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Abstract 

 

The ability to delay an intention is known as ‘prospective memory’ (PM) and underpins 

many day-to-day activities. The ubiquity of PM makes it essential for independent 

living in older adults. Research suggests that PM function declines as we age and may 

be further exacerbated with the development of mild cognitive impairment (MCI). To 

date, there has been no research examining the neurophysiology of PM in older adults 

with MCI. This thesis addresses a series of questions to help understand the 

neurophysiology of PM and how it may be affected by ageing and MCI: 1) Are there 

neurophysiological differences between highly salient PM cues and less salient PM 

cues? 2) Can the neurophysiological reorientation of attention be identified in PM 

tasks? 3) Are there behavioural and neurophysiological differences between young 

adults, older adults and older adults with MCI during PM tasks? 4) Are there 

behavioural and neurophysiological differences when maintaining a PM intention 

between young adults, older adults and older adults with MCI? 5) Can machine 

learning be used to understand spatiotemporal patterns of brain activity in response 

to PM between young adults, older adults and older adults with MCI? To answer these 

questions behavioural and time-locked electroencephalographic (EEG) responses 

were examined during PM tasks and were modelled with a machine learning method 

known as Spiking Neural Networks (SNN). Results suggest that: there are behavioural 

and neurophysiological differences between the PM cues and the neurophysiological 

reorientation of attention can be detected in PM tasks; older adults are not impaired 

in PM tasks possibly due to compensatory neural mechanisms; older adults with MCI 

may be impaired in some PM tasks, which may be due to deficits in attention and 

feelings of knowing; modelling PM with SNNs may offer useful ways of understanding 

spatiotemporal connectivity in PM and MCI.  
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Chapter One: Introduction 

 

1.1 What is prospective memory? 

Prospective memory (PM) is the ability to remember to perform an intention at the 

appropriate time in the future (Einstein & McDaniel, 1990; Meacham & Leiman, 1982), 

or “remembering to remember” (Harris, 1984). For example, imagine you are 

preparing to leave work and return home. You are finalising an email and saying 

goodbye to a colleague before catching a train home. Just as you are about to board the 

train, you remember that you ran out of dog food this morning and need to buy more. 

You quickly purchase some dog food from a nearby store before catching the train 

home.   

In this example, an action was required but was unable to be completed when the 

intention was formed. Before carrying out the intention, other activities had to first be 

completed which prevented performance of the intention. Then, at the right moment, 

the intention had to be recalled and performed. In this example, you remembered to 

buy dog food. However, if you did not remember to buy the dog food, you might have 

only remembered the intention once you returned home and saw your dog.  

Our day-to-day lives and those of others are often dependent on our ability to 

successfully perform PM tasks. Remembering to give your colleague an important 

document before you leave work; remember to feed the dog; calling your mother; and 

remembering to wish your friend a happy birthday. The ubiquity of these actions 

provides a small example of the importance of PM capacity for normal functioning 

(McDaniel & Einstein, 2007), which remains true throughout a person’s lifetime 

(Hering, Kliegel, Rendell, et al., 2018; Kliegel, 2008). These examples are relatively 

simple actions, but failures to perform these intentions are common and may have 

social consequences (Dismukes, 2008). Indeed, some estimates suggest that 50–80% 

of all memory failures are, in part, failures of PM (Kliegel & Martin, 2003).  

In professions where individuals are responsible for the well-being and safety of 

others, even minor failures of PM can have a significant or life-altering impact on 

someone’s life. Pilots, for example, must remember to perform a multitude of actions 
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before take-off and landing and a single missed step may result in fatal outcomes. Self-

reported evidence from pilot errors found that, of the 75 errors reported, 74 involved 

failures that were prospective in nature (Nowinski et al., 2003). Moreover, a reported 

one-fifth of all major flight accidents were due to failures of PM (Dismukes, 2006). The 

now infamous example of the 1991 Los Angeles air traffic controller provides a very 

vivid example of a catastrophic failure of PM. Whilst performing her regular duties of 

directing multiple aeroplanes for take-off, clearance, and landing, the controller 

becomes distracted by poor visibility, inadvertent delays and problems with radio 

transmissions. In the commotion, the controller had forgotten to clear a waiting 

aeroplane on the runway. The controller then cleared an arriving aeroplane for the 

same runway. This small lapse in memory caused the arriving plane to crash into the 

holding plane, resulting in the death of 35 people (National Transportation Safety 

Board, 1991). 

Failures of PM are pervasive and unavoidable, but there are a host of reasons that may 

increase and exacerbate such failures. In a study evaluating factors enhancing or 

inhibiting anaesthesiologists’ PM performance in a patient simulator, the 

anaesthesiologists were distracted while completing their routine tasks. Only 3 of the 

12 participants that were distracted remembered to perform the ‘critical task’ to cross-

check the patient’s blood (Grundgeiger et al., 2008) during the blood transfusion 

simulation. It is for this reason that the understanding of PM and factors affecting it are 

important for the safety of individuals and others.  

Impairments in PM may be exacerbated by lifestyle choices. Studies explore the long-

term effects of ecstasy/polydrug use (Hadjiefthyvoulou et al., 2011) and cannabis use 

(Platt et al., 2019) demonstrate significant impairment in PM tasks, which they were 

unaware of at a metacognitive level as evidenced through their subjective ratings of 

PM. 

Some failures may be more prevalent due to psychiatric conditions. Studies 

employing measures that more closely represent the types of real-life situations of 

PM found that even when controlling for cognitive, executive function and 

retrospective memory, participants with schizophrenia were found to be 

significantly impaired in aspects of PM (Henry et al., 2007). This also seems to be 

similarly affected in individuals experiencing mood disorders such as depression 

(Altgassen et al., 2009; Zhou et al., 2017). 
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Finally, PM failures and impaired PM performance will eventually affect us all. That 

is, several authors report an age-related decline of PM performance in older adults 

(Cherry et al., 2001; Haynes et al., 2018; Maylor, 1996; Maylor & Logie, 2010; West 

& Covell, 2001; Zimmermann & Meier, 2006; Zöllig et al., 2007).  Moreover, these 

age-related declines appear to accelerate when older adults experience mild 

cognitive impairment (MCI; Kinsella et al., 2018) and early dementia (Thompson et 

al., 2010). However, other studies have found no age-related PM performance 

declines (e.g., Aberle et al., 2010; Einstein et al., 1995; Einstein & McDaniel, 1990), 

with some older adults performing as well as, if not better than, their younger 

counterparts (Brom et al., 2014; Liu & Park, 2004; Rendell & Thomson, 1993, 1999).  

The current thesis aims to provide further understanding of the effects of ageing and 

early cognitive decline on PM performance. In doing so, the current chapter will 

provide an initial overview of cognitive theories of PM relative to other domains such 

as executive function, episodic memory and attention. The chapter will then discuss 

PM and the other cognitive domains in relation to typical ageing and MCI. 

 

1.2 Cognitive Theories of PM: Competing models 

The term PM does not represent a unitary, discrete memory system (Cruz San 

Martin, 2014; McDaniel & Einstein, 2007), rather it is umbrella term which 

incorporates several cognitive processes involved in retrieval and execution of an 

intention at a specific time in the future (Ellis & Freeman, 2008; Kvavilashvili & Ellis, 

1996). There are two main competing models of PM that attempt to explain the 

relative importance of these processes and will be further described throughout the 

current chapter. These are:  the Multiprocess Framework and The Preparatory 

Attention and Memory Process (PAM) theory.  

On a crude level, successful PM performance requires two main — retrospective and 

prospective — cognitive processes. The retrospective component is concerned with 

“what” to do, that is, the ability to recall the intended previously encoded action. The 

prospective component represents the detection of “when” to perform the action 

(Einstein et al., 2005; R. E. Smith & Bayen, 2004). This rather reductive model fails 
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to account for the complex interaction of several cognitive mechanisms required for 

successful PM execution, which will be presently discussed. 

Working memory, executive functions and attention are all to a greater or lesser 

degree recruited depending on the type of PM task being performed (McDaniel & 

Einstein, 2000). The involvement of these complex, (non-unitary) cognitive domains 

will be elucidated in subsequent sections of the current thesis. In brief, working 

memory refers to the cognitive systems important for maintaining information 

temporally accessible for processing (Miyaki & Shah, 1999). Executive function 

conceptualises the broad range of cognitive processes, including abstract reasoning, 

decision making, inhibitory control and planning (R. C. K. Chan et al., 2008; Diamond, 

2013). Attention refers to the cognitive processes responsible for the applied focus 

of concentration on specific aspects of information (Eckert et al., 2009) and the 

support of other executive functions, such as problem solving or goal-directed 

behaviour (Diamond, 2013). The recruitment of processes underpinning these 

various cognitive domains often determines prospective remembering (J. Ellis, 

1996).  

The general consensus proposes that PM is conceptualised to consist of four distinct 

stages: intention formation, retention interval, intention retrieval and execution of 

the intention (Brandimonte et al., 1996; Ellis & Milne, 1996; Kliegel et al., 2008), as 

illustrated in Figure 1.1. 

Figure 1.1. Overview of the different phase of the realisation of delayed intentions. Adapted with 

permission from Brandimonte et al., 1996. 
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1.2.1 Intention formation and encoding 

The intention formation and encoding stage are related to the planning of future 

intentions (e.g., ”I will remember to buy dog food when I leave work”), planning 

skills (Kliegel, 2008) and memory encoding abilities (Addis et al., 2008; Poppenk et 

al., 2010). Various factors may influence the encoding of a PM intention such as the 

difficulty in achieving the intention (i.e., it requires the rescheduling of other 

intentions), self- or other-generation of the intention (i.e., intrinsic needs versus 

extrinsic needs), importance and pleasantness of the intention (Brandimonte et al., 

2014). 

 

1.2.2 Retention interval 

The retention interval refers to the period between an encoded intention and the 

realisation that the intention must be retrieved (at the predefined moment in time). 

Typically, an individual is engaged in other activities which preclude the ability to 

actively maintain this intention in working memory (e.g., you must remember to buy 

dog food, but you are also navigating your environment to get to the train station). 

In experimental laboratory-based paradigms, this context is approximated by 

engaging the participant in an “ongoing task” (Ellis & Kvavilashvili, 2000).  

According to Ellis and Kvavilashvili (2000), the PM intention is encoded in 

retrospective memory networks, and ‘not’ actively stored in working memory 

(Kliegel, Jäger, et al., 2008). In comparison, however, the PAM theory (Smith, Hunt, 

McVay & McConnell, 2007) and the Multiprocess Framework (McDaniel & Einstein, 

2000) propose that attentional and working memory processes are required in the 

active maintenance of the intention (Smith & Bayen, 2004), and refer to this as 

“strategic monitoring” (McDaniel & Einstein, 2000). The Multiprocess Framework 

does also propose a solution between the encoding of intentions in retrospective 

memory and the maintenance of intentions in working memory (see Section 1.4.1).   
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1.2.3 Intention retrieval  

The intention retrieval stage is crucial to successful PM. It is at this stage that an 

encoded intention is either recalled or forgotten (Brandimonte et al., 2014). The 

intention must be retrieved from memory and performed within a defined context. 

The context is dependent on the initial encoding of the intention but can vary 

depending on the PM intention. It is the different characteristics of these intentions 

that have given rise to three main types of PM tasks: event-based PM, activity-based 

PM and time-based PM (Brandimonte et al., 2014).  

Event-based PM refers to remembering to perform an encoded action when a 

specific event occurs (e.g., remembering to call your mother when you arrive home). 

Activity-based PM refers to remembering to perform an encoded action after the 

completion of a preceding activity (e.g., cleaning the dishes after you have finished 

eating; McDaniel & Einstein, 2007). Time-based PM refers to remembering to 

perform an encoded action at a specific period during the day (e.g., remembering to 

take prescribed medication at 6pm). 

As previously mentioned, the features of the PM task can make intention retrieval 

more or less cognitively demanding. Time-based PM is thought to require the 

greatest amount of cognitive processes due to the increased amount of self-initiation 

needed to perform the intended action. In the example of taking medication at a 

prescribed time, there is no explicit cue to trigger the action to be remembered. An 

individual could check a clock, however, the action is still dependent on self-initiated 

thoughts (Vanneste et al., 2016) and requires the ability to monitor time to discern 

the appropriateness of performing an intention (Harris & Wilkins, 1982). Therefore, 

if one relies entirely on remembering to perform the action without an external cue, 

a greater amount of cognitive processes would be required for the individual to 

remember to take their medication (Guynn, 2003). On the other hand, in event-

based PM, an encoded PM cue will enable the retrieval of the intention relatively 

easily rather than via a self-generated process (Gilbert et al., 2009).  

It is argued that both event- and time-based PM requires interruption to some 

ongoing activity and, therefore, must tax attention processes (Brandimonte et al., 

2014). However, debates are ongoing within the literature as to whether event-

based PM can truly occur spontaneously (Einstein et al., 2018; McDaniel & Einstein, 
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2007; Scullin, McDaniel, & Einstein, 2010) or whether attentional systems must still 

be involved to monitor for PM cues (Pereira et al., 2018; Smith, 2003; Smith et al., 

2007, 2010; discussed further in Section 1.4).  

 

1.2.4 Intention execution 

The intention execution stage refers to the actual execution of the intended action 

according to the previously encoded plan and intention (Kliegel et al., 2002; Kliegel, 

Mackinlay, et al., 2008). The intention execution, particularly in experimental 

designs, requires the interruption of any ongoing task being performed. It is 

therefore likely that inhibition and executive function play an important role during 

this phase (Kliegel et al., 2002; Kliegel, Jäger, et al., 2008). Likely, the appearance of 

a PM cue triggers voluntary (top-down) and involuntary (bottom-up) attentional 

processes, that interact to execute the intention, and are followed by “reorientation” 

of attention back towards the ongoing task following the interruption (Escera et al., 

2000; D. Friedman et al., 2001; Horváth et al., 2008). 

 

1.2.5 Outcome evaluation 

The outcome evaluation stage is concerned with the secondary phase of monitoring 

the output of the intention execution (Ellis, 1996). This outcome evaluation forms a 

record of a performed response to assist in the unnecessary repetition of an already 

successfully completed delayed intention or to ensure the future success of a 

postponed (or failed) PM intention  (Ellis, 1996).  

Outcome evaluation relies on executive processes, such as behavioural monitoring 

(Bettcher et al., 2011). Following the execution of a PM intention, the result of any 

executed action is compared with the internal representation of the planned action 

(Shallice & Burgess, 1996). If an execution is performed incorrectly, this evaluation 

process will then prompt a change in behaviour to redirect cognitive effort to 

complete the intention. Incorrect encoding of the intention will lead to a failure in 

prompting behavioural change (Bettcher & Giovannetti, 2009). The evaluation stage 

is directly related to the initial memory and planning capacity at encoding. Poor 
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encoding, for example, may underpin persistent errors in PM performance in some 

populations, such as people with schizophrenia (Henry et al., 2007). 

 

1.3 Theories of Prospective Memory 

At least two competing schools of thought exist in conceptualising PM functions. The 

PAM theory supposes that once an intention is encoded, it must be purposefully 

maintained and retrieved. The Multiprocess Framework, on the other hand, 

proposes that intention realisation can be spontaneously prompted by purely 

bottom-up processes facilitated by external cues within the environment. The 

question of whether PM relies on spontaneous retrieval or purposeful maintenance 

strategies remains unclear, as does whether these competing theories are mutually 

exclusive. 

 

1.3.1 Multiprocess Framework 

The Multiprocess Framework (Einstein et al., 2005, 2018; McDaniel & Einstein, 

2000) is primarily derived from research using event-based PM (e.g., McDaniel et al., 

2004; Scullin et al., 2013; Zuber et al., 2016). The theory proposes that intention 

retrieval can occur with or without preparatory attentional processes (Einstein et 

al., 2005). The Multiprocess Framework contends that due to the delays between 

intention formation and intention execution, the continued monitoring for PM 

stimuli would be too costly and cognitively consumptive. McDaniel and colleagues 

argue that such a cognitive strategy would not allow for effective day-to-day 

functioning as a result of the preoccupation of continued monitoring. Instead, this 

theory states that two different forms of PM can be engaged depending on the task 

at hand and the features of the PM task (i.e., stimulus saliency, intention association), 

demands of the underlying ongoing task, individual differences and planning. In one 

form, an individual could recall a PM intention strategically according to the 

attention-demand process of the PAM theory (discussed in the following section), 

but may also recall a PM intention when attention is deployed under certain 

stimulus-driven (bottom-up) circumstances. 
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 Indeed, evidence showing an absence of ‘cost’ to the ongoing task would suggest PM 

can occur without monitoring for the PM target (Einstein et al., 2005; Marsh et al., 

2003). However, this has only found to be the case for PM cues considered to be 

focal, perceptually distinct, or have strong cue-target association, alongside good 

planning. Within the PM literature, a focal cue refers to PM cues that possess certain 

characteristics that are shared with the ongoing task (e.g., responding to a particular 

word such as “butterfly”, while performing a lexical decision task). A real-world 

example of this would be remembering to pass on information to your colleague 

when you encounter them at work (Harrison & Einstein, 2010). In this example, the 

ongoing activity would be you noticing your colleague and greeting them, then as 

these features are focal to your ongoing activity it prompts the PM intention. 

Non-focal PM cues do not possess features central to the ongoing task (e.g., 

responding to an “animal category” while completing a lexical decision task; 

McDaniel & Einstein, 2007). A real-world example of this would be remembering to 

pay for membership at the front desk, whilst leaving a group exercise class. 

Navigating the environment and interacting with friends while leaving would be 

considered an ongoing task, which shares very few features with remembering to 

pay for the membership (i.e., whilst passing the front desk, non-focal cue). The 

Multiprocess Framework suggests that in conditions where the PM task is focal or 

distinct (e.g., responding to a PM word-cue presented in the colour red while 

performing a lexical decision task) then PM retrieval will be completed 

spontaneously. 

 

1.3.2 Preparatory Attention and Memory Process Theory 

The PAM theory suggests that PM retrieval can never be spontaneous and always 

requires a level of preparatory attention (Smith et al., 2007; Smith, 2008; Smith et 

al., 2010). As with the Multiprocess Framework, this theory is primarily founded on 

event-based PM studies (Smith et al., 2007; Smith & Bayen, 2005; West et al., 2005; 

West, 2007). The PAM theory proposes two processing types are required for 

successful PM performance (Smith, 2003; Smith & Bayen, 2004). First, cognitive 

processes are used for the maintenance of intention, whilst monitoring allows us to 

search the environment for the appropriate time to execute a PM intention. Second, 
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retrospective memory evaluates whether certain cues within the environment are 

likely to trigger a PM intention. For example, if one had the intention of taking 

medication with breakfast, then attention processes must first evaluate whether 

breakfast is being eaten or not. If the condition of eating breakfast is met, then one 

would evaluate whether eating breakfast was the cue for the intention to be 

executed. Once the intention is realised then these two processes will prepare and 

enable the execution of the intention of taking the medication. 

Studies exploring the effect of PM intentions on the ongoing task have provided 

evidence in support of the PAM theory (Ellis & Milne, 1996; Smith, 2003; Smith et al., 

2007; Smith & Bayen, 2004; Smith & Loft, 2014). Typically, researchers evaluate the 

performance and reaction time costs incurred in the ongoing task when monitoring for 

PM cues compared to when the ongoing task is performed alone. If ongoing task 

performance and reaction time are unaffected while maintaining a PM intention, then 

attentional processes are not required. However, if ongoing task performance and 

reaction time are affected, then some cognitive resources must be allocated for 

attending for possible PM cues (Smith & Bayen, 2004). Moreover, evidence indicates 

that altering the attentional demands of the ongoing task can also impact the 

performance of the PM task (Einstein et al., 1997), supporting the idea there are shared 

cognitive resources required for completing a PM task. However, PM monitoring costs 

are only consistently reported in experiments employing nonfocal PM designs (Loft & 

Remington, 2010; McDaniel & Einstein, 2011), suggesting that additional attentional 

resources are only recruited to monitor for cues that do not contain features central to 

the ongoing task.  

Smith et al. (2007) set out to validate the Multiprocess theory of PM using two 

experiments of automatic retrieval of delayed intentions using a different stimuli 

conditions (i.e., salient cues, strong cue-target associated, focal cues). However, their 

results instead supported the PAM theory showing a significant cost to the ongoing 

task performance, even in response to PM cues thought to rely on automatic intention 

retrieval processes. 

