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Abstract 25 

Marine heatwaves (MHWs) are periods of extremely high seawater temperature that 26 

affect marine ecosystems in several ways. Anthozoans (corals and gorgonians) and 27 

Porifera (sponges) are usually among the taxa most affected by MHWs. Both are 28 

holobiont entities that form complex interactions with a wide range of microbes, which 29 

are an essential part of these organisms and play key roles in their health status. Here, we 30 

determine microbial community changes suffered in two corals (Cladocora caespitosa 31 

and Oculina patagonica), one gorgonian (Leptogorgia sarmentosa), and one sponge 32 

(Sarcotragus fasciculatus) during the 2015 MHW. The microbial communities were 33 

different among hosts and displayed shifts related to host health status, with a higher 34 

abundance in necrosed tissues of Ruegeria species or of potential pathogens like Vibrio. 35 

We also carry out a meta-analysis using 93 publicly accessible 16S rRNA gene libraries 36 

from O. patagonica, C. caespitosa and L. sarmentosa to establish a Mediterranean core 37 

microbiome in these species. We have identified one Ruegeria OTU that maintained a 38 

stable and consistent association with these species, which was also related with tissue 39 

necrosis in their hosts. Therefore, Ruegeria sp. could play an important and still 40 

underexplored role in the health status of its hosts. 41 

 42 

 43 
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Introduction 46 

Marine heatwaves (MHWs) are periods of extremely high seawater temperature that 47 

persist for days to months and can extend up to thousands of kilometers (Frölicher and 48 

Laufkötter, 2018). Some of the recently observed marine heatwaves revealed the high 49 

vulnerability of marine ecosystems, which can be affected in several ways, such as by 50 

decreasing productivity, altering food web dynamics, shifting species distribution, and 51 

reducing abundance (Hughes et al., 2003; Hoegh-Guldberg and Bruno, 2010). MHWs, 52 

which will probably intensify with anthropogenic climate change (Frölicher and 53 

Laufkötter, 2018), are related to mass mortality events and disease outbreaks in marine 54 

species that severely threaten the structure and functioning of ecosystems and disrupt the 55 

provision of ecological goods and services in coming decades (Smale et al., 2019). The 56 

most recently observed marine heatwave with global ecological implications was 57 

recorded in 2015/16, when unusually high ocean temperatures associated with one of the 58 

strongest El Niño events on record triggered unprecedented coral bleaching and marine 59 

invertebrate mortality worldwide (Rubio-Portillo et al., 2016a; Ampou et al., 2017; Oliver 60 

et al., 2017; Turicca et al., 2018).  61 

Anthozoa (Scleractinians and Octocorals) and Porifera are important members of the 62 

benthic community. These taxa provide structural complexity to ecosystems and thereby 63 

refuge and habitats to other fauna and are the taxa most affected by MHWs (Cerrano et 64 

al., 2000; Garrabou et al., 2009). Like all multicellular organisms, marine benthic 65 

invertebrates (encompassing Anthozoa and Porifera) are holobiont entities, forming 66 

complex interactions with a wide range of microbes, including dinoflagellates, fungi, 67 

bacteria, archaea, and viruses (Knowlton and Rohwer, 2003). These microbial symbionts 68 

play active roles in holobiont health (e.g., nutrient supply and protection against 69 
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pathogens) as well as the adaptive response of the host to environmental changes 70 

(reviewed in Bourne et al., 2016 and Pita et al., 2018).  71 

Changes in the environment may severely disturb host-microbe interactions and thus lead 72 

to dysbiosis (microbial imbalance on or inside the host) and/or disease development 73 

(Harvell et al., 2007; Miller and Richardson, 2014; Sweet et al., 2015). Therefore, the 74 

evaluation of the shifts in microbiota as a result of MHWs may be employed as “early” 75 

bio-indicators of both environmental changes and host disease. However, few studies 76 

have investigated the microbiota of marine invertebrates other than corals during 77 

warming events. Microbial community association with marine invertebrates is dynamic 78 

and includes a ubiquitous core microbiome, which is defined as stable and consistent 79 

components across complex microbial assemblages from similar habitats (see review by 80 

