′‖L∞((0,∞))

≤
∫ ∞

λR
u1(0, x)ψR(x/λ)dx+

Mt

R2
‖ψ′′‖L∞((0,∞)).

Since ψR ≡ 1 on (2R,∞) and λ > 1 we obtain
∫ ∞

2R
u1λ(t, x)dx ≤

∫ ∞

R
u10(x) +

CMt

R2
,

which finishes the proof. �
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Proof of Theorem 3.1 . We divide the proof in several steps. We will prove the results for
u0 ∈ L1(Γ) ∩ D(∆Γ) and then by an approximation argument we will obtain the result for
L1-initial data.

Step I. Compactness of the family uλ. We prove that up to a subsequence λj → ∞
the family {uλ}λ>0 converges to some function U.

Let us choose 0 < τ < T < ∞. Using the estimate (4.9) in Lemma 4.1 we obtain that
uλ is uniformly bounded in L∞((τ, T ),H1(Γ∞)). Moreover each of its components on Γ∞,
∂tuλ|Γ∞

= (∂tu
1
λ, . . . , ∂tu

N
λ ) are uniformly bounded in L2((τ, T ),H−1(0,∞)). These esti-

mates and Aubin-Lions compactness argument (see for example [42]) imply that each com-
ponent is relatively compact in C((τ, T ), L2

loc((0,∞)) so (uλ)λ>0 is relatively compact in
C((τ, T ), L2

loc(Γ∞)). Cantor’s diagonal argument implies that, up to a subsequence, (uλ)λ>0

converges toward a function U in C((0,∞), L2
loc(Γ∞)). In view of estimate (4.8) this conver-

gence implies in particular that for any positive time t the sequence uλ(t)⇀ U(t) in Lp(Γ∞)
for any 1 < p <∞ and the bound in (4.8) transfers to U.

Moreover the above convergence in C((τ, T ), L2
loc(Γ∞)) implies that the convergence also

holds in C((0,∞), L1
loc(Γ∞)). The uniform tail control (4.11) in Lemma 4.1 shows that the

convergence also holds in C((0,∞), L1(Γ∞)). In particular, at time t = 1, uλ(1) → U(1) in
L1(Γ∞) and this proves (3.6) when p = 1. Assume for the moment that we identified the
profile U in Γ∞ to be the one given by (3.8), precisely UM . This means that all the family
converges to this profile, not only a subsequence. Using that both u and U are uniformly
bounded in Lp(Γ), 1 ≤ p < ∞, with a bound of order t−1/2(1−1/p) and the convergence in
L1(Γ∞) we deduce that (3.6) holds for all p ∈ [1,∞). Moreover, since U have been identified
to be UM explicit computations give us

‖Ux(t)‖L2(Γ∞) ≤ C(M,N)t−3/2, ∀ t > 0.

A similar estimates for u obtained in Theorem 4.2 so to treat the case p = ∞ we can argue
as follows

‖u(t)−U(t)‖L∞(Γ∞) . (‖ux(t)‖L2(Γ∞) + ‖Ux(t)‖L2(Γ∞))
1

2‖u(t)−U(t)‖
1

2

L2(Γ∞)
= o(t−

1

2 ).

Step II. Identification of the limit. Let us now consider a test function

ϕ : C([0,∞),H1(Γ∞)) ∩ C1([0,∞), L2(Γ∞)),

compactly supported in time and such that ϕe(t, 0) = ϕe′(t, 0) for all e, e′ ∈ Γ∞ (that is, we
ask for continuity at the unique node of Γ∞). For each t ≥ 0, we extend ϕ(t) to the whole
Γλ, to this end we take a function ϕ̃λ : [0,∞)×Γλ → R such that ϕ̃λ is constant in the finite
part of the graph Γλ

f , that is,

ϕ̃λ(t, x) =

{
ϕ(t, x) if x ∈ Γ∞,

ϕ(t, 0) if x ∈ Γλ
f ,
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It follows that ϕ̃ ∈ C([0,∞),Q(Γλ), i.e. it is not only in H1(Γλ) but it is also continuos.
Since uλ ∈ C([0,∞), L1(Γ) ∩D(∆Γ)) we multiply equation (4.7) by ϕ̃λ and obtain

0 =

∫ ∞

0

∫

Γ∞

uλϕt −
∫ ∞

0

∫

Γ∞

uλ,xϕx

+

∫ ∞

0

∫

Γλ
f

(uλϕ̃λ,t − uλ,xϕ̃λ,x) +

∫

Γλ

uλ(0, x)ϕ̃λ(0, x)dx

=

∫ ∞

0

∫

Γ∞

uλϕt −
∫ ∞

0

∫

Γ∞

uλ,xϕx +

∫ ∞

0

∫

Γλ
f

uλϕ̃λ,t +

∫

Γλ

uλ(0, x)ϕ̃λ(0, x)dx

=

∫ ∞

0

∫

Γ∞

uλϕt −
∫ ∞

0

∫

Γ∞

uλ,xϕx +

∫ ∞

0
ϕt(t, 0)

∫

Γλ
f

uλ +

∫

Γλ

uλ(0, x)ϕ̃λ(0, x)dx

:= Iλ1 − Iλ2 + Iλ3 + Iλ4 ,

where we used that ϕ̃λ is constant on Γλ
f .

Using the decay of the L2-norm of uλ we obtain that uλ is uniformly bounded in L2((0, T ), L2(Γ∞)):
∫ T

0
‖uλ(t)‖2L2(Γλ)dt .

∫ T

0

1√
t
dt .

√
T .

This means that up to a subsequence uλ ⇀ U in L2((0, T ), L2(Γ∞)). Using that ϕ has
compact support in time we get

Iλ1 →
∫ ∞

0

∫

Γ∞

U(t, x)ϕt(t, x)dxdt.

For the third term, Iλ3 , we use again the decay in the L2-norm to obtain

∣∣∣
∫

Γλ
f

uλ(t, x)dx
∣∣∣ ≤

∑

e∈Γλ
f

∫ le/λ

0
|ueλ(t, x)|dx ≤

∑

e∈Γλ
f

‖ueλ(t)‖L2(e)(le/λ)
1

2 ≤
C(Γ)‖u0‖L1(Γ)

λ
1

2 t
1

4

.

Integrating in time and using that ϕ has compact support in time we obtain that Iλ3 → 0 as
λ→ ∞.

For the last term Iλ4 we split it as follows

Iλ4 =

∫

Γ∞

uλ(0, x)ϕ̃λ(0, x)dx +

∫

Γλ
f

uλ(0, x)ϕ̃λ(0, x)dx

=

∫

Γ∞

uλ(0, x)ϕ(0, x)dx +

∫

Γλ
f

uλ(0, x)ϕ(0, 0)dx

= ϕ(0, 0)

∫

Γλ

uλ(0, x)dx +

∫

Γ∞

uλ(0, x)(ϕ(0, x) − ϕ(0, 0))dx

= ϕ(0, 0)

∫

Γ
u0(x)dx+

∫

Γ∞

u0(x)
(
ϕ(0,

x

λ
)− ϕ(0, 0)

)
dx

→ ϕ(0, 0)

∫

Γ
u0(x)dx, as λ→ ∞.
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It remains to prove that

Iλ2 →
∫ ∞

0

∫

Γ∞

Ux(t, x)ϕx(t, x)dxdt.

First, we prove that for any τ > 0 the integrals in (0, τ) are small independently on λ. Indeed,
using (4.9) we have

∣∣∣
∫ τ

0

∫

Γ∞

uλ,x(t, x)ϕx(t, x)dxdt
∣∣∣ ≤ ‖uλ,x‖L1((0,τ),L2(Γ∞))‖ϕx‖L∞((0,τ),L2(Γ∞)) . τ

1

4 .

We recall that at the begining of Step I we proved that uλ(t)⇀ U(t) in Lp(Γ∞) for any 1 <
p <∞. Moreover, (uλ,x(t))λ>0 is uniformly bounded in L2(Γ∞). Hence, up to a subsequence

uλ,x(t) ⇀ Ux(t) in L2(Γ∞). Estimate (4.9) transfers to U so ‖Ux(t)‖L2(Γ∞) . t−
3

4 for all
t > 0 and a similar estimate holds for U

∣∣∣
∫ τ

0

∫

Γ∞

Uxϕxdx
∣∣∣ . τ

1

4 .

