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Abstract

The theory of granular partitions is designed to capture in a formal framework
important aspects of the selective character of common-sense views of reality. It
comprehends not merely the ways in which we can view reality by conceiving its
objects as gathered together not merely into sets, but also into wholes of various
kinds, partitioned into parts at various levels of granularity. We here represent
granular partitions as triples consisting of a rooted tree structure as first compo-
nent, a domain satisfying the axioms of Extensional Mereology as second com-
ponent, and a mapping (called 'projection’) of the first into the second as a third
component. We define ordering relations among granular partitions the resulting
structures are called partition frames. We then introduce an axiomatic theory which
sentences are interpreted in partition frames.

1 Introduction

Human beings have a variety of ways of dividing up, classifying, mapping, sorting
and listing the objects in reality. The theory of granular partitions presented in [BS03,
[SB02] seeks to provide a general and unified basis for understanding such phenom-
ena in formal terms. Its aim is to contribute to an understanding of the granular
and selective character of human common sense. Related work in this area includes
[Hob88,BWJ98, Ste, SteDO, Dori01, Bit02].

The theory of granular partitions has two parts. The first is a theory of classification
(Theory A), which describes the tree structures of familiar classificatory systems. The
second is a theory of reference or intentionality (Theory B). It provides an account of
how those tree-structures relate to objects in reality.

Consider, for example, the FigUrg 1. On the left side we have a simple tree repre-
sentation of the (incomplete) subdivision of the catedond into subcategoriefuit
andvegetables Theory A governs how to build nesteell structuresin such a way
that they correspond to the mentioned category trees. In the middle of Figure 1 such
a cell structure is represented as a Venn diagram. Theory B governs the way these
cell-structures project onto reality indicated by the arrows connecting the middle and
the right parts of the Figure.
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Figure 1: Relationships between cells and objects

Bittner and Smith use the notion of projection to characterize the relation between
the cells in a partition and objects in reality. Briefly, we can think of cells as being
projected onto objects in something like the way in which floodlights are projected
upon objects on the stage in a theater. Projection is involved also when proper names
are used to refer to the objects they denote or when acts of perception are directed
towards objects in the immediate environment of the perceiving subject. (Projection
is thus close to what philosophers call ‘intentionalify” [Sér83].) In 1 the cell labeled
‘Vegetables’ projects onto the class of all vegetables in reality.

Granular partitions are not only at work in the realm of classes of things such as
food, vegetables, etc., but also in the realm of objects. Consider Figure 2. On the left
side we have the tree representation of certain aspects of the mereological structure of
the human being Fred. In the middle we have a corresponding cell structure and at the
right hand side we have the target domain — your friend Fred. We assume the obvious
‘Fred’'s Head'— Fred’s head ‘Fred’s limbs’+— Fred’s left arm + Fred’s right arm +
Fred's left leg + Fred’s right leg. .. projection.

Fred's body

Fred's head
Fred's body

Fred’s head Fred’s limbs

Fred's limbs

Fred

Figure 2: Relationships between cells and objects (2)

All granular partitions are both selective and granular. Selectivity of projection
means that a partition does not project onto all objects. Consider Figure 2. Granularity
of projection means more specifically that a partition projects onto a whole without
projecting onto all of its parts. The depicted partition of Fred is granular since there is
a cell projecting onto Fred’s head but there are no cells projecting onto parts of Fred’s
head such as his nose, his ears, etc., and similarly for all other cells which do not have
subcells.



In order to see what selectivity means, consider the cell structure in the middle of
Figure[2. Here we have only the subcells ‘Head’ and ‘Limbs’. There is no cell ‘Torso’
in this cell structure. This may be because this cell tree is a part of a partition which
deals only with parts of Fred that ‘stick out of the torso’. In this case, the partition
selectively projects only on parts which are relevant given the purpose for which the
partition was created.

Freds body
F’s Head F’s Torso F’s Limbs

F’s left arm Fs right arm F’sleftleg F’s right leg

/’\

F’s1. hand F’sl. upper arm F’s 1. lower arm

Fred

Figure 3: Relationships between cells and objects (3)

In their paper([BS03], Bitther and Smith focus on single granular partitions and
their projective relation to reality. In the present paper, we will talk about the relations
between granular partitions, and we will define structures on sets of granular partitions.
Consider Figures|2 afd 3. The granular partitions in both figures project onto Fred, but
the partition in Figurg[3 includes more detail than the partition in Figure 2. In this paper,
we will define arefinementelation on partitions, according to which the partition in
Figure[3 is a refinement of the partition in Fig{ife 2.

To better understand these kinds of relations among granular partitions, we will
introduce a class of structures calletbeled typed granular partitionand define an
ordering on these structures. We will show that these structuresffame structures
in the sense of [HC04], which will then provide the formal semantics for our partition
logic £. This logic is a predicate modal logic of type S4. We show that reasoning
in £ is sound with respect to our partition theoretic semantics and we claim that rea-
soning within£ has many properties of commonsense reasoning due to its underlying
partition-theoretic semantics.

2 Individual objects, cell trees, and types of objects

We begin by presenting the two mereological systems that are needed for the definition
of typed granular partitions.



The primitive relation of mereology is the part-of relation. This binary relation is
reflexive, antisymmetric, and transitive, i.e., it is a partial ordering relation. As pointed
out by authors such as [WCHE7, GFPB5, AFG96], there are different kinds of parthood
relations, which can be further classified by additional axioms. In this paper two kinds
of parthood relations are of relevance:

1. The parthood relation characterized by the axiomatic system of extensional mere-
ology (EM) [SIm87[ CV99]. We will use the symbgl for this relation. We call
the entities among which this parthood relation hatgects (That is, objects
are the members of the domain of EM.) ‘Object’ here is used in a very wide
sense, to include also scattered mereological sums. We will use the igtigrs
T2, Y, Y1, Y2, €LC. @s variables for objects.

2. The parthood relation characterized by what we call rooted tree mereology (RTM).
We will use the symbolL for this relation. We call the entities among which this
parthood relation holdsells (That is, cells are the members of the domain of
RTM.) We will use the letters, z1, 25, etc. as variables for cells.

