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We report measurements of 7 and 7° meson photoproduction from longitudinally spin-polarised
protons by an energy tagged (0.73-2.3 GeV) and linearly polarised photon beam. A close to complete
solid angle coverage for the reaction products was provided by the CEBAF Large Acceptance Spec-
trometer at Jefferson Laboratory. The double-polarisation observable G is extracted from Maximum
Likelihood fits to the data, enabling the first accurate determination for the reaction 5 — 7' n,
while also significantly extending the kinematic coverage for 45 — n°p. This large data set provides
an important constraint on the properties and spectrum of excited nucleon states decaying to N«
in the mass range from 1.4 to 2.2 GeV, as well as for background (non-resonant) photoproduction
processes. The considerable improvement achieved in the description of the observable G within
the SAID and Bonn-Gatchina approaches after implementation of our data, illustrates that the
partial-wave analyses now significantly extend the knowledge on N7 photoproduction amplitudes
at W > 1.8 GeV. A partial-wave analysis using the new high-precision data set have a large impact
on the extracted properties of high-spin nucleon excited states.

I. INTRODUCTION

Hadrons are composite strongly-bound systems, whose
fundamental properties derive from the internal dynam-
ics between their constituents, quarks and gluons. As
with any composite system the excitation spectrum has
the potential to reveal details of the dynamics and inter-
actions of their constituents, providing new insights into
their structure and more generally, our detailed under-
standing of the nature and validity of non-perturbative
Quantum ChromoDynamics (QCD). Phenomenological
constituent quark models and, more recently, lattice
QCD calculations [1, 2] predict a rich spectrum of nucleon
resonances, in contrast to the more limited spectrum of
states that have (currently) been established experimen-
tally [3]. The cause of this so-called “missing resonance”
problem [4] has been a major focus for contemporary ex-
perimental hadron physics and on the theory side has led
to alternative interpretations of nucleon structure [5-§]
that reduce the number of predicted states. Several miss-
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ing resonances were discovered in the multichannel analy-
sis of exclusive meson photo- and hadro-production with
a decisive impact from the CLAS exclusive photoproduc-
tion data [9]. In addition, another missing resonance was
recently observed in the combined analysis of the 7+7~p
photo- and electro-production data [10]. Furthermore,
new results [11, 12] on the nucleon resonance spectrum
are consistent with the symmetry driven expectations,
which predict many other missing resonances in the mass
range above 2.0 GeV. These studies have demonstrated
sensitivity of the N7 photoproduction data to the contri-
butions from the missing resonances in this mass range.

The photoproduction of mesons from nucleon targets
provides an excellent tool to better determine the exci-
tation spectrum of the nucleon. The main complication
for experimental studies of this spectrum arises from the
strong overlap of many of the excited states. Due to their
short lifetime the states have widths larger than their
separation, a problem that is exacerbated for the more
densely packed higher-lying states. With the exception
of the lowest-lying states, clear resonance signals are not
evident in cross section data. Meson photoproduction of-
fers the possibility of measurement of an extensive set of
polarisation observables, information that is mandatory
for partial-wave analysis to disentangle the underlying
spectrum.

The photoproduction of single pseudo-scalar mesons
can be fully described using four complex reaction ampli-



tudes [13]. To constrain these amplitudes without model
assumptions in a “complete” measurement, we require
a precise and kinematically complete determination of
at least eight well-chosen observables [14, 15], involving
single- and double-polarisation observables from combi-
nations of polarised beam, target nucleon, as well as a
determination of polarisation of the recoiling (final state)
baryon at fixed energy and production angle. Each com-
bination has a different sensitivity to the magnitudes and
phases of these complex amplitudes. The number of mea-
surements required to unambiguously extract multipole
amplitudes, meaning a separation of the reaction into
the contributions from different photon angular momenta
and distinguishing their electric or magnetic character, is
a related problem, as discussed in Ref. [16]. The differ-
ent spins and parities of the excited states mean their
contributions will be separated into different multipole
amplitudes, which offers the possibility to determine res-
onance properties.

As part of a world programme to provide the neces-
sary experimental data, single and double meson photo-
production experiments from polarised and unpolarised
nucleon targets are of high scientific priority at the lead-
ing electromagnetic-beam facilities, with recent and on-
going programmes at CLAS at JLab, A2 at MAMI,
CBELSA/TAPS and BGO-OD in Bonn, as well as LEPS
at SPring-8 and ELPH in Japan.