In view of (4.10) we get
∫ ∞

τ

∫

Γ∞

uλ,x(t, x)ϕx(t, x)dxdt →
∫ ∞

τ

∫

Γ∞

Ux(t, x)ϕx(t, x)dxdt,

which proves the desired limit for Iλ2 .

In view of the above results it follows that the limit point U satisfies
∫ ∞

0

∫

Γ∞

(
U(t, x)ϕt(t, x)−Ux(t, x)ϕx(t, x)

)
dxdt+Mϕ(0, 0) = 0.

From Step I we know that the limit point U belongs to C((0,∞), L1(Γ∞)) and moreover
‖U(t)‖L1(Γ∞) ≤ ‖u0‖L1(Γ∞). Also the energy estimate (4.10) shows that uλ is uniformly

bounded in L2((τ, T ),D(QΓ∞
)) hence the limit point U belongs to L2((τ, T ),D(QΓ∞

)) for
any τ > 0. This implies that U(t) ∈ D(QΓ∞

) for a.e. t > 0.

The continuity of U at the common vertex of Γ∞ (or the Neumann boundary condition
if Γ∞ has only one edge) guarantees that for a test function ϕ which is more regular, ϕ ∈
C([0,∞),D(∆Γ∞

)) ∩ C1([0,∞), L2(Γ∞)) and compactly supported in time, we can perform
one more integration by parts and obtain that U satisfies

(4.12)

∫ ∞

0

∫

Γ∞

U(t, x)
(
ϕt(t, x) + ϕxx(t, x)

)
dxdt+Mϕ(0, 0) = 0.

For the above equation we need onlyU ∈ L1
loc((0,∞), L1(Γ∞)) in order to apply the arguments

in [6] and prove the uniqueness of the profile U satisfying (4.12).

An easy computation shows that UM = (U1, . . . , UN ) given by

Uk
M (t, x) =

2M

N
Gt(x), k = 1, . . . , N,

where

Gt(x) =
1√
4πt

e−
x2

4t
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is the classical heat kernel, verifies identity (4.12). Assume that we have two solutions U1

and U2 of problem (4.12) in L1
loc((0,∞), L1(Γ∞)). Then v = U1−U2 ∈ L1

loc((0,∞), L1(Γ∞))
satisfies

(4.13)

∫ ∞

0

∫

Γ∞

v(ϕt + ϕxx) = 0,

for all functions ϕ ∈ C([0,∞),D(∆Γ∞
))∩C1([0,∞), L2(Γ∞)). We show what all the compo-

nents v1, . . . , vN of v are equal and vanish identically. Let us fix a T > 0 and a function ψ ∈
C1,2([0, T ] × [0,∞)) with ψ(T ) ≡ 0, ψ(0, t) = 0 for t ∈ [0, T ]. Choosing ϕ = (ψ,−ψ, 0, . . . , 0)
we obtain that ∫ ∞

0

∫

Γ∞

(v1 − v2)(ψt + ψxx) = 0.

Using [6, Lemma 3] we obtain that v1 ≡ v2 in [0, T ]. Similarly all the components of v are
identical. Let us now choose a similar ψ but now assume that ψx(t, 0) = 0 instead of the
Dirichlet boundary condition at x = 0. Choosing ϕ = (ψ, . . . , ψ) in (4.13) and using that all
the components are identical we obtain

∫ T

0

∫ ∞

0
v1(ψt + ψxx) = 0.

For any f ∈ L2((0, T ), L2(0,∞)) we solve the backward heat equation (notice that here the
”initial condition” is taken at t = T and time is reversed)





ψt + ψxx = f, x ∈ (0,∞), t ∈ (0, T ),

ψ(T, x) = 0, x ∈ (0,∞),

ψx(t, 0) = 0, t ∈ (0, T ),

and obtain a function that ψ that can be used as test function in the integral identity satisfied
by v1. This shows that v1 ≡ 0 in (0, T ) × (0,∞) so v ≡ 0 on (0, T ) × Γ∞. We conclude that
every limit point of uλ, U, is given by (4.12) and therefore the results in Step I hold for the
whole family (uλ) and not only for a subsequence.

Step III. Convergence on the compact part of the graph.

Let us consider w(t) ∈ D(QΓ∞
), defined as follows

w(t) = u(t)−UM (t).

Since the graph Γf is finite it is sufficient to prove (3.7) in the case p = ∞. Let us recall that
since Γ has at least one infinite edge we have for any v ∈ D(QΓ∞

) that

‖v‖L∞(Γ) ≤ C(Γ)‖vx‖
1

2

L2(Γ)
‖v‖

1

2

L2(Γ)
.

We apply the above inequality to w

‖w(t)‖L∞(Γf ) ≤ ‖w(t)‖L∞(Γ) ≤ C(Γ))‖wx‖
1

2

L2(Γ)
‖w(t)‖

1

2

L2(Γ)
.

Observe that wx(t) = ux(t) − UM,x(t, x)1Γ∞
(x). Explicit computations on UM and (4.5)

gives us

‖wx(t)‖L2(Γ) ≤ ‖ux(t)‖L2(Γ) + ‖UM,x(t)‖L2(Γ∞) ≤ C(Γ)(‖u0‖L1(Γ) +M)t−3/4.
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It is then sufficient to prove that ‖w(t)‖L2(Γ) = o(t−
1

4 ) as t → ∞. This estimate on Γ∞ has
been proved in Step I. For Γf we use (4.4) for p = ∞ and the explicit form of uM on Γf :

‖w(t)‖L2(Γf ) ≤ C(Γ)‖w(t)‖L∞(Γf ) ≤ C(Γ)(‖u(t)‖L∞(Γf ) + ‖UM (t)‖L∞(Γf ))

≤ C(Γ)t−
1

2 = o(t−
1

4 ), t→ ∞.

This complete the case of the finite graph and finishes the proof. �

5. The nonlocal problem

In this section we consider the nonlocal problem in the metric graph Γ,

(5.1)





ut(t, x) =

∫

Γ
J(d(x, y))(u(t, y) − u(t, x))dy, x ∈ Γ, t > 0,

u(0, x) = u0(x), x ∈ Γ.

Here d(x, y) stands for the distance between two points in the graph. As we mentioned in the
introduction, this distance d(x, y) is the length of the minimal path that joins x and y. The
kernel J ∈ L1(R) ∩ L1(R, |x|2) is assumed to be symmetric, J(z) is non-increasing for z > 0,
J is nonnegative in R and positive in neighbourhood of the origin.

Our first goal is to show existence and uniqueness of solution for the problem (5.1).

Theorem 5.1. For any u0 ∈ Lp(Γ), 1 ≤ p ≤ ∞, there exists an unique solution u ∈
C([0,∞), Lp(Γ)) of system (5.1) satisfying

‖u(t)‖Lp(Γ) ≤ ‖u0‖Lp(Γ).

Also, for nonnegative initial datum the solution remains nonnegative.

For any u0 ∈ L2(Γ) the following energy estimate holds
∫

Γ
u2(t, x)dx+

∫ t

0

∫

Γ

∫

Γ
J(d(x, y))(u(s, x) − u(s, y))2dxdyds =

∫

Γ
u2
0(x)dx.

Moreover,

(5.2) EJ
Γ (u(t),u(t)) :=

∫

Γ

∫

Γ
J(d(x, y))(u(t, x) − u(t, y))2dxdy ≤

‖u0‖2L2(Γ)

t
.

Proof of Theorem 5.1. The existence and uniqueness follow easily since the operator

u 7→ L(u) :=

∫

Γ
J(d(x, y))(u(y) − u(x))dy

is bounded between any Lp(Γ) spaces (we refer to [41] for extra details). Therefore, problem
(5.1) has a unique strong solution u ∈ C∞(R,X), for any X = Lp(Γ) given by u(t) = eLtu0.
The mapping t ∈ (0,∞) 7→ u(t) = eLtu0 ∈ X is analytic. Moreover, the mapping (t,u0) 7→
eLtu0 is continuous and contractive, that is, ‖u(t)‖Lp(Γ) ≤ ‖u0‖Lp(Γ) holds. Indeed, for any

function ρ ∈ C1(R) with ρ′ nondecreasing we have

d

dt

∫

Γ
ρ(u(t, x))dx = (ut(t), ρ

′(u(t))) = (Lu(t), ρ′(u(t))) = −EJ
Γ (u(t), ρ

′(u(t))) ≤ 0.
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An approximation argument shows that for any convex function ρ the map t →
∫
Γ ρ(u(t, x))dx

is nonincreasing. Particular cases ρ(s) = |s|p, 1 ≤ p < ∞ show the contractivity in the Lp-
norms. When p = ∞ we consider ρ(s) = (|s| −M)+ and M = ‖u0‖L∞(Γ). For ρ(s) = s+ we
obtain the positivity property of the semigroup.

