
Cite this article
Hashemi A (2019)
Assessment of solar shading strategies in low-income tropical housing: the case of Uganda.
Proceedings of the Institution of Civil Engineers – Engineering Sustainability 172(6): 293–301,
https://doi.org/10.1680/jensu.17.00072

Research Article
Paper 1700072
Received 15/11/2017; Accepted 03/09/2018
Published online 05/10/2018
Published with permission by the ICE under the
CC-BY 4.0 license.
(http://creativecommons.org/licenses/by/4.0/)

Keywords: buildings, structures &
design/climate change/developing
countries

Engineering Sustainability

Downloaded by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London
Assessment of solar shading strategies in low-
income tropical housing: the case of Uganda

Arman Hashemi PhD
Senior Lecturer, School of Environment and Technology, University of Brighton,
Brighton, UK (a.hashemi@brighton.ac.uk) (Orcid:0000-0002-6311-000X)
Developing countries in tropical and subtropical areas will be the worst hit by climate change. Very little research
has been done to assess the impact of climate change on thermal comfort in low-income housing in these regions.
The effects of solar shading strategies and solar absorptance properties of walls and roofs on thermal comfort in
Ugandan low-income housing are studied in this paper. Various shading strategies including curtains, roof and
window overhangs, veranda and trees as well as effects of painting on solar heat gain and thermal comfort are
modelled using EnergyPlus software. An adaptive approach for naturally ventilated buildings defined by the
European Committee for Standardization standard BS EN 15251:2007 is used to assess the conditions. According to
the results, solar shading is less effective in meeting thermal comfort requirements and it should be used in
conjunction with other strategies to achieve desirable results. White painting, in contrast, significantly improved the
conditions and significantly reduced the risk of overheating. Solar shading proved to be effective during the hottest
periods of the year, reducing the risk of extreme overheating by up to 52%.
Notation
Ta air temperature
Tcomf comfortable temperature
Ted-1 daily mean external temperature for the previous day
Ted-2 daily mean external temperature for the day before the

previous day
Tmax maximum comfortable temperature
Top operative temperature
Tout outside temperature
Tr mean radiant temperature
Trm running mean temperature for today weighted with

higher influence of recent days
Tupp Tmax + 4
a constant
DT difference between the operative temperature and the

maximum acceptable temperature

1. Introduction
Located in East Africa, Uganda is one of the most economically
deprived countries in the world. Uganda has a population of
around 39 million and an area of 241 000 km2 (Byakola, 2007;
UN Desa, 2014). According to the UN Development Programme
(UNDP, 2015), Uganda is ranked 163 out of 188 countries in
terms of the human development index (HDI), with an HDI score
of 0·483. Around 33% of the country’s population live in severe
multidimensional poverty (UNDP, 2015), and over 60% of its
urban population live in slums (EPRC, 2013; Malik, 2014).

Fired brick, adobe, cob, rammed earth, mud and poles, stabilised
earth blocks and concrete are currently the prevailing construction
materials in many developing countries, including Uganda
(Batchelder et al., 1985; Craterre, 2005; Minke, 2001; Perez,
2009; Ruskulis, 2009). The most common walling, flooring and
roofing materials in urban areas of the country are brick (84%)
 [] on [19/04/21]. Published with permission by the ICE under the CC-BY licens
cement/concrete flooring (71%) and iron sheet roof (84%),
respectively (Ubos, 2010). Previous studies indicate that the
embodied energy of construction methods and materials is
currently the major challenge which requires immediate attention
to mitigate negative environmental effects of low-income housing
in Uganda (Hashemi et al., 2015a).