The current data set for pion photoproduction from the
proton is the most extensive of the various possible final
states (see Ref. [17] for a recent summary), with quality
data obtained for both final states (7+ and 7°) in their
unpolarised differential cross sections and polarised beam
single polarisation observables. Measurement of single
polarisation observables relating to the recoiling nucleon
(Py) have also been achieved with limited acceptance.

Precision measurements of double-polarisation observ-
ables in pion photoproduction are limited to the 7 final
state. Measurements of G, F (linearly polarised photons
on longitudinally and transversely polarised targets, re-
spectively), and E (circularly polarised beam on a lon-
gitudinally polarised target) have been achieved [18-20].
Kinematically sparse measurements of C, and C, (cir-
cularly polarised photons with recoil polarisation) along
with the single polarisation observable P, (recoil polar-
isation) have been obtained with spectrometers [21, 22]
with only one large acceptance measurement obtained for
C, in 7° photoproduction [23]. The situation for double
polarisation measurements in the 7% reaction is compar-
atively poor. Specifically, only the E observable [24]
has been determined with large kinematical coverage and
only one beam-target measurement of the G observable
was performed in 1980 [25], with very limited statistical
accuracy and kinematical coverage.

Here we report a new measurement of the double-
polarisation observable G for ¥p' — 7% and ¥p — 7t n.
The experiment provides the first precise measurements
up to 2.280 GeV center-of-mass (c.m.) energy for the re-
action 4p — 7 n, while significantly extending the kine-

matical coverage up to 2.265 GeV for the reaction vp —
7. The simultaneous determination for both states pro-
vides new and powerful constraints on the isospin depen-
dence of the amplitudes contributing to pion photopro-
duction.

II. EXPERIMENTAL SETUP

The experiment [26] was conducted in Hall B at the
Thomas Jefferson National Accelerator Facility (JLab)
utilising the CEBAF Large Acceptance Spectrometer
(CLAS) [27] and the Tagger spectrometer [28]. CLAS,
which was a toroidal magnetic-field analysing spectrom-
eter, provided an efficient detection and reconstruction
of charged tracks over a large fraction of the full solid
angle (covering polar angles between 8° and 140° and
about 83% of the azimuthal angle) using a variety of
tracking, time-of-flight and calorimeter systems. The
Tagger spectrometer, upstream of CLAS allowed the
production of a linearly polarised photon beam using
the coherent bremsstrahlung technique, with the pro-
duced photons being tagged by the detection of the
post-bremsstrahlung electrons in a magnetic spectrom-
eter. The determination of the degree of linear beam po-
larisation involved comparing the shape of the coherent
bremsstrahlung spectrum to a spectrum obtained from
theoretical bremsstrahlung calculations (details can be
found in Refs. [29-31]). Specifically, the enhancement
distributions, obtained from the ratio of the photon-
energy distribution using the crystalline (diamond) radi-
ator to the spectrum from an amorphous radiator, were
used to constrain the relative contribution of the coherent
and incoherent processes. This allowed a reliable deter-
mination of the energy-dependent degree of photon po-
larisation from fitting a theoretical spectrum produced
by the analytical bremsstrahlung calculation [30].

Three incident electron beam energies (2.751, 3.539,
and 4.599 GeV) and various settings of the orientation of
the diamond radiator allowed the production of photons
with a high degree of linear polarisation in the energy
range between 0.7 and 2.3 GeV (achieved with 9 differ-
ent configurations of beam energy and diamond radiator
orientation). For each configuration, the direction of the
linear photon polarisation was rotated between two or-
thogonal directions, which allowed a reliable determina-
tion of observables without detailed studies of the detec-
tor acceptance [32]. The degree of photon polarisation
achieved was of the order of p, = 0.70 for both polarisa-
tion directions, with a total uncertainty of 6%.

The polarised photon beam impinged on the FRozen
Spin polarised proton Target (FROST) [33]. This com-
prised frozen beads of butanol (C4HgOH) inside a 50 mm
long target cup. The protons from the hydrogenic com-
ponent of the butanol were dynamically polarised, by
transfer of polarisation from polarised electrons using mi-
crowaves in a strong magnetic field. This procedure was
carried out once every ~ 7 days during the run, with



the polarisation of the target within CLAS maintained
with a magnetised holding coil installed around the tar-
get cell. The direction of the target polarisation was rou-
tinely changed between two orientations: pointing along
and against the beam direction, with its magnitude de-
termined on a run-by-run basis using an NMR probe.
An average target polarisation of p, = 0.82 + 0.05 was
achieved in this experiment. A carbon target was placed
downstream of the butanol and was used to assess the
contribution of events originating from the unpolarised
nuclear components (C, O, *He, and 3He) of the butanol
target, which would “dilute” the signal.