In particular we have that

1

2

d

dt

∫

Γ
u2(t, x)dx = −1

2

∫

Γ

∫

Γ
J(d(x, y))(u(t, x) − u(t, y))2dxdy.

Estimate (5.2) is classical for any self-adjoint operator L satisfying (Lu, u) ≤ 0, see for example
[13, Th.3.2.1] which finishes the proof. �

5.1. Relaxation limit. Let us now consider the following relaxation problem: for each ε > 0
consider the system

(5.3)





uε
t (t, x) = ε−3

∫

Γ
J
(d(x, y)

ε

)
(uε(t, y)− uε(t, x))dy, x ∈ Γ, t > 0,

uε(0, x) = u0(x), x ∈ Γ.

and analyze the limit problem when ε→ 0. Let us mention that here we fix the initial datum
in contrast with the analysis of the first term in the asymptotic behavior of the solutions
by self-similarity where we also have to rescale the initial data. Here we use compactness
arguments instead of scaling ones (the kernel of the nonlocal operator is rescaled with ε, but
the spatial domain Γ in which solutions are defined is unchanged). Recall that we assumed

1

2

∫

R

z2J(z)dz = 1.

Proof of Theorem 3.2. Let us remark that we have the following energy estimate

(5.4)

∫

Γ
(uε)2(t, x)dx+ ε−3

∫ T

0

∫

Γ

∫

Γ
J
(d(x, y)

ε

)
(uε(t, y)− uε(t, x))2dxdydt =

∫

Γ
u2
0(x)dx.

We will use the above identity in three different ways, by taking the same edge, two adjacent
edges or two edges that does not have a vertex in common.

As before, we divide our arguments into several steps.

Step I. We observe that uε is uniformly bounded in C([0, T ], L2(Γ)), so in particular
in L2((0, T ), L2(Γ)). So there exists U = (Ue)e∈E ∈ L2((0, T ), L2(Γ)) such that, up to a
subsequence, uε ⇀ U in L2((0, T ), L2(Γ)). In particular uεe ⇀ Ue in L2((0, T ), L2(e)) for any
any edge e ∈ E.

Let us consider an arbitrary edge e parametrized by [0, l] or [0,∞). In both cases by Lemma
6.2 the estimate above guarantees that for any T > 0

ε−3

∫ T

0

∫

e

∫

e
J
(d(x, y)

ε

)
(uε(t, y)− uε(t, x))2dxdydt ≤

∫

Γ
u20(x)dx

and then U ∈ L2((0, T ),H1(e)) such that

uε → U e in L2((0, T ), L2
loc(e)).
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This shows that U ∈ L2((0, T ),H1(Γ)). Moreover, in view of the results in Lemma 6.2, for
any ϕ ∈ L2((0, T ),H1(e)) we have

ε−3

∫ T

0

∫

e

∫

e
J
(d(x, y)

ε

)
(uε(t, y)− uε(t, x))(ϕ(t, y) − ϕ(t, x))dxdydt

→ A(J)

∫ T

0

∫

e
Ux(t, x)ϕx(t, x)dxdt, as ε→ 0,

where A(J) =
∫
R
J(z)z2dz.

Step II. We now show that U ∈ L2((0, T ),D(QΓ)), i.e. it belongs to L2((0, T ),H1(e))
and U(t) is also continuous at any vertex for a.e. t > 0.

Let us now consider two edges e and e′ that have a common vertex v. We first prove that
the limit function U = (Ue)e is continuous at any internal vertex, i.e. Ue(t, v) = Ue′(t, v), for
a.e. t. Let us assume that the two edges are parametrized by I ⊂ (−∞, 0] and I ′ ⊂ [0,∞).
In view of energy estimate (5.4) it follows that the function wε defined by

wε(t, x) =

{
uεe(t, x), x ∈ I,

uεe′(t, x), x ∈ I ′,

satisfies

ε−3

∫ T

0

∫

I∪I′

∫

I∪I′
J
(x− y

ε

)
(wε(t, y)− wε(t, x))2dxdydt ≤ ‖u0‖2L2(Γ).

Thus wε converges, up to a subsequence, weakly to a function w ∈ L2((0, T ),H1(I∪I ′)). From
Step I we know that uεe converges to ue, u

ε
e′ converges to ue′ where the function obtained from

the pair ue, ue′ belongs to L
2((0, T ),H1(I ∪ I ′)). Hence, it follows that

ue(t, 0−) = ue′(t, 0+)

for a.e. t > 0. Thanks to this property the limit U belongs to L2((0, T ),D(QΓ)) for any
T > 0. Moreover, by Lemma 6.3, for any ϕ ∈ L2((0, T ),D(QΓ)), we have

ε−3

∫ T

0

∫

e

∫

e′
J
(d(x, y)

ε

)
(ϕ(t, y) − ϕ(t, x))2dxdydt → 0

and then we get

ε−3

∫ T

0

∫

e

∫

e′
J
(d(x, y)

ε

)
(uε(t, y)− uε(t, x))(ϕ(t, y) − ϕ(t, x))dxdydt → 0.

Step III. Let us consider two edges e and e′ which do not have a common endpoint. In
this case we will prove that for any function ϕ ∈ L2((0, T ), L2(e ∪ e′))

ε−3

∫ T

0

∫

e

∫

e′
J
(d(x, y)

ε

)
(ϕ(t, y)− ϕ(t, x))2dxdydt → 0, as ε→ 0.

As a consequence using (5.4) we obtain

(5.5) ε−3

∫ T

0

∫

e

∫

e′
J
(d(x, y)

ε

)
(uε(t, y)− uε(t, x))(ϕ(t, y) − ϕ(t, x))dxdydt → 0, as ε→ 0.
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Let us now prove the first limit. Indeed, we have

ε−3

∫ T

0

∫

e

∫

e′
J
(d(x, y)

ε

)
(ϕ(t, y) − ϕ(t, x))2dxdydt

≤ 2ε−3

∫ T

0

∫

e′
ϕ2(t, y)

∫

e
J
(d(x, y)

ε

)
dxdydt+ 2ε−3

∫ T

0

∫

e
ϕ2(t, x)

∫

e′
J
(d(x, y)

ε

)
dydxdt.

By symmetry it is sufficient to consider only the first term in the right hand side. Assume
that the distance in the graph between the two edges is α > 0 and that e is parametrized by
(0, le). Then d(x, y) ≥ x+ α for any y ∈ e′ and since J is a non-increasing function we have

ε−3

∫

e
J
(d(x, y)

ε

)
dx ≤ ε−3

∫ le

0
J
(x+ α

ε

)
dx = ε−2

∫ le/ε

α/ε
J(z)dz ≤ 1

α2

∫ le/ε

α/ε
J(z)z2dz.

Using that J has a finite second momentum and that ϕ ∈ L2((0, T ), L2(e)) we obtain that
the considered term tends to zero as ε→ 0 which proves that (5.5) holds.

Step IV. We prove that U ∈ C([0, T ], L2(Γ)). In view of Step II it is sufficient to show
that Ut ∈ L2((0, T ),D(QΓ)

′). We show that Uε
t is uniformly bounded in L2((0, T ),D(QΓ)

′)
so in the limit we obtain the desired property for U.

Let us take a function ϕ ∈ L2((0, T ),D(QΓ)). Using identity (5.4), it follows that

∣∣∣
∫ T

0

∫

Γ
Uε

tϕ
∣∣∣
2
=

∣∣∣
ε−3

2

∫ T

0

∫

Γ

∫

Γ
J(
d(x, y)

ε
)(Ue(t, y)−Ue(t, x))(ϕ(t, y) − ϕ(t, x)dxdydt

∣∣∣
2

≤ ‖u0‖2L2(Γ)

ε−3

4

∫ T

0

∫

Γ

∫

Γ
J(
d(x, y)

ε
)(ϕ(t, y) − ϕ(t, x))2dxdydt.