In recent years, the PAM model has since been extended to include a temporal 

proximity explanation. This account considers the relevance of task features to explain 

that preparatory processes may be used by individuals at flexible periods of time 

(Smith & Loft, 2014). Moreover, the Multiprocess theory has also received some 
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revisions to create the Dynamic Multiprocess Framework, which proposes that 

spontaneous retrieval and strategic monitoring can be employed within the same task, 

but may be used at different times (Scullin et al., 2013; Shelton & Scullin, 2017). 

Evidence has shown that in conditions where a PM cue was expected, monitoring was 

engaged, but in conditions where PM cues were not expected monitoring was 

disengaged. 

In conclusion, the prominent theories of PM seem to be coming towards a convergence 

of ideas that PM may well use several different cognitive strategies for successful PM 

performance. It has been suggested that in instances where the delay between 

intention encoding and intention retrieval is long, then spontaneous retrieval is more 

likely to occur than if the retrieval is required more immediately (Scullin et al., 2013). 

It is for this reason that researchers are beginning to argue that PM may rely on an 

interplay between the top-down and bottom-up processes which are interconnected 

and dynamically interact to support PM functions (Shelton & Scullin, 2017). 

Given the role of multiple cognitive domains required to successfully perform an PM 

intention, it is important to understand how ageing affects these cognitive domains 

before understanding age-related impairments in PM.  

 

1.4 Ageing and Cognition 

Cognitive decline as a function of age is well documented (Cabeza et al., 2002). 

Domains such as working and episodic memory may be particularly impaired (D. 

Friedman, 2000; Luo & Craik, 2008), whilst others remain spared (e.g., procedural, 

semantic and perceptual memory). As this thesis is primarily concerned with PM, 

this section will briefly describe the effect of ageing on key cognitive domains 

implicated in PM – memory, working memory, attention, executive function – before 

discussing age-related impairment in PM per se. 
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1.4.1 Memory 

Episodic memory comprises two distinct components: retrospective memory and PM 

(Meacham & Singer, 1977), although the term episodic memory is generally used in 

reference to retrospective memory.  Episodic memory is reportedly one of the 

cognitive domains most sensitive to the effects of ageing (Nilsson, 2003; Tulving, 

2002). Even in relation to healthy ageing, the ability to retain episodic information 

declines in the elderly, relative to middle and young adulthood (Nilsson, 2003). 

It is of little surprise then, that age-related impairments are well established within 

the retrospective memory literature (Balota et al., 2000). In particular, deficits are 

pronounced at the encoding and retrieval stages, whilst actual storage of the 

memory appears to be spared (Balota et al., 2000). While memory performance 

declines early in the course of ageing (Cansino, 2009), the capacity for cognitive 

compensation is spared through to an advanced age. For example, during intention 

retrieval, older adults can improve performance through item organisation 

(Bäckman & Wahlin, 1995), increased study time during encoding (Wahlin et al., 

1995) and the use of cues during retrieval (Bäckman & Wahlin, 1995; Wahlin et al., 

1995). 

 

1.4.2 Working Memory 

Working memory is a core neurocognitive ability that is required in most routine 

mental tasks (e.g., reading and arithmetic). Specifically, working memory refers to the 

ability to maintain and manipulate information over short periods of time (Baddeley, 

2003). Working memory has been shown to support a wide range of complex cognitive 

functions, such as problem solving, reasoning, spatial thinking, language 

comprehension and fluid intelligence (Baddeley & Andrade, 2000; Conway et al., 2002; 

Engle et al., 1999). Ageing research has noted that working memory is a cognitive 

process that is particularly vulnerable to age-related declines (Bopp & Verhaeghen, 

2005; Borella et al., 2008; Hale et al., 2011). Evidence suggests that age-related 

declines in working memory abilities occur linearly, such that performance decreases 

are found in young-old adults (i.e., 60–75 years old) but becomes further impaired in 

old-old adults (i.e., 75 years old and above; Gajewski et al., 2018; Hale et al., 2011). 
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Given that some theories of PM posit that working memory is an important feature of 

PM (PAM theory; Smith & Bayen, 2004) and others suggest that the ongoing working 

memory affects PM performance (Einstein et al., 1997), working memory may explain 

age-related PM performance differences.  

 

1.4.3 Attention 

Attention has been proposed as a vital component of memory processing (Cowan, 

1988, 1993), and is dependent on a finite amount of cognitive resource that is 

exhausted with age, leading to cognitive decline (Craik & Byrd, 1982). Accordingly, 

deficits in attention can exacerbate memory impairments, and may increase as a 

function of task demands (Craik & Byrd, 1982). Even healthy older adults demonstrate 

decline in top-down mechanisms involved in guiding attention during working 

memory encoding, whilst suppressing irrelevant information (Gazzaley et al., 2005, 

2008; Zanto et al., 2010; Zanto & Gazzaley, 2013). Nevertheless,  even under conditions 

of low cognitive load, several studies demonstrate age-related decline in selective 

attention (Sommers & Danielson, 1999; Sommers & Huff, 2003), sustained attention 

(Zhuravleva et al., 2014), divided attention (Fraser & Bherer, 2013) and task-switching 

(Clapp et al., 2011). An explanation for this may be due to reduced neural 

specialisation reported to decline as a result of ageing (J. Park et al., 2012). However, 

drawing a general conclusion is not simple. Numerous other studies report retention 

of these attention abilities performing on a par with younger adults (review: Zanto & 

Gazzaley, 2014). Differences in the age-related attention literature may be due to 

heterogeneity of ageing populations in addition to the many different forms of 

attentional processes and tasks. It remains unclear whether attention is truly impaired 

and whether it might be responsible for contributing to the reported age-related 

declines of PM.   

 

1.4.4 Executive Function 

Executive function can be thought of as a set of cognitive processes involved in 

planning, organisation, coordination, implementation and evaluation of non-routine 

activities (Glisky, 2007). Based on considerable neurobiological and 
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neuropsychological evidence, an executive decline hypothesis of ageing has been 

developed (Crawford et al., 2000). It suggests memory-related declines are due to 

impairments in executive functions controlled within the frontal lobes. Researchers 

often detail the sensitivity of the frontal lobes to the effects of ageing (Naftali Raz, 

2000; West, 1996). Support for an executive decline hypothesis comes from a series 

of studies comparing younger and older adults in mechanisms such as temporal 

order (Parkin et al., 1995), control of interference (Dempster, 1995), metamemory 

(Souchay et al., 2000) and conscious awareness (Parkin & Walter, 1992). These 

studies alongside studies of ageing and older adults with frontal lobe impairments 

in the encoding of spatial and temporal contexts (Craik et al., 1990) have led to the 

suggestion that executive functions may explain the performance effects of ageing 

on a variety of  tasks.  

 

1.5 Ageing and Prospective Memory 

Prospective memory deficits are among the first and most common complaints to be 

reported by older adults due to the substantial effect that PM failures have on daily 

living (Hering, Kliegel, Rendell, et al., 2018). For example, an individual who is 

frequently forgetting appointments may be concerned and report this to their 

general practitioner. As outlined in the previous section, cognitive functions 

associated with the underlying aspects of PM are found to be sensitive to the effects 

of ageing. It was therefore assumed that these deficits would be responsible for PM 

decline reported by older adults. Early ageing studies by Einstein & McDaniel 

(1990), failed to find these expected deficits in PM tasks as a result of ageing. In 

Einstein and McDaniel’s (1990) seminal study of PM and ageing, young adults (17–

24 years old) and older adults (60–78 years old) completed a dual-task PM 

paradigm. Rehearsal prevention of the PM task was achieved through the 

administration of an ongoing short-term memory task. The PM task was embedded 

within this ongoing task, requiring participants to press a button for the encoded 

intention. Their results failed to demonstrate the hypothesised age-related decline 

in PM performance, leading the researchers to believe that these types of tasks are 

not sensitive to age-related effects. 
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A series of extensive reviews have revealed that the subsequent studies following 

Einstein and McDaniel’s (1990) work demonstrate inconsistent effects of ageing on 

PM (Henry et al., 2004; Kliegel et al., 2016; Kliegel, Jäger, et al., 2008; McDaniel et al., 

2008). It has been proposed that an absence of initial age-related declines might 

have in fact been due to an inaccurate understanding of PM as a concept, instead of 

a lack of age-related effects of cognitive functions of PM (Einstein et al., 1995). 

Considering the inconsistencies and the different methodologies for investigating 

PM, it became apparent that different characteristics needed to be explored to 

explain the age-related decline in PM. 

Three key characteristics, all of which can be defined by self-initiation or 

spontaneous processes, have been distinguished in explaining the inconsistencies 

within the PM literature (Eusop-Roussel & Ergis, 2008). These are: 1) cue salience, 

where salient cues rely on spontaneous processes and non-salient cues rely on self-

initiated retrieval; 2) the relationship between intention of the PM cue to be 

retrieved, where strong associations will recruit automatic retrieval strategies and 

weaker associations will require effortful, self-initiated retrieval strategies; and 3) 

PM task type, being either event- or time-based. 

With regards to cue salience, research has demonstrated that when the cue is 

particularly salient, older adults perform as well as younger adults due to 

spontaneous retrieval processes facilitated by a strong link of the cue and the 

retrieval intention (Cherry et al., 2001). However, with less salient cues, older adults 

perform less well than younger participants, such as when a highly typical word 

served as the PM cue (i.e., the PM was less distinct and more semantically familiar, 

therefore less perceptually salient; Cherry et al., 2001). In a study of PM performance 

in young participants, McDaniel et al. (2004) demonstrated that retrieval type is 

dependent on the strength of the relationship of the retrieval cue and cue intention. 

Ageing studies have also demonstrated that PM cue type is particularly sensitive to 

the effects of ageing as evidenced by several studies showing a slight but noticeable 

decrease in PM performance when the PM task is time-based (d’Ydewalle et al., 

2001; Einstein et al., 1995). It is likely, this difference is also a result of the level of 

self-initiation required to complete the PM task, which is consistent with research 

indicating that these age-related declines are linked to the engagement of self-

initiated retrieval processes (Mäntylä & Nilsson, 1997).  
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Despite this, even within task designs which incorporate event-based PM cues, the 

evidence is not clear for ageing. Indeed, some studies do report a significant effect of 

age (Cherry & LeCompte, 1999; Dobbs & Reeves, 1996; Maylor, 1996; Uttl, 2008; 

West & Covell, 2001), whilst others do not (Einstein & McDaniel, 1996; McDaniel et 

al., 2008). The differences between these studies may be due to the variability in the 

task design and the required level of effortful monitoring, PM strategies and the 

recruitment degree of executive processes required to complete them (Henry et al., 

2004). In fact, following the assumption that executive functions are somewhat 

diminished in older adults (Cepeda et al., 2001; De Luca et al., 2003; Zelazo et al., 

2004), Kliegel, Mackinlay, et al. (2008) manipulated the inhibitory control aspect of 

executive function across different stages of PM. Their study altered the degree to 

which active task interruption was required during intention execution. They 

concluded that age-related PM declines were a result of a reduced ability to inhibit 

attention to the ongoing task and enable switching to another intended task. 

One particularly interesting finding that has resulted from studies of ageing and PM 

is the age-prospective memory-paradox (Maylor, 2008). The age-related deficits 

reported in laboratory-based studies of PM (Henry et al., 2004; Uttl, 2008) are in 

stark opposition to the conclusions made from naturalistic studies (Rendell & Craik, 

2000; Rendell & Thomson, 1999). In naturalistic study designs, participants 

complete PM tasks more closely aligned to a real-world setting (e.g., making a phone 

call to the researcher at a certain time of day). During such tasks, older adults 

perform on a par with, and in some instances better than, younger adults (Henry et 

al., 2004; Niedźwieńska & Barzykowski, 2012; Schnitzspahn et al., 2016). Despite 

the age-prospective memory paradox being supported in meta-analytical studies 

exploring the differences between laboratory and naturalistic experiments (Henry 

et al., 2004; Uttl, 2008), there are only a handful which repeat the laboratory study 

and naturalistic study in the same cohort (Kvavilashvili et al., 2013; Niedźwieńska & 

Barzykowski, 2012; Rendell & Thomson, 1999; Schnitzspahn et al., 2011, 2018). In 

Schnitzspahn et al.’s (2011) study, the researchers investigated control over the PM 

task, ongoing task absorption, motivation and metacognitive awareness in both the 

laboratory and in the naturalistic style experiments. Consistent with Henry et al.’s 

(2004) meta-analysis, younger adults performed better in the laboratory, but poorer 

in the naturalistic study, than older adults. Schnitzspahn and colleagues (2011) 

suggested that older adults benefit from higher levels of metacognitive awareness 
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and motivation in the naturalistic setting. It seems that ‘normal life’ offers older 

adults the ability to the employ their experience, knowledge and perhaps alternate 

PM strategies, which may be of less use in the highly controlled setting of a 

laboratory experiment. 

There are many unresolved questions in the PM ageing literature. As it currently 

stands, there is no definitive answer as to which cognitive mechanisms may account 

for the problems that older adults experience as PM declines. Moreover, even less 

appears to be understood in older adult populations who are experiencing 

accelerated rates of cognitive decline, such as those with MCI. 

  

1.6 Mild Cognitive Impairment 

In the past, individuals exhibiting signs of cognitive dysfunction in the absence of 

any diagnostic impairment were first termed as having benign senescent 

forgetfulness (Kral, 1962). With improved understanding and more detailed 

accounts of individuals’ experiencing cognitive decline, more sophisticated theories 

were developed, such as the Age-Associated Memory Impairment (AAMI; Crook et 

al., 1986) and the Age-Associated Cognitive Decline (AACD; Levy, 1994) theories. 

These theories were not created to define prodromal stages of dementia-related 

diseases but originally attempted to characterise the more benign forms of cognitive 

decline that fall within the limits of normal ageing. However, researchers began to 

note that a significant proportion of these individuals suffering from these cognitive 

declines, would also go on to develop dementia (Celsis et al., 1997; Ritchie et al., 

2001). However, some authors reported older adults who were considered healthy 

were also going onto develop dementia at a similar rate (Hänninen et al., 1996). 

More recently, the term MCI has been used to define those individuals who are 

thought to be on the continuum of cognitive function between normal ageing and 

dementia (conceptualised in Figure 1.2; Petersen et al., 1999). Originally, MCI was 

described as those individuals scoring a 3 on the Global Deterioration Scale 

(Reisberg et al., 1982). More recently, a refined and detailed criterion have been 

established and are currently employed for the diagnosis of MCI (Winblad et al., 

2004). These current criteria specify a change in cognitive function that is greater 
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than what might be expected given their age and level of education, but do not meet 

the threshold for a diagnosis of dementia. Individuals with MCI must also have 

consistent memory complaints, typically confirmed by a close informant and 

verified using validated objective cognitive and neurophysiological assessments. 

Finally, they must retain functional independence and the ability to complete 

activities of daily living (Petersen, 2004; Petersen et al., 1999, 2001; Winblad et al., 

2004).  

 

Figure 1.2. Hypothetical stages of cognitive decline from normal ageing towards dementia.  

 

Due to the relative recency of the classification of this term, there are differences in 

the diagnostic assessments (Petersen et al., 1999), conflicts in the categorisation of 

MCI subtypes (Ward et al., 2012), and inconsistencies between population and 

clinical-referred participant studies (Feldman & Jacova, 2005). According to a recent 

systematic review of the prevalence of MCI in older populations (Ward et al., 2012), 

estimates place the number of adults over the age of 65 as having MCI at 20–26% 

and increases to 29% in adults at ages 85 years and older (Lopez et al., 2003). From 

those who are classified as having MCI, approximately 10–15% will go on to develop 

dementia annually (DeCarli, 2003; Petersen, 2004; Petersen et al., 1999) in 

comparison to older adults without an MCI classification developing dementia at a 

rate of 1–2% annually (Petersen et al., 1999). 
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In earlier studies of continued cognitive decline in those individuals with MCI, it was 

thought that the deterioration in memory domains was solely responsible for 

cognitive decline and other cognitive processes are, for the most part, spared 

(Petersen et al., 1999). However, in those studies, the diagnosis for MCI was given 

based solely on memory impairments. Additionally, individuals in that study had 

reportedly progressed to dementia at a significantly increased rate compared to the 

general population (Geslani et al., 2005; Morris et al., 2001; Petersen et al., 2001). 

Nonetheless, it is generally accepted that those individuals with MCI that are at risk 

of developing dementia-related diseases usually display impairment to several 

cognitive domains, such as attention (e.g., Saunders & Summers, 2010), language 

(e.g., Taler & Phillips, 2008), executive function (Kirova et al., 2015) and processing 

speed (e.g., Fabrigoule et al., 1998). Interestingly, it has also be noted that the 

deterioration in episodic memory is the most common cognitive impairment in MCI 

who eventually develop Alzheimer’s Disease (AD; e.g., El Haj et al., 2016; Tromp et 

al., 2015). 

To encompass the heterogeneity of individuals with MCI and to better reflect the 

reported differential deficits in these cognitive domains, different subtypes have 

been created. The two main subtypes are: amnestic and non-amnestic MCI 

(Petersen, 2004). Amnestic MCI (aMCI) is often typified by subjective memory 

complaints (mainly episodic in nature) and is thought to reflect a common precursor 

for the development of AD (Ghosh et al., 2014; Petersen, 2004). On the other hand, 

individuals with non-amnestic MCI (naMCI), primarily exhibit impairments non-

memory related cognitive domains, such as attention, language and executive 

functioning (Ghosh et al., 2014; Petersen, 2004). However, it is debated whether 

there truly exists a true MCI subtype and it is likely that the majority of studies 

include a combination of aMCI and naMCI (Alladi et al., 2006). 

 

1.6.1 Memory and mild cognitive impairment 

Given that MCI is the prodromal form of dementia, it is perhaps unsurprising that 

memory is the most explored topic within the MCI literature. Many commonalities 

are shared between MCI and dementia, particularly in those brain regions 

responsible for the processing of episodic memory (Braak & Braak, 1995; discussed 
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further in Chapter 2). In AD and MCI, impaired episodic memory is believed to be a 

core feature of cognitive impairment (Baudic et al., 2006). 

Alongside being a core feature, episodic memory is also one of the earliest domains 

to exhibit impairments (Gold & Budson, 2008; Petersen et al., 1999). Impairment of 

episodic memory may exist up to 10 years before dementia in individuals with a 

diagnosis of aMCI (Dannhauser et al., 2008). Given that episodic memory relies 

primarily on the knowledge of prior episodes, including free recall, recognition tests 

or cued recall (Yonelinas, 2001), it likely that impairment to this domain may arise 

from a deficiency in information encoding and/or retrieving the stored information. 

Nevertheless, other recent research suggests that early impairments of semantic 

language-memory, working memory and attention are also strong predictors of 

cognitive decline of MCI to AD (Brandt et al., 2009; Klekociuk et al., 2014; Saunders & 

Summers, 2010). It is for these reasons that it would seem that PM may be particularly 

sensitive to cognitive decline and may provide a useful method to further our 

understanding and prediction of cognitive, yet it has received relatively little attention. 

 

1.7 Prospective Memory and Mild Cognitive Impairment 

Past studies comparing older adults with those experiencing MCI have demonstrated 

that PM is indeed impaired in MCI groups (van den Berg et al., 2012). A recent meta-

analysis found no differences in the effect size for impairments in PM between MCI and 

dementia (van den Berg et al., 2012). This proposes the potential usefulness of PM as 

being an early indicator of cognitive decline towards dementia. 