III. POLARISATION OBSERVABLE G

The polarised cross section for single pion photopro-
duction using a linearly polarised photon beam and a
polarised compound target! for a specific kinematic bin
in W and cos §S™ is given by [32]

do c.m. _di c.m. _
gz ) =SZweem)| (1 1)

P2 cos(2n) + p,pIGsin(2n)),

where g—g| o 1s the unpolarised differential cross section,
D~ is the degree of linear polarisation of the photon beam
and p is the effective degree of target polarisation that
takes into account contributions from unpolarised bound
protons (see discussion in Sec. IV). The azimuthal angle,
7, is the angle from the reaction plane (defined by the
incident photon beam and the pion) to the vector polari-
sation of the photon, as indicated in Fig. 1. The effective
beam-spin asymmetry ©¢/ and the double-polarisation
observable G are functions of the centre-of-mass energy,
W, and the polar production angle of the pion, 65™ as
indicated in Fig. 1.

FIG. 1. The reaction Y5 — 7 n (and ¥§ — 7°p) in the c.m.
frame. The z-axis is along the photon direction and the y
axis is perpendicular to the reaction plane. The angle n is
measured from the reaction plane defined by the photon and
meson to the photon polarisation.

A simultaneous determination of the double-
polarisation observable G and the beam-spin asymmetry
Yeff for each kinematic bin was performed by applying

1 In this case the polarised compound target consist of polarised
free protons and unpolarised bound nucleons.

4

a Maximum Likelihood (ML) approach using the depen-
dencies illustrated in Eq. (1)?. The likelihood function
for each event is given by

L,=c¢ [1 — py i XY cos(2m;) + p%ipzﬁ;@ sin(2n;) | A,(2)

where ¢ is a normalization coefficient and A is the de-
tector acceptance®. The log-likelihood function that was
maximised to obtain the observables of interest is given
by

logL =b+ Zlog [1 - pyi 27 cos(2m;)

+p,,i0 G sin(2n;) ], (3)

where the constant b is an observable-independent con-
stant, which absorbs the normalization coefficient and
detector acceptance. The summation (i) accounts for all
events within a given kinematic bin. The extraction was
carried out for ~200 kinematic bins of W and cos 05™.

IV. DATA ANALYSIS

For each kinematic bin the event sample was analysed
to remove the effects of backgrounds arising from un-
polarised components of the target material and from
background reaction processes. To achieve this, the
missing-mass distributions of the reactions yp — 77X
and vp — pX were obtained from the events originating
from the butanol target, as well as from events origi-
nating from the carbon target*. Our approach assumes
that polarisable protons contribute only to the missing-
mass peak and bound unpolarised protons constitute the
relatively broad background under the peak. The back-
ground thus dilutes the free-proton signal and its effect is
determined by interpolating the sidebands from butanol
data as well as utilising scaled carbon data for describing
the background shape under the peak.

2 The determined single polarisation observable 2¢ reflects contri-
butions from the free and the bound protons within the butanol
target. The calculation of the contributions from free protons,
therefore, requires a precise knowledge of ¥ from bound protons,
which could be obtained from nuclear targets. A more precise
determination of ¥ from free protons can be directly determined
using an unpolarised hydrogen target (see for example Ref. [34]).
Because of this, the beam-spin asymmetry ¢ is not reported.
In the construction of the log-likelihood function, an approxima-
tion was made concerning the detector acceptance. Specifically,
an acceptance that is largely independent of the kinematic vari-
able 1 was assumed, which resulted in a normalization coefficient
that is independent of the polarisation observables. This approx-
imation significantly simplifies the extraction of the observables,
but the assumption could potentially result in systematic biases.
However, extensive simulation studies with the CLAS acceptance
showed the effect of this to be negligible.

