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Bayesian Neural Network Modeling and
Hierarchical MPC for a Tendon-Driven Surgical

Robot with Uncertainty Minimization
Francesco Cursi1,3, Valerio Modugno2, Leonardo Lanari2, Giuseppe Oriolo2, Petar Kormushev3

Abstract—In order to guarantee precision and safety in robotic
surgery, accurate models of the robot and proper control
strategies are needed. Bayesian Neural Networks (BNN) are
capable of learning complex models and provide information
about the uncertainties of the learned system. Model Predictive
Control (MPC) is a reliable control strategy to ensure optimality
and satisfaction of safety constraints. In this work we propose
the use of BNN to build the highly nonlinear kinematic and
dynamic models of a tendon-driven surgical robot, and exploit
the information about the epistemic uncertainties by means of a
Hierarchical MPC (Hi-MPC) control strategy. Simulation and
real world experiments show that the method is capable of
ensuring accurate tip positioning, while satisfying imposed safety
bounds on the kinematics and dynamics of the robot.

Index Terms—Model Learning for Control, Robot Safety,
Tendon/Wire Mechanism, Medical Robots and Systems

I. INTRODUCTION

ACCURACY and precision are of uttermost importance
to ensure safety in many robotic applications, especially

in minimally invasive surgery, where little (or preferably no)
damage should be caused to the patient’s body. Moreover,
effective control strategies are needed to guarantee the safe
execution of surgical tasks, yet, two main challenges need to
be faced: robot modeling and robot control.

Different types of mechanical transmissions have been used
in the design of surgical robots, with the vast majority be-
ing tendon-driven [1]. Due to the model uncertainties and
the highly complex nonlinearities in tendon-driven systems,
researchers employed machine learning approaches [2] such
as Artificial Neural Networks [3], Gaussian Mixture Regres-
sion, K-nearest Neighbour Regression, and Extreme Machine
Learning [4] to learn the system’s model.

With regards to robot control, Model Predictive Control
(MPC) is shown to be an approximation to the optimal
feedback control [5] and proved to be an effective strategy
in dealing with nonlinear systems under constraints [6]. MPC
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Fig. 1: Micro-IGES surgical robotic tool and its kinematic
model.

can be effectively employed both for regulation and tracking
tasks where the desired trajectory is known or at least can be
defined within the prediction horizon (i.e. for reference paths
that change during the task execution). Free-space tracking
is a first essential step towards more complicated tasks such
as not-tying, suturing, or tumor resection Even though the
surgical environment is weakly structured, it is still possible
to estimate its evolution in time, for instance, by tracking
tissue deformation [7], and thus still have some reference for
tracking.

In this work, we focus on extending our recent approach
[6] to controlling the Micro-IGES tendon-driven surgical
robot in multiple ways. Firstly, a more precise kinematic
model for Cartesian trajectory tracking has been included.
Learning a more accurate model for the system kinematics
and dynamics increases the MPC performances [8] and for
this purpose, we use Bayesian Neural Networks (BNN). BNN
have been chosen because, similarly to feedforward neural
networks, they allow building complex mappings but are less
prone to overfitting and, most importantly, return information
about the model uncertainty. Secondly, the information of the
models’ uncertainties is exploited to increase the reliability of
the controller by means of prioritized optimal control [9] to
solve two different tasks: accurately tracking a desired path
and minimizing the models’ epistemic errors. Therefore, the
proposed control strategy consists of a Hierarchical Model
Predictive Control (Hi-MPC), with a primary MPC for path
tracking, and a secondary MPC for the minimization of the
uncertainties in the model.

The paper is structured as follows. Section II introduces the
BNN for system modeling, presents the Micro-IGES robotic
surgical tool (Fig. 1), and shows how BNN are employed to
build kinematic and dynamic models. Section III describes
the Hi-MPC approach for trajectory tracking and uncertainty
minimization, under the imposed kinematic and dynamic con-
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straints. In Section IV results on a simulation environment and
on the real robot are shown. Lastly, conclusions are drawn in
Section V.