It is sufficient to show that the following holds for any ψ ∈ D(QΓ) and ε > 0:

(5.6) ε−3

∫

Γ

∫

Γ
J(
d(x, y)

ε
)(ψ(y)− ψ(x))2dxdy ≤ C(Γ, J)

∫

Γ
(ψ2

x + ψ2)dx.

To prove that we split the integral in the left hand side in integrals over adjacent edges or
not. Let us take two edges e and e′ having no common point. In view of Step III

ε−3

∫

e

∫

e′
J
(d(x, y)

ε

)
(ψ(y)− ψ(x))2dxdy ≤ C(Γ, J)

∫

e∪e′
ψ2(x)dx.

When two edges e and e′ have a common endpoint we can parametrize them as in Step II
and then d(x, y) = |x− y|, ψ ∈ H1(I ∪ I ′) and we can use the real line case (see for example
[5, Th. 1])

ε−3

∫

e∪e′

∫

e∪e′
J
(d(x, y)

ε

)
(ψ(y) − ψ(x))2dxdy = ε−3

∫

I∪I′

∫

I∪I′
J
( |x− y|

ε

)
(ψ(y)− ψ(x))2dxdy

≤ C(I, I ′, J)

∫

I∪I′
(ψ2 + ψ2

x)dx.

Hence (5.6) holds and as a consequence

‖Uε
t‖L2((0,T ),D(QΓ)′) ≤ C(Γ, J)‖u0‖L2(Γ).
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Step V. Let us now consider uε ∈ C([0,∞), L2(Γ)) solution of problem (5.3). We multiply
equation (5.3) by a function ϕ ∈ Cc([0,∞),D(QΓ)), ϕt ∈ Cc([0,∞), L2). It follows that,
∫ ∞

0

∫

Γ
uεϕtdxdt+

ε−3

2

∫ ∞

0

∫

Γ

∫

Γ
J
(d(x, y)

ε

)
(uε(t, y)− uε(t, x))(ϕ(t, y)− ϕ(t, x))dxdydt

+

∫

Γ
u0(x)ϕ(0, x)dx = 0.

Since uǫ ⇀ U in L2((0,∞), L2(Γ)) we have
∫ ∞

0

∫

Γ
uεϕtdxdt →

∫ ∞

0

∫

Γ
Uϕtdxdt.

In view of Step I and Step III we get under the assumption (3.10)

ε−3

2

∫ ∞

0

∫

Γ

∫

Γ
J
(d(x, y)

ε

)
(uε(t, y)− uε(t, x))(ϕ(t, y) − ϕ(t, x))dxdydt

→
∫ ∞

0

∫

Γ
Ux(t, x)ϕx(t, x)dxdt.

Hence the limit point U ∈ C([0,∞), L2(Γ)) ∩ L2
loc((0,∞),D(QΓ)) satisfies

∫ ∞

0

∫

Γ
U(t, x)ϕt(t, x)dxdt −

∫ ∞

0

∫

Γ
Ux(t, x)ϕx(t, x)dxdt +

∫

Γ
u0(x)ϕ(0, x)dx = 0.

Classical arguments for the classical heat equation shows that U is the unique solution to the
heat equation in Γ with initial datum u0 ∈ L2(Γ).

The proof is now complete. �

5.2. Asymptotic behaviour for the nonlocal evolution problem. Now our goal is to
analyze the behaviour of solutions to the nonlocal problem.

Before entering into the statements and proofs of our main results let us prove two aux-
iliary results that will be needed in order to obtain decay bounds for the solutions and the
asymptotic behaviour. For the first one we follow ideas from [29] but adapted to the graphs
having some infinite edges.

5.2.1. Preliminaries. We now give a decomposition similar to the one done in [29] but on half
line intervals. We assume that function J belongs to L1(R) and it is positive in a neighborhood
of the origin. To simplify the presentation we introduce the bilinear form

EJ
I (u, v) =

∫

I

∫

I
J(x− y)(u(x)− u(y))(v(x) − v(y))dxdy.

Lemma 5.1. Let I be the half line (0,∞) or the real line R. For any u ∈ L2(I) there exists
a decomposition u = v + w such that

‖vx‖2L2(I) + ‖w‖2L2(I) ≤ C(J)EJ
I (u, u)

and for any a > 0 their norms satisfy

‖v‖Lp(0,a) + ‖w‖Lp(0,a) ≤ C(J)‖u‖Lp(0,a+1), ∀ 1 ≤ p ≤ ∞.
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Proof. The case when I is the whole real line has been proved in [29, Th. 2.1]. We now
consider the case I = (0,∞).

Since J is positive near the origin we can choose a smooth nonnegative function ρ to be

supported in (−1, 0) ∩ supp J , with
∫ 0
−1 ρ = 1 and satisfying

|ρ(z)| + |ρ′(z)| ≤ c(J)|J(z)|, z ∈ R.

In particular this implies that

(5.7) ‖ρ‖L1(R) + ‖ρ′‖L1(R) ≤ C(J).

For any x > 0 we set

v(x) =

∫ ∞

0
ρ(x− y)u(y)dy =

∫ x+1

x
ρ(x− y)u(y)dy.

Using Hölder inequality integrating with respect to the measure ρ(x − y)dy we immediately
obtain that

‖v‖pLp((0,a)) ≤ ‖ρ‖L1(R)

∫ a

0

∫ x+1

x
|ρ(x− y)||u(y)|pdydx ≤ C(J)‖u‖pLp(0,a+1).

Letting w = u− v we obtain the last property.

We now prove that this decomposition satisfies the first property. Observe that since ρ is
compactly supported in (−1, 0) we have for any x > 0 that

∫ ∞

0
ρ′(x− y)dy =

∫ x

−∞
ρ′(z)dz = ρ(x) = 0.

Thus

vx(x) =

∫ ∞

0
ρ′(x− y)u(y)dy =

∫ ∞

0
ρ′(x− y)(u(y) − u(x))dy

and

|vx(x)|2 ≤
∫ ∞

0
|ρ′(x− y)|(u(y) − u(x))2dy

∫ ∞

0
|ρ′(x− y)|dy.

Using (5.7) and the fact that |ρ′(z)| ≤ C(J)|J(z)| it follows that
∫ ∞

0
|vx(x)|2dx ≤ ‖ρ′‖L1(R)

∫ ∞

0

∫ ∞

0
|ρ′(x− y)|(u(y) − u(x))2dydx ≤ C(J)EJ

I (u, u).

On the other hand, since
∫ 0
−1 ρ = 1 and it is supported in (−∞, 0) we obtain

∫ ∞

0
ρ(x− y)dy =

∫ x

−∞
ρ(z)dz =

∫ 0

−∞
ρ(z)dz

and thus function w = u− v can be written as

w(x) =

∫ ∞

0
(u(x) − u(y))ρ(x − y)dy, x > 0,

Using that |ρ′(z)| ≤ C(J)|J(z)| and (5.7) it follows that w satisfies
∫ ∞

0
|w(x)|2dx ≤

∫ 0

−∞
|ρ(z)|dz

∫ ∞

0

∫ ∞

0
|ρ(x− y)|(u(y)− u(x))2dydx ≤ C(J)EJ

I (u, u).
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This finishes the proof. �

Lemma 5.2. Let I be the half line (0,∞) or the real line R. For any p ∈ (1,∞) and u ∈ Lp(I)
it holds

‖u‖pLp(I) ≤ C(p, J)
(
‖u‖

2p
p+1

L1(I)
EJ

I (|u|p/2, |u|p/2)
p−1

p+1 + EJ
I (|u|p/2, |u|p/2)

)
.

The case p ≥ 2 follows from [11, Th. 1.1] so the our contribution here is to deal with the
case p ∈ (1, 2). Extension to any dimension considering unbounded exterior domains can be
done but it is out of the scope of this article.

Proof. Let us consider p ∈ (1, 2) since the other cases have been proved in [11]. Let u ∈ Lp(I).

Then |u| p2 ∈ L2(I). We consider the decomposition of |u| p2 = v + w as in Lemma 5.1 or [29,

Th. 2.1] (when I = R). In both cases v = ρ ∗ |u| p2 :=
∫
I ρ(x− y)|u| p2 (y)dy and since 2

p > 1 we

have

‖v‖
L

2
p (I)

= ‖ρ ∗ |u| p2 ‖
L

2
p (I)

≤ ‖ρ‖L1(I)‖|u|
p
2 ‖

L
2
p (I)

≤ C(J)‖u‖
p
2

L1(I)
.