Given the relationship between retrospective memory and PM as previously discussed, 

and the known deficits of episodic memory in individuals with MCI (Dannhauser et al., 

2008), it could be assumed that the reported deficits in PM are a result of the 

retrospective component of intention retrieval. Indeed, studies have set out to test this 

assumption by manipulating the retrospective memory component of PM through the 

interruption of target cue or retrieval of the intended action (Costa et al., 2010; Costa, 

Caltagirone, et al., 2011; Karantzoulis et al., 2009; Thompson et al., 2010). These 

researchers demonstrate that in individuals with MCI, deficits to the retrospective 

component affects PM performance.   
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Evidence appears to also suggest that the cognitive impairments demonstrated in MCI 

populations cannot be fully attributed to retrospective memory alone. Blanco-Campal 

et al.  (2009) had older adults and MCI participants perform two retrospective memory 

tasks and an event-based PM task. Participants completed two different conditions 

while completing a lexical decision task (i.e., the ongoing task). In the first condition, 

participants were required to say the word animal when they observed a predefined 

specific target word (e.g., lion) or a predefined non-specific condition when there was 

any animal word observed (e.g., “cat”, “rabbit”, “tiger”). Additionally, the researchers 

manipulated the salience of the PM targets. In the salient condition, the target word 

was presented in italics and in the non-salient condition, the word was presented in 

the same style as the ongoing task. The results demonstrated greater discriminative 

ability of the PM task compared to the retrospective memory tasks for detecting MCI 

of suspected AD (MCI-AD). The non-salient condition was particularly sensitive in 

discriminating MCI-AD from healthy older adults. This was thought to be due to the 

increased need of self-initiation required to retrieve the PM intention for the non-

salient condition. It was suggested, therefore, that individuals experiencing MCI are 

particularly impaired in cognitive functions related to PM tasks that require greater 

levels of self-initiation. Moreover, Blanco-Campal et al.’s (2009) study highlights the 

potential for better diagnosis and the detection of individuals with MCI likely to 

convert to AD through a range of different PM task types. 

In another comparison study (Costa et al., 2010) of retrospective memory and PM, 

participants were required to remember to perform three distinct actions in either an 

event-based or time-based conditions which were: tell the researcher to turn off the 

computer; replace the handset of the telephone and to write their name on a piece of 

paper. The three conditions were selected as similar in the way the participants 

performed them and to demonstrate the effectiveness of their PM. The researchers 

then assessed the participants recall of the instructed actions that they failed to 

perform to examine the impact of retrospective memory failure on PM performance. 

Participants experiencing MCI were less accurate in both the retrospective and PM 

parts of the task but were disproportionally less accurate at completing the PM part of 

the task. Furthermore, individuals with MCI identified as possessing a dysexecutive 

impairment were particularly impaired in the time-based PM task. This suggests that 

executive functions are of particular importance for self-initiated PM.  
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Studies have reported that although MCI participants can recall with a fair degree of 

accuracy the encoded intention, they were also likely to fail to execute on the intention 

when required to within the study (Schmitter-Edgecombe et al., 2009). Moreover, even 

in studies that statistically controlled for the retrospective aspect of the PM task, MCI 

participants were still found to perform worse relative to controls (Thompson et al., 

2010). 

Much of the PM literature on MCI has compared the more effortful strategic monitoring 

of time-based PM with that of the less cognitively demanding event-based PM tasks 

(Costa, Caltagirone, et al., 2011; Troyer & Murphy, 2007; van den Berg et al., 2012). 

Costa et al. (2015) found that the inclusion of a time-based PM task improved the 

discrimination between healthy controls and MCI participants. This led to the 

suggestion that time-based PM is more reliable in discriminating those with cognitive 

impairment due to the greater amount of effortful monitoring required to complete 

the task. However, only a time-based study of PM was included in the study and was 

not compared to an event-based PM task. Van den Berg et al.’s (2012) meta-analysis 

reports that MCI impairments are comparable in event-based and time-based PM, 

suggesting that the common cognitive systems of spontaneous-retrieval and strategic 

monitoring processes are affected in MCI. 

Alternative avenues investigating PM have been explored in the event-based PM cues, 

to further elucidate cue-type on PM performance in older adults with MCI. Blanco-

Campal et al.’s (2009) study varied the perceptual salience of the PM cue. Their results 

demonstrated that the non-specific non-salient condition, which was intended to 

increase the recruitment of strategic monitoring processes, showed the greatest 

differences in PM performance between healthy older adults and MCI. However, in a 

recent novel study of PM salience in MCI (Thompson et al., 2017), it was found that 

although MCI participants did perform poorer compared to the healthy older adult 

controls, the less salient cue did not cause disproportionally poorer performance for 

the MCI participants. In other words, it was expected that MCI participants would 

perform less well than the healthy older adults in both PM tasks, but performance 

would decrease with the PM target saliency. This hypothesis was not supported. 

However, the researchers did acknowledge that the cognitive resources may already 

have been sufficiently depleted to the point where subtle task manipulations made 

little impact on the overall performance. 
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Another common task manipulation that is present within the MCI PM literature is the 

focality of the PM cue. In older adult studies, it is suggest that non-focal PM tasks elicit 

the greatest amount of age-related impairments as a result of the increased amount of 

processes applied to strategic monitoring (Kliegel, Jäger, et al., 2008). However, the 

evidence on MCI studies remains less clear. In a study of PM in participants with MCI, 

Tam and Schmitter-Edgecombe (2013) demonstrated that participants with MCI 

performed worse for non-focal PM cues relative to their age-matched controls. 

Other studies have demonstrated that individuals with MCI are more impaired in the 

focal PM tasks relative to healthy older adults (Chi et al., 2014; Niedźwieńska et al., 

2017). Interestingly, evidence has reported similar discriminatory abilities for focal 

PM tasks in older adults with very mild AD, thought to be similar to aMCI, and both 

groups were found to perform close to the lower limits of task performance (McDaniel 

et al., 2011). It remains difficult to determine the source of inconsistency between 

these studies, but one possible explanation may be due to variations in cognitive 

impairment (Libon et al., 2010). For example, Chi et al. (2014) demonstrated that both 

aMCI and naMCI had poorer PM abilities. However, they also found that the patients 

with aMCI were more impaired than those with naMCI and healthy controls in focal 

PM but also found that the patients with naMCI were more impaired in non-focal PM 

relative to the healthy controls and patients with aMCI. While manipulation of the PM 

cue can improve our understanding of PM deficits in individuals with MCI, 

understanding the aetiology of these deficits remains subjective. By using 

neuroimaging methods to examine older adults with MCI while completing different 

PM tasks, our understanding of cognitive impairments will be greatly improved. 

 

1.8 Chapter Summary 

This chapter has examined the cognitive mechanisms and the theories that underpin 

PM. The evidence suggests that PM is not a unitary memory domain but is comprised 

of different cognitive mechanisms which help support the memory of future 

intentions. Attentional, executive and retrospective memory functions were identified 

as comprising core features of PM. There is some disagreement between theories of 

PM although it seems there are also some overlaps. Namely, that some instances will 

require strategic monitoring using attentional processes, particularly in less salient or 
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non-focal stimuli. This chapter outlined the sensitivities of the above cognitive 

domains to ageing and their relationship to the reported deficits of PM in healthy older 

adults. There are inconsistencies within the literature, where some studies report that 

older adults are impaired in PM, while others do not. These variabilities are likely due 

to the task designs used to measure PM. Interestingly, in task designs that are more 

naturalistic in design, results often fail to find PM performance deficits in older adults 

compared to laboratory-based studies. Finally, this chapter highlights the PM deficits 

in older adults experiencing MCI and how, due to PM failures being among the first 

reported problems by older adults, may provide an early sensitive indicator for 

dementia-related diseases. 
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Chapter Two: Neurobiology of prospective 

memory, ageing and mild cognitive impairment 

 

2.1 Introduction 

In Chapter 1, the basic memory processes employed for future-orientated tasks (PM) 

were described along with the current understanding of PM. Reasons for PM failures 

were also discussed along with how ageing and cognitive decline affects PM 

functioning. Chapter 2 builds on the cognitive perspectives of PM and how it is affected 

by ageing and cognitive decline through the delineation of key neurobiological 

networks thought to be responsible for PM. Firstly, the frontal lobes and other 

neurobiological systems crucial to PM are outlined. Next an integrated model of PM 

throughout the cortex, known as the attention to delayed intention (AtoDI) model is 

described. The neurobiological systems affected by ageing are then described along 

with the current understanding of the neurobiological effects of ageing on PM. Finally, 

the neurobiology of MCI is detailed and, by using the AtoDI model of PM as a 

framework, inferences are made as to the expected deficits of PM in older adults with 

MCI.  

 

2.2 Neurobiology of Prospective Memory  

As discussed in Chapter 1, PM is a multistep process and, therefore, requires the 

recruitment of various cognitive systems throughout the different stages. It is 

generally believed that there are certain brain areas that play a more significant role 

in PM. Namely, the prefrontal cortex (PFC) and medial temporal (e.g., hippocampal) 

regions (West & Krompinger, 2005). The following section discusses these regions in 

relation to a proposed PM network.  
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2.2.1 Frontal lobes 

The frontal lobes are one of the largest regions of the human brain, comprised of many 

subregions related to a variety of cognitive functions (Gilbert & Burgess, 2008). Initial 

studies of individuals with frontal lobe dysfunction described impairments in short-

term goals and everyday tasks (Eslinger & Damasio, 1985; Penfield & Evans, 1935). 

Studies found that patients with unilateral frontal lesions were impaired in recall of 

spatial positions (Smith & Milner, 1984), free-recall (Jetter et al., 1986) and delayed 

alternation performance (Chorover & Cole, 1966). However, other early frontal lesion 

studies failed to find the same functional deficits (Schacter, 1987). Instead, Schacter 

(1987) proposed the lesions to the frontal lobes caused specific deficits to episodic 

remembering.  

More recently, studies have shown the role of the frontal lobes across a variety of 

cognitive domains underpinning PM, such as executive function and working memory 

(reviews: Carpenter et al., 2000; Lara & Wallis, 2015; Yuan & Raz, 2014). Primarily, 

executive functions are mediated by the dorsolateral prefrontal cortex (Otero & 

Barker, 2014), comprised of Brodmann area (BA): 9, 10, 11, 12; area 45 and 46; and 

the superior area of 47 (Damasio, 1996). The dorsolateral PFC has multiple cortical 

and subcortical connections that help to organise and control input from specific 

regions, including the hippocampus, associative areas of the neocortex (posterior 

temporal, occipital and parietal), basal ganglia (dorsal caudate nucleus) and the 

thalamus (Fuster, 2001). Evidence has demonstrated the close relationship that the 

PFC has with performing executive functions such as attention shifting, planning and 

decision making (Siddiqui et al., 2008). In a review, Van Snellenberg and Wager (2009) 

suggest that the separate subregions of the PFC work together to successfully perform 

executive tasks. Specifically, they propose that coordinated activity of the prefrontal 

cortex controls representations of a stimulus in the orbital frontal and medial anterior 

PFC (aPFC). Whereas the processing of internal goals is handled by the anterior 

insular, and top-down processing of stimulus representations are performed in 

posterior cortices.  

Working memory similarly relies on frontal lobe structures (Courtney et al., 1998). 

Researchers have discussed the implications that deficits of working memory have on 

other complex cognitive tasks that require attention, such as the manipulation of 

information or goal-directed behaviours (Boisgueheneuc et al., 2006; Koziol & 
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Budding, 2009). Prabhakaran and colleagues' (2000) fMRI study of working memory 

shows that the right frontal lobe plays a particularly important role in working 

memory function and the retention of integrated information. However, the prefrontal 

cortex is not solely responsible for working memory, but rather relies on a complex 

interaction of the frontal cortex and the basal ganglia (Eriksson et al., 2015). Koziol 

and Budding (2009) suggest that working memory is characterised by active 

maintenance of information with the frontal cortex but the information is updated 

within the basal ganglia and controlled through frontal-basal ganglia connections.  

Moreover, complex interactions between the PFC and subcortical regions, such as the 

medial temporal lobe (MTL), have explained encoding and retrieval of long-term 

memories (Campo et al., 2005; Sakai & Passingham, 2004), declarative memory 

(Fernández, 2017) and episodic memory (Barker et al., 2017). Given PM’s reliance on 

a multitude of these cognitive components it would be expected that the PFC would be 

critical in PM.  

Indeed, the aPFC is often found to be activated during PM tasks. For example, using 

Positron emission tomography (PET), Okuda et al. (1998) identified involvement of 

ventrolateral and right dorsolateral prefrontal cortices, the left frontal pole, as well as 

the midline medial frontal lobe, left parahippocampal gyrus and the anterior cingulate 

to be active during PM. These findings were later supported by other PET studies 

(Burgess et al., 2001, 2007, 2011) that particularly implicated BA10 (Figure 2.1; also 

known as the aPFC) in PM, relative to an ongoing task.  

The aPFC may be critical for the maintenance of a PM intention. Burgess et al. (2001) 

used PET to measure cerebral blood flow changes to evaluate the role of the aPFC in 

PM intention maintenance across three experiments. In the first experiment, 

participants just completed an ongoing task; in another experiment, participants 

anticipated that PM cues would appear during the ongoing task; and in the other 

experiment, participants anticipated that PM cues would appear, but they did not. 

Burgess et al. found that in both experiments where participants expected a PM cue, 

there was considerable increases of cerebral blood flow to regions of the aPFC relative 

to the ongoing task. The authors proposed that aPFC was indeed involved with 

maintaining a PM intention. Further evidence has coupled activation of the lateral 

aPFC with decreased activity of the medial aPFC (Burgess et al., 2003, 2008). Burgess 

and colleagues propose this reflects the lateral aPFC mediating attention to internal 



28 

 
representations, such as future intentions, whilst the medial aPFC is responsible for 

attending to external perceptual information, to mediate stimulus-orientated 

processes. Burgess and colleagues concluded that the frontal lobes (particularly the 

aPFC) is more responsible for PM cue maintenance than cue retrieval (Burgess et al., 

2003). 

 

 

 

Figure 2.1. Illustration of the Brodmann area 10 (anterior prefrontal cortex; aPFC). Adapted with 

permission from BodyParts3d, Copyright C 2008 Life Sciences Integrated Database Center licensed 

by CC Attribution-Inheritance 2.1 Japan. 

 

Since the initial neuroimaging studies of PM, a plethora of other imaging methods have 

been used to further understand PM functioning, including functional magnetic 

resonance imaging (fMRI; Barban et al., 2014; Burgess et al., 2011; Cona et al., 2015; 

Gilbert, 2011; Gilbert et al., 2009, 2012; Lamichhane et al., 2018; Reynolds et al., 2009), 

PET (Burgess et al., 2003), transcranial magnetic stimulation (TMS; Bisiacchi et al., 

2011; Costa et al., 2013; Costa, Oliveri, et al., 2011; Debarnot et al., 2015; D. M. Ellis et 

al., 2019), event-related potentials (ERPs; Knight et al., 2010; West et al., 2006) and 

neuropsychology (Burgess et al., 2011; McDaniel & Einstein, 2011; Uretzky & Gilboa, 

2010). Evidence from these studies strongly implicate the aPFC playing an important 

role in PM, particularly the maintenance of intentions. Differential activation of the 

medial and lateral aPFC has led to interest in the framework of ‘the Gateway 

Hypothesis’ of PM (Burgess et al., 2005; Brugess et al., 2007; 2011). 
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2.2.2 The Gateway Hypothesis of Prospective Memory 

The Gateway hypothesis (Burgess et al., 2007; 2011) asserts that a principle purpose 

of the aPFC is to control differences in attending between “stimulus-independent 

thought” (i.e., our inner mental life) and that involved in preferential attending to the 

external world (“stimulus-oriented attending”; Burgess et al., 2011; p2255). According 

to this theory, the increased activity at the lateral aPFC in conjunction with decreased 

activation in the medial aPFC during PM tasks comprises an underlying attentional 

balance between external ongoing stimuli and the internally represented PM intention. 

Specifically, the lateral aPFC mediates attending to a PM intention (Burgess et al., 2005; 

2007) and the medial aPFC is responsible for attending to external perceptual 

information (Gilbert et al., 2006; Simons et al., 2005).  

Evidence of the aPFC activity in PM is reliably found in studies of cerebral blood flow 

(review: Burgess et al., 2011). Most studies of cognitively healthy individuals have 

demonstrated that while increases are found in the lateral aPFC during PM tasks, 

decreases are found in medial regions. The different regions seem to function in an 

interactive manner (Burgess et al., 2003), where the increased activity in lateral areas 

maintain a PM intention and the decreased activity in medial areas inhibit internal 

thoughts. Consider the example given at the start of this thesis about buying dog food 

on the way home: as your attention shifts from directing yourself to the train station 

the activity in the medial aPFC will decrease and as your attention shifts to 

remembering to buy dog food the activity in the lateral aPFC increases.  

Past research suggests that the medial–lateral aPFC dissociation is not PM specific. 

Gilbert et al. (2005) compared attention directed towards environmental stimuli 

(stimulus-orientated attending) and attention toward internal representations, which 

are not related to information in the immediate sensory environment (stimulus-

independent attending). They demonstrated that when switching between attending 

to environmental stimuli and internal presentations, the lateral aPFC was activated for 

a short time. However, they also found that the medial aPFC was consistently activated 

for stimulus orientated attending. This suggests the importance of the aPFC in tasks 

requiring selection between environmental stimuli and internal thought. Moreover, it 

highlights dissociative role between lateral and medial roles of the aPFC (Burgess et 
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al., 2005; Simons et al., 2005), which is apparent in PM but may not be an exclusive 

pattern of activity.  

Okuda et al. (2011) found engagement of the medial aPFC in tasks requiring the 

automatic coordination of attentional processes. A study (Barban et al., 2014) 

manipulating the saliency of the PM cue and the memory load of the ongoing task, 

found an associative interaction of the left lateral aPFC between high memory load and 

the PM task. Barban and colleagues also found that the medial aPFC was related to the 

low memory load condition and the high saliency PM task. These studies suggest the 

medial aPFC plays an important function in spontaneous PM retrieval for highly salient 

external stimuli, while the lateral aPFC is important for internal representations of the 

PM cue when the working memory load is high. 

There is considerable evidence for the role of the aPFC in PM but there are also several 

unanswered questions regarding PM functioning, particularly regarding the other 

stages of PM. The Gateway Hypothesis has largely neglected the encoding and 

intention retrieval phases of PM. Moreover, the question remains about whether the 

aPFC plays a general role in PM functioning or whether it is specific to certain features 

of PM tasks. Furthermore, it does not account for processes occurring throughout the 

rest of the brain, although some areas such as the precuneus, parietal lobe and anterior 

cingulate cortex (ACC) are also found to be activated (Barban et al., 2019; Beck et al., 

2014; Burgess et al., 2011; Den Ouden et al., 2005; Eschen et al., 2007; Gilbert et al., 

2009; Hashimoto et al., 2011; Okuda et al., 1998, 2007, 2011; Poppenk et al., 2010; 

Reynolds et al., 2009; Simons et al., 2006) but their functional relationship to PM is yet 

to be confirmed. Given that PM is a multistep process involving many different 

cognitive functions, one would expect activation in other regions particularly during 

the intention realisation and retrieval stage, for example, the ventrolateral parietal 

cortex (review: Vilberg & Rugg, 2009). Other studies have attempted to address these 

issues by exploring other brain areas during PM. 

 

2.2.3 Prospective Memory in the Global Brain 

In addition to aPFC regions, other frontoparietal networks have also been implicated 

in PM (Beck et al., 2014; Bisiacchi et al., 2011; Burgess et al., 2011; Kalpouzos et al., 

2010; McDaniel et al., 2013). Notably, strategic monitoring appears to be mediated by 
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the dorsolateral PFC and precuneus, whilst attentional and retrieval aspects are driven 

primarily by ventral frontoparietal and temporoparietal networks (Beck et al., 2014; 

Kalpouzos et al., 2010; McDaniel et al., 2013).  

The detection of PM cues and intention retrieval has primarily been attributed to the 

ACC, posterior cingulate cortex (PCC), temporal cortex and insula (Beck et al., 2014; 

Gilbert et al., 2012; Gonneaud et al., 2014; Hashimoto et al., 2011; Oksanen et al., 2014; 

Rusted et al., 2011; Simons et al., 2006). For example, Gonneaud et al. (2014) used fMRI 

to record the brain activity of healthy adults while they completed a time-based PM 

and an event-based PM task. They demonstrated common neural substrates across 

both tasks in the inferior and middle frontal gyri, the insula and the cerebellum along 

with deactivations in the right medial aPFC and the left middle temporal gyrus. 

Differences were also noted between the tasks. In the event-based task, there was 

greater activation of the occipital lobe. Whereas the time-based task elicited greater 

activation in the right hemisphere, notably the middle superior frontal gyri, the cuneus 

and precuneus. Activation differences were reportedly due to the different 

mechanisms applied to perform the PM tasks. However, the increased level of 

perceptual information available in the event-based task may have required different 

cortical areas compared to the time-based task (Rosenthal & Soto, 2016). Across both 

PM tasks, however, Gonneaud and colleagues’ (2014) results confirmed the 

deactivation of the medial aPFC during intention maintenance, providing further 

support for the Gateway hypothesis of frontal PM functioning.   