II. ROBOTIC SYSTEM MODELLING

In this section, an overview of the Micro-IGES surgical
robotic tool, describing its kinematic and dynamic models,
and Bayesian Neural Networks for modeling are introduced.

A. Micro-IGES Surgical Robotic Tool

The Micro-IGES [10] (Fig. 1) is a surgical robotic tool,
composed of a rigid shaft and a flexible section. The shaft
provides the roll and translation Degrees of Freedom (DOFs).
The articulated end, instead, consists of 2 elbows for pitch
and yaw, with each elbow made of a pair of coupled joints,
a 1 DOF revolute joint for the wrist pitch, and the jaws. The
jaws provide two more DOFs: one for the wrist yaw and one
for the gripper’s opening/closing. Each joint of the articulated
part is driven by an antagonistic pair of tendons, with each
pair being connected to the corresponding driving capstan at
the proximal drive unit. The coupling of the two pairs of joints
of the elbows occurs at the driving unit: the two capstans that
drive the two serial joints for each DOF of the elbow (pitch
and yaw) are coupled by a series of gears with a 1:2 ratio. Due
to the current setup, in this work, the translation DOF cannot
be used, therefore only 5 independent DOFs are considered
(Roll, Elbow 1, Elbow 2, Wrist Pitch, Wrist Yaw). In order to
control the Wrist Yaw DOF, with a null gripping angle, the two
jaws need to move equally (their motion is not independent).
Due to the lack of distal sensors, the joints cannot be directly
controlled, whereas the motors can be. Since the robot is
position controlled, the vector of controllable motor positions
is here defined by θ =

[
θR θe1 θe2 θW θj1

]
, where

θj1 is the motor command of one jaw.

B. Robot Kinematic and Dynamic Model

The nonlinearities in tendon transmission make the math-
ematical derivation of the system kinematics and dynamics
tedious. Because of the generally nonlinear motor-to-joint
(and joint-to-motor) algebraic mapping q = q(θ), being
θ the vector of motor positions and q the vector of joint
positions, the kinematics and dynamics, in absence of external
interactions, can be rewritten in terms of the controllable motor
commands as:

P = P q(q) = P q(q(θ)) = P (θ) ,

τmot = L(q)T τ j(q, q̇, q̈) = Γ(θ, θ̇, θ̈) ,
(1)

with P ∈ R3 being the Cartesian end-effector position, P q(q)
the mapping from joint-to-tip position, P (θ) the consequent
motor-to-tip mapping, τmot the vector of motor torques and
τ j the vector of joint torques, which is typically known for
articulated robots, and the matrix L, with Li,j = ∂qi

∂θj
, the

motor-to-joint differential matrix [6]. Γ takes into considera-
tion all the dynamic effects, including the nonlinearities in the
tendon transmission.

Given the geometry of the robot and the motor-to-joint
mapping, an approximated kinematic model P app can be built

[11]. BNN are then used in this work to correct the current
robot model, by learning the positioning error P err between
the actual tip position and the approximated model’s one, and
to build the mapping from motor positions to tip position
θ → P̃ , with P̃ = P app + P err.

With regards to the dynamic model, due to the small
accelerations usually required in robotic surgery, in this work
we assume that the motor torques only depend on the motor
positions and velocities, meaning τmot = τmot(θ, θ̇), and,
therefore, with BNN we learn the mapping

[
θ θ̇

]
→ Γ̃. In

this work P̃ and Γ̃ are the BNN output estimates.

C. Bayesian Neural Networks for Modelling

Similarly to Feedforward Artificial Neural Networks
(ANN), BNN are capable of representing complicated be-
haviours, without the need of knowing any mathematical or
physical model. ANN, however, are highly influenced by
outliers in the dataset [12], suffer from overfitting, and it is
difficult to control their complexity [13]. BNN, instead, allow
including uncertainties in the model, by adding priors to the
weights of the network. BNN use probability distributions to
quantify uncertainty in inferences and output a probability
distribution expressing the belief on how likely the different
predictions are [13].