Sweet and Bulling, 2017). These core members play key roles due to their ability to 81 

maintain microbial associations’ stability under environmental changes through 82 

competition for nutrients and/or space with invasive microbes, as well as by production 83 

of antibiotics (Ritchie, 2006; Krediet et al., 2013). Along with core members, there is a 84 

second associated microbial fraction that is more influenced by the local environmental 85 

conditions and a third highly variable component dependent on the processes occurring 86 

at the spatial and temporal scales (Reveillaud et al., 2014; Ainswoth et al., 2015; 87 

Hernandez-Agreda et al., 2018). Given the likely critical contribution of microbes to 88 

invertebrate holobiont adaptation to environmental changes, shifts in marine 89 

invertebrates’ microbial assemblages could be ideal indicators for host heat stress.  90 

In the last 20 years, Mediterranean marine invertebrates have suffered an increase of 91 

disease outbreaks due to warming events (Cerrano et al., 2000; Garrabou et al., 2009; 92 

Stabili et al., 2012; Jiménez et al., 2016). Specifically, during the 2015 MHW in the 93 

Marine Protected Area of Tabarca, more than 40% of the population of the sponge 94 
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Sarcotragus fascicualatus, the corals Cladocora caespitosa and Oculina patagonica, as 95 

well as the gorgonian Leptogorgia sarmentosa showed tissue necrosis signs as a 96 

consequence of the increase of seawater temperature (Rubio-Portillo et al., 2016a). Thus, 97 

the main goal of this study was to assess the effect of marine heat waves on microbial 98 

assemblages associated to those species to understand the influence of global warming 99 

conditions on these associations and ultimately on the health of marine invertebrates. To 100 

achieve this goal, we used Next Generation Sequencing to characterize, by means of 16S 101 

rRNA gene metabarcoding, a total of 24 marine invertebrate tissue samples from 102 

apparently healthy and necrosed colonies. We have identified potential microbial bio-103 

indicators of marine invertebrate diseases, such as the increase of Ruegeria and Vibrio 104 

genera and a decrease of putative symbionts like Pseudovibrio or Endozoicomonas in 105 

necrosed tissues of corals and gorgonian, respectively. Moreover, a meta-analysis using 106 

93 publicly accessible 16S rRNA gene libraries from O. patagonica, C. caespitosa and L. 107 

sarmentosa was carried out to establish a Mediterranean core microbiome in these 108 

species. We determined a stable and consistent association between a Ruegeria OTU and 109 

geographically and phylogenetic distinct Mediterranean Anthozoans, which could play 110 

an important role in the host health status. Further, our results suggest that the 111 

composition of the core microbiome depends on the geographical area considered in the 112 

analysis, confirming the existence of a local core microbiome that depends on the 113 

surrounding environment. 114 

Material and methods 115 

Sample collection 116 

Water and invertebrate samples were collected on 28 September 2015 in two sampling 117 

locations in the Marine Protected Area of Tabarca. The gorgonian L. sarmentosa was 118 
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collected at 25m depth (38º09´35´´ N, 00º27´55´´E), while the coral O. patagonica and 119 

the sponge S. fasciculatus were collected at 5m depth (38º09´59´´ N, 00º28´56´´E, Spain). 120 

For each of the three sampled marine invertebrates, a total of six (3 healthy and 3 121 

necrosed) independent specimens were taken. In addition, two water samples were taken 122 

from each sampling location (Table 1). The health status of the invertebrates and the 123 

environmental parameters are described in Rubio-Portillo et al., (2016a). 124 

All samples were taken during the heat wave recorded in September 2015. During this 125 