Additionally, Gonneaud and colleagues (2014) found that the ventral frontoparietal 

network (i.e., ventrolateral prefrontal regions, supramarginal gyrus and inferior 

parietal lobule) was more activated during the retrieval stages of the PM tasks. The 

PCC and temporal cortex regions have also been found to be activated during intention 

retrieval (Poppenk et al., 2010; Gilbert et al., 2012). Together, research suggests that 

multiple brain regions are required to successfully perform a PM task, necessitating 

the development of novel theories that incorporate these findings across different 

stages of PM.  
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2.2.4 The Attention to Delayed Intention Model  

In a recent meta-analysis by Cona et al. (2015), the brain areas which are consistently 

activated across the different phases of PM were reviewed (i.e., encoding, intention 

maintenance and intention retrieval). The authors corroborate the gateway 

hypothesis of PM, showing that across multiple studies, the aPFC is indeed consistently 

activated. Their findings support the increase in lateral aPFC and decrease in medial 

aPFC during PM. Moreover, they highlight the importance of the aPFC in retrieval and 

encoding of intentions. However, it was found that some studies do not support the 

lateral aPFC involvement in PM encoding (Gilbert, 2011). Furthermore, Cona and 

colleagues (2015) report a dissociation between dorsal and ventral networks of 

parietal regions. The dorsal parietal cortex, including the superior parietal lobule and 

precuneus (BA7 & BA19, respectively), were more activated during the maintenance 

of intentions. Whereas the ventral parietal cortex, including the inferior parietal lobule 

and supramarginal gyrus (BA40), were particularly activated for the retrieval of 

intentions. The authors explain this dissociation by linking two previous cognitive 

models of attention and episodic memory together — the dual-attention (Corbetta & 

Shulman, 2002) and the Attention to Memory (AtoM) model (Cabeza et al., 2002; 

Ciaramelli et al., 2010) — to form the AtoDI model (Figure 2.2).  

The ‘dual-attention’ model within the attention domain (Corbetta & Shulman, 2002) 

suggests that dorsal and ventral parietal regions are components of two separate yet 

interacting frontoparietal attentional systems. The dorsal frontoparietal networks 

mediate top-down goal-directed attention towards stimuli. Whereas, the ventral 

frontoparietal networks are reportedly responsible for the bottom-up direction of 

attention to salient events (Corbetta & Shulman, 2002). The Attention to Memory 

(AtoM) model (Cabeza et al., 2008; Ciaramelli et al., 2010) of episodic memory, posits 

that the maintenance of goal retrieval is governed by the dorsal parietal cortex and 

directs attention to memory contents. Cona and colleagues (2015) explain that 

prospective remembering represents a bridge between the attentional and the 

episodic memory domains, incorporating these two models into one.  

The meta-analysis by Cona and colleagues (2015) also supports reliable activation of 

the ACC, the PCC and insular cortices during PM. The ACC (BA24/23) was 

predominately activated during the retrieval phase, which supports previous research 

proposing it as central to a “Cognitive Control Network” (Burgess et al., 2001; Cabeza 
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et al., 2003; Coull et al., 1996; Duncan & Owen, 2000; Gilbert et al., 2010; Miller & 

Cohen, 2001). In contrast, the PCC (BA23/31) was found to be predominately activated 

during encoding and retrieval and had the strongest relationship with retrospective 

memory (Beck et al., 2014; Gilbert et al., 2012; Simons et al., 2006). Cona and 

colleagues suggest that the PCC works with the parietal regions to shift attention from 

external PM cues to the internal to be encoded or retrieved. This is in line with previous 

research suggesting that the PCC has a strong role in processing intentions (Beck et al., 

2014; Den Ouden et al., 2005).  

The AtoDI model (Cona et al., 2015) of PM is an attempt to extend and further both the 

dual-attention model and the AtoM models of memory and attention. It can be thought 

of as a neural comparative to the Multiprocess Framework (outlined in Chapter 1). The 

AtoDI model proposes that strategic monitoring would be mediated by the ventral 

parietal network in conjunction with the PCC, underpinning the neurophysiological 

changes between bottom-up attention and the stored memory. Spontaneous retrieval 

is initially coordinated by the insula due to the reliance on an alert process occurring 

with relevant or distinct PM cues. Following the occurrence of the alert process, 

spontaneous retrieval of the PM intention is then further processed through a reflexive 

associative process leading to the retrieval of the linked intention (Moscovitch, 1994). 

Cona and colleagues (2015) explain that through cooperative activity between regions 

of the ventral parietal cortex and lateral aPFC. The theory also posits that the MTL 

regions may contribute to the reflexive retrieval of an intention, although evidence for 

this remains scarce.  
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Figure 2.2. Graphic illustration of the AtoDI model for the three phases of Prospective Memory: 

Encoding, Maintenance and Retrieval. N.B. ventral parietal cortex = vPC; posterior cingulate cortex = 

PCC; anterior prefrontal cortex = aPFC; primary somatosensory area = S1; dorsal frontal cortex = dFC; 

dorsal parietal cortex = dPC; posterior cingulate cortex; vPFC = ventral prefrontal cortex; ventral 

parietal cortex = vPC; medial temporal lobe = MTL; anterior cingulate cortex = ACC; sensory motor 

area = SMA. Reprinted with permission from Cona et al., 2015.  

 

It should be noted that the majority of these studies used to form these theories of PM 

have been performed on cognitively healthy young adults. Little evidence has explored 

how these theories hold up against those from different populations such as ageing, 
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cognitive decline and other cognitive disorders. Given the reported decline of PM in 

ageing samples and in those experiencing cognitive problems, it is imperative that 

more research is conducted with these populations. The AtoDI model presents itself as 

a useful model for evaluating neurophysiological age-related declines in PM.  

 

2.3 Neurobiology of Ageing 

The majority of older adults will experience some form of cognitive decline, which 

appears to be a key feature of the human life cycle. There are many explanations for 

mild and marked age-related cognitive decline, including depletion of 

neurotransmitters and enzymes (Bahous et al., 2019), global neuronal loss (Bishop et 

al., 2010), amyloid deposition (Rodrigue et al., 2009), oxidative stress (Hajjar et al., 

2018), and the development of neurotic plaques (Malek-Ahmadi et al., 2016). The 

recent advances of neuroimaging and analysis methods have driven an exceptional 

increase in knowledge, insight and the development of novel theories into the ageing 

brain.  

Neurophysiological differences between the older and younger brains are readily 

found (reviews: Bennett & Rypma, 2013; Brehmer et al., 2014; Lugtmeijer et al., 2019).  

A common general pattern reported in the ageing literature is that of brain tissue 

reduction throughout the lifespan (Gunning‐Dixon et al., 2009; Naftali Raz et al., 2005), 

with the rate of shrinkage accelerating precipitously after 50 years of age (Naftali Raz 

& Rodrigue, 2006). Several neuroimaging studies have reported a greater age-

associated decline in white matter volume (Bartzokis et al., 2003; Farokhian et al., 

2017; Guttmann et al., 1998; Jernigan et al., 2001; Resnick et al., 2003), but others 

report a greater decrease to grey-matter volumes (Blatter et al., 1995; Naftali Raz et 

al., 2005; Sowell et al., 2003; Sullivan et al., 2004). A reason for these reported 

differences may be that macro level decreases in white matter is a feature of more 

advanced age (Liu et al., 2003), while grey matter decline is slow and gradual decline 

throughout an adult’s lifespan (Gunning‐Dixon et al., 2009; Naftali Raz et al., 2005). 

Several studies report that specific regions are vulnerable to age-related decline. The 

PFC appears to be particularly sensitive to age-related decline relative to other cortical 

structures, including the hippocampus (Fjell et al., 2009; Resnick et al., 2003). The 

lateral PFC and the dorsomedial PFC may undergo the greatest structural decline as a 
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function of age (Fjell et al., 2009; Good et al., 2001; Resnick et al., 2003). For example, 

Raz et al. (1997) showed that the grey matter volume in the dorsolateral PFC decreases 

with age at a rate of 4.9% per decade in healthy older adults. Nevertheless, some 

inconsistent findings exist, with cross-sectional studies showing no differences in 

ventromedial PFC grey matter volume as a function of age (Chee et al., 2009; Fjell et 

al., 2009; Salat et al., 2004), while other studies using both longitudinal (Frings et al., 

2014) and cross-sectional designs (Fotenos et al., 2005; Tisserand & Jolles, 2003) do 

report evidence of structural decrease to the ventromedial PFC.  

The ‘Frontal Hypothesis of Ageing’ (Greenwood, 2000; West, 2000) proposes that 

selective frontal lobe pathology underlies the neurophysiological decline apparent in 

ageing. Indeed, several authors claim the PFC precedes most, if not all, other areas in 

the ageing process (Dempster, 1992; Rajah & D’Esposito, 2005; West, 2000). Others 

suggest that age-related changes in frontal (Nyberg et al., 2014) and hippocampal 

systems underpin memory problems (Maguire & Frith, 2003), primarily due to age-

related depletion of frontal lobe resources (Moscovitch & Winocur, 1992). Jennings 

and Jacoby (1993) suggest that controlled processing orchestrated in the frontal lobe 

is particularly affected by ageing, leading to poorer explicit memory, whilst automatic 

processes are spared. Magnetic resonance diffusion tensor imaging (DTI) offers 

further support for the frontal hypothesis of ageing showing that degradation of white 

matter circuits is restricted to frontal regions, leaving posterior and inferior brain 

regions intact (Pfefferbaum et al., 2005). However, other DTI studies of ageing fail to 

find the same frontal lobe declines (Barrick et al., 2010). Critiques of the frontal lobe 

hypothesis of ageing have stated that the theory may be too reductionist and 

oversimplified to explain age-related neurological changes (Kievit et al., 2014).  

Several other brain areas are also reported to be affected by ageing (Greenwood, 

2000), albeit not as consistently as frontal regions. A significant moderate 

neurophysiological decline is seen in occipital, parietal and temporal cortices (Raz & 

Rodrigue, 2006). Generally, there is only weak evidence suggesting smaller 

hippocampal volumes and poorer memory performance in older adults (Van Petten, 

2004), which contrasts the results observed in pathological populations (Raz, 2000). 

In recent years, research has provided growing support for the “neural 

dedifferentiation hypothesis” of ageing (review: Koen & Rugg, 2019).  
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The neural dedifferentiation hypothesis proposes that dedifferentiation and cognitive 

decline arise from a reduction of neural efficiency due to reduced integrity of neuronal 

systems (review: Li & Rieckmann, 2014). The hypothesis suggests that a reduction in 

the neuromodulatory abilities of cortical areas reduces the signal-to-noise ratio of 

neurons and subsequently leads to a blurring of precision of neural representations. 

Therefore, while young adults form specific representations of information, older 

adults exhibit distributed activity across overlapping neuronal sources which are less 

distinct (Koen & Rugg, 2019).  

The majority of studies of neural dedifferentiation in older adults has been performed 

using fMRI (review: Koen et al., 2020). Researchers through a variety of different study 

designs have demonstrated evidence for age-related dedifferentiation in the fusiform 

face area (Goh et al., 2010), parahippocampal place area (Koen & Rugg, 2019; Park et 

al., 2004; Voss et al., 2008) and the visual word form area during the passive viewing 

of scenes, objects, pseudowords and faces (Park et al., 2004). Evidence suggests that 

neural dedifferentiation follows a linear decrease in neural selectivity throughout an 

individual's lifetime (Park et al., 2012). Moreover, the results of neural 

dedifferentiation are reliably replicated in the ventral occipitotemporal cortex across 

a variety of methodological study designs (Berron et al., 2018; Burianová et al., 2013; 

Koen & Rugg, 2019; Voss et al., 2008). However, neural age-related dedifferentiation 

is not observed across all stimulus types. For example, Voss et al., (2008) reported no 

age-related neural dedifferentiation in extrastriate regions for colour patches or 

familiar words in colour. Others have found no neural dedifferentiation in neural 

responses for visual words and objects (Thakral et al., 2019; T. H. Wang et al., 2016). 

This suggests that the processing of perceptual features may be spared from 

dedifferentiation and further research is required to determine if neural 

dedifferentiation extends beyond perceptual stimuli (Abdulrahman & Henson, 2016; 

Dennis & Cabeza, 2011; Martins et al., 2015; St-Laurent et al., 2011). 

The neural dedifferentiation hypothesis may be particularly important for explaining 

declines in PM due to the importance of high-fidelity neural representations required 

for encoding and retrieval processes (Bowman et al., 2019; St-Laurent et al., 2014; St-

Laurent & Buchsbaum, 2019). This is yet to be explored in PM, but evidence has 

demonstrated that a reduction in whole brain resting-state functional specificity is 

predictive of episodic memory performance, event after controlling for age (Chan et 
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al., 2014). One study of neural dedifferentiation reported greater neural 

distinctiveness correlated positively with working memory performance following 

training in older adults (Iordan et al., 2018). It is worth noting, however, that whilst 

some studies control for age (Chan et al., 2014), the majority have not made direct 

comparisons between young and older adults. Research so far suggests strong 

relationships between neural dedifferentiation and cognitive performance, including 

episodic memory (Koen et al., 2020). However, no studies have examined age-related 

neural dedifferentiation in PM. Moreover, it is unclear whether dedifferentiation is 

related to neurodegeneration and dementia related diseases (Maass et al., 2019). 

Given that the majority of work in this area has come from fMRI, other methods that 

offer higher temporal resolution (e.g., EEG/MEG) may offer further insight into the 

functional significance of age-related neural dedifferentiation (Koen et al., 2020). 

 

2.4 Neurobiology of Ageing and Prospective Memory 

Drawing on PM neuroimaging studies of younger adults and the known cognitive 

disruptions in older adults, McDaniel and Einstein (2011) have proposed that 

degeneration of frontal function would underpin age-related disruption in PM. This 

idea was based on findings that older adults rely more on frontal brain systems (Braver 

et al., 2001; Raz et al., 1997; West, 1996), which are implicated in PM tasks (i.e., those 

tasks which require a heavy planning component or strategic monitoring for PM 

intentions). Furthermore, McDaniel & Einstein (2011) suggest that those tasks which 

rely on more involuntary or reflexive retrieval, are thought to be associated with 

medial temporal structures (J. D. Cohen & O’Reilly, 1996; Moscovitch, 1994) and are 

likely spared by the effects of typical ageing. McDaniel & Einstein (2011) did not 

directly evaluate neurocognitive functioning in older adults during PM performance, 

although their study provided a direction for future research in this area.  

Investigation of fMRI in older adults during PM tasks is relatively novel. Recently, Peira 

et al. (2016) compared healthy older adults to younger counterparts on a dual-task 

fMRI paradigm in which demands of PM and working memory components were 

manipulated. Older adults showed poorer performance during the ‘high-load’ working 

memory and PM conditions, but no differences were seen when cognitive demands in 

working memory and PM were low. Increased activation of the frontostriatal and MTL 
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regions was shown for younger adults compared to older adults during the PM tasks. 

The authors concluded that PM impairments resulted from failure to recruit these PM-

related brain networks, in line with behavioural studies that indicate poorer age-

related performance in tasks reliant on frontal functions (Cabeza & Dennis, 2013; 

McDaniel & Einstein, 2011). Furthermore, Peira et al. (2016) reported a negative 

relationship between PM response time and activation of the left inferior frontal gyrus 

for younger adults, which was not apparent in older adults. Peira and colleagues 

(2016) also implicate the importance of other regions, such as the hippocampus and 

basal ganglia.   

Despite being hypothesised by Cona et al.'s (2015) AtoDI model of PM, evidence of MTL 

neural recruitment had not been found prior to Peira and colleagues’ (2016) study. 

MTL impairment has been reported in ageing studies of episodic memory (Nyberg et 

al., 2010; Persson et al., 2006). Thus, it has been proposed that the MTL plays an 

important role in the retrospective component of PM retrieval. The results from Peira 

et al. (2016) highlight the importance of the MTL in age-related declines in PM. 

Considering the importance of the MTL and the demonstrated frontal lobe deficits 

(McDaniel & Einstein, 2011), it is hypothesised that older adults would be impaired in 

PM tasks that required extended monitoring of cues and would have difficulty 

retrieving the intention once it was realised. However, the current evidence remains 

scarce and Peira et al.’s (2016) sample consisted of two relatively small groups 

(younger adults n = 15; older adults n = 16). Therefore, further work with larger 

sample sizes is necessary to understand neural areas affected by ageing in PM.  

Furthering Peira’s work, Gonneaud et al. (2017) investigated differences between 

younger and older adults using fMRI in event-based and time-based PM. In contrast to 

Peira et al.’s (2016) results, Gonneaud et al.’s (2017) found higher activity in the older 

adults relative to the younger adults in both the event-based and time-based PM tasks. 

Additionally, they found no deactivation of the medial aPFC in older adults during the 

PM tasks, which was apparent in the younger adults. Their analysis revealed older 

adults were also recruiting additional areas (particularly in the frontal, parietal, 

supplementary motor area and the precuneus), which were not displayed in the 

younger adults and, therefore, more likely to reflect supportive roles than being 

specific to areas required for PM functioning. Other regions recruited by older adults 

included the left inferior and right middle frontal, superior parietal, left superior 
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temporal, the bilateral supplementary motor area as well as the occipital cortices and 

the precuneus, which were also found by Gao et al. (2014). However, Gonneaud and 

colleagues’ study failed to find correlations between PM performance and activation 

of these additional areas and were, therefore, deemed unlikely to be performing a 

compensatory role for successful PM functioning. The difficulties for older adults to 

recruit the networks specific and selective for strategic monitoring are in line with the 

dedifferentiation hypothesis (Baltes & Lindenberger, 1997; Reuter-Lorenz & Lustig, 

2005),  suggesting that older adults were able to recruit the necessary areas for 

successful PM but were not able to do so exclusively. Firm conclusions with regards to 

neuronal dedifferentiation are difficult to draw given the number of studies reporting 

evidence of compensatory networks described in a variety of different tasks (review: 

Cabeza et al., 2018).  

Gonneaud and colleagues (2016) analysed the medial aPFC with the expectation of 

finding deactivation during PM maintenance in young and older adults. Their results 

failed to show this pattern of deactivation for event-based or time-based PM in the 

older adults, but the younger adults did show the deactivation. It is possible then that 

the PM differences seen in behavioural studies are a result of an inability of older 

adults to disengage their attention from external stimuli and reorient towards internal 

representations of the PM cue. Potentially, the Gateway Hypothesis (Burgess et al., 

2003; 2007) is only applicable to younger and not older adults.  

Other methodologies have also been employed to explore brain areas involved in PM 

in older adults. Debarnot et al. (2015) used intermittent theta-burst stimulation (iTBS) 

via TMS and found that single iTBS administration over the left aPFC results in a 

performance boost for older individuals. This further affirms the importance of the 

aPFC in PM functioning. That being said, a similar study using transcranial direct 

stimulation (tDCS) by Rose et al. (2019), did not find any performance increase to PM 

for younger or older adults. However, methodological differences are apparent, 

particularly as the former used a virtual-reality-based design and the latter used a 

more naturalistic design. The mixed results using this methodology does not help to 

clarify the role of the prefrontal cortices in PM functioning.  

The currently available literature demonstrates mixed results and inconsistent 

patterns of activity. However, it could be speculated that age-related declines of PM 

performance are in part due to an inability to properly regulate frontal lobe activity 
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and therefore may account for the poorer performance found in those tasks requiring 

active maintenance of an intention (McDaniel & Einstein, 2011). Older adults may also 

be employing additional cognitive systems to supplement declines in the MTL and in 

frontostriatal connections. Further work is required to address the neurocognitive 

discrepancies within the PM literature and to further the understanding of age-related 

PM performance declines.  

Despite the discrepancies within typical ageing literature for PM, to date there is no 

neuroscientific work into PM and atypical ageing, such as MCI or dementia. 

Nevertheless, findings from the typical ageing literature provide a useful reference to 

draw hypotheses about PM and MCI.    

 

2.5 Neurobiology of Mild Cognitive Impairment 

The neuropathological features identified in older adults with MCI typically fall within 

an intermediary stage of severity from normal ageing and early AD (Stephan et al., 

2012). The various features that are present in MCI include diffuse cortical amyloid 

deposition, degeneration of the cholinergic system, synaptic loss and neurofibrillary 

tangles in the MTL (Mufson et al., 2012; Petersen et al., 2006; Stephan et al., 2012). 