The analysis focused on events where only the positively charged
track was detected — either a proton or a pion — with the remain-
ing neutral track reconstructed via the missing-mass technique.

w



Figure 2 shows the missing-mass distributions of vp —
7T X of events originating from the butanol (unshaded-
blue histogram) target. The distribution exhibits the ex-
pected peak around the neutron mass, corresponding to
events originating from the Y9 — 7Tn reaction. How-
ever, this desired peak occurs on top of a broad back-
ground arising from reactions on (unpolarised) bound
protons produced from the non-hydrogenic components
of the polarised target. Also shown in the figure is the
missing-mass distribution extracted from the carbon tar-
get for the same kinematic bin (shaded histogram). This
distribution has been scaled by a factor « to fit the back-
ground in the butanol missing-mass distribution. It is
seen that the data from the carbon target provides a
good agreement with the shape of this unpolarised back-
ground, and was therefore used as the basis for estab-
lishing its relative contribution ®. The blue line in Fig. 2
indicates the simultaneous fit performed on the carbon
and the sidebands of the butanol distributions (outside
3o of the free nucleon peak) that accounts for the bound
nucleon contributions, whereas the red line includes con-
tributions from hydrogen contamination within the car-
bon target. More details are provided in the online sup-
plementary material.

x10? —
| [_]Butanol

Carbon (scaled)

Counts

0.8 3
m, [GeV/c”]

FIG. 2. Example of butanol missing-mass distribution over-
laid with a scaled distribution from the carbon target for a
specific kinematic bin (W = 1740 MeV, ;™ = 80°) for the
reaction yp — 7+ X. The carbon and the sidebands of the
butanol distributions were fitted simultaneously with a func-
tion used to determine the dilution factor, as described in the
text. More representative plots and details on the procedure
are provided in the supplementary documentation.

The unpolarised contributions result in a dilution of
the target polarisation p, by a factor of Dp: pgﬁ =p,Dp.
The dilution factor Dp was determined using the scaled-

5 Note that a small fraction of the data originating from the carbon
target produces a peak at the mass of the neutron, indicating a
contribution from reactions on hydrogen. This was identified
as arising from the formation of ice on the downstream target
surface within the cryostat. Its effect was accounted for when
calculating the dilution.

carbon missing-mass and butanol missing-mass distribu-
tions to establish the number of pion events that origi-
nated from bound nucleons, Ny,4. From this the dilution
factor was calculated as

Nona
_ Dond 4
ot @

where Nt is the number of events from butanol data un-
der the missing-neutron peak for the reaction vp — 7+ X
or the missing-pion peak for the reaction yp — pX. More
details on the dilution factor determination and how the
fits were obtained are provided in the supplementary doc-
umentation. The range of integration in the missing mass
was taken as +30, where o is the standard deviation of
the peak. In the analysis the dilution factor (obtained on
a bin-by-bin basis) was on average 0.40.

The statistical uncertainty of G was determined com-
bining the uncertainties from the ML technique and the
statistical uncertainty associated with the dilution fac-
tor determination, which was of the order of 2%. The
relative systematic uncertainty was dominated by uncer-
tainties associated with the determination of the photon
and target polarisations, each of which contribute a 6%
uncertainty. An extensive list of systematic sources was
studied, including particle identification, reaction recon-
struction, dilution factor determination and acceptance
effects, with a total absolute contribution of 0.017 for
¥p — mtn and 0.026 for ¥p' — 7°p, which was added
to the relative systematic uncertainties. For a complete
list of systematic uncertainties and further details on the
analysis procedure see the supplementary documentation
online.

Drp =1

V. RESULTS AND DISCUSSION

The results for the double-polarisation observable G
as a function of the pion polar production angle in the
c.m. frame for selected W bins for both reactions are
shown in Fig. 3 (left panels for 75 — 7% and right panels
for 49 — wtn). The curves representing the previous
phenomenological solutions from SAID MA19 [35] (blue
solid), Bonn-Gatchina [11] (black dashed) and MAID [36]
(magenta dashed-dotted) are also illustrated.

The agreement between the CLAS and previously pub-
lished data for the reaction 75 — 7%p is well within sta-
tistical uncertainties (see left panels of Fig. 3), providing
further confidence in the analysis procedure. Previously
published data provide measurements for the full angu-
lar coverage with c.m. energies up to W = 1820 MeV 6.
At low c.m. energies, W, forward-going pions correspond
to protons with energies below the CLAS acceptance and
thus the angular coverage for the CLAS data is more lim-
ited. However, the current analysis significantly extends

