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ABSTRACT: Road vehicles make important contributions to a
wide range of pollutant emissions from the street level to global
scales. The quantification of emissions from road vehicles is,
however, highly challenging given the number of individual sources
involved and the myriad factors that influence emissions such as
fuel type, emission standard, and driving behavior. In this work, we
use highly detailed and comprehensive vehicle emission remote
sensing measurements made under real driving conditions to
develop new bottom-up inventories that can be compared to official
national inventory totals. We find that the total UK passenger car
and light-duty van emissions of nitrogen oxides (NOx) are
underestimated by 24−32%, and up to 47% in urban areas,
compared with the UK national inventory, despite agreement
within 1.5% for total fuel used. Emissions of NOx at a country level are also shown to vary considerably depending on the mix of
vehicle manufacturers in the fleet. Adopting the on-road mix of vehicle manufacturers for six European countries results in up to a
13.4% range in total emissions of NOx. Accounting for the manufacturer-specific fleets at a country level could have a significant
impact on emission estimates of NOx and other pollutants across the European countries, which are not currently reflected in
emission inventories.

1. INTRODUCTION

Emission inventories are an important component of the
management of air pollution and provide essential input to air
quality models. Emission inventories are required and used at
a range of scales from single sources and road sections
through to quantifying national total emissions. At the local
scale, estimating the emissions along individual road links is
required to understand near-road exposures to air pollution.
Equally, at a national scale, establishing total emissions is
required to meet international obligations, such as the
European National Emission Ceiling Directive (NECD).1

The accuracy of emission inventories is of central importance
for many issues but in practice is difficult to establish.
The road transport sector is arguably a uniquely challenging

sector for which to estimate emissions. In the UK alone, there
are millions of individual vehicles that move in both space and
time, representing a wide range of fuel types, emission
standards, vehicle classes, and technologies. Even nominally
identical vehicles may behave differently based on driver
behavior, vehicle mileage, and levels of maintenance.2,3

Moreover, environmental conditions, such as the influence
of ambient temperature, can also have an effect on road
vehicle emissions.4,5

Of particular recent interest has been the emission of NOx

from road vehicles. Given the wide ranging impacts of NOx

emissions into the atmosphere, it is important that emission
estimates are robust and representative of the region being
considered. In Europe, over the past decade, there has been
substantial focus on how road vehicle emissions of NOx

contribute to ambient nitrogen dioxide (NO2) concentrations,
which have often exceeded ambient air quality limits.6

Emissions of NOx also play a central role in the formation
of O3 and PM2.5, both of which are important pollutants from
a direct health impact perspective and in terms of wider
environmental damage. Extensive evidence of considerable
differences between emissions measured in the laboratory for
Type Approval purposes and real driving emissions has also
been widely reported and is well established.7,8 However, the
incorporation of increasingly available real driving emissions
data to emission inventories has not been as extensive.
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In the UK, the National Atmospheric Emissions Inventory
(NAEI) is the primary inventory that categorizes the
emissions of many greenhouse gases and air quality pollutants.
It covers multiple sectors, including industry, agriculture, land-
use, energy generation, and transport.9 In 2018, the NAEI
indicated that the transport sector was responsible for 52% of
the UK’s NOx emissions, with 31% coming from road
transport.10 The NAEI forms the basis of reporting total UK
emissions as a part of the National Emissions Ceiling
Directive,1 as well as providing an input to local and regional
scale air quality models. It is important therefore that the
inventory accurately represents the emissions from sectors
such as road transport.
Like many European emission inventories, the UK NAEI

relies heavily on the COPERT (COmputer Program to
calculate Emissions from Road Transport) emission factor
approach for estimating road transport emissions,11,12 based
on recommendations from the European Monitoring and
Evaluation Program (EMEP)/European Environment Agency
(EEA) Emission Inventory Guidebook.13 Initially, the
emission factor development was based entirely on laboratory
measurements. More recently, portable emission measurement
systems (PEMSs) have been incorporated into the emission
factor development. The 2019 EMEP/EEA guidebook notes
that a combination of laboratory and on-board measurements
are now typically used for emission factor development, with
other methods such as vehicle emission remote sensing and
tunnel studies being used for validation purposes. Indeed, the
literature encompasses studies which have used PEMS,14,15