Given a dataset of D observations D = {ỹ1, . . . , ỹD} and
the corresponding input vectors x1, . . . ,xD, the resulting neu-
ral network model is defined as ŷ = y(x,w), where w is the
vector of network’s weights and biases. In the Bayesian learn-
ing, a Gaussian conditional distribution is assigned to each data
point p(ỹ|x,w, β) = N (ỹ|y(x,w), β−1), with the output of
the network as mean and inverse variance β. Assuming each
point independently, the overall distribution on the dataset is
computed as p(D|w, β) =

∏D
d=1N (ỹd|y(xd,w), β−1). A

prior distribution p(w|α) = N (w|0, α−1I), with zero mean
and inverse variance α, is also assigned to the network’s
weights. The posterior distribution on the weights is then:

p(w|D, α, β) ∝ p(D|w, β)p(w|α) , (2)

which is non Gaussian, due to the nonlinear network model
y(x,w). However, a Gaussian approximation can be found by
using different techniques, such as Laplace approximation or
Variational Inference [14]. In this work, we adopted the latter
one, which allows identifying the Gaussian approximation
q(w|D) = N (w|w∗,A−1), with the optimal weights w∗ as
mean and A as inverse covariance matrix, utilizing Kullback-
Leibler divergence. This is performed offline by employing
the Dense Flipout estimator [15] for each network layer.

Once the Gaussian approximation for the weights’ posterior
is computed, the predictive marginal likelihood on the data
can be obtained as p(ỹ|x,D) =

∫
p(ỹ|x,w, β)q(w|D)dw.

However, the analytical solution is intractable due to the
nonlinearities in the network mapping. By linearizing the
network mapping around the optimal weights w∗, the pre-
dictive distribution on the network output can be computed
analytically as [14]:

p(ỹ|x,D, α, β) = N (ỹ|y(x,w∗), σ2(x)) ,

and σ2 = β−1 + gTA−1g ,
(3)
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Fig. 2: The Hierarchical MPC (Hi-MPC) controller for path tracking and model’s uncertainty minimization.

where g is the gradient of the network for the weights. The
output of the BNN is therefore a Gaussian distribution with
the network model y(x,w∗) as mean, and σ2 as variance.

The kinematic and dynamic models learned through BNN
will therefore be identified by:

P̃ = P̃ (θ), and σ2
P = σ2

P (θ) (4a)

Γ̃ = Γ̃(θ, θ̇), and σ2
τ = σ2

τ (θ, θ̇) . (4b)

To build the models by BNN, Tensorflow Probability frame-
work was used. For both models, swish activation functions
[16] are used, which combine both benefits of relu and
sigmoid, and guarantee continuity in the derivatives.

III. CONTROL METHOD

In this section we describe the proposed approach for
solving the optimal control problem through Hi-MPC.

A. Hierarchical Model Predictive Control
Model predictive control consists in formulating an optimal

problem with a cost function to be minimized over a finite
prediction horizon, with respect to the control inputs. Once a
solution is found, only the first control action is executed and
the procedure is repeated by shifting the horizon forward.

In case of redundant systems, strict prioritized motion tasks
can be specified and solved while avoiding conflicts with each
other. In this work we adopt a strict hierarchical prioritization
to ensure that the primary task will always be executed, while
avoiding the need of manually updating the weights whenever
a new motion is specified (which instead affects soft task
prioritization schemes [17]).

In a surgical environment precisely tracking a trajectory is
fundamental to guarantee the safety of the patient and reduce
traumas. Yet, the tracking accuracy depends on the precision
and reliability of the kinematic model. Thanks to the use of
BNN, it is possible to have an estimate of the uncertainties in
the model and to control the robot to move within safe regions
[18]. In order to do that, the additional task of minimizing the
kinematic model uncertainties can be added and solved as a
lower priority task for the path tracking. The information on
the uncertainties in the dynamic model, instead, is used to
restrict the torque bounds. For solving a stack of prioritized
tasks employing Hi-MPC, two MPC problems are solved: the
primary MPC to track a desired path, and the secondary one to
guarantee that the robot moves in reliable state-space regions.
The hierarchical control structure allows for the exploitation
of self-motions to reconfigure the robot, without affecting the
tracking accuracy. Fig. 2 shows the flow chart for the Hi-MPC
controller. In order to solve the nonlinear MPCs problem, the
fast nonlinear MPC ACADO toolkit [19] was used. It is a
symbolic solver, which allows C++ code for fast optimized
nonlinear MPC control to be generated.