To specify the axioms for EM and RTM, we need to introduce an additional mere-
ological relation. We say that, andxs overlapif and only if there is some: that is
a part of bothr; andz,. We will use the same symbal for overlap in both EM and
RTM the kinds of variables (variables for objects or variables for cells) will make clear
which relation is meant. The formal definitions of the overlap relation in EM and RTM
can be stated as follows.

DO-EM z10z5 = (32)(z <21 Az < x3)
O-RTM 21025 = (F2)(2 C 21 A 2 C 23)

In EM, there is one additional axioms besides those requidint be a partial
ordering (i.e., reflexive, antisymmetric, and transitive) [Sim87]: the axiom of exten-
sionality, which tells us that if every object that overlaps x also overlaps y, then x is a
part of y:

AE-GM  Vz(xOx1 — 20x3) — 1 < X9

Note that it follows from AE-EM and the anti-symmetry gfthatO is extensional in
EM.
TE-EM Vz(20z; < 20x2) — 1 = X2

Structures which satisfy the axioms of rooted tree mereology (RTM) form rooted
trees similar to the one depicted in the left part of Figyre 3. The rooted tree structure is
ensured by the axioms below, which are added to the axioms requiriadpe a partial
ordering.

We use the following definition in the axioms.

DI-RTM zE2o =21 E 20 AV2(21 E2E 20 2 =121 V2 = 29)

Whenz; Ez,, we say that; is animmediate subcebf z,.



We now give the following axioms for the partial ordering
ARO0Ot-RTM  (3z)(Vz1)z1 C 2

ARo0t-RTM requires that each modél, of RTM have a maximal cell. It follows from
the anti-symmetry o that this maximal cell is unique. We will lebot(Z) stand for
the unique maximal cell of the cell trég

AChain-RTM each celt € Z there is a finite chainCz,C . . . z,Croot(2)

of immediate subcells connecting zrmt(Z);
AO-RTM 21020 = 21 E 29V 22 C 21

AO-RTM restricts overlap to cells that stand in the subcell relation. Thus, there are no
instances of proper overlap in RTM models. Notice that it follows from AO-RTM and
the anti-symmetry of that the graph induced By contains no circles, i.e. is a tree.
AO-RTM is also called the no-partial-overlap principle.

Finally, to do justice to the fact that cells and partitions are cognitive artifacts
[Smi04], we add the following axiom.

AFin-RTM  There are only finitely many cells in any model of RTM.

EM is designed to capture mereological reality:zifis part ofy, then the EM
representation of the part-whole structureyofust do justice to this fact. RTM, in
contrast, is designed to capture the selectivity of cognition: RTM is a mereology, in
which not all parts need be represented; in particular, RTM is devised in such a way
that we can do justice to the granularity of cognition: when we see paint on a wall, we
do not see the molecules by which this paint is constituted. Thus models of RTM need
not satisfy the axiom of extensionality. The axiom of extensionality will fail in trees
that include a cellg, which has exactly one immediate proper subgelln this casez
andy will be distinct even though they overlap exactly the same cells. We allow these
kinds of models because we want our cell trees to be able to represent the selectivity
of human cognition. For example, in a partition representing the parts of a particular
yacht, called 'Maude’, the cell representing the whole boat may have only one proper
subcell representing, Maude’s engine, because in a particular context we may only be
interested in Maude’s engine parts. And it is unlikely that there will ever be a partitition
projecting onto Maude which includes cells projecting onto the separate molecules in
these engine parts.

We use the variables ey, es, . . . to range over types (or classes) — (the thpenan
being the typenational statethe type mountain, and so forth). The relation of instan-
tiation holds between objects and their types (in that order). For example New York
City is an instance of the typaty, | am an instance of the tygaiman beingWe write
Inst ze to signify that the object instantiates the type

The relationinst is irreflexive and asymmetric. Since in our ontology types and
objects are represented as disjoint sorts of variables we do not need to add explicit
irreflexivity and asymmetry axioms fdnst We require every object is member of
some type (All); every type has some object as its member (Al2)sifnstance ot



if and only if z is an instance of; thene; ande, are identical (Al3).

AIl (Ze)(Instze)
AI2 (3z)(Instze)
AI3 (z)(Instxe; < Instae;) — e; = ey

We define the sub-type relation in terms of instantiatienis a sub-type oé; if and

only if the instances of; are also instances ef. For example, the type (class) federal
state is a sub-type of the type socio-economic unit. Therefore every instance of federal
state (e.g., New York State) is also an instance of socio-economic unit.

Dc  e1 Ceg = (x)(Instze; — Instxey)

We can prove that is reflexive, antisymmetric, and transitive. We call the theory
formed byAl1-3 Minimal Type Theory (MTT).

3 Typed and labeled granular partitions

In this section, we first define a mathematical framework for the theory of granular
partitions following the strategy outlined in [BS03]. We then extend this framework in
two directions: Firstly, we require that cells of granular partitions are aMayesled

The label of a cell is the name of the object onto which the cell projects. Secondly, we
require that cells of granular partitions have alwapsassociated typdf a given cell

z projects on an object of a given typgethene is the associated type of the projecting
cell z.

3.1 Granular partitions

We introduce the notatioiM andR7 M to denote the classes of structures satisfying
EM and RTM. We now defingranular partitionsx as triples of the form

(Z,A,p)

whereZ € R7 M is called thecell treeof the partition,A € £M is called thetarget
domainof the partition, and th@rojection-mappingf signaturep : Z — A has the
following properties:

(i) pisaone-one mapping, i.e.,jfz1) = p(z2) thenz; = zo;

(i) p is order-preservingn the sense that if; T z3 thenp(z1) < p(z2). This
ensures that the tree structuredrdoes not distort the mereological structure in
A;

(iii) pis not an empty mapping3z)(3z)(p(z) = z). It follows that every granular
partition has at least one cell in its cell tree and at least one object in its target
domain ;

(iv) pis atotal mapping. This equivalent to requiring that granular partitions do not
contain empty cells in the sense of [B$03].



In general the will be not an onto mapping due to the selective and granular character
of granular partitions.