Additionally, atrophy is consistently found in the MTL, particularly the hippocampus, 

entorhinal cortex, and in the PCC (Kim et al., 2010). It is often the case that these areas 

are the first to experience atrophy, but as the cognitive decline continues, the atrophy 

will spread to parietal association areas and then onto the frontal and primary cortices 

(Braak & Braak, 1991). Nevertheless, there is a great deal of heterogeneity within these 

neuropathological features; some individuals with MCI do not exhibit the 

neuropathological changes expressed in those that go on to develop AD (Stephan et al., 

2012; Mufson et al., 2012). Yet, evidence suggests that neuronal loss in the 

hippocampus, entorhinal cortex and subiculum are commonly found and are 

predictive of conversion to AD (Su et al., 2018). 

Following the continuation of white matter decline found in ageing, individuals with 

MCI also exhibit further significant reductions in multiple white matter regions 

(Medina et al., 2006) and reduced cortical thickness in the precuneus and temporal 

cortex (Román & Pascual, 2012). Longitudinal evidence from MRI data has shown that 

cortical thinning in the temporal poles and left MTL is detectable before the 
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development of cognitive decline symptoms in those who go on to develop AD 

(Pacheco et al., 2015). Moreover, individuals with MCI who develop AD also show 

greater cortical thinning at baseline measurements relative to those who remain stable 

after seven years in the superior and middle frontal, inferior temporal gyri, fusiform 

gyrus and the parahippocampal regions (Julkunen et al., 2009).  

A definitive diagnosis of AD relies on the detection of amyloid-beta plaques in autopsy 

(Mirra et al., 1991). Despite poor understanding of the cause of amyloid-beta plaques, 

the Apolipoprotein E allele 4 (ApoE4) is a reported risk factor for increased amyloid 

deposition (Villemagne et al., 2008) and the development of AD (Nagele et al., 2004). 

Neuroimaging studies have demonstrated that ApoE4 genotypes have a remarkable 

influence on reducing both grey matter (Pievani et al., 2009) and white matter volume 

(Wang et al., 2017) in subjects with aMCI. Additionally, cortical atrophy of the 

hippocampus, anterior cingulate and amygdala have been found in stable MCI patients 

with ApoE4 (Hämäläinen et al., 2008; Tang et al., 2015) and extending to frontal, 

parietal and temporal lobes with the development of AD (Hämäläinen et al., 2008). It 

remains unclear how ApoE4 alters the brain’s neuroarchitecture, although evidence 

does appear to indicate poorer memory function is related to higher beta-amyloid 

(Mormino et al., 2009; Rodrigue et al., 2012) and having the ApoE4 allele (Li et al., 

2014; Striepens et al., 2011), albeit not consistently (Aizenstein et al., 2008).  

Structural neuroimaging studies provide strong evidence of the progressive decline 

from healthy ageing towards AD. The MTL, including the hippocampus and the 

entorhinal cortex are among the most prominent indicators of cognitive decline (Du et 

al., 2004; Pennanen et al., 2004). Individuals with AD show hippocampal and 

entorhinal cortex volume reductions of 26–27% and 38–40%, respectively, relative to 

healthy controls (Du et al., 2004). Individuals with MCI show intermediate levels of 

atrophy in these areas (Pennanen et al., 2004). Moreover, atrophy of the MTL within 

AD has been linked to poorer memory and executive functioning in AD (Oosterman et 

al., 2012) and is a strong indicator of progression for MCI to AD (Nesteruk et al., 2015). 

Other studies correlating executive function and grey matter loss have found 

noticeable impairments in the basal forebrain (Kilimann et al., 2017) and in the frontal 

and temporal cortices in MCI (Duarte et al., 2006), although frontal impairments are 

not consistently found. In a review on white matter integrity (Madden et al., 2012), 
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differences in the frontal cortices were absent in MCI but were apparent in AD 

suggesting frontal lobe decline may only become evident with disease progression.   

Diffusion tensor imaging studies of MCI and AD have provided further support of 

abnormalities in the basal forebrain (Brüggen et al., 2015), and have found that these 

abnormalities are associated with executive function (Sjöbeck et al., 2010) and 

episodic performance (Hirni et al., 2013) in AD. Marked hypoperfusion, shown by 

cerebral blood flow, has also been shown in the posterior cingulate, occipital, temporal, 

precuneus and parietal cortices in MCI and AD (Alexopoulos et al., 2012; Dai et al., 

2009; Gao et al., 2014; Sexton et al., 2011), although this is notably greater in AD than 

in MCI. Moreover, MCI patients demonstrate limited compensatory mechanisms 

within the basal ganglia, amygdala and hippocampus as shown by increased cerebral 

blood flow relative to healthy controls (Dai et al., 2009).  

Compensatory mechanisms in older adults with MCI have also been demonstrated in 

fMRI studies, showing hyperactivation of hippocampal regions during encoding in 

memory tasks relative to healthy controls (Trivedi et al., 2008; Parra et al., 2013). 

Despite this, other studies have shown those with MCI do exhibit comparable levels of 

hippocampal deactivation to older adults with AD during memory recall (Petrella et 

al., 2007). Functional MRI studies of attention (C. Li et al., 2009; Van Dam et al., 2013) 

and working memory (Clément et al., 2013) similarly have reported overactivation of 

bilateral and middle temporal, middle frontal, anterior cingulate, fusiform gyrus 

posterior parietal regions in those with MCI.  

Studies examining the complex interactions of resting-state functional connectivity 

have found impaired PCC–MTL functional connectivity in individuals with aMCI (Sorg 

et al., 2007) and with AD (Zhou et al., 2008). Some results demonstrate decreased 

connectivity between the PCC and the temporal cortex and increased functional 

connectivity of the PCC and the frontal cortex in aMCI patients relative to healthy 

controls (Bai et al., 2009). Functional connectivity within the default mode network 

(DMN) has been of interest in dementia-related diseases.  

The DMN is comprised of the medial and dorsal PFC, inferior parietal cortex, ventral 

anterior cingulate, inferior lateral temporal cortex, orbitofrontal cortex, PCC and 

parahippocampal gyrus (Greicius et al., 2003). Research shows patterns of 

dysfunctional connectivity in individuals with MCI between the MTL and other regions 
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of the DMN (Das et al., 2013) and from the areas outside of the DMN to the PCC (E. Yu 

et al., 2017). However, limited increases in connectivity were also show in these 

studies within the anterior and ventral DMN, which is similarly found in those with 

early AD before exhibiting a decline in these connectivity patterns in line with disease 

progression (Damoiseaux et al., 2012). The evidence suggests that during stages of 

connectivity decline, some areas of connectivity diminish but are compensated 

through the increased reliance on other cortical networks (Damoiseaux et al., 2012).  

The different neuroimaging studies of MCI have highlighted that the MTL 

(hippocampal and entorhinal regions), PCC, temporal cortex, and the basal forebrain 

as being particularly sensitive to cognitive decline and to a lesser extent the occipital 

and parietal cortices. The literature suggests that as networks become impaired 

through cognitive decline, compensatory mechanisms through alternative routes may 

become active to support cognitive functioning.  

 

2.6 Neurobiology of Prospective Memory in Mild Cognitive 

Impairment 

To date no neuroimaging studies of PM have been conducted either on MCI or AD. 

However, given the behavioural and psychological evidence of MCI performance and 

PM (outlined in Chapter 1), and the current understanding of the underlying 

neuromechanisms of PM, hypotheses can be drawn on how PM might be 

neurophysiologically impaired in those with MCI relative to healthy older adults. 

Older adults carrying a copy of the ApoE4 allele demonstrate poorer cognition in 

comparison to those who are not carriers (Marioni et al., 2016; Small et al., 2004; 

Wisdom et al., 2011) and even poorer cognition in those who are homozygotic carriers 

(Caselli et al., 2008; Small et al., 2004). ApoE4 carriers with mild AD were more 

impaired on focal PM retrieval accuracy compared to non-ApoE4 matched controls 

(Duchek et al., 2006). An ApoE4 disadvantage has also been found in focal and non-

focal PM retrieval performance in healthy older adults (Driscoll et al., 2005), but was 

not supported in a later study for both the focal and non-focal tasks (McDaniel et al., 

2011). The relationship between the ApoE4 gene and cortical atrophy may account for 

PM deficits in MCI, although this has not yet been conducted directly on individuals 
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with MCI. This notion is partially supported by evidence suggesting a genotype-specific 

variation in neural activity during PM, as evidenced by cognitive enhancements to the 

right hippocampal formation in ApoE4 carriers after receiving nicotine (S. Evans et al., 

2013). It is important to note, however, that studies of ApoE4 and cognition are not 

consistently reported (Bunce et al., 2004, 2014; Salo et al., 2001). This is likely due to 

sensitivity of the domain under study, creating variability in the reported results.  

A more promising means of determining the affected neurobiological areas of PM in 

those with MCI is by using the AtoDI model as a framework. By using the AtoDI model, 

each of the neurobiological structures believed to be involved with PM functioning at 

different stages can be compared with research on MCI within that neurobiological 

area. Inferences about which stage of PM and which neurobiological structures are the 

most likely to be impaired in those with MCI can then be drawn. 

Considering the encoding stage of PM, it might be speculated that the poor ability to 

encode an PM intention underlies poorer PM performance in MCI (Costa et al., 2011), 

which may be because of degeneration in the PCC (see Section 2.5). Indeed, Papma et 

al. (2017) demonstrated a significant relationship between the PCC and hippocampus 

during episodic memory encoding and the correct recognition of items in MCI patients. 

They suggest that during episodic memory encoding network deterioration is the most 

important predictor of PCC functioning in MCI. However, given the absence of a control 

group, the effect of typical and atypical ageing on episodic memory based on their 

study remains unclear. Nevertheless, other studies of episodic memory encoding 

support deterioration in a network centred around PCC and the MTL (Chetelat et al., 

2003; Gomar et al., 2017; Hampstead et al., 2016). For example, Hampstead et al. 

(2016) used fMRI to assess functional connectivity during memory encoding. They 

suggest that episodic memory encoding in healthy older adults is principally driven by 

the inferior frontal junction, anterior intraparietal sulcus and the PCC. However, 

individuals with MCI had reduced PCC connectivity and instead relied more on the 

retrosplenial cortex (BA29/30) and the frontal eye fields (BA8). It would be expected, 

therefore, that the functional impairments of the PCC may account for the poor PM 

performance of individuals with MCI.  

Regarding maintenance of the PM intention, generally little evidence demonstrates 

impaired structural integrity of the aPFC, dorsal PFC and dorsal parietal cortex in 

individuals with MCI relative to healthy older adults. Thus, following correct encoding, 
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the maintenance of the intention should remain relatively intact compared to healthy 

older adults. However, functional studies of attention show attenuated prefrontal 

activation on a divided attention task in MCI (Dannhauser et al., 2005). This would 

suggest that the attentional network responsible for PM intention maintenance of may 

be impaired. This seems fitting given the previously discussed studies showing that 

PM performance was poorer for the MCI patients despite them successfully 

remembering the encoded PM intention (Costa et al., 2010). However, the frontal 

systems are more impaired in individuals with MCI that go on to develop AD than those 

who do not (Ogama et al., 2016). Therefore, the frontal systems and intention 

maintenance may decline later in dementia-related diseases and may serve as a 

sensitive indicator of progression towards AD.  

The evidence suggests that the retrieval stage of PM will be significantly impaired in 

older adults with MCI. In combination with the behavioural evidence suggesting 

poorer PM retrieval because of MCI, memory studies have also implicated those 

neurological systems important for the retrieval of memories in MCI. According to the 

AtoDI model of PM, the insula is the first neurological system in intention retrieval. 

Insula grey matter atrophy has frequently been reported in MCI (Caroli et al., 2010; 

Davatzikos et al., 2011; Fan et al., 2008; Spulber et al., 2012). Additionally, Xie et al. 

(2012) have linked the intrinsic connectivity of the insula in those with MCI to poorer 

episodic memory scores. Other areas involved in retrieval that are consistently found 

to be affected in MCI are the MTL and the PCC (Das et al., 2013; L. Zhang et al., 2019). 

Both of these systems are known to be critical in the role of memory (Maddock et al., 

2001; Suzuki & Amaral, 2004) and have specifically been implicated in the role of 

memory retrieval (Rugg & Vilberg, 2013; Schacter & Wagner, 1999). Taken together, 

PM in older adults with MCI may be affected by atypical functioning in the insula, PCC 

and MTL and it would, therefore, impact the ability to successfully retrieve a PM 

intention.  

As illustrated in Figure 2.3, the neurobiological evidence suggests that the most likely 

stage to be impaired in PM is the retrieval stage. This is based on the reported 

impairments in the insula, PCC and MTL in MCI. Given the role of the PCC in the 

encoding stage of PM, it may be expected that those with MCI will have poor PM 

intention encoding abilities, which may affect the ability to later recall an intention. It 

is unclear whether intention maintenance will be affected in MCI. However, given the 
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reduced activation found in those with MCI during divided attention tasks, the 

attentional demands of a PM task may also affect the prefrontal cortices and, therefore, 

the ability to maintain an intention. The neurobiological impairments in MCI cross-

referenced with AtoDI, provides a useful reference to begin exploring the potential 

neurophysiological impairments of PM in MCI.   
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Figure 2.3. Graphic illustration of the impaired stages and brain areas of prospective memory in older 

adults MCI proposed in Section 2.6. Areas highlighted in green are reported to have impairments due 

to MCI. N.B. ventral parietal cortex = vPC; posterior cingulate cortex = PCC; anterior prefrontal cortex 

= aPFC; primary somatosensory area = S1; dorsal frontal cortex = dFC; dorsal parietal cortex = dPC; 

posterior cingulate cortex; vPFC = ventral prefrontal cortex; ventral parietal cortex = vPC; medial 

temporal lobe = MTL; anterior cingulate cortex = ACC; sensory motor area = SMA. 
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2.7 Chapter Summary 

Chapter 2 has outlined the two predominant neurobiological theories of PM, namely 

the ‘Gateway Hypothesis’ (Burgess et al., 2005) based on the reliably found 

mediolateral dissociation of the aPFC and the AtoDI model (Cona et al., 2015), which 

attempts to combine the AtoM model of episodic memory (Cabeza et al., 2008; 

Ciaramelli, 2010) with the dual-attention model (Corbetta & Shulman, 2002). 

Additionally, this chapter has outlined the brain areas commonly affected by ageing, 

particularly implicating deficits found in the PFC and an emerging line of research 

suggesting cognitive decline may be, in part, due to dedifferentiation of neuronal 

sources. Furthermore, the scant research surrounding the neurobiological effects of 

ageing on PM is highlighted showing that current understanding is both limited and 

mixed. The neurobiology of MCI is detailed, highlighting areas such as the PCC as a 

predominate area indicative of cognitive decline. Finally, using the AtoDI model of PM 

and the predominant areas thought to be implicated in cognitive decline, hypotheses 

are formed regarding the neurobiological structures most likely to account for 

impairments of PM in older adults with MCI. Chapter 3 describes how these 

neurobiological networks may be reflected in electrophysiological neuroimaging 

methods and how they may vary between typical and atypical ageing. 
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Chapter Three: Electrophysiology of 

prospective memory, ageing and mild cognitive 

impairment 

 

3.1  Introduction 

Chapter 3 builds upon the neurobiological theories and networks outlined in Chapter 

2. Specifically, this chapter describes the current understanding of the 

electrophysiological findings of PM in young and healthy older adults. The current 

chapter also describes the effect of cognitive decline on electrophysiology and 

hypothesises are made regarding how cognitive decline will impact PM related 

electrophysiology. The established findings of electrophysiology related to PM are 

discussed along with the findings that are less clear. Finally, this chapter discusses the 

use of an innovative artificial intelligence (AI) technique known as Spiking Neural 

Networks, which has the potential to improve our understanding of PM, ageing and 

cognitive decline.  

 

3.2 Electroencephalography and Event-Related Potentials 

Electroencephalography (EEG) was first recorded in humans by Hans Berger (1924). 

It was described as amplified extracellular activity surrounding postsynaptic neurons, 

which can be recorded at the scalp (Berger, 1929). It is, therefore, a relatively direct 

measure of underlying electrocortical activity. These electrocortical signals are the 

summation of many thousands of synchronous firings of excitatory and inhibitory 

postsynaptic potentials (Cohen, 2014). Estimates place 10,000–50,000 pyramidal cells 

to be synchronously discharging for EEG and MEG sensors to register a detection 

(Murakami & Okada, 2006). This detection is possible due to the parallel alignment of 

the pyramidal neurons and the size of the cell bodies being large enough to create a 

detectable electric field. 
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Electroencephalographic signals that are time-locked to the presentation of a 

behaviour or response to stimulus are known as event-related potentials (ERPs). An 

ERP can be broken down into several subcomponents reflecting stimulus-related 

processes (Luck, 2014; Luck, 2006). They are visualised as positive and negative 

deflections relative to a baseline known as a reference, which can be altered for 

optimal voltage contrast. Both the relative amplitudes (measured in microvolts) and 

latencies (measured in milliseconds) can be analysed and compared between 

conditions and across groups to determine how experimental changes might influence 

specific cognitive processes. Usually, component amplitudes are measured from the 

peak of a component with reference to a baseline1 and latencies are calculated from 

the component peak following stimulus onset.  

Components recorded at the scalp consist of a series of temporally overlapping 

subcomponents and therefore changes exhibited at one component will affect 

components later in time (Luck, 2014). This effect is most robust across earlier 

occurring components and often results in enhancement or attenuation of the 

amplitude along with delays to the component’s latency. Through the comparison of 

ERP amplitudes and latencies, one can determine how neurocognitive processes are 

altered in neurological disease. ERPs, therefore, present a particularly useful way to 

understand neurophysiological dysfunction (Donchin, 1979; Luck, 2014; Rugg & Coles, 

1995). 

A single time locked ERP response may be relatively small compared to the ongoing 

background noise of the brain and it is often difficult to discriminate task related ERP 

components from a single trial (Luck, 2006). As noise is assumed to be constant during 

EEG, averaging ERPs across multiple events reduces the background noise and helps 

to enhance the signal-to-noise ratio of the ERP (Luck, 2005). Averaging across multiple 

trials removes unwanted modulations in the data and boosts the statistical power. The 

resulting averaged waveform represents a single task-specific response (Luck, 2006).  

The positive and negative deflections of the averaged waveform can be then used to 

examine the subcomponents related to cognitive processes. Typically, the voltage 

deflections are named after the polarity in which they are detected and the 

approximate time that they occur. For example, a positive deflection at 300ms after 

 
1 The area under an ERP component can also be measured but is not used within the current thesis. 
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stimulus onset is known as the P3 (or P300; Coles & Rugg, 1996; Otten & Rugg, 2005). 

A negative deflection occurring approximately 200ms post-stimulus onset is known as 

the N2 (or N200; Folstein & Van Petten, 2008). It should be noted however, that due to 

the complex folds of the gyri and sulci within the cortex, it is difficult to determine the 

real physical direction of the ERP deflection without an MR image of the subject’s head. 

Therefore, the naming convention used for an ERP subcomponent does not necessarily 

pertain to its underlying neurophysiology (Otten & Rugg, 2005). 

Nevertheless, ERP methods offer a considerable advantage over MR imaging methods 

due to their high temporal resolution. Hemodynamic measures (e.g., fMRI and PET) of 

functional activity have a temporal resolution of several seconds (Luck, 2005). ERPs, 

however, have a temporal resolution in the order of milliseconds (Otten & Rugg, 2005) 

making it well suited to measure rapid neuronal changes reflective of underlying 

cognitive processes. For example, ERP components occurring between 80–120ms post 

stimulus reflect sensory processing and selective attention (Gallinat et al., 2002). ERPs 

occurring between 160–350ms, such as the posterior N2, are related to visual 

attention (Folstein & Van Petten, 2008) and stimulus discrimination (Hoffman, 1990). 

The later components occurring after 300ms are associated with top-down processes 

and higher cognitive functions (Coles & Rugg, 1996).  

Compared to other neuroimaging methods, the spatial resolution of EEG methods is 

relatively low. The poor spatial resolution is due to the summation of distal and 

proximal sources affecting scalp-recorded activity, and diffusion of current through 

biological tissue (Makeig et al., 1996). Spatial resolution for EEG is estimated to be 

between 5–9cm (Babiloni et al., 2001; Nunez et al., 1994). Moreover, because ERPs are 

generated by multiple neural sources, it is often difficult to delineate specific 

subcomponents from the ERP waveform. However, reliable source localisation is 

achievable and improved through high-density EEGs and novel analysis methods (J. 

