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Abstract

Published analysis of genetic material from field-collected tsetse (Glossina spp, primarily

from the Palpalis group) has been used to predict that the distance (δ) dispersed per genera-

tion increases as effective population densities (De) decrease, displaying negative density-

dependent dispersal (NDDD). Using the published data we show this result is an artefact

arising primarily from errors in estimates of S, the area occupied by a subpopulation, and

thereby in De. The errors arise from the assumption that S can be estimated as the area (Ŝ)

regarded as being covered by traps. We use modelling to show that such errors result in

anomalously high correlations between d̂ and Ŝ and the appearance of NDDD, with a slope

of -0.5 for the regressions of log(d̂) on log(D̂e), even in simulations where we specifically

assume density-independent dispersal (DID). A complementary mathematical analysis con-

firms our findings. Modelling of field results shows, similarly, that the false signal of NDDD

can be produced by varying trap deployment patterns. Errors in the estimates of δ in the

published analysis were magnified because variation in estimates of S were greater than for

all other variables measured, and accounted for the greatest proportion of variation in d̂.

Errors in census population estimates result from an erroneous understanding of the rela-

tionship between trap placement and expected tsetse catch, exacerbated through failure to

adjust for variations in trapping intensity, trap performance, and in capture probabilities

between geographical situations and between tsetse species. Claims of support in the litera-

ture for NDDD are spurious. There is no suggested explanation for how NDDD might have

evolved. We reject the NDDD hypothesis and caution that the idea should not be allowed to

influence policy on tsetse and trypanosomiasis control.

Author summary

Published analysis of genetic material from field-sampled tsetse (Glossina spp) has been

used to suggest that, as tsetse population densities decrease, rates of dispersal increase–
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displaying negative density-dependent dispersal (NDDD), perhaps in all tsetse species. It

is further suggested that tsetse control operations might, as a consequence of NDDD,

unleash enhanced invasion of areas cleared of tsetse, prejudicing the long-term success of

control campaigns. We demonstrate that NDDD in tsetse is an artefact consequent on

multiple errors of analysis and interpretation. The most serious of these errors stems from

a misunderstanding of the way in which traps sample tsetse, resulting in large errors in

estimates of the areas covered by the traps, and occupied by the subpopulations being

sampled. Our modelling studies show that these errors can produce the false signal of

NDDD, even in situations where DID is assumed. Errors in census population estimates

are made worse through failure to adjust for variations in trapping intensity, trap perfor-

mance, and in capture probabilities between geographical situations, and between tsetse

species. We reject the NDDD hypothesis and caution that the idea should not be allowed

to influence policy on tsetse and trypanosomiasis control.

Introduction

Using critical assumptions about gene flow, a model developed by Rousset [1], and analyses of

trap samples of tsetse flies (Glossina spp), de Meeûs et al. [2] claimed to have found strong sup-

port for the hypothesis that the dispersal distance per generation, in tsetse, increases as a

power function of decreasing population density. The claim was based on genetic analyses of

material from five different species of tsetse, sampled using traps in ten studies in six different

countries in West and East Africa [3–11]. De Meeûs et al. concluded that negative density-

dependent dispersal (NDDD) probably applied to all tsetse species [2]. They predicted that

mean dispersal distance (δ) would increase by 200-fold when the effective population density

(De) of adult tsetse decreased from about 24,000 to 1 per square kilometre, the order of density

decline commonly associated with tsetse control operations [12]. This led them to warn that

such control measures could unleash enhanced invasion of areas cleared of tsetse, so prejudic-

ing the long-term success of tsetse control campaigns. That, in turn, prompted them to suggest

the necessity of using "area-wide and/or sequential treatments of neighboring sites" to counter

the added invasion, and they implied that small control operations risk doing more harm than

good.

The term "area-wide" applied to control campaigns is jargon for the eradication of whole

infestations of tsetse up to natural barriers to reinvasion and is commonly associated with rec-

ommendations for the use of the costly and complex sterile insect technique [13]. It would be

dismaying if area-wide control were indeed necessary, since small-scale operations run by

local communities offer an economically viable way forward [14–16]. Moreover, if NDDD

were a reality in tsetse, then it would imply risk even for the many large and seemingly success-

ful operations which have already cleared tsetse from tens of thousands of square kilometres,

but which have fallen short of tackling the whole fly-belt [17]. The implication is that such sig-

nal successes are in danger of becoming disasters due to long-term evolution of increased inva-

sion rates [18]. All of these considerations are of added importance since the protocol

developed for tsetse by de Meeûs et al. [2], henceforth called the “NDDD protocol”, is poten-

tially applicable to any trappable creature, including many insect vectors of neglected tropical

diseases. Hence, if the protocol is valid it should be extended to all of these vectors to assess

whether NDDD must be considered when formulating policies for their control.

Recognising the potential importance of the NDDD hypothesis, de Meeûs et al. called for it

to be field tested [18]. The clearest and most direct means of doing this would be via a set of
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mark, release and recapture experiments to assess both the density of tsetse and their rate of

displacement in a variety of locations before and after control. Unfortunately, such experi-

ments would not only be prohibitively costly and protracted, but would also be effectively

impossible–given the problem of obtaining meaningful numbers of recaptures in places where

tsetse density is low. Hence, the only workable option for field tests would seem to be yet more

genetic analyses of the sort already made [2], effectively involving nothing better than getting

the analytical procedure to check itself.