3.2 Labeling

Consider the tree structures in Figlife 2 and the way the corresponding cell trees project
onto the objecFred. Thelabelson the nodes of the tree and the cells are an important
aspect of the representations of Fred’s parts. We will interpret the labels of granular
partitions asnamesof the entities the labeled cell projects on. Notice that the label
'Fred’s left leg’ is not understood as a definite description [RUs19], i.e., the unique
instance of the type (class, king¥t human leghat is part of Fred at a given time. This
leg keeps its name during its existence. If Fred donates his left leg and the leg becomes
a part of Bill then the name the name of Bill's new leg is still 'Fred’s left leg’.

Let A be the set of names in languagand let(Z, A, p) be a granular partition. A
labeled granular partitioris then a quintuple of the form

(ZaA7p7A7¢)a

which is such that the labeling functigh: A — Z is a one-one and onto mapping, i.e.
each cell in the tre& has a unique label. It follows that X; € A is a label for a cell,
then there is an entity im € A such that\; is the name of. Names are finite strings
of some alphabek. Since a cell tree has finitely many cells, it is always possible to
assign finite strings of to the cells of a given partition. The labeling mappirgaill
in general be partial, since finite partitions do not exhaust all strings of the underlying
alphabet.

Consider the left part of Figufg 4. The corresponding labeled granular partition
(Z,A, p,a, @) has projection and labeling mappingsind ¢ which are such that the
following holds:

p = {(¢(‘Montana’), Montang, (¢(‘ldaho’), Idaho), (¢("Wyoming’), Wyoming, . . .}.

(1)
Here¢(‘Montana’) stands for “the cell labeled ‘Montana™ aridontanarefers to the
targeted portions of reality (in this case, the portion of the surface of Earth that is
occupied by the Federal State Montana).
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Figure 4: (left) A labeled granular partition (some labels are omitted) ; (right) a miss-
labeled granular partition.



Consider the right part of Figufg 4. Here we have a ‘mislabeling’ of the form
p(¢(‘ldaho’)) = Montana which means that the cell labeled ‘Idaho’ projects onto
the piece of land which is usually referred to as Montana. Intuitively, this means that
the labeling of this partition is in a certain way incompatible with the way the vast
majority of other partitions which target the same domain are labeled. In particular, it
is incompatible with the way the federal government of the United States labels their
maps (which are special kinds of partitiohs [BS01]).

3.3 Typed granular partitions

Let(Z, A, p) be a granular partition and I8tbe a set of types which together with their
instances — objects fiM — satisfy the axioms of our Minimal Type Theory (MTT). A
typingfor partition (Z, A, p) is a mappingy of signaturey) : Z — 2 assigning cells
in Z to members of the s&?. If (z) = ¢ then we say that the cellis of typec. A
typed granular partitiorthen is a quintuple of the form

(Z,8,p,2,9)
such that the typing function has the following properties:

1. ¢ is a total function, i.e., each cell in the tréehas exactly one type but there
can be multiple cells if¥ that have the same type,

2. if cell z is of typee and z projects ontor thenx is an instance o¢, i.e., if
¥(z) = e thenlnstp(z)e.

Consider the left part of Figu@ 3. The corresponding typed granular partiioh, p, 2, ¢)
has projection and typing mappingsnd+ which are such that the following holds:

¥ = {(¢(‘Fred’s body’), human body, (¢(‘Fred’s head), human heads
(¢(‘Fred’s left leg’), left human leg, . . .}.

and

Inst= {(p(¢(‘Fred’s body)), human body;, (p(¢(‘Fred’s head)), human heads
(p(o(‘Fred's leftleg))), left human leg, . . .}.

)
A labeled and typed granular partitiothen is a seven-tuple of the form
(Z,A,p, M, ¢,9,1))
suchthatZ, A, p) is a granular partition,Z, A, p, A, ¢) is a labeled granular partition,
and(Z, A, p,Q, 1) is a typed granular partition.
4 Refinement relations between granular partitions

So far we have discussed single granular partitions and their projective relation to re-
ality. In this section we will discuss relations between granular partitions, and we



will define structures on sets of granular partitions. As discussed above the granular
partitions in Figure§]2 ar{d 3 project onto Fred, but the partition in Figure 3 includes
more detail than the partition in Figuré 2. This will now be captured formally in our
discussion ofefinementelation between labeled typed granular partitions.

4.1 Refinement as ordering

LetII be a set of labeled typed granular partitions. Let= (Z1, Ay, p1, A1, 1, Q1,¢1)
andTy = (7, Ag, pa, Ao, 2, Q2,102) be labeled, typed granular partitionslin And
let T’y andT'; be the labeled, typed granular partitions in Figures 2[gnd 3. One can
see thafl'; andI'y stand in a kind of refinement relation to each other. We will use
the symbol= to refer to this relation and writ€; < T'; to express the fact that the
granular partitiorl’; is a refined by the granular partitidn.

We give a formal account of the relatietas follows. For labeled typed granular
partitionsI'y,I'; € II we say thatl’; < T’y if and only if there exists a mapping
f: Z1 — Zs with the following properties:

(i) fis one-one and total,
(i) fisorder-preservingi.e., ifz; C z; thenf(z;) C f(z;),
(iii) f istarget-preservingi.e.,p1(z) = p2(f(2)),
(iv) fislabel-preservingi.e.,p2(\;) = f(¢1(N\i)), and
(v) fistype-preservingi.e.,i1(c) = 2(f(c)).

The existence of the mappingwith its particular properties (i-v) ensures that if par-
tition T'; is a refinement of partitiod's, then we can map cells iff; to cells in Z,
in such a way that: (a) if two cells in;, z; € Z; are subcells of each other then so
are their counterparts ifi(z1), f(z2) € Zs; (b) the targep, (z) of the cellz € Z; is
identical to the targeps(f(2)) of its counterparif(z) € Z»; (c) the cellsz € Z; and
f(z) € Zy have the same labels; and (d) the celle Z; and f(z) € Z> have the
same type. In other words we require that if partitionis a refinement of partitiof;
then there exists an order-, label-, type-, and target-preserving mapginch that the
diagrams in Figurg]5 commute.

LetI',I';,I's andI's be a labeled, typed granular partitions. We can show that the
relation= is reflexive (ref) and transitive (tr):

(ref) We havel’ < T since the identity map of a cell tree onto itself, defined by
z = id(z) is always order-, label-, type-, and target-preserving.

