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Disturbance-observer-based attitude
control under input nonlinearity

Umair Javaid1 and Hongyang Dong2

Abstract
A disturbance observer-based control scheme is proposed in this paper to deal with the attitude stabilization problems of spacecraft subjected to

external disturbances, parameter uncertainties, and input nonlinearities. Particularly, the proposed approach addresses the dead-zone issue, a non-

smooth nonlinearity affiliated with control input that significantly increases controller design difficulties. A novel nonlinear disturbance observer (NDO)

is developed, which relaxes the strong assumption in conventional NDO design that disturbances should be constants or varying with slow rates. After

that, a special integral sliding mode controller (ISMC) is combined with the NDO to achieve asymptotic convergence of system states. Simulations are

performed in the presence of time-varying disturbances, parameter uncertainties, and dead-zone nonlinearity to justify the effectiveness of the pro-

posed control scheme.
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Introduction

The attitude stabilization problems have gained extensive

attention over the years, due to their significance in space

mission and widespread applications. Many practical issues,

such as external disturbances, parameter modeling uncertain-

ties, and input nonlinearities, must be considered in attitude

controller design. To this end, many research results have

been proposed to solve attitude stabilization problems using

different control techniques, such as back-stepping control

(Kristiansen et al., 2009), passivity-based control (Gui and

Vukovich, 2016; Ulrich et al., 2016), and adaptive control

(Reza Alipour et al., 2018; Wen et al., 2018). In particular,

sliding mode control (SMC) (Cui et al., 2017) techniques have

been used extensively due to their multiple advantages,

including inherent robustness and easy-to-implement struc-

ture (Zhang and Zheng, 2014; Zhang et al., 2014).
SMC is known for its robustness against system uncertain-

ties and external disturbances. It uses discontinuous feedback

control action to force the system trajectories to reach the

pre-designed sliding manifolds. However, discontinuity can

lead to the chattering problem, which is undesirable from a

practical engineering viewpoint. Though this can be avoided

by replacing the discontinuous term in controller with the sig-

moid approximation function (Saghafinia et al., 2015), such

approximation may result in deterioration of controller per-

formance. Also, SMC can not attenuate mismatched uncer-

tainties and disturbances unless combined with other robust

techniques (Shtessel et al., 2014). Recently, integral sliding

mode controller (ISMC) method has attracted wide research

interest due to its ability to mitigate the chattering issue

(Liang et al., 2012; Xu et al., 2014; Zhang et al., 2016). This

technique provides an extra degree of freedom to devise an

appropriate control law for the system (Comanescu et al.,

2008). A first-order ISMC was proposed for attitude tracking

problems in Pukdeboon and Zinober (2012). A second-order

ISMC framework was developed in Tiwari et al. (2015).
External disturbances and parameter uncertainties are

common and inevitable issues that can hinder the successful

completion of space missions. For this reason, the spacecraft

attitude control law must be able to handle external distur-

bance and parameter uncertainties (Lu et al., 2013; Wu et al.,

2011). High-gain switching functions can be used to overcome

the effect of system parameter uncertainties but may result in

input chattering. An adaptive SMC was employed for attitude

tacking control problems subjected to external disturbances in

Reza Alipour et al. (2018). Disturbance observer-based con-

trol methods have been proposed in many studies (Chen and

Ge, 2015; Ginoya et al., 2014; Hu et al., 2014; Pukdeboon and

Siricharuanun, 2014; Sofyalı et al., 2018; Zhang et al., 2018),

in which disturbance estimates are incorporated with control

laws to reject the disturbances directly. Such control schemes

can also mitigate input chattering and approximately
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compensate parameter uncertainties, therefore improving
overall control performance. The disturbance and parameter
vibrations in flexible spacecraft were compensated using a dis-
turbance observer in Liu et al. (2018). A disturbance observer
was designed and combined with the controller for control

allocation improvement in Qiao et al. (2018). A composite
control law that employs extended state observer (ESO) and
an additive controller was developed to remove external dis-
turbance in Chen et al. (2018). Another ESO-based control
laws were presented in Ye et al. (2017) and Li et al. (2016) for
formation flying of spacecraft. Back-stepping was combined
with the observer to formulate a stabilization control scheme
in Sun and Zheng (2017). An iterative learning-based observer
was combined with fault-tolerant control for spacecraft stabi-
lization control in Hu et al. (2018).