MHW, water temperature was 2 ºC higher compared with the preceding 9 years, and 126 

persisted for approximately 6 weeks, reaching a maximum of 28.23ºC (Rubio-Portillo et 127 

al., 2016a). Marine invertebrate samples were removed by SCUBA diving using a 128 

hammer and chisel and placed in plastic bags under water. Two water samples were taken 129 

from each depth using sterilized bottles. All samples were transported to the laboratory 130 

in a cooler within the next 2 hours. In the lab, marine invertebrate samples were gently 131 

washed three times with 50 ml of sterile filtered seawater (SFSW) to remove non-132 

associated microbes and approximately 2 g (wet weight) of each sample was crushed with 133 

5 ml SFSW using a mortar and they were allowed to settle for 15min and the supernatant 134 

(that is, crushed tissue) was removed and kept at -80 ºC for further analyses. 135 

DNA extraction and polymerase chain reaction amplification of 16S rRNA genes  136 

DNA was extracted from crushed tissue using the UltraClean Soil DNA Kit (MoBio; 137 

Carlsbad, CA) following the manufacturer’s instructions for maximum yield. DNA from 138 

water samples was extracted using the DNeasy blood and tissue kit (Qiagen, Valencia, 139 

CA). The extracted genomic DNA was used for PCR amplifications of the V3-V4 region 140 

of the 16S rRNA gene by using the following universal primers: Pro341F 141 

(CCTACGGGNBGCASCAG) (Takahashi et al., 2013) and Bact805R 142 
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(GACTACHVGGGTATCTAATCC) (Herlemann et al., 2011). Each PCR mixture 143 

contained 5 µl of 10x PCR reaction buffer (Invitrogen), 1.5 µl of 50 mM MgCl2, 1 µl 10 144 

mM dNTP mixture, 1 µl of 100 µM of each primer, 1 unit of Taq polymerase, 3 µl of 145 

BSA (New England BioLabs), sterile MilliQ water up to 50 µl and 10 ng of DNA. 146 

Negative controls (with no template DNA) were included to assess potential 147 

contamination of reagents. The amplification products were purified with the GeneJET 148 

PCR purification kit (Fermentas, EU), quantified using the Qubit Kit (Invitrogen), and 149 

the quality (integrity and presence of a unique band) was confirmed by 1% agarose gel 150 

electrophoresis. Sequencing was performed using Illumina Mi-seq Nextera 2x300 bp 151 

paired-end run (at Fundació per al Foment de la Investigació Sanitària i Biomédica, 152 

FISABIO, Valencia). 153 

Illumina high-throughput 16S rRNA gene sequence analysis  154 

Paired-end MiSeq sequences of the 22 samples were deposited in the NCBI Sequence 155 

Read Archive (SRA) database. Data from the water samples as well as O. patagonica, L. 156 

sarmentosa and S. fasciculatus were deposited under BioProject PRJNA615777. For 157 

comparative purposes, sequences from the coral C. caespitosa (BioProject 158 

PRJNA407809) were also included in the analysis. These C. caespitosa samples were 159 

taken at 5 m depth location in the same sampling campaign than the samples listed in 160 

Table 1 and were used for a previous biogeography study (Rubio-Portillo et al., 2018). 161 

The QIIME 1.8.0 pipeline (Caporaso et al., 2010) was used for data processing. 162 

Operational taxonomic units (OTUs) were defined at the level of 99% similarity, close to 163 

the threshold used to distinguish species (98.7% similarity in the whole 16S rRNA gene), 164 

(Stackebrandt and Ebers, 2006), followed by taxonomy using UCLUST algorithm 165 

(Edgar, 2010) with the SILVA reference database (version 132). OTUs classified as 166 

chloroplast or mitochondria were removed from the dataset. Due to the large difference 167 
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in library size among samples, the OTU table was rarefied to 11,594 reads (the lowest 168 

number of the post-assembly and filtered sequences in a sample, Table S1) for 169 

comparisons across samples (Weiss et al., 2015).  170 

Analysis of alpha-diversity 171 

Prokaryotic α-diversity was estimated in QIIME prior to deleting singletons and OTUs 172 

with less than 0.05% of abundance. Specifically, diversity was characterized using the 173 

