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Abstract 

Hematologic cancers, broadly categorized as leukemias, lymphomas, and myelomas, are 

diagnosed in 3.3 million people globally, and account for 10% of new cancer cases in the U.S. 

every year. In the last decade, newer treatments that directly target aberrant molecular processes, 

rather than the entire cell, have provided a less toxic alternative to traditional chemotherapy, 

however, identification of targets for molecular inhibitors is a major rate-limiting step. Recent 

studies have demonstrated the efficacy of utilizing Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR) as a mechanism to conduct forward genetic screens and combining 

the results with existing drugs to significantly improve identification of probable therapeutics.  

The following study explores an algorithm to process data from pooled CRISPR forward 

genetic screens to rapidly prioritize potential targets. Currently, targets of interest are manually 

curated by comparing pooled CRISPR data to existing gene, protein, and drug databases. This is a 

Sisyphean task as individual gene products vary among individuals, while gene pathway products 

are consistently similar. Thus, our algorithm will rapidly aggregate genes of interest for a pre-

determined synergistic value (p-value, false discovery rate (FDR-value)), while simultaneously 

performing an efficient gene pathway level analysis by automatically comparing against known 

databases including pathway analysis, drug/protein interaction databases, and biomedical 

literature. The algorithm will quickly display the common gene pathways, the genes involved in 

respective pathways, their synergistic values in a prioritized fashion, and will include database 

results in an easy-to-read table to focus on potential targets for future research. The significantly 

reduced human labor in data processing due to the development of this algorithm will be critical 

in advancing research of novel drugs and improving the therapeutic outcomes for patients.   
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1 Introduction 

Hematologic cancers are broadly categorized as cancers that begin in blood-forming tissue 

such as the bone marrow, or in the cells of the immune system and are classified into three types: 

leukemias, lymphomas, and myelomas. Leukemia is identified by an uncharacteristically high 

production of leukocytes, a type of white blood cells, which suppresses the function of normal 

blood cells leading to anemia and other symptoms. Lymphoma is found primarily within the lymph 

nodes; these nodes are part of the lymphatic network that allow free movement of the immune 

system. Myeloma is defined by cancerous plasma cells, a variant of white blood cell, found within 

the bone marrow. After identification, the prognosis varies for every individual, however, these 

cancers are diagnosed in 3.3 million individuals, and account for 10% of all new cancer cases in 

the United States every year1. The prevalence of this disease does not guarantee a solution, or a 

cure. Most cancer treatment therapies are expensive and non-curative. As recently as 2014, the 

average yearly cost of orally administered cancer drugs was $135,0002, and in 2017, a potential 

treatment to cure childhood leukemia cost $475,000 per patient2. The cost of cancer therapies has 

been monitored for a decade, and the continuous but steady rise is approaching an unprecedented 

precipice primarily due to targeted therapies supplanting traditional chemotherapeutics.  

1.1 Therapeutics 

Traditional chemotherapy was novel in mitigating the growth of cancer, but it is inherently 

flawed as it lacks specificity. This broad-spectrum approach creates a toxic environment within 

the body which limits proliferation of cancerous tissue, but causes numerous side effects such as 

hair loss, nausea, and weakness which have been extensively studied. To counteract the negative 

effects, significant research is being conducted into targeted therapies.  
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Targeted therapies are the foundation of precision medicine as the treatment regime is 

focused to interfere with specific molecules, and molecular processes3 within cancer cells. The 

highly localized treatment ensures fewer side effects for the patient, however, physicians are 

limited in their selection of therapies, some of which include introducing monoclonal antibodies3, 

targeting small molecule inhibitors3, or targeting nuclear export inhibitors4. The identification of 

newer therapies is a major rate-limiting step; fortunately, the technological marvel of Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR) can improve the identification of 

molecular targets advancing research on synthetic lethality, i.e. synergy, which arises through the 

cooperative effects of gene knockout and targeted drug delivery5–7. 

1.2 Identifying targets 

CRISPR is the next step in advancing precision medicine for cancer treatment8. The rapid 

gene knockdown ability of CRISPR is unparalleled in specificity and allows deeper insight in 

identifying genes responsible for a particular phenotype of the organism9. The application of 

forward genetic screen is useful in predicting synthetic lethality10, and is fundamentally different 

from reverse genetic screens where the phenotype of the organism is analyzed after the disruption 

of a known gene.  

 
Figure 1: CRISPR knockout screen design. In this example midostaurin, a known chemotherapeutic, is used to 
perform the screen.4 
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The current process of identifying a lethal target is labor and time intensive with the 

following example building on the work conducted by our research lab in identifying XPO1 as a 

lethal target4. A cell culture must be infected with a virus containing genome-wide sgRNA library. 

The target result is a 1:1 ratio with one gene knocked down in every cell. In theory, this would 

create a cell culture where one gene is absent in every cell throughout the genome. Now, a simple 

drug is injected to screen-out any cells that did not get infected by the virus. The experiment then 

continues by splitting the cell culture into a control, and a drug condition. Both of these 

experiments yield significant results as shown in Figure 1. The DMSO, control condition, reveals 

which gene knockdowns are vital for survival, while the midostaurin, drug condition, reveals two 

results: which gene knockdown confers resistance to the drug for the proliferating cells, i.e. 

positively select for survival, and which gene knockdown confers synthetic lethality to the non-

proliferating cells, i.e. negatively select for survival. The data from this experiment is vast and 

compiled into Figure 2 for better representation. This large dataset is then manually parsed to 

 
Figure 2: A Volcano Plot aggregating the results from the CRISPR knockout screen (Figure 1). Here, the 
significant positive and negative selection results are organized by their false discovery rate (FDR) and plotted on 
a log-log scale.4 
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identify genes with existing inhibitors, and the chosen targets are chosen for further 

experimentation to ensure consistency and significance of results.  

