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Abstract: Influenza virus has significant viral diversity, both through antigenic drift and shift, which 
makes development of a vaccine challenging. Current influenza vaccines are updated yearly to in-
clude strains predicted to circulate in the upcoming influenza season, however this can lead to a 
mismatch which reduces vaccine efficacy. Several strategies targeting the most abundant and im-
munogenic surface protein of influenza, the hemagglutinin (HA) protein, have been explored. These 
strategies include stalk-directed, consensus-based, and computationally derived HA immunogens. 
In this review, we explore vaccine strategies which utilize novel antigen design of the HA protein 
to improve cross-reactive immunity for development of a universal influenza vaccine.  

Keywords: universal vaccine; stalk; headless; chimeric; mosaic; consensus; centralized; epigraph; 
COBRA; ancestral 
 

1. Introduction 
Seasonal influenza epidemics infect between 10–15% of the global population each 

year [1]. Symptoms typically last between 5–15 days and include fever, headache, myal-
gia, and respiratory distress [2]. However, in at-risk patients such as the elderly and im-
munocompromised, influenza infection can result in severe morbidity and even mortality 
[3,4]. In addition to the substantial disease burden from seasonal influenza epidemics, 
there is a significant threat to global health from influenza pandemics. Highlighting this, 
the 2009 H1N1 swine influenza pandemic infected an estimated 24% of the global popu-
lation [5].  

Influenza virus is a negative-sense, single-stranded RNA viruses with a genome of 8 
segments. These segments encode viral proteins including hemagglutinin (HA), neuram-
inidase (NA), nonstructural 1 (NS1), NS2, matrix 1 (M1), M2, nucleoprotein (NP), nuclear 
export protein (NEP), polymerase acid (PA), polymerase basic 1 (PB1) and PB2 [6]. There 
is substantial viral diversity in influenza virus, both through antigenic drift from the er-
ror-prone RNA polymerase and through antigenic shift from reassortment of the seg-
mented viral genome resulting in novel reassorted viruses [6,7]. The major proteins on the 
surface of the virion are HA and NA. Influenza A viruses (IAVs) are classified based on 
18 HA subtypes and 11 NA subtypes while influenza B viruses are classified into two 
lineages, Yamagata and Victoria. The 18 HA subtypes of IAV are divided into phyloge-
netic groups 1 and 2 (Figure 1). H1N1, H3N2, and both influenza B lineages currently 
circulate in the human population and cause seasonal epidemics. The H2N2 subtype 
caused a pandemic in humans in the 1957-1959 influenza seasons, but has, for the most 
part, been absent from the human population ever since [8,9]. Importantly, avian influ-
enza strains H5, H7, and H9 subtypes have infected humans from zoonotic transmission 
but have shown limited transmission between humans [10]. However, the possibility of 
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future mutations which enhance human-to-human transmission led the World Health Or-
ganization to recognize these subtypes as potential pandemic viruses [11–13].  

 
Figure 1. Phylogenetic relationship of the influenza A and influenza B hemagglutinin proteins. 
Group 1 IAVs (blue) and group 2 IAVs (green) phylogenic groups are indicated. Subtypes which 
are known to circulate in humans (or have previously like H2) are circled in red, while subtypes 
which infect avian species but are recognized to have significant pandemic potential for zoonotic 
transmission are circled in yellow. Representative strains for each HA subtype were aligned using 
ClustalW alignment and a maximum-likelihood phylogenetic tree was constructed using 
PhyML3.3 on Geneious 11.1.5. 

Development of influenza vaccines is challenged by the substantial viral diversity of 
influenza virus [14]. The RNA polymerase of influenza virus has no proof-reading activ-
ity, which results in high mutation rates and substantial antigenic drift [15]. Therefore, 
current seasonal influenza vaccines are updated yearly and rely upon global surveillance 
to predict the future circulating seasonal strains [16]. The quadrivalent formulation con-
tains an H1N1, H3N2, and two influenza B viruses, one from the Victoria and Yamagata 
lineage [2]. Current seasonal influenzas vaccines are effective at reducing morbidity and 
mortality from seasonal influenza infections [17], however vaccine effectiveness estimates 
range from 10–60% [16]. Vaccine efficacy relies on the correct prediction and close anti-
genic match between the chosen vaccine strain and the circulating influenza strain [16]. In 
addition, these seasonal vaccines are unlikely to provide protection from novel emergent 
pandemic strains (such as the 2009 H1N1 reassorted swine influenza virus).  

Many strategies have been explored to increase the cross-reactivity of influenza vac-
cines, with the goal of developing a universal influenza vaccine. Importantly, HA is the 
predominant antigenic protein of influenza viruses and antibodies directed at HA are cor-
related with protection against influenza virus infection [18,19]. In this review, we explore 
vaccine strategies which target the HA protein for development of a universal influenza 
vaccine, with a particular focus on novel antigen design of HA to improve cross-reactive 
immunity. 

2. Hemagglutinin Structure and Function 
Hemagglutinin is the most abundant protein on the surface of influenza and func-

tions in viral entry through receptor binding and membrane fusion [6]. HA is also the 
predominant antigenic protein and therefore shows the highest rates of adaptive evolu-
tion out of all the influenza proteins [20]. Although there are high levels of protein se-
quence diversity between the subtypes, the HA protein maintains required elements, such 
as the cleavage site, secretory signal, fusion domain, transmembrane domain, and cyto-
plasmic tail as well as common protein structural motifs [21]. 

