
1.  Introduction
Salt marshes maintain elevation in the tidal frame through rapid vertical accretion supported by efficient 
burial of minerals and organic matter. Soil accumulation and preservation support valuable ecosystem ser-
vices (Barbier et al., 2011) and are critical to salt marsh survival as sea-level rise (SLR; Morris et al., 2002, 
2016). Declining mineral inputs to certain marshes (Weston,  2014) place additional importance on soil 
organic carbon (SOC) preservation. Global climate change-induced disturbances are expected to increase 
SOC vulnerability to decomposition, potentially leading to marsh subsidence (Pendleton et al., 2012; Spivak 
et al., 2019). Characterizing SOC composition and reactivity and how those properties are changed by de-
composition is key to predicting future marsh sustainability and carbon storage.

Efficient SOC burial and preservation largely reflect high rates of primary production and slow decom-
position. Under anoxic conditions of marsh soils, decomposition is often conceptualized as modified de-
cay functions with labile and refractory compounds turning over on time scales of months-to-years and 
centuries-to-millennia, respectively (Kirwan & Mudd, 2012). Slow-cycling SOC is the critical component 
supporting carbon storage and elevation maintenance. It is often estimated at 10%–20% of annual organ-
ic matter production and composed of macromolecules such as lignin (Kirwan & Mudd, 2012; Morris & 
Bowden, 1986; Schile et al., 2014). Recent evidence that environmental constraints on microbial communi-
ties limit decomposition rather than intrinsic molecular recalcitrance (Lehmann et al., 2020; Marín-Spiotta 
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et al., 2014) suggests that marsh soils likely preserve a broad mixture of compounds with differing reactivi-
ties. Assessing how decomposition changes the composition and reactivity of slow-cycling SOC can provide 
insight into controls on preservation as well as potential for loss following disturbances.

Rapid SLR and certain hydrological management practices have contributed to the expansion of shallow 
ponds in many salt marshes (Adamowicz & Roman,  2005; Watson et  al.,  2017). While permanently in-
undated ponds are natural features that can exist for decades before draining and recovering (Mariotti 
et al., 2020), runaway expansion has been described as a transitional state between healthy and drowning 
marshes (Kirwan & Murray, 2007; Ortiz et al., 2017). Ponds typically form following disturbances that cause 
marsh vegetation dieback (e.g., waterlogging) and deepen through decomposition of underlying peat (John-
ston et al., 2003; Spivak et al., 2018). Ponds therefore offer a natural, decadal-scale experiment for evaluating 
how disturbances that accelerate decomposition alter slow-cycling SOC.

We assessed how slow-cycling SOC composition and reactivity changes over decades-to-millennia and in 
response to the disturbance of ponding in a temperate salt marsh. We hypothesized that marshes bury a 
range of compounds with differing reactivities that derive from local production but long-term decomposi-
tion results in a progressive homogenization and decrease in SOC reactivity. Further, we predicted that the 
disturbance of ponding accelerates decomposition-driven changes in SOC composition and reactivity. SOC 
reactivity, sources, and age were characterized by overlaying thermal properties and isotopic composition 
(δ13C, F14C). We estimated the turnover times of slow-cycling SOC by modeling changes in composition 
against geochronologies developed from radioisotope-based age models and SLR reconstructions.

2.  Methods
2.1.  Study Sites

We collected soil cores from three sites within the Plum Island Ecosystems – Long Term Ecological Research 
(PIE-LTER) domain (MA, USA; 42.74°N, −70.85°W; Figure S1). The sites are within marshes that formed 
prior to European settlement (Kirwan et al., 2011) and had similar elevations (1.41–1.51 m North American 
Vertical Datum of 1988 [NAVD88]) and high marsh plant communities, dominated by Spartina alterniflora, 
S. patens, and Distichlis spicata, that are typical of New England marshes (Redfield, 1972). Permanently 
inundated ponds within each site had comparable depths (0.24–0.30 m) but varied in size (643–7,149 m2) 
and age (40–53 years; Spivak et al., 2017, 2018). Paired soil cores were collected from the marsh platform 
(100 cm) and a pond (50 cm) within each site; differences in core length reflected lower surface elevations 
in the ponds relative to the marsh.