Given the problems of conducting pertinent experiments, the only available means we have

of checking the NDDD hypothesis is to examine closely the medley of procedures, assump-

tions, arguments and citations on which it depends. We note immediately that, whereas it was

predicted that NDDD applies to all tsetse species [2], the evidence for it is based largely on

tsetse of the Palpalis group. There was only one representative of the Morsitans group, G. palli-
dipes, and no Fusca group species. There seems, thus, to be no a priori support for the claim

that NDDD probably applied to all tsetse [2]. Moreover, modelling studies have already shown

that, even if the NDDD hypothesis were correct, threats to tsetse control would be minimal

[19]. It remains to show, however, whether there is any valid evidence that NDDD in tsetse

exists at all, and hence whether it and its associated protocol should feature in policies of tsetse

research and control, or be addressed in the study, control and management of other

creatures.

Accordingly, we dissect here the evidence adduced by de Meeûs et al. [2] in favour of

NDDD in tsetse. We show that the methods they used to estimate parameters are subject to

large errors, and that such errors create the false signal of NDDD, even in simulated popula-

tions where NDDD has been specifically proscribed. We stress that we make no explicit or

implicit criticism of the model of Rousset [1], nor of the genetic analyses in any of the studies

that generated the data used by de Meeûs et al. [2]. We simply enumerate the errors, inconsis-

tencies and false signals that arise from the way in which the Rousset model, and the genetic

data, have been used and interpreted.

Methods

The de Meeûs et al. procedure and its variables [2]

In designing the methods, we recognised that the main support for the NDDD hypothesis is

built around Eq (1):

d �
1
ffiffiffiffiffiffiffiffiffiffi
pbDe

p ¼

ffiffiffi
S
p

ffiffiffiffiffiffiffiffiffiffi
pbNe

p ð1Þ

where δ is the predicted dispersal distance per generation of a tsetse population, and Ne is the

effective population size, roughly defined as the number of adults in a population that will

leave a genetic signature to the next generation. Ne was estimated using linkage disequilibrium

methods [2,20]. S is the surface area occupied by the effective population, and b is the slope of

the linear regression of the genetic distance among subpopulations on the log-transformed

geographic distance among those subpopulations. De is the effective population density, equal

to Ne/S. [2]. We will show that the insertion of highly uncertain values into Eq 1 can generate

spurious negative correlations between the estimated values of De and δ. Here, and in what fol-

lows, we represent estimated, as opposed to the true, values of the variables by Ŝ; N̂ e, D̂e, b̂ and

d̂. Note that de Meeûs et al. did not measure d̂: they simply calculated its value from Eq (1),

using estimates b̂ and N̂ e obtained from genetic analyses, and estimates Ŝ of the area occupied

by the population, calculated from the disposition of the traps that sampled the population [2].
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Analysis plan

We first looked at relationships between all of the variables in Eq (1). When we found several

counter-intuitive correlations, we provided an heuristic explanation of how these could result

from measurement error. Mathematical analysis, and a simulation study, were then used to

confirm that errors in D̂e lead to a false signal of NDDD. This led to an investigation of the

importance of the variable S in contributing to the errors in D̂e and a demonstration that there

were indeed serious errors in the estimation of S in the de Meeûs et al. study [2]. Finally, we

used data from two of the ten field studies used in the development of the NDDD protocol,

carrying out simulations that tested the idea that variations in trap deployment patterns, or the

way in which such patterns were interpreted, could lead to the false signal of NDDD. Details

follow of the methods used in executing the above plan.

Analysis of relationships observed in the de Meeûs et al. study [2]. To elucidate the rela-

tive importance of the variables involved in Eq 1 we first took logarithms of both sides to get

Eq 2:

logðd̂Þ � � 0:5 logðpÞ þ 0:5 logðŜÞ � 0:5 logðN̂eÞ � 0:5 logðb̂Þ ð2Þ

Then, using data kindly supplied by Dr Thierry de Meeûs (Table A in S1 Text and Table A

in S1 Table), we looked for correlations among the variables in Eq (2).

How measurement errors generate a false signal of NDDD with a slope of -0.5. The

above analysis showed some counter-intuitive correlations, so we investigated the possibility

that these could result from measurement error. We provide an heuristic explanation for the

way in which such errors lead to a false signal of NDDD, and support this with a mathematical

analysis, full details of which are provided in S2 Text.

The false signal of NDDD in a simulated population with assumed density-independent

dispersal (DID). We next carried out a simulation exercise confirming that errors in mea-

sures of De lead naturally to a false signal of NDDD in a situation where we specifically assume

DID. This is illustrated in S2 Table, which provides full details of the simulation procedure,

carried out in Excel, which can be executed by the reader. We simulate a group of populations

where δ is constant, De varies within some arbitrary range, and b is calculated from δ and De

according to Eq (1). We use these true values of De in this simulated population to generate

“estimates” of D̂e with large error. For this, D̂e is calculated as true De multiplied by some ran-

dom factor between 0.2 and 5; these errors can be made additive instead, without consequence

to the conclusion. For simplicity, we assume that b̂ is estimated without error (b̂ = b). We then

calculate d̂ using Eq (1), replicating the method used in the NDDD protocol [2].