Also by Lemma 5.1

‖vx‖2L2(I) + ‖w‖2L2(I) ≤ C(J)EJ
I (|u|

p
2 , |u|

p
2 ).

Using the interpolation inequality and that ‖v‖2L∞(I) ≤ 2‖vx‖L2(I)‖v‖L2(I) we find

‖v‖L2(I) ≤ ‖v‖
1

p

L2/p(I)
‖v‖

p−1

p

L∞(I) ≤ C(J)‖u‖
1

2

L1(I)
‖vx‖

p−1

2p

L2(I)
‖v‖

p−1

2p

L2(I)

≤ C(J)‖u‖
1

2

L1(I)
EJ

I (|u|
p
2 , |u|

p
2 )

p−1

4p ‖v‖
p−1

2p

L2(I)
.

It implies that

‖v‖2L2(I) ≤ C(J)‖u‖
2p
p+1

L1(I)
EJ

I (|u|
p
2 , |u| p2 )

p−1

p+1 .

Finally we get

‖u‖pLp(I) = ‖|u| p2 ‖2L2(I) ≤ 2(‖v‖2L2(I) + ‖w‖2L2(I))

≤ C(J)
(
‖u‖

2p
p+1

L1(I)
E(|u| p2 , |u| p2 )

p−1

p+1 + E(|u| p2 , |u| p2 )
)

which finishes the proof. �

5.2.2. Decay of the solutions. In this section, our main result read as follows: we prove that
the problem is well posed and a bound for the decay of solutions.

Theorem 5.2. For any u0 ∈ L1(Γ) ∩ Lp(Γ), 1 ≤ p < ∞, the solution u of system (5.1)
satisfies

(5.8) ‖u(t)‖Lp(Γ) ≤
C(‖u0‖L1(Γ), ‖u0‖Lp(Γ))

(1 + t)
1

2
(1− 1

p
)

, ∀ t > 0.

In addition, for any u0 ∈ L1(Γ) ∩ L2(Γ)

(5.9)

∫

Γ

∫

Γ
J(d(x, y))(u(t, x) − u(t, y))2dxdy ≤ C(‖u0‖L1(Γ), ‖u0‖L2(Γ))t

− 3

2 .
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Proof of Theorem 5.2. Observe that property (5.9) is a consequence of (5.2) and of the decay
property (5.8). Indeed, by (5.2) the left hand side of (5.9) satisfies

EJ
Γ (u(2t),u(2t)) ≤

‖u(t)‖2L2(Γ)

t
≤ C(‖u0‖L1(Γ), ‖u0‖L2(Γ))t

− 3

2 .

We now prove the decay property (5.8). We use the results obtained in the previous section
and the following energy estimate obtained by multiplying (5.1) with |u|p−2u and integrating
in the space variable

1

p

d

dt

∫

Γ
|u|p(t, x)dx

= −1

2

∫

Γ

∫

Γ
J(x− y)(u(t, x)− u(t, y))(|u(t, x)|p−2u(t, x)− |u(t, y)|p−2u(t, y))dxdy

≤ −c(p)
∫

Γ

∫

Γ
J(x− y)(|u(t, x)| p2 − |u(t, y)| p2 )2dxdy = −c(p)EJ

Γ (|u(t)|
p
2 , |u(t)| p2 ).

Let us now fix an edge e. For each such edge we choose a path Γe that connects e with
Γ∞. It may happen to exist many such paths but we choose one of them. When an edge e
has infinite length we can chose Γe to be exactly e. This path Γe can be parametrized by the
infinite interval Ie = [0,∞). We set ue to be the restriction of u to Γe. It is clear that

‖ue(t)‖L1(Γe) ≤ ‖u(t)‖L1(Γ) ≤ ‖u0‖L1(Γ).

We apply Lemma 5.2 to each function ue(t) and obtain

‖ue‖pLp(Γe)
≤ C(p, J)

(
‖ue‖

2p
p+1

L1(Γe)
EJ
Γe
(|ue|p/2, |ue|

p
2 )

p−1

p+1 + EJ
Γe
(|ue|

p
2 , |ue|

p
2 )
)

≤ C(p, J)
(
‖u0‖

2p
p+1

L1(Γ)
EJ
Γ (|u|

p
2 , |u| p2 )

p−1

p+1 + EJ
Γ (|u|

p
2 , |u| p2 )

)
.

Using that ue = (ue)|e = u|e and summing over all the edges (a finite number) of graph Γ we
get

‖u(t)‖pLp(Γ) =
∑

e∈E

‖ue‖pLp(e) ≤
∑

e∈E

‖ue‖pLp(Γe)

≤ |E|C(p, J)
(
‖u0‖

2p
p+1

L1(Γ)
EJ
Γ (|u(t)|

p
2 , |u(t)| p2 )

p−1

p+1 + EJ
Γ (|u|

p
2 , |u| p2 )

)

= f(EJ
Γ (|u|

p
2 , |u| p2 )),

where

f(s) = |E|C(p, J)(‖u0‖
2p
p+1

L1(Γ)
s

p−1

p+1 + s
)
.

This shows that
1

pc(p)

d

dt
(‖u(t)‖pLp(Γ)) ≤ −f−1(‖u(t)‖pLp(Γ)).

Using that f(t) ≃ t
p−1

p+1 as t ≃ 0 we obtain that f−1(t) ≃ t
p+1

p−1 as t ≃ 0. The same arguments
as in [29, Lemma 3.1] give us the desired decay estimate. �
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5.2.3. Asymptotic behaviour. Now, let us rescale the solution as we did for the local case, let
uλ : Γλ → R, λ > 0 be given by

uλ(t, x) = λu(λ2t, λx), x ∈ Γλ, t > 0.

It follows that uλ satisfies




∂tuλ(t, x) = λ3
∫

Γλ

J(λd(x, y))(uλ(t, y)− uλ(t, x))dy, x ∈ Γλ, t > 0,

uλ(x, 0) = λu0(λx), x ∈ Γλ.

Using the estimates obtained in Theorem 5.2 for u we get that uλ satisfies the following
uniform estimates:

Lemma 5.3. Let 1 ≤ p <∞. For any u0 ∈ L1(Γ) ∩ Lp(Γ) it holds that

‖uλ(t)‖Lp(Γλ) ≤ C(p, ‖u0‖L1(Γ), ‖u0‖Lp(Γ))t
− 1

2
(1− 1

p
), ∀t > 0.

Moreover, for any u0 ∈ L1(Γ) ∩ L2(Γ) the following bound
(5.10)

λ3
∫

Γλ

∫

Γλ

J(λd(x, y))(uλ(t, x) − uλ(t, y))
2dxdy ≤ C(p, ‖u0‖L1(Γ), ‖u0‖L2(Γ))t

− 3

2 , ∀ t > 0,

holds uniformly in λ > 0.

Before proving Theorem 3.3 we need some auxiliary results. For a function ϕ ∈ H1(Γ∞)

such that ϕe(0) = ϕe′(0) for all e, e′ ∈ Γ∞, denote this common value by ϕ(0). We extend
it to function defined on the whole graph Γλ, ϕ̃λ : Γλ → R, such that to be constant on the
finite part of the graph, i.e.

ϕ̃λ =

{
ϕ, on Γ∞,

ϕ(0), on Γλ
f .

Lemma 5.4. There exists a non-increasing function H ∈ L∞([0,∞)) going to zero at infinity

such that for any ϕ ∈ H1(Γ∞)) such that ϕe(0) = ϕe′(0) for all e, e′ ∈ Γ∞ we have

(5.11) λ3
∫

Γ∞

∫

Γλ
f

J(λd(x, y))(ϕ̃(x)− ϕ̃(y))2dydx ≤
∫

Γ∞

ϕ2
x(x)H(λ|x|)dx, ∀λ > 0.

Proof. By the way we define the extension function ϕ̃ we have that it is constant on Γλ
f . Then

λ3
∫

Γ∞

∫

Γλ
f

J(λd(x, y))(ϕ̃(x)− ϕ̃(y))2dydx = λ3
∫

Γ∞

(ϕ(x)− ϕ(0))2
(∫

Γλ
f

J(λd(x, y))dy
)
dx.