(tr) For transitivity we have to show that ff, : 7, — Z; andf; : Zo — Z3 are
order-, label-, type-, and target-preserving then so is their compodgitiory :
Zy — Zs. That this is the case can be seen in the diagrams in Higjure 6.
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4.2 Refinement vs. extension

Consider the left part of Figulg 7. We have a partitiop with A, being the col-
lection of Fred’s body partsA, = {'Fred’s body’ ‘Fred’'srightarm;...}, Q, =
{human bodyright human armupper human body. .}, cells labeled ‘Fred’s body’
and ‘Fred’s right arm’ withp(‘Fred’s right arm) C ¢(‘Fred’s body’) and with the cell
labeled ‘Fred’s right arm’ projecting onto your friend Freds’ right arm, pg(¢..(‘Fred’s right arm)) =
Freds’ right arm and the cell labeled ‘Fred’s body’ projecting onto Fred’s whole body,
i.e., po (¢, (‘Fred’s’ body’)) = Freds’ body (In Figure[T we use the stretched bracket
< to indicate that the cell labeled ‘Fred’s body’ targets Fred’s whole body.) The cell
labeled ‘Fred’s right arm’ is of typaght human armand the cell labeled ‘Fred’s body’
is of typehuman body

We also have a partition, with A, = A, Q, = Q,, A, = Ay, andp(‘Fred’s right arm) C
¢(‘Fred’s upper body C ¢(‘Fred’s body’), with ‘Fred’s right arm’ and ‘Freds body’
being of the same type and projecting as above, and with ‘Fred’s upper body’ with the
obvious type and projection. (In the figure we use the small bracketindicate that
the cell labeled ‘Fred’s upper body’ targets Fred’s upper body.) Itis easy to see that the
induced mapping; : Z, — Z, is order-, target-, type-, and label-preserving. Thus
r, <T,.

Fred's right Fred's upper body Fred's right
am am

o \
\ arm \

Fred's body Fred's body Fred's body Fred"s' body AN

X y X z

fo—>

Figure 7: Examples of partitions between the relatioholds (1).

The situation in the right part of Figuré 7 is similar. We h&yeas before. However
we have a refinemerit, in with a third cell labeled ‘Fred’s right arm’ which is not a
supercell of ‘Fred’s left arm’ and in which projects onto Freds’ left arm. Again, the
induced mapping’, : Z, — Z. is order-, target-, type-, and label-preserving. Thus
r,<T..

In the left part of Figur¢ 8, we have a refinementlgf by I, similar to the re-
finement in the left part of Figulg] 7. The refinement partitiopandT’,, recognize
the same parts of Fred: Fred as a whole, Freds upper body, and Freds right arm. They
differ however in the following respect: The partitibyy recognizes the fact that Freds
right arm is a part of Freds upper body. This aspect of mereological ordering is traced
over in the partitiord”,,.

Note that not only id’, is a refinement of ;. It is also a refinement df,,. To see
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Freds right Fred's right Fred's upper body
am am
—_ > Fred's right
N, N f4
Fred's upper bogy

Fred's body N\ Fredhbody . Fred's,body N\ Freds body

& e el iy

Figure 8: Examples of partitions between the relatioholds (2).

—f3—

this consider the mapping, : Z, — Z, mapping cells inZ,, to cells with matching
labels inZ,,. Clearly, f, is order-, target-, type-, and label-preserving, henge< I,,.

On the other hand the partitioly, andI’, are not comparable with respecttosince

no commutative diagram like the one in the left of Figure 5 can be constructed for the
two partitions.

The refinement relations in Figurgs 7 drjd 8 are examples of what wpropkr
refinement In proper refinement the object targeted by the root cell — the cell ‘Fred’s
body’ in Figureg ¥ and]8— remains the same. A proper refinement can target additional
objects as long as these objects are parts of objects targeted by the original partition
(e.g.I'; X Ty in Figure]T). Or, a proper refinement may target the same set of objects
but include more information about mereological relations between objectsl{g.¢.,

T, in Figure[8).

As an example of another way of how a granular partition can be refined consider a
granular partitio’;s which recognizes the Federal States of the US anOjet gy
represent a granular partition which recognizes the Federal States of the US as well as
the states of the European Community together with a root cell labeled ‘The United
States and the States of the EU'. It is easy to see that welhaye< I'ys_pu.-

This is an example of what we will cadixtensions When one patrtition is an ex-
tension of another, then the target of the original root cell is always a proper part of the
extension’s root cell.

Assumel’; < T'y and consider the corresponding commutative diagrams in Figure
[B. As sketched above, we can further analyze the two different uses of refinement by
considering the projection of those cells4ia which are not targeted by the mapping
f. Intuitively, in the case of proper refinement those cells project onto objeds in
which are parts of objects in the image @f. In the case of extension, those cells
project onto objects i\, which are not parts of objects in the imagepef Formally
we define now define the binary relatioR® (x is-properly-refined-by) andEP (z
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is-properly-extended-by) which both are subrelations ef as follows:

RP(Fl,Fg) = It <1 andeQ S ZQ(HZl € 71 (pg(Zg) < ,01(2’1)))7
EP(Fl,Fg) = Fl = Fg andVZQ S ZQ—\(Elzl S Zl(pQ(ZQ) < p1(2’1)))-

Obviously, there are also ‘mixed’ cases whéxe < T's but neitherRP(I';,T'2) nor
EP(T,Ty).

4.3 Counterparts

Consider the granular partitiods,, I'y, I'., andI",, in Figureﬂ ang]& Each of these
partitions has a cell labeled ‘Fred’s body’ of tybeman bodywhich projects onto
Fred's body. (Similarly, each of these partitions has a cell labeled ‘Fred’s right arm’ of
type right human armwhich projects onto Fred’s right arm.) Notice that that the cell
labeled ‘Fred’s body’ in partitioi’,. is distinct from the cell labeled ‘Fred’s body’ in
partitionI',, (which in turn is distinct from the cell labeled ‘Fred’s body’ in partitions
I', andI',). We call cells like the cells labeled ‘Fred’s body’ in, Iy, I',, andl’,,
counterparts

LetT'y = (Z1,A1,p1,A1,01,Q1,9¢1) andly = (Z2, Az, p2, Ao, ¢2, 2, 102) be
labeled, typed granular partitions# The cellsz; € Z; andz, € Z; are counterparts,
z1 C z9, if and only if there is a target-, label-, and type-preserving one-one mapping
f : Z1 — Zy such thatf(z1) = z2. Counterparthood is reflexive, symmetric, and
transitive, i.e., an equivalence relation:

ref C is reflexive since the identity mapping of the cell structure of a partition onto
itself is a target-, label-, and type-preserving one-one mapping;

sym C is symmetric since the inverse mappirfg ¢) of every target-, label-, and type-
preserving one-one mapping)(between the cell structures of two partitions is
a (possibly partial) target-, label-, and type-preserving one-one mapping. Hence
if f(Zl) =2 thenf_l(zg) = z1.

trans C' is transitive since the composition of two target-, label-, and type-preserving
one-one mappings is a target-, label-, and type-preserving one-one mapping.