2.2.  Bulk Soil Properties

Soil cores were sectioned at 1, 2, or 5 cm intervals, with higher resolution in the top 30 cm (supporting in-
formation 2.1). Soil water content (%) and bulk density (g cm−3) were determined gravimetrically. Samples 
were sieved (1 mm) to remove large roots. We focused on particles (≤1 mm) passed through the sieve that are 
consistent with functional definitions of slow-cycling fine SOC (Bruun et al., 2010; Hemminga et al., 1988; 
Williams & Rosenheim, 2015). Samples were ball milled and ∼90% were fumed with hydrochloric acid and 
analyzed for bulk elemental (total organic carbon [TOC (%, kg m−3)]) and isotopic (δ13C, ‰) composition. 
Carbon content of the remaining 10% was estimated from a diffuse reflectance Fourier Transform Mid-in-
frared spectroscopy partial least squares regression model (supporting information 2.2; Janik et al., 2007).

2.3.  Bulk Soil Data Analysis

We compared bulk soil and elemental properties across three depths: (i) shallow marsh rooting zone (0–
30 cm), (ii) intermediate marsh horizons (30–54 cm) that overlapped with pond surface horizons (0–24 cm), 
and (iii) deep marsh (54–77 cm) and pond (24–50 cm) horizons. Means and standard errors (SE) of soil 
properties were calculated in 6 cm increments (supporting information 2.3). Marsh and pond cores across 
the three sites were used as independent replicates to conduct one-way analysis of variance tests, which 
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were used to detect differences within the three depth zones of marsh and pond soils separately, and be-
tween marsh and pond downcore profiles at corresponding 6 cm increments based on elevation.

2.4.  Thermal Reactivity and Carbon Isotope Measurements

SOC thermal properties and reactivity indices were characterized through ramped pyrolysis oxidation 
(RPO) for horizons representing key parts of the soil profiles, including the marsh and pond surface, base of 
the marsh rooting zone, and deeper horizons representing carbon buried for more than 100 years. Homog-
enized samples (∼6 mg) were heated to 1,000°C at a rate of 20°C min−1 (Rosenheim et al., 2008) and the 
evolved carbon dioxide (CO2) was measured by a flow-through infrared gas analyzer. Thermograms were 
constructed by plotting CO2 concentrations versus temperature (supporting information 2.5). Samples were 
not acidified as inorganic carbon content was <0.04% of TOC. Analyses were conducted at the National 
Ocean Sciences Accelerator Mass Spectrometry Facility (MA, USA).

We further analyzed CO2 evolved via RPO for δ13C and F14C composition (McNichol et al., 1994; Reim-
er et al., 2004) from one representative marsh and pond site (supporting information 2.4). The CO2 frac-
tions were collected over five temperature intervals; there were three low (200°C–465°C) and two high 
(465°C–650°C) temperature CO2 fractions. The isotopic composition of evolved CO2 was analyzed for at 
least three of the five fractions, capturing ∼70% of TOC within a soil horizon.

2.5.  Thermal Reactivity and Isotope Data Analysis

We evaluated SOC thermal reactivity within and between marsh and pond environments by calculating 
ratios of CO2 evolved at low versus high temperatures (hereafter, peak ratio) and thermal activation en-
ergies (supporting information 2.5). Peak ratios were determined by normalizing the area under the low 
(200°C–465°C) versus high (465°C–650°C) temperature peaks of the thermograms. The theoretical activa-
tion energy (Ea kJ mol−1) and blank contamination correction were calculated using the Python package 
rampedpyrox (Hemingway et al., 2017a, 2017b). The mean and SE of peak ratios and Ea were calculated 
across 25 cm increments based on elevation.