Shannon diversity index and OTU richness. Differences in alpha diversity index were 174 

statistically evaluated using ANOVA analysis in R with the ‘vegan’ package (Oksanen, 175 

2011). Prior to ANOVA, homogeneity of variance was confirmed with Cochran’s test 176 

(Cochran, 1951) and data was analyzed according to a two-factor model, where the main 177 

factors were host (i.e. marine invertebrate species) and health status. If the variances were 178 

significantly different at p = 0.05, post-hoc analyses were conducted using Student–179 

Newman– Keuls (SNK) multiple comparisons (Underwood, 1997). 180 

Analysis of beta-diversity 181 

Prior to analysis of β-diversity, singletons and OTUs with less than 0.05% of abundance 182 

were removed from the dataset. For β-diversity analysis, we used QIIME software and 183 

clustering based on the weighted UniFrac (Lozupone and Knight, 2005). To visualize 184 

microbiota similarity, we generated principal coordinate analysis (PCoA) plots from the 185 

distance matrices. Multivariate analyses were used to compare composition of microbial 186 

communities associated with the different marine invertebrate species. Similarity 187 

percentage (SIMPER) was used to identify OTUs that could be potentially responsible 188 

for these differences. 189 

Core microbiome meta-analysis 190 
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In order to identify the core microbiome in the studied area, phylotypes consistently 191 

present in 100% of the samples (both healthy and necrosed) from each holobiont were 192 

considered. We used a conservative representation of the core microbiome because only 193 

six samples were recovered from each marine invertebrate during this study. In addition, 194 

to identify cosmopolitan microorganisms associated with benthic Mediterranean 195 

invertebrates, the core microbiome of C. caespitosa, O. patagonica and L. sarmentosa 196 

across the Mediterranean Sea was analyzed using the recommended cut off at 85% of the 197 

samples (Ainswoth et al., 2015; Hernandez-Agreda et al., 2016). For this purpose, a total 198 

of 93 16S rRNA libraries were analyzed (12 generated in the present work and 81 199 

previously published (Rubio-Portillo et al., 2016b; 2018; van de Water et al., 2017; 200 

Bednarz et al., 2019); Table S2). In addition, unique and shared taxa (at the OTU level) 201 

among hosts were displayed with the “UpSet” (visualizing intersecting sets) diagram 202 

using the “R- bioconductor” package “UpSetR” (Lex et al., 2014).  203 

Results and discussion 204 

To assess the effect of global warming on marine invertebrates, we investigated the 205 

differences in the microbiome of healthy and necrosed marine invertebrates during a 206 

marine heatwave in order to explore the presence of potential microbial indicators of heat 207 

stress. In addition, the core microbiome of each host was also described as well as the 208 

presence of cosmopolitan microorganisms associated with benthic Mediterranean 209 

Anthozoans.  210 

More than 24,000 OTUs were identified in the present study but only 173 OTUs showed 211 

a relative abundance over 0.05 % and are discussed here. Invertebrate species hosted on 212 

average from 117 to 149 OTUs (149 OTUs for O. patagonica, 144 for L. sarmentosa, 134 213 

OTUs for C. caespitosa and 117 for S. fasciculatus). Importantly, less than 20% of OTUs 214 
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identified were host-specific, while about half were shared by at least three of the 215 

invertebrates studied here (Figure 1). Particularly, the three Anthozoans are the hosts that 216 

shared more OTUs among them (14.45%). Furthermore, 28 OTUs were shared among all 217 

the marine invertebrates and seawater samples (Figure 1). Therefore, it seems that the 218 

surrounding water has a great influence on the invertebrate microbiome, which is in good 219 

agreement with previous studies that showed biogeographical changes in the invertebrate 220 

microbiome (Littman et al., 2009; Pantos et al., 2015; Rubio-Portillo et al., 2018). A large 221 

proportion of sequences related to the O. patagonica pathogen V. mediterranei 222 