The importance of Ŝ in determining the value of δ̂. In the previous section we investi-

gated how errors in D̂e can lead to a false signal of NDDD. Since D̂e = N̂ e=Ŝ errors in Ŝ can be

a major contributor in errors in D̂e, unless these are exactly cancelled out by other errors in

N̂ e. Accordingly, we investigated the importance of S in determining the δ value predicted by

Eq (2), relative to contributions from other terms. Since the equation has the form of a multi-

ple linear regression, we borrowed a tool from regression to estimate, for the data from the ten

studies used by de Meeûs et al. [2], the relative importance of each of the predictor variables,

log(N̂ e), log(Ŝ), and log(b̂), in determining the predicted value of log(d̂). We measure “relative

importance” by the percentage of the total variance in log(d̂) that is explained by variation in

each of the three predictor variables. Since these three variables are inter-correlated across the

ten studies, we used hierarchical partitioning [21–23] to estimate their relative importance. In

this approach, one of the variables, say log(Ŝ), is added to each of the four possible regression
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models that contain neither, either, or both of the other two predictors. In each case, the

increase in multiple R2 due to the addition of log(Ŝ) is recorded, and the average of the four

increases is the estimated proportion of total variance in log(d̂) that is explained by log(Ŝ). For

example, regression of log(d̂) on log(N̂ e) alone yields R2 = 30%. The addition of log(Ŝ) to this

regression model improves R2 to 85%, an increase of 55%. Increases in R2 are likewise calcu-

lated when log(Ŝ) is added to the three other possible regression models involving the other

two predictors: the null model, the model containing log(b̂) alone, and the model containing

both log(b̂) and log(N̂ e). The mean of the four R2 increases is 65%. This procedure is then

repeated for log(b̂), and again for log(N̂ e), to obtain the mean increase in R2, when each is

added to the four regression models involving the other two predictors. Because log(N̂ e), log

(Ŝ), and log(b̂) were used to predict values of log(d̂) in the first place, via Eq (2), they jointly

explain 100% of its total variance. We applied hierarchical partitioning to the data, using either

the hier.part or relaimpo package of the R language.

The importance of errors in Ŝ in creating a false signal of NDDD. The preceding analy-

ses led to the demonstration of the central importance of Ŝ in determining the estimated value

of δ. We then show that the true area (S) covered by a biological subpopulation bears no

known relation to the area (Ŝ) estimated to be covered by a set of traps.

Simulations from field studies illustrating false signals of NDDD. Finally, we check the

validity of the field estimates of population densities and resulting dispersal distances reported

by de Meeûs et al. [2]. For each of their 10 populations they assumed a single true value of δ
that is roughly applicable throughout the entire area occupied by the population. Thus, if

investigators deployed traps in different patterns within the same population, while following

the rules for estimating S [2], the resulting estimates of δ should be the same, regardless of the

trap distribution adopted–subject only to experimental errors in estimating b and Ne. We

investigate whether this is true, using data from studies carried out in Tanzania and Uganda

[2,7,11].

For the Tanzania study, using G. pallidipes, the original report states that sampling of tsetse

was carried out using two traps at each of seven sites [7]. Because GPS coordinates were appar-

ently not available for these traps, de Meeûs et al. analysed the data imagining that only one

trap was used at each site. For such analyses they state: “when only one trap was available per

site or when the GPS coordinates of corresponding traps (one subsample) were not available,

we computed S = π(Dmin/2) 2 where Dmin is the distance between the two closest sites taken as

the distance between the centers of two neighboring subpopulations” [2].

However, there were actually two traps at each site, not one [7]. Suppose that GPS coordi-

nates were available for the traps. Then it would be logical to employ the alternative definition

for estimating S: “For all analyses, when more than one trap was available in a site, the surface

area of the site was computed as S = π(Dmax)
2 where Dmax is the distance between the two

most distant traps in a given site, taken as the radius of the corresponding subpopulation.” [2].

We calculate, and compare, the values of d̂ that result from the two different values of Ŝ.

In the study of G. fuscipes fuscipes in Uganda, six traps were deployed at each of 42 sites,

spread across an area of about 4000 km2 [11]. Traps at each site were separated by a distance of

at least 100 m. For this trap spacing, a value of Ŝ = 0.02 km2 was calculated, using Ŝ = π(Dmax)
2

(see above). Using finite estimates of N̂ e, from 30 of the 42 sites, Opiro et al. calculate an arith-

metic mean of N̂ e = 425 flies for the effective population (Fig A of S3 Text) [11]. The other 12

sites in the Opiro et al. study did not provide finite estimates of N̂ e. Similarly, they estimated b̂
= 0.0202 using information on genetic and geographic distances between all available sites.
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Using the above estimates for Ŝ; b̂ and N̂ e, de Meeûs et al. calculated d̂ = 27 m per generation,

the lowest among all of the 10 studies cited, and the one where the estimated effective popula-

tion density, D̂e, was the second highest [2].