1) Primary MPC for Path Tracking: Since the control
interface of the Micro-IGES robot accepts desired positions, in
this work we formulate the tracking problem in terms of a cost
function minimizing the error between the desired Cartesian
3D position and the current one.

To ensure safety conditions, constraints on joint positions,
velocities, and torques can be imposed. Due to these limi-
tations, the desired Cartesian position may not be achieved,
leading to a deformation of the followed path. To reduce this
issue, a scaling factor s can be introduced [20]. This scaling
factor allows reducing the desired rate of change of the path
(which equates to a dilation of the execution time), without
modifying the path itself.

The optimal control problem is then formulated in terms of
the robot’s states θ and controls θ̇ as:

min
θ̇0,...θ̇N
s1...sN
ρ1...ρN

1

2

N∑
k=1

||P̃ k(θk)− P d,k − sk∆P d,k||2W p

+Ws(1− sk)2 + ||Γ̃k||2W t
+ ||θ̇k||2W v

+ ||ρk||2W ρ

(5a)

s.t. θk+1 = θk + f(θk, θ̇k) (5b)
θm ≤ θk ≤ θM (5c)

θ̇m ≤ θ̇k ≤ θ̇M (5d)

τmot,m − ρk ≤ Γ̃k(θk, θ̇k)− 3στ,k(θk, θ̇k) (5e)

Γ̃k(θk, θ̇k) + 3στ,k(θk, θ̇k) ≤ τmot,M + ρk (5f)
0 ≤ sk ≤ 1 (5g)
0 ≤ ρk , (5h)

where N is the number of timesteps in the prediction horizon,
P d,∆P d the desired tip position and tip position variation, P̃
and Γ̃ the learned kinematic (4a) and dynamic models (4b),
the subscripts m, M indicate lower and upper bounds, and
W p,Ws,W t,W v,W ρ are the weights for each component
of the cost function. ρ are slack variables, used to avoid
possible infeasibilities. For the system’s state evolution (5b),
a simple integral model is used such that θk+1 = θk + θ̇k∆t,
with ∆t being the sampling time. This formulation of the
primary MPC is fundamentally the same as in our previous
work [6], with the addition of the kinematic model for control
and the uncertainties in the dynamics. These uncertainties are
added in the torque constraints (5e) and (5f) to guarantee
that the maximum and minimum expected torques (with a
probability of 99.7%) reside within the imposed motor torque
bounds (τmot,m(M)). Similarly as in [6], because of the large
number of operations ACADO needs to perform to formulate
the whole MPC in a symbolic form, to reduce the amount of
time needed for the code generation, a linear approximation
of the dynamic model is implemented.
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2) Secondary MPC for Uncertainty Minimization: The
secondary MPC is employed to exploit the redundancies of the
robot and move it within reliable state-space regions, closer
to those where the data were collected for learning the model.
However, the secondary task must not deteriorate the results
of the primary, with consequent failure in tracking the desired
path. Given the optimal states θ∗1 and controls θ̇

∗
1 from the

primary MPC for the whole prediction horizon, the secondary
MPC is formulated as:

min
θ̇0,...θ̇N
ρ1...ρN

1

2

N∑
k=1

||σ2
P (θk, θ̇k)||2Wσp

+ ||Γ̃k||2W t

+ ||θ̇k||2W v
+ ||ρk||2W ρ

(6a)

s.t. θk+1 = θk + f(θk, θ̇k) (6b)
θm ≤ θk ≤ θM (6c)

θ̇m ≤ θ̇k ≤ θ̇M (6d)

τmot,m − ρk ≤ Γ̃k(θk, θ̇k)− 3στ,k(θk, θ̇k) (6e)

Γ̃k(θk, θ̇k) + 3στ,k(θk, θ̇k) ≤ τmot,M + ρk (6f)
P (θk) = P (θ∗1,k) (6g)

0 ≤ ρk . (6h)

The optimal solution from the primary MPC is used to
initialize the secondary one. The same bounds on the motor
positions, velocities, and torques as in the primary MPC are
imposed. Also, the constraint (6g) is enforced in order to
not deteriorate the solution of the primary MPC, and thus
guarantee the path tracking. A different strategy could be
employed by using the projector onto the null space of the
primary task. However, the inclusion of the Jacobian matrix
of the primary task into the second one resulted to be too
computationally demanding. Finally, the optimal solutions of
the secondary MPC are then commanded to the robot.