2.6.  Age Models

Soil horizon ages across all sites were constrained with several inputs in order to conservatively model 
turnover times. Post-1900 accretion rates were calculated using 210Pb constant initial concentration (CIC) 
and continuous rate of supply (CRS) models with radioisotope activities measured on planar-type gam-
ma counters (Canberra Inc., USA). Contemporary rates of SLR, from a local tide gauge (Boston 8443870, 
2.83 ± 0.15 mm year−1), provided an age constraint for the past century based on the assumption that the 
marsh kept pace with SLR (Appleby & Oldfield, 1978; Pennington et al., 1976). For pre-1900 horizons, we 
extended CIC-210Pb-based accretion rates deeper in the soil profile, while upper age limits were constrained 
with late-Holocene SLR (0.6 ± 0.1 mm year−1 and 0.9 ± 0.2 mm year−1; Engelhart et al., 2009; Gonneea 
et al., 2019), and glacial isostatic adjustment (1.2 mm year−1; Peltier et al., 2015). Age models were not de-
veloped for the ponds due to the violation of steady-state assumptions as 210Pb inventories suggested erosion 
(supporting information 2.6).

2.7.  Soil Turnover Models

We estimated turnover times of fine SOC in the marsh platform using a depth-for-time substitution where 
downcore changes in carbon concentration were modeled against geochronology. First, across all marsh 
sites, a one-pool model captured changes in total fine SOC concentrations and a two-pool model was devel-
oped from persistent low-temperature and high-temperature thermogram peaks. We expanded to a five-pool 
model based on thermal and isotopic data at one site suggesting at least five compositionally distinct SOC 
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pools. For the two-pool and five-pool models, carbon concentrations within each consecutive pool were de-
fined as the amount of CO2 evolved over discrete increasing temperature intervals within the thermogram.
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Turnover in the first pool (i = 1) is described as first-order kinetics dictated by the carbon concentration of 
the pool (x) at a given time obtained from the age models (t), linear input (U) during the time within the 
rooting zone (troot), and turnover time (τ; Equations 1 and 2; Manzoni et al., 2009). Subsequent pools (i > 1) 
are a linear series, where a fraction (ri−1) of decomposed material from the previous pool is transferred to 
the next pool (Equation 3). For further details on SOC turnover model parameterization, see supporting 
information 2.7.

3.  Results
3.1.  Bulk Soil Properties

Bulk soil properties changed with depth and differed between the marsh and ponds. In the marsh, water 
and TOC content (% and kg m−3) decreased while bulk density increased with depth (Figure 1). Pond soil 
properties were less variable across depths, with the exception of TOC (%) which decreased slightly. Marsh 
soils were generally drier and had higher bulk densities than the ponds (Figures 1a and 1b, Table S1). Marsh 
and pond soils had similar TOC densities (kg m−3), except in pond surface horizons where lower concentra-
tions reflected lower bulk densities (Figure 1d, Table S1). Bulk TOC content informed the one-pool turnover 
model.

3.2.  SOC Reactivity

There was a bimodal distribution of CO2 evolved during RPO with low (371°C ± 4°C) and high (530°C ± 4°C) 
temperature peaks separated by a minimum at 465.5°C ± 2.4°C (Figures 2a–2g). Peak ratios decreased while 
Ea increased with depth in marsh soils (Figures 2h and 2i), indicating a shift toward lower thermal reactivi-
ty. Pond surface horizons had lower peak ratios and higher Ea values than the marsh (∼1.2 m NAVD88), but 
the reactivity indices converged toward similar values in both environments at ∼1 m elevation (Figures 2h 
and 2i, Table S2). The bimodal thermogram distribution across soil depths suggests the presence of at least 
two distinct fine SOC pools and was the basis of the two-pool turnover model.

3.3.  SOC Sources and Ages

The δ13C-CO2 values associated with different temperature intervals spanned a wider range than bulk 
SOC (Figure  3). The δ13C-CO2 of the low-temperature peak (−15.5  ±  0.2‰) was similar to bulk soils 
(−15.0 ± 0.3‰), while the high-temperature peak was more enriched (−13.8 ± 0.2‰). These data are con-
sistent with emergent grasses as the main carbon source to marsh and pond soils (Spivak & Ossolinski, 2016) 
with variation between peaks suggesting differences in molecular composition (Benner et al., 1987).