While the utilization of CRISPR in screening for drug target discovery11 is evident, it is a 

Sisyphean task to manually parse individual gene products as they could vary among individuals. 

It is much more important to compare gene pathway products as they are consistently similar 

among individuals in the same species. A sample gene pathway analysis is shown as Figure 3, and 

it is important to note the lack of prioritization of genetic pathways (y-axis), or the genes 

themselves (x-axis). This lack of prioritization places greater burden on the scientist and increases 

the time required to identify a viable therapeutic.   

1.3 Goal 

As Figure 3 demonstrates a snippet of all the data aggregated for one drug condition, when 

research is conducted for multiple drug conditions, the gene pathway analysis results increase, and 

manually parsing the data becomes unfeasible. As such, it is important to construct a versatile 

algorithm to parse large datasets to find similarities among gene pathway analyses. These results 

must be prioritized to guide and improve research into synthetically lethal conditions using existing 

drugs, to mitigate cancer, and advance patient therapeutics.   

 

 
Figure 3: Enriched gene pathway analysis of the CRISPR knockout screen4 (Figure 1). The pathways are on the 
y-axis, while individual genes are on the x-axis. The color of the dot represents he significance of the gene in the 
pathway (based on false discovery rates, FDR). 
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2 Methods 

 In an effort to automate data analysis from the massive multiplex CRISPR screens, a 

MATLAB-based algorithm was constructed. The primary objective of the algorithm is to parse 

through the multiple gene pathway level analyses to identify common gene pathways and prioritize 

the results with respect to the false discovery rate (FDR). The FDR value is the expected proportion 

of type I errors, which succinctly indicates the probability of identifying a false positive. As such, 

a small FDR value would be better than a large FDR value, as the smaller FDR value would 

indicate a lower probability of identifying a false positive whereas the larger FDR value would 

indicate a higher probability of identifying a false positive. Thus, by prioritizing the output of the 

algorithm with respect to the FDR-value of the gene pathways and organizing the results in an 

efficient format would ensure the scientist is adequately prepared to continue their investigations.  

2.1 Algorithm Pseudocode 

Take user input for genetic pathway data of both conditions 

Take user input for statistical genetic pathway threshold value  

Loop through each row in genetic pathway data set 

 Loop through each row in the other genetic pathway data set 

  If row1.pathway = row2.pathway 

   Store pathway, statistical values, and gene number ids 

  End if 

 End loop 

End loop 

Loop through stored rows 

 If either statistical value in row more than statistical threshold value 

  Delete row 

 End if 
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End loop 

Take user input for data of number-to-name of both conditions 

Loop through stored rows 

 Loop through number-to-name data of condition 1 

  If row.gene_number_id_1 = number-to-name.gene_number_id 

   Replace row.gene_number_id_1 with number-to-name.gene_name 

  End if 

 End loop 

 Loop through number-to-name data of condition 2 

  If row.gene_number_id_2 = number-to-name.gene_number_id 

   Replace row.gene_number_id_2 with number-to-name.gene_name 

  End if 

 End loop 

End loop  

Take user input for CRISPR-screened-gene data of both conditions 

Take user input for statistical gene threshold value  

Loop through stored rows 

 Loop through CRISPR-screened-gene data set of condition 1 

  If row.gene_name_1 = CRISPR-screened-gene.gene_name 

   Add CRISPR-screened-gene.statistical_value to stored row 

  End if 

 End loop 

Loop through CRISPR-screened-gene data set of condition 2 

  If row.gene_name_2 = CRISPR-screened-gene.gene_name 

   Add CRISPR-screened-gene.statistical_value to stored row 

  End if 

 End loop 

End loop 

Loop through stored rows 
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 If gene statistical value in stored rows more than gene threshold value 

  Delete gene and respective gene statistical value 

 End if 

End loop 

Output stored rows as Excel Spreadsheet 

2.2 Capabilities & User Interface 

The MATLAB based algorithm is constructed in a modular format allowing for easy 

application and potential expansion. The user-friendly interface is supportive in guiding the user 

in determining the files necessary to operate the program. Additionally, there is inherent robustness 

integrated within the algorithm to ensure an output is always delivered. This simple capability is 

beneficial in determining the thresholding level and performing effective troubleshooting.  

In the current version, the algorithm requires eight inputs which are summarized in Table 

1. Two files from the CRISPR screen (Figure 4), and two files from the DAVID pathway analysis 

tool are mandatory to use the program. Following these required inputs, the algorithm asks for 

numeric values to threshold the significant results. The user can choose different values of 

 
Figure 4: The sample results from a massive multiplex CRISPR screen are shown in a text file format. The 
important columns include: “target” which refers to genes that exhibit negative-selection, and “FDR” (false 
discovery rate) which refers to a p-value score that is adjusted for Type I errors. 

 
Figure 5: A sample representation of the Non-Extended output format. The genetic pathways and individual genes 
are prioritized by their FDR-values, however, only the FDR-value of the genetic pathway is displayed. 
Additionally, the clustered format allows for a quicker representation of significant genes in a genetic pathway.  
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thresholding for the pathways, and the genes. Finally, the user chooses the name of their output 

Excel spreadsheet, and their preferred formatting condition. The two conditions, extended and 

non-extended, change the amount of information displayed as the output. Both conditions 

prioritize the algorithm output based on the FDR-values but have slightly different benefits. The 

non-extended format is useful for quickly parsing output, while the extended format is beneficial 

in determining the next course of experimentation. Figure 5 and Figure 6 are examples of non-

extended and extended output documents, respectively.  