Input nonlinearity is another important practical issue that
originates from the physical constraints of control actuators.
For example, the dead-zone nonlinearity is encountered when
reaction wheels are used as actuators in spacecraft attitude
control (Hu et al., 2008). However, most of the control
schemes ignore the input nonlinearity such as dead-zone and
saturation. Such design may lead to system performance
degradation or sometimes even destabilization, causing mis-
sion failure (Pang and Yang, 2013). The input nonlinearity,
along with the external disturbances and parameter uncertain-
ties, can significantly increase the difficulty of control system
design. Though some controllers had been proposed in recent
years (Chen et al., 2018; Lu et al., 2013) to deal with attitude
control problems subject to input saturation, those results are
difficult to be extended to handle dead-zone problems, where
the actual input is a nonlinear function of friction. The atti-
tude stabilization problem for an uncertain system with dead-
zone was solved using SMC in Hu et al. (2008), but strict
upper bounds on disturbances were required. Variable struc-
ture control was combined with the adaptive control to deal
with the input dead-zone in Hu (2007) and Yan et al. (2005).
However, over-adaptation and parameter drift are serious
concerns in those studies.

The difficulty of attitude control problems with dead zones
stems from the fact that the factors affecting dead zones and
their parameters are partially or totally unknown. The pres-
ence of dead zones severely limits the control system perfor-
mance and influences the dynamic characteristics of closed-
loop system. Therefore, control techniques that are robust to
the dead zone, in addition to external disturbance and system
uncertainty, are of vital importance for spacecraft attitude
control. In this paper, a novel observer-based attitude stabili-
zation control method is developed to address this challenging
problem. A new nonlinear disturbance observer (NDO) is
designed to estimate the system’s combined disturbance, com-
posed of time-vary external disturbances, system uncertain-
ties, and dead zone. The key features of the proposed NDO
include finite-time convergence and relaxation of strong
assumptions related to the bounds of uncertainties. These fea-
tures enable the proposed NDO to estimate various classes of
disturbances. After that, the NDO is integrated with ISMC to
achieve attitude stabilization. Lyapunov’s stability theory is
employed to analyze the convergence of estimation error and
the closed-loop system’s stability. The developed NDO-ISMC
structure ensures asymptotic convergence of system states

while reducing the control input chattering significantly.

Comparative simulations are performed to justify presented
theoretical results and show the control performance of our

controller.
The remainder of this paper is arranged as follows. First,

Section II describes the system dynamics. After that, the control
problem is formulated in Section III. In Section IV, our NDO is

designed to obtain the combined disturbance estimate. The com-
posite control law is formulated using ISMC and NDO.

Simulation results with brief discussions are presented in section
IV. Finally, some conclusive remarks are given in Section VI.

Spacecraft attitude model

The attitude model of a rigid-body spacecraft is provided in
this section. The case of a fully-actuated system is considered
here.

Attitude kinematics and dynamics

The quaternion representation-based model is used for atti-
tude control of spacecraft in this work. Assume an Euler
angle f(t) 2 R is given about a particular Euler axis

ê= ½ê1 ê2 ê3�T 2 R3, then the corresponding quaternion Q

can be described as

Q=
êsin(f)
cos(f)

� �
=

Ov

O4

� �
ð1Þ

where Ov = ½O1 O2 O3�T is the vector part of Q, and O4 is
the scalar part of Q. The quaternion Q can also be defined by

Q= ½O1 O2 O3 O4�T , and it satisfies

O2
1 +O2

2 +O2
3 +O2

4 = 1 ð2Þ

The rigid-body spacecraft attitude kinematics are given as
Hu (2007)

_Ov =
1

2
(O4I3 +Ov3 )v ð3Þ

_O4 = � 1

2
OT

v v ð4Þ

where v= ½v1 v2 v3�T is the angular velocity in body ref-
erence frame B with respect to inertial reference frame I . The
notion Ov3 for vector Ov is employed to denote the corre-

sponding skew-symmetric matrix defined as follows

Ov3 =
0 �O3 O2

O3 0 �O1

�O2 O1 0

2
4

3
5 2 R3 3 3 ð5Þ

In addition, the rigid-body dynamics are given as Hu (2007)

J _v= � v 3 Jv+ u(t)+ d(t) ð6Þ

where parameter u(t)= ½u1(t) u2(t) u3(t)�T 2 R3 is the con-

trol input, d(t)= ½d1(t) d2(t) d3(t)�T 2 R3 is the time-
varying external disturbance and J 2 R3 3 3 represents the
inertia matrix.
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Assumption 1. The inertia matrix J is time-dependent and has

the form J (t)= J0 +DJ (t). Here J0 is a constant nonsingular

matrix, and DJ (t) represents the time-varying uncertainties.

