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Abstract 

 

This thesis presents an investigation into the uses of machine learning and artificial intelligence for 

electronic sound synthesis, specifically the creation of new synthesised sounds for composition and 

research. Using the Magenta Labs Neural Synthesizer (NSynth), a synthesis tool that uses deep 

neural networks to generate new sounds based on data input from electronic synthesizers, this 

research project aimed to produce a system where bespoke synthesizers could be used to produce 

interesting sound combinations consisting of approaches to electronic sound synthesis that would 

not conventionally be used together. Combinations of different approaches to electronic sound 

synthesis produced interesting results when choices were made based on sonic characteristics of 

individual synthesisers, such as the plucked timbres of a Karplus-Strong synthesizer and the smooth 

extended notes of a frequency modulation synthesizer.  

In this thesis, contextual information into both electronic sound synthesis including justification for 

the use of each synthesis method as well as an investigation into Artificial Intelligence(AI) and 

machine learning techniques relevant to the use of the NSynth has also been carried out with the 

intention of producing an informed and researched final product in the form of a composition. The 

summary of this research project culminated in a final composition utilising the sound samples 

produced by the NSynth, arranged into a piece inspired by computer music research compositions 

including John Chowning’s ‘Stria’ and ‘Switched on Bach’ by Wendy Carlos. The synthesizers in this 

research project were produced in Max and designed with specific sonic qualities of the instruments 

in mind, with versatility to produce more samples following the same process for further research 

and application by other composers inspired by the work. The resulting composition included a 

number of interesting sounds with plenty of variation in sonic qualities that resembled computer 

music composition as well as standard western composition, demonstrating the versatility of the 

concept of using AI and bespoke synthesisers to create new and interesting sounds. 
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Introduction 

 

With the prevalence of emerging technologies in the fields of Artificial Intelligence and electronic 

sound synthesis, it is no surprise how often these fields are encountered in daily life, examples 

ranging from prediction algorithms used by entertainment services to email spam filters. Artificial 

Intelligence, and specifically machine learning technologies are constantly being developed and 

improved to become even more efficient and practical to the everyday user. Similarly, electronic 

sound synthesis technologies have been utilised in everything from smart home assistants to pop 

music.  

 

With the creation and prevalence of machine learning and sound synthesis technology, it is 

inevitable that artists and musicians would attempt to utilise this technology to push the limits and 

understanding to discover new ways in which the research can be used. These include ways of 

repurposing existing ways of musical and creative expression to produce new forms of art. This trend 

has been observed throughout human history, including early experimentation in times of conflict to 

produce the radio or musicians cutting apart speaker cones to produce the first distortion effects. 

The point is, wherever there is technological development in a field, artists and creators will seek to 

find ways in which this technology can be used for the advancement of the arts.  

 

During the course of this thesis, I will present the steps I have taken towards producing a system 

where developments in machine learning technology and sound synthesis technology can be 

combined to produce new sounds which could potentially have a wide variety of uses, including 

composition, live performance, artistic expression and further research. This paper will also follow 

the processes I have undertaken to reach the final project, including developing an understanding of 
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machine learning and electronic sound synthesis coming from a non-computer music-based 

background, to becoming familiar with software such as Max and Python to help carry out the 

projects, and many more strands of research that all contributed towards the completion of this 

thesis.  

 

The final sum of this master’s degree project will be presented in the form of an in-depth 

investigation into the uses of machine learning for electronic sound synthesis, as well as a practical 

element which consists of an electronic instrument made up of new sounds as the result of 

combining machine learning algorithms with self-produced electronic synthesizers, carefully selected 

for the characteristics of the sounds they are capable of producing. In addition to this, I will also 

present surveys into the methods of sound synthesis and machine learning that informed my studies 

and allowed me to reach a definitive point in my research process.  

 

I will begin this thesis with a survey of electronic sound synthesis methods with a discussion into the 

background of a few select methods of sound synthesis and why they have been chosen for this 

research project. This survey will also include a section of contextual information regarding the field 

of electronic sound synthesis. Finally, this chapter will go into depth about my own practices with 

electronic sound synthesis including discussion of my own attempts at creating synthesizers, my own 

practice with them and justification for their place within this research project.  

 

Following this section, I will also conduct a similar survey into the fields of Artificial Intelligence and 

machine learning which is a sub-category of the former. This section will discuss relevant 

technological developments that allowed for the creation of the research practices I have used thus 

far, and historical and contextual information. This section will also discuss real world uses of 
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machine learning for music and a discussion of my own attempts at creating a basic perceptron 

model in order to better understand the field.  

 

Next, this paper will include a reflection upon the path I took towards deciding my final project and 

the steps I took to get there. This includes the practical implementation of a number of electronic 

sound synthesisers and basic neural networks, and my research into TensorFlow, Magenta Labs, 

deep neural networks and the Neural Audio Synthesizer (Nsynth). This will include a critical 

reflection of the difficulties faced during the research phase of this project.  

 

Finally, I will discuss the neural audio synthesis system that I have utilised for my project in depth as 

well as my own contributions to the system, as well as the rationale for the selection of samples I 

chose for the instrument and any steps that were taken to reach the conclusion of which samples 

were selected. I will also discuss any issues I encountered while learning to better utilise Max and 

Python in order to reach this point in my research, including problems faced during the testing phase 

and while developing the systems in place. As the final sum of this project also includes a 

composition inspired by the early computer music work of artists such as John Chowning, there will 

also be a section for discussion of the composition and the research that went into it.  
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1. Survey of Synthesis Methods 

 

Electronic sound synthesis is a generic term for any form of sound that is produced electronically 

using a computer system or electronic system. Any sound that is produced through the use of 

electronic software and hardware can be classified as electronic sound synthesis, and the practice of 

using electronic machines to synthesise sound (Hass, 2017). A basic additive synthesizer functions by 

combining an oscillator with a soundwave produced by a noise generator to produce a basic noise 

which can be altered through the use of various filters, effects such as reverb and envelopes to 

modify a sound before it is propagated by an amplifier for use as a musical instrument (Smith, 2012). 

Historical context and relevant musical examples which helped me draw inspiration for the range of 

synthesizers and what sort of sounds can be achieved through electronic sound synthesis will be 

discussed in the following section.  

1.1 Brief History of Electronic Sound Synthesis and Music 

 

Some of the initial experimentation around the field of electronic sound synthesis included the 

French ‘Musique Concrète’ (Palombini, Carlos 1993) with Pierre Schaeffer which consisted of heavily 

modified recordings of musical instruments through effects such as tape manipulation, as well as the 

German c ounterpart, Elektronische Musik. The latter, pioneered by Karlheinz Stockhausen focused 

on the production and manipulation of electronically produced sounds from early noise generators 

rather than the manipulation of recorded samples, and has been described as ‘pure’ sound synthesis 

compared to the recording based ‘Music Concrete’ (Eimart, Herbert 1972). However, technology and 

experimentation in the field quickly disregarded the separation between the French and German 

research practices with pieces such as Stockhausen’s Gesang der Jünglinge (Stockhausen, 1960) 
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combining both recorded sound and electronically synthesized sound to produce a unique and 

interesting piece of music.  

 

The most popular image of a synthesizer to the average consumer of music is something controlled 

by a keyboard, perhaps recognisable from brand such as Yamaha as commercially available 

instruments (Milano D, 1975). From the 1960’s, electronic sound synthesis was becoming more 

widely available thanks to the work of inventors such as Robert Moog who designed the envelope 

generators for the RCA Mark II (Peter, 1996), as well as a number of other modular instruments 

which were much more affordable than previous electronic synthesizers. With these cheaper 

analogue modular synthesizers, signals would be routed via patch cords and the instruments were 

brought into the mainstream attention with musical releases such as ‘Switched-on Bach’ (Carlos, 

1968). As music technology has developed over the years, electronic sound synthesis has become 

popular in a digital format. From the 1970’s onwards as microprocessors and integrated circuits 

became inexpensive and cheaper to incorporate into technology, digital synthesizers became far 

more commonplace and synthesizers took the form of electronic keyboards, becoming easier to 

control than ever, such as the Yamaha DX7 (Yamaha, 1987).   

 

While this development in the realm of physical synthesizers was taking place, research was also 

being carried out into the creation of coding languages that could use rapidly developing computers 

to control the frequency and other characteristics of sound, and to describe the sounds and music 

they wished to create synthesizers to produce. One such researcher was Max V. Mathews of Bell 

Labs, who created what can be considered a predecessor to modern digital sound modelling 

software such as Max. MUSIC, developed by Mathews at Bell Labs in 1957, was the first computer 

program that allowed for the generation of digital audio waveforms through direct synthesis and 

was one of the first computer programs for making digital sound and music (Manning, 1993). By the 
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time Mathews have developed MUSIC V, the software was developed enough to be considered a 

fairly advanced way of producing digital sound synthesis, similarly to the way in which analogue 

modular synthesizers could have been considered as a complete synthesizer system with a wide 

range of capabilities. The development of MUSIC V and similar software such as Csound (Vercoe, 

1980s) and Music 10 (Chowning, Stanford 1968) eventually led to the development of standardised 

systems for digital music interfaces such as MIDI in 1991 (Swift, Andrew 1997) which would attempt 

to create a framework for converting program numbers into musical values, making modern digital 

recording technology and sound synthesis practice possible. 

 

1.2 Introduction to Relevant Methods of Sound Synthesis 

Historically speaking, the field of electronic sound synthesis has been researched and developed for 

the better part of a century, and as a result there are several different approaches to the topic that 

each have their advantages and disadvantages. In this section of the thesis, I will investigate several 

methods of electronic sound synthesis that have played a role in my research and been considered 

for their suitability at some stage during the length of this research project.  

 

Frequency modulation synthesis, often abbreviated to FM synthesis, was more commonly used 

methods of sound synthesis for electronic keyboard-driven synthesizer instruments, such as those 

sold by Yamaha from the 1970’s onwards (Milano D, 1975). The process of frequency modulation 

synthesis is to take a noise source such as a sine wave or a square wave and ‘modulate’ it with 

another sound wave of a different frequency. The first wave is often referred to as the carrier wave, 

and the modulators are often called operators or oscillators (Chowning, 1973). The synthesis was 

developed by John Chowning in 1973 and alterations such as key scaling were made to the 

technique in its analogue form such as signal distortion, although digital frequency modulation 
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eliminated this issue altogether (Holmes, 2008). While any two or more sound waves can be 

combined together for frequency modulation synthesis, generally the best results occur when the 

sounds are of a similar frequency range such as 220 Hz, which is the scientific pitch notation of the 

note “A” and 440 Hz, which is the same note but an octave higher. Frequency modulation as a 

method of sound synthesis is extremely effective at synthesising complex and interesting timbres 

using a limited number of oscillators, such as harmonic bell sounds or inharmonic percussion, 

depending on the relationship of the frequencies used as mentioned above (Dodge & Jerse, 1997). 

Computational efficiency was an important factor when debating which methods of electronic sound 

synthesis to utilise for producing samples for this thesis project due to the time it would take to 

produce and render the audio, as well as the limitations of the available computer systems. 

Examples of the uses of frequency modulation synthesis include early computer game systems such 

as the SEGA Genesis and the SEGA Megadrive (Kent, 2001), which incorporated ‘16bit music’ (Collins, 

2008) and had very little memory to work with so efficient synthesis with acceptable sound quality 

made for some interesting results that could benefit from resynthesis making frequency modulation 

an excellent candidate for the research project. Frequency modulation was also popularised and 

featured in the Yamaha DX7 keyboards in analogue format and many of the issues associated such 

as pitch instability became irrelevant with the transition to digital (Milano D, 1975). Despite the 

elimination of analogue issues with the transition to digital synthesis as the mainstream approach, 

functional transformation still suffers from the drawbacks of other synthesis methods such as 

additive synthesis where trying to use too many oscillators to produce a lifelike, realistic sound can 

cause strain on a standard computer system, heavily restricting the usefulness of the system, 

although the goal here is not to produce realistic synthesis – simply to use synthesizers to produce a 

wide range of samples that a neural network can be trained on. 
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Subtractive Synthesis is another commonly used method of sound synthesis, although it differs a 

great deal from most methods of sound synthesis. Rather than combining soundwaves together and 

adding multiple oscillators to create interesting timbres, subtractive synthesis seeks to ‘subtract’ 

from a source sound to alter the noise source (Buchanan, 2011). Whereas additive synthesis creates 

a sound by adding together noise sources and oscillators, subtractive synthesis starts with a sound 

that contains all of the required harmonic criteria for the final sound, but a modifier is applied to 

remove any unnecessary harmonic qualities and to shape the sound through the envelope (Russ, 

2009). For example, a lowpass filter applied to a subtractive synthesis technique would filter out 

sounds that are higher than a defined point in the frequency range, and allow the lower frequency 

signals to pass through, resulting in a bass heavier sound. The synthesizers created by Robert Moog 

were analogue subtractive synthesizers and were the first widely commercially available subtractive 

synthesizers (Moog, 1964) and used voltage controls to shape the filter envelope that would 

determine the sound. Much like frequency modulation, subtractive synthesis is a cheap and easy 

way of creating unique electronically synthesized sounds and can become increasingly realistic 

depending on the number of oscillators employed by the system, especially in digital format. 

Subtractive synthesis is even occasionally used in conjunction with other methods of digital sound 

synthesis due to the flexibility offered by the simplicity of the system (Collins, 2008). Although the 

methods of producing synthesized sound between frequency modulation and subtractive synthesis 

may share some common aspects, the sounds produced by the two are so diverse and different that 

the use of both can be justified for the sample set and will offer the potential to create even wider 

sets of samples if more data was to be needed for the research project. According to Martin Russ 

(Russ, 2009), subtractive synthesis is formed around the idea that there are three parts that any real 

instrument can be broken down into: the sound source, the modifier, and a controller. In the case of 

subtractive synthesis, the noise source is generally a sine or sawtooth wave, the modifiers are the 

variables that can be altered to change the sound e.g. the shape of the volume envelope/ADSR 

(attack, decay, sustain, release), and the controller is the way in which the user interacts with the 
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instrument. This is vital for understanding the contextual history for the use of synthesizers as real 

instruments that are capable of producing a wide range of sounds, which allowed for the 

development of technology leading up to this point. All of this also made subtractive synthesis a 

suitable candidate to make samples for use with the neural network.  