Song et al., 2015). 

Studies of PM using ERPs have identified three primary components related to PM 

functioning. These include the N300, the frontal positivity and parietal positivity 

(West, 2011). The N300 and frontal positivity are related to PM cue detection, while 

the parietal positivity is related to the retrieval of PM intentions. The following section 

details the ERPs related to PM along with the current understanding of how they 

affected by ageing and MCI. Additionally, the following section proposes the relevance 
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of an additional ERP component to PM and ageing, which reflects the reorientation of 

attention following response to a PM stimulus known as the reorientation negativity 

(Berti, 2008). 

 

3.3 Prospective Memory Event-related Potentials 

3.3.1 N300 / Frontal positivity 

The N300 (illustrated in Figure 3.1) has previously been identified as being related to 

PM cue detection (Einstein & McDaniel, 1996; West et al., 2006b). It is 

characteristically identified as a negative potential over occipitotemporal scalp 

regions. It usually begins between 200–300ms following stimulus presentation and 

reaches a peak around 300–500ms (West, 2007, 2008; West et al., 2001, 2011). N300 

amplitudes are typically greater (i.e., more negative) for successful PM behavioural 

responses, than for PM performance failures and for ongoing activity (West, 2011). 

The larger N300 amplitudes to successful PM cue responses suggest that the N300 is 

an essential component of event-based PM. N300 amplitude increases have been 

observed when embedded in various ongoing cognitive tasks (e.g., n-back, lexical 

decision and continuous recognition tasks) and in varied PM stimulus types (e.g., word 

identity, letter case, colour; Cruz et al., 2016; West et al., 2003; West & Krompinger, 

2005; West & Wymbs, 2004). This suggests that the N300 is a reliably occurring ERP 

component of PM.  

Nevertheless, some research has demonstrated that N300 ERPs are not found in 

response to PM stimuli that are non-perceptual in nature (J. Wilson et al., 2013). 

Wilson and colleagues (2013) reported that non-perceptual PM cues did not produce 

an N300 response due to the semantic nature of the PM task (e.g., an animal word). 

Similarly, Cousens et al. (2015) also did not detect an N300 response to non-perceptual 

(semantic) PM stimuli despite finding an N300 response to perceptual PM stimuli. 

Taken together these results suggest that the N300 may not be a general marker of 

underlying PM cue detection. However, in another study evaluating conceptual and 

perceptual PM stimuli, Cruz et al. (2016) did find a PM cue detection response for both 

stimulus types, but the non-perceptual N300 was delayed by 100ms. Thus, it is unclear 

whether conceptual, semantic-based PM will elicit an N300 response in comparison to 
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the ongoing working memory tasks. A possible explanation for the discordant results 

between Cruz and colleagues’ study (2016) and Cousens and colleagues’ study may be 

due to how the PM stimuli comparisons were made. In Cousens and colleagues’ (2015) 

study, ERP amplitudes in response to PM stimuli were compared to the averaged 

waveforms of two different ongoing task responses (related and unrelated lexical 

decisions). However, in Cruz and colleagues’ (2016) study, the PM-related ERPs were 

compared against ERPs to related and unrelated ongoing stimuli. Averaging ERPs in 

response to two ongoing stimulus types may have inappropriately changed the ERP 

waveforms and therefore affected the ability to detect the ERPs related to PM cue 

detection.  

The frontal positivity component (illustrated in Figure 3.1) is also associated with PM 

cue detection and is found to correspond to the onset of the N300, but occurs over 

midline frontal sites (West, 2011). In addition to cue detection, the frontal positivity is 

reportedly related to task switching (West, Bowry & Krompinger, 2006; West, 2007; 

Bisiacchi, Schiff, Ciccola & Kleigel, 2009; West, 2011) and target checking (West, 2007). 

Given the dual-task nature of most PM experiments, it could be argued that the frontal 

positivity reflects executive control processes recruited when moving from the 

ongoing task to the PM aspects of the task (Bisiacchi et al., 2009). Indeed, research has 

made a strong case for executive functions being an essential predictor of PM 

performance (Schnitzspahn et al., 2013) and the frontal positivity may reflect the 

engagement of such functions (Nyhus & Barceló, 2009).  

Studies have confirmed the relationship of the N300 and frontal positivity to PM cue 

detection through experiments using PM lures, which share some, but not all the 

features of the PM cue. West and Covell (2001) found sustained negativity over aPFC 

scalp regions and an N300 response in young adults in response to PM cues and PM 

lures. West and Covell suggest that the frontal positivity and N300 were elicited for PM 

cues and lures because the features elicited cue detection responses, which were not 

found in response to the ongoing task stimuli. Like the N300, the frontal positivity has 

been reliably distinguished from the ongoing activity across a range of PM stimulus 

types (West et al., 2007; West & Ross-Munroe, 2002). The results suggest that both the 

N300 and frontal positivity are central features to the detection of PM cues.  
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Figure 3.1. Grand-averaged ERPs of the N300 (right) and the frontal positivity (left) differentiating 

PM hits from ongoing activity trials, PM misses and PM cues. The tall bar represents stimulus onset 

and the short bars represent 400ms intervals. From “Temporal dynamics of prospective memory: A 

review of the ERP and prospective memory literature” by West 2011, Neuropsychologia. Copyright 

Elsevier 2011. Adapted with permission. 

 

3.3.2 Parietal positivity 

The parietal positivity is a late positivity complex generated over the parietal region of 

the scalp between 400–1200ms after stimuli presentation (West, 2011). Whereas the 

N300 and frontal positivity can be thought of as reflecting the prospective component 

of PM, the parietal positive reflects the retrospective component and the realisation of 

delayed intentions (West, 2011). The parietal positivity is a robust component of PM 

research and is reported throughout a variety of PM paradigms (e.g., Cona et al., 2014; 

Cruz et al., 2016; Hering et al., 2016, 2018; West, Herndon, et al., 2003; West & 

Krompinger, 2005). It is suggested that the parietal positivity incorporates three ERP 

subcomponents. These are the P3b, the parietal old-new effect and the prospective 

positivity (West, 2011). The parietal positivity has a strong relationship with ERPs 

related to the detection of low-frequency events. This relationship makes 

disentangling neurocognitive correlates of the parietal positivity difficult in 

determining the precise processes related to PM. 
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3.3.2.1 P3b 

The P3b (illustrated in Figure 3.2) is a well-observed ERP component associated with 

the allocation of attentional processes towards low probability events (Kok, 2001; 

Polich, 2007). Onset typically occurs between 300–400ms over centroparietal and 

parietal regions and is commonly observed in studies using oddball designs (Luck, 

2014), which shares commonalities with PM task designs. Numerous studies have 

been successful in distinguishing the parietal positivity components from that of the 

P3b (West et al., 2006b; West & Krompinger, 2005; West & Wymbs, 2004). West & 

Krompinger (2005) were able to effectively differentiate the prospective positivity 

from the P3b through manipulation of the ongoing task design. The results found that 

while the P3b was sensitive to changes in the design, the prospective positivity was 

not. West & Krompinger suggested that the sustained positivity may represent a 

general function of PM.  

Support for this differentiation between the parietal positivity and the P3b was further 

demonstrated through manipulation of the ongoing task working memory load (West 

et al., 2006b). The results from West and colleagues’ (2006) experiments found that 

the P3b could be reduced depending on the cognitive load that was placed on the 

participant's working memory. However, the amplitude of the prospective positivity 

would remain unaffected. The prospective positivity being unaffected by working 

memory load provides an important distinction because although the P3b might be 

necessary for the detection of rare stimuli (Polich. 2007) it is functionally distinct from 

the prospective positivity. The P3b, therefore, is a vital feature to the parietal positivity 

as cue detection is required but does not reflect retrieval processes of PM cues. 

 

3.3.2.2 Prospective Positivity 

The later part of the prospective positivity complex (illustrated in Figure 3.2) is 

comprised of the so-called parietal "old-new effect"2 and the prospective positivity 

(West, 2011). The old-new effect occurs between 400–600ms after stimulus onset, and 

the prospective positivity occurs between 600–1000ms, predominately over parietal 

regions. The old-new effect ERP reportedly reflects the retrospective processes 

 
2 The author believes that this nomenclature is not appropriate for PM, as it implies that the encoded PM 
intention has been seen before, which is often not the case in PM experiment designs.    
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involved with PM (West, 2011) and is thought to engage similar neural mechanisms to 

episodic memory, such as recognition and cued-recall (Einstein & McDaniel, 1996; 

McDaniel & Einstein, 2000). In a study by West and Krompinger (2005), the ERP 

activity in response to a PM and a recognition memory task were compared. The 

results show that the recognition old-new effect was produced in response to correct 

responses in the recognition task and in the PM task relative to ongoing activity. Given 

the similarities of the prospective positivity to the old-new effect, such that it is often 

a sustained amplitude continuation of the old-new effect, it is uncertain if these are 

distinct neural correlates.  

Nevertheless, a series of studies have provided evidence to suggest that the old-new 

effect and prospective positivity may be cognitively independent (West, 2007; West et 

al., 2007; West & Krompinger, 2005). In West and Krompinger’s (2005) study 

comparing ERPs in response to recognition hits and PM hits, the authors used a 

multivariate, partial least squares (PLS), analysis to determine whether the old-new 

effect and prospective memory could be differentiated. A PLS analysis is designed to 

extract distributed signal changes related to the designs of a cognitive task. It is similar 

to principles components analysis (PCA), which is able to uncover and reduce ERP 

activity to latent variables that are responsible for patterns of covariation (Dien et al., 

2007). However, PLS is different from PCA as it can use a reduced covariance matrix 

that includes only variance related to the task, such as ERP modulations that 

differentiate the task conditions. Through this technique, West and Krompinger found 

that the prospective positivity could be differentiated from the old-new effect in 

response to PM hits and found that it occurred later in time relative to the old-new 

effect.  

It remains unclear precisely what the prospective positivity reflects, although one 

theory suggests its relationship to task configuration and task switching (West, 2011). 

Bisiacchi et al. (2009) explored the hypothesis that the prospective positivity is 

associated with task switching by examining the prospective positivity in a dual-task 

and task-switch condition. Their results demonstrated that ERPs in response to PM 

cues could be distinguished from ongoing activity in both conditions, but the task-

switch condition caused greater sustained prospective positivity amplitudes. The 

authors therefore concluded that the prospective positivity was related to the task 

configuration and task-switching. However, little evidence has provided further 
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support for this conclusion. Moreover, many studies differ on their definition of the 

prospective positivity and time of onset. Some researchers group the prospective 

positivity with the old-new effect (e.g., Cousens et al., 2015; Wilson et al., 2013; Zöllig 

et al., 2007), while others will treat the components as separate (Cona et al., 2012; 

West, 2007; West et al., 2006a; West, Herndon, et al., 2003). Combing the two 

components causes difficulties when drawing conclusions from different researchers. 

Research into the prospective positivity remains limited and warrants further study 

(West, 2011). It is important for research to determine the cognitive function of the 

prospective positivity and whether it is appropriate to combine these components 

under the umbrella term of ‘parietal positivity’ for specific tasks.  

 

 

 

 

Figure 3.2. Grand-averaged ERPs illustrating the P3b (right) and the parietal positivity (left) for PM 

hits. The tall bar represents stimulus onset and the short bars represent 250ms intervals. From 

“Temporal dynamics of prospective memory: A review of the ERP and prospective memory 

literature” by West 2011, Neuropsychologia. Copyright Elsevier 2011. Reprinted with permission. 
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3.3.3 ERPs of prospective memory monitoring 

The PAM theory of PM (Smith, 2008; Smith et al., 2007, 2010) states that allocation of 

attentional processes must be employed to perceive PM cues successfully. However, 

the Multiprocess framework suggests that attentional processes are only allocated 

when reliance on spontaneous processes are insufficient (Einstein et al., 2005; Knight 

et al., 2011; Scullin, McDaniel, & Einstein, 2010). Behavioural evidence has often 

reported that response times to the ongoing task are slower when participants are 

required to remember a PM intention compared to when performing just the ongoing 

task (Einstein et al., 2005; Heathcote et al., 2015; Smith, 2003). Neuroimaging studies 

have noted specific activity in the dorsal aPFC and precuneus while monitoring 

ongoing stimuli for PM cues (e.g., Beck et al., 2014; Kalpouzos et al., 2010; Oksanen et 

al., 2014). Similarly, electrophysiological studies have explored the effects of 

monitoring on ERPs and the “PM interference effect” (e.g., Czernochowski et al., 2012; 

Hering et al., 2020; West, 2007; West et al., 2006a). 

Initial studies by West (2006; 2007) reported an ERP monitoring effect when 

examining perceptually salient PM cues. The researchers found increased posterior 

negativity for the N2 when ongoing tasks were performed concurrently with PM tasks 

relative to performing the ongoing task independently. ERP studies have since 

replicated these results across different variations within the PM and ongoing tasks 

(Cona, Arcara, et al., 2015; Czernochowski et al., 2012; Knight et al., 2010). The 

prevalence of the N2 modulations during PM monitoring suggests a robust effect of 

top-down attentional networks in perceptual event-based PM tasks (Knight et al., 

2010). Furthermore, enhanced N2 modulations have also been shown for less 

perceptually salient conceptually based PM cues (Cruz et al., 2016). Using an 

independent component analysis (ICA), Cruz and colleagues (2016) demonstrated that 

this earlier monitoring effect is predominately found in parietooccipital regions.  

Monitoring effects are found to also modulate frontal amplitudes between 400–900ms 

(Cona et al., 2012b, 2014; Czernochowski et al., 2012) and between 800–1600ms 

(Hering et al., 2020). For instance, Czernochowski and colleagues (2012) contrasted 

sustained frontal ERP modulations in responses to ongoing task stimuli when 

monitoring for PM cues relative to ongoing-only task stimuli. They found that when 

monitoring for a PM cue, there was sustained frontocentral activity thought to reflect 
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monitoring behaviour and the application of attentional processes, which has been 

associated a PM ‘retrieval mode’ (West et al., 2011).  

 

3.3.4 The reorientation negativity; a missing piece of the 

prospective memory puzzle?  

A few studies have explored the ERPs related to the role of task switching and PM 

(Bisiacchi et al., 2009; West et al., 2011) primarily to test the strategic monitoring 

aspect of the PAM theory (Smith, 2005). As previously mentioned, Bisiacchi and 

colleagues (2009) were able to discern ERP response to PM cues from ongoing trials 

within a dual-task and task-switching conditions but found that the prospective 

positivity amplitudes in the task-switch condition were increased. West et al. (2011) 

demonstrated that PM-related ERP components were also modulated during 

conditions requiring task-switching. The authors conclude that these amplitude 

changes relative to ongoing activity and non-switch conditions represent the switching 

of attention from the ongoing task to the PM task. However, to date, no studies have 

examined ERP components that might reflect the switching of attention from the PM 

task back to the ongoing task. Research into distraction and the reorientation of 

attention may help to clarify this issue.  

In the last few years, there has been a dramatic increase in the number of studies 

exploring the reassignment of attentional processes to a primary task following a 

distracting stimulus (review: Justo-Guillen et al., 2019). Typically, distraction and 

subsequent reorientation have been studied through oddball and dual-task paradigms 

(e.g., Allard & Isaacowitz, 2008; Parmentier & Hebrero, 2013; Rämä et al., 2018; Scheer 

et al., 2016; Wester et al., 2008). Recently, modified versions of these paradigms have 

been used to further tease out the neurophysiological impact of reorienting of 

attention (e.g., Berti & Schröger, 2003; Yago et al., 2001). The results from one such 

study (Schröger & Wolff, 1998) revealed that along with the expected mismatch 

negativity (MMN) and P3a response (two prominent distraction related ERP 

components), a distinct negative component occurring between 400–600ms following 

distraction stimuli was also found. This negative component was subsequently termed 

the reorienting negativity (RON). 
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Many experiments since Schröger & Wolff’s (1998) study have manipulated 

experimental features to gain better insight into the associated cognitive mechanisms 

of the RON. For example, Yago et al. (2001) tested participants on a visual 

discrimination task with deviant pitch changes in a preceding auditory stimulus. The 

pitch changes varied in its frequency as a percentage difference from the ongoing 

standard tone. Despite behavioural changes only being found for one distractor 

condition, the RON amplitude increased in line with the rise in stimulus deviance from 

the ongoing stimuli. The finding was replicated in a purely auditory version of this task, 

but it was also found that distractors increased reaction times (Berti et al., 2004). 

These findings indicate that the features of the distractor tasks influence the strength 

of the RON. This led Berti and colleagues to the belief that non-auditory forms of 

distractor stimuli may also elicit such a response in other dual-task designs. A study 

by Berti (2012) compared the efficacy of rare versus novel stimuli as deviants in a 

multimodal oddball. Across three conditions, the deviant stimuli varied in their 

novelty and rarity. The RON was found to be more pronounced in the novel and rare 

conditions compared to the ongoing task. Additionally, the novel and rare RON 

responses did not differ from one another, suggesting a common neural response for 

reorienting from the target back to the ongoing task. 

Studies have investigated the role of working memory in the RON ERP. Berti and 

Schröger (2003) administered a standard oddball paradigm but required participants 

to withhold their response until the subsequent trial. Delaying the response increased 

the required working memory processes to complete the task and consequently 

resulted in slowed reaction times and decreased RON amplitudes. The connection 

between reaction times and the RON amplitude suggests that as working memory 

difficulty increases, the RON amplitude decreases.  It would be expected then, that if 

an individual had poor working memory, then the RON response would be 

subsequently reduced relative to an individual with good working memory. 

SanMiguel et al. (2008) also varied the use of working memory during an 

auditory/visual oddball task using a memory and a no-memory condition. The 

memory condition resulted in poorer reaction time and accuracy compared to the no-

memory condition. However, the RON amplitude increased within the memory 

condition, contrasting with Berti and Schröger’s (2003) results.  Possibly, the 

variations may reflect different features of the RON. According to Munka and Berti, 
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(2006), the differences between these two studies may be due to the refocusing on 

task-relevant information in working memory or a general reorientation of attention 

mechanisms (Escera et al., 2001) as evidenced in their study which varied the 

demands of the visual task. Therefore, Berti and Schröger’s (2003) results may reflect 

reorientation of attention and SanMiguel et al.’s (2008) results may reflect the greater 

engagement of working memory as task-relevant information is reactivated in 

working memory for the ongoing task. 

It is well established that task-switching is required for experimentally based PM tasks 

(Fronda et al., 2020; Meier & Rey-Mermet, 2018). Given the similarity of the described 

experimental designs used in the distraction literature and in the PM literature (i.e., 

both use a dual-task or task-switch design), it is surprising that a RON response has 

not been described before in PM studies. PM tasks require a momentary interruption 

from the ongoing task to complete the PM task. Following completion of the PM task 

one must reallocate attention towards to the ongoing task once again. Cognitive 

resources may, therefore, be used to shift attention and to prepare for reengagement 

with the ongoing task, similar to studies of distraction. The latency of the RON would 

therefore indicate the timing termination of the PM task and redirection of resources.  

Over various studies, the RON has been found to occur over frontal brain regions 

(Correa-Jaraba et al., 2016; Escera et al., 2001), occurring anywhere between 300–

750ms post stimulus onset (Getzmann et al., 2015; Munka & Berti, 2006). However, a 

study employing scalp density analysis (SCD; an analysis method for calculating 

current densities that are tangential to the currents produced by neuronal dipoles) 

revealed that the RON is produced by multiple neural generators (Schröger et al., 

2000). It is likely then, that RON may be prominent in different scalp regions 

depending on the task being performed. Due to the variability in RON onset reported 

across these studies and the different reported locations of the RON, identification of 

the largest peak across the whole RON time window and all scalp regions would allow 

for a better understanding of the RON in PM.  

In summary, research has yet to describe a RON response for experimental PM tasks. 

It would be expected that given the similarities between the dual-task designs that are 

incorporated for both distraction studies and PM studies that there exists a RON 

response. By exploring ERPs across the scalp in response to different PM cues, a vital 

part of understanding experimental PM tasks might be uncovered. Moreover, if a RON 
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response exists within a PM task, it may help to understand differences in PM 

performance between typical and atypical ageing given the reported deficits of 

executive function and attention in older adults (Crawford et al., 2000; Gazzaley et al., 

2005) and in those experiencing MCI (Ghosh et al., 2014; Petersen, 2004). 