Additionally, DJ (t) is a differentiable function for all t . 0.

For ease of expression, J (t) and DJ (t) are denoted as J and

DJ , respectively, in the remainder of this paper.

Assumption 2. For the given rigid-body spacecraft, time-

varying external disturbance d(t) and inertial uncertainty DJ

are bounded by unknown positive constants, that is,

jjd(t)jj ł p1 and jjDJ jj ł p2.

Remark 1. In general, the inertia matrix of a spacecraft is

measured before launch and used in attitude control.

However, it can change by many reasons like the fuel con-

sumption and structure variation (Kim et al., 2010). The

mathematical expression related to the changes in inertia

caused by some specific factors can be described, such as the

consumption of propellant. But changes due to many other

factors are unknown; for example, the movement of periph-

eral devices installed on spacecraft. Therefore, it is reasonable

to consider DJ as unknown and time-varying.

Problem formulation

In this section, the dead-zone model used in this paper is pre-

sented, and a transformed attitude model is deduced for a

rigid-body spacecraft.

Dead zone

The dead zone is one of the most consequential nonlinearities

encountered in spacecraft actuators and can severely limit the

system performance. It is usually time-varying with unknown

parameters. We describe the dead zone for an output

vector u(t)= ½u1, u2, u3, :::, un�T and an input vector

v(t)= ½v1, v2, v3, :::, vn�T as follows

ui(t)=DZ(vi(t))=
mi(vi(t)� bu), for vi(t)ø bu

0, for bl\vi(t)\bu

mi(vi(t)� bl), for vi(t)ł bl

8<
:

ð7Þ

where mi . 0, bu . 0 and bl\0 are dead-zone parameters.
The expression in equation (7) can be reorganized as

ui(t)=DZ(vi(t))=mivi(t)+h(vi(t)) ð8Þ

and here h(vi(t)) follows

h(v(t))=
�mibu, for vi(t)ø bu

�miv(t), for bl\vi(t)\bu

�mibl, for vi(t)ł bl

8<
: ð9Þ

Then, we use the following equation to denote the vector-form

dead-zone projection, which is the direct extension of equa-

tion (8)

u(t)=DZ(v(t))=mv(t)+h(v(t)) ð10Þ

where m= diag½mi� is the dead-zone slope.

Assumption 3. The essential attributes of the actuator dead-
zone considered in the paper are as follows:

(1) The dead-zone output u(t) is not available for
measurement.

(2) The parameters bu, bl and mi are unknown.
However, the sign of parameters are known i.e.
bu . 0, bl\0 and mi . 0.

(3) The dead-zone parameter are bounded by unknown
constants, that is, bu 2 ½bu,min, bu,max�,
bl 2 ½bl,min, bl,max� and mi 2 ½mmin,mmax�. Here, bl,min,

bl,max, bu,min, bu,max, mmax and mmin are known
constants.

From the key features (1) and (2) in the Assumption 3, one
has h(v(t)) bounded, that is

jh(v(t))j ł r ð11Þ

where the unknown upper bound r satisfies

r=max mmaxbu,max � mmaxbl,minf g ð12Þ

Remark 2. The attribute (1) in assumption 3 is common for

all practical systems. Features (2) and (3) are also commonly
adopted in the literature (Lewis et al., 1999; Wang et al.,
2004).