Uganda has a tropical climate moderated by an altitude of
1000–1500 m above sea level (Ubos, 2012; UN-Habitat, 2009).
Its temperatures range between 16 and 30°C (Ubos, 2006), with
the hottest period between December and February (Actwatch
Group and Pace Uganda, 2013). There are two rainy seasons
(Agra, 2010; UN-Habitat, 2009), with the annual rainfall varying
between 750 and 2100 mm (Agra, 2010). Global warming is
expected to increase the average air temperature in East African
countries by 3–4°C during the next 70 years (EMI, 2012). The
average temperature in Uganda is also expected to increase by up
to 4·3°C by 2080 (UN-Habitat, 2010). This situation along with
inappropriate and defective construction methods and materials
(Hashemi et al., 2015a) may deteriorate thermal comfort
conditions (Hashemi et al., 2015b), affecting low-income
populations, the majority of whom live in single-roomed (NPA,
2010) overcrowded homes (Ubos, 2012) with limited access to
facilities to adapt to the new conditions.

According to the UNDP (2015), around 18% of Ugandan
households have access to electricity. Access to energy is more
critical, with only 5% of rural households having access to
electricity compared with around 55% in urban areas (Ubos, 2012).
Considering the very low access to electricity, natural ventilation is
the major ventilation/cooling method in the majority of buildings.

Natural ventilation can provide thermal comfort; however, to
provide effective natural ventilation, it is important to minimise
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internal and external heat gains (Wood and Salib, 2013). Solar
heat gain is identified as one of the main contributors to
overheating in residential buildings. Therefore, minimising solar
heat gain can improve the effectiveness of natural ventilation.
Solar heat gain can be controlled by reducing solar transmittance
through windows, improving construction details/types to
minimise surface heat transfer (Oughton and Wilson, 2015) and
introducing shading to minimise solar transmission and heat gains
through glazed and opaque surfaces (Brunoro, 2007). Solar
transmittance, which is usually measured by using the g-value and
solar heat gain coefficient, is highly affected by glass types
(Thorpe, 2011). Due to possible high costs and limited access to
different glazing types for low-income people, changing the
glazing may not be an appropriate strategy to control solar heat
gain in low-income housing.

Solar shading, in contrast, could be an appropriate strategy which
could be considered to improve thermal comfort in low-income
housing. Solar shading can be provided by means of internal and
external shades. Generally, compared to internal shadings,
external shadings are up to 30% more effective in minimising
solar heat gain. For south- and north-facing windows, it is
generally recommended to use horizontal external shading, while
for east- and west-facing windows, application of vertical shading
is recommended. Although more effective, external shading tends
to be more expensive compared with internal shading (Cellai
et al., 2014). This may arguably limit the applicability of external
shades in low-income housing.

Yet the results of the study by Rockwood et al. (2015) suggest
that shading is one of the key design features which may be
considered to provide comfort in tropical affordable housing. A
comparison between rooms with and without external solar
shading showed that the risk of thermal discomfort in rooms with
shaded windows reduced by up to 31% (Rockwood et al., 2015).
A study by Yao (2013) showed that introducing moveable
shading devices can help improve occupants’ thermal comfort by
21 and 80% during summer and winter, respectively.

Becerra-Santacruz et al. (2018) carried out post-occupancy
evaluations in low-income houses built with industrialised
building methods in Mexico and found that overheating could be
a major issue in these houses. Some argue that global warming
may make overheating a major issue even in countries with more
moderate climates (Rodrigues and Gillott, 2013). Kinnane et al.
(2017) claim that due to climate change, there may be a need for
mechanical ventilation in homes built for older people in the UK.
According to Lau et al. (2016), applying different solar shading
configurations would reduce the cooling demand by up to 10%.
Considering direct correlation between cooling demand and
occupants’ thermal comfort, it could be argued that solar shading
would also improve thermal comfort in naturally ventilated
buildings. Other studies suggest that adaptive behaviours of
occupants of naturally ventilated buildings should be considered
when evaluating thermal comfort in buildings. Gou et al. (2018)
294
ed by [] on [19/04/21]. Published with permission by the ICE under the CC-BY l
argue that adaptive behaviour significantly improves thermal
comfort in natural ventilated buildings in tropical climates.