Radiocarbon (F14C) values were highest in CO2 fractions evolved at lower temperatures, reflecting more 
modern inputs, and decreased with higher temperatures (Figure 3, Table S5). This trend was clearest within 
the marsh (0–26 cm) and pond surface horizons (0–2 cm), where modern values were expected. These data 
indicate that old, marsh derived, and thermally stable carbon represent substantial components (9%–17%) 

LUK ET AL.

10.1029/2020GL090287

4 of 11



Geophysical Research Letters

of shallow horizons. Overlaid thermal reactivity, source, and age data point to at least five compositionally 
distinct fine SOC pools and were the basis of the five-pool turnover model.

3.4.  Soil Age Models

Mean soil accretion rates from the CRS and CIC models for contemporary (post-1900s) deposition were 
4.64 ± 0.38 mm year−1 and 2.47 ± 0.39 mm year−1, respectively (Luk et al., 2020; Table S3). Horizons deeper 
than 28 cm reached the limitation of 210Pb dating (pre-1900s). Conservative age estimates for the deepest 
horizon (80 cm) ranged from 219 years to 1,194 years (Table S4).

3.5.  Marsh SOC Turnover Models

The one-pool model, based on TOC content, yielded a best fit turnover time of 750 years (Figure 4a). This 
was similar to rates calculated from the two-pool model, which was based on the low-temperature and 
high-temperature peaks in the RPO thermograms (640 and 1,251, respectively; Figure 4b, Table S6). The 
five-pool model, based on geochemical composition (Figure 3), captured a broader distribution of turnover 
times, ranging from 1,011 years to 9,951 years, with generally faster rates for the first and second pools 
(Figure 4c, Table S6). Fitting one-pool and two-pool models across the three marsh sites resulted in similar 
goodness-of-fit statistics, which were higher than the five-pool model at the one marsh site; this was due, in 
part, to lower data densities (Table S6). These results highlight the continuum of fine SOC turnover times.
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Figure 1.  (Top) Marsh and pond soil (a) water content, (b) bulk density, and (c and d) TOC content at 6 cm increments and (bottom) within pooled depth 
zones: (i) shallow marsh (0–30 cm), (ii) intermediate marsh (30–54 cm) and shallow pond (0–24 cm), and (iii) deep marsh (54–77 cm) and pond (24–50 cm). 
Data represent means and SE; uppercase letters indicate zones are significantly different (p < 0.05) within marsh and pond soils, separately (supporting 
information 2.3). TOC, total organic carbon; SE, standard error.
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4.  Discussion
4.1.  SOC Composition

Soils in this New England salt marsh buried compounds with a range of thermal properties and δ13C values 
indicating that they derived from marsh grasses (Figures 2 and 3; Spivak & Ossolinski, 2016). The wider 
range of δ13C-CO2 measured across the thermograms, compared to bulk soils, likely reflects differences in 
the isotopic composition of compounds synthesized by marsh grasses (Figure 3). For instance, S. alterniflora 
is rich in cellulose and hemicellulose (∼70%, −11.5‰) with lower levels of lignin (4%–9%, −17.4‰) and 
other compounds, such as lipids, carbohydrates, and amino acids (∼22%, −16.2‰; Figures 2 and 3; Benner 
et al., 1987). Compounds in this latter group are likely decomposed rapidly, with contributions attenuating 
with depth. The δ13C-CO2 values suggest that there was not a clear separation between compound classes 
across temperature intervals, potentially reflecting overlapping thermal properties as well as microbial re-
working and aggregate formation (Figure 3; Bruun et al., 2010). Work in terrestrial soils consistently shows 
an enrichment in δ13C of 2‰–4‰ along gradients of increasing decomposition (Sollins et al., 2006) and 
thermal stability (Sanderman & Grandy, 2020). It is unlikely that measured δ13C-CO2 values are methodo-
logical artifacts, as they spanned a greater range than predicted by kinetic fractionation and enrichment did 
not increase monotonically with temperature (Figure 3; Hemingway et al., 2017b). This result highlights 
that thermal properties provide an index of reactivity that may not reflect bioavailability, which depends on 
environmental conditions, among other factors (Bulseco et al., 2019, 2020; Lehmann et al., 2020).