System transformation

In this section, input nonlinearities are introduced in system

dynamics, and transformations are performed based on
Assumption 1, to facilitate the NDO design. Employing
Assumption 1 and equation (6), we have

(J0 +DJ ) _v= � v 3 (J0 +DJ )v+ u(t)+ d(t)

J0 _v+DJ _v= � v 3 J0v+ u(t)� v 3 DJv+ d(t)

J0 _v= � v 3 J0v+ u(t)+ d(t)� v 3 DJv� DJ _v

Using equation (6) with algebraic simplification results in

J0 _v= � DJJ�1½�v 3 Jv+ u(t)+ d(t)� � v 3 J0v

� v 3 DJv+ u(t)+ d(t)

_v= J�1
0 �DJJ�1½u(t)� v 3 Jv+ d(t)�
� �

+ J�1
0 d(t)+ J�1

0 u(t)

� J�1
0 v 3 J0v+v 3 DJv½ �

= J�1
0 �v 3 DJv� D JJ�1½u(t)� v 3 Jv�
� �

+ J�1
0 u

+ J�1
0 ½I3 � DJJ�1�d � J�1

0 v 3 J0v

ð13Þ

A compact form of _v can be written as

_v=F+M+ bu ð14Þ

where M= J�1
0 �v 3 DJv� DJJ�1½u(t)� v 3 Jv�
� �

+ J�1
0

½I3 � DJJ�1�d, F= � J�1
0 v 3 J0v and b= J�1

0 .
Introducing the dead-zone expression in equation (10) into

equation (14), one has

Javaid and Dong 3



_v=F+M+ b½DZ(v(t))�
=F+M+ b½mv(t)+h(v(t))�
=F+M+ bmv(t)+ bh(v(t))

ð15Þ

By defining D=M+ bh(v(t)), equation (15) is equivalent to

_v=F+ bmv(t)+D ð16Þ

Remark 3. The combined disturbance D consists of the effect

of external disturbance, parameter uncertainties, and dead-

zone nonlinearity.

Problem statement

This paper aims to develop a stabilization controller for the

spacecraft attitude control problem subjected to dead zone,

parameter uncertainties and external disturbances, formalized

by

lim
t!‘

(v)= 0, lim
t!‘

(Ov)= 0, lim
t!‘

(O4)= 1 ð17Þ

Before designing our control strategy, the following defini-

tion and lemma regarding finite-time convergence are pre-

sented as preliminary results.

Definition 1. Bhat and Bernstein (2000). Consider the non-

linear system

_y= f (y), f (0)= 0, y 2 Rn ð18Þ

where the function f (y) : d ! Rn is continuous on the neigh-

borhood of y= 0. Equilibrium point y= 0 of the system in

equation (18) is finite time (FT) convergent provided the fol-

lowing statements hold true, (a) asymptotically stable in U ,

here U is an open neighborhood of the origin and U � d. (b)

FT convergent in U , that is, for all y 2 ½U , 0) there exist set-

tling time (Ts). Such that, every possible solution of (18) that

can be defined with y(t, y0) 2 ½U , 0),8 t= ½0,TS � satisfy

lim
t!Ts

(y)= 0.

Lemma 1. Bhat and Bernstein (2000). For the nonlinear sys-

tem (18), there exist variables 0\a\1 and l . 0, along with

a continuous lyapunov function V (y) such that they satisfy

_V (y)+l½V (y)�a ł 0 ð19Þ

Then, the system is FT stable if V (y) is unbounded and

time Te needed to reach equilibrium point is given by

Te ł
V (y0)

1�a

l(1� a)
ð20Þ

Disturbance observer and controller
design

In this section, a NDO is developed along with an ISMC law

to realize the aforementioned attitude control objective.

Rigorous stability analysis of the proposed observer and con-
trol law is provided.

Disturbance observer design

We aim to design a NDO to estimate the unknown combined
disturbance D(t) and therefore make compensation and
enhance the closed-loop control performance. Our design is
described as follows

d̂ = z+ p(v)
_z = � L(v)½d̂�+L(v)½�F � bmv(t)�
p(w) = ∂p(v)

∂v

h i
_v= L(v) _v

8><
>: ð21Þ

where d̂ denotes the estimate of D and L(v)= ∂p(v)
∂v

.

Theorem 1. For the attitude dynamics of spacecraft in equa-
tion (6), the transformed dynamics in equation (16), and the
designed NDO in equation (21). The estimation error
de =D� d̂ converges to a neighborhood of zero in FT, and
its convergence path is constrained by the following
inequalities

jjde(t)jj ł

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1(0)

p
e�L(v)t _D= 0ffiffiffiffiffiffiffiffiffiffiffiffi

2V (0)
p

e�2(1�b)L(v)t+ 2hffiffiffiffiffiffiffiffiffi
bL(v)
p _D 6¼ 0 and j _Djłh

(

ð22Þ

Proof. The disturbance observer error is defined as

de =D� d̂

_de = _D� _z � _p(v)
ð23Þ

Using the observer design in equation (21), we have

_de = _D+L(v) F+ bmv(t)+ p(v)f g � ∂p(v)
∂v

h i
_v

= _D+L(v) zf g+L(v) F+ bmv(t)+ p(v)f g
� L(v) F+ bmv(t)+Df g

= _D� L(v)de

ð24Þ

Consider the Lyapunov function

V1 =
1

2
dT

e de

_V 1 = dT
e

_de

= dT
e

_D� dT
e L(v)de

ð25Þ

Further analysis is divided into the subsequent two cases.