This study evaluates the effects of solar shading strategies on the
risk of overheating and thermal discomfort in low-income tropical
houses in Uganda (Figure 1). The paper is an output of an
Engineering and Physical Sciences Research Council-funded
research programme, namely, ‘Energy and Low-income Tropical
Housing’, that intends to identify and develop methods of
reducing the energy consumption of low-income housing in
tropical countries. The effects of alternative construction methods
and materials and refurbishment strategies on thermal comfort
as well as embodied energy and environmental impacts of
construction methods and materials have been reported in other
papers (Hashemi, 2016; Hashemi et al., 2015a, 2015b).

2. Methodology
Dynamic thermal simulations (DTSs) were conducted using
EnergyPlus software to evaluate the effects of various shading
strategies on solar heat gain and thermal comfort in a typical
low-income house in Uganda. The test reference year for Kisumu
in Kenya was chosen as the closest available weather data to
Kampala, as there are no available weather data for thermal
simulations in Uganda. Kampala and Kisumu are located on the
northern coast of Lake Victoria and have similar altitudes above
sea level. It should be noted that this is a comparative study of
different shading strategies in low-income housing in the region,
despite possible minor differences between the climatic conditions
of Kampala and Kisumu.

Considering that over 50% of Ugandan families live in single-
roomed homes with an average household size of 3·9 people
in urban areas (Ubos, 2010), a single-zone 3 × 3 × 3 m building
with four occupants was modelled. A south-facing window
(1 × 1 m) and door (2 × 1 m) with an effective opening area of
80% were also considered. Permanent background ventilators
Figure 1. Low-income housing
icense 
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were introduced above the window and door as a common
practice in Uganda (Figure 2).

‘AirflowNetwork’ in EnergyPlus was used to simulate accurately
natural ventilation and air infiltration through the openings and
cracks in the walls. A constant ‘ventilation control mode’ was
considered for controlling the windows and doors. An ‘air mass
flow exponent’ of 0·66 was introduced for the cracks and trickle
vents, and a discharge coefficient of 0·6 was used for the open
doors and windows (Cibse, 2015).

According to the available data, brick walls (57%) and iron sheet
roofs (62%) are the prevailing walling and roofing methods/
materials in Uganda. Cement/concert flooring (70%) is also
the most common flooring material in urban areas of the
country (NPA, 2010; Ubos, 2010). Simulations were therefore
conducted for the most common construction methods. Table 1
summarises the properties of the materials based on the available
information in the report by Perez (2009) and CIBSE Guide A
(Cibse, 2015).

The occupancy profile in the case study building was specified as
fully occupied between 6 p.m. and 8 a.m. and one occupant
between 8 a.m. and 6 p.m. The window and door were assumed
to be open between 6.30 a.m. and 6.30 p.m. and between 7 a.m.
 [] on [19/04/21]. Published with permission by the ICE under the CC-BY licens
and 8 p.m., respectively (Olweny, 1996). For the purpose of this
study, 33 different combination scenarios were simulated. The
effects of various internal and external shading strategies
including curtains, roof and window overhangs, veranda and trees
as well as white paint (to reduce solar absorptance) on solar heat
gain and thermal comfort were investigated (Table 2). Figure 3
illustrates the simplified geometries of the simulated buildings in
EnergyPlus.