 

3.4 Event-Related Potentials and Ageing 

Over recent years ERP based studies have become increasingly important for 

understanding the neurophysiological changes which affect our cognition as we age. 

Chapter 2 detailed the changes experienced by the ageing brain and how these 

neuroarchitectural differences affect cognition. However, the temporal resolution of 

EEG provides a considerable advantage in understanding the speed of processing 

following the occurrence of an event.  

The ageing literature suggests that in many circumstances, recollection-based 

processing diminishes in older adults (D. Friedman, 2013). Episodic memory studies 

have found that early medial-frontal old-new effects (300–500ms; related to 

familiarity processes) are relatively well preserved (D. Friedman, 2013).  Research 

also suggests that the left parietal old-new effect (500–800ms; recollection-based 

processes) and the late right frontal old-new effect (800–1600ms) are reduced or, in 

some instances, abolished (Czernochowski et al., 2008; Nessler et al., 2008; Rousselet 

et al., 2010; Swick et al., 2006; Trott et al., 1999). However, these results are not 

reported consistently (Gutchess et al., 2007; Li et al., 2004; Mark & Rugg, 1998; Trott 

et al., 1997). 

ERP studies employing an n-back working memory task have demonstrated age-

related neural modulations (Basak & Verhaeghen, 2011; Missonnier et al., 2004). Older 

adults have exhibited slower responses and reduced target detection, reflected in 

reduced P3a during 2-back conditions (Gajewski & Falkenstein, 2014) and increased 

P3 latencies (Saliasi et al., 2013). These P3a modulations indicate a reduction in 

processing processes and a slowing of stimulus evaluation (review: Friedman, 2012). 

Other studies have demonstrated that frontocentral P2 and N2 components are also 

sensitive to age-related effects during n-back working memory paradigms (McEvoy et 

al., 2001; Missonnier et al., 2004). However, while reports suggest higher early frontal 
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positive amplitudes at approximately 200ms (P2) for older adults (McEvoy et al., 

2001), other researchers report attenuation of the N2 and P2 amplitudes in older 

adults compared to younger adults (Missonnier et al., 2004; Missonnier et al., 2011). 

Evidence appears to suggest age-related differences in the neurophysiology of 

working memory; however, it is unclear how the ERP modulations manifest.  

Other executive functions such as inhibition and task-switching are also found to be 

affected by age-related declines (Herman et al., 2010). The P2 ERP component has 

been associated with executive functions and stimulus feature detection (Luck & 

Hillyard, 1994; Potts, 2004). Some research suggests age-related P2 amplitude 

increases in some tasks involving stimuli processing and cognitive control processes 

(Daffner et al., 2015; West & Alain, 2000; Zurrón et al., 2014), suggesting that the P2 is 

sensitive to the effects of ageing in executive functions. However, in a recent review by 

Gajewski, Ferdinand, et al. (2018), evidence suggests that these amplitude increases 

are only apparent in those tasks requiring task-switching and do not occur in single 

task processing. Additionally, research on the N2 component, related to inhibition 

tasks (Falkenstein et al., 1999) has also found ERP amplitude reductions and latency 

delays associated with ageing (reviews: Hämmerer et al., 2014; Pires et al., 2014).  It is 

expected that cognitive tasks relying on executive functions will exhibit age-related 

modulations in early ERP components, although it is not clear how these changes will 

manifest.  

While this section has outlined some of the age-related differences in ERPs associated 

with cognitive functions related to PM, the following section will explore the literature 

directly examining age-related differences in ERPs for PM tasks. 

 

3.5 Ageing and Prospective Memory Event-Related 

Potentials 

Following the frontal lobe hypothesis of age-related decline (Moscovitch & Winocur, 

1995; West, 2000; see Chapter 2, Section 3), West and Covell  (2001) were the first to 

explore the related ERPs in PM for older adults. Using an ongoing word pair decision 

task, participants responded to PM cues or were instructed to ignore PM lures. The PM 

cues were a pair of words both presented in uppercase, while the PM lure only 
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contained one uppercase word from the word pair. Older adults made fewer correct 

PM responses and were also more likely to make false PM responses to the PM lures 

than younger adults. There were amplitude reductions of the N300 and the parietal 

positivity in the older adult group. Accordingly, the decline was likely a result of 

diminished attentional mechanisms used to support PM cue detection reflected in the 

earlier N300 component (Petersen et al., 2001). However, the researchers also 

highlight that it is unclear which of the later positivity components were contributing 

to the observed attenuation in the parietal positivity. Given the high sensitivity of the 

P3b to ageing (Friedman et al., 1997; West, Herndon, et al., 2003), it is possible that 

this component may have had a considerable influence on the attenuation of this later 

component (West, Herndon, et al., 2003). 

West, Herndon, and colleagues (2003) continued this work to disentangle the 

contributions of the P3b to the parietal positivity in response to PM cues. Employing a 

similar task design to West and Covell (2001), the researchers reduced the 

distinctiveness of the PM cue to reduce the influence of the P3b component on the 

parietal positivity. Older adults showed slower reaction times and reduced accuracy 

compared to the young adults. Additionally, N300 amplitudes were attenuated for the 

older adults over the right hemisphere, which was not apparent in the left hemisphere. 

Contrary to their previous study (West & Covell, 2001), there were no differences 

between the older and younger adults in the prospective positivity complex. The N300 

amplitude attenuations and lack of difference of the parietal positivity between 

younger and older adults led the researchers to conclude that deficits were likely due 

to declines in attentional mechanisms related to PM cue detection and not the recall of 

the intention. This was suggested because West (2001) had proposed that attentional 

mechanisms serve to modulate the activity of the neural systems responsible for 

discerning features of the PM cue. Subsequent research provided further support for 

this claim, finding relationships between attention mechanisms and the N300 and the 

right hemisphere (West & Wymbs, 2004). This evidence suggests that while there may 

be some cognitive decline in attentional networks related to cue detection, the neural 

mechanisms for the retrieval of delayed intentions may be spared by age-related 

decline. 

Zöllig et al. (2007) further explored the later components of PM and whether the 

failures were a result of the inefficiencies of the prospective components or 
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retrospective components in older adults. Using a similar paradigm to West et al. 

(2003), participants encoded the PM intention related to a letter and its colour. The 

participants were required to recall this intention while completing a semantic-

relatedness ongoing task. Older adults performed more false responses during PM 

inhibit conditions, had more PM misses, and had slowed reaction times compared to 

the younger adults. Increases in the N300 were observed for the older adults relative 

to the younger adults during the PM inhibit but not the PM execute trials. The parietal 

positivity complex, however, was reduced in the older adults compared to the younger 

adults. An age-related reduction in the parietal positivity conflicts with prior studies 

(West, Herndon et al., 2003; West & Wymbs, 2004) and instead suggests age-related 

PM deficiencies are a result of declining memory systems rather than reduced 

attentional mechanisms. Considering the number of false positive PM responses 

produced by the older adults relative to the younger adults, West and colleagues 

(2003) concluded that the reductions in the parietal positivity implied age-related 

declines in the retrospective component of PM. Indeed, prior studies of episodic 

memory have linked reduced parietal old-new effect amplitudes in older adults 

relative to young adults with deficient retrieval mechanisms (Ally et al., 2008), which 

is likely due to regional brain volume reductions in the MTL (Head et al., 2008). 

Using a modified encoding-retrieval paradigm, Mattli et al. (2011) explored neural 

correlates of PM across the lifespan (illustrated in Figure 3.3). They failed to find N300 

and frontal positivity amplitude differences between younger and older adults. 

However, components did distinguish PM hits from misses and supported the claim 

that the frontal positivity and the N300 are related to PM cue detection (West, 

Herndon, et al., 2003; Zöllig et al., 2007). The parietal positivity also differentiated PM 

hits from misses but was found to be reduced with age, consistent with previous 

research (West, Herndon, et al., 2003; Zöllig et al., 2007). Additionally, Mattli and 

colleagues (2011) found significant modulations of posterior N2 and anterior P2 

components in the adolescent group, which was associated with successful PM 

responses. It was suggested that this was indicative of differences in support systems 

for cue detection. However, these early ERP modulations may be related to the 

developmental differences in executive functions, which stabilise later in an 

individual’s life (Friedman et al., 2016). Research into the N2 and P2 has suggested a 

strong relationship between these components and executive function (Brydges et al., 

2014), although they are rarely examined in PM studies. Further exploration of these 
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earlier components may provide important insight into age-related differences in PM 

abilities.  

Mattli et al.’s (2011) study also examined age-related differences in the neural 

correlates of strategic monitoring. Their results demonstrated sustained frontal 

activity when monitoring ongoing stimuli for PM cues compared to when PM 

monitoring was not required. Importantly, there were no neurophysiological 

differences between younger and older adults. The authors concluded that the 

cognitive systems involved with strategic monitoring for PM cues were robust across 

the lifespan.  

 

Figure 3.3. Grand-averaged event-related brain potentials across 12 electrode sites for younger and 

older adults for ongoing activity stimuli, PM hits, PM misses, and retrospective memory hits. The tall 

bar represents stimulus onset and 2μV; each of the short vertical bars represent 400ms increments. 

Reprinted with permission from Mattli, Zöllig & West, 2011.  
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More recently, researchers have explored the early PM monitoring  (Hering et al., 

2016) and late slow-wave components of PM (Hering et al., 2020). With regards to 

monitoring, Hering and colleagues (2016) found no significant differences in the N300, 

despite poorer PM performance by the older adults relative to the younger adults. The 

younger adults did, however, show N1 amplitude modulations that differentiated PM 

from the ongoing task activity, which was not evident in the older adults. The older 

adults did, however, show amplitude modulations of the P3b in response to the PM 

cues relative to ongoing activity. These results led the authors to conclude that there 

might be multiple subcomponents related to PM stimulus identification. They also 

concluded that PM detection may have been completed at the earlier stage of stimulus 

identification (i.e., the N1) but the older adults performed this detection at a later stage 

(i.e., the P3b).  

With regards to the later slow-wave components, Hering et al. (2020) examined 

differences between younger and older adults while maintaining either one or two PM 

intentions. Consistent with previous research (Kliegel et al., 2016; West, Herndon, et 

al., 2003; West & Covell, 2001; Zöllig et al., 2007), younger adults outperformed older 

adults.  In line with Zöllig et al. (2007), older adults displayed attenuated parietal 

positivity amplitudes during the PM retrieval stage. Both adult groups demonstrated 

increased frontocentral sustained activity when maintaining a PM intention compared 

to no intention. Generally, these results suggest no age-related declines in PM intention 

maintenance, but PM performance may be affected by decreased intention retrieval 

ability in older adults.  

In summary, the limited research into the neurophysiological changes due to ageing in 

PM shows some inconsistencies. Some studies find that the cue detection components 

(N300 & frontal positivity) are reduced in older populations, while others report no 

differences. In general, however, research suggests parietal positivity amplitude 

reductions for older adults, although some earlier studies failed to find these 

differences. Earlier mechanisms in PM related to attention and executive function have 

begun to be explored, but it is unclear to what degree these components are affected 

by age. Some studies conclude that age-related differences are due to attention and 

working memory networks. However, other researchers suggest age-related declines 

are likely due to a weaker ability in older adults to recall the PM intention. The 
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differences between studies are possibly due to the variability in the experimental 

paradigms. Given that most experimental designs use a perceptual event-based PM 

stimulus (e.g., colour), it would be useful to expand the types of PM cues used to assess 

age-related PM differences. Through the use of non-perceptual cues, a deeper 

understanding of age-related differences may be uncovered.  

 

3.6 Event-related potentials and mild cognitive 

impairment 

The structural differences between older adults with MCI and healthy older adults are 

readily found (see Chapter 2, Section 2.5). The effective spatial resolution of imaging 

methods such as fMRI have provided knowledge of areas in the brain that are affected 

by cognitive decline at rest and during memory processes. However, ERPs offer the 

ability to more precisely decipher temporal changes in cognitive processes, such as 

memory. Given the temporal immediacy at which cognitive functions take place, 

modelling cognitive decline at high temporal resolution offers insights that might go 

unnoticed in other neuroimaging methodologies.  

Oddball ERP paradigms have often been used to understand neurocognitive function 

in MCI (e.g., Bennys et al., 2007; Missonnier et al., 2007; Papaliagkas et al., 2011). 

During an oddball task, participants are presented with a repetitive stimulus that is 

frequently interrupted by a deviant, target stimulus, which reliably evokes a 

centroparietal P3 response. Jiang et al. (2015) recently conducted a meta-analysis of 

the oddball P3 response in older adults with MCI. They report consistent reduction in 

amplitudes and delayed latencies of the P3 in participants with MCI, relative to healthy 

older adults.  

ERP components with latencies earlier than the P3 have also been studied. The N2b 

component, for example, is thought to reflect stimulus detection change, and has been 

found with reduced amplitudes (Bennys et al., 2007; Papaliagkas et al., 2011; Ritter et 

al., 1979) and delayed latencies (Bennys et al., 2007; Missonnier et al., 2007; 

Papaliagkas et al., 2008; Papaliagkas et al., 2011) in older adults with MCI, compared 

to healthy controls. However, some studies find no differences in the N2b component 

between typical ageing adults and those with MCI (Golob et al., 2002; Lai et al., 2010; 
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Van Deursen et al., 2009), and others report greater amplitudes for those experiencing 

cognitive decline (Papaliagkas et al., 2008; Papaliagkas et al., 2011). The evidence 

suggests that early ERP components may be important for understanding cognitive 

decline, but further research is needed to understand the neurocognitive processes 

they reflect and how these are impaired in cognitive decline.  

Whilst the oddball paradigm is the most frequently used ERP paradigm in MCI studies, 

other paradigms have been used to further explore neurocognitive domains, such as 

executive function. For example, Cid-Fernández et al. (2014) compared the N2 and P3 

components of individuals with MCI and healthy older adults during a Go/NoGo task. 

In both the Go and NoGo conditions, participants with MCI produced significantly 

smaller N2 amplitudes relative to controls. However, the P3 amplitudes and N2 and P3 

latencies did not differ between healthy older adults and those with MCI. The authors 

concluded that MCI-related impairment in executive functions is marked by N2 

amplitude reductions. In a similar study, Mudar et al. (2016) found lower N2 

amplitudes in older adults with MCI during a Go/NoGo experiment, but also found 

prolonged N2 latencies in the participants with MCI relative to controls unlike the 

results from Cid-Fernández et al. (2014). Differences across studies reflect variation in 

the task design. In comparison to Mudar et al. (2016), Cid-Fernández et al. (2014) 

required participants to ignore an auditory distraction stimulus while they responded 

to a visual Go/NoGo stimuli. The auditory stimulus would likely have recruited 

additional cognitive processes involved in integrating across modalities, and this may 

have led to the reported differences.  In any case, these studies indicate that ERP 

features related to executive functions are impaired in older adults with MCI and likely 

affect N2 components. Other experimental paradigms which rely on executive 

functions should also be investigated.  

Studies evaluating working memory consistently report delays in early ERP 

components during n-back tasks in older adults with MCI relative to healthy older 

adults. Missionnier et al. (2005; 2007) found delayed ERP latencies for both the P2 and 

N2 in participants with MCI relative to healthy controls. This effect has been replicated 

by Zunini et al. (2016), where delayed and attenuated P2/N2 ERP responses were 

reported along with attenuated P3 amplitudes across all n-back conditions. Similarly, 

Gozke et al. (2016) report delayed N2 and P3 responses alongside P3 amplitude 

reductions. As it currently stands, the precise function of the P2 is yet to be 
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determined. However, some evidence links the P2 to attention (Näätänen, 1992) and 

attention allocation (Lijffijt et al., 2009; Näätänen, 1992). Therefore, differences in the 

P2 component may reflect compromised attentional functions due to cognitive decline. 

Past research has demonstrated P2 latency delays among familial AD mutation 

carriers (Golob et al., 2009), indicating that early cognitive processes such as the P2 

may be compromised in pre-AD stages. However, this evidence is scarce and is 

generally not accepted as being a stable feature of AD (Chang et al., 2014). 

The N2 is argued to reflect different functions dependent on the location of the scalp 

in which it is recorded (Folstein & Van Petten, 2008). The posterior N2 is thought to 

reflect stimulus identification, classification and visual attention (Folstein & Van 

Petten, 2008; Patel & Azzam, 2005). Similar to older adults with MCI, N2 latency delays 

are demonstrated in low performing young and healthy older adults during n-back 

tasks compared to their high performing counterparts (Daffner et al., 2011).  The N2 

latency delays were reportedly due to an inability to allocate attentional processes 

effectively in these low performing samples. Given the poorer working memory 

abilities of individuals experiencing MCI (Saunders & Summers, 2011) it would be 

expected that posterior N2 latency delays would also be found in older adults with MCI. 

It is possible the neural correlates associated with executive functioning and working 

memory reflect a slowing down of these processes related to early stimulus evaluation 

and may reflect initial signs of neural degradation.  

Researchers have also explored the neural correlates of episodic memory in older 

adults experiencing MCI. Ally et al. (2009) used ERPs to examine verbal and visual 

recognition memory in healthy and older adults and older adults with MCI. Poorer 

performance was found for the older adults with MCI relative to the healthy older 

adults in both the verbal and visual tasks. Moreover, older adults with MCI did not 

exhibit a frontal or parietal old-new effect response in the verbal recognition task but 

did display a frontal old-new effect for the visual task. Their results suggest that word 

recognition may be a particularly sensitive biomarker of cognitive decline.  

In a study using both ERPs and voxel-based morphometry (VBM), Hoppstädter et al. 

(2013) furthered Ally and colleagues’ (2009) research into verbal recall and familiarity 

in older adults with MCI. Alongside poorer abilities to discriminate between old and 

new items, participants with MCI also show prolonged reaction times compared to 

healthy older adults. The VBM revealed grey matter loss in the medial and inferior 
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temporal lobes in the MCI group compared to the healthy controls (Hoppstädter et al., 

2013). Similar to Ally et al.’s (2009) results, a frontal old-new effect was not found in 

the lexical tasks for older adults with MCI but they also found that neither the healthy 

older adults or the MCI participants demonstrated a parietal old-new effect. This may 

suggest that recall is affected by ageing, and that it undergoes further decline in frontal 

areas in MCI. Additionally, Hoppstädter and colleagues (2013) found a correlation 

between the frontal old-new effect and grey matter volume in the MTL. Given that 

memory recollection depends on the hippocampus (Baddeley, 2001; Eichenbaum et 

al., 2007; Eldridge et al., 2000) and the hippocampus is sensitive to the effects of ageing 

(Raz et al., 2005) and MCI (Eckerström et al., 2010), the absence of a frontal old-new 

effect may reflect degradation of the MTL.  

 

3.7 Mild cognitive impairment and prospective memory 

related event-related potentials 

As it currently stands, no research has assessed differences in the neurophysiology of 

older adults with MCI during a PM task. However, considering behavioural evidence 

from PM tasks, biological differences in older adults with MCI alongside ERP studies of 

ageing and PM, hypotheses can be drawn about electrophysiological responses in 

older adults with MCI during PM tasks. 

It would be expected that the earlier ERP components will be affected during PM tasks 

in older adults with MCI. Considering that many of the ongoing tasks used within PM 

studies are working memory tasks, one would expect similar ERP amplitude 

reductions and delayed latencies in working memory features in older adults with MCI 

relative to heathy older adults (e.g., Gozke et al., 2016; Missonnier et al., 2005, 2007). 

Therefore, the N2 and P2 would be expected to have smaller amplitudes and be 

delayed relative to healthy older adults during an ongoing working memory task.  

Moreover, given the reported executive function deficits within MCI and the associated 

N2 latency delays (Papaliagkas et al., 2008; Papaliagkas et al., 2011), it is possible that 

latency and amplitude differences between healthy older adults and participants with 

MCI will also be apparent in response to PM stimuli. Furthermore, it would be expected 

that the additional cognitive efforts required during PM monitoring would further 
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affect the amplitudes and latencies of the working memory stimuli in older adults with 

MCI relative to healthy older adults.  