We carried out a “thought experiment” to investigate how the Ŝ; D̂e and d̂ estimates are

affected by changes in trap deployment patterns. This was a simulation exercise, based solely

on the data from the Uganda study and the NDDD protocol [2,11]. We imagined that the

study was replicated 10 times, with different trap placements for each replicate, giving rise to

different values of Ŝ. We stipulated only that the traps were always distributed throughout the

roughly 4000 km2 in the study area [11]. See S3 Text for full details of the analytic procedure,

and Table B in S3 Table for the Excel file in which the simulations were executed – and where

the reader can make repeat runs of the procedure.

Results

Analysis of relationships observed in the de Meeûs et al. study [2]

The primary observation of de Meeûs et al. was a strong linear correlation (R2 = 0.85; P<0.01)

between log (d̂), the dispersal per generation, and log (D̂e), the effective population density, for

the 10 populations studied, with a slope close to -0.5 (Fig 1A) [2]. Their results also showed a

strong negative correlation (R2 = 0.86; P<0.02) between their predicted values of log(d̂) and

the logs of the estimated census population densities (D̂c = N̂ c=Ŝ), with N̂ c – the census

population – estimated from trap catches. These relationships form the central structure of the

argument for NDDD. Notice that, in their data, log(b̂), the slope of the linear regression of

genetic distance against log-transformed geographic distance, is not significantly correlated

with log(D̂e) (Fig 1C; P> 0.05). Similarly, log(N̂ e), the effective population size, is weakly cor-

related with log(D̂e) (Fig 1D), and not significantly correlated with log(Ŝ), the area estimated

to be occupied by Ne (Fig 1E). Surprisingly, log(d̂) is strongly correlated with log(Ŝ) (Fig 1B),

and log(Ŝ) is strongly negatively correlated with log(D̂e) (Fig 1F). The following sections clarify

the origins of these counter-intuitive results.

How measurement errors generate a false signal of NDDD with a slope of -0.5

Eq (1) is a rearrangement of the original derived by Rousset [1] to describe the value of b that

would arise in a population as a result of given values of De and δ, where De = Ne/S and δ is a

distance measure somewhat different from that used in [2]. If the parameters in this equation

could be measured without error, Eq (1) could indeed be a valid tool for obtaining a value for

d̂ based on estimates of D̂e and b̂, and then correlating d̂ with D̂e. But that is not the case where

errors occur in the estimate D̂e, whether these errors occur randomly or otherwise. When Eq

(1) is used to calculate d̂ from D̂e the error in D̂e will propagate to d̂. This means that any over-

estimate of D̂e will lead to an underestimate of d̂, and vice-versa. If D̂e and d̂ are then plotted

against each other, the result is the error in D̂e being plotted against itself. If the error in D̂e is

large enough – and we will show later that errors can be>1000-fold – this autocorrelation will

overwhelm any true relationship between De and δ. As the error in D̂e increases, b̂ approaches

independence from D̂e, and d(ln(δ))/d(ln(De)) – i.e., the rate of change of ln(δ) with changes

in ln(De) – can then be calculated from Eq (1) with b as a fixed parameter, which yields a slope

of -0.5.

The complementary mathematical analysis in S2 Text confirms that, as long as estimation

errors strongly dominate the values of D̂e, the relationship between log(D̂e) and log(d̂) will
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appear to suggest the presence of NDDD, with a slope of -0.5, even in circumstances where the

true situation is DID. We now use a simulation exercise to confirm this result.

A false signal of NDDD in a simulated population with assumed DID. We tested the

prediction that errors in measures of De lead naturally to the false signal of NDDD, using a

simulated population where we specifically assumed DID. Thus, if De is measured without

error, then calculated values of b declined as a power function of De, to satisfy Eq 1 (Fig 2A).

When there was error in De, however, log(b) appeared uncorrelated with log(De) (Fig 2B) and

there was a negative correlation between log(D̂e) and log(d̂), with a slope tending towards -0.5

(Fig 2C). This approximated the situation observed in plots of real field data (cf Figs 1C and

2B, and Figs 1A and 2C).

Fig 1. Relationships between various parameters in Eq (1) for data published in [2]. A. Predicted dispersal distance (log(d̂ )) vs effective population density (log(D̂ e)). B.

Predicted dispersal distance (log(d̂ )) vs surface area (log(Ŝ )) occupied by the effective population. C. Regression coefficient (log(b)) vs effective population density (log

(D̂ e)). D. Effective population size (log(N̂ e)) vs effective population density (log(D̂ e)). E. Effective population size (log(N̂ e)) vs surface area (log(Ŝ )) occupied by the

effective population. F. Surface area (log(Ŝ )) occupied by the effective population vs effective population density (log(D̂ e)).

https://doi.org/10.1371/journal.pntd.0009026.g001
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Notice that Fig 2 provides a single realisation of a random process. The reader can vary the

input values in Table A in S2 Table to observe the consequences for the slope of log(d̂) against

log(D̂e). Since the simulation is stochastic, the slope changes with each realisation of the pro-

cess but, for fold-error greater than around 1.2, the slope is invariably less than zero, as illus-

trated in Fig A in S2 Table. That is to say, the population appears to exhibit NDDD, despite the

fact that it has been set up such that dispersal is actually independent of population density.

Since D̂e = N̂ e=Ŝ, errors in Ŝ can lead to errors in D̂e. We now show that there are indeed seri-

ous errors in the estimation of S: these errors are central to the false signal of NDDD.