The performance of the proposed options was studied by
reporting solar heat gain and risk of overheating. An adaptive
approach was used to assess thermal comfort conditions. Due to
the lack of national standards/regulations, the European
Committee for Standardization (CEN) standard BS EN
15251:2007 (BSI, 2007) was used to evaluate thermal comfort
conditions. Thermal comfort in the adaptive approach is affected
by occupants’ behaviours and expectations in naturally ventilated
buildings (Djongyang et al., 2010). Based on this method of
evaluation, it is proposed that occupants’ perception regarding
thermal comfort is affected by their past thermal history (De Dear
and Brager, 1998). For typical occupants, the CEN standard BS
EN 15251:2007 suggests the following equation to estimate
comfortable temperature in naturally ventilated buildings

Tcomf ¼ 0�33Trm þ 18�8 þ 3  where Trm > 10°Cð Þ1.
Table 1. Material properties used in the simulations
Material

Thermal conductivity:

W/(m K)

Thickness: m
e 
Density: kg/m3
 Solar
transmittance
Solar
absorptance
Brick wall
 1·0
 0·200
 1900
 —
 0·70

White-painted brick wall
 1·0
 0·200
 1900
 —
 0·20

Iron sheet roof
 37·0
 0·003
 7800
 —
 0·70

White-painted iron sheet roof
 37·0
 0·003
 7800
 —
 0·20

Concrete
 1·31
 0·100
 2240
 —
 0·70

Glass
 0·90
 0·006
 —
 0·775
 —
Table 2. Tested scenarios
Shading option
 Conditions
Curtains
 None
 Always
on
On if beam plus diffuse
solar radiation incident
on the window exceeds
50W/m2
Roof overhangs
 None
 0·5 m
both
sides
Veranda: 2 m shade on
south and 0·5 m roof
shade on north
External horizontal
shade on windows
(window overhang)
None
 0·5 m
 —
Trees
 None
 Two triangular trees, one south and
one north (12m high, 6m wide,
6m away from the building)
White paint
 None
 Painted roof, painted walls,
painted walls and roof
Figure 2. Permanent ventilators on windows and doors
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where Tcomf is the maximum comfortable temperature (°C) and Trm
is the running mean temperature for today weighted with the higher
influence of recent days (°C) (Nicol and Humphreys, 2010).

Trm can be calculated using the equation

Trm ¼ 1 − að Þ Ted-1 þ aTed-2 þ a2Ted-3 þ ⋯
� �

2.

where Ted-1 is the daily mean external temperature for the
previous day (°C), Ted-2 is the daily mean external temperature for
the day before the previous day (°C) and so on and a is a
constant. Tuohy et al. (2009) suggest to use 0·8 for a.

In the adaptive method, the risk of overheating is assessed based
on the frequency and severity of overheating. The risk of
overheating in a room is evaluated by using three different
criteria. A building is assumed to be overheated if it fails any two
of the three adaptive assessment criteria. All three criteria are
defined in terms of DT, which is the difference between the
operative temperature and the maximum acceptable temperature
(Table 3). The operative temperature articulates the joint effect of
296
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air temperature and mean radiant temperature along with the
internal air movement as a single figure. For an indoor air speed
less than 0·1 m/s, the operative temperature (Top) could be
calculated from the following equation (Cibse, 2013)

Top ¼ Ta þ Trð Þ=23.

where Ta is the air temperature (°C) and Tr is the mean radiant
temperature (°C).

3. Results
Tables 4–10 summarise the results of the simulations for all 33
combination scenarios. The results have been divided into five
geometry categories and six schedule categories as follows. The
effects of including/excluding trees and curtains have been
evaluated for each geometry condition. The effects of white paint
are assessed in category (c) for the main base case only (brick
walls without any shading)

(a) geometry categories

(i) base case
(ii) window shade/overhang
(iii) roof shade/overhang
(iv) roof + window shade/overhang
(v) veranda
Figure 3. Simplified geometries of the simulated buildings. From
left to right: the base case, window overhang, roof overhang, roof
and window overhang, veranda
Table 3. Assessment criteria for studying the risk of overheating in
naturally ventilated buildings
Assessment criterion