HA is a glycoprotein which assembles as a homotrimer on the surface of the virion 
(Figure 2) [6]. Each monomer starts initially as a single polypeptide precursor (HA0) 
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which is later cleaved into HA1 and HA2 subunits by host proteases. This cleavage is 
essential for maturation of the virus to an infectious virion [22]. The HA2 subunit is com-
posed mostly of the stalk region of HA and the C- terminus which has a transmembrane 
domain with a cytoplasmic tail that anchors the HA protein to the envelope of the influ-
enza virion. The HA1 subunit contains the signal peptide at the N-terminus and the glob-
ular head domain. This globular head domain contains the receptor binding site which 
binds sialic acid on the surface of the host cell and facilitates viral entry [7]. Upon inter-
nalization of the virion, acidification of the endosome induces a conformational change of 
HA, which exposes the N-terminus fusion peptide of the HA2 subunit. The fusion peptide 
then facilitates membrane fusion and release of the viral RNA into the cytoplasm of the 
host cell [22,23]. 

 
Figure 2. Hemagglutinin structure and functional regions. (A) The HA trimer of an H3N2 virus 
was downloaded from the Protein Data Bank (PDB: 1HGF; A/X-31) and visualized with PyMOL. 
Two monomers are colored in grey while the third monomer shows the head region in green and 
the stalk region in blue. An enlarged view of the HA monomer is further colored to show the fu-
sion peptide in red, the long alpha helix (LAH) in orange, and the receptor binding site (RBS) on 
the head circled in yellow. (B) A linear schematic of the HA molecular is shown below. The head 
domain (green) is on the HA1 subunit, while the stalk domain (blue) spans the C- and N- terminus 
of HA1 along with most of HA2. At the N-terminus of HA1 is the signal peptide (SP) while at the 
N- terminus of HA2 is the fusion peptide. The transmembrane domain (TMD) and cytoplasmic tail 
(CT) are at the C- terminus of HA2. 

The globular head of influenza also contains the antigenic sites determined for both 
H1 and H3 [7]. Neutralizing antibodies for influenza are typically directed against these 
highly antigenic sites on the globular head and interfere with HA binding to sialic acid 
[7]. The HA protein of influenza virus has the ability to agglutinate red blood cells. Anti-
influenza virus antibodies which bind to HA and inhibit the hemagglutination activity of 
HA are used as a surrogate measure of determining neutralizing antibody titers (HI titers) 
[18]. Human serological studies have demonstrated that HI titers of at least 1:40 correlate 
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with protection from influenza infection [18,19]. Antibodies directed against the stalk do-
main of HA have different mechanisms of action, as discussed below, and cannot be meas-
ured using an HI assay. 

3. Stalk-Directed Strategies  
3.1. General Principles of Stalk-Directed Stratgies 

One strategy to stimulate broadly reactive antibodies against the large diversity of 
HA is to target the more conserved stalk region. The stalk region of HA is occluded on the 
surface of the influenza virion and is therefore under less selective pressure from the im-
mune system [24]. Consequently, the stalk region is more conversed as compared to the 
globular head of HA, although there is still protein sequence variability within subtypes, 
as measured by Shannon entropy (Figure 3). Bioinformatic analysis has shown that the 
stalk domain of HA is evolving at a slower rate than the head domain [25]. Protective 
efficacy mediated by head-directed antibodies primarily work through direct binding to 
HA in order to inhibit viral attachment to sialic acid on host cells, thereby preventing viral 
entry. In contrast, stalk-directed antibodies have been proposed to work through alterna-
tive mechanisms, such as inhibiting conformational changes at low pH to prevent virus 
release from the endosome and preventing maturation of virus by inhibiting cleavage of 
HA0 [26]. Additionally, indirect Fc-mediated functions have been reported, such as anti-
body dependent cell-mediated cytotoxicity (ADCC) and triggering of complement-de-
pendent cytotoxicity (CDC; reviewed in [26]). This has been further supported by results 
indicating that stalk antibodies require Fc-mediated interactions for in vivo efficacy 
[27,28]. While antibodies directed to the head of HA are typically measured by HI titer, 
the non-classical effector functions of stalk-directed antibodies require alternative meth-
ods to measure antibody titers, such as ELISA or ADCC reporter assay. 

 
Figure 3. Conservation of the stalk of hemagglutinin. (A) The conservation scores of the pre-pandemic seasonal H1N1 
(sH1N1) influenza viruses were calculated using the ConSurf server (https://consurf.tau.ac.il/) and visualized using 
PyMOL. Protein sequence variability was determined with the Shannon entropy server (https://www.hiv.lanl.gov/con-
tent/sequence/ENTROPY/entropy_one.html) using ClustalW aligned HA protein sequences from pre-pandemic seasonal 
H1N1 (B; sH1N1), pandemic H1N1 (C; pH1N1), and H3N2 (D). All human isolates with complete HA protein sequences 
(duplicates and lab strains excluded) were downloaded from the Influenza Research Database, resulting in 962 strains for 
sH1N1 (strains up to 2009), 7423 strains for pH1N1 (strains during and after the 2009 pandemic), and 9043 strains for 
H3N2. The stalk, head, and fusion peptide are colored in blue, green, and red, respectively. 
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Stalk-directed antibodies have shown cross-reactivity within subtypes and between 
multiple subtypes within a group and even between group 1 and 2 viruses. A comprehen-
sive list of stalk-directed antibodies discovered have been previously described [29]. Re-
searchers have explored many vaccination strategies to induce these stalk-directed anti-
bodies (Figure 4), however induction of antibodies against the immunosubdominant stalk 
domain remains challenging in the presence of the immunodominant head domain. Ef-
forts to overcome this challenge include development of “headless” HA constructs, hy-
perglycosylation of the head, expression of just the long alpha helix (LAH) domain of the 
stalk, and development of chimeric and mosaic HAs. 