After ensuring valid inputs, the algorithm rapidly compares the DAVID pathway analysis 

files to determine overlapping pathways. The DAVID Bioinformatics Resource12,13 provides a 

comprehensive set of functional annotation tools to identify enriched biological themes, discover 

enriched functional-related gene groups, and perform greater analysis of enriched pathways on 

large sets of genes. This tool is an open resource to obtain greater knowledge about enriched gene 

pathways, and it utilizes the CRISPR gene list to identify gene pathways and places the genes into 

their respective pathways. As such, when the algorithm parses the DAVID files for similarities, 

the pathway and corresponding genes within the pathways are extracted. Now, the results are 

prioritized with gene pathways and genes organized in ascending order with respect to their FDR-

values. If the user indicated a threshold, it is applied at this step and if the threshold is too stringent, 

 
Figure 6: A sample representation of the Extended output format. The genetic pathways and individual genes are 
prioritized by their FDR-values. Additionally, cell D9 represents the condition when the thresholding value was 
too stringent.  
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the algorithm writes “No CRISPR screened Genes available at this threshold”. After performing 

the thresholding, the truncated results are shown in the desired output format.  

 

Table 1: Algorithm Inputs 

Name Type Description 

CRISPR Gene List (x2) File type - .txt 

This file is the result of the multiplex 

CRISPR screen; must contain “target”, 

“FDR” values. 

DAVID Pathway analysis (x2) File type - .txt 

This file contains the Pathway Analysis 

results from DAVID. It must contain “GO-

Terms”, “FDR” values, and “Numeric IDs” 

for genes. 

Renamed-Gene IDs (x2) File type - .txt  

 This file contains the conversion of Gene 

IDs to Entrez-format Number IDs. It must 

contain “To” and “From” columns.  

Pathway analysis threshold Numeric - 0 to 1 

Every pathway from DAVID has an FDR 

score which allows the user to compare 

significance.  

Gene analysis threshold Numeric - 0 to 1 

Every gene from the CRISPR screen has an 

FDR score which allows the user to 

compare significance. 

Output format type Numeric - 0 or 1 

Determines format of Excel spreadsheet. 0 

corresponds to non-extended format, while 

1 corresponds to extended format. 

Output document name String 
This allows the user to name their Excel 

output file. 
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3 Results & Verification 

 A tool that is capable of rapid prioritization of potential targets after analyzing multiple 

genetic pathways is presented through this work. Prior to this tool, the multiplex CRISPR screen 

results from Figure 2 were succinctly created into Figure 3, a pathway analysis diagram, through 

a laborious and an extensively manual process of comparing genes to known databases. Now, the 

algorithm can quickly eliminate erroneous genes (i.e. genes that do not qualify within the selected 

FDR-threshold value) by effectively, and efficiently parsing through the multiplex CRISPR screen 

data. The algorithm is also capable of comparing multiple genetic pathway analyses and 

prioritizing the common pathways in an easy-to-read Excel spreadsheet to holistically inform the 

scientist on the best potential targets to researcher further. Additionally this rapid pathway-level 

analysis will yield a greater number of potential targets for synthetic lethality, allowing scientists 

to focus their experiments to discover novel therapeutics and enhance precision medicine by 

targeting genetic pathways to improve patient outcomes.  

 The current version of the algorithm has also been verified to ensure results are consistent. 

The code was initially verified by comparing the number of overlapping pathways identified by 

the algorithm with the manual approach. The results demonstrated that the algorithm was able to 

identify a greater number of overlapping pathways much quicker, and further inspection revealed 

novel pathways previously missed by the manual approach. After this success, the algorithm 

performed an analysis of an experiment where a cell line infected with leukemia was treated with 

two drugs and was analyzed by a multiplex CRISPR screen. The algorithm identified a significant 

genetic pathway in “mRNA splicing via spliceosome”. This unique result was recently published 

and identified the same drug-pathway combination to treat acute myeloid leukemia14. This external 
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verification sheds light on the direct impact of this tool, and its efficacy in aiding scientists to 

develop unique therapies and improve patient outcomes.  

4 Future Research 

The algorithm is a powerful tool demonstrating an easy-to-use functionality, and a 

comprehensive output capability through an Excel spreadsheet prioritizing results from a massive 

multiplex CRISPR screen. This tool has already impacted the decision-making of scientists within 

the Experimental Hematology Research Lab, however, there are still avenues for improvement.  

4.1 DAVID API 

The current version of the algorithm relies on the online version of the DAVID 

Bioinformatics Resource12,13 to perform the genetic pathway analysis for each massive multiplex 

CRISPR gene list. While this online resource is useful, it is time-consuming and error-prone to 

copy-paste the numerous gene lists into DAVID and save the output files in the specified format. 

In a future iteration, it will be beneficial to either download and locally host the DAVID 

Knowledgebase or utilize the DAVID API script files to link the algorithm to the DAVID 

Knowledgebase. It would be preferred to locally host the knowledgebase as it provides unlimited 

access to the entire database, whereas the API is restricted to a certain number of interactions. 

Additionally, as the entire database is clustered and centralized by a single index DAVID Gene 

identifier, locally hosting the database will enable the algorithm to perform extremely efficient and 

rapid data processing. The algorithm can be streamlined to require only CRISPR gene lists which 

would tremendously assist the scientist as the pathway analysis, and prioritization of potential 

targets will be automated and conducted rapidly from a single input file.     
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4.2 Screen-out Essential Gene 

Essential genes are indispensable genes critical for an organism to grow and survive in a 

given environment. In some instances, targeting essential genes could be important for discovering 

novel treatments, while on the contrary excluding essential genes could give insight on 

determining novel cancer-specific gene targets. Currently, the results from the multiplex CRISPR 

screen (i.e. a gene list) are passed through the DAVID database to perform a comprehensive 

pathway-level analysis, as every pathway contains a minimum of one gene from the CRISPR 

screen. The current algorithm does not parse-out essential genes, and to improve the focus on 

cancer-specific targets, several database connections can be incorporated. The Database of 

Essential Genes (DEG)15, and the Online Gene Essentiality database (OGEE)16 are two databases 

which have previously been utilized to screen-out human essential genes. These databases have a 

script file that can be used to connect the algorithm to the online database which would drastically 

improve functionality of the algorithm. After incorporation, the algorithm should feature a toggle 

option to allow the scientist to choose whether to parse-out the essential genes.  