Acceptable
deviation
Criterion 1
 Frequency of occupied hours when
the operative temperature is
greater than the maximum
comfortable temperature
Up to 3% of
occupied
hours
Criterion 2
 Severity of thermal discomfort;
calculated as number of day
degree hours of warm period
>6 degree-hours a day
0 d
Criterion 3
 Severity of thermal discomfort;
reported as number of hours in
which DT > 4 K
0 h
Table 4. Thermal comfort criteria for schedule 1: curtain off – no
trees
ic
ID
ense
Geometry
 

Criterion
1: %
Criterion 2
(daily degree-
hours over 6)
Criterion 3
(DT over

4 K)
1
 Main base case
 13·40
 134
 21

2
 Window

shade/overhang

13·03
 132
 15
3
 Roof
shade/overhang
12·76
 128
 14
4
 Roof + window
shade/overhang
12·47
 123
 12
5
 Veranda
 12·38
 124
 11
Table 5. Thermal comfort criteria for schedule 2: curtain off –
trees to the north and south
ID
 Geometry

Criterion
1: %
Criterion 2
(daily degree-
hours over 6)
Criterion 3
(DT over

4 K)
6
 Base case
 13·07
 130
 20

7
 Window

shade/overhang

12·64
 124
 12
8
 Roof
shade/overhang
12·35
 120
 12
9
 Roof + window
shade/overhang
12·13
 118
 11
10
 Veranda
 12·15
 121
 11
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(b) schedule categories

(i) curtain off – no trees
(ii) curtain off – trees to the north and south
(iii)curtain on – no trees
(iv) curtain on – trees to the north and south
(v) curtain on if beam plus diffuse solar radiation incident on

the window exceeds 50W/m2 – no trees
(vi) curtain on if beam plus diffuse solar radiation incident on the

window exceeds 50W/m2 – trees to the north and south
(c) paint categories

(i) white-painted roof
(ii) white-painted walls
(iii)white-painted walls and roof.
According to the results, none of the tested combination scenarios
for solar shading (categories (a) and (b); IDs 1–30; Tables 4–9)
met thermal comfort requirements. However, compared to the
base case, comfort conditions improved when solar shading was
introduced. The best conditions were achieved when a veranda
with a 2 m projected roof (supported by columns) was considered
(ID 30). Shading strategies seemed to be most effective during the
hottest periods of the year when criterion 3 (DT over 4 K) was
more likely to fail. Indeed, the geometry shading strategies
(category (a)) had marginal effects on criteria 1 and 2 of TM52
thermal comfort criteria (Table 4).

For schedule 1 (curtain off – no trees), compared to the base case
(ID 1), the risk of extreme overheating for criterion 3 reduced
from 21 to 11 incidents (47·6%) when a veranda was used. The
risk of overheating considerably reduced for the other methods
too. A performance similar to that for a veranda (ID 5) was
achieved when roof and window overhangs were jointly
considered (ID 4).

For schedule 2, when trees were introduced (Table 5), compared
to the base case (ID 6), all shading strategies achieved a similar
performance reducing the risk of extreme overheating by more
than 40% (IDs 7–10). However; the situation for the base case in
Table 6. Thermal comfort criteria for schedule 3: curtain on – no
trees
ID
 Geometry

Criterion
1: %
Criterion 2
(daily degree-
hours over 6)
Criterion 3
(DT over

4 K)
11
 Base case
 13·10
 132
 18

12
 Window

shade/overhang

12·94
 129
 13
13
 Roof
shade/overhang
12·51
 125
 13
14
 Roof + window
shade/overhang
12·39
 123
 11
15
 Veranda
 12·23
 122
 11
Table 7. Thermal comfort criterion for schedule 4: curtain on –

trees to the north and south
ID
 Geometry

Criterion
1: %
Criterion 2
(daily degree-
hours over 6)
Criterion 3
(DT over

4 K)
16
 Base case
 12·81
 126
 13

17
 Window

shade/overhang

12·52
 123
 12
18
 Roof
shade/overhang
12·20
 118
 11
19
 Roof + window
shade/overhang
11·98
 117
 11
20
 Veranda
 12·08
 118
 10
Table 8. Thermal comfort criteria for schedule 5: curtain on if
beam plus diffuse solar radiation incident on the window exceeds
50W/m2