(Kushmaro et al., 1997;1998; Rubio-Portillo et al., 2014) was detected in seawater 223 

samples and this OTU was shared by all samples (Table S3). This fact was probably as 224 

consequences of the increasing temperature during the MHW and this could compromise 225 

benthic invertebrate health. Conversely, since vibrios have been detected in viable but not 226 

culturable state in coral tissue during cold seasons (Sharon and Rosenberg, 2010; Rubio-227 

Portillo et al., 2016b), invertebrates could act as a pathogen reservoir, from which they 228 

could be dispersed into the surrounding water. 229 

The Shannon diversity index ranged from 2 to 5 in the marine invertebrates studied here, 230 

consistent with previous studies (Rubio-Portillo et al., 2016b, Thomas et al., 2016; 2018; 231 

van de Water et al., 2018a). The two-way ANOVA revealed significant differences 232 

among hosts (F= 23.114, p < 0.001). Post-hoc SNK test showed that these differences 233 

were due to the highest diversity values showed by O. patagonica compared with the 234 

other hosts, which diversity was similar among them (Figure 2A). Similarly, OTU 235 

richness was also higher in O. patagonica than in the other hosts (Figure 2B; F= 14.546, 236 

p < 0.001). Principal coordinate analysis using weighted UniFrac distances (Lozupone 237 

and Knight, 2005) clearly separated samples by hosts, which were also different from 238 

seawater samples (Figure 3A and B). Bacterial microbiomes associated with the two 239 
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zooxanthelate scleractian corals were similar to each other and different from the 240 

azooxanthellate gorgonian L. sarmentosa microbiome (Fig. 3A and 3B). For instance, 241 

Endozoicomonas genus, a common coral symbiont (Bourne et al., 2016; Neave et al., 242 

2016), was one of the most abundant genera in the gorgonian L. sarmentosa (Fig. 4B and 243 

Table 1), in good agreement with previous studies carried out in the Mediterranean Sea 244 

(Bayer et al., 2013; Rubio-Portillo et al., 2016b; Rubio-Portillo et al., 2018; Van de Water 245 

et al., 2017). However, intriguingly, this genus was absent from the corals studied here. 246 

In addition to differences among Anthozoans, differences between the two coral species 247 

were also observed. SIMPER analysis showed that Maritimimonas was a characteristic 248 

genera of C. caespitosa, while Pseudovibrio genus was significantly enriched in O. 249 

patagonica (Table S4). Likewise, SIMPER analysis revealed that sequences 250 

corresponding to uncultured genera of Acidobacteria and Dadabacteria were sponge-251 

specific (Table S4). Therefore, although surrounding water had a great influence on the 252 

invertebrate microbiome, the microbial composition was different for the different hosts 253 

and specific symbionts were detected in each host.  254 

Microbiota shifts related to host health status 255 

As shown in figures 2 and 3, although there were no detectable differences in terms of 256 

diversity indexes, microbial composition changed depending on health status. Thus, both 257 

Shannon index and OTU richness did not show significant changes among healthy and 258 

necrosed samples in either host species (Fig. 2A an 2B; F= 0.796, p =0.5141). However, 259 

PERMANOVA analysis (R2= 0.651, p < 0.005) as well as principal coordinate analysis 260 

using weighted UniFrac distances showed that microbial composition differed depending 261 

on health status (Fig. 3A and 3B). SIMPER analysis was carried out in order to detect the 262 

OTUs primarily responsible for these differences (Table S5). For the analyzed 263 

Anthozoans, this analysis unveiled a common pattern in the necrosed tissues compared 264 
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with the healthy ones, with a decrease of potential symbionts like Pseudovibrio, 265 

Fabibacter or Endozocicomas genera and an increase of opportunistic and Vibrio species, 266 

together with the increase of some species whose role is still not clear, like Ruegeria spp. 267 