Case 1. When _D= 0, one has

_V1 = � L(v)dT
e de ł � 2L(v)V1 ð26Þ

The solution to equation (26) is V1 ł V1(0) exp
�2L(v)t and the

de satisfies

jjde(t)jj ł
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1(0)

p
e�L(v)t ð27Þ

Case 2. When _D 6¼ 0 and jj _Djj ł h, one has
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_V 1 ł jjdejjh� L(v)jjdejj2

ł � L(v)jjdejj2 +h2

ł � L(v)jjdejj2 � bL(v)jjdejj2 +bL(v)jjdejj2 +h2

ł � (1� b)L(v)jjdejj2 � bL(v)jjdejj2 +h2

where the constant b is selected as 0:5\b\1. Based on the

above analysis, one has

_V1 ł � 2(1� b)L(v)V , 8jjdejj ø
2hffiffiffiffiffiffiffiffiffiffiffiffi
bL(v)

p ð28Þ

By equation (28), one can further show that

_V1 ł V1(0)e
�2(1�b)L(v)t, 8jjdejj ø

2hffiffiffiffiffiffiffiffiffiffiffiffi
bL(v)

p ð29Þ

jjde(t)jj ł
ffiffiffiffiffiffiffiffiffiffiffiffi
2V (0)

p
e�2(1�b)L(v)t +

2hffiffiffiffiffiffiffiffiffiffiffiffi
bL(v)

p t ø 0 ð30Þ

From equation (26) and (28), it is evident that the observer
estimation error converges to zero, that is, d3 ! 0.
Furthermore, the convergence trajectory of estimation error

is given by equation (27) and (30). These complete the proof.

Remark 4. From equations (27) and (30), one can see that the
convergence rate of estimation error is dependent on h and

b. Larger values of h and b results in smaller estimation error
and can lead to a faster convergence rate. However, chatter-
ing will be induced if too large parameter values are selected.

Remark 5. In the literature (Chen and Ge, 2015; Hu et al.,
2014; Sun and Zheng, 2017), the specific values of the upper
bounds of disturbances are required to design observers. This
strong and impractical requirement is relaxed in our design.

ISMC controller design

In this section, an ISMC scheme is developed and integrated
with the NDO. The sliding surface to formulate ISMC law is
defined as follows

s=v+ ksOv +

ðt

0

fdt ð31Þ

where 1 . ks . 0 and f is designed by

f=C1v+C2Ov � ks
_Ov ð32Þ

and here C1 . 0 and C2 . 0 are positive constants. Initial

value of function f(0) is set to be f(0)= � ½v(0)+ ksqv(0)�
so that s(0)= 0.

Taking derivative of the sliding surface, one has

_s= _v+ k _Ov +f

= _v+ k _Ov +C1v+C2O� ks
_Ov

= _v+C1v+C2Ov

=F+ bmv(t)+D+C1v+C2Ov

ð33Þ

The proposed control law has the following form

v(t)= veq(t)+ vs(t) ð34Þ

veq(t)= (bm)�1 �F � C1v� C2Ov � d̂
� �

ð35Þ

vs(t)= � (bm)�1 Ps+Qsat(s)½ � ð36Þ

where P=diag½pi� and Q=diag½qi� with pi . 0 and qi . 0.

The saturation function sat(si) satisfies sat(si)= ½sat(s1),

sat(s2), sat(s3), :::, sat(si)�T with

sat(si)
sign(si), ifjsij . Ei
si

Ei
, ifjsij ł Ei

	
ð37Þ

where Ei . 0 defines the thickness of the sliding surface bound-

ary layer. Based on equations (33) and (34), one has

_s= �D̂� Ps � Qsat(s)
� �

+D

_s= de � Ps � Qsat(s)
ð38Þ

Then, the following theorem summarizes the development of

our control law and the closed-loop system stability.