 
Figure 4. Vaccine strategies to increase stalk-directed immunity. Strategies used to induce stalk-directed immunity, such 
as hyperglycosylation of the HA [30–32], development of a headless HA [33–47], expression of the LAH fragment alone 
[48–50], and chimeric [51–62] and mosaic [63,64] HA proteins, have been illustrated and briefly described here. 

3.2. Design of Stalk-Directed Vaccines 
3.2.1. Headless HA Constructs 

One strategy to increase antibodies directed to the immunosubdominant stalk region 
is through removal of the immunodominant head domain creating a “headless” HA. Im-
portantly, HA is a metastable protein which undergoes extensive conformation changes 
at low pH during the infection cycle of influenza [35]. Removal of the HA1 head domain 
destabilizes the HA2 structure resulting in loss of antibodies targeting the native confor-
mational epitopes. This was demonstrated in the first reported experiment developing a 
headless HA in 1983, which removed the HA1 domain of HA through chemical treatment 
with acid and a reducing agent [33]. However, this vaccine did not show protective effi-
cacy, likely due to denaturation of conformational stalk epitopes. Other efforts to express 
only the HA2 subunit in systems such as recombinant baculovirus or E. coli have resulted 
in stalk antigens which lack the native confirmation and are not recognized by neutraliz-
ing anti-stalk antibodies [34–36]. 

Multiple strategies have since been explored to express the HA stalk region in a na-
tive-like, neutral-pH conformation. One group stabilized the stalk through inserted spe-
cific mutations intended to destabilize the low pH conformation of HA2 thereby pushing 
the protein to a neutral pH conformation. This approach has been applied to both H1 and 
H3 proteins [37,38]. The stabilized HA2 protein was expressed in E. coli and folded into a 
neutral-pH conformation. However, mice vaccinated twice with the stabilized H1 stalk 
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protein were protected from mortality, but not morbidity (~18% weight loss), after chal-
lenge with a lethal homologous strain [38]. Another group stabilized the H1 or H3 HA2 
domain through inclusion of stabilizing linker peptides and vaccinated mice with two 
doses of DNA protein expression plasmids followed by a virus-like particle (VLP) formu-
lation [65]. Vaccination with this headless HA completely protected mice from a challenge 
with a homologous virus strain (~5% weight loss) and induced greater in vitro heterosub-
typic cross-reactive antibodies. 

Other groups have aimed to express stable headless HA in a trimer conformation 
either as a soluble protein [39–43] or on the surface of virus-like particles (VLP) [44] or 
nanoparticles [45–47]. One group developed a soluble “mini-HA” H1 stalk trimer through 
multiple structure-based mutations [39]. Three immunizations with this “mini-HA” H1 
stalk completely protected mice from weight loss and death after lethal challenge with 
either heterologous H1 or heterosubtypic H5 influenza virus. Sera from these mice had 
both neutralizing and ADCC effector functions. Another group stabilized an H1 stalk tri-
mer through six iterative cycles of structure-based mutations and displayed the stalk on 
the surface of a nanoparticle [45]. Three immunizations with these nanoparticles com-
pletely protected mice from heterosubtypic challenge with H5 influenza virus but showed 
only partial protection in ferrets. Vaccinated mice and ferrets showed strong in vitro anti-
body binding against group 1 subtypes H1, H2, H5, and H9 with some weak responses to 
group 2 subtypes H3 and H7. However, there was limited neutralizing antibodies de-
tected against heterosubtypic strains, indicating that protection is likely mediated by other 
stalk antibody-dependent mechanisms, such as ADCC or CDC. This stabilized H1 trimer 
nanoparticle vaccine has since progressed into a phase I clinical trial with 52 participants 
and is expected to conclude December 2021 (NCT03814720). 

3.2.2. Chimeric HA  
To overcome the instability of headless stalk constructs while still boosting stalk-di-

rected antibodies, a chimeric HA protein prime/boost strategy was developed. In this 
strategy, multiple sequential immunizations of chimeric HA proteins containing the same 
stalk region, but ‘exotic’ HA heads, results in a boosting of stalk-directed immunity. A 
major benefit of this approach is that the full-length HA is expressed, thereby presenting 
the stalk domain in the correct conformation. This chimeric strategy has been explored for 
use as H1 [51–58], H3 [59], and influenza B virus vaccines [60]. 