 

 

Additive Synthesis is a method of sound synthesis that creates timbre by adding together 

soundwaves, usually sine waves. With any musical instrument, the timbre consists of a number of 

harmonic and inharmonic partials, and each partial is a sine wave of a different frequency that 

changes based on the ADSR envelope of the additive synthesis model. Additive synthesis is one of 

the more simplistic methods of electronic sound synthesis in that sine waves of different frequencies 

are simply added together to create interesting timbres (Reid, 2000). Additive synthesis is the 

original spectrum modelling technique and is based in Fourier’s theorem which is the rule that any 

periodic function can be modelled as a sum of sinusoids, or waves, at different amplitudes and 

harmonic frequencies (Marchand, Lagrange, 2001). Fourier analysis is the mathematical technique 

that is used to decipher the timbre parameters from an overall sound, including non-musical sounds 

such as birds or water flowing, and allow a researcher to figure out how to recreate these sounds 

through the use of the correct harmonics, sinusoidal waveforms and oscillators (Evans, 1998). In a 

musical context, the lowest frequency of a note is referred to as its fundamental frequency, for 

example the fundamental frequency of ‘middle C’ is 261.6 Hz and is generally agreed that this is the 

frequency that the note is played at, although this is just one of several harmonics. Additive 

synthesis aims to reproduce a sound by producing the exact frequencies that are contained within 

the sound to give it a rich, harmonic texture (Sami, 1999).   

Modern day implementations of additive synthesis, including my own for the purposes of this 

research project, are predominantly digital. Wavetable synthesis can be seen as a form of time-
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varying additive synthesis, wherein periodic waveforms are used to add sound waves together to 

synthesize a sound at a low computational cost (Andreson, Uwe, 1979).  Group additive synthesis is 

an extension on this, where partials are collected into harmonic groups where each group has a 

different fundamental frequency, and wavetable synthesis is then used to synthesize each group 

separately before mixing the results together (Smith 2011). additive synthesis is one of the 

synthesizers used for this research project, and the justification for this well be explained further on 

in this thesis. Inverse FFT synthesis is another application of additive synthesis method where an 

inverse fast fourier transform is used to synthesize frequencies that can be evenly divided in the 

transform period (Heideman, 1984). Using the discrete fourier transform frequency-domain 

representation, it is possible to create a form of additive synthesis by synthesising sinusoids using a 

series of overlapping frames, or sections of the transform period of the function.  

 

Musically relevant applications of additive synthesis that inspired my own use of the synthesis 

technique include early speech synthesis, which was reported in the pages of ‘Popular Science 

Monthly’ (Popular Science Monthly, 1924). Research in this article was the first to state that the 

human vocal cords produce a harmonically rich tone which is filtered by the vocal tract to produce 

different tones, at the same time as the first additive Hammond organs were available to the public. 

Although these organs were expensive due to the number of oscillators required to produce a viable 

sound, which functioned the same way as a digital additive synth where soundwaves were 

combined. My own implementation of the additive synthesis technique for this project produces 

sounds using a form of group additive synthesis, to which the same basic principles apply but on a 

more complex scale.  
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1.3 Physical Modelling Approach to Sound Synthesis  

One of the fascinating and more complex schools of electronic sound synthesis is physical modelling, 

which attempts to emulate the physical processes behind the source of a sound rather than 

approximating the acoustic qualities of a sound or creating new ones (Smith, 2010). Physical 

modelling uses mathematical algorithms which calculate the physical processes behind the 

characteristics of a real instrument such as sympathetic resonance with instruments such as the 

Balinese gamelan (Perrin, 2014) or altering the velocity of an excitation source to randomly create 

variances in dynamics to emulate a real plucked string’s inconsistent dynamics (Fathy, 2004).  Two 

methods of physical modelling were explored for this project; Karplus-Strong synthesis and 

functional transformation synthesis.  

Karplus-Strong synthesis is a method of physical modelling sound synthesis that recreates the sound 

of a plucked string and percussion instruments by looping a brief noise burst through a delay line 

with a filter applied to shape the sound (Karplus and Strong, 1983). 

Fig 1. (Karplus and Strong, 2003) 

Karplus-Strong synthesis shares similarities to the way in which subtractive synthesis works as both 

techniques use a filter to remove partials from a noise source, and the Karplus-Strong method uses a 

feedback loop to recreate the decaying energy of a plucked string by subtracting a percentage of the 

energy with each cycle to recreate the effect of a string’s vibration dissipating into the surrounding 

air (Fig 1). The label ‘Z’ in the equation refers to the algorithm’s use of Z transform analysis to 

calculate pitches and decay times of harmonics, contributing to the delay effect in the sound, 

whereas ‘L’ simply refers to the length of the note in question.  (Karplus and Strong, 1983).  The 

Karplus-Strong algorithm was first produced in 1983 at Stanford University by Alexander Strong and 
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Kevin Karplus while experimenting with waveguide synthesis for 8bit microcomputers, where the 

ideas of filtering the wavetable with each pass through the system and using random number 

generation to determine the velocity of the noise burst to emulate inconsistent human instrument 

usage were used, leading towards more realistic electronic sound synthesis (Nikol, 2016). The most 

well-known demonstration of this synthesis method is a piece titled ‘Silicon Valley Breakdown’ 

(Jaffe, 1987), for which the Karplus-Strong algorithm was further developed on to improve the 

control and realism over the instrument by including musical characteristics of real instruments such 

as tuning, control over brightness, dynamics and alterations to timbre, the end result of which was 

the Extended Karplus-Strong Algorithm (Smith, 2010). The extended version of the Karplus-Strong 

algorithm saw the incorporation of a number of features including a lowpass filter which would 

alternate between different presets for different pick directions, a pick position comb filter, and 

filters for string stiffness and string dampening which would allow better control over sound and 

dynamics, albeit at a much higher computational cost due to the additional filters and processes 

taking place (Smith, 2010). The Karplus-Strong model, however, is still a low computational cost 

method of physical modelling sound synthesis and was used to create a number of the samples used 

during this research project. The Karplus-Strong model has been used in the past to produce a 

computationally efficient physical model of a harpsichord, for example (Valimaki, 2004). 

Computational cost is kept to a minimum in this model by only generating a half second long noise 

burst, and creating a tail using a reverb effect that can be lengthened or shortened to create 

different dynamics and vibrational effects. Interestingly, through experimentation with my own 

iteration of the Karplus-Strong algorithm, I found that using a ‘pink noise’ source which is a noise 

burst where each octave carries an equal amount of noise energy (Szendro, 2001) produced a sound 

which resembled a harpsichord more than a plucked guitar. The flexibility of the Karplus-Strong 

algorithm when different types of noise are used allowed for some vastly different sounds to be 

produced from one synthesizer, which made it an excellent candidate for the research project.   
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Functional transformation sound synthesis is another method of physical modelling sound synthesis 

that was considered for the research project. Functional transformation is a mathematics-based 

method of synthesis that uses the ‘Sturm Liouville’ transformation in which the fixed variable Y is a 

function of the free variable x, and although barely used in acoustic signal processing due to 

technological limits related to computational efficiency, many issues with standard physical 

modelling synthesis are avoided. One such issue is discretization, the process wherein continuous 

functions variables and models are transferred into discrete counterparts which can cause issues 

(Brown, 1996), referring to the fact that the use of a Sturm-Liouville equation prevents a process 

called discretization from occurring, which is the process of converting data from a frequency based, 

equation heavy modelling approach such as modal synthesis into a format which works better with 

digital sound synthesis and computer systems, simply because the output is more easily recognised 

by the systems operating system, making optimisation easier.  (DeCarlo, 1989) 

A discretization error occurs when numbers become finitely small and computer systems struggle to 

differentiate from data that is too similar to other data. However, as computer systems continue to 

improve and develop as stated by Moore’s Law (Moore, 1965), this becomes less and less of an issue 

as time goes on. The functional transformation was first introduced in 2003 by Dr Lutz Trautmann 

and Dr Rudolf Rabenstein, and according to their paper on the introduction of the technique, the 

first step of the functional transformation method is ‘the mathematical description of the sounding 

object, in terms of a PDE with several and initial boundary conditions’. A PDE, or partial differential 

equation, which are used to mathematically formulate and solve physical problems with several 

variables that are considered with physical modelling synthesis such as the propagation of 

sound/heat, electrodynamics, vibration etc (Evans, 1998). The use of PDEs in sound synthesis allows 

for several traits of an instrument such as transfer of force and the effect that has on dynamics, 

resonance in a realistic environment, sympathetic vibrations and more to be modelled in an efficient 

way. Partial differential equations are often used outside of computer music and physical modelling 

for a wide variety of purposes, ranging from medicine to model the growth or spread of disease to 
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physics for describing the movements of waves, pendulums and chaotic systems (Koss, 2017). 

Although functional transformation synthesis was not used to produce any of the samples for the 

research project, an implementation of the method was still considered and therefore merited 

discussion. As a counterpoint of physical modelling synthesis to the Karplus-Strong approach which 

is grounded in attempting to physically emulate the characteristics of the plucked string, a more 

mathematical approach to sound synthesis opens another avenue of discussion that could be 

relevant in developing this project post-thesis. 

1.4 My Approach to Electronic Sound Synthesis for the Project 

The purpose of this survey section was to explain and present an understanding of the field of 

electronic sound synthesis, and the individual synthesis methods used in this project. As the main 

body of sounds for this research project and composition have been produced by synthesizers, I 

have built myself, arguing the benefits and shortcomings of each synthesis methods was vital in 

choosing which synthesis methods to include. Every synthesizer used was designed using Max and 

was chosen with a careful balance of research, testing and process of elimination which will be 

explained later in the thesis. To begin this section, I will briefly introduce the Magenta Labs NSynth. 

The Neural Audio Synthesizer, referred to in this paper as the NSynth is a combination of artificial 

intelligence and electronic sound synthesis that produces sounds unlike any other synthesizer 

available before its introduction. Unlike traditional synthesizers that use oscillators, wavetables and 

noise sources etc. to produce sounds, the NSynth uses deep neural networks to break down sounds, 

rebuild new sound combinations and present entirely new sounds which are a hybrid of sonic 

characteristics of the original sounds (Magenta, 2017). The NSynth instrument uses a virtual 16x16 

grid to provide the user with control over timbre and dynamics, allowing new sounds to be created 

that would be difficult to produce with traditional methods of electronic sound synthesis. The 

NSynth functions from a huge dataset of musical notes and instruments to recognise a wide variety 

of input from different samples, as well as a machine learning algorithm that can accurately 
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represent instrument sounds learned by the algorithm.  My own implementation of the NSynth is 

more focused on using the same process used by Magenta to produce the sounds for their 

instruments to produce my own samples from tailor-made electronic synthesizers rather than using 

the instrument itself as a composition tool, to experiment with using a mixture of wildly different 

sound synthesis methods to produce altogether new and interesting sounds. The synthesis methods 

used in this project are a mixture of traditional methods and physical modelling methods and are not 

conventionally used to produce sounds, and the hope for this research project was to prove that 

these sounds could be combined together to create new ways to compose with the approaches to 

electronic sound synthesis.  

 

 The main methods of synthesis used in the final project are listed below: 

• Karplus-Strong Synthesis 

• Frequency Modulation Synthesis 

• Additive Synthesis (wavetable synthesis) 

• Subtractive Synthesis 

Using these four synthesis techniques, sixteen sets of samples varying in sound were produced and 

prepared for use with the NSynth’s virtual grid. Using this prepared instrument, a composition based 

around the early computer music composition work by the likes of John Chowning was produced, in 

order to prove the instruments validity as a computer music tool for both research and composition. 

The methods and technology behind the development of this instrument will be explained during 

the relevant sections of the thesis related to the topics.  

My own implementation of the Karplus-Strong synthesis technique is capable of producing a wide 

variety of sounds by combining the standard Karplus-Strong method but instead of using a standard 

sine wave as a noise source, the instrument allows for up to four different noise sources to be 
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blended together to produce a variety of timbres. For example, combining pink noise and a saw 

wave produces a timbre similar to that of a harpsichord, simple white noise produces a sound closer 

to that of the traditional plucked guitar. It is also possible to use the instrument to produce basic 

percussion sounds by altering the note length within the instrument’s code. While the instrument 

was not the most flexible in terms of sounds produced and was actually rather restrictive and 

specific to plucked string samples, features in my own implementation of the synthesizer allowed for 

much experimentation with the different varieties and textures of sounds, making the final 

composition much richer in sound variation.  

For the frequency modulation synthesis element of the project, the original implementation the 

ability to alter the shape of the ADSR envelope with two modulators to produce unique sounds. The 

sounds produced by this instrument more closely resembled a typical electronic synthesizer rather 

than the instrumental realism of the previous approach. However, variety of sound between the 

different methods of synthesis was an important element of the project in order to produce 

distinctly unique sounds with the NSynth’s capability for combining and resynthesizing sounds.  

My implementation of the additive synthesis (Fig. 2) is a standard additive synthesizer with five 

oscillators that function as filter banks which allow the user to manually change the shape of the 

ADSR envelope in order to manipulate the sound and create interesting sounds. The program allows 

the user to ‘draw’ in the shape of the envelope in order to create and experiment with different 

sounds as a result of the shape, and the boxes below allow the user to toggle the oscillators on and 

off to further customise the result. It is also possible to control the note length, with longer notes 

allowing the user to hear the results of their experimental combinations more clearly, which is a 

useful feature for creating dynamic and fluid sounds that could potentially be used in composition.  