4.3 Database Connections 

The National Center for Biotechnology Information (NCBI) supported by the National 

Institutes of Health is a valuable resource as it hosts databases such as PubMed, PubChem, and 

Gene to Protein, which have established script files making them ideal candidates when expanding 

the algorithm. Every gene from the multiplex CRISPR screen can be passed sequentially through 

the databases to acquire significant information to inform the prioritization of the algorithm. For 

instance, a connection with PubMed will enable existing literature to be identified and curated with 

a focus on specific keywords and the gene of interest. Similarly, a connection with Gene to Protein 

will yield significant information about the specific proteins that are translated from the genes. 
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This specific protein information can also guide a future literature search and provide critical 

information on protein-level inhibitors. Finally, a connection with PubChem will enable a greater 

understanding of gene-level molecular inhibitors currently available as well as inhibitors currently 

in research. Beyond the inhibitors found on PubChem, the algorithm can also be connected to the 

short interfering RNA (siRNA) mod database17 to identify non-drug inhibitors, as siRNA are a 

class of non-coding RNA molecules that interfere with gene expression. All of these curated results 

can be displayed as part of the extended-output format, and every result from the databases will be 

incorporated in calculating the new prioritization score to guide the scientist in performing novel 

research.  

4.4 Prioritization Score 

The improved prioritization score would follow an entirely novel format. In the current 

algorithm, pathways, and genes, are prioritized in ascending order based on the false discovery 

rate (FDR) value. As such, pathways, and genes, with a significance close to 0 are ranked higher 

on the output Excel spreadsheet. In the new and improved algorithm, prior to performing any 

comparisons, every gene from the multiplex CRISPR screen will be assigned a prioritization score 

as computed by Eq 1 below, and every pathway from the DAVID analysis will also be assigned a 

prioritization score as computed by Eq 2 below. Additionally, every result from the database (i.e. 

PubMed, PubChem, Gene to Protein, and siRNA mod) will be given a prioritization score of one. 

The database results have a non-changing score of one because existing literature could be sparse 

for certain genes and a score of one would prevent the database results from overweighing the 

prioritization score for a certain pathway. All of these prioritization scores can then be added and 

a threshold can be set to allow for greater specificity of results. Finally, a percentage-based scoring 

system can be displayed to highlight how much of the prioritization score stems from the individual 
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components (i.e. gene score, pathway score, and database score). In theory, a scientist can use the 

prioritization score percentage breakdown to identify if the gene of interest has significance, if the 

pathway of interest has significance, and determine if there is existing literature on the 

gene/pathway of interest. The prioritization score will aid the scientist in pursuing novel genes and 

ascertain improved therapeutics for patients.  

Eq 1. Gene Score = 1 −
FDR of individual pathway

highest value of FDR in pathway list
  

Eq 2. Pathway Score = 100 −
FDR of individual pathway

highest value of FDR in pathway list
  

   

5 Conclusion 

 The time undertaken to successfully identify a potential target for synthetic lethality adds 

to the rising cost of novel targeted therapies. The laborious and extensive task of comparing gene 

lists manually is simplified and automated by the algorithm. Although additional functionalities 

can improve this tool as mentioned in the prior sections, however, it is important to note that this 

algorithm still lays the foundation by rapidly comparing genetic pathways, eliminating erroneous 

genes, highlighting a greater number of potential gene targets for synthetic lethality, and 

prioritizing the results in an easy-to-use Excel spreadsheet. The verified algorithm will reduce data 

processing time allowing scientists to focus on significantly important synthetically lethal targets 

which will advance research on novel drugs and improve therapeutic outcomes for patients.  
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7 Appendix 

7.1 Gene Pathway Analysis Code 

%% Gene Pathway Analysis Code 
% Author: Mukul Govande 
% Acknowledgement: Andrew Lubinger.1 for assisting in very 
early development 
% Last modified: 03/28/2021 
  
% This program takes in multiple pathway analyses, and 
negative-selected 
% genes from a massive multiplex CRISPR screen, and 
provides a 
% prioritization scheme to inform the user on the best path 
forward. 
%  
% Inputs:  
%       2x CRISPR Gene lists 
%       2x Renamed GENE IDs (this is an output of DAVID 
pathway analysis) 
%       2x DAVID pathway analysis of gene lists 
%       Threshold value for CRISPR Gene list 
%       Threshold value for DAVID pathway analysis 
%       Output Format type (extended vs. non-extended) 
%               
% Outputs:  
%       Excel Data file with prioritized pathways and genes 
  
% Functions used in this script file: 
%   pathwaycomp 
  
clc; 
clear all; 
close all; 
  
%% INSTRUCTIONS 
% Make sure the data files are present in the same folder 
as the MATLAB files. 
% If the data files are not in the same folder, copy the 
entire pathway as 
% the input when prompted to enter the file name in the 
command window.  
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% You will need 2 files from your massive multiplex CRISPR 
screen, 2 files 
% from the DAVID pathway analysis, 2 files from the 
renamed-gene IDs. Please 
% ensure the files from CRISPR has "targets","fdr-values" 
as column 
% headers; ensure the files from DAVID has "go-terms","fdr-
values" as 
% column headers; ensure the files from RENAMED_GENES has 
"FROM","TO" as 
% column headers.  
 
% MAKE SURE ALL DATA FILES ARE IN TEXT FORMAT (i.e. they 
have the .txt 
% extension)  
  
% CRISPR Screen results: A txt file created after analyzing 
the massive 
%multiplex screen. 
  