To boost stalk immunity against H1, mice were sequentially vaccinated with three 
doses of chimeric HA which all had the same H1 stalk but head regions from H9, H6, or 
H5 [52]. Mice were completely protected from lethal challenge with three homosubtypic 
H1 viruses. The authors also explored heterosubtypic protection and, to rule out the con-
tribution of head-directed antibodies, immunized mice with a similar chimeric prime 
boost strategy but replaced the head domain of the corresponding challenge strain with a 
H1 head instead. Vaccination with this strategy completely protected mice from death 
after lethal heterosubtypic challenge with H5, H6, and H3 viruses, however weight loss 
data is not reported, although the authors state that only minimal weight loss was ob-
served. Efficacy of this vaccine was demonstrated in a preclinical ferret model, where vac-
cination with the chimeric prime/boost strategy reduced viral nasal wash titers after chal-
lenge with a heterologous H1 virus [51] and heterosubtypic H6 virus [57], and demon-
strated durability of protection against homologous H1 challenge up to 1 year after im-
munization [58]. Delivery of the H1 chimeric antigens has been explored utilizing multiple 
vaccine platforms, including a DNA prime with recombinant protein boosts [52], recom-
binant live-attenuated virus and inactivated virus [55–57], vesicular stomatitis virus (VSV) 
viral vectors [51,53], and adenovirus vectors [51]. 

Importantly, results from a phase I clinical trial of 65 participants have been reported 
[61,62]. Participants received two immunizations with different combinations of chimeric 
HA live-attenuated virus, inactivated virus, or inactivated virus plus adjuvant vaccines. 
Vaccination was found to be safe and to successfully induce anti-stalk H1 antibodies. The 
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best results were observed in participants who received two doses of chimeric HA inacti-
vated adjuvanted virus, in which anti-stalk antibodies persisted at ~4-fold above baseline 
for up to 1.5 years. Mice who received a passive transfer of sera from vaccinated partici-
pants showed a trend towards reduced weight loss as compared to mice who received 
sera from the placebo group after challenge with recombinant H1 stalk virus. This clinical 
trial supports the ability of this chimeric HA vaccine strategy to induce anti-stalk antibod-
ies in humans, however clinical trials are needed to demonstrate the efficacy of these stalk-
directed antibodies in protecting humans from infection. While the most progress has 
been made using the H1 subtype vaccine, this strategy has also been explored for H3 [59] 
and influenza B [60] with promising results. Combining these candidate immunogens into 
a multivalent vaccine has not yet been explored. 

3.2.3. Hyperglycosylated HA 
Another strategy to increase stalk-specific responses is to hyperglycosylate the HA1 

head region in order to ‘mask’ the immunodominant epitopes, thereby directing the re-
sponse to the stalk [30]. Three immunizations of mice with a hyperglycosylated H1 protein 
induced stronger anti-stalk antibodies against the homologous H1 stalks than a wild type 
HA [32].The hyperglycosylated H1 also induced greater cross-reactive antibodies to two 
heterologous H1 viruses and a heterosubtypic H5 virus. Hyperglycosylated H1 vac-
cinated mice were protected from mortality, but not morbidity (~10% weight loss), after 
challenge of mice with a chimeric H1 stalk virus. 

This strategy has also been applied to target the H5 stalk [30,31]. Immunization of 
mice with a replication-defective adenovirus vector expressing a hyperglycosylated H5 
clade 1 HA and boosted with recombinant protein induced greater cross-reactive antibod-
ies against three heterologous clade 2 viruses as compared to a wildtype virus [31]. While 
this vaccination induced homosubtypic antibodies against H5, it did not result in signifi-
cant antibody responses to other group 1 viruses (H1, H3, H9). Vaccination with hyper-
glycosylated H5 protected mice from mortality, but not morbidity (~13% weight loss), af-
ter challenge with a heterologous clade 2 virus, with no significant difference in weight 
loss observed between the hyperglycosylated H5 or wildtype HA vaccine. Therefore, 
while hyperglycosylation of the HA1 head does appear to increase anti-stalk antibodies 
as compared to the wildtype HA, vaccination does not protect mice from severe influenza 
morbidity, even against a homosubtypic challenge. 

3.2.4.“Mosaic” HA  
Another strategy to silence the immunodominance of the HA1 head subunit and di-

rect the immunity to the stalk region involves substitution of the immunodominant anti-
genic sites on the HA1 head, yielding a “mosaic” HA1 region. One strategy silenced the 
immunodominant antigenic sites of the H3 head by replacing them with amino acid se-
quences from an avian HA protein (H10 or H14) [63]. Mice vaccinated with this recombi-
nant mosaic H3 protein induced more H3 stalk-directed antibodies than the commercial 
inactivated seasonal vaccine. Passive transfer of sera from mice vaccinated with this adju-
vanted mosaic recombinant H3 protein protected mice from death after lethal challenge 
with two heterologous H3 viruses, however mice still experienced severe weight loss 
(~20% weight loss). 

This strategy was also applied to an influenza B vaccine, where immunodominant 
antigenic sites of an influenza B Yamagata lineage virus was replaced with amino acid 
sequences from H5, H8, H11, or H13 [64]. Vaccination of mice with a DNA prime and two 
recombinant protein boosts of this mosaic head protein resulted in complete protection 
from weight loss and death after challenge with a lethal Yamagata and Victoria strain. 
Antibodies induced after vaccination with the mosaic HA showed cross-reactive ELISA 
antibodies against three Yamagata lineage viruses and three Victoria lineage viruses. No 
HI antibodies or neutralizing antibodies were detected, but there were antibodies detected 
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through an ADCC reporter assay, indicating that efficacy of this mosaic vaccine was con-
ferred primarily through Fc-mediated effector functions. 