 

 Some such sounds I managed to produce through experimentation with the synthesizer included 

natural ‘wobbling’ or vibrato sounds and harmonica-like tones as well as drones, percussion and 
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long, drawn out organic like sounds, which in the true spirit of the NSynth stray away from sounds 

you would typically expect to hear from synthesizers used to produce music (NSynth, 2017). 

Although most implementations of basic additive synthesizers feature just one noise source that is 

used for each oscillator, I added the option to choose between four noise sources (sine, saw, 

rectangle, triangle) to add diversity to the set of sounds the instrument is able to produce in the final 

package. I also added the ability to change the length of the notes so the sound could be further 

manipulated for use with creating samples for the NSynth. For the samples I created from this 

synthesizer, I chose to utilise a harmonica-like theme due to the fact that I felt a baseline ordinary 

synth sound was needed for the project rather than using every synthesizer to produce outlandish or 

unconventional sounds, especially as a composition was to be used to demonstrate the system.  

Subtractive synthesis often functions in a way which is not dissimilar to additive synthesis and this 

particular implementation is no different. The synthesizer, designed in Max in the form of a noise 

generator, uses many of the same techniques as the previous synthesizer. However, in this 

implementation, the function objects act as filters that subtract from the sound rather than adding 

several together. As above, there is the option to change the noise source as well as alter the length 

of the notes, and the ADSR envelope can be used in the same way to shape the sound although the 

results are much different. My initial experimentation found that sounds produced by this 

subtractive synthesiser produced sounds that much more closely resembled traditional sound 

synthesis, specifically 1970s/1980s analogue synthesisers (Verlag, 2008). This synthesizer was one of 

the more limited in terms of the range of sounds it could produce compared to the Karplus-Strong 

synth or the additive synth, however the quality of samples produced proved that it was suitable to 

be one of the four synthesizers featured in the project due to its relative simplicity and to act as a 

more run-of-the-mill synthesizer to combine with others, similarly to the project’s implementation 

of additive synthesis.  
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Rationale 

In this section, I will provide justification and rationale for the major decisions made during the 

research process, including reasons for choosing to research particular synthesis methods and why 

these methods were used in the next steps of the project, as well as why certain approaches to 

electronic sound synthesis were used rather than others. I will also explain the process behind why 

the decision to construct my own synthesisers was made, rather than just use pre-existing options 

already available for use.  

The decision to carry out research into frequency modulation was a fairly straightforward one due to 

the fact that I already knew that as a synthesis method, it was easy to use and simple to produce my 

own version of the synth and adapt it to my needs. As a method of synthesis, it is well known to be 

fairly efficient and able to produce a variety of sounds, depending on the types of operators that are 

being modulated. The reason that I carried out research into FM synthesis is to provide historical 

academic context for the use of it in my thesis, which in turn provided examples in the ways in which 

the method has been used and can be used for my own work. The effect that these decisions had on 

my work was that I had a simple baseline synthesizer to work with that was able to produce a 

number of sounds, though not overly complex, that could be easily manipulated for my needs during 

the composition and creation of new sounds.  

 

 

During my research, subtractive synthesis was regularly mentioned as a form of electronic sound 

synthesis that was capable of producing interesting sounds in a different way from other methods of 

synthesis, and as such it seemed logical to include it in a project where the aim was to blend 

together unique and different approaches to synthesis. The rationale behind carrying out research 

into this method was to properly understand the context in which it has been used in the past, such 
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as the ones created by Moog and used in popular music (Moog, 1964), and the strengths 

characterised by the method. Due to the fact that subtractive synthesis has been proved to be a 

computationally cheap way of producing unique and increasingly complicated sounds depending on 

the number of oscillators and filters used, the obvious choice was to produce my own simple 

iteration of the synthesis approach. The impact that this decision had on my project was that I now 

had two simple synthesis methods where I could easily produce my own iterations that could create 

varying sounds in a time effective manner, which would be more suited to the final goal due to my 

own understanding of the types of sounds needed for the project, which would be discussed later on 

in the project as the research for the composition took place. The same thought process applied to 

the use of additive synthesizers in the project; simple to produce my own version and sounds, 

computationally effective with varying degrees of complexity and realism depending on how in 

depth the user may want to go. The fact that both synthesis methods allowed for more complex and 

realistic sounds to be created depending on time available, need for more complex sounds at the 

cost of computational efficiency had interesting implications for the project, specifically in terms of 

future work. With more complex sounds and, it is worth considering the impact that it could have on 

the project, further reinforcing the rationale behind choosing these methods of synthesis in the first 

place.  

 

 

The use of physical modelling synthesis as a whole and particularly Karplus-strong sound synthesis 

was a partially aesthetic choice, as well as a practical choice due to the variation in sound produced 

by physical modelling-based synths compared to more conventional synthesis methods, which lined 

up with the initial aims of the project to use AI to combine types of sound synthesis that would 

usually not work together, which made it an easily justifiable use of research time. As for the 

aesthetic approach to using the synthesis method, the appeal of a realistic plucked string sound 
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offered interesting sonic characteristics for composition, particularly when taken into consideration 

with my own musical background as a guitarist and songwriter. The rationale for using this rather 

than just attempting to recreate these sounds with other non-physical modelling synthesis methods 

that may have been computationally cheaper to produce was to be more faithful to the original aims 

of the project, which was to utilise a variety of synthesis methods to produce the sounds in the first 

place, inspired by Magenta’s work in combining musical instruments and other sounds not usually 

found in music.  

 

 

The decision not to use functional transformation synthesis in the project was ultimately a decision 

made to manage the scope of the project, as well as the fact that the other synthesis methods 

selected covered the same project requirements in a more computationally efficient manner than 

functional transformation. However, carrying out the research into the synthesis method and 

ultimately deciding against using it was beneficial in the effect it had on the thesis project in the 

respect that it offered contextual information into concepts such as the sturm-liouville 

transformation and discretization errors, which allowed me to understand the synthesis method as 

an alternative for further work on the project, if it becomes an option to dedicate more time to the 

research and implementation of further ideas.   

 

One of the key motivating factors for carrying out the synthesis survey research section of this thesis 

project was to gain enough contextual understanding on the strengths and weaknesses of different 

synthesis methods in order to understand them and best utilise them further on in the project. 

However, one logical way of saving time which could have been devoted into other strands of 

research would have been to use other existing implementations of the synthesis methods to 
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produce the samples rather than constructing my own versions of the synthesisers. The justification 

for producing my own synthesisers was that I found that my own implementations of the different 

synthesis methods allowed me to have more control over the sounds produced, particularly with my 

Karplus-strong synth, which allowed me to blend together different types of noises and soundwaves 

to further alter the samples. The whole point of producing my own synths and using different synths 

in the first place was to experiment with interesting sounds and blend them together, and the best 

way for me to generate interesting sounds was to build my own synthesizers from the ground up 

and have total control and understanding of what kind of sounds can be produced by the systems.  
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2 Survey of Artificial Intelligence and Machine Learning Techniques 

 

Machine learning and AI are terms broadly used to describe computer systems that mimic cognitive 

functions and processes associated with the human mind, such as problem solving or learning 

behaviours and patterns (Nilsson, 1998).  Artificial Intelligence is a term often misused to describe 

any learned behaviours by increasingly advanced computer systems and as these systems have 

continued to develop, practices that were perhaps once considered ‘artificial intelligence’ have just 

become standard computing, such as optical character recognition (Schantz, 1982), and others. 

Modern examples of Artificial Intelligence include human speech recognition which is implemented 

in modern smart home devices such as the Amazon Echo, self-driving autonomous cars, simulations 

that respond to human input and more.  Musicians and artists have often utilised new technologies 

for creative purposes, and artificial intelligence is no exception. Examples of this include audio 

processing tasks such as audio classification and automatic music tagging as tools for categorising 

music, but also composition-based projects where a machine learning algorithm has been trained on 

the works of classical artists and been tasked with the project of composing something to resemble 

the composer (Herremans, 2010). Other musical applications of machine learning can include 

"Learning Features from Music Audio with Deep Belief Networks." (Eck, 2010) which focuses on 

feature extraction which has similarities to my own project, and “automatic music genre 

classification” (Silla Jr, Carlos N., Alessandro L. Koerich, and Celso AA Kaestner, 2008).  

 

2.1 Relevant Historical and Contextual Information 

“We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer 

of 1956 at Dartmouth College in Hanover, New Hampshire. 
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The study is to proceed on the basis of the conjecture that every aspect of learning or any other 

feature of intelligence can in principle be so precisely described that a machine can be made to 

simulate it. An attempt will be made to find how to make machines use language, form abstractions 

and concepts, solve kinds of problems now reserved for humans, and improve themselves.”. 

- Dartmouth AI Project Proposal; J.McCarthy et al.; Aug. 31, 1955. 

As discussed above, the definitions of artificial intelligence and machine learning has shifted over the 

decades, which makes it difficult to discuss the emergence of the field. The origins of work into the 

fields of machine learning and AI can be traced back to the 1950s with the development of 

computing, and the field was technically founded in 1956 at a conference where the term ‘artificial 

intelligence’ was first used to describe computing based on human cognition and decision making 

processes. During this period, the question was not whether or not computers would develop to the 

point of being as advanced as human intelligence, but simply when and how this would happen. The 

1956 conference at Dartmouth College hosted by John McCarthy brought together expert 

researchers from several fields including complexity theory, language simulation and neurology to 

plant the seeds of what would eventually become the field of artificial intelligence. This gathering 

created the field of AI which served and continues to serve as a backdrop for most computer 

research, as well as the public perception of artificial intelligence thanks largely in part to science 

fiction and movies and media in pop culture.  

 

2.2 Uses of AI in Music 

As with most technological developments, artists and musicians in particular have used machine 

learning and artificial intelligence to create, perform and experiment with music. Machine learning 

as a subset has been particularly utilised within music (Miranda, 2013) in fields of classification, 

prediction and data analysis and more. Naturally, music has often been used to show the capabilities 

of new AI technology as demonstration platforms, as well as creative exploits to, for example, 
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extract and analyse patterns that occur in classical compositions and use those patterns to compose 

new music in the style of the original (Cope, 1991, 1992). These substantial results of machine 

learning experimentation are useful as tangible ways of showcasing what machine learning 

technology is capable of to those who may not be familiar with the field, and to musicians who may 

end up creating using these tools which is not unlike the aims of my own thesis project which will be 

demonstrated with a composition. In the section below, I will briefly discuss projects that have 

incorporated music and AI which helped direct my research by providing context as to what creative 

material can be produced using the field and technology.  

The first AI music experiment I will discuss in this section is Cypher (Rowe, 1992). Cypher is an 

interactive real-time system that functions with two components – the listener and the player. In 

essence, the ‘listener’ element of the system analyses streams of MIDI data and the ‘player’ uses 

several different algorithmic systems to produce a new musical output. The listener element 

functions by classifying data from the MIDI input and learning the behaviours of the data over time, 

at which point the classification becomes more accurate. Classification categories include speed, 

dynamics, harmony and rhythm, and a user can configure Cypher to react differently to different 

classifications to, for example, put more of an emphasis on rhythm or dynamics. A graphical 

interface, not dissimilar to the NSynth, allows for the user to specify the relationship between the 

classifications and the types of response produced by the algorithm. Presets and collections can be 

saved and recalled for later use to aid with experimentation, which is something that could be a 

potential feature included in the future development of my own project. Another interesting feature 

that Cypher utilises to produce musically coherent results is an ‘internal critic’ that has a set of 

programmed aesthetics to keep the output consistent. The system is also capable of producing 

music without an input, relying on the algorithms to recall previous input or generate new random 

but musically coherent output. Systems such as cypher are relevant examples of music and AI due to 

features such as the aesthetic limiter to keep results musically coherent, which is achieved in a sense 
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with my own project by carefully choosing the sample sets used by the system to ensure the results 

are usable in the composition.  

Although optical music recognition may not still be defined as artificial intelligence, the two still 

share similar attributes in terms of categorising music and the way they can be used as tools for 

understanding music. Systems that are now assumed as commonplace such as the ability to take 

musical input and convert it into MIDI data so the characteristics of the piece such as pitch, timing, 

pitch and velocity can be pinpointed as a form of ‘automatic transcription (Rebelo et-al, 2012) of 

course, technologies related to this have developed since and this is no longer considered AI, it is still 

relevant as a system that takes a musical input, breaks down the characteristics and uses this 

information to reproduce music, much like the NSynth and the focus of my own project. Optical 

recognition is, however, experiencing a form of revitalisation as researchers combine OCR tools with 

artificial intelligence practices to capture and comprehend information, which means that AI tools  

can be used to check for mistakes in these pre-existing systems without human intervention (Dixon, 

2000). 

Taking a more modern approach to applying AI technology to music and images, Magenta is an open 

source research project that seeks to use artificial intelligence and specifically machine learning as a 

tool for the creative process (Magenta, 2017). Magenta is essentially an open source python library 

which includes a number of projects and assets that can be used as ableton plugins for music 

production, utilising machine learning technology and showcasing the possibilities of the research 

carried out into the field, such as the NSynth which will be discussed in depth in this thesis. Other 

magenta based projects as part of the ‘magenta studio’ include a number of standalone applications 

that can be used to compose music, proving that combining artificial intelligence (to randomly 

generate music in this instance) is a valid and modern use of the technology (Souppouris, 2016). 
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Potential applications of machine learning and music are constantly becoming apparent as the 

technology develops, and technologies such as the NSynth are themselves recent developments into 

the field.  Other potential applications of machine learning include the artificial intelligence musical 

composition project, The Watson Beat, produced by IBM research. The Watson beat uses 

reinforcement learning and deep belief networks to produce music based on a melody input and a 

selected musical style preset. Reinforcement learning is another area of machine learning which 

involves considering how software agents operate in an environment to maximise the reward 

through repetitive action, presumably input from a data set, and differs from supervised learning 

due to the fact that the focus is on balancing exploration of new data with exploitation of current 

data learned by the machine, to ‘reinforce’ current knowledge acquired by the system (Kaelbling et 

al, 1996). Deep belief networks are a similar to deep neural networks in the fact that they are made 

up of several hidden layers and a visible layer as variables where information acts as the input to the 

system, where each layer learns to transform the data into a more abstract and composite 

representation of the data in tiny increments, depending on the number of layers (Hinton, 2006). 