The importance of Ŝ in determining the value of δ̂. Given that Ŝ represents an estimate

of the area covered by a collection traps, there is no biological reason to expect the high corre-

lations that de Meeûs et al. [2] found between log(D̂e) and log(Ŝ) and between log(d̂) and log

(Ŝ) (Fig 1A and 1B). The fact that strong correlations were found, led us to explore whether the

variation that de Meeûs et al. observed in D̂e was mostly driven by changes in the estimated

area (Ŝ) covered by traps, rather than by true changes in De [2]. As described in the Methods

section, we investigated the importance of S in determining the value of δ predicted by Eq (2),

relative to contributions from other terms. These analyses yielded the following percentages

for the three predictors: log(N̂ e) = 25%, log(Ŝ) = 65%, and log(b̂) = 10%. Thus, the variation in

log(Ŝ) explained almost twice as much of the variation in log(d̂) as did the other two variables

combined.

The importance of errors in Ŝ in creating a false signal of NDDD. The central impor-

tance of S in accounting for variation in the dispersal rate (δ) implies that errors in Ŝ will be

crucial in determining errors in D̂e and thus d̂. This leads inevitably to the main problem with

the NDDD protocol, embodied in the statement: “The average surface (S) occupied by a sub-

population can be computed as the surface area occupied by the different traps used in a given

survey site” [2]. In fact, the relationship between the true area (S) covered by a biological sub-

population and the area (Ŝ) estimated to be covered by a set of traps, remains unknown. Meth-

ods for estimating Ne assume that there is no genetic structure within a sub-population [24],

meaning that there should be no systematic genetic distinction between flies caught in

Fig 2. Simulation of a group of populations where the true dispersal rate (δ) is assumed fixed and independent of the true population

density (De). A. Relationship between log(b) and log(De) when De is measured without error. B. Single realisation of the same relationship when

De is measured with error. C. Single realisation of the relationship between log(d̂ ) and log(D̂ e) when De is measured with error. To generate

further realisations of the process, and to explore the effect of changing the error in the estimate of De, see Table A in S2 Table.

https://doi.org/10.1371/journal.pntd.0009026.g002
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different traps. Thus, Ne can be estimated by sampling from any area smaller than the geo-

graphic range over which the sub-population can be said to be well mixed genetically.

Fig 3 shows three different possibilities for the trap-sampling areas (Ŝ1 - Ŝ3) in relation to

the true area (St) occupied by a hypothetical, well-mixed subpopulation. Sampling flies from

within either Ŝ1 or Ŝ2 will produce the same expected value of the estimate N̂ e, of the true value

of Ne, but will use different values of Ŝ, which is the denominator for calculating D̂e. Thus, the

estimated population density will vary according to the area covered by the traps, introducing

error into the D̂e estimates.

If Ŝ3 is used (covering an area larger than the size of what can be considered a well-mixed

subpopulation), then the assumptions underlying the estimates of N̂ e will be violated, and the

estimates of N̂ e will be flawed, so introducing yet more error to D̂e. The extent to which these

erroneous estimates of N̂ e will scale with Ŝ – as it grows above the size of S – is not entirely

clear, but previous work suggests that it will not scale linearly [25] and will thus continue to

produce incorrect values of D̂e that are a function of trap placement. Correct values of D̂e can

be obtained only in the special case where S = St. We will now show that, for the data used in

the NDDD protocol, variation in D̂e is due largely to the choice of trap placement, and the way

in which those placements are interpreted, rather than to true biological variation in Ne [2].

Simulations illustrating false signals of NDDD in field studies

Study on G. pallidipes in Tanzania [7]. These data were originally analysed in the NDDD

protocol as if only one trap was used at each site, with a value of Dmin� 6.7 km, so that Ŝ = π

Fig 3. Sampled and true subpopulation areas. Illustration of three different possible sampling areas (Ŝ 1 � Ŝ 3) relative

to the true area (St) covered by a subpopulation.

https://doi.org/10.1371/journal.pntd.0009026.g003
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(Dmin/2) 2 = 34.87 km2 [2]. Using the resulting estimated values of b̂ = 0.0168 and N̂ e = 44, the

authors calculated a value of d̂ = 3875 m per generation from Eq (1), the highest estimate in

any of the studies they cited [2]. As we noted in the Methods section, however, there were actu-

ally two traps at each site, not one. Although GPS coordinates were lacking for these traps, the

distance between them was known (100 m). Using the definition appropriate for this situation

gives Dmax = 0.1 km, resulting in a value of Ŝ = π(Dmax)
2� 0.031 km2, differing from the pub-

lished estimate of Ŝ by a factor of more than 1000 [2].

Notice that, whichever concept of trap spacing was used, the same flies would have pro-

vided the genetic and geographic information employed in the published estimates of b̂ and

N̂ e [2] which would thus have been identical in each case. Accordingly, the revised estimates of

effective population density is D̂e � 44/0.031 = 1401 tsetse per km2, and dispersal distance is

δ�
ffiffiffiffiffiffiffiffiffiffiffi
0:031
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 0:0168� 44
p

= 116 m, differing from the published estimate of δ by a factor

of 33.4 [2]. We emphasise that either of the methods for estimating S presented by De Meeûs

et al. [2] could reasonably be used for this dataset, and that the simple choice of which to apply

caused this large difference in outcome.