3.2.5. LAH Fragment 
In an attempt to overcome the challenges with expression of a stable headless stalk 

and the immunodominance of the HA1 head, some strategies instead target only a small 
portion of the stalk region, such as the long alpha helix (LAH) or fusion peptide. One 
strategy conjugated the LAH of H3 to a carrier protein [48]. Two immunizations of mice 
with this LAH vaccine showed complete protection from death after a lethal challenge 
with heterologous H3 virus, however mice still exhibited severe weight loss (~15% weight 
loss). This LAH vaccine only partially protected from death after lethal heterosubtypic H5 
challenge and did not protect against lethal heterosubtypic H1 challenge. There was sim-
ilar findings by another group, which expressed the LAH and fusion peptide from H5 in 
E. coli and refolded the protein from inclusion bodies [50]. Mice immunized with this pro-
tein were completely protected from weight loss and death after challenge with the ho-
mologous H5 virus but only partially protected from death after challenge with a heterol-
ogous H5 virus or a heterosubtypic H1 virus. Additionally, vaccination of mice with the 
LAH of H1 expressed on a hepatitis B virus-like particle (VLP) demonstrated complete 
protection from mortality after challenge with a lethal homologous H1 virus, heterologous 
H1 virus, and heterosubtypic H9 virus, although mice still showed severe weight loss of 
~15%, 7%, and 19%, respectively [49]. Therefore, although vaccination with the LAH does 
increase heterosubtypic protection, the morbidity after challenge is often still severe. 

3.3. Challenges Facing Stalk-Directed Strategies 
Although these stalk-directed vaccination strategies do induce greater cross-reactive 

immunity, the weak immunogenic nature of the stalk domain necessitates as many as 
three immunizations to induce this immunity. In addition, animals still exhibit severe 
morbidity even after challenge with homosubtypic strains, often losing more than 10% of 
their initial starting weight, although they are protected from mortality. This is likely due 
to the Fc-mediated mechanism of action found to be a large contributor to protection in 
many stalk-directed strategies, as these mechanisms are not neutralizing but rather con-
tribute to viral clearance after infection [26]. This indicates that although the breadth of 
reactivity is increased with these stalk-directed approaches, the robustness of the protec-
tion is diminished [66]. 

Additionally, although the stalk region of HA is more conserved than the head re-
gion, there is still variability within subtypes (Figure 4) and the stalk region is still suscep-
tible to selective pressures from the immune system [67]. This is highlighted by the dis-
covery that pre-existing stalk-directed antibody titers select for a stalk-antibody escape 
mutant after human influenza challenge [67]. Furthermore, while these stalk-directed an-
tibodies do confer protection from mortality in animal models, there is still conflicting 
literature about the efficacy of these anti-stalk antibodies in humans. One study utilizing 
a human household transmission experimental design found a correlation between HA 
stalk-directed antibodies and protection from infection [68]. In contrast, another study us-
ing human samples demonstrated that there was no significant correlation between stalk 
antibodies and protection from influenza virus infection after adjustment for head-specific 
antibodies [69]. In addition, a phase II trial examining the therapeutic efficacy of a mono-
clonal stalk-directed antibody showed no clinically significant effect on influenza disease 
[70]. These conflicting results draw into question the protective efficacy of these anti-stalk 
antibodies in humans. 

4. Consensus-Based Strategies 
4.1. General Principles of Consensus-Based Stratgies 
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Unlike stalk-directed strategies, consensus-based approaches target the full-length 
HA protein and aim to design an HA protein which is broadly representative of the di-
verse HA population. These HA genes are computationally designed and therefore are 
synthetic in nature. Although the central concept behind consensus-based strategies is 
similar, many different approaches have been developed (Figure 5). Importantly, unlike 
stalk-directed strategies, consensus-based approaches typically induce HI antibodies di-
rected against the head region of HA, which is generally accepted as a correlate of protec-
tion against influenza infection in humans [29,71]. Consensus-based approaches are typi-
cally developed for a single subtype of influenza, with the intention of expanding the ap-
proach to multiple subtypes and combining the vaccine constructs into a single multiva-
lent vaccine.  

 
Figure 5. Consensus-based antigen design strategies. Consensus strategies are designed by aligning the target HA protein 
sequence population and determining the most common amino acid at each position. ‘Consensus’ immunogens are de-
signed using all the HA protein sequences from the phylogenetic tree. ‘Micro-consensus’ immunogens are created by 
taking a consensus of each major branch of the phylogenetic tree and delivering the immunogens as a cocktail. ‘Central-
ized’ immunogens aim to reduce sampling bias by taking a representative wildtype HA from each branch of the phyloge-
netic tree and designing a consensus of those HA protein sequences. ‘COBRA’ immunogens also aim to reduce sampling 
bias and use multiple rounds of consensus building. 