vehicle emission remote sensing,16,17 and even aircraft-based
flux measurements18 to independently validate emission
inventory estimates.
Measuring relatively few vehicles using laboratory-based or

on-vehicle measurement techniques such as PEMS can
provide detailed single vehicle emission information, but it
is challenging to measure many vehicles using these methods
due to cost and time constraints. It is known that emissions
can vary significantly by the vehicle manufacturer and vehicle
model, but currently no account is taken of these differences
in the emission factor or inventory development.7 Choosing a
representative sample of a country’s vehicle fleet from which
to derive emission factors is therefore a potentially important
issue. The advantage of remote sensing over other methods
are the large sample sizes and comprehensive fleet coverage,
which provides a better representation of in-use vehicle fleets.
A focus on the UK over other European countries for

inventory verification is advantageous given that Great Britain
is an island. In countries such as Germany, France, and
Belgium, gasoline and diesel fuel sold may not be used within
the country itself, leading to some uncertainty in the allocation
of fuel use (and hence emissions) to a specific country.
Conversely, in the UK close to 100% of road transport fuel
sold is used in the UK. This means that robust comparisons
can be made between so-called “bottom-up” and “top-down”
inventory methods. Specifically, there is high certainty in the
top-down calculations that rely on total fuel sale data.
The primary focus of this work is to exploit the

comprehensive fleet coverage provided by vehicle emission
remote sensing to develop highly detailed and comprehensive
bottom-up NOx, CO, and NH3 emissions estimates at a UK
scale for light-duty vehicles (LDVs). We achieve this aim
through the calculation of distance-based emission factors and
make direct comparisons with the 2018 UK inventory.

Additionally, calculations are made of CO2 emissions to
enable a direct comparison with fuel use statistics and provide
a means of verifying the methods developed.
A specific focus is to estimate NOx emissions, which have

persistently been thought to be underestimated, and provide a
national level quantification of total emissions. Finally, for the
first time, we consider the influence of different vehicle
manufacturer fleet mixes, which can be determined from
remote sensing data. By considering different measured
vehicle manufacturer proportions in other European countries,
we establish how these contrasting manufacturer proportions
affect total emissions of NOx and CO2.

2. MATERIALS AND METHODS

2.1. Vehicle Emission Remote Sensing. The develop-
ment of and operating principles behind vehicle emission
remote sensing has been described in considerable detail in
other publications,19,20 but is summarized here. A remote
sensing device (RSD) consists of a UV/IR source, multiple
detectors, optical speed-acceleration bars, and a number plate
camera. A RSD is deployed such that vehicles drive past the
set-up unimpeded, with the concentrations of gases in their
exhaust plumes and their speed and acceleration being
measured remotely via open path spectroscopy. Spectrometry
is achieved using a collinear beam of IR and UV light which,
after being absorbed by exhaust plumes, is separated into its
two components within the detector. Nondispersive infrared
detectors measure CO, CO2, hydrocarbons (HCs), and a
background reference. The UV component passes through a
quartz fiber bundle and is used to measure NH3, NO, and
NO2.
One hundred measurements are taken in half a second for

each vehicle plume exhaust when the rear of the vehicle is
detected. From these measurements, the ratio of a pollutant to
CO2 is calculated, from which fuel-specific (g kg−1) emission
factors can be calculated. The further transformation from
fuel-specific to distance-specific (g km−1) emission factors is
described later in the text.
Vehicle number plates are recorded alongside emission and

speed measurements and are used to obtain vehicle technical
data, such as engine size, fuel type, Euro standard, and vehicle
manufacturer. In this study, the data were obtained from CDL
Vehicle Information Services Ltd., a commercial supplier.
CDL retrieved the data from the Driver and Vehicle Licensing
Agency and the Society of Motor Manufacturers and Traders
Motor Vehicle Registration Information System. Data relating
to the total mileage of each vehicle at its last annual technical
inspection test was also obtained through CDL for vehicles
greater than three years old.
Vehicle emission measurements were conducted between

2017 and 2020 at 37 sites across 14 regions in the United
Kingdom using two remote sensing instrumentsthe majority
with the Opus AccuScan RSD 5000,21 supplemented with the
data from the University of Denver Fuel Efficiency
Automobile Test (FEAT) instrument.22 A total of 304,039
measurements were collected of Euro 2−6 vehicles in three
key classes of LDVs: diesel light commercial vehicles (LCVs)
and diesel and gasoline passenger cars (PCs). A statistical
summary of the data set is provided in Table 1.