It immediately follows that if partitiol’; is a refinement of partitiohs then every cell
in "y has a counterpart ifi;. It also follows that counterparts of partitions which stand
in the refinement relation have identical labels. These points can be verified easily in

Figureq ¥ anfl]8.

5 Partition logic

So far we discussed granular partitions from an ‘God’s eye perspective’. That is, we
discussed the projective relationship of granular partitions to reality and explored (or-
dering) relationships among granular partitions. In this section we develop a formal
language,, of how we ‘see’ mereological structutieroughgranular partitions. I

we can to formally express the following statements relative to the collection of typed,
labeled granular partitiond = {I',,T,,,T'., T, } as depicted in Figurés 7 ahH 8:
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A PartitionT';, recognizes that there exists an object named ‘Fred’s body’ of type
human body.

B PartitionT", recognizes that the object named ‘Fred’s body’ has an object
named ‘Fred’s right arm’ as a part.

C Partitionl',, and all its refinements il recognize that the object named ‘Fred’s
body’ has an object named ‘Fred’s right arm’ as part.

D Some refinement of, in II recognizes that the object named ‘Fred’s body’
has an object named ‘Fred’s left arm’ as a part.

E Allpartitions inII recognize that human bodies have right human arms as parts.

F  Partitionl",, does not recognize an object named ‘Fred’s left hand'.

G An object named ‘Fred’s left hand’ is absent in partition

We use a first order modal logic with identity to formally express statements like A-G.
In this languagef, we have the additional binary predica&C which is interpreted
as the subcell relatiori{) and the unary existence predicake.' We also introduce
a binary predicatéO which holds between cell and typet if and only if ¢ is type
assigned ta (to be defined more precisely below).

In £ we use the letter with indexes to designate variables:, z», . ... We use the
letter ¢ with indexes to designate object-constants, cs, . . .. We use the letterwith
indexes to designate type-constants, ¢, . . .. Atomic formulas ofL are of the form
‘Ez’,'Ec,'SCz125, ' SCey23", ' SCzy1co’, ' SCeyco’, ' 21 = 29" ..., 10 zt', 10 ct'.
o« and g are complex formulas which are defined recursively as follows:, § € £
thensoare- o, a A B, a V 3, a — 3, a < 3, 0a, Oa, (32)(a) and(z)(«).

5.1 Semantics

Let IT be a set of labeled, typed granular granular partitions. Zdie the set of
all cells of granular partitions idl, i.e, Z = |J{Z | (Z,A,p,\,¢,Q,¢) € II}.
Let A be the set of all labels of cells of granular partitionsIini.e, A = [J{A |
(Z,A,p, A, 6,8, 9) € I1}. Let T be the set of all types of cells of granular partitions
inIl,ie, 7 = U{Q| (Z, A p, A, ¢,Q,1¢) € TI}. Let < be the refinement ordering
among members dil, and letC' be the counterpart relation between cellszin A
partition framethen is a sixtuple

(I, Z2,A,7,=%,0).

In the semantics of the granular partitions il are treated as ‘worlds’ ang is
treated as an accessibility relation between worlds in the sense of the standard possible
world semantics of modal logi€ [HCD4]. Hence, the granular partitipiis accessible
from the granular partitiofr; if and only if I'; is a refinement of'; . Notice that, since
distinct granular partitions do not have cells in common, every cell Z exists in
exactly one world. Cells,, 2z € Z are counterparts in David Lewis’ sense if and only
if z; C 25 [Lew86]. Since the accessibility relatiofiis reflexive and transitive and the
counterpart relatiod’ is an equivalence relation, the modal logic underlyihgill be
of type S4.

The object-constants, . .., ¢, of £ are the members &, i.e.,{c1,...,c,} = A.
The interpretation function for object-constants is a binary funciipnA x I — Z
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such thatl,(¢,T') = ¢r(c), wheregr is the labeling function of partitiofr. The type-
constantsy, ..., t,, of £ are interpreted as the memberg/qfi.e., I; is a total one-one
onto mapping such thdt(¢) € 7

The variables inC range over the members &. p andv are functions which
assign members af to the variables:, 21, 25,... Let I" € II be a labeled, typed
granular partition with cell tre¢ in the partition frameF = (I1, 2, A, 7, =<, C), and
let Cr be the subcell relation between cellslirand letyr be the function assigning
types to cells i". Atomic formulas inZ are interpreted itF as follows:

p L [Ez]iff pu(z) € Zr

pEL [Ed]iff I,(c,T) € Zp
pEf (10 2t] iff hr(p(2)) = L(t)
= 10 et] iff r(lo(c,T)) = I(t) 3)
p L [SCai2] iff p(21) Cr pu(22)

p =T [SCeizo] iff o(1. (<’17 ) Cr p(z2)
p L [SCec]iff u(2) Cr ¢(L(c,T))

p =L [SCez] iff ¢(Io(c ) Er u(2)

Following [HC04] complex formulas of then are interpreted as follows:

ol iff 1 J-F [of
B iff - [o] andu (=7 (6]
B u =L o] or p =F (8]
Bt if i =F (o] thenp = [4)
Bliff 1 EF o] — fandu =F (6 — o
(z:)a] iff v =L [a] for everyv with v(z;) = p(z;) if j # i andv(z;) € Zp
(3z)a] iff v =L [a] for somer with v(z;) = u(z;) if j # i andv(z;) € Zr
o] iff forall T'y € IT: if ' < T'; then there is some such thaw =/ [o] and
v(z) andv(z) € Zr, for all variableszin o
Oa] iff for someT'; € II: I’ < Ty and there is some such that |={. [o] and
z) C v(z) andv(z) € Zr, for all variableszin o
(4)

Notice that we employ an ‘actualist’ semantics in the sense that the evaluation of the
truth of quantified formulas in partitionI" is performed with respect to the cellslof
i.e., E£ [(2)a] and=£ [(32)a] are evaluated with respect to the cellp.