Take an edge e of Γ∞ parametrized by [0,∞). For any x ∈ e and y ∈ Γλ
f we have d(x, y) ≥ |x|.

Since J is a non-increasing function we obtain
∫

Γλ
f

J(λd(x, y))dy ≤ |Γλ
f |J(λ|x|) = C(Γf )λ

−1J(λ|x|).

It is then sufficient to consider integrals of the type

I = λ2
∫ ∞

0
(ϕ(x) − ϕ(0))2J(λ|x|)dx.
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Using that (ϕ(x)− ϕ(0))2 ≤ x
∫ x
0 ϕ

2
x(s)ds we obtain that

I ≤
∫ ∞

0
ϕ2
x(x)

∫ ∞

λx
zJ(z)dz.

Denoting H(s) =
∫∞
s zJ(z)dz and using that J ∈ L1(R, 1 + |x|2) we obtain the desired

result. �

Lemma 5.5. For any ϕ ∈ H1(Γ∞) such that ϕe(0) = ϕe′(0) for all e, e′ ∈ Γ∞ the following
hold:
i)

EJ,λ
Γ∞

(ϕ,ϕ) := λ3
∫

Γ∞

∫

Γ∞

J(λd(x, y))(ϕ(x) − ϕ(y))2dydx ≤ C(J)‖ϕx‖2L2(Γ∞),

uniformly in λ > 0.

ii)

EJ,λ
Γλ (ϕ̃, ϕ̃) := λ3

∫

Γλ

∫

Γλ

J(λd(x, y))(ϕ̃(x)− ϕ̃(y))2dydx = EJ,λ
Γ∞

(ϕ,ϕ) + o(1), λ→ ∞.

Proof. Using the fact that the extension function ϕ̃ is constant on Γλ
f we obtain

EJ,λ
Γλ (ϕ̃, ϕ̃) = EJ,λ

Γ∞

(ϕ,ϕ) + 2λ3
∫

Γ∞

∫

Γλ
f

J(λd(x, y))(ϕ̃(x)− ϕ̃(y))2dydx

Using estimate (5.11) and the fact that ϕ ∈ H1(Γ∞) by Lebesgue convergence theorem we
obtain that the last term is o(1).

Let us now prove the first part. When Γ∞ consists only of one edge parametrized by (0,∞)
we extend it to the whole line and use the previous results on the real line [26, Lemma 2.3].

Let us consider two edges e and e′ of Γ∞. It is sufficient to estimate each Ie,e′ defined by

Ie,e′ = λ3
∫

e∪e′

∫

e∪e′
J(λd(x, y))(ϕ(x) − ϕ(y))2dydx.

Assume that the two edges are parametrized by (−∞, 0] and [0,∞). Then d(x, y) ≥ |y − x|
and using that J is non-increasing we get (the continuity at x = 0 guarantees that the function
ϕ belongs to H1(R) and we can apply then the result on the real line)

Ie,e′ ≤ λ3
∫

R

∫

R

J(λ|x− y|)(ϕ(x) − ϕ(y))2dydx ≤
∫

R

J(z)z2dz

∫

R

ϕ2
xdx.

Summing this inequality over all the edges e and e′ of Γ∞ we obtain the desired estimate. �

Now we are ready to proceed with the proof of the asymptotic behavior of the solutions.
Notice that the obtained bound for the decay in Lp obtained in Theorem 5.2 is the same that
holds for the heat equation in Γ. Therefore, our next task is to show that we also have the
same asymptotic profile.

Proof of Theorem 3.3. We consider the case p ≥ 2 in order to avoid technical difficulties
in order to obtain compactness. In particular u0 ∈ L1(Γ) ∩ L2(Γ) and we can obtain the
compactness of the rescaled family uλ using the energy estimate (5.10) When 1 < p < 2 we
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have to use the compactness arguments in [26] and to obtain new versions of the Lemmas in
Section 6.

Step A. Existence of a limit profile U ∈ L2
loc((0,∞),D(QΓ∞

)). Let us fix two times, τ ,
T , such that 0 < τ < T <∞. Using the results in Lemma 5.3 and Lemma 6.2 we obtain that
U = (U e)e∈Γ∞

∈ L2((τ, T ),H1(Γ∞)) and uλ → U in L2((τ, T ), L2
loc(Γ∞)). Indeed using (5.10)

for any edge e of Γ∞ we obtain by Lemma 6.2 that ue ∈ L2((τ, T ),H1(e)), ueλ(t) ⇀ U e(t) in
L2(e) and ueλ(t) → U e(t) in L2((τ, T ), L2

loc(e)).

We prove that in fact the values of U at the endpoints of ej are equal, that is,

U e(t, j(I(e), e)) = U e′(t, j(I(e′), e′)),

for a.e. t and then U ∈ L2((τ, T ),D(QΓ∞
)). To do that let us consider two edges, e and e′,

of Γ∞ and Υλ a path in Γλ which contains the two edges. Since the graph Γf is finite there

exits α > 0 such that the length of the path Υλ
f = Γλ ∩Υλ is 2α/λ. Let us parametrize e and

e′ with (−∞, 0) respectively (0,∞), Υλ
f with (−α/λ, α/λ). In the following we will not meke

precise the time dependence of uλ unless it is necesarely. We introduce the family (fλ)λ>0

defined by

fλ(x) =





ueλ(x+ α/λ), x < −α/λ,
uλ|Υλ

f
(x), |x| < α/λ,

ue
′

λ (x− α/λ), x > α/λ.

In view of the properties of uλ(t) we obtain that (fλ)λ>0 is uniformly bounded in L2(R) and
it safisfies

λ3
∫

R

∫

R

J(λ(x− y))(fλ(x)− fλ(y))
2dxdy ≤ C(t).

It follows that there exists f ∈ H1(R) such that fλ → f in L2
loc(R) and fλ ⇀ f in L2(R). In

particular f ∈ C(R) and satisfies |f(b)− f(a)| . |b− a|1/2 for all a < 0 < b. We claim that

f(x) =

{
ue(x), x < 0,

ue
′

(x), x > 0.

This implies that for any a < 0 < b, |ue(a) − ue
′

(b)| . |b− a|1/2 and then ue(0−) = ue
′

(0+)
which proves the continuity of the limit profile U. It remains to prove the above claim. Let us
consider a < 0, ϕ a smooth function supported in (−∞, 0) and λ > 0 such that a < −α/λ < 0.
Then ∫ a

−∞
fλϕ =

∫ a

−∞
ueλ(x+

α

λ
)ϕ(x)dx =

∫ 0

−∞
ueλ(y)ϕ(y −

α

λ
)χ(−∞,a+α

λ
).dy

Using that fλ ⇀ f and ueλ ⇀ ue in L2((−∞, 0)) we let λ → ∞ to obtain that f = ue on
(−∞, a). Since a is arbitrary we obtain that f ≡ ue on (−∞, 0). The same argument shows
that f ≡ ue′ on (0,∞) and the claim is proved.

Step B. Equation satisfied by the limit profile. Let us fix T > 0. Let us now consider
a function ϕ ∈ C([0,∞),H1(Γ∞)) with ϕt ∈ C([0,∞), L2(Γ∞)) compactly supported in

time in the interval [0, T ] and such that ϕe(t, 0) = ϕe′(t, 0) for all e, e′ ∈ Γ∞, i.e. ϕ ∈
C([0,∞),D(QΓ∞

)). Denote this common value by ϕ(t, 0). We extend it to function defined



LOCAL AND NONLOCAL EVOLUTION EQUATIONS ON GRAPHS 29

on the whole graph Γλ, ϕ̃λ : [0,∞) × Γλ, function that is constant on the finite part of the
graph, i.e.

ϕ̃λ =

{
ϕ, on Γ∞,

ϕ(t, 0), on Γλ
f .

Multiplying the equation satisfied by uλ with ϕ and integrating in time and space we obtain

0 =

∫ T

0

∫

Γλ

uλϕt(t, x)dxdt+

∫

Γλ

uλ(0, x)ϕλ(0, x)dxdt

+ λ3
∫ T

0

∫

Γλ

∫

Γλ

J(λd(x, y))(uλ(t, y)− uλ(t, x))ϕ(t, x)dydxdt

= Iλ1 + Iλ2 − 1

2

∫ T

0
EJ,λ
Γλ (uλ(t), ϕ(t))dt := Iλ1 + Iλ2 + Iλ3

where

EJ,λ
Γλ (uλ(t), ϕ) = λ3

∫

Γλ

∫

Γλ

J(λd(x, y))(uλ(t, y)− uλ(t, x))(ϕ(t, y) − ϕ(t, x))dxdy.