2.2. Calculating Distance-Specific Emission Factors.
The calculation of distance-specific (g km−1) emission factors
is required for the “bottom-up” approach to estimating total
UK emissions. The vehicle power-based approach used has
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been previously developed and evaluated23,24 but is briefly
outlined here. The principal steps include (i) the development
of a vehicle power-based method to calculate g km−1

emissions from remote sensing data, (ii) development of
relationships that enable the prediction of emissions over any
1-Hz drive cycle, and (iii) the application of the g km−1

emissions to a UK national scale. Because vehicle emission
remote sensing measurements tend to be made under higher
engine load conditions than full drive cycle averages, their
direct use would tend to overestimate mean exhaust
emissions. The method provides a way in which to estimate
emissions for typical real-world drive cycles that may have
lower average engine loads, for example, for typical urban
driving.
A physics-based approach to calculating vehicle power is

used, accounting for all the main forces acting on a vehicle.
First, instantaneous vehicle power is calculated as the total
power to accelerate the vehicle, to overcome the road
gradient, to resist both rolling and air resistance, and to
power auxiliary devices adjusted for losses in the transmission.
Vehicle specific power, VSP, is calculated as the instantaneous
power divided by the vehicle mass (assumed to be the curb
weight plus 150 kg to account for the weight of the driver,
passengers, and cargo). As none of the road load or
aerodynamic drag coefficients were known, generic values
taken from Davison et al.23 were used. Fuel consumption is
straightforwardly calculated from VSP using a linear model
relating VSP to fuel consumption using the PC and Heavy
Duty Emissions Model.25 As the parameters were based on
Euro 5 and 6 vehicles, a 5% penalty was applied to Euro 2−4
vehicles to account for poorer fuel efficiency. Fuel-specific
emission factors in g kg−1 can then be combined with fuel
consumption in kg s−1 to produce time-specific emission
factors (g s−1).
Relationships between emissions in g s−1 and VSP for

vehicles with different fuel types, vehicle types, Euro
standards, and pollutant species were established using

generalized additive models (GAMs), which are flexible
enough to consider nonlinear relationships between variables.
The mgcv R package26 was used to fit the models. These
models were used to predict emissions for 1 Hz drive cycles
from PEMS tests obtained from the UK Department for
Transport (DfT).27 The PEMS data contained a total of 4,243
km of real-world driving over 58 PEMS routes which included
urban, rural, and motorway portions. The maximum VSP
value across these drive cycles was 37.2 kW t−1 (equal to the
99.2% VSP value of the remote sensing measurements), and
GAMs were fit between 0 and 40 kW t−1. Emissions from
negative VSP conditions were assumed to be zero. The
approach is flexible enough that it can be applied to any 1 Hz
drive cycle, for which VSP is available or can be calculated.
With 1 Hz modeled time-specific emissions, distance-

specific emission factors (g km−1) can be calculated as the
total of all time-specific emissions divided by the total
distance. The distance-specific emission factor used for the
total UK emission estimation was the mean of all the distance-
specific factors from each of the 58 real-world drive cycles.
Factors were calculated separately for each of the urban, rural,
and motorway conditions. The next step is to apply these
emission factors to the corresponding driving activity data in
the UK, thus providing a means of estimating total UK
emissions.