The analytical derivation of the variance of the kinematic
model using BNN, as described in II-C allows exploiting
the capabilities of ACADO solver, without the need for any
approximation on the uncertainties of the model.

IV. RESULTS

In this section, the results for the micro-IGES modeling and
control are shown, by performing tests both in simulation and
on the real robot. In particular, with the simulation results,
we empirically validate our Hi-MPC and we show on the real
robot that our controller outperforms other classical control
approaches.

A. Simulation Environment

For the simulated environment, V-REP [21] is employed.
Similarly to the real case scenario, an initial approximated
kinematic model is built. The initial model is constructed
by means of the Denavit-Hartenberg convention, given the
articulated structure of the robot, but by imposing wrong links’
lengths, with respect to the actual simulated robot. The link
lengths errors were set to

[
2, 2, 3, 3, 4, 3, 2.3

]
mm.

With regards to the dynamics, larger masses and inertias of
each link are considered to guarantee numerical stability of the

TABLE I: Root Mean Squared Errors (RMSE) between the
simulated robot models and: Ia) BNN kinematic model; Ib)
BNN dynamic model.

(a) RMSE (mm) for the simulated kine-
matic model

x y z
Train set 0.108 0.148 0.108
Test set 0.109 0.145 0.108

(b) RMSE (Nm) for the simulated dynamic model

Roll Elbow 1 Elbow 2 Pitch Yaw
Train set 0.037 0.046 0.050 0.023 0.022
Test set 0.037 0.050 0.050 0.024 0.025

physics engine. To map the motor values to the joint values,
the same motor-to-joint mapping as in [11] is used.

1) Simulated Robot Models: During the training to build
the kinematic and dynamic models, the robot is commanded
in position to follow three circular paths of 13 mm, 15 mm,
17 mm in the x, y components at different times, and the z
oscillating sinusoidally with an amplitude of 3 mm. In this
work, a limited space exploration was performed since our
focus was only to test the controller’s capabilities, not the
generalization of the learning method.

The approximated initial model provides the motor com-
mands, which are then used to drive both the accurate simu-
lated model and the approximated one. In the meantime, the
expected tip position of the approximated model, the actual
tip position of the accurate simulated model, and the robot’s
torques are collected from the simulator. Gaussian noise is
then added to all the measurements. BNN are employed to
correct the kinematic model and learn the dynamic model, as
discussed in II-B and II-C. The variance β−1 of the probability
distribution of the data in (3) is the same as the variance of
the added noise. The data from the trajectories were stacked
together into 11500 data points, which were then point-wise
split into a training set (70%) and a test set (30%). For the
kinematic modeling, three different networks are used, one for
each Cartesian position, each one with one hidden layer of 20
nodes. The input of each network is the 5-dimensional vector
of motor values (II-A). With regards to the dynamic model, 5
independent networks are employed, with the 10-dimensional
vector of motor positions and velocities as input, each single
torque component as output, and two hidden layers with 20
and 10 nodes respectively. Table I reports the Root Mean
Squared Errors (RMSE) between the BNN models outputs and
the actual Cartesian tip position and motor torques measured
from the simulator.

2) Validation of the Hi-MPC: A validation of the proposed
Hi-MPC approach and a comparison with the non-hierarchical
primary MPC (5) only for path tracking are here shown,
roughly simulating a tumor resection task. The robot end-
effector is required to follow two different trajectories: a
circular path of 15 mm in radius in x, y, while keeping the
z fixed at a 45 mm, and a square path on the x, y plane
(which was not part of the training set), with each side 20
mm long, and the z fixed at 50 mm. A quintic polynomial-
time law is assigned for the circle and for each side of the
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TABLE II: Simulation results for the trajectory tracking using only the primary MPC (MPC 1) and Hi-MPC. θ̇m(M) τmot,m(M)

are the minimum and maximum bounds on the motor velocities and torques, which are set equal for each motor. IIa reports the
desired execution time T and the actual execution time Tact, the average motion scaling factor s̄, and the mean and maximum
absolute positioning errors |ε̄P |, |εP |max. IIb reports the maximum absolute values of the motor velocities |θ̇|max and torques
|τ̇ |max, with the red values indicating violations of the bounds.