We claim that the following hold where U ∈ L2
lov((0,∞),D(QΓ∞

)) is the a limit of uλ above

(5.12) Iλ1 →
∫ T

0

∫

Γ∞

Uϕt,

(5.13) Iλ2 → ϕ(0, 0)M,

(5.14) Iλ3 → −1

2

∫

R

J(z)z2dz

∫ T

0

∫

Γ∞

Uxϕx = −
∫ T

0

∫

Γ∞

Uxϕx.

These convergences show that the limit function U ∈ L2
loc((0,∞),D(QΓ∞

)) is a solution to

0 =

∫ ∞

0

∫

Γ∞

Uϕt + ϕ(0, 0)M −
∫ ∞

0

∫

Γ∞

Uxϕx.

Since U(t) ∈ D(QΓ∞
) for a.e. t > 0 we have for any ϕ ∈ D(∆Γ∞

) that

(Ux, ϕx)L2(Γ∞) = (U, ϕxx)L2(Γ∞).

Thus for ϕ ∈ C([0,∞),D(∆Γ∞
)) ∩ C1([0,∞), L2(Γ∞)) we obtain that the limit point U

satisfies

0 =

∫ ∞

0

∫

Γ∞

U(t, x)(ϕt(t, x) + ϕxx(t, x))dxdt + ϕ(0, 0)M,

hence it is a solution to the heat equation in Γ with initial condition Mδx=0 and therefore
the asymptotic profile claimed in Theorem 3.3 follows from our results for the local case.

Therefore, we have to show (5.12), (5.13) and (5.14). As in the local case we have that U
is uniformly bounded in L2((0, T ), L2(Γ∞)) so

∫ ∞

0

∫

Γ∞

uλϕ̃t →
∫ ∞

0

∫

Γ∞

Uϕt.
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Moreover, since ϕt(t, 0) has compact support in time
∫ ∞

0

∫

Γλ
f

|uλϕ̃t|dxdt ≤
∫ ∞

0
‖uλ(t)‖L2(Γλ

f )
|ϕt(t, 0)||Γλ

f |1/2 . λ−
1

2

∫ ∞

0
t−1/4|ϕt(t, 0)|dt → 0.

This shows (5.12).

For the second estimate we use the mass conservation an the fact that ϕ̃λ is constant on
Γλ
f :

I2λ −Mϕ(0, 0) =

∫

Γλ

uλ(0, x)(ϕ̃λ(0, x) − ϕ(0, 0))dx =

∫

Γ∞

uλ(0, x)(ϕ(0, x) − ϕ(0, 0))dx

=

∫

Γ∞

u(0, x)(ϕ(0, x/λ) − ϕ(0, 0))dx → 0.

Let us analyze the last term Iλ3 . We will prove the desired limit in few steps.

Step 1. We prove that
∫ T

0
EJ,λ
Γλ (uλ(t), ϕ̃(t))dt =

∫ T

0
EJ,λ
Γ∞

(uλ(t), ϕ(t))dt + o(1).

Indeed, since ϕ̃ is constant in Γλ
f we have

|EJ,λ
Γλ (uλ(t), ϕ̃(t))− EJ,λ

Γ∞

(uλ(t), ϕ(t))|

≤ 2λ3
∫

Γ∞

∫

Γλ
f

J(λd(x, y))|uλ(t, x)− uλ(t, y)||ϕ̃(t, x)− ϕ̃(t, y)|dydx

≤ 2(EJ,λ
Γλ (uλ(t), (uλ(t)))

1/2
(
λ3

∫

Γ∞

∫

Γλ
f

J(λd(x, y))(ϕ̃(x)− ϕ̃(y))2dydx
) 1

2

. t−
3

4

(∫

Γ∞

ϕ2
x(t, x)H(λx)dx

) 1

2

.

Integrating in time the above inequality we obtain that
∫ T

0
|EJ,λ

Γλ (uλ(t), ϕ̃(t)) − EJ,λ
Γ∞

(uλ(t), ϕ(t))|dt . T
1

4 sup
t∈[0,T ]

( ∫

Γ∞

ϕ2
x(t, x)H(λx)dx

) 1

2

.

Using that ϕ ∈ C([0,∞),H1(Γ∞)) we can apply the dominated convergen theorem to obtain
that the last goes to zero as λ→ ∞.

Step 2. For any 0 < τ < T the integrals over (0, τ) are small, uniformly in λ: it holds that
∫ τ

0
|EJ,λ

Γ∞

(uλ(t), ϕ(t))|dt . τ
1

4‖ϕ‖L∞([0,T ],H1(Γ∞)),

and ∣∣∣
∫ τ

0

∫

Γ∞

Ux(t, x)ϕx(t, x)dxdt
∣∣∣ ≤ τ

1

4 ‖ϕ‖L∞([0,T ],H1(Γ∞)).

To check the first one notice that, in view of (5.10), we have

|EJ,λ
Γ∞

(uλ(t), ϕ(t))| ≤ EJ,λ
Γ∞

(uλ(t),uλ(t))
1

2 EJ,λ
Γ∞

(ϕ(t), ϕ(t))
1

2 . t−
3

4‖ϕx(t)‖L2(Γ∞).
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Integrating in [0, τ ] we obtain the desired estimate.

For the second limit remark that for each t > 0, we have

Eλ
Γ∞

(uλ(t), ϕ(t)) →
∫

Γ∞

Ux(t, x)ϕx(t, x)dx.

Also |Eλ
Γ∞

(uλ(t), ϕ(t))| ≤ t−
3

4‖ϕ‖L∞([0,T ],H1(Γ∞)) ∈ L1((0, T )). The dominated convergence
theorem applied on the time interval (0, τ) gives us the desired result.

Step 3. Let us choose 0 < τ < T . On the interval [τ, T ] we apply the third part of Lemma
6.2 to D = (0,∞) to obtain that

∫ T

τ
Eλ
Γ∞

(uλ(t), ϕ(t))dt →
∫

R

J(z)z2dz

∫ T

τ

∫

Γ∞

Ux(t, x)ϕx(t, x)dxdt.

Thus in view of Step II we obtain (5.14).

Step C. Tail control and conclusion. Using the arguments for nonlocal problems in [26,
Lemma 2.7] together with the ones in Lemma 4.1 to control the tail (4.11) we obtain similar
results for the solutions uλ of the nonlocal problem. It means that the local convergence
obtained at Step A is not only local but it holds in L1(Γ∞): for some t0 > 0 it holds

uλ(t0) → UM (t0) in L
1(Γ∞).

Then (3.11) holds for q = 1. The other cases follows by using the strong convergence in
L1(Γ∞) together with the decay of the solutions in Lp(Γ). Indeed, choosing α such that

1

q
=
α

p
+

1− α

1
.

we obtain

‖u(t) −UM (t)‖Lq(Γ∞) ≤ ‖u(t)−UM (t)‖1−α
L1(Γ∞)

‖u(t)−UM (t)‖αLp(Γ∞)

≤ o(1)t
− 1

2
(1− 1

q
)
.

On the compact part of the graph for any 1 ≤ q < p we trivially have

‖u(t)−UM (t)‖Lq(Γf ) ≤ C(p, q,Γf )‖u(t) −UM (t)‖Lp(Γf )

≤ C(p, q,Γf )(‖u(t)‖Lp(Γ) + ‖UM (t)‖Lp(Γf ))

≤ C(p, q,Γf )(t
− 1

2
(1− 1

p
) + t−

1

2 ) = o(t−
1

2
(1− 1

q
)), t→ ∞.

The proof is now complete. �

6. Appendix

In this Appendix we collect some compactness results that were used when studying the
relaxation limit and the asymptotic behaviour for the nonlocal problem. We will use these
results in 1-dimension (take d = 1 below) but we state them in any dimension since the results
hold with greater generality. For the proof we use ideas from [1]. More general assumptions
on the function ρ can be found in [40].
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Lemma 6.1. Let D ⊂ R
d be an open set that has the extension property in H1, for example,

D is a bounded C1-domain or Rd
+. Let ρ : Rd → R be a nonnegative L1 radial function having

a second momentum in L1(Rd), ρ > 0 in a neighbourhood of x = 0, and take

ρn(x) = ndρ(nx).