– no trees
ID
 Geometry

Criterion
1: %
Criterion 2
(daily degree-
hours over 6)
Criterion 3
(DT over

4 K)
21
 Base case
 13·09
 132
 18

22
 Window

shade/overhang

12·93
 129
 13
23
 Roof
shade/overhang
12·50
 125
 13
24
 Roof + window
shade/overhang
12·37
 122
 11
25
 Veranda
 12·22
 122
 11
Table 9. Thermal comfort criteria for schedule 6: curtain on if
beam plus diffuse solar radiation incident on the window exceeds
50W/m2

– trees to the north and south
ID
 Geometry

Criterion
1: %
Criterion 2
(daily degree-
hours over 6)
Criterion 3
(DT over

4 K)
26
 Base case
 12·79
 126
 13

27
 Window

shade/overhang

12·52
 123
 12
28
 Roof
shade/overhang
12·19
 118
 11
29
 Roof + window
shade/overhang
11·95
 117
 11
30
 Veranda
 12·04
 117
 10
Table 10. Thermal comfort criteria for schedule 7: white-painted
roof and walls for the base case
e 
ID
 Geometry

Criterion
1: %
Criterion 2
(daily degree-
hours over 6)
Criterion 3
(DT over

4 K)
31
 White-painted
roof
6·8
 44
 2
32
 White-painted
walls
7·5
 52
 2
33
 White-painted
roof and walls
0·2
 0
 0
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schedule 2 (ID 6) was only marginally improved compared to the
main base case in schedule 1 (Table 4).

Including curtains in schedule 3 (Table 6) slightly improved
thermal comfort conditions. Comparing schedule 2 with schedule 3,
curtains have been slightly more effective in achieving better
conditions during extremely hot days (criterion 3), while trees
performed slightly better than curtains for criterion 2.

The results reveal that schedules 3 and 5 and schedules 4 and 6
have almost identical performances, meaning that the ‘beam’ plus
‘diffuse’ solar radiation incident on the window always exceeded
50W/m2, which means that the curtains were almost always on
(refer to Table 2). Overall, as expected, the best conditions were
achieved when trees and curtains were considered together
(schedules 4 and 6; IDs 19, 20, 29 and 30). Compared to the main
base case (ID 1), there were around 10, 13 and 50%
improvements on criteria 1, 2 and 3, respectively. Yet such
improvements were not enough to meet the comfort requirements.

Further investigation was carried out to evaluate the effects of
reducing solar absorptance properties of the roof and walls by
applying white paint. According to the results, unlike solar
shading, white paint was considerably effective in reducing the
risk of overheating (Table 10). However, although thermal
comfort improved, a white-painted roof and white-painted walls
failed two of the three thermal comfort criteria, meaning that
overall they failed to meet the requirements. The risk of
overheating was decreased significantly when both walls and roof
298
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were painted. Indeed, white-painted roof and walls passed all
three requirements. ID 33 was therefore the only scenario which
achieved the required standards.

Figure 4 compares the operative temperature for the main base
case (ID 1: iron roof, concrete floor, bare brick walls) and the
best-case scenarios (ID 33: white-painted walls and roof) during
the year. As shown, the operative temperature for ID 33 is
considerably more stable and is almost always below the
maximum comfortable temperature (Tmax). Unlike ID 33, the
operative temperature for the base case frequently goes above
the maximum comfortable temperature and occasionally reaches
the upper limit temperature (Tupp), which is an indicator of the
severity of thermal discomfort.