Although salt marshes are efficient carbon sinks, SOC stocks are spatially heterogeneous (Ouyang & 
Lee, 2014). Compared to this New England marsh, thermogram complexity, TOC%, and Ea were lower in a 
Gulf of Mexico marsh with similar grass communities (Williams & Rosenheim, 2015). Factors contributing 
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Figure 2.  Thermograms of the mean and SE of CO2 evolved from marsh and pond horizons at similar elevations (a–g) were used to calculate two thermal 
reactivity indices, low-temperature versus high-temperature peak ratios (h) and activation energy required to combust SOC (i) (supporting information 2.5). SE, 
standard error; SOC, soil organic carbon.
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Figure 3.  Thermal properties, sources (δ13C), and ages (F14C) of marsh (a–e) and pond (f–i) SOC at one site. Dotted bars are F14C values for CO2 fractions 
collected over a temperature interval (bar width) with associated analytical error. The δ13C-CO2 from fractions are indicated in red. Pond and marsh horizons 
were paired by elevation (NAVD88, m); soil depth and bulk soil δ13C are in parentheses (supporting information 2.4). NAVD88, North American Vertical Datum 
of 1988.

Figure 4.  Turnover times estimated by (a) one-pool and (b) two-pool models for all marsh sites and (c) a five-pool model for one marsh site. Measured CO2 
concentrations (dots) from compositionally distinct fine SOC CO2 fractions were modeled against soil age estimates in years. Dashed lines are modeled turnover 
times. Inset lists the best fit rate and range for each modeled pool (Table S6; supporting information 2.7). SOC, soil organic carbon.
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to these differences are unclear but applying thermal and isotopic characterization approaches more broad-
ly may provide insight into controls on marsh SOC preservation (Lehmann et al., 2020).

The F14C values within and across depth horizons reveal multiple processes contributing to marsh soil de-
velopment (Figures 3a–3e). In shallow horizons (0–26 cm), new production was an important component of 
lower temperature CO2 fractions while F14C values of <1 at higher temperatures suggest either redeposition 
of eroded creekbank carbon or microbial recycling (Figures 3a and 3b). The effects of microbial reworking 
on F14C are likely minor in surface horizons, due to rapid vertical accretion (Table S3). This relatively old, 
thermally stable fraction represents ∼9% of surface (0–2 cm) and 17% of deeper (24–26 cm) SOC, which is 
consistent with previous estimates based on creekbank erosion in this system (Figures 3a and 3b; Hopkin-
son et al., 2018). Since redistribution of previously buried soils contributes to accretion, current SOC storage 
estimates are likely upwardly biased. Redeposition of eroded soils may become increasingly important in 
maintaining marsh elevation with SLR (Hughes et al., 2009) and accounting for spatial recycling of carbon 
will be key for refining carbon budgets.

4.2.  SOC Turnover Under Natural Conditions

Marsh soil profiles are consistent with long-term alteration due to decomposition, rather than changes 
in autochthonous versus allochthonous inputs. Increasing bulk densities and decreasing water and TOC 
content below the rooting zone (0–28  cm) suggest loss of organic matter, compaction, and dewatering 
(Figure 1). Decreasing thermal reactivity with depth (Figures 2h and 2i) coincided with a small δ13C-CO2 
enrichment across CO2 fractions (Figures 3a–3e). It is difficult to ascertain whether the preferential loss 
of specific compounds (i.e., Benner et  al.,  1987) or microbial reworking and development of microbial 
derived residues contributes to δ13C-CO2 enrichment and homogenization of F14C values with increasing 
soil depth (Figure 3, Gleixner et al., 2002; Trumbore, 1997, 2009). Transitions in dominant vegetation as-
sociated with ecosystem evolution (Kirwan et al., 2011) would have a small effect on our results since S. 
alterniflora, S. patens, and D. spicata have similar biochemical compositions (Cristina et al., 2018; Haddad 
& Martens, 1987; Wilson et al., 1986). Thus, the anoxic environment of marsh soils enhances preservation 
but does not completely inhibit microbial alteration of SOC.