Music created by artificial intelligence with examples such as the Watson Beat proving that 

combining these two fields can produce comprehensive results gives validity to the idea of using AI 

to resynthesise synthesizers as an instrument to fuel new musical compositions and creative ideas.  

 

2.3 Relevant AI Approaches  

A field of research as broad as artificial intelligence is bound to have several approaches to achieving 

the end result, some of which are more relevant to music whereas others are specifically designed 

for other fields of research. In this section, relevant AI approaches will be discussed to provide 

contextual information and to demonstrate my understanding of the work that went into developing 

the NSynth’s neural network.  
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The difficulty with applying any artificial intelligence algorithm to a creative problem is that the 

network is not capable of producing the human spark of creativity. As a substitute for this, 

randomness is often employed in the form of random number generators. Markov chains are often 

an engine for this solution and are crucial to the way in which many AI algorithms work. A markov 

chain is a mathematical system that transitions from one state to another according to pre-defined 

rules of probability (Osipenko, 2019) where the probability of the next state depends on the 

previous state and not on the previous states of the entire sequence. This allows the predictions to 

be more computationally efficient due to the fewer number of variables, and more ‘random’ as 

previous variables are not considered as much. Markov chains are useful for producing music by, 

randomly assembling chord sequences that are musically coherent based on pre-defined rules. This 

example of using an algorithm to substitute a human quality of music is intrinsic to the process of 

using artificial intelligence with the creation and production of new music and musical tools.  

 

Deep learning and deep neural networks are the most relevant field of artificial intelligence to my 

project and is the foundation for which the Magenta Labs NSynth was based on. Deep learning is a 

type of machine learning algorithm that uses several layers to extract raw features from the input, 

with each layer extracting more and more intricate and detailed information. Therefore, the more 

layers, the more complex and intricate the resulting data is (Deng, 2014). In a musical context, a 

deep neural network with more layers may be better at accurately recreating and learning details of 

a piece of music or a sound, which is an important attribute when attempting to achieve accurate 

and musically coherent sounds for use in further research. The key attribute of deep learning that 

makes it so useful for the kind of result that the NSynth hopes to achieve is that with each level, the 

algorithm learns to transform the input data into a slightly more abstract version of itself. Thus, after 

several iterations, a fairly accurate and recognisable version of the original sound is produced and 

this abstract version of the sound can be used with others that have been through the same process 
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for further development and research, such as re-synthesis and composition. Feature retrieval 

features of a deep learning neural network are often used in Music Information Retrieval (MIR) 

systems, and features that are often targeted for abstraction include qualities related to spectral, 

timbral, temporal and harmonic characteristics which were qualities I ensured where defined in my 

own implementations of synthesizers that would be processed with the deep learning network. 

While this technology was originally designed for genre classification, this works particularly well 

especially with a wider data set that algorithms such as the NSynth were trained on as a majority of 

abstract sound characteristics will be easily recognised as vaguely representative of something else 

due to the in-depth level to which the features of a great quantity of sounds were broken down 

to(Magenta, 2017).  

 

2.4 Wavenet, Tensorflow and NSynth 

The following section will discuss the workings of the NSynth and contextual information relating to 

how my own thesis project relates to this work, as well as a discussion about Tensorflow and 

Wavenet, two projects that allowed the NSynth to be created and hold a great deal of research value 

and relevance to my own findings.  

Wavenet is a deep generative model of raw audio waveforms that was originally designed for human 

speech generation but has also been demonstrated as capable of synthesizing other audio signals 

including music and producing accurate automatically generated pieces of music for the piano 

(Deepmind, 2016). Modelling of raw audio is usually avoided during research due to the fact that the 

number of samples per second (approx. 16,000), which is why building an autoregressive model in 

which predictions in the model are influenced by all previous observations proved to be a challenge 

for researchers. This led to the one-dimensional structure of Wavenet, which is a fully convolutional 

neural network where each of the layers have dilation factors that allow each level of the neural 

network to grow exponentially and produce a higher detailed abstraction of the original sound. This 
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allows for the creation of highly accurate versions of sampled sounds that are easier to work with 

rather than raw audio and its extremely high sample rate, allowing for projects such as the NSynth to 

exist.  

Neural networks such as these are trained on real data to improve their functionality with practical 

applications, while Wavenet is trained on input data of real waveforms recorded from human 

speakers, at which point the process for synthesising the samples is carried out. This is not dissimilar 

to the way in which the NSynth functions with its wide range of sampled training data which will be 

explained further in depth below. This method of training the neural network is computationally 

expensive but is necessary for generating realistic sounding speech synthesis as well as other audio. 

When the system was trained on pieces of piano music instead, it produced fascinating results that 

sounded somewhat like a random note generator in the fact that it still retained an aspect of 

musicality, although my iteration of the NSynth was used for the synthesis of short audio samples so 

this particular musical application will not apply. However, it is still of interest that there are further 

musical applications of the technology that could be explored in further projects.  

 

Tensorflow is a machine learning system that operates as a training platform for the NSynth in 

conjunction with Wavenet as the autoencoder for the sound samples (Rajat; et. al 2015). Tensorflow 

as a system functions by operating at a large scale in diverse environments for projects that require 

a large amount of data to be processed to train a neural network, which is highly suitable for 

machine learning projects such as the NSynth where datasets consist of millions of samples. The 

reason that Tensorflow systems can handle such a large quantity of training data is due to the fact 

that the system maps the nodes of the of the data flow across several machines in a simulated 

cluster, which in  itself can operate across several computational devices or multicore computer 

systems or specialised ASICs known as Tensor Processing Units, although these are obviously only 

available to the developers of the system and designed as proof of concept and not for the average 
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user. This configuration allows for developers to experiment more with training data in the virtual 

environment more than past iterations of similar systems such as Distbelief (Perez, 2015). Several 

google-led projects and services such as the NSynth itself use Tensorflow as the base for their data 

training systems due to its flexibility and potential for real world applications, as demonstrated by 

the capabilities of the NSynth and the capability for users to train their own data on the NSynth 

system to produce music (Magenta, 2017). When training abnormally large data sets such as the 

case of the NSynth, Tensorflow utilises a distributed representation, which uses a training example 

as a pattern of activity across each different machine in the clusters so there is already a framework 

that the algorithm can follow. Due to the fact that training a model can take a long period of time, 

even several days and use a large number of machines, any sort of assistance to speed up the 

process is crucial to saving time and money in the process.  

Finally, the NSynth, or Neural Synthesizer is a deep neural network-based synthesizer that uses 

sounds generated at the individual sample level in combination with other sounds to produce new 

and interesting sounds (Nsynth, 2017). Unlike traditional synthesizers, the NSynth uses deep neural 

networks such as Magenta to resynthesize sounds based on its enormous data set of nearly 3 million 

samples. NSynth provides artists and creators with absolute control over timbre, dynamics and other 

characteristics and my implementation of the NSynth endeavoured to increase this control by 

allowing users to produce their own sample sets from a number of pre-designed and carefully 

selected synthesizers chosen for their sonic characteristics. As mentioned above, the NSynth dataset 

is especially large even for the machine learning community, and was deliberately designed to be so 

for two reasons; to develop a creative tool for musicians so that any potential sounds inserted into 

the system can be at least somewhat recognised and sampled and return a fairly accurate result, and 

to push the limits of the machine learning community and create a challenge in terms of generative 

models for music. This development allowed for my project to exist due to the fact that my own 

samples come from self-designed implementations of pre-existing synthesis techniques which 

means that a Karplus-Strong synthesizer, for example, may still be recognised by the system as 
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reminiscent of something such as a guitar or percussion in the large data set. According to the 

creators of the NSynth, the motivation of the data set was that it allowed for the factorization of the 

generation of music into notes and other characteristics of music, and potentially more but for the 

sake of simplicity it was reduced to two variables (equation. 3)  

 

P(audio)=P(audio∣note)P(note)	

equation 1, NSynth Temporal Embedding Factorization Model(Magenta, 2017) 

 

The aim of the equation is to model timbre under the assumption that the note aspect of the 

equation comes from the user input, represented by P, which produces results that are musically 

coherent. As mentioned above, the NSynth utilises Wavenet to train the system with temporal 

embeddings, in this context found in the form of speech or music. Temporal embedding is the way in 

which the NSynth system encodes samples so that the neural network can understand them after 

the sample size is small enough for the system to be able to handle it, even considering the size of 

the samples compared to the size of the training dataset (Liu, Et Al, 2015). 

The best way to contextualise the use of the NSynth as an instrument is to view it as a tool that can 

be used to combine two unique sounds, musical or otherwise, and use them to produce a new 

sound which has timbre and dynamic characteristics of both original sounds. Although this is a 

massive oversimplification of the process that the neural network goes through to produce the end 

result, the NSynth itself was demonstrated in the form of an interactive instrument where one could 

combine the sounds of a saxophone with a thunderstorm or a flute with a bass guitar (Nsynth, 

2017).The creators of the NSynth also relased the NSynth Super, which is a physical instrument 

where 16 source sounds are loaded into a small handheld synthesizer which operates on a 4x4 grid 

where the user can use the outcome of the neural network to create unique sounds. This is of course 
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far more restrictive than the full version of the NSynth that has been implemented in this project but 

is still a good way to increase public understanding of the uses of neural networks and artificial 

intelligence for the creation of music and art (NSynth Super, 2018). 

 

2.5 Using AI in Sound Synthesis 

Artificial intelligence and computer music have become heavily integrated as two fields of research 

and as a result of this connection, several uses for artificial intelligence have been created for music. 

One such use is evolutionary computing, which is a field of research concerning evolving synthesis 

parameters. Evolving synthesis parameters refer to an idea where, for example, sixteen random 

variations of a synthesizer could be generated. Then, based off a smaller number selected from the 

original sixteen, another sixteen variations based on those selected would be generated and so on. 

Evolutionary computing as a field of artificial intelligence is one with particularly interesting 

applications to musicians as compositional tools and simply expanding the boundaries of what can 

be produced by ordinary synthesizers, an idea which is at the heart of my own research project. 

Evolutionary computing algorithms have three basic properties: inheritance, random variation and 

selection. These properties are fairly self-explanatory in their function. However, the latter is the 

most crucial to producing the example of evolutionary computing with music explained above. In 

most computer implementations of selection, this is carried out by applying a ‘fitness score’ to 

variables to measure their suitability for the next step in the evolutionary process, allowing future 

generations to be produced with the characteristics of the variable, such as a certain sonic element 

or sound shape, to apply a musical context  However, fitness criteria can be problematic when it 

comes to changing the aesthetic of a piece or instrument mid-way which is something that 

composer often do to create texture and variation within a piece of music. This also raises the issue 

that it is difficult to define what a ‘good’ sound is in a particular musical context due to the fact that 

this can be a matter of both circumstance and opinion. Despite this issue, evolutionary music is still 
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an interesting way in which artificial intelligence is being used with music to expand the boundaries 

of what can be done with electronic sound synthesis.  

Although not an example of artificial intelligence, ChucK is an audio programming language used for 

real time electronic sound synthesis which is on occasion used in tandem with software reliant on AI, 

as well as composition and performance. It is well known for its ability to ‘live code’ which means 

that code can be added mid operation without the need to stop the code or restart the program. 

ChucK has been used in live performances by PLOrk (Princeton Laptop Orchestra) and for developing 

applications with the American mobile app developer, Smule. Smule developed an ocarina emulator 

that used AI to learn from samples and produce a realistically synthesized emulator with potential 

applications for composition, production and performance.  

 

Rationale 

In this section, I will justify decisions made throughout the stage of researching relevant approaches 

of AI to the project, as well as the steps that lead me to magenta labs research and the NSynth. This 

includes why research was carried out into both cypher and optical music recognition, why magenta 

was used and how that lead to the NSynth as well as why I opted to use the NSynth with my own 

synthesis implementations rather than use the NSynth super, which was already more a functional 

instrument with less work to produce compositions.  

 

The main aim of carrying out research into other relevant approaches to artificial intelligence and 

music was to gain an understanding of different ways in which the two fields of research have been 

combined, and how these developments might have led to the NSynth at the core of my project. 

Certain aspects of the cypher project such as the graphical interface making it more intuitive to use 

and the ability to create presets are not only shared with the NSynth and the NSynth super, but are 
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common in many compositional tools such as virtual software instruments and plugin effects, and 

thus research can be justified in terms of practicality and aestheticism towards a functioning 

instrument at the end of the project. The impact that research into cypher had on my thesis project 

was providing context and inspiration in how to present my own musical AI project, and presenting 

ideas for ease of use such as the ability to save presets. While this approach of combining music and 

AI was not the most relevant compared to other work discussed in the main body of this chapter, 

research still proved to be valuable in terms of providing contextual information.  

The decision to research into optical music recognition considering that it is strictly not considered AI 

was to gain contextual knowledge into similar work to the NSynth, which in this context is the shared 

functions between the two, such as the ability to categorise, break down and sort musical 

information, often in the form of music notation. The research had an impact on my own project in 

allowing me to gain more of an understanding on exactly how software like this is used to perform 

musical experimentation in other ways and provided some inspiration for my composition after 

seeing examples of the outcome of optical musical recognition systems, such as audible versions of 

music scores that have been input into the system (Alexander, 2019). This provided context for using 

composition as a demonstration of using AI and sound synthesis together, and academically justified 

the idea making the research worthwhile.  