% RENAMED Gene IDs: DAVID is a bioinformatics tool. 
Currently, it is not 
% integrated into this program. So refer to the online 
% website, "david.ncifcrf.gov/home.jsp", copy the CRISPR 
gene list and 
% convert to ENTREZ-GENE-IDs. Store the result as this is 
your renamed-gene 
% IDs. This list will enable conversion from number-IDs to 
name-IDs. 
  
% DAVID Pathway Analysis: Proceed with pathway analysis of 
the converted 
% list. The output is a massive txt file containing GO-
Terms. This is the 
% file used for pathway analysis. 
  
%% Ask for inputs 
  
%prompts 
prompt_c1 = 'Please write the first CRISPR file pathway (or 
file name, include extension!): \n'; 
prompt_c2 = 'Please write the second CRISPR file pathway 
(or file name, include extension!): \n'; 
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prompt_rn1 = 'Please write the first renamed-gene-number ID 
file pathway (or file name, include extension!): \n'; 
prompt_rn2 = 'Please write the second renamed-gene-number 
ID file pathway (or file name, include extension!): \n'; 
prompt_d1 = 'Please write the first DAVID file pathway (or 
file name, include extension!): \n'; 
prompt_d2 = 'Please write the second DAVID file pathway (or 
file name, include extension!): \n'; 
prompt_th_c = 'Determine the threshold for DAVID pathway 
analysis (numeric): \n'; 
prompt_th_d = 'Determine the threshold for CRISPR analysis 
(numeric): \n'; 
prompt_output = 'Which output format is preferred? 
(extended = 1, non-extended = 0): \n'; 
  
%everything related to condition 1 
crisp_1 = input(prompt_c1,'s'); 
david_1 = input(prompt_d1,'s'); 
rename_1 = input(prompt_rn1,'s'); 
  
%everything related to condition 2 
crisp_2 = input(prompt_c2,'s'); 
david_2 = input(prompt_d2,'s'); 
rename_2 = input(prompt_rn2,'s'); 
  
%threshold values 
threshold_c = input(prompt_th_c); 
%make sure the values are between 0 and 1 
while(threshold_c <= 0 || threshold_c >= 1) 
    disp('ERROR. Please pick a value between 0 and 1.'); 
    threshold_c = input(prompt_th_c); 
end 
  
threshold_d = input(prompt_th_d); 
%make sure the values are between 0 and 1 
while(threshold_d <= 0 || threshold_d >= 1) 
    disp('ERROR. Please pick a value between 0 and 1.'); 
    threshold_d = input(prompt_th_d); 
end 
  
%output format 
output_type = input(prompt_output); 
%make sure the values are either 0 or 1 
while(true) 
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    if(output_type == 0) 
    break; 
    elseif(output_type == 1) 
    break; 
    else %i.e. it is not 1 or 0 
        disp('ERROR. Please pick a value of 0 or 1.'); 
        output_type = input(prompt_output); 
    end 
end 
  
%% Load in data files 
  
% DAVID gene pathways analysis (non-thresholded, original 
list) 
david_cond_1 = 
readtable(david_1,'Delimiter',{'\t'},'MultipleDelimsAsOne',
1); 
david_cond_2 = 
readtable(david_2,'Delimiter',{'\t'},'MultipleDelimsAsOne',
1); 
  
% CRISPR - original files which contain raw data - i.e. 
gene lists + score + p-value + fdr of individual genes 
crisp_cond_1 = 
readtable(crisp_1,'Delimiter',{'\t'},'MultipleDelimsAsOne',
1); 
crisp_cond_2 = 
readtable(crisp_2,'Delimiter',{'\t'},'MultipleDelimsAsOne',
1); 
  
% RENAMED files (to convert from DAVID gene (numeric) IDs 
to named genes (strings)) 
rename_cond_1 = 
readtable(rename_1,'Delimiter',{'\t'},'MultipleDelimsAsOne'
,1); 
rename_cond_2 = 
readtable(rename_2,'Delimiter',{'\t'},'MultipleDelimsAsOne'
,1); 
  
%clear some variables from workspace 
clear p*; clear crisp_1; clear crisp_2; clear david_1;  
clear david_2; clear rename_1; clear rename_2;  
  
%% comparing gene pathways 
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% this performs the entire comparison and prioritization  
% order matters: david_file_1, rename_file_1, david_file_2, 
rename_file_2, 
% david_pathway_threshold, crispr_file_1, crispr_file_2, 
% crispr_screen_threshold 
  
[comparison] = 
pathwaycomp(david_cond_1,rename_cond_1,david_cond_2,rename_
cond_2,threshold_d,crisp_cond_1,crisp_cond_2,threshold_c,ou
tput_type); 
  
%% write to excel file 
%ask user for output file name 
prompt_file = 'Name the output file (do not reuse names): 
\n'; 
output_name = input(prompt_file,'s'); 
output_name = [output_name,'.xls']; 
  
%write to the specified file name 
writetable(comparison,output_name,'Sheet',1,'Range','A1:G65
536'); 
  
%% END 
 
 
7.2 Function: pathwaycomp.m 

function [storer] = 
pathwaycomp(inputArg1,checker1,inputArg2,checker2,fdrthresh
old1,originalList1,originalList2,fdrthreshold2,value) 
%PATHWAYCOMP: This function is the primary tool in 
performing pathway 
%analysis. The user parses several input arguments to 
automatically compare 
%multiple genetic pathway analyses. The function 
prioritizes the results according to 
%the FDR-values of the genetic pathways, and the individual 
genes in those 
%pathways. To operate correctly, and provide an effective 
output, the functions reversename.m, changed_list_comp.m, 
%and printer.m are utilized. 
%  % Input Arguments:  
   %    - inputArg1: a table containing the pathway 
analysis from DAVID 
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   %    - inputArg2: a table containing the pathway 
analysis from DAVID 
   %    - checker1: a table containing the renamed gene 
IDs, used for 
   %    conversation between number IDs and name IDs 
   %    - checker2: a table containing the renamed gene 
IDs, used for 
   %    conversation between number IDs and name IDs 
   %    - fdrthreshold1: a value between 0 and 1 to ensure 
pathway fdr 
   %    value is significant 
   %    - originalList1: a table containing the CRISPR 
screen data (gene 
   %    list) 
   %    - originalList2: a table containing the CRISPR 
screen data (gene 
   %    list) 
   %    - fdrthreshold2: a value between 0 and 1 to ensure 
gene fdr value 
   %    is significant 
   %    - value: output format (value of 0 or 1 - binary) 
   %  
   % Output:  
   %    - storer: a table containing the name of 
overlapping Pathways, FDR 
   %    values of Pathways, Overlapping Genes from List 
1/List 2, FDR 
   %    values of Gene List 1/ Gene List 2 
  