The well-formed formulax is true in partition” of frame F on the interpretation
I, and I, (i.e., the partition’ recognizes that), =7 [«], if and only if there is an
assignment: of the variables ofZ with members ofZ such thay: =7 [a] holds.« is
valid in frameF (« is recognized by all partitions of framg), =7 [«], if and only if
p =L [a] holds for eveny™ € 1T and every assignmenptof variables of£ to members
of Z, under the interpretations, and ;. « is valid, = «, if and only if « is valid in
every partition frameF under interpretations” and; .

Consider the following example. Léi, = {I';,T",,T".,I',} be as depicted in

b=
b

== ==
L L L L
= TWe TN IR I TN

=
1N

=
T
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Figureq ¥ anf|8. We then have
A. = {'Fred’s body’, ‘Fred’s right arm; ‘Fred’s left arm’, ‘Fred’s upper body}
Z. = {¢,(‘Fred’s body), ¢, (‘Fred’s body)), ¢ (‘Fred’s body’), ¢,,(‘Fred’s body’),
¢, (‘Fred’s right arm), ¢, (‘Fred's right arm), ...}
7. = {human bodyleft human armright human armupper human body

The counterpart relation holds between cells with identical labels and the refinement
relation= holds as discussed above. The corresponding partition frame is

]:e - (He;ZeaAe;,];a jevce)-

Now assume that the object-constants ‘Fred’s body’, ‘Fred’s right arm’, .L.&re
interpreted as the corresponding names\inand that type-constantdumanBody
RightHumanHang. . . are interpreted as the corresponding type&.inGiven the se-
mantics ofL the sentences A-G can be now be expressed formally as follows:

\_ [E ‘Fred’s body’ A 10 ‘Fred’s body’HumanBody
}:Fe [SC'Fred’s right arm’ ‘Fred’s body’]

):fe [O(SC'Fred's right arm’ ‘Fred’s body’)]

\—fﬁ O(SC'Fred’s left arm’ ‘Fred’s body’)]

G TMmMmOoOOm>

[
}—fﬁ [O[(21)(E 21 A 10 z;HumanBody— (3z3)(10O zzRightHumanArm SCzs21))]]
=7 [~ E ‘Fred's left arm’]
\zfi [~ E ‘Fred’s leftarm’ A OE ‘Fred’s left arm’]

Notice, that (A-G except E) are assertions about what is recognized by paktjti@n

it's refinements). E is an assertion of what is true in (recognized by) all partitions in
the frameF.. Notice also, that (E) is not true in every frame since there are surely
partitions in frames other tha#, which do recognize human beings which do not
have a right arm or which trace over (do not recognize) a particular right arm. Thus,
the partition frameF, can be considered ascantextand the evaluation of statements
of £ with respect taF, as the evaluation of the truth of the statements (A-G) in the
contextF.. Consider sentence (F}%?j [~ E ‘Fred’s left arm’] does NOT mean that
Fred’s left arm does not exist. It merely means thafails to recognize that an object
with the name ‘Fred’s left arm’ exists. (G) shows thatdrthe sentence ‘An object
named ‘Fred’s left hand’ is absent in partitibp)’ means thaf", does not recognize
the existence of an object named ‘Fred’s left hand’ but that some refinemEptufes
recognize the existence of this object.

5.2 Valid principles

We now prove that the following principles that are characteristic for a modal S4 pred-
icate logic are valid in any partition frame under the semantics given above:

K-S E[Oa—8) — (0o —0p)]

T-S E [Oa — a]

4-S E [Oa — 0O0q]

D<>-S )=[0u—> NDNO(]
RN-S if = [o] then | [Oa]
BFC-S if F [O(=)a — (=)0
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K-S Assumep =5 [O(a — 3)]. Thus, ifT' < T'; then there is some such that
v =L [a— Bl andu(z) C v(z). Assumel’ < I'y. Then if there is some such
that u(z) C v(z) andv = [o] then there is some such thatu(z) C v(z) and
v =L [8]. Thus if u [=f [Oo] thenp (=£ [O4]. Hencep =f [Oo — Op]. Thus
F [O(a = 8) — (Oa — 0p)].

T-S Assumey £ [Oa]. Thus, ifT < T'; then there is some such that =7, o]
andu(z) C v(z). Moreover, ifl' < T’y thenv(z) = f(u(z)). By reflexivity of <
we havel' < T. Thusv = [o] andv(z) = id(u(z)). Hencep =L [o]. Thus
p=E Do —

4-S Assumep Fﬁ [Oa]. Thus ifT" < T’ then there is & such that =7, [a] and
pu(z) C v(z) for all z in « and allT’. Assumel’; < I'; andT'y < T'3. Since=is

transitive we havé’; < I's. Thus there is & such that =, [o] andu(z) C v(z)

andv(z) = faz(f12(u(z))) forall z in a, wherefis : Z1 — Zs andfas : Zo — Z3 are
label, target, type preserving total one-one mappings. Hence there is sutie that
v =L, [Oa] andu(z) C v(z) andu(z) = fi2(p(z)) forall z in a. Thusp =[O0

andu(z) C «(z) forall z in a. Hencep =f [Oa — O0a].

DO-S Assumey =7 [-0O-al. Iff p (L [O-a]. Iff not for all Ty: if T < Ty then
there is av such thatv Fﬁ [-a]. Iff not for all T'y: if ' < T’y then there is @& such
thaty |41 [a]. Iff thereis al'y such thaf® < T'; and there is & such thav [£{ [a].

1t 1 =7 [0al

RN-S Assumel= [a]. Then for allF and alll’ of 7 and assignments: u =& [a].
Assumel’ < T';. Then there is some such thaty |=f [o] andv(z) = f(u(z))

for all z in o wheref : Z — Z; is target, label, and type-preserving total one-one
mapping. Thus if® < T'; then there is a such thaty ={ [a] and u(z) C v(2).
Henceu =5 [Ja]. Thusk= [Ja).