 

The decision to research into magenta was to provide context leading into the NSynth which was key 

to the practical stage of the project in producing the new instrument sound samples. Magenta itself 

was more of a collection of individual projects including the NSynth but understanding the 

predecessor projects that led to its development was instrumental in understanding how artificial 

intelligence was used in the context of the project, as well as the steps taken to develop the 

successor project. Features of magenta projects such as utilising machine learning technology and 
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showcasing the possibilities of the research with composition remain relevant to my own project 

and provide reason for the surveys.  

 

Although there are alternatives to the NSynth to achieve the aim of blending together different 

sounds as explained in this thesis, justification for why the NSynth was chosen is required. From an 

aesthetic and conceptual standpoint, the aim of this project was to find ways in which AI and 

electronic sound synthesis can be combined, and other methods of achieving the same goal, and the 

NSynth met those requirements perfectly while providing room for modification and 

experimentation beyond the initial parameters of the project, in which the program was 

demonstrated by combining, for example, the sounds of a mellotron with the meow of a cat. The 

program was discovered early on in the research stage, and quickly became as core a part of the 

project as the synthesis methods that my own implementations of the instruments were based 

upon. As a result of work from Magenta, a more functional, easily accessible version of the NSynth 

called the NSynth super was produced and is discussed in this paper, and the choice to use the 

NSynth rather than this more easily accessible later version formed a key part of the future of the 

project and had a large impact on the research that came after, in later stages of the project. The 

decision not to use the Nsynth Super was to maintain more control over the samples produced 

rather than just using the pre-provided instruments, and the predecessor was easier to manipulate 

and modify to suit the needs of my project.  
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3. Project Approach  

The purpose of this section is to discuss the project approach to demonstrate the process I took, 

from the inception of the project including initial ideas that led me to the project idea behind this 

thesis, the process of preparation and carrying out initial research, as well as early experimentation 

into designing the synthesisers and becoming familiar with the NSynth and neural networks as a 

concept. Other aspects of discussion in this section include changes to the project that were made 

throughout the process due to issues encountered or restraints such as time or access to technology, 

as well as simple creative decisions such as choosing how to demonstrate the project and how 

further research would help develop these ideas. Coding the synthesizers was one of the most 

important steps of the project in terms of selecting and refining them and as such I will discuss the 

process and testing that took place, as well as the decision to simply utilise an existing version of the 

NSynth rather than develop my own neural network due to issues related to the scope of the 

project. Finally, I will discuss issues encountered during the project and how this led to changes 

throughout the entire process and how this allowed me to refine the project into its current state. 

The process of testing and producing the samples as well as producing the composition and the 

inspiration for that will also be elaborated on in order to clarify the relevance of the research to 

composition and to contextualise the usefulness of the final project as a tool for composers and 

researchers.  

3.1 Project Inception 

The initial inception of this project came from an interest in designing synthesizers, particularly 

physical modelling-based synths such as the Karplus-Strong synthesizer. After an initial project 

attempt to construct a physical modelling-based synthesizer that would reconstruct the sounds of a 

blue whale for use as a research tool, the idea of creating a synthesizer that could be used as a 

research tool as well as a compositional tool led to looking for a way to accomplish this with 

synthesis as the main focus of a new project. After discovery of the NSynth and the work of Magenta 
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Labs (Magenta, 2017) the process of combining sounds to create new sounds proved to be suitable 

for the project scope and timeline. This also offered machine learning and artificial intelligence as a 

field of study, which proved to be a useful direction in which to take the project as the implications 

of using machine learning for creative purposes is a field with a great deal of existing research to use 

and allowed me to better understand how to use the NSynth. Some of the research from the initial 

project idea was able to be re-used as a large part of the focus of that project was to focus on 

methods of synthesis that offer non-conventional sonic qualities in the sounds that they produce, 

such as frequency modulation, where obscure synthesizer effects could be combined with less 

obscure and more standard sounds to fuel new compositional ideas for myself and for others. Much 

of the early computer music composition carried out by the likes of John Chowning (Chowning, 

1973) and Max Matthews originated in using technology that was not designed with music in mind 

to produce compositions, which is in line with the NSynth and combining AI and synthesis to create 

new compositional ideas, so using these artists as inspiration felt suitable for the demonstration of 

the project. This demonstration of the technology with composition as a practical example also helps 

remove the barrier between musicians who may not be as familiar with computer music practices 

and electronic sound synthesis due to the contextualisation of the practices in a format that is much 

easier to access, which is another area of research within computer music that is often discussed, as 

much of the technology used within the fields such as EEG caps and brain-to-computer music 

interfaces allow individuals who may not necessarily be able to produce music have a creative 

outlet. 

3.2 Process of Preparation and Research Methods 

The first step in the preparation phase was to conduct research into electronic sound synthesis, AI 

and machine learning as well as computer music composition. Selecting synthesizers for the project 

depended on four key criteria; ease of use, computational efficiency, range of sounds produced and 

simplicity of construction (due to time constraints). Additive synthesis seemed like an obvious 
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candidate due to the fact that most implementations of the synth are simple to construct and are 

computationally efficient, able to produce a wide range of sounds in my own implementation built in 

Max on a machine that is not particularly powerful in terms of hardware. Computational efficiency 

was an important factor because part of the project was to provide the means for composers to 

design their own samples so the ability to run the synthesizers on any system was vital to the 

functionality of the project. After experimenting with different implementations of additive 

synthesis in Max including waveguide synthesis (Andresen, 1979), I found that a simple five oscillator 

additive synthesisers produced the widest range of synthesized sounds while remaining 

computationally efficient and were also simple to use by individuals who were not too familiar with 

how synthesizers work. The construction of the additive synthesizer was also fairly simplistic, and it 

was quickly decided that a MIDI keyboard in Max was the best way to control the synth in a way that 

is familiar to composers who use digital audio workstations (DAWs) to produce. Additive synthesis 

was suitable because it could produce fairly standard synthesized sounds with ease but to one more 

experienced with the instrument, it could also be used to create more obscure and unusual sounds.   

Early research also proved the suitability of subtractive synthesis for many of the same reasons as 

additive synthesis, primarily due to the simplicity and ease to produce fairly standard synthesizer-

like tones and was simple enough in construction within MSP to be easy to use and computationally 

efficient at the same time. However, the idea of granular subtractive synthesis (Collins, 2007) was 

also considered due to the interesting tonal qualities of sounds produced, but time constraints 

meant that a more stripped back approach to the synthesis method proved to be more suitable for 

the project, as well the simplicity assisting with understanding how to produce baseline sounds that 

could be more easily understood by users when used in conjunction with other synthesis methods in 

the NSynth.  

Karplus-Strong synthesis was also an obvious choice for the project due to the fact that the results 

produced by the synthesizer differ so much compared to the previous two methods of electronic 
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sound synthesis. As discussed above, Karplus-Strong synthesis produces sounds that closely 

resemble a plucked acoustic guitar and can easily be altered to resemble other stringed instruments 

such as harps, plucked violins or harpsichords, presenting an even wider set of samples that can be 

used beyond the initial scope of the project. In addition to that, the recirculating delay loop 

mechanism of the Karplus-Strong synth maintains excellent computational efficiency and the design 

allows for ease of use which will be explained in depth in the discussion of the construction of the 

instruments below.  

Frequency modulation synthesis was the fourth method that was researched and selected for the 

project due to its potential to develop interesting sounds and historical use as a diverse and capable 

synthesizer. As discussed previously frequency modulation was used in early Yamaha synths (Milano 

D, 1975) and has remained as computationally efficient in its digital format since the transition from 

analogue. Simple frequency modulation synths are still able to produce unique sounds although the 

increasing numbers of oscillators required for more complex sounds can begin to negatively impact 

computational efficiency. However, most basic implementations of frequency modulation are not 

aimed at producing realistic synthesis of real-world instruments so computational efficiency issues 

wouldn’t have reached a point where the synthesizer would become too advanced to easily use.  

Other methods of synthesis that were considered for the project but weren’t found suitable for the 

included functional transformation synthesis, as well as digital convolution synthesis and sample-

based synthesis. These methods weren’t selected as they didn’t meet the criteria, such as the time it 

would have taken to build a functional transformation synthesizer and have it able to effectively 

produce sounds with alterable parameters. In addition to this, using sample-based synthesis did not 

fit the creative scope of the project and was too close to what the NSynth demonstrated by Magenta 

had already achieved with animal and world sounds as part of the package, and did not offer the 

same benefits in a compositional setting compared to other simpler methods of synthesis. Digital 

convolution was not included in the project because digital convolution is difficult to achieve in Max 
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whilst remaining computationally efficient, and the results produced by the synth are too dissimilar 

to the rest of the project to produce musically coherent results for the compositional aspect of the 

system.  

Once the synths had been chosen, the next step was to figure out how best to use the NSynth to 

produce the sounds and how to demonstrate the capabilities of the concept. Magenta labs provided 

a web-based demonstration of the capabilities of the NSynth which was presented in the form of a 

keyboard interface where the user could select pitch, and drop-down menus where the user could 

select two different sounds to combine e.g. a cat meowing and a trombone, which provided me with 

some context to how two very different sounds could work together when combined with the 

NSynth, forming the basis of the project. However, simply using the NSynth as an engine for 

resynthesizing sounds as a project still lacked research content which led me to conducting a survey 

of relevant artificial intelligence techniques in order to better understand how the NSynth extracts 

qualities from the sounds being produced by the synthesizers.   

This research focused specifically on techniques related to deep neural networks such as cypher and 

TensorFlow. The original intention of this research was to assist in the development of my own 

neural network to demonstrate an understanding of the concepts behind the NSynth but due to 

time constraints and irrelevance to the overall project this was not further researched. Preparing the 

NSynth itself for the initial experiments did not take much work as much of the instruction on how 

to produce samples and prepare them for use with the NSynth was provided by Magenta Labs to 

encourage users to expand on the tools provided. Initial ideas to construct my own neural network 

or AI did lead to the process of learning python coding, however, which assisted with understanding 

much of the background processes behind the NSynth as well as understanding Max for the NSynth’s 

provided software on both systems. TensorFlow as discussed above was used in the development of 

the neural network which uses Python which would have been the focus of the initial experiment to 

produce an AI similar to the NSynth although time constraints very quickly prevented this.  Python 
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still played a part in the process of preparing the samples from the synthesizers for the NSynth, 

however, which will be discussed later. 

3.3 Initial Experiments 

One of the earliest tasks during the process was to conduct a phase of initial experiments to 

determine whether or not it was feasible to use the NSynth and selected electronic sound synthesis 

methods to produce instruments that could be used effectively as composition tools. Due to past 

experience with using Max to construct synthesizers from my undergraduate music degree program, 

I used this knowledge to build basic versions of a Karplus-Strong synthesizer and an additive 

synthesizer. The Karplus-Strong synthesizer was used to produce fairly standard plucked guitar like 

tones with a touch of reverb to make the sound more distinctive in the end result to differentiate 

how different sonic characteristics such as effects would be represented. Karplus-Strong synthesis 

was a good candidate for this initial testing stage of the project due to the fact that it does not 

resemble any other selected synthesizers in terms of timbre characteristics, whereas simple 

implementations of additive or subtractive synthesis may be hard to pick apart in a resynthesized 

sound as they both produce fairly typical sounds one might expect from an electronic synth 

instrument. Additive synthesis in its most basic form of a five-oscillator synth offered enough depth 

to the sound to be able to differentiate it in the mix and produced a high enough quality sound to 

prove the feasibility of the synthesis technique. The samples produced by the additive synth were 

much more simplistic during this stage of testing with no additional functionality such as blending 

noise sources or selecting of note lengths, functionality which would be added later on in the 

development of the instruments. Constructing the synthesizers during this stage of the testing was 

fairly time consuming which meant that I did not have the luxury of experimenting with several 

other types of sound synthesis to the same extent although I did construct basic versions of 

subtractive synthesizers and frequency modulation synthesizers that were later developed into the 

synths for the final project. The reason that only two synthesizers were tested during this stage of 
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the project was due to the fact that at this point it was not clear if this project would even yield 

results that sounded coherent and musically aesthetic, let alone suitable for composition. 

During this testing stage of the project, the samples produced by the synthesizer prototypes still had 

to go through the process of being prepared to work with the NSynth which is carried out in Python 

and involves the sounds being broken down into tiny samples and configured to work with the 

neural network, a process which remains unchanged from the main project. However, due to 

technological issues surrounding the availability of a compatible system and the codes inability to 

run on a Windows system, the initial round of tests did not produce any results. However, this stage 

of testing allowed me to better understand the ways in which I could improve the synthesizers in 

terms of complexity and quality of sound samples produced by the machines, as well as how to 

better streamline the process of preparing the samples particularly in terms of file management. 

This issue with the NSynth code not working in the initial round of experiments was particularly time 

consuming especially considering how long the process of encoding the samples took in comparison 

to other aspects of the project, approximately 8 to 12 hours per batch of encoded samples.  The 

workaround for this instead was to run the system on a Mac OS, which meant even more delays in 

the project timeline due to difficulty sourcing access to the equipment needed for enough time to 

produce the results.  

Another aspect of this original round of experiments to consider was how the sounds could be 

demonstrated, and the best way to do this was to attempt to use them in a musical context. 

Attempting to compose with the samples required a work around as the output of the NSynth was 

designed to be used with the NSynth Max patch implementation, and not for composition on 

projects such as logic. However, it should have been possible to take the files produced by the 

process and map them to a keyboard by transforming the data to MIDI data to be compatible with 

composition and music software, which is a process I have used in previous projects to compose 

with custom built synthesizers so this part of the project was not expected to be too time consuming 



 50 

as other aspects of the original testing phase had been. One issue encountered during this testing 

phase of the project is how difficult it was to alter characteristics of synthesis samples if the 

produced result after the NSynth preparation is unsatisfactory, in the fact that any alterations to the 

sound requires restarting the entire process with a new set of samples from the base synthesizers, 

restarting the encoding process all over again. This is more of a flaw with the project that may be 

altered one day in future developments by somehow combining the digital Max built synthesizers 

with the NSynth system, but that is not the aim of this project and is merely an inconvenience at this 

stage.  