%% Pathwaycomp Function  
  
%isolate the pathways from the loaded table & compare them 
term1 = inputArg1.Term;  
term2 = inputArg2.Term; 
  
%isolate the FDR-values and compare against threshold 
(comparison happens later) 
fdr1 = inputArg1.FDR; 
fdr2 = inputArg2.FDR; 
  
%isolate the gene IDs - this actually gives you a string, 
not gene numbers! 
gene1 = inputArg1.Genes;  
gene2 = inputArg2.Genes; 
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%convert the string gene IDs into numeric gene IDs 
for g = 1:length(gene1) 
    holder = str2num(gene1{g}(gene1{g}~= ' ')); 
    gene1{g} = holder'; 
end 
for g = 1:length(gene2) 
    holder = str2num(gene2{g}(gene2{g}~= ' ')); 
    gene2{g} = holder'; 
end 
  
%cell-counting variable 
ind = 1; 
  
%the for-loop to perform checking 
for i = 1:length(term1) 
    s1 = string(term1(i)); %assign ONE gene-pathway from 
list ONE to a variable 
    if(s1 == '') %this is the blank space checker - 
prevents forever looping 
        break; 
    end 
    for j = 1:length(term2) 
        s2 = string(term2(j)); %assign ONE gene-pathway 
from list TWO to a variable 
        if(s2 == '') %this is the blank space checker - 
prevents forever looping 
            break; 
        end 
        if((s1 == s2) && (fdr1(i) <= fdrthreshold1) && 
(fdr2(j) <= fdrthreshold1)) %the comparison point of 
pathways & fdr value 
            %extended version 
            temp_store{ind,1} = term1(i); %store the term 
(gene pathway) 
            temp_store{ind,2} = fdr1(i); %store the fdr-
value from list 1 
            temp_store{ind,3} = fdr2(j); %store the fdr-
value from list 2 
            temp_store_gene{ind,1} = gene1{i}; %temporary 
storage for genes from overlapped pathways - this is for 
list 1 
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            temp_store_gene{ind,2} = gene2{j}; %temporary 
storage for gene from overlapped pathways - this is for 
list 2 
             
            %non-extended Version 
            temp_store_nonExtended{ind,1} = term1(i); 
%store the term (gene pathway) 
            temp_store_nonExtended{ind,2} = fdr1(i); %store 
the fdr-value from list 1 
            temp_store_nonExtended{ind,3} = fdr2(j); %store 
the fdr-value from list 2 
             
            ind = 1 + ind; %increment the counting variable 
        end 
    end 
end 
  
clear ind; %clear the independent counting variable 
  
%reversename function 
% - inputs: 
%           temp_store [variable that contains common 
pathways] 
%           checker1 [renamed gene IDs for list 1] 
%           checker2 [renamed gene IDs for list 2] 
% - outputs:  
%           cell variable that is well-organized and shows 
prioritized results 
  
%changes the names from the number IDs to actual names 
changed_name= 
reversename(temp_store_gene,checker1,checker2); 
  
%changed_list_comp function 
% - inputs: 
%           changed_name [output from reversename function] 
%           originalList1 [CRISPR gene list for list 1] 
%           originalList2 [CRISPR gene list for list 2] 
%           fdrthreshold2 [fdr-thresholding value for 
CRISPR gene lists] 
% - outputs:  
%           cell variable that is well-organized and shows 
thresholded, and 
%           prioritized results 
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%threshold the genes for specific values 
result = 
changed_list_comp(changed_name,originalList1,originalList2,
fdrthreshold2); 
  
%add the named gene lists to temp_store  
for i = 1:length(temp_store) 
   %extended version 
   temp_store{i,4} = result{i,1}; %gene list 1 
   temp_store{i,5} = result{i,3}; %fdr list 1 
   temp_store{i,6} = result{i,2}; %gene list 2 
   temp_store{i,7} = result{i,4}; %fdr list 2 
    
   %non-extended version 
   temp_store_nonExtended{i,4} = result{i,1}; 
   temp_store_nonExtended{i,5} = result{i,2};    
end 
  
%printer function 
% - inputs: 
%           result [output from changed_list_comp function] 
%   NOTE: column 1 & 3 are related, 2 & 4 are related. 
Column 1, 2 are Gene 
%   IDs, Column 3, 4 are fdr-values of Genes from Column 1, 
2 respectively. 
% - outputs: 
%           cell-variable that is well-organized and 
prioritized - ready to 
%           be printed to Excel.  
  