4.2. Design of Consensus-Based Vaccines 
4.2.1. Consensus Hemagglutinins 

Consensus HA genes are constructed by taking the most common amino acid at each 
position of the HA after aligning a protein sequence population. A consensus strategy has 
been explored by multiple groups to target highly pathogenic avian influenza (HPAI) 
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H5N1 virus [72–75], which poses a substantial pandemic threat. In addition, H5N1 has 
high viral diversity, with multiple clades and subclades [76]. Two immunizations of mice 
with a consensus H5 gene expressed in a DNA plasmid induced cross-reactive antibodies 
against multiple different H5 viruses from two clades [72]. Vaccination conferred com-
plete protection from morbidity and mortality after challenge with two H5 clades but only 
partial protection after challenge with more distantly related H5 viruses. Additionally, a 
consensus H5 protein expressed in VLPs completely protected chickens from lethal chal-
lenge with two H5 viruses from separate clades [74]. Importantly, these consensus immu-
nogens are designed using all H5 protein sequences in the database, which can lead to 
geographical sampling/sequence bias and result in a consensus HA that might not accu-
rately reflect the HA diversity of the population. 

4.2.2. Micro-Consensus Hemagglutinin 
While other consensus designs develop a single consensus HA per subtype, Elliott et 

al. (2018) explored the efficacy of four micro-consensus immunogens to improve cross-
reactivity to the H3 subtype [77]. These four micro-consensus genes were expressed in a 
DNA plasmid and administered twice as cocktail. Vaccination of mice with this cocktail 
induced strong antibody responses against 8 strains circulating between 1968 and 2014 as 
measured by ELISA and induced significant HA-specific cellular immunity. Vaccination 
also protected mice from lethal challenge with two H3N2 strains, with 5–10% weight loss. 
Importantly, this study finds that a cocktail of consensus immunogens might improve 
cross-reactivity of highly diverse HA populations, such as the H3 subtype. 

4.2.3. Centralized Hemagglutinins  
Another consensus-based strategy aims to develop a synthetic HA which localizes to 

the central node of the phylogenetic tree, thereby minimizing genetic and antigenic dif-
ferences of unmatched strains. An important limitation to consensus strategy described 
above is the threat of sampling bias leading to generation of a synthetic HA gene which 
does not accurately represent the diversity of the population and is biased towards an 
overrepresented geographical location. Weaver et al. (2011) overcame this by developing 
a centralized H1 gene using selected representative wildtype HA protein sequences from 
each major branch of the phylogenetic tree and designing a consensus of those sequences 
[78]. In this way, each branch is equally represented to prevent sampling/sequencing bias 
and, as a result, this synthetic HA gene localizes to the central node of the tree. This cen-
tralized H1 gene was expressed in a replication-defective adenovirus vector and vaccina-
tion of mice resulted in better cross-protection against three H1 strains as compared to 
mismatched wild type HAs or traditional influenza vaccines after lethal influenza chal-
lenge [78]. This strategy was then applied to develop H3 and H5 centralized genes which 
also demonstrated improved homosubtypic cross-protection [79]. Importantly, a combi-
nation of H1, H2, H3, and H5 centralized genes into a single multivalent vaccine did not 
diminish the increased cross-reactive protection [80]. A single immunization at the high 
dose of this multivalent formulation demonstrated complete protection from morbidity 
and mortality after lethal challenge with three H1 strains, three H5 strains, and one H3 
strain with partial cross-protection against another two H3 strains. This validates the ap-
proach of designing multiple subtype-specific broadly reactive HA immunogens which 
can then be combined into one multivalent vaccine without reduction in cross-reactivity 
or interference between immunogens. 

4.2.4. COBRA Hemagglutinins 
Like the centralized HA design, another antigen design method called computation-

ally optimized broadly cross-reactive antigen (COBRA) aims to minimize sampling/se-
quencing bias in the target population. The COBRA strategy achieves this through multi-
ple rounds of consensus generation. A COBRA vaccine strategy has been developed and 
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tested for H1 [81–85], H2 [86], H3 [87,88], H5 [89–96], and swine H1 [97]. These COBRA 
immunogens have primarily been expressed using a VLP platform but have also been 
explored using ferritin nanoparticles [84] and recombinant live influenza virus [83]. This 
strategy was first explored as a H5 vaccine targeting only clade 2 and was tested in mice, 
ferrets [89,90], chickens [95], and non-human primates (NHP) [91]. Vaccination of NHP 
induced cross-reactive HI antibody titers against multiple clade 2 viruses and against a 
clade 1 and 7 influenza virus. This strategy was then expanded to target the entirety of the 
H5 diversity by using a cocktail of three COBRA immunogens designed for human clade 
2, human and avian clade 2, and all H5 clades [92]. Vaccination of mice with two doses of 
this cocktail induced protective HI titers to twenty-five H5 viruses from eleven H5 
clades/subclades, however cross-protection was only evaluated after immunization with 
individual COBRA immunogens and was not evaluated after vaccination with the cock-
tail.  

The COBRA strategy was also evaluated for protection against seasonal and pan-
demic H1 strains [82]. Nine different COBRA H1 immunogens were designed and four 
immunogens were selected for further investigation based on their increased cross-reac-
tivate HI titer and protection. These immunogens were evaluated in sequential 
prime/boost immunizations strategies or as a heterologous cocktail. Results found that the 
broadest HI titers were induced by a combination of COBRA immunogens designed using 
both seasonal and pandemic H1 strains, with a trivalent cocktail demonstrating protective 
HI titers to ten of the fifteen H1 strains [82]. This increased HI cross-reactivity extended to 
a pre-immune ferret model [81]. However, cross-protection was only evaluated against a 
single pandemic strain.  