Theorem 2. Considering the attitude model described in equa-

tion (6) and the NDO designed in equation (21). Then the

controller in equation (34) compels the system states to

approach the sliding surface as defined in equation (31) and

ultimately converge to zero.

Proof. Considering the following Lyapunov function

V =
1

2
sT s+V1 ð39Þ

_V =sT de � sT Ps � sT Qsat(s)+ _V1 ð40Þ

Similar to Theorem 1, we split the analysis into the following

two cases.

Case 1. When _D= 0 and _V1 = � L(v)jjdejj2, one has

_V ł jjsjjjjdejj � Pjjsjj2 � L(v)jjdejj2 � jsjQsat(s)

ł jjsjjjjdejj � Pjjsjj2 � L(w)jjdejj2 +
jjsjj2

4L(w)
� jjsjj

2

4L(v)

� jsjQsat(s)

ł � P� 1
4L(v)


 �
jjsjj2 �

ffiffiffiffiffiffiffiffiffiffiffi
L(ve)

p
jjdejj � jjsjj

2
ffiffiffiffiffiffiffi
L(v)
p


 �2

� jsjQsat(s)

ð41Þ

Case 2. When _D 6¼ 0 and _V1 =� (1� b)L(v)jjdejj2, 8jjdejjø
hffiffiffiffiffiffiffiffiffi

bL(v)
p with 0\b\1, one has

Javaid and Dong 5



_V ł jjsjjjjdejj � Pjjsjj2 � (1� b)L(v)jjdejj2 � jsjQsat(s)

ł jjsjjjjdejj � (1� b)L(v)jjdejj2 +
jjsjj2

4(1� b)L(w)

� jjsjj2

4(1� b)L(v)

� Pjjsjj2 � jsjQsat(s)

ł �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� b)L(v)

p
jjdejj � jjsjj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�b)L(v)
p


 �2

� P� 1
4(1�b)L(v)


 �
jjsjj2

� jsjQsat(s)

ð42Þ

It should be noted that the fact: sT Qsat(s)=
Pn

i= 1

Qisisat(si)ø 0 is employed in these inequalities.
Equations (41) and (42) are satisfied for all P� 1

4L(v) . 0

and Ei . 0, i.e., _V ł 0. Hence, the closed-loop system is proved

stable asymptotically, completing the whole proof.

Remark 6. A major concern of SMC is the chattering prob-

lem. To alleviate this issue, the saturation function sat(si) in
equation (37) is employed in our design. The parameter Ei

determines the switching threshold and helps to decrease the
chattering phenomenon.

Simulation results and discussion

In this section, the performance of the developed NDO-

ISMC control scheme is tested by numerical simulations.
Comparative simulation results, along with detailed discus-

sions, are presented to demonstrate the effectiveness of our
method.

The attitude model of a rigid-body spacecraft is adapt

from Chen et al. (2018). The nominal value of the inertia

matrix and the time-varying uncertain inertia of spacecraft
are given as follows

J0 =
20, 1:2, 0:9
1:2, 17, 1:4
0:9, 1:4, 15

2
4

3
5Kg:m2

DJ = diag( sin(0:1t) 2sin(0:2t) sin(0:3t)½ �)Kg:m2

Furthermore, the external disturbance used in simulations

is selected as

d(t)= 0:05 sin(0:1t) sin(0:2t) sin(0:3t)½ �TN:m

The initial value of attitude quaternion is opted as

Q(0)= ½0:3, � 0:2, � 0:3, � 0:8832�T , and the initial angular
velocity is selected as v(0)= ½0, 0, 0�T rad/s.

The constant parameters used to simulate the dead-zone

nonlinearity, the NDO, and the proposed NDO-ISMC law

are given in Table 1. Specifically, the parameters Ks,C1,C2

construct the sliding surface and can be obtained using

Hurwitz criteria. Larger values of C1 and C2 will result in
larger control input. The parameters P and Q are used to tune

chattering in control input and keep system states on the slid-
ing surface. A too-large value of P will destabilize the system,

and smaller values will lead to a sluggish response. The para-
meter Ei determines the saturation function. The larger value
of Ei does not mean a fast convergence rate. However, smaller
values result in the chattering phenomenon.