4. Discussion
According to the results of this study, although solar shading
reduces the risk of overheating, shading strategies are less
effective in achieving thermal comfort requirements on their own.
Therefore, solar shading should be used in conjunction with other
strategies in order to meet thermal comfort criteria. Nevertheless,
excessive solar heat gain has been identified as one of the major
contributors to overheating in buildings. Solar gain can be
controlled by introducing shading to minimise solar transmission
and heat gains through glazed and opaque surfaces (Brunoro,
2007).

Figure 5 shows the sun path diagram during the winter and
summer in Kampala. According to this figure, the sun falls on the
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Figure 4. Thermal comfort conditions for (a) the base case (ID 1: iron roof, concrete floor, bare brick walls) and (b) the best-case scenario
(ID 33: white-painted roof and walls). A full-colour version of this figure can be found on the ICE Virtual Library (www.icevirtuallibrary.com)
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south elevation during the hottest summer periods during
December and February. Therefore, it could be argued that
significant solar transmittance may occur during the hottest period
of the year from windows and other openings on the south
elevation.

Table 11 summarises the average transmitted solar radiation rate
for the window over the entire year (total transmitted solar
radiation rate/365) for 30 different tested scenarios. The
transmitted solar radiation rate, according to EnergyPlus, is the
sum of the transmitted ‘beam solar radiation rate’ and ‘diffuse
solar radiation rate’ through the window (US DOE, 2016). The
average diffuse and direct solar radiation rates per area for the site
are also reported in Table 11. It is evident that, apart from trees,
all shading strategies have significantly reduced the transmitted
solar radiation through the window. A possible explanation for
this is that unlike ‘attached shadings surfaces’, such as overhangs,
trees have not been able to provide effective shading over the
windows. The most effective condition was achieved when
 [] on [19/04/21]. Published with permission by the ICE under the CC-BY licens
curtains were combined with window and roof overhangs.
Transmitted solar radiation, in this scenario, has decreased from
57·06W (the base case without any shading) to 13·42W, which
means a reduction of around 76%.

Overall, the findings reveal that solar shading is very effective in
reducing solar heat gain through windows. However, due to the
relatively small size of the windows in the case study buildings
and considerably higher solar heat gain through other building
elements, such as the roof, window shading/overhang did not
make a meaningful difference in terms of total solar heat gain and
thermal comfort. Shading, however, could significantly improve
the conditions by reducing excessive solar heat gain through large
openings. It should be noted that small openings may also be in
contrast with natural ventilation strategies which could provide
better comfort conditions. The effects of ventilation strategies on
thermal comfort in low-income tropical housing need further
investigation.

Moreover, according to Figure 5, the sun has a very high altitude
in Kampala during the entire year. This indicates that the roof is
receiving the highest solar heat gain compared to other building
elements, implying the importance of the roof as a major
contributor to risk of overheating in tropical climates. The high
sun altitude also indicates that, unless planted very close to the
building, trees may be less effective in providing effective
shading over the buildings; however, the microclimatic effects of
plants and trees may improve the conditions. Such effects of trees
and plants on thermal comfort in tropical climates were not the
focus of this study and should be investigated in detail.

Figure 6 shows the average annual solar radiation heat gain rate
per area (W/m2) for the building envelope in the base case where
no shading was considered. The results reveal that solar heat gain
of the roof is over 2·5 times higher than that of north- and south-
facing walls. During February, the average monthly heat gain
from the roof has been four times more than that from any walls.
The roof construction/material is therefore a key factor affecting
thermal comfort in tropical climates. Other studies also support
this finding, identifying the roof as a key factor in reducing
June June

W 270°

December December

180º
S

90° E

70°

60°

50°

40°

30°

20°

10°

0°
N

07:0018:00

Building

12:00

Location: Kampala, Uganda
Latitude: +0·32 (0°19’12”N)
Longitude: +32·58 (32°34’48”E)