A similar strategy was used for the H3 subtype, in which seventeen CORBA immu-
nogens were designed with only four of these immunogens showing promising HI titers 
in mice [87]. The four immunogenic H3 COBRA immunogens were further explored in a 
ferret model [88]. Although vaccination of naïve mice showed promising cross-reactivity, 
vaccination of naïve ferrets showed low HI titers and narrow cross-reactivity, with the 
most cross-reactive immunogen showing protective HI titers to only six of the thirteen H3 
strains. In contrast, ferrets that were pre-immune to a historical H3 strain prior to vaccina-
tion showed increased cross-reactive HI titers against the entire panel of 13 viruses after 
vaccination with COBRA immunogens as compared to vaccination with a wildtype HA. 
This led the authors theorize that, although there was limited efficacy in naïve ferret, the 
COBRA immunogens were more effective than wildtype HA at recalling broad cross-re-
active memory B cells from previous influenza infection. Therefore, while this H3 COBRA 
vaccine might boost cross-reactive immunity in pre-immune adults, more research needs 
to be performed to examine potential efficacy in naïve populations, such as children. In 
addition, although the COBRA strategy has been explored for multiple influenza subtypes 
individually, COBRA has not yet been explored as a multivalent formulation targeting 
multiple subtypes. 

4.3. Challenges Facing Consensus-Based Approaches 
Consensus-based approaches target the full-length HA protein and therefore typi-

cally induce antibodies directed against the variable head region. For this reason, these 
vaccines are subtype-specific and do not show the cross-reactivity between subtypes of 
the same phylogenetic group, as is observed in stalk-directed strategies discussed above. 
However, antibodies induced by these consensus-based approaches have improved cross-
reactivity within a subtype and often demonstrate HI activity which is a correlate of pro-
tection against influenza infection in humans [29,71]. Therefore, what these approaches 
lack in breadth of immunity between subtypes, they make up for in robustness of protec-
tion within subtypes. 

Consensus-based influenza vaccines based on the HA protein are a more recent con-
cept than the stalk-directed strategies and therefore have not progressed to human clinical 
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trials yet. In addition, unlike stalk-based strategies, little work has been performed to eval-
uate the potential for escape mutants from pre-existing immunity induced by consensus 
vaccines. The subtype-specific immunity induced by consensus vaccines will necessitate 
a multivalent cocktail of HA immunogens to protect against the multiple subtypes cur-
rently circulating in humans. Further work to demonstrate that a multivalent vaccine con-
taining many immunodominant antigenic sites from different subtypes does not reduce 
efficacy through interference. However, the centralized HA approach has shown that vac-
cination of mice with a quadrivalent vaccine showed no reduction in efficacy, indicating 
that this a promising strategy to induce a robust protective immune response against mul-
tiple subtypes relevant to human health. 

5. Computational Algorithms for Immunogen Design 
5.1. General Prinicples of Computational Algorithm Approaches 

Similar to consensus-based strategies, approaches using computational algorithms 
target the full-length HA protein and aim to develop a synthetic HA which is broadly 
representative of the diverse influenza virus population. However, these strategies use 
complex computational algorithms in order to logically design a broadly reactive HA im-
munogen in silico. 

5.2. Design of Computional Algorithm Vaccines 
5.2.1. Ancestral Hemagglutinin 

A phylogenetic algorithm called ANCESCON reconstructs the ancestral HA gene us-
ing marginal and joint reconstruction methods [98]. Ducatez et al. (2011) used this algo-
rithm to develop a cross-reactive H5 vaccine, in which the putative ancestral gene for 
avian H5 was predicted and expressed in a recombinant, replication-competent influenza 
virus [76]. Vaccination of ferrets with the ancestral gene induced in vitro cross-reactivity 
to five H5 clades and protected ferrets from death after lethal challenge with three H5 
viruses from two clades. However, a wild type H5 reference virus also showed similar 
levels of cross-reactive immunity and protection. Crucially, this study demonstrated a 
proof-of-concept that synthetic HA genes could be expressed using an inactivated recom-
binant virus which is a currently licensed influenza vaccine platform. 

This ANCESON algorithm was also used to develop an ancestral avian H9 immuno-
gen that was expressed in a Modified Vaccinia Ankara (MVA) vector [99]. Intramuscular 
vaccination of chickens resulted in poor cross-reactive HI titers, with measurable titers 
against only one of the ten avian influenza virus strains and did not reduce viral shedding 
after challenge. Therefore, although reconstruction of the ancestral HA gene aids in our 
understanding of the evolutionary processes underlying the HA protein, the improved 
cross-reactive efficacy of these immunogens has yet to be demonstrated. In addition, phy-
logenetic uncertainty from long branches and genetic drift might weaken this approach 
[100]. 