2.3. Estimating Total UK Emissions. Distance-specific
emission factors for each vehicle type were used to calculate a
bottom-up estimate of total UK emissions through multi-
plication with UK-wide mileage data. Estimates of the total
distance travelled by UK PCs and LCVs per annum were
obtained from a publicly available government database.28

This activity data were obtained by the UK Department for
Transport using a national network of around 180 automatic
traffic counters, which used recorded physical properties of
vehicles to segment these into vehicle types (PCs, vans, etc.).
In order to apportion this vehicle mileage data into different
fuel types, information available in the remote sensing data,
such as average mileages by fuel type, was used, as provided in
Table 1.
The vehicle mileages are already apportioned into urban,

rural, and motorway driving conditions but not by fuel type or
Euro standard. The data in Table 1 indicate that there is a
1:1.32 ratio of recorded mileage between gasoline and diesel
PCs, but a 1.11:1 ratio of number of measurements. The
number of measurements provides a direct measure of vehicle
km driven under urban conditions given where remote sensing
measurements are made. In other words, diesel vehicles drive
further on an overall UK level compared with gasoline
vehicles, but gasoline vehicles drive further than diesel vehicles
in urban areas. The rural and motorway portions were
adjusted proportionally such that the sum of the urban, rural,
and motorway portions summed to the total annual mileage
reported in UK statistics. Only 0.71% of LCVs measured were
gasoline, which have not been explicitly considered given their
low numbers and minor contribution to emissions. However,
overall LCV mileage data were reduced by this small amount
to apply to diesel LCVs only.
Apportionment into Euro standards is straightforward,

simply applying the ratio between the five Euro standards
for each of the three vehicle categoriesDiesel PC, Gasoline
PC, and Diesel LCVgiven in Table 1. The fully apportioned
mileages are provided in Table S1. To calculate UK totals for
the exhaust pollutants, the g km−1 emission factors for each

Table 1. Statistical Summary of the Vehicle Emission
Remote Sensing Data, Split into Diesel LCVs and Diesel
and Gasoline PC

characteristic diesel LCV diesel PC gasoline PC

# of measurements 55,018 113,554 135,467

# of manufacturers 34 51 61

(with ≥100
measurements)

16 34 39

VSPa (kW t−1) 5.1 (7.4) 6.3 (8.1) 5.9 (7.5)

speeda (km h−1) 34.2 (10.1) 35.2 (10.1) 35.0 (9.9)

accelerationa

(km h−1 s−1)
0.99 (2.25) 1.16 (2.40) 1.02 (2.29)

temperaturea (°C) 13.9 (5.1) 14.9 (5.3) 14.9 (5.2)

mileagea (1000 km) 169.2 (102.1) 147.2 (105.7) 112.3 (72.9)

Euro standardb

Euro 2 290 (0.5%) 488 (0.4%) 3191 (2.4%)

Euro 3 3912 (7.1%) 9222 (8.1%) 23,272 (17%)

Euro 4 11,472 (21%) 22,743 (20%) 33,946 (25%)

Euro 5 27,985 (51%) 45,900 (40%) 39,691 (29%)

Euro 6 11,359 (21%) 35,201 (31%) 35,367 (26%)

RSDb

Opus RSD 5000 47,140 (86%) 99,294 (87%) 118,379 (87%)

Denver FEAT 7878 (14%) 14,260 (13%) 17,088 (13%)
aStatistics presented: mean (standard deviation). bStatistics pre-
sented: number of measurements (percentage of the column total).
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combination of pollutant species, vehicle category, Euro
standard, and driving condition (urban, rural or motorway)
were multiplied by the corresponding apportioned mileage.
While emission inventories themselves are often not reported
with the associated uncertainties, the estimates presented here
are provided alongside the 95% confidence interval calculated
from the original g kg−1 measurements.
The estimated UK totals can be directly compared with the

NAEI. The comparison can be expressed through the use of a
ratio between the bottom-up estimated emission and the
emission reported in the NAEI, here labeled F. The value of F
is therefore also the factor by which one would multiply the
emission reported in the NAEI to arrive at the emission
estimated using the vehicle emission remote sensing data. A F
of 1 would mean that these two values were the same, F > 1
would mean the emission is under-reported in the NAEI and
F < 1 would mean that the emission is over-reported.
The NAEI reports air quality pollutant sources for four

driving conditionsurban, rural, and motorway, and a
separate cold start contribution. In common with most
emission inventories, the increased emissions of some
pollutants after engine start are considered as separate
emissions from hot, stabilized emissions. For some pollutants,
such as CO and HCs, the cold start emissions can be
substantial. In the NAEI, cold start emissions are only
considered in urban areas and reflect the estimated number of
trips.
The potential importance of cold start emissions raises the