(a) Mean and maximum tracking errors

Shape Control T(s) Tact(s) s̄ |ε̄P|(mm) |εP|max(mm)
x y z x y z

Circle
MPC 1 60 63.7 0.94 0.29 0.31 0.78 3.20 4.01 5.10

Hi−MPC 60 64.1 0.93 0.36 0.34 0.89 3.20 1.50 2.70

Square
MPC 1 75 13.2 0.98 1.20 7.00 1.50 14.50 9.20 4.20

Hi−MPC 75 78.0 0.96 0.70 0.40 2.10 1.80 1.50 4.20

(b) Maximum absolute motor velocities and torques. The red values are beyond the bounds.

Shape Control θ̇m(M)(rad/s) |θ̇|max(rad/s) τm(M)(Nm) |τ |max(Nm)
Roll Elbow 1 Elbow 2 Pitch Yaw Roll Elbow 1 Elbow 2 Pitch Yaw

Circle
MPC 1 -100 (100) 42.70 48.40 25.20 45.90 52.50 -10 (10) 1.17 76.60 33.90 17.70 0.50

Hi−MPC -100 (100) 3.70 5.30 7.90 7.02 11.29 -10 (10) 0.52 4.14 3.63 3.31 0.07

Square
MPC 1 -100(100) 36.50 72.45 100 100 100 -10 (10) 5.96 63.9 94.20 55.60 5.60

Hi−MPC -100(100) 1.94 1.55 1.60 1.43 2.61 -10(10) 0.22 1.17 0.09 0.22 0.01

square. Moreover, in tracking the square, the system starts
from the straight home configuration. For all the tests, the
sampling time has been set to 200 ms, 10 steps are used for the
prediction horizon of both MPCs and the motor positions are
bounded between ±

[
280 55 47 74 74

]
rad. The bounds

on the motor positions are a consequence of the motor-to-
joint mapping and of the gearbox. As a matter of fact, due
to the routing of the tendons around the capstan, the motors
may need to complete more than one full turn in order for
the joints to reach their limits. The bounds on the torques,
instead, are much higher than those on the real system due
to the larger mass and inertia values that had to be used to
overcome simulation issues. With regards to the sampling time,
such a high value is set to make the simulation close to the
real case, as described in the following section. Moreover,
the weights in the cost function of the MPCs have been
heuristically tuned for each test and they are kept the same
in both controllers (single primary MPC and Hi-MPC). For
tracking the circle the weights have been set to W P = 107I3,
Ws = 101, W t = 101I5, W v = 10−1I5, W ρ = 108I5,
W σP = 1010I3, with In the identity matrix and n the matrix
dimension. For the other tests, the weights have not been

reported for conciseness since they are in the same order of
magnitude.

Table II and Fig. 3 show the results for the control of
the simulated robot when employing only the primary MPC
(MPC 1) and the Hi-MPC strategy for additional minimization
of the model uncertainties. Due to the imposed bounds, the
motion needs to be scaled, resulting in a longer execution
time than desired. The proposed Hi-MPC approach clearly
outperforms the control with only the primary MPC. In fact,
the minimization of the model uncertainties ensures more
accuracy in the models, yielding safer and more accurate
tracking. Even though the primary MPC achieves smaller mean
errors on the circle path, it does not ensure the satisfaction of
the imposed bounds. Moreover, the primary MPC completely
fails the tracking of the square path. With Hi-MPC, instead,
the minimization of the model uncertainties guarantees that the
bounds are all satisfied and small tracking errors are achieved.