6 Data from CLAS were binned in larger W bins than the results
from CBELSA and thus the two sets of points in specific panels.
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FIG. 3. A subset of the measured double-polarisation observable, G, from this work for the reactions 75 — 7°p (left) and
75 — mn (right) as a function of the pion angle in the c.m. frame. The different panels denote bins in c.m. energy W.
Experimental data from this work are shown with full red circles and from previous work with full blue diamonds. The error
bars represent the combination of statistical and systematic uncertainties. The previous data for 45 — 7°p came from the
CBELSA Collaboration [18], and the previous data for Y9 — 7 n came from the NINA facility [25]. The blue solid curves
correspond to predictions by SAID (MA19) [35], the black dashed to predictions by Bonn-Gatchina [11], and the magenta

dash-dotted curves to predictions by MAID [36].

the energy coverage for ¥p' — 7% from W = 1425 MeV
to W = 2265 MeV. Partial-wave analysis solutions, which
only included previously published data, describe well the
angular dependence of G up to W = 1740 MeV. At higher
energies, both partial-wave analysis solutions predict the
features in the angular dependence of G for 75 — 7°p,
but do not describe well their magnitude.

The agreement between the CLAS and previously pub-
lished data for the reaction ¥p — wtn, are also well
within statistical uncertainties for all but one kinematic
bin. The previous measurements from the NINA facility
for the kinematic bin with c¢.m. energies W = 1490 MeV
indicate a positive value of G, where the new precise
measurement from CLAS shows negatives values at the
same pion production angles (see right panels in Fig. 3).
The phenomenological curves indicating the previous so-
lutions from SAID, Bonn-Gatchina, and MAID do pre-
dict the rich features seen in the angular dependence of
G but fail to describe the magnitude, in particular at
higher W bins and backward angles.

The new data on G have a significant effect on the
amplitudes especially at c.m. energies above 1800 MeV,
where no previous precise G data on either reaction ex-
ists. As was found in the study of Ref. [11], recent
high-precision polarisation data have resulted in a closer
agreement of multipole analyses, particularly at interme-
diate energies. In this regard, the comparison of fits to
7tn G data in Fig. 3 at 1490 MeV is interesting. The
Bonn-Gatchina, SAID, and much older MAID solutions
all agree with the present measurements even though the
existing data from the NINA facility, of much lower pre-
cision, suggested an opposite sign. At the highest en-
ergies large differences in the predictions are apparent.

However, this can occur without large differences at the
multipole level, resulting instead from delicate cancella-
tions.

Figures 4 and 5 show the CLAS results from this
work for the reactions Y9 — 7% and 5 — 7T n, re-
spectively, illustrating the new solutions from SAID and
Bonn-Gatchina 7. This analysis provides the first pre-
cise result on the double-polarisation observable G for
the reaction 49— w1 n for the full angular coverage be-
tween c.m. energies W = 1425 MeV and W = 2280 MeV
(see supplementary documentation for the lowest energy
bin), which significantly enhances the database for this
reaction. The new phenomenological solution from SAID
(ZA19) are indicated with black solid curves and three
solutions from the Bonn-Gatchina group are shown with
the blue dotted, cyan dashed dotted-dotted and ma-
genta dash dotted curves. The results were fitted taking
into consideration the fully-correlated scale uncertainties,
which only influences the magnitude but not the shape
of the curves, as well as the point-by-point absolute sys-
tematic uncertainties (see supplementary documentation
for further details).

In terms of the Bonn-Gatchina approach, the descrip-
tion with the solution from Refs. [11, 12] failed to de-
scribe the new data on charged pion photoproduction in
the mass region above 1800 MeV (the total x? was found
to be 64.6 per data point). The solution presented in
Ref. [37], which described well the helicity asymmetry
data measured by the CLAS and CBELSA Collabora-

7 The results for the lowest energy bin for both reactions are shown
in the supplementary documentation.
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Differences

between the four Bonn-Gatchina solutions are only evident at higher W.

tions, gave a much better description of the data although
it was still far from being satisfactory. The refit of all
data allowed us to obtain a good description of these new
G data. We refer to this as Solution 1 and is indicated
by the blue dotted curves in Figs. 4 and 5. Contributions
from high-spin states were investigated by removing such
states and refitting the data set. Contributions from the
A(2400)9/2 state (solution 2, not shown in figures) was
first established. In this fit, the x2 for the description of
other pion photoproduction data increased slightly, how-
ever, the description of the new polarisation data for the
~p — w1 n reaction did not change, and a slight improve-
ment was observed in the description of G for the reaction
~p'— 7%. This indicates that this state does not play a
direct role in the description of the new data, although
it provides better consistency between the old and new
data. In solution 3 (cyan dash dotted-dotted curves), the
N(2220)9/2% state was also removed (in addition to the
A(2400)9/27). This solution resulted in a small increase
of the reduced x? from 2.10 to 2.13. From Figs. 4 and 5
it is evident that the N(2220)9/2% state has some influ-
ence on the high-energy tail of the G distribution, how-
ever, both of the 9/2 states do not contribute notably
to the description of the data. Finally, solution 4 (ma-
genta dashed dotted curves) was obtained by removing
the A(2200)7/2~ in addition to the A(2400)9/2~. The
reduced x? for G for the reaction 45 — 7n increased