(Fig. 4B, Table S6 and Table S4).  268 

 269 

Pseudovibrio species, which play a key role in coral health by inhibiting pathogens´ 270 

growth (Nissimov et al., 2009; Rypien et al., 2010), were more abundant in healthy corals 271 

than in necrosed ones. Thus, the Pseudovibrio-dominated community changes to a 272 

community dominated by potential pathogens in O. patagonica necrosed samples. The 273 

same pattern was also observed in samples collected in the same studied area in 2011 274 

(Rubio-Portillo et al., 2016b). Therefore, this genus appears to be a vital member of the 275 

O. patagonica holobiont and its abundance could be an indicator of host health. 276 

Pseudovibrio OTUs detected in the two coral species studied here were different, which 277 

suggests that different coral species could select different symbionts in the same 278 

environment. In addition to Pseudovibrio, Fabibacter showed higher abundance in 279 

healthy specimens of C. caespitosa and it could also play a key role in host health. 280 

Fabibacter species has been previously reported associated to other coral species 281 

(Sunagawa et al., 2009; De castro et al., 2010), but their role remains unknown. For the 282 

gorgonian L. sarmentosa, tissue damage was associated with a decrease of species 283 

commonly associated with gorgonians like Endozoicomonas (Figure 4B and Table S4). 284 

Endozoicomonas spp. are one of the main constituents of octocoral microbial assemblages 285 

in the Mediterranean Sea (that can make up to over 96% of the community) and a decrease 286 

in its abundance has been correlated to environmental stress (reviewed in van de Water 287 

et al., 2018b). This is one of the key findings of this work and highlights the importance 288 

of Pseudovibrio, and probably Fabibacter, together with Endozoicomonas genera in 289 
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Mediterranean Anthozoans. These microbes could serve as potential indicators of 290 

compromised health status in Mediterranean corals and gorgonians, respectively. 291 

Intriguingly, although the relative abundance of Vibrio spp. increased in O. patagonica 292 

and slightly in C. caespitosa necrosed samples (Figure 4B and Table S6), SIMPER 293 

analysis did not detect any specific Vibrio OTU as primarily responsible for these 294 

differences (Table S4). For example, the coral pathogens Vibrio mediterranei and Vibrio 295 

coralliilyticus (OTUs 163 and 165, respectively) were detected in necrotic tissues but also 296 

in apparently healthy specimens at the same location (Table S5). This result  suggests that 297 

probably the strains detected in healthy and necrosed samples could be different and not 298 

all of them pathogenic. Indeed, V. mediterranei strains similar to the type strain AK-1, 299 

the causative agent of mass bleaching events in O. patagonica, were mainly isolated from 300 

the necrosed specimens of O. patagonica (Rubio-Portillo et al., 2016). Along with the 301 

increase of Vibrio species, we have detected a consistent increase of Ruegeria sp. 302 

SOEmb9 OTU119 in necrosed tissues of all Anthozoans studied here (Table S5). 303 

Previous studies have shown that the presence of Ruegeria species is correlated with the 304 

presence of Vibrio pathogens in coral tissues (Rosado et al., 2019), as well as with 305 

different signs of disease, such as Black Band Disease in the Caribbean Sea (Sekar et al., 306 

2008), Yellow Band Disease in the Red Sea (Apprill et al., 2013) or White Patch 307 

Syndrome in the Indian Ocean (Séré et al., 2013). Furthermore, Ruegeria genus, 308 

belonging to the Roseobacter group, displays high chemotactic attraction towards 309 

dimethylsulfoniopropionate (DMSP) (Miller et al., 2004), which is a compound found in 310 

heat-stressed zooxanthelate corals (Raina et al., 2013), This behavior could explain the 311 

increase of Ruegeria sp. in zooxanthelate coral necrotic tissues during this mortality 312 

event, probably due to the increase of DMSP as a result of the increase of sea water 313 

temperature during the heatwave. However, there are alternative explanations since some 314 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.25.428091doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428091
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

studies showed that Ruegeria spp. have an important role protecting corals against 315 

pathogenic Vibrio species by inhibiting their growth (Miura et al., 2018; Rosado et al., 316 