BFC-S Assumeu =& [O(z;)a]. Thus, ifT° < Ty then there is some such that
v =L [(zi)e] andp(z;) C v(z). Assumel’ < T'y. Thus there is some such that
v =L, [(z:)a] andp(z;) C v(z). Sincer = [(z)a] we haver = [a] for every.

with «(2;) € Zr, andu(z;) = v(z;) if j # 4. Letu(z;) = v(z;). SinceC is reflexive,
symmetric, and transitive we hawéz;) C «(z;) andu(z;) C ¢(z;). Thus, ifT < Ty

then there is somesuch that =/ o andpu(z) C 1(z). Henceu =f [Oal.

Let § be such thad(z;) € Zr andd(z;) = u(z;) if j # i. Thens =& [Da] since
there is a such that =, [a] with 1(z;) € Zr, andu(z;) = f(6(z;)) forall z; € Zr
wheref : Zr — I'; is a target, label, type, total one-one mapping which exists due to
[ < Ty. Thusp =5 [(2)0a].

We can also prove that if the formutathat does not contain negation, universal

quantification, and implication is recognized by a given partificof frameF, thena
is recognized by all refinements Bfof F:
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Theorem1If o # ~Banda # (2)3 anda # [3 — 4] then ifu =L [a] then
w = [Dal.

Proof by induction over the complexity ef. Assumea = E c and lety =& [E ¢].
ThenI,(¢,T) € Zr. Assumel’ < I';y then there exists a total target, label, type, one-
one mapping’ : Zr — Zr, such thatf(I,(c,T")) = I,(c,T'1). Thusl,(c,T'1)) € Zr,
andl,(c,T) C I,(c,T'1). Hence ifl’ < Ty then there is & such thav |={ [E ¢] and
w(z) Cv(z). Thusp =¥ [OE .

Assumea = E z and lety =¥ [E z]. Thenu(c) € Zr. Assumel' < T'; then
there exists a total target, label, type, one-one mapgingZr — Zr, such that
f(u(z)) € Zp,. Thus there is a such thatv(z) € Zr, andu(z) C v(z). Thus
v =L, [Ez]andu(z) C v(z). Hencep = [OE 2].

Assumex = 10 ct and lety =7 10 ct]. Thenyr(I,(c,T')) = I;(t). Assumel’ <
I'; then there exists a total target, label, type, one-one mappingr — Zr, such
that f(L,(c,T)) = I(c,T1) and¢r(L(c,T1)) = ¢r, (f(Io(c.T))). ThusI,(t) =
Yr, (f(I1,(c,T))). ThusI(t) = ¥r,(I,(c,T1)). Hence ifl' < I'; then there is &
such thav |={ [0 ct] andpu(c) C v(c). Thusy = [DIO ct].

Assumen = 10 zt and lety = [10 2t]. Thenyr (u(z)) = I;(t). Assumd’ < Ty
then there exists a total target, label, type, one-one mappingr — Zr, such that
F(u(2) € Zr, ander(u(=)) = v, (fTo(n(2)). ThUSI(8) = v, (f(u(2))).
Hence ifl" < T'; then there is & such that/;(¢) = ¢r, (v(z)) andu(z) C v(z). Thus
v =1, [10 zt] andp(c) C v(c). Thusp {1 [DIO ).

The treatment oft = Eq 2122, « = Eqez, a = Eqze¢, a = Eqee, a = SCz 2o,
a = SCcz, o = SCzc, anda = SCccis similar and omitted here.

Now assume that ifi = [3] thenp =7 [O3] for all 3, i andT (IA).

Leta = OB and assume =7 [J3]. Thenifl' < I'; then there is & such that
v L [B] andu(z) C v(z) for all variablesz of 3. Supposd’ =< T'y. Thus, by IA,
v = [06]. Thus, ifl’ < Ty then there is & such that =/ [05] andpu(z) C v(2)
for all variables: of 3. Hencep =7 [004].

Leta = OB and assumg =7 [03]. Then for somd’; € II such that" < T'y
there is some such that ={ 5] andy(z) C v(z) for all variablesz in 5. Thus, by
IA, v ={ [08]. Thusifl'y; < Ty then there is asuch that |={ [] andv(z) C (2)
for all variablesz in 5. By the reflexivity of< we havel’y < I'; and there is a such
that. ={ [3] andv(z) C u(z) for all variablesz in 3. Thusv ={ [03]. Assume
I' < Ty. Then there is some such thaty ={ [04] and andu(z) C v(z) for all
variablesz in 8. Thusy =2 [004].

Leta = (32)3 and assume: =7 [(32)0]. Thenv =L 3 for somev with
v(z;) = u(z;) if j # iandv(z;) € Z. Thusv =L [Op] by (IA). Hence ifl" < Ty
then there is a such that, |={ [5] andv(z) C (2) for all z in 3. Assumel’ < I';.
Then there is a such that. =/ [3] andv(z) C u(z) for all zin 3. Thus. = 3
for some: with (z;) = u(z;) if j # i and(z) € Z. Hencer =, [03]. Thus

u L [008). [
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From theorem]1 it follows that the following formulas are valid in partition frames:

S1 | [(21)(22)(SC21 2 — 0SC2124)]
S2 E [(z1)(22)(21 = 22 — O(21 = 22))]
S3 E[(2)(I0 zt — OIO zt)]

That s, if partition” recognizes that cell(z;) is a subcell of«(22) then all refinements
of T' recognize that their counterparts @fz;) are subcells of their counterparts of
w(z2) (S1). Similarly, for= (S2) andO (S3).

That the following mereological principles are valid in any partition frame follows
immediately from the properties of the subcell relatioms specified in Sectidr 2 and
the validity of RN-S:

M1-S E [O(z)(SCzz)]

M2-S = [O(z1)(22)(SCz122 A SCza21 — 22 = 21)]

M3-S ': [D(Zl)(ZQ)(Zg)(SC,leQ AN SCZQZg — SCleg)]

M4-S  E [O(z1)(22)[(F23)(SCz321 A SCz322) — (SCz122 V SCza21)]]

Consider M1-S, assignmentand partitionl'. We haveu =7 [(2)(SCz)] since what-
ever member of the functionu assigns to the variable(u(z) € Zr by Equatimﬂl) it
holds thatu(z) Cr u(z) due to the reflexivity o . Since ifl" < I'; there is an order-
preserving total one-one mappirfg : Zr — Zr, such thatf; (u(z)) Cr, fi(u(z)).
Henceu =% [0(2)(SCx)] for anyu, I', and.F.