3.4 Constructing Synthesizers and Understanding Neural Networks  

As stated previously, all the electronic sound synthesizers for this project were constructed in Max 

due to the fact that the software is extremely capable of allowing the user to produce high quality 

synthesizers in a way that other coding languages and software would simply not be able to. The 

workflow of Max as a program is extremely logical and works perfectly with designing synthesizers 

particularly in the way that the software allows for the user to very easily produce noise objects and 

sculp the sounds to produce basic additive or subtractive synthesizers with little prior knowledge, 

and the support offered online via the Max forums and community allowed me to fill in the gaps in 

their knowledge or troubleshoot issues and came to be extremely useful in the development of my 

synthesizers. While Max was the perfect tool for building the synthesizers, however, it lacked the 

capability to work with artificial intelligence and machine learning, so python was used for the 

elements of the project related to those fields instead.  

Regarding my own implementations of the synthesizers, the process of designing and constructing 

them was a combination of both my own knowledge and information provided by the community. 

For example, I was already fully aware of how to construct a version of the Karplus-Strong 

synthesizer and an additive synthesizer, but I was unfamiliar with developing subtractive synths or 

frequency modulation-based machines. The idea to blend noise sources together to create a greater 
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depth to the variation of sounds produced by the synthesizers was inspired by a completely different 

design for an additive synthesizer that I encountered on the Max forums and subsequently made its 

way into the designs for the additive, subtractive and Karplus-Strong synthesizers. However, in the 

additive synthesizer this appeared more in the form of a selectable noise source per individual 

oscillator, while it functioned as a ‘blender’ like feature in the Karplus-Strong synthesizer where 

more than one noise source could be active at one time. This is due to the design of the synths, 

where all the noise sources in the Karplus-Strong synth were streamlined into one output and were 

the main ways in which the sound could be shaped, in addition to a function object acting as an 

ADSR envelope to control the shape of the sound produced. Constructing the subtractive synthesizer 

was the one that presented the most difficulty for two reasons; my unfamiliarity with the system, 

and the fact that I struggled to find any sort of guidance or instruction on how to construct anything 

other than a basic implementation of the synthesizer. This led me to using techniques that featured 

in other synthesizers to increase the range of sound produced such as an increased number of filters 

at the expense of computational cost, and the ability to change the noise source as mentioned 

above. The construction of the Karplus-Strong synthesizer for this project was based on a version of 

the synthesizer that I had previously constructed for another project and expanded on for increased 

functionality, such as the ability to change the length of notes, refinement with how different noise 

sources would work together to produce more than just plucked guitar tones as well as reusing an 

old algorithmic composition function to help refine the sounds while blending together for real-time 

feedback while balancing the often delicate selection of sound sources to get the most suitable 

sound before recording the samples. The Karplus-Strong synthesizer is perhaps my favourite out of 

the synthesizers I have produced purely due to quality of the samples the synth can produce, 

although restrictive in terms of the variety of sounds that can be produced, and the fact that it takes 

the field of physical modelling synthesis and combines it with more traditional electronic sound 

synthesis in a way that I have not encountered, at least in my own research. The frequency 

modulation synthesizer was perhaps the most basic of the four synthesizers in its final construction 
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due to the fact that it did not need to be particularly advanced to produce diverse samples like the 

other synthesizers, as more modulators can easily be added to increase the flexibility and realism of 

the sound, to an extent at the cost of computational efficiency. However, realism is not necessarily 

the goal of this particular implementation and the number of modulators that can be added before 

computational performance really starts to suffer is quite considerable. Overall, the process of 

designing and constructing the synthesizers was fairly straightforward, if time consuming. This is due 

to the fact that each synthesizer is based off an existing framework provided by the community or 

my own knowledge with alterations made by myself for the sake of diversity of sound samples 

produced and ease of use for future users of the NSynth. The reason that this step of the project was 

time consuming compared to other preparation aspects is that producing high quality synthesizers is 

no simple feat and troubleshooting issues with no real guidance except forums and prior knowledge 

can take time especially in software such as Max where it is easy to make small mistakes when 

dealing with particularly large and complex patches. For example, during one stage I encountered an 

issue where the subtractive synthesizer simply stopped producing sound, which was due to a simple 

issue with the gain control being incorrectly wired up and subsequently the signal for the whole 

patch was not being properly sent to the audio output. Other than minor issues such as the few 

discussed, this stage of the project went well and was completed during the timeline. 

The next key stage of the project preparation phase was understanding how the processes behind 

the NSynth work in order to better use the software. As discussed above, the NSynth draws on a 

huge dataset of audio samples to recognise sonic characteristics of nearly any sound that is 

introduced to the machine (including my own samples which either resemble traditional 

synthesizers or real instruments) due to the developers desire to “develop a creative tool for 

musicians and also provide a new challenge for the machine learning community to galvanize 

research in generative models for music.” (Magenta Labs, 2017). The data set consists of more than 

300,000 notes from over a thousand instruments so it was safe to assume that my methods of 

electronic sound synthesis would at least be somewhat recognised by the dataset in terms of 



 53 

similarities to other instruments and processed in a coherent manner. If the results produced by the 

data set were not satisfactory, the workaround for this would have been to train an iteration of the 

NSynth myself with the samples I have produced. However, this would have dramatically increased 

the scope of my project and would not have been realistically possible to achieve the level of depth 

of training an entire neural network to produce results on a suitably sophisticated level during the 

time period. The acoustic qualities from learned instruments in the NSynth will pick up, for example, 

the guitar like qualities of the Karplus-Strong synth and the standard electronic synthesiser 

resembling sounds of the additive and subtractive synthesizers. Compared to other machine learning 

training data sets that focus on single objects such as pictures or features of an object such as words 

or symbols (Tensorflow, 2017) , the machine learning algorithm behind the NSynth focuses on single 

notes at a time, which will be further explained when discussing how samples are produced for the 

project. NSynth works in the same way as any machine learning network when learning from 

samples in the respect that repetition and recognising characteristics from very similar but slightly 

different sets of data means that there is a margin of error where the algorithm can recognise more 

ambiguous and hard to define samples, which is perfect for my own synthesizers which may still 

resemble other instruments to human ears, machines may struggle to make the distinction. The 

NSynth prepares data through a process called temporal embedding (Magenta, 2017). Temporal 

embedding is the context of isolating abstract behaviours and learned behaviours to predict future 

occurrences and behaviours to allow a neural network to better respond to input in the future (Liu, 

et al, 2015). In the context of audio samples, the temporal embedding process essentially unravels 

the structure of the data to reveal characteristics by breaking each sample down into thousands of 

tiny samples and isolating these features, replicating them and reorganising them into something 

new. These wavenet representations of the sounds are familiar and recognisable as the original but 

are uniquely different from the source sound. With the NSynth, two sounds are combined during 

this deconstruction and reconstruction phase and the new sound is the product of this process, 

where individual characteristics of the original sound can be isolated but clearly a new sound is the 
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main focus. The temporal embedding process is described as being similar to a nonlinear infinite 

impulse response filter, as the filter is currently limited to several thousand samples a second to 

capture the intricate details of the samples, a form of external signal to guide the process beyond 

the scope of a few thousand samples at a time for larger samples is needed. Magenta Labs resolved 

this issue by including a wavenet-style auto encoder in the temporal embedding algorithm so it was 

capable of learning its own temporal embeddings without external guidance, streamlining the entire 

process and making it simpler for other users to use the technology to carry out the process on their 

own samples. The samples go through thirty layers of computation, which results in the creation of a 

temporal embedding consisting of 16 dimensions for every 512 samples, capturing a great deal of 

depth and character from the original sample input. Magenta state that this can be viewed as a 32x 

compression of the original data then a subsequent unpacking for the reconstruction phase.   

Fig 4 (Magenta Labs, 2017) 
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The rainbowgram (Fig 4). represents the original sample of three instruments before being 

processed by the WaveNet encoder, during the encoder and the subsequent reconstruction. The 

graph makes it fairly clear that reconstructed samples produced by the temporal embedding process 

very closely resemble the original sample in terms of audio quality with a few key distinctions, and 

audio examples provided by Magenta reinforce this point. (Magenta Wavenet, 2017). While the 

wavenet can only capture sound samples in a local context, this is suitable for the project as long as 

the samples that are output at the end of the process are able to respond to MIDI signals and used 

as composition tools either through the NSynth or other software to produce music. The model was 

tested at producing both single note sequences, as well as longer sequences of several notes which 

only reinforces the strength of the training dataset and the capability of the temporal embedding 

process, perhaps due to the miniscule size at which the sound samples are processed and 

reconstructed. Understanding this process paid off in the long term of the project preparation as it 

provided me with insight as to how the process was particularly adept at highlighting unique sonic 

features in the sound and gave me a better idea of what kind of samples to produce.  

As the process of encoding and decoding audio samples in the NSynth relies so heavily on WaveNet, 

I felt it was important to conduct a brief research survey into WaveNet itself. WaveNet is a ‘deep 

generative model of raw audio waveforms’ (Deepmind, 2017). WaveNet was originally developed as 

a deep neural network that could generate speech that more closely resembles existing methods of 

text-to-speech sound synthesis, such as concatenative, which synthesises the structures of shapes 

and vowels to essentially patch together spoken words and speech (Mustapha, 2016). DeepMind 

demonstrated that the same neural network could also be used to process other digital audio signals 

for music and use the same training algorithm to produce realistic piano pieces with striking 

resemblance to the compositions the network was trained on. WaveNet is responsible for the 

element of the temporal embedding process that breaks the raw audio down to the sample level 
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due to the same reasons as the former mentioned; raw audio proves too difficult to work with due 

to the rate at which it ticks over, typically 16,000 samples a second. Compared to other methods of 

synthesized speech and real human speech, the WaveNet proved to be much more effective than its 

predecessors in accurately synthesizing speech (DeepMind, 2016).  

 
 

Fig. 5 (Tensorflow, 2017) 
 
 
The structure of the Wavenet (Fig 5) is made up of several layers of data. There are several layers in 

this implementation of a convolutional neural network (Habibi; et. al 2017) where each layer has 

several dilation filters that split up data and allow its receptive area to grow exponentially with every 

layer and extract detail from thousands of time steps into which the data is separated.  

This only reinforces the possibilities of the same technology when used to make the NSynth 

function, only reinforcing the systems strength as a tool of effectively producing usable synthesizers 

for composition. WaveNet was also proven to be capable of reproducing organic elements of human 

speech such as breathing and mouth movements, demonstrating the amount of sonic detail the 

process manages to capture and reproduce. The musical demonstrations of the WaveNet system 

independently of the NSynth warrant discussion at a later time due to the fascinating implications 

that training AI to reproduce the music of composers, perhaps long dead from the classical and 

baroque eras is an interesting research discussion of its own.  Conducting this research allowed me 

to much better understand the workings of the NSynth and WaveNet, specifically with how the 
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system treats data and the quality of synthesizer needed in order to best  utilise the attention to 

sonic characteristics and detail that the NSynth and temporal embedding process is capable of.  

 

3.5 Testing and Producing Samples 

As described in the Magenta Labs help files for the operation and expansion of the NSynth, there 

was a predefined process to carry out on the samples to make them compatible for use with the 

NSynth. For clarity, I will explain the process below with a flow diagram, and spectrograms of the 

input vs output samples.  

Following the instructions, a set of 16 samples from each synthesizer had to be recorded directly 

from the instrument, each four seconds in length for the sake of consistency within the mixture of 

the resynthesized result. 

The first step in the process was to record the samples from the synthesizer. Due to the nature of 

synthesizers built in Max, the easiest way to record the samples was to use a recorder from inside 

the Max patch itself, which could be programmed for length. This was important as each sample had 

to be the same length in time due to the encoding process of the NSynth. Sixteen samples per 

synthesizer had to be recorded, ranging from MIDI value 24 (C2) to MIDI value 84 (C7).  

The next step in the process was to prepare the files to work with the python code. 

In order to do this, the process started with the need to properly organise the files in a directory so 

the python code could recognise them. The python code used in the process was provided by the 

user instructions in the magenta NSynth files and consisted of a number of different parameters that 

would recognise specific markers in the file name of the samples produced in the previous stage. For 

example, ‘additivesynth_24.wav’ would be the sample for the additive synthesizer for the note MIDI 

value 24, C2.  
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Once the directory for the samples was prepared, the python code was used to produce the batch of 

samples. The output was produced in the form of a number of combined instrument samples, with 

individual samples of combinations of instruments, with note equivalents ranging from C2 to C7.  

Once the samples were produced, the next step was to produce a spectrogram of the input sample 

vs the output sample to compare sonic similarities and use this information, as well as subjective 

opinions from listening, to the samples to decide if the input sample had to be tweaked to produce 

higher quality and more usable results. In the final iteration of my samples, this process had to be 

repeated around four times to produce output samples I felt were suitable for the composition I 

aspired to produce. Below is a flowchart explaining the process followed to produce the samples, as 

well as spectrograms comparing the samples from the synthesizers before the NSynth, and the 

subsequent output.  

One final optional step that I performed for the sake of achieving a certain aesthetic quality was to 

re-record the output samples through a dynamic microphone to achieve a sense of ‘room space’ or 

reverb that would often be present in traditional instrument recordings. This aesthetic characteristic 

is an aspect that is often present in my own practice as a musician and is not entirely essential to the 

process but this falls in with the suggestion for the user to experiment with any one of the systems 

present in this research project to achieve whatever sonic characteristics they may wish to utilise. 
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Fig. 6 (Flowchart of sample production process) 

Below are spectrograms of the input samples for the Karplus-Strong synthesizer and the additive 

synthesizer, compared to the subsequent output from a test run of a batch of two samples.  