%print results in a NEAT format - default formats are not 
appropriate 
output = printer(temp_store); 
  
%determine output format type 
if(value == 1) %extended  
    %returns a table with pathways, fdr of pathways, gene 
ID names, fdr of gene lists 
    storer = cell2table(output,'VariableNames',{'Term' 'FDR 
w/ Condition 1' 'FDR w/ Condition 2' 'Gene List 1' 'FDR of 
Gene List 1' 'Gene List 2' 'FDR of Gene List 2'}); 
else %non-extended  
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    %returns a table with pathways, fdr of pathways, and 
gene ID names 
    storer = 
cell2table(temp_store_nonExtended,'VariableNames',{'Term' 
'FDR w/ Condition 1' 'FDR w/ Condition 2' 'Gene List 1' 
'Gene List 2'}); 
end 
     
end %end of function file 
 
7.3 Function: reversename.m 

function [result] = reversename(temp,inputArg1,inputArg2) 
%REVERSENAME: This function can convert the number IDs to 
the name IDs. 
%This is especially useful after the comparison of multiple 
pathways yields 
%a cell array that has number IDs. %This conversion is 
critical as the 
%output of this function is the input of the 
changed_list_comp.m function. 
%  % Input Arguments:  
   %    - temp: a cell array containing the common pathways 
& common genes 
   %    on those pathways 
   %    - inputArg1: a table containing the renamed gene 
IDs, used for 
   %    conversation between number IDs and name IDs 
   %    - inputArg2: a table containing the renamed gene 
IDs, used for 
   %    conversation between number IDs and name IDs 
   % 
   % Output:  
   %    - result: cell array that converts number IDs to 
name IDs. Also 
   %    organizes results in ascending order 
(prioritization technique) 
  
%isolate the individual gene number IDs from pathwaycomp 
%isolate the 'TO' and 'FROM' column from DAVID renamed gene 
IDs 
to1 = inputArg1.To; 
to2 = inputArg2.To; 
from1 = inputArg1.From; 
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from2 = inputArg2.From; 
  
%create the string array 
storage1 = strings;  
  
%perform comparison 
%list1 comparison 
for i = 1:length(temp) 
    storage1 = strings; %initialize the string array 
    ind = 1; %independent counter variable 
    storage1(ind) = "Number ID is not available"; %failsafe 
result 
    for j = 1:length(temp{i,1}) 
        s1 = temp{i,1}(j); 
        for k = 1:length(to1) 
            s2 = to1(k); 
            if(s2 == s1) %this comparison checks if the 
numbers from DAVID match - i.e. checks if gene IDs match 
                storage1(ind) = from1(k); %store result if 
match 
                ind = ind + 1; 
                break; %this 'break' optimizes the code. 
The comparison will only be 'TRUE' once, after finding it, 
exit the if-statement. 
            end 
        end 
    end 
    result{i,1} = storage1'; 
    clear storage1; %clears the variable to start storing 
comparison results 
end %end for-loop of list1 comparison 
  
%list 2 comparison 
for i = 1:length(temp) 
    storage1 = strings; %initialize the string array 
    ind = 1; %independent counter variable 
    storage1(ind) = "Number ID is not available"; %failsafe 
result 
    for j = 1:length(temp{i,2}) 
        s1 = temp{i,2}(j); 
        for k = 1:length(to2) 
            s2 = to2(k); 
            if(s2 == s1) %this comparison checks if the 
numbers from DAVID match - i.e. checks if gene IDs match 
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                storage1(ind) = from2(k); %store result if 
match 
                ind = ind + 1; 
                break; %this 'break' optimizes the code. 
The comparison will only be 'TRUE' once, after finding it, 
exit the if-statement. 
            end 
        end 
    end 
    result{i,2} = storage1'; 
    clear storage1; %clears the variable to start storing 
comparison results 
end %end for-loop of list2 comparison 
  
end %end of function file 
 
7.4 Function: changed_list_comp.m 

function [result] = 
changed_list_comp(geneNames,inputArg1,inputArg2,fdr_thresho
ld) 
%CHANGED_LIST_COMP: This function thresholds the gene lists 
to the 
%user-specified value. Additionally, it prioritizes the 
results in an 
%ascending FDR-value format (current prioritization 
technique) and creates 
%the cell array output which will be the input for the 
printer.m function.  
%  % Input Arguments:  
   %    - geneNames: a table - this is the output from 
reversename function 
   %    - inputArg1: a table containing the CRISPR screen 
data (gene 
   %    list) 
   %    - inputArg2: a table containing the CRISPR screen 
data (gene 
   %    list) 
   %    - fdrthreshold: fdr-thresholding value for CRISPR 
gene lists 
   %  
   % Output:  
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   %    - result: cell array that thresholds the gene 
lists, and 
   %    prioritizes the output in ascending order (current 
prioritization 
   %    technique) 
    
%isolate the string from the loaded table 
test1 = inputArg1.target;  
test2 = inputArg2.target; 
  
%isolate the fdr values into an array 
fdr1 = inputArg1.fdr; 
fdr2 = inputArg2.fdr; 
  
%comparison 
%gene list 1 comparison 
for i = 1:length(geneNames) 
    storage1 = strings; %initialize the string array 
    ind = 1; %independent counter variable 
    storage1(ind) = "No CRISPR screened Genes available at 
this threshold"; 
    fdr_organizer(ind) = 100; %initialize an fdr storage 
array 
    for j = 1:length(geneNames{i,1}) 
        s1 = geneNames{i,1}(j); 
        for k = 1:length(test1) 
            s2 = test1(k); 
            if(strcmp(s1,s2) && (fdr1(k) <= fdr_threshold)) 
%this comparison checks if the numbers from DAVID match - 
i.e. checks if gene IDs match 
                storage1(ind) = test1(k); %if there is a 
similarity (that meets the threshold), store in storage1 
                fdr_organizer(ind) = fdr1(k); %store the 
fdr of the gene that meets the threshold + similarity 
condition 
                ind = ind + 1; %increment independent 
counter 
                break; %this 'break' optimizes the code. 
The comparison will only be 'TRUE' once, after finding it, 
exit the if-statement. 
            end 
            if(strcmp(s2,'')) %this is the blank space 
checker for inputArg1 and inputArg2 - they have too many 
blank spaces at the end 
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                break; 
            end 
        end 
    end 
     