This analysis suggests that the values of d̂ obtained in all of the studies used by de Meeûs

et al. [2], were strongly dependent on the spacings of the traps used to sample the population,

and also on the decision about how to interpret those spacings. Alternatively, if it is objected

that – by regarding the trap deployment as either one, or two, traps per site – the procedure is

measuring the movement rates in two different subpopulations, we would be forced to con-

clude that values of δ could differ by orders of magnitude between subpopulations of the same

population. Either scenario is sufficient to undermine the basis of the NDDD protocol [2].

Study on G. f. fuscipes in Uganda. Analysis of data from the Opiro et al. study of G. f. fus-
cipes in Uganda [11], casts further doubt on the NDDD hypothesis. As described in the Meth-

ods and in S3 Text and S3 Table we estimate values of D̂e and d̂ for simulated studies where 10

different trap deployment patterns were used throughout the roughly 4000 km2 of the study

area [11]. If, as clearly assumed by the NDDD analysis [2], the expected value of δ is constant

across the whole study area [11], then the analysis in each of our 10 estimation procedures,

above, should provide roughly the same value of d̂ – allowing for errors in the measurement of

b and Ne. That is to say, d̂ should be independent of patterns of trap deployment. In particular,

if log(d̂) is plotted against log(D̂e) or against log(Ŝ), the results should approximate horizontal

lines.

The reality is markedly different. The results of a single realisation of the simulation proce-

dure are shown in Fig 4, from which it is seen that the simulation essentially reflects all of the

properties of the NDDD picture provided in Fig 1. In particular we see that: log(d̂) is strongly

correlated with log(D̂e), with a slope around -0.5 (Fig 4A); log(d̂) is strongly correlated with

log(Ŝ), with a slope around 0.5 (Fig 4B); log(b̂) and log(D̂e) are poorly correlated (Fig 4C).

Moreover, log(b̂) and log(D̂e) are poorly correlated (Fig 4D); log(N̂ e) and log(D̂e) are posi-

tively, but rather weakly, correlated (Fig 4E), and log(Ŝ) declines linearly with increasing log

(D̂e) (Fig 4F). The reader is invited to use the algorithm in Table B in S3 Table to make serial

iterations of the stochastic procedure – with each iteration using a different randomly gener-

ated error for log(b̂) and log(N̂ e).

Notice that we make no assumption about the true underlying nature of dispersal: it could

be NDDD, DID or PDDD (positive density-dependent dispersal). Regardless of this, however,

the output always strongly resembles NDDD. Moreover, while we have used only one of the
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ten studies involved in generating the NDDD hypothesis, the result is entirely general and the

same problem will arise in the analysis of any of the studies cited [2,11]. Notice also that, if b
and Ne are measured without error, the outcome still gives the appearance of NDDD (Table B

and Fig A in S3 Table). That is to say, the false signal of NDDD is entirely due to the funda-

mentally erroneous assumption that Ŝ, as measured by the distribution of traps used in the

sampling procedure, provides a good estimate of the true area (S) occupied by the tsetse popu-

lation under study.

The foregoing analyses show that, depending on trap placement and the choice of how Ŝ is

calculated from such placement, the Tanzanian and Ugandan studies can both be made to

reflect either an extremely high effective population density and low dispersal rate, or

completely the reverse [7,11]. Clearly, in each study, these scenarios cannot both be correct.

Fig 4. Simulations illustrating the false signal of NDDD in a field study. Parameter estimates generated for 10 different trap displacement

choices applied to the Opiro et al. study on G. f. fuscipes in Uganda [11]. A. Dispersal distance (log(d̂ )) vs effective population density (log(D̂ e)).

B. Dispersal distance (log(d̂ )) vs surface area (log(Ŝ )) occupied by the effective population. C. Regression coefficient (log(b)) vs effective

population density (log(D̂ e)). D. Effective population size (log(N̂ e)) vs effective population density (log(D̂ e)). E. Effective population size (log

(N̂ e)) vs surface area (log(Ŝ )) occupied by the effective population. F. Surface area (log(Ŝ )) occupied by the effective population vs effective

population density (log(D̂ e)).

https://doi.org/10.1371/journal.pntd.0009026.g004
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Indeed, both are almost certainly incorrect because, as explained above, Ŝ is virtually never

equal to the true area (S) occupied by a subpopulation.

Discussion

The primary goal of this paper was to assess the evidence relating to the notion of NDDD in

tsetse. If support had been found for the idea, then the very general nature of the model on

which NDDD was based [1], might suggest that the phenomenon could occur in other crea-

tures, including other insect vectors of disease. Our simulations and arguments show, how-

ever, that there are serious flaws in the arguments that led to the notion of NDDD in tsetse [2].

These flaws can be summarised by the following two points. First, the use of Eq 1 to calculate d̂

from measurements of D̂e is biased towards finding a spurious correlation between d̂ and D̂e,

whenever there is error in the measurement of D̂e. Since population genetic parameter esti-

mates will always contain some degree of error, this alone is concerning. Second, the methods

used for estimating Ŝ introduce very large errors into the estimates of D̂e = N̂ e=Ŝ. As the error

in D̂e becomes large, the predicted log slope of the spurious correlation with d̂ will tend to -0.5.