 

 

Fig 7. (Additive Synth input spectrogram, Karplus-Strong input spectrogram, NSynth output 

spectrogram)   

As shown in the spectrograms above, characteristics present in both the input samples are present 

in the output, which provides evidence that sonic characteristics of the input synthesizers are still 

recognisable in the resulting NSynth output. The plucking sound of the Karplus-Strong synthesizer in 

Fig.6 and Fig. 8 is noticeable in the output sample spectrogram, as is the decay of the note in the 

additive synth sample. There is also an additional loud source of noise in the output sample as 

represented by the sharp line in Fig. 8, which is likely just distortion of the sound from the 

embedding process which gives sounds a grainy texture of their own, which is just a result of the 

process found in most of the samples produced for the this project.  This reinforces the importance 

of the final step in the flowchart, which instructs the user to repeat the process as often as required 

to ensure the output sample represents the aspects of the combined sounds to a level suitable for 

their compositional requirements.  
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3.6 Composition and Inspiration  

Electronic sound synthesizers were originally created with the end goal of being used to produce 

music, as was the NSynth. Furthermore, musicians and researchers have always been at the 

forefront of new technological developments to find a way to use emerging technology and theories 

to produce new and original compositions and methods of enhancing music. To this end, it was clear 

that the best way to demonstrate my own thesis project was with a composition. To draw 

inspiration from existing computer music applications of technology, I studied two distinct 

approaches to the concept. The first was Stria by John Chowning, and the second was Switched on 

Bach by Wendy Carlos. Stria is described (Zattra, 2016) as a key milestone in the history of computer 

music. The piece is fully generated with synthesizers, specifically frequency modulation, and is 

famous for being one of the first pieces to fully utilise this method of synthesis as well as the Golden 

Mean Ratio, which is a mathematical phenomenon where if two quantities are in the same ratio of 

their sum to the larger of the two quantities (Dunlap, 1997). Chowning’s breakthrough in the FM 

synthesis technique allowed him to create synthesized ‘metal striking’ sounds and bell like sounds, 

which bore striking resemblance to physical real-world percussion. After six years of development 

with the algorithm which he engineered to be capable of synthesizing many instruments with 

varying degrees of complexity, including the human voice (Chowning, 1973). The structure of Stria 

itself was based on the mathematical properties of the golden mean, where the length of an 

individual segment of generated sound was decided via the length of previous sections and the sum 

of the ratio of individual sections to share the ratio of the overall piece. The golden mean was 

considered historically to be the representation of physical perfection displayed by natural examples 

such as the Fibonacci spiral (Lucas, 1891), which is presumably what Chowning was aiming for when 

he programmed the algorithms to produce the piece. However, for the sake of this project, I was 

more interested in the sonic properties of the piece and how resynthesized sounds could be used to 

achieve similar sounds, while the structure of the composition would follow something far more 

musically conventional as this is my area of strength as a songwriter and composer myself. In Stria, 
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the properties for every sound featured in the piece were generated by a source algorithm starting 

from the same globally referenced FM synth for the piece. Each sound was defined by approximately 

30 parameters including begin time, duration of attack, carrier frequency, ADSR control etc.) which 

allowed for a wider range of sounds to be automatously produced by the algorithms due to the 

sheer number of parameters that could be altered, similar to my own synthesizers which could be 

heavily tweaked to alter the sound produced by the algorithm (Baudouin, 2007). Chowning gained 

control of this huge number of parameters to shape the sound by applying individual envelope 

generators to every oscillator which allowed control of each element of the process on an individual 

level rather than having to tweak the entire algorithm which must have dramatically reduced time 

limitations of the original composition while maintaining flexibility of sound. This range of sound was 

even expanded further by adding alternate envelope generators to each oscillator with a different 

set of controllable parameters. The alternate envelope generator was historically used in the climax 

of the piece to produce a ‘shhh-boom’ sound as described by Chowning, which was achieved by a 

step variation of the original carrier amplitude (Dahan, 2007). Overall, the sonic characteristics of 

Stria are so unique and such a distinctive showcase of the capabilities of unique synthesized sounds 

to produce composition, studying this piece was extremely helpful in understanding the scope of 

music that could be composed using non-conventional computer music synthesis methods such as 

the NSynth. (Meneghini, 2007).  

Switched on Bach was composed as a counter argument to many computer music research 

compositions of the time produced by avant-garde composers regarded by Wendy Carlos as “ugly 

music” in an effort to compose “appealing music you could really listen to” (Carlos, 1999). Produced 

entirely with synthesizers, the project was a collection of renditions of classical Bach pieces 

reimagined in a new style with emerging technologies. This use of emerging technology at the time 

to bring a change to existing musical tradition and use of technology really resonated with me in 

conducting research into the history of composing with computer music to discover how to produce 

my own compositions with the NSynth. Switched on Bach was produced with a monophonic 
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synthesizer, meaning that each note had to be released before the next one could be played, 

resulting in a disconnected and unnatural sound common to monophonic synths. To overcome this, 

Carlos had to record each note one at a time which must have been a particularly arduous process 

for the technology of the time, especially on an unreliable synthesizer that “often went out of tune” 

(Miller, 2004). Upon listening to Switched on Bach in its entirety, the aspect of the compositions that 

stood out to me most was the way in which synthesizers were used to emulate the range of 

instruments featured in the original composition, particularly the way in which woodwind 

instruments were cheerfully recreated by whistle-like tones and the range of sounds produced by 

just one synthesizer (Carlos, 1968). In the piece ‘Water Music Suite No. 2 in D’, the use of the 

synthesizer to recreate semi authentic horn sounds particularly resonated with me as a good 

example of the types of samples to produce to yield valid compositional results from the NSynth 

algorithm. To this end, it was clear that having a good intention of the types of samples I intended to 

produce with the NSynth was important to producing the best possible compositions with the 

results. This is in line with any endeavour into producing music with electronic synthesized sounds 

and was undoubtedly what took place with Switched on Bach in order to faithfully recreate the 

compositions. 

 

Studying these two distinctly different approaches to using emerging computer music technology to 

compose music has allowed me to gain an insight into the process for my own composition, 

combined with my own background as a music producer. Stria’s use of interesting and abnormal 

synthesized sounds and focus on individual sonic characteristics of a sound to produce a truly unique 

piece in addition to the foresight and planning of sounds used to produce a faithful but cutting edge 

demonstration of synthesis of Switched on Bach left me far more prepared for my compositional 

attempt with my produced sounds. As my own background as a writer of music lies primarily within 

the genres of indie and rock, producing a piece of music in a new style with unfamiliar instruments 
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certainly presented a challenge, although this challenge was overcome with the inspiration of 

recreating existing pieces to an extent, not dissimilar to the work of Wendy Carlos. For my own 

composition, I decided to use the synthesizers to create a piece inspired by of one of my personal 

favourite pieces of music. The piece of music in question is the Exogenesis Symphony Pt. 3 

(Redemption) by the British rock band Muse. The piece itself is a fusion of classical and rock styles in 

the form of a 3-part symphonic suite and offered plenty of variety in instruments to demonstrate my 

own synthesized sounds. I chose this piece with the theory that I would be more comfortable 

composing with an element of the style I am experienced in especially considering the unfamiliarity 

of the instruments and would therefore produce a much better piece to demonstrate the strengths 

of the project. As for the instruments within the original piece, piano, strings, percussion and vocals 

heavily featured. In terms of producing samples to fit this instrument selection, I decided that a 

resynthesized sound with prominent features of the Karplus-Strong algorithm would best be suited 

to recreate the short but flowing notes of the introduction to the piece, as the sustain offered by the 

original algorithm in addition to the drone-like textures produced by some of the additive synth 

samples would accurately recreate this instrument that would continue to be a prominent part of 

the piece. As for the string sections, any other blend of synths would work as long as the timbre was 

distinctly different from the Karplus-Strong focused blend. As for the process of composing the 

piece, I realised that the most efficient method was to find a way of mapping the sets of 

resynthesized sounds to a MIDI keyboard that could be used with Logic Pro X as a production suite. 

Software such as Soundflower was capable of connecting MIDI output from Max to software such as 

Logic or Ableton. The composition took the form of a blend of the ‘Exogenesis Symphony’ as an 

arrangement using some of the resynthesized samples, as well as original music with a wider range 

of samples inspired by Carlos and Chowning to demonstrate the capabilities of the results of the 

project. The shape of the composition was directed mainly by the need to demonstrate the 

capabilities of the NSynth samples, hence the wide variety of sonorities demonstrated in the piece 
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which resulted in a ten-minute-long piece that seems to change drastically throughout in terms of 

theme, dynamics and momentum.  

3.7 Project Changes and Refinement 

Throughout the course of the project, there were several changes made to the project for various 

reasons, as well as refinements to control the scope of the project to fit within the time constraints. 

In this section I will discuss how these project changes affected the overall process and why the 

changes were vital to ensure the success of the project. Firstly, the biggest change to the project in 

my own opinion was the decision to drastically reduce the number of synthesizers from sixteen in 

the original inception of the project (as dictated by the NSynth sample preparation documentation) 

to just four sets of synthesizers. The reason that this was necessary was primarily a time constraint 

concern, although focusing on fewer synthesizers allowed me to focus much more on individual 

synthesizers and making them as advanced and diverse in terms of sounds produced as possible, 

rather than having sixteen half-baked and indistinguishable from one another synthesizers. As a 

result, each of the four synthesizers were able to produce many more sounds for future use of the 

project, and is much more manageable to control four instruments in a complex mix rather than 

sixteen, especially in a proof-of-concept project aimed at composition where simplicity is valued 

over extreme complexity to the point of convolution. Another change that was made to the project 

was the decision not to produce a wider set of samples for potential users to play with. Not only was 

this a time constraint conscious decision, I felt that leaving users to their own devices when 

producing samples with the instruments better allows them to express their creativity, so detailed 

instructions on how to use the code and synths to produce new samples would be provided instead.  

Originally, I intended to discuss digital convolution as a synthesis method which is also capable of 

combining sounds for resynthesis to an extent, although not to the depth and timbre of the sounds 

that the NSynth produces. I chose to omit this from the project fairly early on into the timeline as I 

felt that discussing a method of synthesis so close to the project I was trying to achieve would 
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confuse results and undermine the work with the NSynth, and invalidate the whole artificial 

intelligence and machine learning element of the project as a result. Even though the synthesis 

method was nowhere near capable of producing similar results, it simply did not require inclusion in 

the project past a simple passing mention during the research survey section. The final project 

refinement was to add detailed instructions on how to use the provided tools to make samples and 

use the NSynth rather than including a wider bank of pre-prepared samples. As mentioned above I 

felt that providing a larger range of samples might limit creative freedom but it also discouraged 

users from going through the same learning process I underwent myself when understanding what 

kind of results each different synthesizer would produce while used for producing samples and with 

the temporal embedding process.  This learning process really informed my decision making when 

composing with the new sounds as I had a much better idea of the sonic qualities that would feature 

heavily in the piece. Overall, these changes helped the project feel a lot more concise and be much 

more manageable within the time scale provided. 

 

Rationale 

In this section, I will justify decisions made throughout the practical elements of the project, how 

research led me to make these decisions and the impact that said choices had on the thesis project 

from an objective standpoint.  

As stated previously, the decision to use the synthesizers were based on four key criteria; ease of 

use, computational efficiency, range of sounds produced and how easy it was to construct my own 

version of it. These criteria were selected carefully due to a few key reasons, and these decisions had 

a huge impact on the outcome of my project. Firstly, one of the main aims of the project from the 

inception was to create a tool that could be used by others for composition and experimentation 

once the project was completed, and to that end, the synthesizers had to be easy to use so the user 

could produce their own samples and modify the synthesizers enough to suit their own needs. The 
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effect that this decision had on my project was that none of the synths became overly complicated 

and could easily be used to produce a moderate range of sounds, although this sacrificed the ability 

to create perhaps more complex individual sounds that could have been focused on if time 

constraints were not an issue. In addition to being easy to use, the synthesizers also had to be 

capable of producing more than just one simple sound, with the aim of experimentation in mind. To 

that end, range of sounds produced by the chosen synthesizers was also an extremely important 

criteria that the synths had to meet. The decision to include this as a criterion affected the project in 

that a delicate balance between finding synths that were easy to use while remaining 

computationally efficient and still possess the ability to produce an acceptable range of sounds was 

formed. Fortunately, simpler methods of synthesis such as FM synthesis and additive synthesis met 

these criteria, while approaches such as Karplus-Strong met fewer criteria but proved useful due to 

their unique sonic characteristics, which was more of an aesthetic decision to the project rather than 

an academically justified one. Synthesizers also had to be computationally efficient and the decision 

to include this as one of the requirements for the instruments is purely a practical one, due to the 

fact that I was producing the synths on a system with limited hardware capability and a very small 

budget. Without this as a consideration, the project would not have been possible at all due to 

simply not being able to use the programs if they were too computationally demanding. Needless to 

say, this was an easily justifiable decision to make, however I was fortunate enough that all of the 

synthesizers selected for the other criteria were manageable from a computational standpoint if 

kept moderately simple and not much further research into more efficient methods was needed. 