5.3 The theory

Let £ the language of our partition logic with the semantics given above. We afid to
axioms sufficient for a first order logic with identity. We define the possibility operator
¢ as usual Dy), add the S4-axioms T, 4, and K, and include the additional rule of
inference (RN).

Dy Oa=-O-a «

T o — «a RN o

4 Oa — O0a BFC Ox)a — ()0«

K O(a—p)— (O0a—0P) Id (z1)(22)(21 = 29 —» Oz1 = 29

We can prove that if all refinemeniy of I' recognize that for alt € Zp, it holds
thata then for allz € T' it holds that all refinements df recognize thaty, i.e., we
can prove the converse of the so-called Bacon formula (BFC). We can also prove that
if z1 is identical toz, in some partitiol” then the counterpart af; is identical to the
counterpart ofs in all refinements of” (Id).

We then include axioms of reflexivity, asymmetry, and transitivityS@as well as
an axiom for the no-partial overlap principle:

Al (2)(SCzz)

A2 (21)(22)(5(:2122 A SCzoz1 — 21 = 29
A3 (21)(22)(23)(SCz122 A SCz23 — SCz 23
A4 (32)(SCzz1 A SCzzy) — (SCz122 V SCxz221)
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Using RN we can immediately derive:

T1 0O(2)SCzz

T2 [O(21)(22)(SCz1292 A SCz921 — 21 = 23)

T3 D(Zl)(ZQ)(ZB)(SCZlZQ A SCZQZg — SCleg)

T4 O[(32)(SCzz; A SCzz) — (SCz122 V SCzy21 )]

Corresponding to (S1) and (S3) we requirezifis a subcell ofz; in some partition
I' then the counterpart af; is a subcell of the counterpart of in all refinements of
I" (A5); if =z of typet in some partitiorl" then the counterpart of is of typet in all
refinements of* (A6).

A5 (21)(22)(SCz129 — OSCz129)
A6 (2)(t)(10 2t — OIO zt)

It is easy to see that the axioms T, K, and 4 as well as definitignand theorems
BFC and Id are valid in partition frames in virtue of T-S, K-S, 4-S angd® BFC-S,
and S-2 respectively. TM1-4 are valid in partition frames in virtue of M1-S - M4-S.
Axioms A5 and A6 are valid in virtue of S1 and S3. Since RN preserves validity as we
proved in RN-S it follows that reasoning ifi is sound with respect to the semantics
given above.

Within £ we can, for example, define:exists if and only ifz is a subcell of itself
(Dg); z is absent in a given partitiohi if and only if I" does not recognize thatexists
but some refinement af recognizes that exists (0 4); z; is an essential subcell of
if and only if in all refinements of the partition which recognizgsthe counterpart of
z1 is a subcell ofzo (Dgp).

De Ez=SCzz
Dy Az=0EzA-Ez
Degp EPziz9 =Ezo — O(21 C 29)

These notions are interesting and useful, particularly due to their partition-theoretic
interpretation. For example, our formal definitions of existence (or presence) and ab-
sence on their partition-theoretic interpretation are very close to the notions of presence
and absence medical doctors use to reason about the outcome of medica@].tékis [

tice also that although the syntactic structurelwd is quite similar to the standard
definition of essential parthood, its interpretation is quite different from the standard
interpretation of what is meant by ’'essential part’. To further explore the expressive
and the reasoning power gf however, is beyond the scope of this paper.

6 Conclusions

In this paper we continued our work on the formalization of granular partitions which

we started in[[BS03]. We represented granular partitions as triples consisting of a
rooted tree structure as first component, a domain satisfying the axioms of Extensional
Mereology as second component, and a (projection) mapping of the first component
(the cell tree) into the second component (the target domain) as a third component. We
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then assigned labels and types to the cells of the cell tree such that if thepcejects
onto the object: in the target domain, then the label assigned ithe name of and

the type assigned tois the type ofc. The resulting structures are called labeled typed
granular partitions.

We defined an ordering (refinement) relatishamong labeled typed granular par-
titions and a counterpart relation;, which holds between cells in distinct granular
partitions that project onto the same object in reality. We provedthateflexive and
transitive and tha€ is reflexive, symmetric and transitive. Partition frames are struc-
tures formed by a set of labeled typed granular partitions, refinement relations between
the partition in this set, and counterpart relations among cells of the granular partitions.

We then introduced the formal languagén which we can express sentences like:
‘PartitionT",, recognizes that there exists an object named ‘Fred’s body’ of type human
body’, ‘All partitions in contexfll recognize that human bodies have right human arms
as parts’, ‘Partitionl’,, does not recognize an object named ‘Fred’s left hand’ ’, ‘An
object named ‘Fred’s left hand’ is absent in partitiogl.

We gave a formal semantics a@f with respect to the interpretation in partition
frames, provided a formal system f@rthat facilitates formal reasoning, and showed
that reasoning within this system is sound with respect to the given semantics.

Important properties of the formal system are:

e L is notinterpreted directly in reality but in cell structures of granular partitions
that have a projective relationship to reality;

e L is a modal predicate logic of type S4;

e granular partitions are treated as worlds in the sense of the standard multiple
world semantics of modal logic and the refinement relation between between
granular partitions is treated as an accessibility relation between worlds;

e the underlying semantics is an 'actualist’ semantics in the sense that quantifi-
cation is restricted to the cells of the granular partition with respect to which a
qguantified formula is evaluated:;

e since distinct granular partitions do not share cells we establish counterpart re-
lations between cells in distinct granular partitions that project onto the same
object in reality;

¢ the negation inC is rather weak:~ o means that a given partition does not
recognize thaty is the case;

e in £ we can express facts about the absence of certain objects and relations be-
tween them.

To further explore the expressive and reasoning powef ahd to firmly show
its usefulness in practical applications such as bio-medicine or geographic information
science is subject of ongoing research.
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