2019). Therefore, further experimental evidence would be necessary in order to elucidate 317 

the role of this genus in mortality events in marine azooxanthellate invertebrates.  318 

Overall, our results show that together with Vibrio coral pathogens, other specific 319 

indicators should be used to assess marine invertebrates’ heat stress and Ruegeria is likely 320 

a good candidate. 321 

In the sponge S. fasciculatus, the changes related to health status were less evident 322 

compared to Anthozoan species. Sponge microbiome has been described to be dominated 323 

by Proteobacteria with Chloroflexi, Cyanobacteria and Crenarchaeota occasionally 324 

reaching high relative abundances (Thomas et al., 2016). In the current study, almost the 325 

same phyla were present in healthy and necrosed sponge microbiomes, which were 326 

dominated by Proteobacteria and Poribacteria, although some differences could be 327 

detected at genus level. Acidobacteria Subgroup 10 became dominant in necrosed 328 

samples (Figure 4B and Table S6) compared to healthy samples. This increase was due 329 

to OTU8 (Table S5), which was closely related to an uncultured Acidobacteria clone 330 

(FJ269280.1) isolated from the sponge Xestospongia testudinaria in Indonesia (Montalvo 331 

and Hill, 2011). This finding suggests that this OTU could be shared by taxonomic and 332 

geographically distant sponge hosts and could be a generalist symbiont within the core 333 

sponge microbiome. An increase of Synechoccus genus was also detected in necrosed 334 

sponges (Figure 4B and Table S6). However, one of the main OTUs responsible for the 335 

differences among healthy and necrosed samples in S. fasciculatus was OTU57 related to 336 

Candidatus Synechococcus spongiarum (Slaby and Hentschel, 2017). This OTU was a 337 

characteristic of healthy samples, where it was 3-fold more abundant than in necrosed 338 

ones (Table S5). Candidatus S. spongiarum was previously reported as one of the most 339 
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common symbionts in this sponge and its abundance was related to the increase of 340 

seawater temperature (Erwin et al., 2012). Similar shifts in S. fasciculatus associated 341 

bacteria community composition have been reported previously during the 2010 summer 342 

disease episode in the Mediterranean Sea with higher abundances of Acidobacteria and 343 

lower abundances of Candidatus S. spongiarum (Blanquer et al., 2016), although the 344 

diseases signs observed by these authors (small white spots) were different to the tissue 345 

necrosis reported in the current study. Thus, it seems that an increase of Acidobacteria 346 

Subgroup 10 and a decrease of S. spongiarum could be indicators of heat stress in S. 347 

fasciculatus, although more studies are necessary in order to understand their role in the 348 

sponge diseases development.  349 

 350 

Core microbiome of Anthozoans in the Mediterranean Sea  351 

Previous studies (van de Water et al., 2017; 2018a) have demonstrated that the 352 

microbiome of Mediterranean Anthozoans largely depends on their location and could 353 

influence their hosts’ adaptation to new environmental conditions. Therefore, in order to 354 

ascertain the core microbiome associated with each of the three Anthozoans studied here 355 

(C. caespitosa, O. patagonica and L. sarmentosa) throughout the Mediterranean Sea, we 356 

have analyzed a total of 98 16S rRNA libraries from different Mediterranean locations 357 

(Table S1), including a total of 143,281 OTUs. The analysis indicated that the core 358 

microbiome of these three Anthozoans species in the studied area was composed of 43 359 

OTUs in C. caespitosa, 45 in O. patagonica and 43 in L. sarmentosa, while this core 360 

microbiome throughout the Mediterranean Sea was reduced to 4 OTUs in O. patagonica 361 

(3 Ruegeria OTUs and 1 Pseudovibrio OTU), 4 in C. caespitosa (2 Ruegeria OTUs, 1 362 