Hence, the procedure is inherently biased towards finding NDDD as marked as that actually

observed by de Meeûs et al. even when dispersal is independent of density [2]. By far the largest

errors in measurement appear to be in the estimate Ŝ, and hence D̂e, and these stem from the

notion that the true areas inhabited by the various subpopulations under study are determined

by the distance between traps. That is the root error, since inter-trap distances are not features

of tsetse populations. Instead, they are strongly constrained by logistical issues, such as the

numbers of available paths and traps, the mode of transport employed, the purpose of the trap-

ping study and the whims of the researcher.

The issues raised in the Results section provide good evidence, of themselves, to reject the

NDDD hypothesis for tsetse. However, various other problems, explored in detail in S4 Text,

cast further doubt on the credibility of the hypothesis and its associated arguments. Many of

these problems relate to the interpretation of trap catches. Thus, errors in census population

estimates result from an erroneous understanding of the relationship between trap placement

and expected tsetse catch. This is exacerbated through failure to adjust for variations in trap-

ping intensity, trap performance, and in capture probabilities between geographical situations

and between tsetse species. Such problems lead to serious errors in estimates of census popula-

tions, and a consequent absence of the expected high correlation between the estimates of cen-

sus and effective population numbers, N̂ c and N̂ e [2]. We also point out that there is no

credible suggestion for any mechanism by which NDDD might have evolved and, contrary to

claims in [2], no support in the literature for NDDD in tsetse. Indeed, available published evi-

dence seems to suggest that PDDD is more likely than NDDD. Finally, we note that – even if

we take the correlations in Fig 1 at face value – de Meeûs et al. [2] drew no distinction between

correlation and causation, and did not consider the possibilities of reverse causality or

confounding.

These considerations all give background support for our present results with tsetse and

offer general warnings about problems that could occur if the NDDD protocol developed for

tsetse were used with other creatures. As an important example, if trapping exercises, and

genetic analyses, were carried out on mosquitoes – without due regard to the problems of cor-

rectly estimating the area S occupied by a subpopulation – then we can be sure that the same

signal of NDDD would result, regardless of the true nature of dispersal in the mosquitoes. This

could have serious consequences for decisions regarding vector control in support of efforts to

combat the many human diseases that mosquitoes transmit.
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Although NDDD was initially offered as a strongly supported hypothesis in need of testing,

some of the co-authors are already treating the hypothesis as established fact. It is stated, for

example, that: “through genetic studies, De Meeûs et al. (2019) have shown that a strong nega-

tive density-dependent dispersal occurs after control operations” [26], incorrectly implying

that dispersal had been measured before and after control, so giving unwarranted weight to

NDDD and the claimed risks that such dispersal poses for tsetse control. Such statements,

taken with the warning that NDDD will unleash massive invasion from neighbouring

untreated areas, must be seen as having potentially serious impacts on disease control policy. It

is for that reason that we have felt it essential to expose so fully the errors involved in the

NDDD hypothesis.

The danger in the over-hasty transformation of an intriguing hypothesis into an established

"fact" is that caution is easily abandoned, and that support for the hypothesis can be seen

where none occurs. For example, a claim for the existence of NDDD, which involves believing

that sparse populations evolve to disperse especially widely, has been made while also stressing

the contradictory proposition that such dispersal is markedly disadvantageous to the survival

of sparse populations [26]. Similar problems have arisen in the history of tsetse control. For

example, the hypothesis that tsetse have open "feeding grounds" and well-wooded "homes"

[27–29] encouraged the unnecessary destruction of large areas of natural woodland in the

name of tsetse control [30].

Nonetheless, it would clearly be beneficial if genetic analysis could be used to provide useful

indications of the dispersal rate of tsetse, or indeed of any other creature. As we have seen, a

central problem is that of providing accurate and meaningful estimates of population density,

which requires in turn good estimates of the area (S) occupied by a population. The problem

of providing estimates of absolute numbers, and densities, of tsetse populations has taxed

workers for nearly a century–since C.H.N. Jackson pioneered the use of mark-recapture in a

remarkable series of population studies with tsetse [27–29,31] – and we still do not have good

solutions. The best estimates of census population numbers and densities (Nc and Dc) have

involved mark-recapture exercises applied to populations on an island of known area, and

closed to immigration and migration [32,33].

When such exercises are carried out on open populations, the results are much more diffi-

cult to interpret. For example, estimates of census numbers of G. m. morsitans and G. pallidipes
near Rekomitjie Research Station, in Zimbabwe, varied by between 3 and 12-fold depending

on whether numbers were estimated using mark-recapture, or a dynamic system that modelled

rates of population change due to in- and out-migration as well as death and trapping [34,35].

Discrepancies were biggest for G. pallidipes, the larger and more mobile species, underlining

the confusing effect of varied rates of fly dispersal. However, the problem lies more in estimat-

ing the area (S) occupied by the study population than in estimating the census numbers them-

selves. Moreover, while the effective population numbers (Ne) can be estimated from genetic

data [36,37] there is still the problem of estimating S and, as we have seen in this paper, that

difficulty lies at the heart of the efforts made to estimate dispersal rates from the analyses of

genetic data [2]. We cannot ourselves suggest a solution to this problem but feel that it is

important to highlight it for further consideration.