Proper selection of the NDO design parameters enables
the convergence of estimates to actual disturbance. In this
work, p(w) and L(w) are take as

p(w) = a0J0 v+ vs

s!

� �
L(w) = a0J0diag 1+vs�1

1 , 1+vs�1
2 , 1+vs�1

3

� �� 
 ð43Þ

where the constant parameters a0 and s are given in Table 1.
It is found through simulations that the convergence time of
the estimation error decreases with an increase of a0.

Spacecraft stabilization controller using an adaptive ISMC
(AISMC) subjected to dead zone, external disturbance, and

parameter uncertainties is simulated for comparison. The
AISMC follows

v(t)= veq(t)+ vs(t)

veq(t)= (bm)�1 �F � C1v� C2Ov½ �
vs(t)= � ksign(s(t)g � L̂sign(s(t))

ð44Þ

where parameters C1 and C2, k and g are provided in Table 1.
The parameter L̂ is obtained using adaptive law, given by

_̂
L= a2( k s(t) k �a1 � L̂) ð45Þ

the parameter values of the constants a2, a1, and L̂ are selected
as given in Table 1.

The simulation results of the proposed NDO are depicted
in Figure 1. One can observe that the disturbance estimate
converges to the actual value after 80 sec. The effect of
lumped disturbance is reduced by using NDO through feed-

forward compensation. The convergence of disturbance esti-
mation error with time is shown in Figure 2.

Spacecraft attitude orientation is given in Figure 3. Note
that the attitude quaternion coincides to the equilibrium point
in 100 s. It can be observed that attitude quaternion reaches
the equilibrium position in a similar fashion under NDO-
ISMC and AISMC. The trajectories for the angular velocities
of the rigid-body spacecraft are given in Figure 4, and they
converge in 100 s. Angular velocities are more smooth for the
proposed controller during steady-state operations as shown
in Figure 4(a) and Figure 4(b). Additionally, it is evident that
the angular velocities have less overshoot under NDO-ISMC

Table 1. Control parameters for numerical simulations.

Parameters

Dead-zone mi = 1, bu = 0.05 bl = -0.06,

bl,min=-0.07, mu = 1.25, ml = 0.85,

bl,max= -0.01, bu,min= 0.01, bu,max= 0.07,

NDO-ISMC law z (0) = ½0, 0, 0�T , a0 = 1.5, s = 3, h = 0.8

Ks = 0.75, C1 = 1.2, C2 = 0.02, Ei - 0.01

P = 6.5, Q= 0.01

AISMC law C1=1.2, C2=0.02, k = 40.5, g = 0.01,

a2 = 10, a1 = 0.01, L̂ = 0
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when compared with AISMC. The sliding surfaces for both

the controllers are shown in Figure 5. It is clear from the

figure that there is no reaching phase, and system states

are on the sliding surface from the start under our NDO-

ISMC. However, the sliding surface for AISMC is not

smooth and diverges from zero occasionally, which can

result in controller performance degradation. A possible

cause of the divergence of the sliding surface from the equi-

librium point is the presence of non-smooth input uncer-

tainty in the system.
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The evolution of control input to stabilize the spacecraft

system is presented in Figure 6. It is apparent that the control

input of NDO-ISMC is smooth and chattering free, in-spite

of the presence of dead-zone. However, the control input

under AISMC law encounters the chattering problem.

Energy consumption for the control laws is shown in Figure

7. The energy for the given control law is calculated using

E= 1
2

R t

0
k uk2du. The proposed NDO-ISMC control scheme

is energy efficient comparatively. The simulation results and

subsequent discussion show that the proposed NDO-ISMC

control scheme is substantially robust to external distur-

bances, parameter uncertainties, and input nonlinearities.

Furthermore, it is energy efficient, alleviates controller output

chattering, and gives better control performance.

Conclusion

A composite control scheme for attitude stabilization of rigid-

body spacecraft subjected to external disturbances, parameter

uncertainties, and input nonlinearity has been developed. A

new NDO was designed to estimate the combined disturbance

of the closed-system. The condition for convergence of the

designed NDO was rigorously established. Notably, the

changing rate of the combined disturbance was not required

to be zero or almost zero. Hence, the proposed NDO is able

to handle a wide range of disturbances. Simulation results

showed that the proposed NDO-ISMC method efficiently
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achieved attitude control objective in the presence of non-

smooth dead zone, external disturbances, and parameter
uncertainties.
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