Pseudovibrio OTU and 1 Vibrio owensii OTU) and 9 in L. sarmentosa (5 363 

Endozoicomonas OTUs, 1 Ruegeria OTU, 1 BD1-7 clade, 1 Granulosicoccus and 1 364 
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Winogradskyella). Thus, as expected, the increase found in the biogeographical area 365 

studied implies a decrease of the corresponding core microbiome. The presence of 366 

Pseudovibrio OTUs in O. patagonica and C. caespitosa and Endozociomonas OTUs in 367 

L. sarmentosa core microbiomes confirms that they are stable bacterial symbionts that 368 

are less sensitive than other members of the community to the surrounding environment 369 

and they could be good indicators of their hosts’ health. Furthermore, these results 370 

confirm that, although there is a core microbiome of Anthozoans in the Mediterranean 371 

Sea, there is also a local core, as previously observed in Mediterranean gorgonians (van 372 

de Water et al., 2017). Thus, our findings confirm that the definition of the core 373 

microbiome must be associated with the geographical area considered in the analysis.  374 

Importantly, only one OTU, highly similar to Ruegeria OTU119, composed the core 375 

microbiome of these three Anthozoans. As mentioned above, Ruegeria OTU119 376 

increased its abundance in unhealthy samples of all Anthozoans studied here. Although 377 

this genus has been previously related to the spread of coral diseases worldwide (Sekar 378 

et al., 2008; Sunagawa et al., 2009; Apprill et al., 2013) its role in coral microbiome is 379 

still unclear. Indeed, this genus is not only present in the core microbiome of healthy 380 

specimens O. patagonica, C. caespitosa and L. sarmentosa throughout the 381 

Mediterranean Sea, is also commonly associated with a large number of other coral 382 

species around the world (Huggett and Apprill, 2018; Rothing et al., 2020), even in 383 

larvae forms (Sharp et al., 2012; Zhou et al., 2017). It has been recently demonstrated 384 

that species belonging to this genus associated with corals show antibacterial activity 385 

against Vibrio coral pathogens (Miura et al., 2019) and provide essential vitamins like 386 

cobalamin (Karimi et al., 2019). Taken together, this OTU composed the core 387 

microbiome of geographically distant Anthozoans in the Mediterranean Sea and its 388 
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abundance increased in necrotic tissues of their host under heat stress, highlighting the 389 

importance of this genus in marine invertebrate health during MHWs. 390 

Figure legends 391 

Figure 1. Upset plot showing the relationship of OTUs identified in all marine 392 

invertebrates and seawater samples analyzed in this study. A) Graph of the OTUs 393 

average (X axis) in each sample (Y axis). B) Intersection of sets of OTUs in each 394 

sample. The number of OTUs in each set appears above the column, while the sample 395 

shared are indicated in the graph below the column by a point, with the samples on the 396 

left. Intersection in red represent OTUs shared by all hosts and seawater samples and 397 

intersection in blue OTUs shared by the three Antozoan. 398 

Figure 2 (A) Shannon diversity index and (B) OTU richness obtained for host-399 

associated and surrounding water microbiomes based on 16S rRNA gene diversity.  400 

Figure 3. Principle coordinate analysis (PcoA) 2D plot based on microbial communities 401 

associated with Cladocora caespitosa, Oculina patagonica, Leptogorgia sarmentosa 402 

and Sarcotragus fasciculatus tissues clustered using coordinated analysis of the 403 

weighed UniFrac distance matrix. A) The x- and y-axes are indicated by the first and 404 

second coordinates, respectively, and the values in parentheses show the percentages of 405 

the community variation explained. B) The x- and y-axes are indicated by the first and 406 

third coordinates, respectively, and the values in parentheses show the percentages of 407 

the community variation explained 408 

Figure 4. Overview of the composition of the microbiome composition and microbial 409 

community changes related to tissue necrosis signs associated with Cladocora 410 

caespitosa, Oculina patagonica, Leptogorgia sarmentosa and Sarcotragus fasciculatus 411 
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at (A) class and (B) genus level. For full taxonomic information refer to Supplementary 412 

Supplementary Data 1. 413 
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