To better show how the model uncertainties affect the con-
troller, an additional test to track a 10 mm circle, starting from
the home straight configuration, was performed. As shown
in Fig. 4, when employing only the primary MPC the BNN
prediction becomes inaccurate, due to the controller driving
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Fig. 5: The experimental setup for data acquisition.

the robot to highly uncertain state-space regions. Because of
the increasing inaccuracies, the BNN output diverges from the
actual tip position, especially along the x direction, resulting
in improper trajectory tracking. With Hi-MPC, instead, the
variance is kept low, yielding better tracking and smaller error
between the BNN expected output and the actual tip position.
Since Hi-MPC drives the robot into more reliable state-space
regions, also the uncertainty on the predicted torques στ is
reduced: the mean norm of the torque standard deviation
is 18.76 Nm and 0.61 Nm for primary MPC and Hi-MPC
respectively.

B. Real Robot Experiments

Since the Hi-MPC architecture displayed better performance
in the simulation setting we considered only this solution for
the experiments on the real robot. In this section, we test our
method on the Micro-IGES robot and we provide comparative
results for the Cartesian tracking error. For more details about
the mechanical structure and control interface of the robot,
please refer to II-A.

1) Robot Models: In order to collect data for modeling the
Micro-IGES robot, the setup shown in Fig. 5 was adopted,
with one electromagnetic (EM) tracker on the shaft’s end (after
the roll joint) as reference frame and one on the tip. Ideally,
the reference frame would be placed at the beginning of the
kinematic chain. However, the acquisition range is not enough
to track both sensors simultaneously in that configuration,

TABLE III: Root Mean Squared Errors (RMSE) on the real
robot between: IIIa) BNN kinematic model and EM tracker
measurements; IIIb) BNN dynamic model and motor torques.

(a) RMSE (mm) for the simulated kine-
matic model

x y z
Train set 1.127 1.010 0.458
Test set 1.114 1.034 0.469

(b) RMSE (10−3Nm) for the simulated dynamic model

Elbow 1 Elbow 2 Pitch Yaw
Train set 0.077 0.045 0.055 1.414
Test set 0.264 0.198 0.122 0.200

so the roll DOF is fixed in our experiments and the control
variables set to θ =

[
θe1 θe2 θW θj1

]
.

The training data points are collected using the same tra-
jectories as in the simulated experiment. In order to avoid
damages in the system, however, the z component is not
controlled. The initial approximated model [11] is utilized to
compute the motor values to command to the robot. For each
motor command, the corresponding tip position, by means of
the EM trackers, and the motor torques, read directly from the
motors, are collected. Due to the low frequency of acquisition
of the EM trackers of 5 Hz, 2700 data points were collected.

BNN are employed to learn the kinematic error between the
approximated initial model and the measurements and to map
the motor values to the motor torques. The same training-test
split (70-30) as in the simulated experiment is utilized. Three
neural networks for the kinematic modeling are used, each
one with a 4-dimensional input of the motor positions, one
hidden layer of 20 nodes, and one-dimensional output. For the
dynamic modeling, 4 networks are used with the input being
8-dimensional vector of motor positions and velocities, two
hidden layers of 30 and 10 nodes, and one-dimensional output.
Also in the real scenario, the BNN manage to compensate for
the kinematic modeling errors and build a satisfactory dynamic
model, as shown Table III.

2) Path Tracking Results: In the real scenario, the robot was
required to follow the same shapes as in the simulation, but for
both the circle and the square the z was fixed at 52 mm. The
same motor position bounds as in the simulation are imposed,
and the torque bounds are set to the real motor torques limits
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TABLE IV: Real world results for the trajectory tracking using Hi-MPC. θ̇m(M), τmot,m(M) are the minimum and maximum
bounds on the motor velocities and torques, which are set equal for each motor. IVa reports the desired execution time T and
the actual execution time Tact, the average motion scaling factor s̄, and the mean and maximum absolute positioning errors
|ε̄P |, |εP |max. IVb reports the maximum absolute values of the motor velocities |θ̇|max and torques |τ̇ |max.