Figure 5. Sun path diagram – Kampala, Uganda
Table 11. The average transmitted solar radiation rate through the window: W
Base
case
Window shade/
overhang
e 
Roof shade/
overhang
Roof + window
shade/overhang
Veranda
Curtain off – no trees
 57·06
 41·24
 52·89
 40·88
 42·29

Curtain off – trees to the north and south
 54·08
 38·84
 49·75
 38·48
 39·84

Curtain on – no trees
 18·3
 13·22
 16·96
 13·11
 13·56

Curtain on – trees to the north and south
 17·34
 12·45
 15·95
 12·34
 12·77

Curtain on if beam plus diffuse solar radiation
incident on the window exceeds 50W/m2

–

no trees
19·1
 14·18
 17·77
 14·06
 14·48
Curtain on if beam plus diffuse solar radiation
incident on the window exceeds 50W/m2

–

trees to the north and south
18·23
 13·54
 16·9
 13·42
 13·79
Average site diffuse solar radiation rate: 178·56W/m2

Average site direct solar radiation rate: 103·34W/m2
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or increasing the risk of overheating and thermal discomfort in
low-income tropical housing (Hashemi, 2016; Hashemi et al.,
2015a). This also explains the considerable improvement in
thermal comfort conditions when the roof was painted (ID 31).

The results also reveal that the average solar heat gain from east-
and west-facing walls and windows is up to 1·4 times higher than
that from walls and windows facing north and south. Similar to
the roof, painting the walls with white paint (ID 32) significantly
reduced the solar absorptance of the walls and therefore improved
the conditions. It should be noted, however, that dirt, dust and
rust could neutralise the effects of white paint, increasing the solar
absorptance properties of the walls and roof, resulting in thermal
discomfort. Furthermore, considering the relatively high solar gain
of east- and west-facing walls, building layout and orientation are
critical. In this respect, a north–south orientation with main
openings on the north elevation is recommended. Large openings
should also be avoided on east- and west-facing walls.

5. Conclusions
This study investigated the effects of shading strategies including
curtains, roof and window overhangs, veranda and trees on solar
heat gain and thermal comfort in low-income tropical houses in
Uganda. Effects of solar gain and white painting on walls and the
roof were also investigated. DTSs were conducted for buildings
with brick walls and iron sheet roof as the most common
construction method in urban areas of Uganda. According to the
results, although introducing solar shading improved thermal
comfort conditions, none of the tested shading scenarios was
effective enough to meet thermal comfort requirements. Shading
strategies appeared to be most effective during the hottest periods
of the year, reducing the risk of extreme overheating (criterion 3
of the assessment criteria) by over 50%.

The average solar heat gain from the east- and west-facing walls
and windows was up to 1·4 times higher than that from walls and
windows facing north and south. A north–south building
orientation with the main openings on the north side is therefore
recommended as the most appropriate building layout/orientation
to reduce the risk of overheating and thermal discomfort in the
tropical climate of Kampala. Moreover, large openings on east-
300
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and west-facing walls should be avoided. Furthermore, the
average solar gain of the roof during the hottest periods of the
year was up to four times higher than that of north- and south-
facing walls. White painting proved to be an effective strategy to
improve the conditions by reducing the ‘solar absorptance’ of the
walls and roof. White-painted roofs and walls are therefore
recommended to reduce the risk of overheating and thermal
discomfort in the tropical climate of Kampala.

This study focused on the effects of solar shading on thermal
comfort. Further research is required to evaluate the effects of
other types of shading as well as natural ventilations strategies
and microclimatic effects of trees/plants on thermal comfort in
tropical climates.

6. The practical relevance and potential
applications of the work

Developing countries in tropical and subtropical areas will be the
worst hit by climate change. Due to limited access to resources,
climate adaptation in the poorest countries is left to individuals as
a matter of ‘self-help’. This situation puts low-income populations
in a more vulnerable position, as they have even less access to
resources to adapt to climate change. This paper intends to assist
low-income populations by developing simple strategies to
improve thermal comfort in their homes.
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