question about the extent to which vehicle emission remote
sensing includes a cold start contribution. Given that the vast
majority of emission measurements are made in urban areas, it
might be expected that remote sensing data would include
some fraction of elevated emissions due to cold starts.
However, for gasoline vehicles, the three-way catalyst reaches
effective operating temperature (called “light-off”) within 1−2
min of the engine starting.29 This means that it is highly
unlikely that remote sensing measurements include a

significant proportion of cold start emissions given the
proximity required of a cold start to the measurement
location. Therefore, when urban comparisons are made, the
estimates are compared with both the urban value from the
NAEI and a combination of the urban and cold start
contributions.
The NAEI is required to report road transport emissions of

CO2 from fossil fuels only, so the figures reported do not
include the additional presence of biofuels. Assuming that
diesel in the UK contains up to 3.7% biodiesel and gasoline up
to 4.6% bioethanol,30 an adjustment factor can be calculated
through the multiplication of the bio-/fossil-fuel ratio by the
ratio of fuel CO2 emissions (kg) per liter of the biofuel and
fossil fuel (1.52/2.31 for gasoline, 2.36/2.69 for diesel).31 The
adjustments are therefore 1.032 for gasoline and 1.034 for
diesel and used to uplift the reported NAEI CO2 values.

2.4. Effects of the Vehicle Fleet Composition. To
investigate the importance of different fleet compositions in
European countries, data from the CONOX project were
analyzed, which provides a database of European vehicle
emission remote sensing measurements.32 These data provide
over 700,000 remote sensing measurements for the UK,
Sweden, Switzerland, Belgium, France, and Spain. The data
usefully contain information on the breakdown of different
manufacturers and vehicle models, which can be used to
consider the effects on NOx emissions due to different
national fleet mixes. An advantage of these data is that they
provide a direct, on-road measurement of the vehicle fleet,
which accounts for the vehicle km driven by vehicles made by
different manufacturers. These data are considered more
representative of in-use vehicle fleets than, for example,
statistics on new vehicle sales, which would not reflect actual
distances travelled by different vehicle types. The data do
show strong country-specific characteristics. For example,
France is dominated by Renault and Peugeot-Citroen, Sweden
by Volkswagen and Volvo, and Switzerland by Volkswagen
and, to a lesser extent, Daimler and BMW (Figure S1).

Figure 1. GAMs fit using data from vehicle emission remote sensing relating vehicle CO2 and NOx g s−1 to VSP, colored by Euro classification
and faceted into three LDV categories. The shading shows the standard error of the GAM fit.
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We have considered the total emissions of CO2 and NOx

based on UK mileage data for Euro 5 and Euro 6 diesel PCs
but using the fleet mix for each country. In this respect, the
analysis addresses the question of “how would UK emissions
of NOx change if the UK had the fleet of France, Spain,
Belgium, Switzerland, or Sweden?” The calculations keep the
vehicle km the same between the fuel type used and Euro
standard, that is, that of the UK, and simply considers
different proportions of manufacturer families according to the
fleets in other countries. Manufacturer and engine size-specific
emission factors were developed for this purpose using the
UK-based data set outlined in the Vehicle Emission Remote
Sensing subsection, using the same method as outlined in the
Calculating Distance-Specific Emission Factors subsection.

3. DISCUSSION

3.1. Total UK LDV Emissions. The relationship between
VSP and emission rate in g s−1 for NOx and CO2 is shown in
Figure 1, based on the GAMs developed from the vehicle
emission remote sensing data for each fuel type, vehicle type,
and Euro standard. ANOVA testing of fitted GAMs confirmed
the significance (P < 0.05) of VSP in modeling both CO2 and
NOx in all three vehicle categories for all five Euro standards
considered. Most of the relationships shown in Figure 1 are
close to linear; particularly for CO2, which highlights the
benefit of expressing emissions as a function of vehicle power
demand rather than vehicle speed. Indeed, an inherent
problem with speed-dependent emission factors is that as
the speed tends to zero, the emissions tend to infinity, which
means fitting a model through the data is difficult.
All predicted CO2 and NOx emissions and their associated