Supporting information

S1 Table. Data used to create Fig 1 of de Meeûs et al (2019). Table A in S1 Table. Data

kindly provided by Dr Thierry de Meeûs.

(XLSX)
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S2 Table. False signal of NDDD in a simulated population with assumed DID. Table A in

S2 Table. Simulation of situation where dispersal rates are independent of population density

but where De is measured with error. Fig A in S2 Table. Simulation of a group of populations

where the true dispersal rate (δ) is independent of the true population density (De). A. Rela-

tionship between log(b̂) and log(D̂e) when De is measured without error. B. Single realisation

of the same relationship when De is measured with error. C. Single realisation of the relation-

ship between log(d̂) and log(D̂e) when De is measured with error.

(XLSX)

S3 Table. Calculations for “Thought Experiment”. Data from Opiro (2017). Table A in S3

Table. Data kindly provided by Dr Thierry de Meeûs. Table B in S3 Table. Simulations used

to estimate dispersal parameters where there may be errors of estimation for b, S and Ne. Fig A

in S3 Table. Simulations illustrating the false signal of NDDD in a field study. Parameter

estimates generated for 10 different trap displacement choices applied to the Opiro et al.

(2017) study of G. f. fuscipes in Uganda. A. Dispersal distances (log(d̂)) vs effective population

density (log(D̂e)). B. Dispersal distance (log(d̂)) vs surface area (log(Ŝ)) occupied by the effec-

tive population. C. Regression coefficient (log(b̂)) vs effective population density (log(D̂e)). D.

Effective population size (log(N̂ e)) vs effective population density (log(D̂e)). E. Effective popu-

lation size (log(N̂ e)) vs surface area (log(Ŝ)) occupied by the effective population. F. Surface

area (log(Ŝ)) occupied by the effective population vs effective population density (log(D̂e)). Fig

B in S3 Table. Simulations using Opiro et al (2017) data, with or without error. Row A: Results

of de Meeûs et al. (2019) for comparison. Row B: Recalculation of Opiro et al (2017) results for

varying trap displacements, with error. Row C: Recalculation of Opiro et al (2017) results for

varying trap displacements without error.

(XLSX)

S1 Text. Estimates of population densities and dispersal per generation. Table A in S1

Text. Data used by de Meeûs et al. (2019a) in the production of their Fig 1.

(DOCX)

S2 Text. Mathematics of the “errors-in-De” argument.

(DOCX)

S3 Text. Procedure for “Thought Experiment”. Data from Opiro (2017). Fig A in S3 Text.

Distribution of estimates of N̂ e from the Opiro et al. (2017) study. Of the 42 study sites,

only 30 provided finite estimates of N̂ e.

(DOCX)

S4 Text. Miscellaneous problems relating to the NDDD hypothesis. A. Errors involved in

the estimation of b. B. Errors involved in the estimation of Nc, the true census density. C.

Absence of correlation between N̂ c and N̂ e. D. Failure to allow for intensity and duration of

trapping, differences in performance between traps, between species and between geographi-

cal/ecological regions E. Contradictory evidence from trap catches. F. Inappropriate pooling of

data for different situations. G. Unsupported claims of effects of NDDD reinvasion dynamics.

H. No field evidence for larviposition pheromone in tsetse. I. Absence of any suggestion for a

mechanism by which NDDD might have evolved. J. Errors in claimed support for NDDD. K.

PDDD more likely than NDDD. L. Confusion between correlation and causation; possible

reverse causality and confounding. Fig A in S4 Text. Data and fitted IBD regression for G.

tachinoides study in Ghana. Row 2, Table A reports regression statistics (Adam et al., 2014).

Table A in S4 Text. Significance testing of IBD regression slope, b. De Meeûs et al. (2019a)
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supplied values of b and its CI, estimated via bootstrap-over-loci (BOL) for 7 studies, and also

supplied Mantel test results for 3 studies. We calculated jackknife estimates of b and its 95% CI

for 7 of the 10 studies, using genetic distances based on all available loci. We estimated squared

Pearson correlations (R2) from all available genetic and geographic distances, with the full sub-

set of loci included in genetic distances. Fig B in S4 Text. Surface area occupied by a subpopu-

lation, as estimated using the NDDD protocol. A. More than one trap deployed at a site. In the

example shown (cf (Opiro et al., 2017) five traps are spaced at equal intervals on the circumfer-

ence of a circle of radius r units, with a further trap at the centre of the circle. The protocol cal-

culate the area of the site as Ŝ = π(Dmax)
2, where Dmax is the distance between the two most

distant traps in a given site, taken as the radius of the corresponding subpopulation. With this

pattern, Dmax� 1.9 r. B. Two trapping sites with one trap deployed at each site. For this sce-

nario, the surface area occupied by the sub-population sampled is calculated from S = π(Dmin/

2)2, where Dmin is the distance the distance between the centres of two neighbouring subpopu-

lations and thus as the average diameter of a subpopulation. Fig C in S4 Text. Effective and

census population numbers and densities using data from de Meeûs et al. (2019a). Plots of:

A. census population size (N̂ c) against effective population size (N̂ e); B. census population den-

sity (D̂c) against effective population density (D̂e). All data transformed by taking logs to the

base 10.

(DOCX)
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