Let fn be a sequence in L2(D) such that

n2
∫

D

∫

D
ρn(x− y)(fn(x)− fn(y))

2dxdy ≤M.

1. If fn ⇀ f in L2(D) then f ∈ H1(D) and

Fn(x, z) = (ρ(z))
1

2χD(x+
z

n
)
fn(x+ z

n)− fn(x)
1
n

⇀ (ρ(z))
1

2 z · ∇f(x)

weakly in L2
x(D)× L2

z(R
d).

2. For any f ∈ H1(D)
∫

Rd

ρ(z)|z|2dz
∫

D
|∇f(x)|2dx ≤ lim inf

n→∞
n2

∫

D

∫

D
ρn(x− y)(f(x)− f(y))2dxdy

3. If ϕ ∈ H1(Rd) then

n2
∫

D

∫

D
ρn(x− y)(fn(x)− fn(y))(ϕ(x) − ϕ(y))dxdy(6.15)

→
∫

Rd

ρ(z)|z|2dz
∫

D
∇f(x)∇ϕ(x)dx.

Notice that by 1. we have f ∈ H1(D).

4. If D is a smooth bounded domain of R
d and ρ(x) ≥ ρ(y) if |x| ≤ |y| then {fn}n is

relatively compact in L2(D).

Proof. The first and fourth part are in [1, Th. 6.11, p. 128]. The second part is exactly
equation (36) in [8].

For the third part we claim that the following strong convergence holds in L2
x(D)×L2

z(R
d):

(6.16) ηn = (ρ(z))
1

2χD(x+
z

n
)
ϕ(x+ z

n)− ϕ(x)
1
n

→ (ρ(z))
1

2 z · ∇ϕ(x).

Then

(Fn, ηn)L2
x(D)×L2

z(R
d) →

∫

Dx

∫

Rd

ρ(z)(z · ∇f(x))(z · ∇ϕ(x)) =
∫

Rd

ρ(z)|z|2dz
∫

D
∇f · ∇ϕ.

Observe that after the change of variables x+ z/n = y we get

(Fn, ηn)L2
x(D)×L2

z(R
d) = n2

∫

D

∫

Rd

ρ(z)χD(x+
z

n
)(fn(x+

z

n
)− fn(x))(ϕ(x +

z

n
)− ϕ(x))dzdx

= nd+2

∫

D

∫

Rd

ρ(n(y − x))χD(y)(fn(y)− fn(x))(ϕ(y) − ϕ(x))dydx

= n2
∫

D

∫

D
ρn(y − x)(fn(y)− fn(x))(ϕ(y) − ϕ(x))dydx
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which proves (6.15). It remains to prove the claim (6.16). To this end notice that
∫

D

∫

Rd

ρ(z)
∣∣∣
ϕ(x+ εz)− ϕ(x)

ε
χ(x+ εz) − z∇ϕ(x)

∣∣∣
2
dzdx

.

∫

D

∫

Rd

ρ(z)
∣∣∣
ϕ(x+ εz)− ϕ(x)

ε
− z∇ϕ(x)

∣∣∣
2
χ(x+ εz)dzdx

+

∫

D

∫

Rd

ρ(z)|z∇ϕ(x)|2|χ(x+ εz)− 1|2dzdx.

The last term goes to zero thanks to the fact that |z|2ρ(z)|∇ϕ(x)|2 ∈ L1(D × R
d) and the

dominated convergence theorem. For the first term we use the Fourier transform and again
the dominated convergence theorem to obtain that

∫

D

∫

Rd

ρ(z)
∣∣∣
ϕ(x+ εz)− ϕ(x)

ε
− z∇ϕ(x)

∣∣∣
2
dzdx

≤
∫

Rd

∫

Rd

ρ(z)

∫

Rd

∣∣∣
e2πiεξz − 1

ε
− 2πiξz

∣∣∣
2
|ϕ̂(ξ)|2dξ → 0, ε→ 0.

The proof is now finished. �

In our analysis we need a version of the last lemma that will involve also integrals in time
and implies convergences in L2((0, T ) × D). This is inspired in [26]. The proof follows the
same ideas of the previous lemma and hence it is omitted.

Lemma 6.2. Let D ⊂ R
d be an open set with the extension property. Let ρ : Rd → R be a

nonnegative L1 radial function having a second momentum in L1(Rd), ρ > 0 in neighbourhood
of x = 0, and ρn(x) = ndρ(nx). Let fn be a sequence in L2((0, T ) ×D) such that

n2
∫ T

0

∫

D

∫

D
ρn(x− y)(fn(x)− fn(y))

2dxdy ≤M.

1. If fn ⇀ f in L2((0, T ) ×D) then f ∈ L2((0, T ),H1(D)) and

Fn(x, z) = (ρ(z))
1

2χD(x+
z

n
)
fn(x+ z

n)− fn(x)
1
n

⇀ (ρ(z))
1

2 z · ∇f(x)

weakly in L2((0, T ), L2
x(D)× L2

z(R
d)).

2. For any f ∈ L2((0, T ),H1(D))
(6.17)∫

Rd

ρ(z)|z|2dz
∫ T

0

∫

D
∇f(x)∇ϕ(x)dx ≤ lim inf

n→∞
n2

∫ T

0

∫

D

∫

D
ρn(x− y)(f(x)− f(y))2dxdy

3. If ϕ ∈ L2((0, T ),H1(Rd)) then

n2
∫ T

0

∫

D

∫

D
ρn(x− y)(fn(x)− fn(y))(ϕ(x) − ϕ(y))dxdy(6.18)

→
∫

Rd

ρ(z)|z|2dz
∫ T

0

∫

D
∇f(x)∇ϕ(x)dx.

Notice that by 1. we have f ∈ L2((0, T ),H1(D)).
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4. If D is a smooth bounded domain of Rd, ρ(x) ≥ ρ(y) if |x| ≤ |y| and ‖∂tfn‖L2((0,T ),H−1(D))

is uniformly bounded then {fn}n is relatively compact in L2(D).

Finally, we include a lemma in the one dimensional case.

Lemma 6.3. Let ρ a nonincreasing L1 radially symmetric function with |r|2ρ(r) ∈ L1(R).
Let −∞ ≤ a < 0 < b ≤ +∞. Then, for any ϕ ∈ H1(a, b), it holds that

ε−2 lim
ε→0

∫ 0

a

∫ b

0
ρε(x− y)(ϕ(x) − ϕ(y))2dxdy = 0.

Proof. We use (6.17) (see also [8, Th. 2, Remark 5]) to obtain that

(6.19) ‖r2ρ(r)‖L1(R)

∫

I
f2x ≤ lim inf

ε→0
ε−2

∫

I

∫

I
ρε(x− y)(f(x)− f(y))2dxdy,

holds for for any interval I of R and f ∈ H1(I). Moreover, applying (6.18) to fn = ϕ = f we
have equality when I = R

d.

Since we are in dimension one, any function ϕ ∈ H1(a, b) can be extended to a function
ϕ̃ ∈ H1(R). Then

2ε−2

∫ 0

a

∫ b

0
ρε(x− y)(ϕ(x) − ϕ(y))2dxdy ≤ 2ε−2

∫ 0

−∞

∫ ∞

0
ρε(x− y)(ϕ̃(x)− ϕ̃(y))2dxdy

=ε−2

∫

R

∫

R

ρε(x− y)(ϕ̃(x)− ϕ̃(y))2dxdy

− ε−2

∫ 0

−∞

∫ 0

−∞
ρε(x− y)(ϕ̃(x)− ϕ̃(y))2dxdy

− ε−2

∫ ∞

0

∫ ∞

0
ρε(x− y)(ϕ̃(x)− ϕ̃(y))2dxdy.

Using (6.19) with I = (−∞, 0) and I = (−∞, 0) as well as the fact that it becomes equality
when I = R we get that

lim sup
ε→0

2ε−2

∫ 0

a

∫ b

0
ρε(x− y)(ϕ(x) − ϕ(y))2dxdy

≤ ‖r2ρ(r)‖L1(R)

[ ∫

R

ϕ2
x −

∫ 0

−∞
ϕ2
x −

∫ ∞

0
ϕ2
x

]
= 0,

which finishes the proof. �
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