F values are tabulated in Table 2. Key values and implications
are described here.
An important first step is to establish whether there is a

carbon/energy balance for the detailed bottom-up approach to

estimate CO2 at a national scale. The total estimated
emissions from this method were 91.3 ± 0.9 Mt CO2. This
value is very similar to the NAEI value of 90.0 Mt, giving an F
value equal to 1.01. The similarity extends when considering
the two fuel types independentlygasoline vehicles were
shown to have an F value of 1.00 and diesel vehicles 1.02.
When considering diesel PCs and LCVs separately; however,
divergence from the NAEI is apparent, with the PCs having an
associated F of 1.14 and the LCVs 0.81. The bottom-up
calculations therefore suggest a different allocation of diesel
fuel use (or CO2 emissions) than is suggested by the NAEI,
although the sum of PC and LCV CO2 is in good agreement.
It should be noted that the comparison for gasoline is
considered more robust than for diesel fuel because almost all
gasoline use in the UK (97%) is for PCs, whereas diesel fuel is
used in a wide range of vehicle types including PCs, LCVs,
buses, and other heavy-duty vehicles, which introduces some
uncertainty in the allocation between diesel-fueled vehicles.33

With respect to NOx, the total UK estimates were 280 ±

6.3 kt NOx. On a UK scale, the NAEI underestimates NOx

emissions, with F between 1.24 and 1.32 depending on
whether cold start emissions are included or excluded,
respectively. These comparisons can be made at a more
disaggregated level by considering the vehicle categories
individually. Estimated gasoline PC emissions were higher
than those reported in the NAEI, with NOx emissions of 29.5
± 1.5 kt (1.82 < F < 1.95). The NOx predictions for light-
duty diesel vehicles were similarly under-reported in the
NAEI, being 251 ± 5.0 kt NOx (1.19 < F < 1.27). Of this
diesel total, PCs contribute 169 ± 2.9 kt NOx (1.44 < F <
1.54) and LCVs 81.2 ± 2.0 kt NOx (0.88 < F < 0.94).
The comparison between the NAEI and the bottom-up

remote sensing data estimations is made on a fully
disaggregate level, including vehicle category and driving
condition, as shown in Figure 2. This analysis shows broad

Table 2. Bottom-Up Vehicle Emission Remote Sensing CO2 and NOx Predictions for Different Vehicle Categories and
Driving Conditions, with Associated F Valuesa

carbon dioxide/CO2 nitrogen oxides/NOx

vehicle category driving conditions prediction (Mt) F prediction (kt) F

all LDVs all 91.3 ± 0.9 1.01 280 ± 6.3 1.24−1.32

urban 40.3 ± 0.4 1.17 103 ± 2.4 1.22−1.47

rural 34.6 ± 0.3 0.92 115 ± 2.5 1.27

motorway 16.4 ± 0.2 0.93 62.6 ± 1.3 1.21

gasoline PCs all 35.2 ± 0.30 1.00 29.5 ± 1.5 1.82−1.95

urban 19.3 ± 0.2 1.23 15.0 ± 0.7 1.94−2.24

rural 11.9 ± 0.1 0.84 10.7 ± 0.5 1.71

motorway 4.01 ± 0.03 0.75 3.81 ± 0.2 1.77

diesel LDVs all 56.1 ± 0.61 1.02 251 ± 5.0 1.19−1.27

urban 21.1 ± 0.2 1.12 87.8 ± 1.7 1.15−1.38

rural 22.6 ± 0.2 0.96 104 ± 2.0 1.24

motorway 12.4 ± 0.1 1.01 58.8 ± 1.1 1.18

diesel PCs all 40.4 ± 0.4 1.14 169 ± 2.9 1.44−1.54

urban 15.0 ± 1.2 1.22 57.7 ± 1.5 1.22−1.46

rural 16.1 ± 1.1 1.07 70.0 ± 1.6 1.55

motorway 9.21 ± 1.1 1.15 41.7 ± 1.6 1.64

diesel LCVs all 15.7 ± 0.2 0.81 81.2 ± 2.0 0.88−0.94

urban 5.99 ± 0.09 0.92 30.2 ± 0.7 1.03−1.26

rural 6.48 ± 0.10 0.76 34.0 ± 0.8 0.88

motorway 3.20 ± 0.05 0.74 17.0 ± 0.4 0.70
aThe urban and total driving conditions are given as a range, reflecting both hot urban emissions from the NAEI and a combination of hot urban
and cold start emissions.
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consistency between the bottom-up estimates and NAEI
reported values for CO2, with F values between 0.77 and 1.27.
Conversely, NOx is shown to have F values between 0.70 and
2.24, with some important variability depending on driving
conditions (urban, rural, or motorway).
A specific interest is the quantification of NOx emissions in