Quantifying SOC loss alongside geochronometers can constrain turnover times that are difficult to measure 
experimentally. The best fit rates from the one-pool, two-pool, and five-pool models span a broader range 
(640–9,951 years; Figure 4, Table S6) than applied by some marsh evolution models (200–1,000 years; Day 
et al., 1999; Kirwan & Mudd, 2012). Our one-pool model describes continuous loss of SOC, while the five-
pool model predicts accumulation of the more thermally stable SOC, due to slower turnover and increased 
transfer (ri−1) over time (Figure 4, Table S6). The five-pool model therefore describes important mechanisms 
contributing to SOC preservation and marsh elevation gain that are not captured by the one-pool model. The 
two-pool model offers a compromise between the simple and more complex model, as it captures a thermal-
ly stable pool, which turns over 49% slower than the more reactive pool and 40% slower than the one-pool 
model (Table S6). Expanding ecosystem evolution models to include different turnover rates of fine SOC 
pools has the potential to improve predictions of marsh persistence, in the absence of disturbances.

4.3.  Disturbances Alter SOC Reactivity

Decades following emergent grass dieback and submergence led to pond surface soils with different charac-
teristics than the adjacent marsh. Collapse of marsh grass roots and water infilling of pore spaces contrib-
uted to higher water content, lower bulk densities, and initial subsidence (Figure 1, Chambers et al., 2019). 
Pond surface soils characterized with F14C < 1 and δ13C values similar to marsh soils at the same eleva-
tion (1.17 m; Figures 3b and 3f) are consistent with limited accumulation of recent production from sub-
merged plant and algal communities and imply that ponds do not trap exported detritus (Figure 3; Spivak 
et al., 2017). Moreover, the convergence in marsh and pond SOC reactivity at depth (<1 m NAVD88) (Fig-
ure 2) supports our comparative approach.
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Over time, decomposition becomes an increasingly important mechanism driving pond deepening, as mi-
crobes assimilate buried peat and high respiration accounts for SOC loss (Spivak et al., 2017, 2018, 2020). 
Oxic surface waters during the day and benthic microalgal exudates may prime degradation of older, com-
plex macromolecules (Fontaine et al., 2007; Spivak et al., 2017). Conditions favoring decomposition are con-
fined to surface horizons due to limited gas diffusion and inhibition of bioturbating fauna by nighttime hy-
poxia (Spivak et al., 2017). Accordingly, Ea was greater in pond surface horizons than in deeper layers, and 
compared to the marsh at similar elevations (Figure 2i), but converged at depth (<1 m NAVD88) with the 
surrounding marsh. Progressive δ13C-CO2 enrichment with depth suggests that microbial reworking still oc-
curs under less favorable, waterlogged conditions, but with limited effects on thermal reactivity (Figures 1a, 
2h, 2i, and 3f–3i). Disturbances leading to pond formation therefore facilitated loss and shifts toward lower 
thermal reactivity of surface SOC, which could potentially slow progressive deepening.

5.  Conclusions
We identified at least five geochemically distinct fine SOC pools (Figure 3), suggesting that slow-cycling 
marsh organic matter is more complex than typically conceptualized. By modeling downcore changes in 
fine SOC against soil geochronometers, we generated some of the first empirical estimates of turnover times 
(Figure  4). Carbon reactivity, source, and age described multiple processes contributing to soil develop-
ment: new production, erosion and redeposition, and microbial reworking. Long-term decomposition and 
disturbances that accelerate decomposition (e.g., ponding) result in an accumulation of SOC with lower 
thermal reactivity. Further characterization of molecular composition within abiotic (e.g., redox) and biotic 
(e.g., microbial communities and carbon use efficiency) contexts may improve understanding of controls 
on decomposition and spatial variability in marsh SOC storage (Spivak et al., 2019). Broader application 
of these geochemical approaches has potential to enhance understanding of preservation under different 
environmental settings and inform marsh ecosystem evolution models and service valuation.

Data Availability Statement
Data are archived at BCO-DMO.org (Spivak,  2020a, 2020b, 2020c, 2020d) and sciencebase.gov (Luk 
et al., 2020).
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