The final criteria related to how easy it was to produce my own version of the synthesizer in terms of 

the process of using Max to construct the synthesizer, and the decision made to include this was to 

keep the project scope manageable and to make sure that the process was completed during the 

allotted slot of the project timeline.  
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Carrying out initial experiments into using the NSynth with my own samples was an important part 

of my rationale to prove that the project was technically feasible in the first place. The decision to 

produce a small number of demonstration samples with my implementations of the Karplus-Strong 

and additive synthesisers was made because both synthesizers offered different sonic characteristics 

in quite a drastic manner so individual aspects such as plucked-string-esque timbres could easily be 

recognised in the newly created sample sound. This allowed me to distinguish from the experiments 

output to determine if a result that could still be recognised as having characteristics of the original 

sound and could be used in a similar manner to the original sound in terms of composition. This had 

a massive impact on the project in the respect that a sample containing sonic characteristics could 

be used in the same way that a guitar could be used in a composition, but distinct enough from the 

original instrument to be considered something unique and valid as a creative tool. The rationale 

behind the testing phase of this project was to determine if valid sounds could be produced and this 

was proved by the initial experiments.  

 

The decision to use composition as the presentation method for the research was made very early 

on in the process due to the fact that with sound and music related technology, there is no better 

way to demonstrate the research than producing a piece of music to show the output in a practical 

way, rather than an abstract or theoretical explanations or demonstrations. Composition as a chosen 

method also complimented my own practice as a musician and composer, so this was easy to justify 

even if the composition method from the project was unconventional. However, as mentioned 

previously, this just encouraged experimentation to produce new music with new tools. 

 

 During the process of producing the samples with the NSynth, I had the choice between using the 

existing dataset of the NSynth to recognise characteristics of sounds based on three million samples 

the system had already been trained on, or to train the system on my own dataset. The reason I 
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chose to use the existing dataset is due to the fact that the latter would have been an extremely 

time-consuming process and could not guarantee the same standard of result as magenta’s training 

data set. The impact that this had on my research was that time and practicality was favoured over a 

data set that may have been more bespoke to the specific instruments it was being used with, 

although no tests were carried out to confirm this so it cannot be stated whether or not a specific 

dataset would have produced better results.  

 

The decision to produce a test batch of samples was made to discern whether or not the project was 

viable and could be continued, and the decision to produce a test batch of samples led to a testing 

phase that was initially unsuccessful due to a lack of access to technology with sufficient 

computational power and the correct operating system to do so. This led me to work on other 

aspects of the project until a unix capable machine could be acquired, which had the impact on the 

project of having to slightly adjust the timeline to ensure valuable time wasn’t wasted by bringing 

the project to a halt. During this time, I emphasised my focus on research into inspiration for the 

composition aspect of the project. The outcome of this decision on my project was not too serious, 

however, and allowed more time to refine the plan for the composition once the final batch of 

samples had been produced. The rationale behind this decision was to test the system before the 

project was too far down the timeline to adapt and change it to overcome difficulties that may have 

been encountered further down the project.  

 

This next paragraph explains and justifies the decisions I made during the planning of the 

composition and not the actual composing process itself. For the composition, I wanted to include 

inspiration from works of computer music that are related to the early work of electronic sound 

synthesis as well as inspiration from my own practice as a musician. From a self-taught musical 

background, my early days as a musician were defined by bands such as Muse, The Arctic Monkeys 
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and Jimi Hendrix. As a guitarist, I wanted to select a compositional style and feel that matched my 

own usual approach to composition with synths such as Karplus-Strong with clear inspiration from 

works such as Stria and Switched On Bach, as mentioned above. This led to the idea to produce a 

recreation of an existing piece based in my own musical background with elements of influence from 

computer music associated genres and works. The impact that this had on my project was the 

outcome of a well-researched and academically justified composition idea with aesthetic 

justifications rooted in my own musical practice.  

 

During the composition process, the decision not to turn the project into a full-blown sample player 

made the composition much more difficult. As explained previously, the composition process was 

difficult due to the nature of the samples and the fact that they could only be arranged by essentially 

dragging and dropping them into Logic, which was an extremely time-consuming process. This would 

have negatively impacted the project timeline; however, I was fortunately ahead of schedule and 

had extra time to ensure the composition was given full attention. General issues included difficulty 

lining up the samples to be in time due to the nature of the output of the NSynth where different 

length of samples had to be trimmed down to size, however issues like this were overcome with 

patience and attention to detail and had no result on the final end result of the composition process.  
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4. Summary and Conclusion 

The purpose of this section is to summarise and conclude the findings and results of this research 

thesis project. The main points discussed will be the research outcomes and main achievements of 

the project as well as primary issues faced throughout the process. Alterations that also occurred 

throughout the process of the project for various reasons and the implications of these changes will 

also be reviewed and summarised. Finally, the potential for further research into the fields of AI and 

sound synthesis using the findings of this project and further developments of the project within this 

thesis will be discussed.  

4.1 Research Outcomes and Main Learning Achievements 

Overall, this thesis project served to demonstrate that an overlap between artificial intelligence-

based systems and specific ally designed electronic sound synthesis could produce sounds suitable 

enough to be used for a composition inspired by the works of previous computer music artists such 

as John Chowning and Wendy Carlos. The resulting sounds produced by the synthesizers once the 

temporal embedding process has taken place were used to produce a composition, and instructions 

on how to follow the same process to produce sounds with the aforementioned synthesizers were 

also provided so further compositions could be produced. The aim of this thesis project was to use 

the Magenta Labs Neural Synthesizer (NSynth) along with electronic synthesizers specifically 

designed and tuned based on their sonic characteristics to produce something resembling a specific 

style of composition with historical and contextual inspiration. One of the main learning 

achievements of this project, in my opinion, was producing the sounds that could be used to create a 

composition from particularly difficult to use instrument and create a viable, if slightly unusual 

composition. In addition to the composition, it also proved that there are far more applications for 

musical production by individuals far more skilled than me in producing electronic music to use their 

own synthesis implementations and sounds to create and compose with the NSynth. Research 

conducted into the NSynth during the project process as well as experimentation with the 
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instrument and the bespoke synthesizers found that certain combinations work better than others, 

and designing specific synthesizers to fill a certain role within a planned piece when combined 

together was a valid and methodical approach to composing with these tools, in my experience. 

However, this does not mean that it is impossible to combine random sounds from the synthesizer 

and produce a perfectly valid composition in any style or use the sounds to compliment other 

methods of composition including live recordings or MIDI pieces. The process of editing the result of 

a sound includes starting from the synthesizers and then repeating the temporal embedding process 

which proved frustrating at times and probably makes the latter method of composition more 

attractive to potential users, although the project proves that it is definitely possible to use AI and 

synthesis to produce music. The aim of the project was to conduct ‘an investigation into the uses of 

artificial intelligence and machine learning for electronic sound synthesis’. Overall, this investigation 

culminated in a demonstrative composition, reviews of two different fields of study related to 

computer music and development of the research concept, leaving the potential for further 

research.  

 

4.2 Primary Issues Faced 

Despite the overall success of the project, there were a number of hurdles and issues faced 

throughout the process. I will discuss these issues one by one and how they affected the project, and 

alterations that were made as a result of these changes and the affect on the overall project as a 

result of this.  

One of the issues faced early on in the project was finding a computer system suitable enough to 

carry out the temporal embedding process, which caused significant setbacks in the project timeline 

and nearly even forced the project idea to be reconsidered in favour of focusing purely on the 

theoretical ways in which AI and electronic sound synthesis could be used together, or instead 

focusing on resynthesis through digital convolution and abandoning the artificial intelligence aspect 
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altogether. For various reasons related to the way in which windows operating systems function, the 

temporal embedding process carried out in Python did not work on the computer systems I had 

available to me, so to resolve this issue I was eventually able to gain access to a UNIX operating 

system that the temporal embedding process could be carried out on. This caused project delays due 

to financial implications involved in the process that were eventually resolved and eventually 

finished, and the delay was adapted to by simply focusing on other areas of the project in the 

meantime. The rationale for addressing this issue was fairly straightforward in that it was a more 

practical solution to adapt the technology used in the project rather than massively changing the 

contents when much of the research and work had already been carried out. The implication of this 

decision is that there were delays that ultimately affected the time left available to produce the final 

composition, where I had intended to experiment more with different sounds produced by the 

algorithm, although the instruments available to me for composition were still adequate enough to 

provide a suitable proof-of-concept composition for the thesis project.  

Another primary issue faced was the underestimated difficulty of producing a composition that I as a 

composer was satisfied with, due to both technological reasons and compositional reasons. Firstly, 

technological limitations of the implementation of the NSynth provided by Magenta Labs as a Max 

device meant that acquiring sounds and controlling the blend of sounds was easy, but there was no 

real way to import this output into composition and music production software such as Logic Pro X, 

except software such as Soundflower which merely records from the instrument which was difficult 

to use in terms of arranging a piece and editing segments as the output as one singular audio file, as 

if recorded with a microphone. To overcome this issue, I simply recorded the audio directly from my 

studio monitors with a microphone and played the desired notes within the instrument, then 

trimmed these segments and arranged them into the piece as necessary. This workaround was 

complicated and perhaps with more time it would have been possible to use the software such as 

sound flower to enable the instrument to be used for an entire composition more smoothly, but the 

project timeline meant that this workaround prevented prohibitive issues from holding back the 
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research project any more than it already had. Despite this time-consuming workaround, the quality 

of the output samples from the NSynth still proved to be usable for composition. Although the 

technological issues with the composition process were eventually resolved, using the sounds to 

produce a composition presented their own set of issues. The way in which the samples had to be 

imported into the logic file meant that each note had to be individually arranged into the piece with 

no way of using the MIDI keyboard as an instrument with which to compose. It was still possible to 

produce a composition this way, though it was time consuming and unappealing to other musicians 

as a compositional tool. This meant that once the samples had been recorded from the NSynth 

instrument in the process detailed above, there was no way of lengthening the notes short of 

looping them which involved changing huge aspects of the compositional plan. However, it was 

possible to shorten the notes by trimming them and using fades, equalisation and other mixing tools 

to remove harsher aspects which resulted from this lack of note control. If it were not for the limited 

time available to complete the composition, I would have created a sample player in Max with 

variable note length into which the samples could be loaded, which would have, in theory, 

functioned well as a compositional tool. This issue was overcome with time and patience in the 

compositional stage of the project, with potential to make this process easier with further 

development and research in the form of the sample player to act as a dedicated instrument. The 

decisions made to overcome these issues were partly aesthetic and partly practical. For example, the 

decision to use a dynamic microphone to re-record the samples directly from my studio monitors 

was an aesthetic choice, made in order to add the sonic characteristics of depth and more natural 

‘room’ and reverb to the sound, and I found that this made the instruments take on a slightly 

different, less artificial sound which was an interesting approach to the final recording, coming from 

my own experience as a recording musician outside of this thesis project. The microphone used was 

a Shure SM57 which I often use myself for recording guitar amps and other stringed instruments 

worked particularly well with synths attempting to emulate strings in the composition, adding much 

of the same timbre that the equipment offers with similar live instruments. The impact of having to 
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manually organise individual sound samples definitely affected the scope of the final composition in 

the respect that it is an extremely irritating and impractical method of composition that may deter 

less experimental users from fully exploring the scope of the sounds made available from the 

project. However, in the same vein of the experimentation that came from cutting and splicing tape 

recordings, this can be viewed from an aesthetic standpoint as an unintentional homage to that, 

encouraging experimentation and composition that may not otherwise occur. This both negatively 

and positively affected the project, depending on how experimental the user wants to be. From my 

own perspective, I found it difficult to adapt to this particular method of composition, especially 

compared to my usual composition method of recording with live instruments and my own 

synthesizers, however I did find it interesting to take a new approach to using my own tools that I 

may not have intended when I first started the project. The decision not to make the instruments 

functional as a sort of sample player as mentioned above could have been justified with more time 

available and would have had an impact on the project in the sense that it would have been more 

easily accessible, but as mentioned previously, this can be justified by encouraging the user to adapt 

to the tools available like I, myself, had to.  

4.3 Reflection and Further Research 

Overall this research project was successful in demonstrating a new way in which electronic sound 

synthesis and AI can be combined for compositional purposes. Given more time, I would have liked 

to prepare the project as a more concise package with a proper method of use as a compositional 

tool rather than time consuming workarounds to make the process easier to follow for other 

composers and researchers. However, the guides provided by Magenta Labs proved simple enough 

to follow in order to allow others to use the synths to produce their own samples. Upon reflection, I 

feel that producing my own implementation of the NSynth would have broadened my understanding 

of the process behind the network even more than the research did, but that would have 

dramatically increased the amount of time taken to produce the final result and the results yielded 
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may not have been significantly different so dedicating valuable time to a learning exercise was not 

necessary. As a side note, part of my own research independent to this thesis project involved 

building a neural network, and skills learned from this process aided my research into the artificial 

intelligence aspect of the research. However, lacking my own implementation of the NSynth did not 

diminish the completed work as the research aim was to conduct an investigation into ways in which 

the two fields are used in tandem to produce a musical output and composition through AI and 

synthesis was simply the way in which I chose to demonstrate this connection.  

Although I have briefly discussed the implementation of a sample player as a compositional aid to 

function with the synthesizer samples as a way of further developing the project, there are other 

ways in which I would further this research project, given the opportunity to keep developing it. It 

would have been interesting to expand the range of synthesizers beyond four implementations of 

basic synthesis methods and explored the sonic characteristics of electronic sound synthesis 

methods such as octave synths or granular synthesis, and discover new compositional avenues 

offered by these new possibilities. It would also have been interesting to further explore the results 

of combining, for example, physical modelling synthesis methods and more conventional but 

obscure synthesis methods. This was briefly explored in the project with the combination of the 

Karplus-Strong synthesis combined with the others and produced perhaps some of the most 

interesting sound samples which I was particularly fond of utilising during the creation of the 

composition. The issues encountered and the potential for expansion within this finished research 

project does not detract from the strides I have made with my own knowledge within the fields of 

artificial intelligence and electronic sound synthesis, and since the start of the ResM computer music 

course, and I look forward to experimenting further with this research in my own time. With the 

completion of this composition and the research project overall, this concludes the research project 

and production of the means to produce further work.  
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