from 2.10 to 2.32 and for reaction ¥p' — 7°p increased
from 2.10 to 2.74. This is a notable effect since it affects
only a few high-energy bins and we can conclude that
contributions from the A(2200)7/2~ are much stronger.

The most notable change in solution 4 was con-
nected with re-determination of the properties of the
N(2190)7/2~ state. In the main solution 1, the mass
of this state was found to be 2120+20 MeV, which is
30 MeV lower than in the analysis [12], with a width of
380425 MeV, which is larger by 15%. Although the elas-
tic residue and its phase practically did not change, the
Ay 2 helicity coupling in the pole was found to be —40 &
8 [GeV~121073] compared to —68 + 5 [GeV~1/21077]
in Ref. [12], with phase of 15° & 10° compared to 10° +
12° in Ref. [12]. The Ajg/, helicity coupling increased
from 25 4 10 [GeV~1/21073] [12] and was optimized at
67 + 15 [GeV—1/21073], with a phase of 0° 4+ 15° com-
pared to 22° + 10° in Ref. [12]. The new values are very
close to those obtained in the analysis [38]. This analy-
sis clearly indicates that the contribution of both states
(N(2190)7/2~ and A(2200)7/27) are important for the
description of the current data. The A(2200)7/2~ is an
important state for checking for chiral restoration at high
energy. In the case of chiral restoration its mass should
be close to the mass of the A(1950)7/2% state, however it
appeared to be 200-250 MeV higher. In the present anal-
ysis the pole position was found to be 2120+30 MeV with
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a width of 430+ 30 MeV. This indicates that the present
solution finds a notably broader state than the solution
presented in Ref. [37]. The A; /5 helicity coupling at the

pole was found to be 1004 15 [GeV~/21073] with phase
—20°£20° and Az, at 25+10 [GeV~1/210~%] with phase
—10° £ 20°, which presents an increase by a factor of 1.6
for the helicity coupling for the A, 5, whereas the helic-
ity coupling A3/, changed its sign. This sign could not
be defined on the basis of the other observables and the
measurement of the G observable provided the critical
information needed to establish it.

Interestingly, the N(2190)7/2~ pole position from
Bonn-Gatchina has moved into closer agreement with
the SAID determination [39]. The helicity amplitudes
for this state are now also in closer agreement with those
found in Ref. [38]. These two 7/27 states are found in
both the Bonn-Gatchina and Jiilich-Bonn analyses [40],
but the A state is absent from the SAID fit. From the
SAID analysis, the N(2190)7/2~ partial waves have re-
mained fairly stable with a tuning of lower-spin states,
resulting in an improved fit to data. It should be noted
that the SAID fits, by construction, cannot include states
undetected in their analyses of pion-nucleon scattering
data.

VI. SUMMARY

We present the first precise measurement of the double-
polarisation beam—target observable G, employing a lin-
early polarised photon beam and a spin-polarised tar-
get, for Y9 — 7Tn up to c.m. energies W = 2280 MeV,
while significantly extending the available kinematic cov-
erage for yp — 7'p up to c.m. energies W = 2265 MeV.
The new G data are an important addition to the world
database and have a large effect on the determined ampli-
tudes, especially at c.m. energies above 1800 MeV. Fur-
thermore, the unprecedented quantity of the data im-
pose tight constraints on partial-wave analyses, partic-
ularly for high-L multipoles and at high c.m. energies,
where missing resonances are expected to exist. The new
data were fit in the frameworks of the SAID and Bonn-
Gatchina partial-wave analyses, which resulted in tightly
constrained amplitudes. The Bonn-Gatchina analysis
has illustrated the importance of the N(2190)7/2~ and
A(2200)7/27 states in describing the data, while further
constraining their masses and widths, whereas the SAID
analysis allowed us to fine tune the lower-spin states. A
more detailed analysis in the SAID and Bonn-Gatchina
frameworks will be presented in a later paper.
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