    %organize the gene list in order of descending fdr 
values 
    descender = table(storage1',fdr_organizer'); 
    holder = sortrows(descender,{'Var2'},{'ascend'}); 
     
    result{i,1} = strjoin(holder.Var1,', '); %converts the 
cell array into a string variable 
    result{i,3} = num2str(sort(fdr_organizer)); %organizes 
the fdr-values in ascending order (like the genes) and 
makes it into a string 
    clear storage1; %clears the variable to start storing 
comparison results 
    clear fdr_organizer; %clears the variable to start 
storing comparison results 
  
end %end for-loop of list 1 comparison 
  
%gene list 2 comparison 
for i = 1:length(geneNames) 
    storage1 = strings; %initialize the string array 
    ind = 1; %independent counter variable 
    storage1(ind) = "No CRISPR screened Genes available at 
this threshold"; 
    fdr_organizer(ind) = 100; %initialize an fdr array 
    for j = 1:length(geneNames{i,1}) 
        s1 = geneNames{i,1}(j); 
        for k = 1:length(test2) 
            s2 = test2(k); 
            if(strcmp(s1,s2) && (fdr2(k) <= fdr_threshold)) 
%this comparison checks if the numbers from DAVID match - 
i.e. checks if gene IDs match 
                storage1(ind) = test2(k); %if there is a 
similarity (that meets the threshold), store in storage1 
                fdr_organizer(ind) = fdr2(k); %store the 
fdr of the gene that meets the threshold + similarity 
condition 
                ind = ind + 1; %increment independent 
counter 
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                break; %this 'break' optimizes the code. 
The comparison will only be 'TRUE' once, after finding it, 
exit the if-statement. 
            end 
            if(strcmp(s2,'')) %this is the blank space 
checker for inputArg1 and inputArg2 - they have too many 
blank spaces at the end 
                break; 
            end 
        end 
    end 
     
    %organize the gene list in order of descending fdr 
values 
    descender = table(storage1',fdr_organizer'); 
    holder = sortrows(descender,{'Var2'},{'ascend'}); 
     
    result{i,2} = strjoin(holder.Var1,', '); %converts the 
cell array into a string variable 
    result{i,4} = num2str(sort(fdr_organizer)); %organizes 
the fdr-values in ascending order (like the genes) and 
makes it into a string 
    clear storage2; %clears the variable to start storing 
comparison results 
    clear fdr_organizer; %clears the variable to start 
storing comparison results 
     
end %end for-loop of list 2 comparison 
  
end %end of function file 
 
7.5 Function: printer.m 

function [temp] = printer(temp_store) 
%PRINTER: This function allows for the clean formatting of 
the 
%extended-format Excel spreadsheet.  
%   % Input Arguments: 
    %    - temp_store: output from changed_list_comp 
function] 
%   NOTE: column 1 & 3 are related, 2 & 4 are related. 
Column 1, 2 are Gene 
%   IDs, Column 3, 4 are fdr-values of Genes from Column 1, 
2 respectively. 
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% 
    % Output Arguments: 
    %    - temp: cell-variable that is well-organized and 
shows prioritized 
    %    results to readily print to Excel. 
%    
  
[z, zz] = size(temp_store); %counter-limit from inArg1 
b = 1; %row-counter for temp variable (list 1) 
h = 1; %row-counter for temp variable (list 2) 
  
%eventually, the two row-counters will compare against each 
other and the 
%larger number will prevail to ensure continuity in 
printing 
  
for a = 1:z %first for-loop to parse through the original 
argument 
     
    b_keeper = b; %creates a clone of b; 
    h_keeper = h; %creates a clone of h; 
     
    temp{b,1} = temp_store{a,1}; %this stores the pathway 
term 
    temp{b,2} = temp_store{a,2}; %this stores the fdr value 
with condition 1 
    temp{b,3} = temp_store{a,3}; %this stores the fdr value 
with condition 2 
     
    %isolating the string of genes 
    temp_holder_string = temp_store{a,4};  
    holder_string = 
textscan(temp_holder_string,'%s','Delimiter',','); 
%changing string of genes back into a cell array 
     
    temp_holder_numeric = temp_store{a,5}; 
    holder_numeric = str2num(temp_holder_numeric);  
     
    for i = 1:length(holder_string) 
        for j = 1:length(holder_string{i,1}) %accessing the 
specific area where the genes are 
            temp{b,4} = holder_string{i,1}(j); 
            b = b+1; %increment the value of b             
        end 
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    end 
     
    for i = 1:length(holder_numeric) 
        temp{b_keeper,5} = holder_numeric(i); 
        b_keeper = b_keeper + 1; %this ensures we start at 
the same place as 'b' 
    end 
     
    clear temp_holder_string; clear temp_holder_numeric;  
    clear holder_string; clear holder_numeric; 
     
    %isolating the string of genes 
    temp_holder_string = temp_store{a,6};  
    holder_string = 
textscan(temp_holder_string,'%s','Delimiter',','); 
%changing string of genes back into a cell array 
     
    temp_holder_numeric = temp_store{a,7}; 
    holder_numeric = str2num(temp_holder_numeric);  
     
    for i = 1:length(holder_string) 
        for j = 1:length(holder_string{i,1}) %accessing the 
specific area where the genes are 
            temp{h,6} = holder_string{i,1}(j); 
            h = h+1; %increment the value of b             
        end 
    end 
     
    for i = 1:length(holder_numeric) 
        temp{h_keeper,7} = holder_numeric(i); 
        h_keeper = h_keeper + 1; %this ensures we start at 
the same place as 'h' 
    end 
     
    if(b > h) %this logical statement ensures the data is 
correctly copied 
        h = b; 
    else %i.e. h > b 
        b = h; 
    end     
     
    clear temp_holder_string; clear temp_holder_numeric;  
    clear holder_string; clear holder_numeric; 
end 
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end %end of function file 
 
 