(a) Mean and maximum tracking errors

Shape T(s) Tact(s) s̄ |ε̄P|(mm) |εP|max(mm)
x y z x y z

Circle 60 89.7 0.85 0.82 0.55 1.21 5.28 3.87 3.57
Square 75 101.2 0.89 1.14 1.07 1.40 5.07 5.07 3.22

(b) Maximum absolute motor velocities and torques. The red values are beyond the bounds.

Shape θ̇m(M)(rad/s) |θ̇|max(rad/s) τm(M) · 10−3(Nm) |τ |max · 10−3(Nm)
Elbow 1 Elbow 2 Pitch Yaw Elbow 1 Elbow 2 Pitch Yaw

Circle -100 (100) 3.20 4.81 3.17 6.81 -4.3 (4.3) 0.44 0.45 0.53 0.30
Square -100 (100) 4.14 5.70 3.40 4.98 -4.3 (4.3) 0.47 0.46 0.52 0.34
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Fig. 6: Results for the trajectory tracking on the real system, showing the desired path (black) and the actual tip position when
applying Hi-MPC strategy (green).

of 4.3 ·10−3 Nm. Regarding the control strategy, 10 time steps
were used for the MPCs, with a sampling time of 200 ms, due
to the acquisition frequency of the EM trackers. The weights
are set to W P = 107I3, Ws = 101, W t = 100I4, W v =
100I4, W ρ = 108I4, W σP = 1010I3 for both paths.

Table IV and Figure 6 report the results for tracking in
the real case scenario. On both shapes, the bounds are always
satisfied and, in order to guarantee them, the motion is slowed
down, yielding longer execution times. On the circular path,
good tracking accuracy is achieved, with larger errors at
the beginning due to an inaccurate initial positioning. On
the square path, instead, the accuracy is less, with some
overshooting when reaching the first corner.

During the execution of the experiments on the real system,
we noticed two main sources of errors. Firstly, the backlash
and hysteresis effects on the robots are still relevant. Due to an
initial manual straightening to reach the home configuration,
the possible positioning inaccuracies and slacking or elonga-
tion of the tendons would lead to less accurate tracking or
failure in the control. The backlash and hysteresis effects are
also the sources of errors in tracking the desired shapes in the
negative x direction. Secondly, the inaccuracies in the lower
level controller do not allow the motors to perfectly reach the
desired motor commands, with a consequent inaccurate tip

TABLE V: Mean and maximum absolute tip positioning errors
for the Hi-MPC and classical pseudoinverse approaches. The
values do not consider the initial positioning errors.

Control |ε̄P|(mm) |εP|max(mm)
x y z x y z

Classical 1.91 1.21 0.77 6.28 4.66 3.29
Hi−MPC 0.82 0.55 1.21 3.13 1.67 3.57

positioning.
3) Comparison with a Classical Controller: We finally

compared our method with a pseudo-inverse kinematic con-
troller that is largely employed in the control of tendon
driven system [11], [22], [23] . Table V and Fig. 7 show
the experimental results obtained using both methods. The
comparison is meant to show only the tracking accuracy, as
the traditional approach does not include bounds. Despite the
initial positioning errors, the proposed Hi-MPC outperforms
the traditional approach, even though slightly larger errors on
the z component occur. Due to the constraints and the scaling
factor, a slower motion is achieved with Hi-MPC.

V. CONCLUSIONS

In conclusion, in this work we presented an approach to
model the kinematics and dynamics of a highly nonlinear
robotic system by means of BNN and control it with a Hier-
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Fig. 7: Absolute tip positioning errors (left three plots) and Cartesian path for the Hi-MPC (green) and the traditional
pseudoinverse (red) approaches.

archical MPC (Hi-MPC) approach, under safety constraints in
the kinematics and dynamics. BNN allow having an estimate
of the uncertainties in the model and the Hi-MPC exploits
this information to increase the reliability of the models, thus
leading to safer and more accurate control. This is important
in application scenarios like minimally invasive surgery, where
high motion accuracy and safety must be guaranteed in order
to limit patients’ traumas.

Future work will focus on improving the effectiveness
of the proposed method to include hysteresis and backlash
in the models, include contact forces to perform the tasks
when interacting with the surrounding environment, and we
will further investigate the role of uncertainty reduction with
additional experiments.
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