urban areas where exposures to the elevated concentrations of
NO2 are the greatest. In total, the NAEI reports 84.0 kt NOx

from LDV activity in urban areas and from cold start
emissions, with 70.1 kt coming from just urban emissions.
Conversely, the new bottom-up estimates suggest total urban
NOx emissions of 103 ± 2.5 kt, a difference of 19 kt including
cold start emissions or 32.9 kt excluding them. These results
suggest the NAEI may be under-reporting urban emissions by
22−47%. As discussed previously, it is considered that the
remote sensing measurements comprise a very low proportion
of enhanced emissions due to cold start effects. For this
reason, the underestimate in urban NOx emissions is
considered to be closer to 47% than 22%.
The total UK bottom-up estimates for the other air quality

pollutants were 537 ± 25.4 kt CO and 9.1 kt ± 0.5 NH3. At
the UK scale, the NAEI is seen to consistently underestimate
these emissions, with F = 2.86 for CO and F = 2.23 for NH3.
The equivalent visualization, as shown in Figure 2, including
these additional pollutants is provided as Figure S3.
It is important to consider the underlying reasons behind

the disparity between the bottom-up estimates and the values
reported in the NAEI, which could be associated with vehicle
fleet assumptions and/or the emission factors. We have re-
calculated the bottom-up emissions based on the fleet
composition assumptions used in the NAEI34,35 and the
NAEI allocations of gasoline and diesel fuel use in urban
areas. The NAEI assumed a newer vehicle fleet compared with
the observation-based values used for the bottom-up

calculations. Using these NAEI assumptions resulted in UK-
wide LDV emissions with F values of 1.05 for CO2 and 1.06−
1.13 for NOx, or 1.19 and 1.05−1.26 in only urban areas.
However, there were some significant disparities on a
disaggregated level when using NAEI fleet assumptions, for
example, with F = 1.20 for gasoline CO2 (compared with F =
1.00 using the bottom-up methods). These results strongly
suggest that the use of the observation-based fleet information
in the bottom-up emission calculations provide a much better
explanation of the total UK emissions. On this basis, much of
the discrepancy between the NAEI and the bottom-up
methods is associated with the vehicle fleet and vehicle
activity assumptions rather than the emission factors.
Nevertheless, even adopting the NAEI vehicle fleet
assumptions still results in up to a 26% underestimation of
NOx emissions compared with the bottom-up calculation in
urban areas.

3.2. Influence of the Vehicle Fleet Composition. An
inherent benefit of the vehicle emission remote sensing data
for use in the emission factor and emission inventory
development is the comprehensive coverage of a wide range
of vehicle manufacturers and models, which is difficult to
achieve through laboratory or PEMS studies owing to the
large number of vehicles that would need to be tested. Vehicle
fleets can vary from smaller city-wide to larger country-wide
scales. For example, some cities may tend to have a higher
than average proportion of vehicles from a certain
manufacturer (e.g., taxis or local government vehicles).
Figure 3 provides an example of the variation in NOx

emissions between different manufacturer groups and engine
sizes, revealing the considerable differences from the mean
levels of emissions for each engine size (visualized as
diamonds) and vehicle category (horizontal lines). In this
case, manufacturer “families” have been used, which groups