5.2.2. Mosaic Algorithm 
Another algorithm, called the Mosaic Vaccine Designer tool, aims to maximize the 

potential epitope coverage of the target viral population [101,102]. A graphic visualization 
of the algorithm approach has been previously described [102]. Simplified, full-length HA 
protein sequences undergo repeated rounds of in silico recombination and the recombi-
nant HA protein which has the best epitope coverage of the original target population is 
selected as a single mosaic HA immunogen. Crucially, this algorithm results in a mosaic 
immunogen that typically has better epitope coverage than a consensus strategy. Mosaic 
HA immunogens have been designed for H5 [103–106] and H1 [107]. A mosaic H5 ex-
pressed in MVA completely protected mice from morbidity and mortality after lethal vi-
rus challenges with four H5 viruses from three clades and provided protection from mor-
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tality, but not morbidity (~10% weight loss), after challenge with a heterosubtypic H1 vi-
rus [103]. T-cell depletion and passive transfer studies found that homosubtypic protec-
tion is primarily from cross-reactive antibodies, while the heterosubtypic protection to H1 
is from cross-reactive CD8+ cells [104]. Vaccination with the mosaic H5 immunogens was 
also shown to increase early viral clearance in the lungs of NHP after challenge with H1 
virus [105] and eliminate viral shedding in chicks after challenge with H5 virus [106]. This 
mosaic algorithm was also used to design a H1 mosaic immunogen which was expressed 
in a replication-defective adenovirus vector [107]. Vaccination of mice showed increased 
cross-reactive ELISA antibodies and T-cell responses to a panel of four H1 viruses as com-
pared to mismatched wild type HA immunogens. In addition, the high dose immuniza-
tion of mosaic H1 provided complete protection from morbidity and mortality after chal-
lenge with three H1 viruses. These studies demonstrate the efficacy of a computational 
algorithm which creates a vaccine antigen optimized to include the most common 
epitopes from the target population. 

5.2.3. Epigraph Algorithm  
Similar to the mosaic algorithm, the epigraph algorithm aims to design vaccine anti-

gens which contain the most common epitopes from the target population, thereby repre-
senting the diversity of HA protein sequences and biasing towards antigen recognition by 
the immune system [108,109]. The epigraph algorithm uses a faster graph-based approach 
and creates a user-defined cocktail of computationally designed HA proteins. A graphic 
visualization of the algorithm approach has been previously described [108]. The epi-
graph algorithm has been used to design a swine H3 immunogen, with the goal of reduc-
ing the pandemic potential of H3 from zoonotic transmission events [110]. This epigraph 
HA was expressed in a replication-defective Adenovirus vector and vaccination of mice 
induced increased cross-reactive antibodies as compared a wildtype HA or the commer-
cial vaccine, with protective HI titers to fourteen of the twenty diverse swine H3 influenza 
virus strains. Importantly, this improved cross-reactive antibody response induced by the 
swine H3 Epigraph immunogens was also seen in swine, the target animal of this vaccine. 
Of interest, this swine H3 epigraph vaccine also induced cross-reactive antibodies with 
human H3 strains, suggesting the possibility of reduced reverse zoonotic events. Chal-
lenge studies in mice showed greater cross-protective efficacy after challenge with three 
swine H3 strains, however challenge studies in swine are needed to demonstrate this pro-
tective efficacy in the target animal. The broad cross-reactive immunity induced by this 
vaccine demonstrated the efficacy of a cocktail of computationally designed HA immu-
nogens.  

5.3. Challenges Facing Computational Algorithm Approaches  
Computational algorithm approaches face many similar challenges as the consensus-

based approaches, such as the possibility of escape mutants and subtype specific immun-
ity induced by vaccination. Computational power continues to progress, and conse-
quently computational algorithm approaches are the most recent advances in novel anti-
gen design for influenza vaccines. Therefore, these approaches are still in their infancy 
and further research is needed to demonstrate their efficacy. However, the promising re-
sults discussed above lend support towards a computational algorithm improving cross-
reactive immunity against the HA protein of influenza.  

6. Perspectives  
In this review we have explored multiple novel immunogen design strategies which 

aim to improve cross-reactive immunity against the HA protein for the development a 
universal influenza vaccine. These strategies target either the more conserved stalk region 
of HA or aim to design a synthetic full-length HA which is representative of the influenza 
viral diversity, either through a consensus-based approach or computational algorithms. 
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Some of these strategies have been explored in depth, with headless stalk constructs and 
chimeric HA progressing to human clinical trials. Other strategies are more recently de-
veloped but still present a promising approach towards a universal influenza vaccine. 
Importantly, the strategies presented here all utilize different vaccine platforms, from vi-
ral vectors, to purified recombinant protein, to VLPs. The vaccine platform and immun-
ization strategy can have a profound effect on the cross-reactive immunity induced by 
vaccination, which therefore makes these strategies difficult to compare head-to-head. 
However, in general, stalk-directed strategies induce antibodies which cross-react with 
multiple subtypes within a phylogenetic group and protect from mortality, but still result 
in significant morbidity after challenge. In contrast, full-length synthetic HA vaccines in-
duce only subtype-specific immunity, but protect mice from both morbidity and mortal-
ity. This is likely due to the different mechanisms of action of stalk-directed versus head-
directed antibodies. Therefore, a tradeoff is made in which increased cross-reactivity leads 
to a reduction in the robustness of protection. Overall, many of these novel antigen design 
strategies have shown promise in improving the cross-reactive immunity to influenza and 
should be further explored as a universal influenza vaccine. 
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