Figure 2. Total UK estimates for CO2 and NOx using vehicle emission remote sensing, in comparison with the 2018 emissions reported in the
national inventory. F values, representing the ratio between the bottom-up estimate and the reported NAEI value, are provided. Urban bottom-up
estimates are compared with both hot urban emissions from the NAEI and a combination of hot urban and cold start emissions, shown
connected by a grey horizontal line. Error bars show the 95% confidence intervals projected from the fuel-specific (g kg−1) emission factors. The
grey diagonal line shows a 1:1 relationship.
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similar engine types across different manufacturers.7 For
example, the Volkswagen group (VWG) consists of
Volkswagen, Audi, Skoda, and Seat. With large databases of

vehicle emission remote sensing data, it is possible to
disaggregate the data further. For example, an account can
be taken of the mandatory and voluntary software and

Figure 3. Distance-specific CO2 and NOx emissions (g km−1) for Euro 6 LDVs. Each dot represents a unique manufacturer group-engine size
combination, with a size proportional to the number of observations included in its calculation. The diamonds represent the weighted mean for
each engine size, and the horizontal lines the weighted mean for each vehicle category (diesel LCV, diesel PC, gasoline PC).

Figure 4. Total CO2 and NOx emissions from Euro 5 & 6 diesel PCs using UK activity data and the relative fleet composition of the UK and five
other European countries. Estimations were made using the manufacturer group and engine size-specific distance-based emission factors. Each of
the non-UK fleet compositions are shown relative to the UK fleet. The error bars correspond to the 95% confidence interval. Also provided are
the average Euro 5 & 6 diesel car engine size.
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hardware fixes applied to certain VWG vehicles following the
diesel gate scandal, which has had an appreciable effect on
reducing NOx emissions from certain vehicle models; reducing
emissions between 30 to 36%.36

Emission factor models used throughout Europe do not
account for manufacturer-level differences in emissions and
instead provide generic factors, for example, for Euro 5 diesel
PCs below 2.0 L engine capacity. However, it is clear from
Figure 3 that there can be large differences in emissions of
NOx between different manufacturers and vehicle models.
Such differences would not be important if vehicle fleets were
uniformly mixed throughout Europe. However, there are
considerable differences between the compositions of vehicle
fleets across different countries, which could have important
effects on country-level emissions of different pollutants.
The results of the fleet composition analysis are shown in

Figure 4 and demonstrate the impact of considering
manufacturer-specific emissions representative of fleets in
other countries. For example, estimates of NOx from a
French-like fleet of diesel cars are 7.9% higher than a UK-like
fleet, despite the fact that CO2 emission estimates decrease by
12.7%. Conversely, the NOx estimate of a Swedish fleet mix is
5.5% lower despite a 1.2% increase in CO2.
In general, Figure 4 highlights an overall trade-off at a

country fleet level between CO2 and NOx in that as CO2

emissions decrease, emissions of NOx tend to increase. The
higher emissions of NOx for a French fleet is attributable to
two main factors. First, a higher proportion of small diesel-
engine PCs, which tend to have higher NOx emissions (see
Figure 3). The average diesel PC engine size in the French
fleet is 1695 cm3 compared with 2152 cm3 in Switzerland in
the CONOX database. Larger diesel-engine vehicles tend to
use selective catalytic reduction for NOx control, which is
highly effective, rather than Lean NOx Traps that are not as
effective for NOx control.37 Second, France has a higher
proportion of manufacturers such as Renault that tend to have
higher in-use emissions of NOx compared with most other
manufacturers.7

Differences in the magnitude of NOx emissions between the
fleet of different countries, as shown in Figure 4, are
potentially of significant importance at a national scale.
There is, for example, a difference of 13.4% in calculated NOx

emissions between the Euro 5 & 6 diesel PC fleet of Sweden
compared with that of France; differences that are not
currently reflected in emission factors or inventories. This
finding highlights the potential benefits of considering the fine
details of vehicle fleets when attempting to estimate emissions.
Given the growing amount of the detailed vehicle emission
remote sensing data available in Europe and elsewhere,7,38−41

the methods adopted in the current work could be used in
many other countries.
Furthermore, at a country level, increases or decreases in

total NOx emissions from current assumptions will likely have
several implications. First, it would directly affect the
evaluation of urban exposures to concentrations of NO2,
with potential impacts on meeting European Directive annual
mean limits of 40 μg m−3. Second, a country-level change in
estimated NOx emissions of around 10% compared with the
current assumptions would have wider air quality implications;
especially for regional air quality modeling activities.
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