Behavioural evidence suggests deficits in the retrospective component of PM 

functioning in older adults with MCI (Costa et al., 2010; Costa, Caltagirone, et al., 2011; 

Karantzoulis et al., 2009; Thompson et al., 2010). The inability to successfully recall an 

event in the past shares similar cognitive functions to the recollection of a PM intention 

(i.e., the parietal positivity; West et al., 2011). Research has demonstrated attenuations 

of the prospective positivity for older adults (Hering et al., 2020; Kliegel et al., 2016; 

Mattli et al., 2011; Zöllig et al., 2007). It is likely that amplitudes will be further 

attenuated in older adults with MCI reflecting the deterioration of neural structures 

related to intention recall (see Chapter 2, Section 2.6).  

 

3.8 Limitations of event-related potentials 

Electroencephalographic studies have been paramount in understanding the 

underlying neural mechanisms of PM and the neurophysiological changes experienced 

through ageing and cognitive decline. It is well known that EEG provides temporally 

rich neurocognitive data; however, it is important to highlight the limitations of this 

method and possible techniques that can be employed to improve understanding from 

ERP data. 

Often studies will only analyse ERP data from a few select channels (e.g., Fz, Cz & Pz; 

Cid-Fernández et al., 2014; Czernochowski et al., 2012). The selection of only a few 

channels is often made for statistical simplicity and to minimise interference from 

noise artifacts (Alotaiby et al., 2015). However, it is difficult to draw any inferences 

about the neuronal sources of information. Some analysis methods such as source 

localisation and independent components analysis (ICA; Stone, 2004) can capture this 

information, but the results sacrifice the temporal data. It remains challenging to 

analyse temporal and spatial data together. However, recent advances in machine 

learning and AI have enabled the ability to analyse EEG data in both temporal and 

spatial domains simultaneously (Kasabov, 2019).  
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3.9 New Approaches to Understanding Spatiotemporal 

Brain Data: Spiking Neural Networks 

To understand the application of these AI techniques to EEG data, the foundation of 

these principles must be clear. This section will provide an overview of some of the 

conventional methods applied in AI research, particularly concerning EEG data and 

how they operate with large amounts of spatiotemporal brain data (STBD). 

 

3.9.1 Machine learning 

Machine learning (ML) is a branch of AI that can model and learn from large amounts 

of data to make predictions or classifications based on the data. It can discover 

previously unknown patterns in data (Mannila, 1996) or make inferences that the 

system was not explicitly programmed to do (Ghahramani, 2015). Pattern discovery, 

and inference can be made by using a subset of the data which is used to “train” a 

model. There currently exist many different types of learning methods for ML; 

however, this section will only cover the most relevant and most popular: supervised 

and unsupervised learning (Caruana & Niculescu-Mizil, 2006). 

Supervised learning creates a predictive statistical model, where both the input and 

desired output is known. Each data sample is provided in an iterative process to 

reduce a loss function, which seeks to minimise the squared differences between 

existing and estimated target values. The loss function enables the learning of the 

model to be trained to correctly predict the output of new, unknown input data 

(Kotsiantis et al., 2007). In unsupervised learning, data without labelling information 

is provided to the ML algorithm. The unsupervised learning model creates groups or 

clusters based on similarities in the data in the hopes of discovering previously 

unknown but useful clusters of items (Jain et al., 1999). For example, EEG data from 

individuals could be provided to a ML algorithm without a labelling information and 

the model would create groups or clusters based on similarities in the EEG activity. 

The algorithms chosen for any specific method make different assumptions and will 

ultimately affect the clustering that takes place. ML algorithms can be employed to 

solve many different problems such as classification, prediction and clustering. 
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The classification of EEG data has previously been performed using conventional ML 

methods such as decision trees (Aydemir & Kayikcioglu, 2014), multiple linear 

regression (MLR; X. J. Yao et al., 2004) and support vector machines (SVM; Guler & 

Ubeyli, 2007; Panda et al., 2010). SVM, for instance, is a supervised learning model 

with associated algorithms capable of classifying data through output in the form of an 

optimal hyperplane (a subspace of the problem vector space). If an EEG dataset 

contained labelled data belonging to two different groups (the term ‘classes’ is used 

within the ML literature and will henceforth be referred to as such when discussing 

labelled data in ML contexts), for example older adults with and without MCI, a SVM 

could be trained on this data. The SVM will then, in theory, be capable of assigning new 

unmodelled data to one of these defined groups. This method has been applied to EEG 

data with some success (S. Li et al., 2013; Panda et al., 2010). These conventional ML 

methods are usually effective when EEG data is easy to linearly separate, such as EEG 

seizure data (Li et al., 2013) or the detection of EEG sleep spindles (Acır & Güzeliş, 

2004). However, in classification problems where data cannot be discriminated via a 

straight line through the data, known as a non-linear classification problem, other 

methods need to be employed. 

 

3.9.2 Artificial neural networks 

Neural Networks (NN), as the name suggests, are based on the biological neural 

networks within the brain. In the case of a biological neuron, information is received 

as an electrochemical signal, which alters the internal voltage of the cell. Once this 

internal voltage reaches a certain voltage threshold over a short period, the neuron 

will release its electrochemical pulse, known as an action potential. In much the same 

way, an artificial neuron (AN) receives information from one or multiple sources, but 

instead of a cell body, this neuron is a mathematical function. Information is fed into 

these ANs, which then combine with their internal activation state and produce an 

output if a defined threshold is reached. Figure 3.4 illustrates a diagram of an AN (a) 

and a simple NN (b) with two input neurons and two hidden layers with one output 

neuron. 
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Figure 3.4. A block diagram showing components of an artificial neuron. (a) A single artificial neuron 

unit. (b) A simple neural network with a single input layer containing two neurons, two hidden layers 

containing three neurons each and an output layer containing a singly output neuron.  

 

Groups of ANs are known as artificial neural networks (ANN). In general, an ANN acts 

as an adaptive system that alters its structure based on the internal or external 

information passed into the network. These models are designed to demonstrate the 

dynamics of neuronal circuitry and their interactions between other individual 

neurons. On a local level, interactions between neurons can cause the synchronisation 

of neuron outputs and form oscillatory activity (Aleksander & Morton, 1990). Unlike 

methods such as MLR and SVM, NNs are capable of processing nonlinear classification 

problems by modelling nonlinear relationships between inputs and outputs in parallel. 

ANNs have demonstrated robust efficacy for a variety of applications such as speech 

recognition (Lippmann, 1989), object detection and image classification (Egmont-

Petersen et al., 2002). Similarly, ANNs have demonstrated their potential for helping 

to further EEG research in brain-controlled interfaces (BCI; Lotte et al., 2007) and in 

disease detection such as epilepsy (Acharya et al., 2018). 

Despite the improvements of this methodology over the classic ML methods and the 

successful applications of distinguishing between more complex EEG data, the process 

remains somewhat of a ‘black box’. In other words, researchers are still not sure what 

the neural network is doing in between the input layer and the output layer and how 

the classification problem is solved (hidden layer of Figure 3.4(b)). The changes to 

network can be understood but how these changes produce accurate classifications is 

still largely unknown.  
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Therefore, while it is possible to classify EEG activity with these methods, it is difficult 

to extract meaningful knowledge in biologically plausible terms about the modelled 

processes. Moreover, despite ANNs possessing some biologically plausible properties 

of brain function (Hall et al., 2015; Hodgkin et al., 1952), the AN’s state depends on the 

current time of the inputs provided. Therefore, any temporal information of the data 

is lost. To compensate for this, the third generation of ANNs, known as Spiking Neural 

Networks (SNNs), was developed to explicitly include time as an inherent part of the 

model and, therefore, models and encodes the AN’s firing-time information. 

 

3.9.3 Spiking neural networks 

Spiking neural networks enable us to explore how the training data not only affects the 

network but the modelled data can also be interpreted spatially and temporally. SNNs 

are inspired by and incorporate biologically plausible principles at each stage of its 

design, such that it: constructs a 3D model that maps the location of brain structures 

to a brain template, preserving the spatial information of the EEG data; encodes EEG 

signals into ‘spike-trains’ (a series of binary events dependent on when the EEG signal 

reaches a threshold value) at a millisecond time scale; initialises a SNN model using a 

brain inspired small-world (SW) connectivity rule and uses biologically plausible 

learning rules to evolve the SNN functional connectivity through unsupervised and 

supervised learning (Indiveri et al., 2015; W. Maass, 1997). Each of these stages are 

explained in the following sections.  

At the basic component level, an artificial spiking neuron is an information processing 

unit, which can learn from temporal data simulating the presumed processes of the 

brain. These spiking neurons are linked via their synapses, which encode these 

patterns into memory. These neurons are able to integrate time into their 

computational operations and are, therefore, deemed superior in biological 

plausibility compared to previous ANN models (Agatonovic-Kustrin & Beresford, 

2000; Schmidhuber, 2015). This integration of the temporal characteristics of the AN’s 

behaviour are modelled in an integrated way with other ANs allowing the ability to 

capture the spatial and temporal dynamics of EEG data (Kasabov, 2019). Several 

different implementations of SNN have been developed so far, however only the ‘Leaky 

Integrated-and-Fire model’ (LIFM) will be covered in the scope of this thesis.   
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The LIFM, also known as the ‘forgetful’ model (Knight, 1972), increases the ‘membrane 

potential’ of a AN with each incoming spike at a time t, multiplied by synaptic efficacy 

(strength) until it reaches the defined threshold θ. Once the threshold is reached, an 

output spike is emitted, and the membrane potential returns to its initial state. Like a 

biological neuron, after a spike is emitted, the AN enters a refractory period where it 

is unable to produce any new spikes as its membrane potential ‘leaks’. The membrane 

potential leakage between spikes can be defined by a parameter τ. The LIFM is defined 

via:  

𝜏𝑚

𝑑𝑣

𝑑𝑡
= 𝑣𝑟𝑒𝑠𝑡 − 𝑣(𝑡) + 𝑅𝐼(𝑡) 

Where τm represents the membrane time constant, 𝑣𝑟𝑒𝑠𝑡 reflects the resting potential, 

R is the resistance and I is the input current.  

The SNN architecture is based on a framework of evolving spiking neural networks 

called NeuCube (Kasabov 2019). The architecture contains various functional models 

(as illustrated in Figure 3.5): (a) an input encoding module; (b) a 3D SNN module for 

unsupervised training; (c) an output regression/classification module for supervised 

learning; (d) an optimisation module; (e) a visualisation module for visualisation and 

knowledge extraction (Bullmore & Sporns, 2009; Kasabov, 2014). These modules are 

further detailed in the following sections.     
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Figure 3.5. An illustration of the NeuCube SNN architecture. Modules include: (a) input spike-time 

data encoding; (b) a 3D SNN module for unsupervised learning; (c) a SNN classification/regression 

module for supervised learning; (d) a parameter optimisation model; (e) visualisation module. Figure 

adapted with permission from Kasabov (2014).  

 

3.9.4 Input mapping and encoding data for a spiking neural 

network 

Before EEG data can be modelled, it must be mapped onto a 3D spatial template 

structure of an appropriate size. Templates such as the Talairach (Talairach & 

Tournoux, 1988) and the Montreal Neurological Institute (MNI) template (Brett et al., 

2001) or coordinates for an individual’s brain data can be used3.  

The initial 3D structure is scalable and can evolve in size according to the data set and 

the study problem. Three parameters control the size of the SNN 

model: nx, ny, nz symbolising the x, y, z spatial coordinates within the 3D SNN model. 

These coordinates are used to preserve the spatial dimensions of the recorded EEG 

 

3 It is also possible to model STBD without a 3D brain structure. Without a 3D brain structure, input 

variables are instead grouped together within a 3D space based on their temporal correlations.  
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data by fixing them to a coordinate within the SNN model space, which become ‘input 

neurons’. An input neuron is identical to a recorded EEG channel and is represented in 

the 3D space as an AN. This allows the EEG data to be propagated into the network 

while modelling its spatial location on the scalp.  

For the EEG data to be modelled within a SNN, it must first be translated into a spike-

train. The timing of these spikes corresponds to the changes within the EEG data. 

Spike-trains represent the EEG data through positive or negative binary spikes. If there 

is a positive increase in the EEG data above the defined threshold, then a 1 will be 

encoded as a positive spike. On the other hand, if there is a negative decrease in the 

EEG data below the defined threshold, then a -1 in the form of a negative spike will be 

encoded. If there is no increase or decrease (in relation to the threshold) in the data, 

no spike will be emitted (illustrated in Figure 3.6 showing encoded spikes for one 

channel of EEG activity). The formula for encoding positive and negative spikes is given 

as:  

 

 

The variability in signal amplitude over time is denoted by V(t) for a signal S(t) over 

time t = 1, 2, …, n where at baseline, V(1) = S(1). If the upcoming signal amplitude S(t) 

is greater than V(t –1)+ θ (where θ is a defined threshold) at the next point t, then a 

positive spike is produced, whilst a negative spike is created for a decreased signal. 

These spike-trains are then propagated through into the SNN model via the previously 

defined input neurons in the brain template.  

 

 

 
 spike(t) = {

1 then V(t) ←  V(t − 1) +  θ;            if S(t) ≥  V(t − 1) + θ

−1 then V(t) ← V(t − 1) −  θ;       if S(t)  ≤  V(t − 1) − θ
0                                                                                           otherwise 
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Figure 3.6. An example of EEG data encoded into a spike-train. Positive Spikes (+1) are shown in black 

and negative spikes (-1) are shown in red using a threshold-based algorithm. The image shows the 

first 500 data points from the Cz channel from Cappeci et al., 2016 © 2016 IEEE. 

 

Once the 3D SNN model has been defined and the EEG data encoded into spike-trains, 

the data has to be initialised with a SW connectivity rule (Liao et al., 2017). SW 

connectivity is a phenomenon observed in biological systems, including physiological 

brain networks (Bullmore & Sporns, 2009) and synchronisation of cortical neurons 

(Yu et al., 2008). In the SW connectivity rule, neurons are probabilistically connected 

according to a preselected radius so that anatomically adjacent neurons are highly 

likely to be connected and those anatomically distant from each other are highly 

unlikely to be connected. In other words, the initial connection weight between AN i 

and AN j within the SNN depends on the distance between to the two ANs, such that 

larger distances will results in smaller connections weights. Therefore, it can be 

determined if two ANs are connected or not and if they are connected, then their 

connection weight will depend on their distance from one another. 

The inclusion of a SW connectivity rule furthers the biological plausibility by 

constraining the possible connections throughout the model in a way that reflects 

global and local networks within the brain to some extent (Masuda & Aihara, 2004). 

For example, anatomical connectivity studies have found SW topology at the 

macroscopic level (Hilgetag et al., 2000) and microscopic scale in the simple neuronal 

network of Caenorhabditis Elegans (Watts & Strogatz, 1998). Additionally, evidence 

also demonstrates SW properties evident in human fMRI and EEG data (review: Yao et 

al., 2015). The initialisation of the SNN model will randomly assign weights and 
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connections to ANs based on the SW connectivity rule. These connections are then 

modified based on the learnt information of the new incoming spikes from the EEG 

data during unsupervised learning. 

 

3.9.5 Unsupervised learning in a spiking neural network 

model 

A Spike-Time-Dependent Plasticity (STDP; formula given in Appendix A) rule is 

applied to the incoming spikes being propagated into the network. This rule modifies 

the initialised connection weight Wi,j between two ANs based on the timing of the 

output spikes. In STDP, each AN’s postsynaptic potential (PSP) will increase with every 

input spike at time t until it reaches the firing threshold. When the PSP exceeds the 

firing threshold, a spike is emitted to all other ANs which share a connection. If 

AN i fires before j then the connection weight Wi,j will increase. Otherwise, the 

connection weight will decrease. Additionally, each AN will also accumulate spiking 

activity from its neighbouring ANs. As a result, the STDP rule can model the ‘hidden’ 

spatiotemporal associations between EEG variables in the form of ‘neuronal 

connections’. The STDP adds to the biological plausibility of the model by reflecting 

long-term potentiation between ANs during learning in the brain. Once the 

unsupervised learning process has altered the initial connections weights within the 

SNN, the learnt patterns of spatiotemporal activity can then be evaluated through 

supervised learning in their ability to classify or predict previously unmodelled data.  

 

 3.9.6 Supervised learning in a spiking neural network model 

Upon completion of the supervised learning, a dynamic evolving SNN (deSNN; Kasabov 

et al., 2013) is used to classify the data based on its associated data labels, which define 

its class. For each training sample (i.e., participant’s EEG activity), an output AN is 

generated (evolved) in the output layer and is connected to all other ANs in the trained 

SNN model. This corresponds to the classification/regression module in Figure 3.5(c). 

Similar to the connections between ANs within the 3D SNN space, the connections 

between the ANs in the SNN and the ANs in the output layer must first be initialised. 
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The initial connection weight W between an individual AN i of the SNN and an output 

AN j is determined by using a Rank Order (RO) learning rule (Soltic & Kasabov, 2010).   

Once the initial connections weights between the SNN and the output ANs are 

established, the STBD used for unsupervised learning will again be repropagated 

through the trained SNN one sample (corresponding to recorded activity of one 

participant) at a time. The spatiotemporal patterns of each sample will be used to train 

an output AN capable of recognising the neural pattern of each class. At time t the PSP 

of AN j is calculated as follows:  

 𝑃𝑆𝑃(𝑗, 𝑡) = ∑ 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑖) 𝑊𝑖𝑗 

Where mod is a modulation factor (a parameter between 0 and 1) 

and order(i) represents the order of the spikes in time between ANs i and j. The first 

spike that reaches the output AN is given the greatest value and the largest subsequent 

increase in connection weight. Following the initial spike, all subsequent incoming 

spikes to the post-synaptic AN will be further modified based on a synaptic plasticity 

learning rule incorporating a drift parameter. This drift parameter modifies 

connection weight Wi,j by accounting for the following spikes at AN j at time t, denoted 

as spikej(t). In other words, if at moment t there is no spike, the weight 

between i and j will decrease by a defined drift value in the following:  

 

                 Wij(t)= {
Wij(t − 1) + drift         if spikej(t) = 1

Wij(t − 1) − drift          if spikej(t) = 0 
  

 

Once supervised learning is complete, the classification accuracy of the model is 

verified through cross-validation for various sets of parameters (e.g., STDP rate, mod, 

drift and firing threshold) during an optimisation stage.  
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3.9.7 Parameter optimisation  

The classification accuracy of the SNN model is sensitive to the values and 

combinations of the parameters chosen. These settings can be optimised through the 

application of different algorithms, which will find the best-performing model. 

Examples of these include exhaustive grid search, genetic algorithms and quantum-

inspired evolutionary algorithm (Schliebs & Kasabov, 2013). This thesis will only 

cover and apply the simplest of these methods, the exhaustive grid search.  

An exhaustive grid search simply searches through combinations of parameter values 

to identify the best combination. In an exhaustive grid search, each parameter requires 

a value range to search within and requires a step size for the increments of the search 

to be performed. This search moves from the minimum to the maximum value. For 

each model that is created, different parameter settings are applied before the SNN 

model undergoes unsupervised and supervised learning and then finally is validated. 

The results are then saved, and the most successful is selected for visualisation, 

knowledge extraction and further analyses for the better understanding of 

spatiotemporal relationships within the data (Kasabov et al., 2016).  

 

3.10 Chapter Summary 

This chapter has outlined current understanding of the ERPs associated with PM. The 

evidence suggests that there are prevailing ERPs that are reliably associated with PM 

functioning. The N300 and the frontal positivity likely reflect PM stimulus detection. 

The parietal positivity, which is comprised of the P3b, the so-called parietal old-new 

effect and the prospective positivity, appear to reflect the retrieval of PM intentions 

from memory. Other ERP components such as the N2 are also often reported in PM 

studies mainly due to their associations with executive functions. A methodological 

problem was also highlighted regarding the appropriateness of averaging ERPs in 

response to different ongoing stimuli before being compared to PM-related ERPs. 

Furthermore, this chapter outlines a possibly overlooked ERP component involved 

with the reorientation of attention, namely the RON. The RON is well described in the 

distraction literature and occurs when an individual must reorient their attention back 

from a distraction toward an ongoing task. This has not previously been described 
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within the PM ERP literature and may provide a useful marker for understanding 

typical and atypical ageing deficits in PM.  

In addition, this chapter has described the current understanding of PM ERPs of age-

related decline. In healthy older adults, most research indicates that older adults 

exhibit smaller amplitudes for the parietal positivity than younger adults although 

earlier studies failed to find this difference. Some evidence appears to indicate there 

are no neurophysiological differences between healthy older adults and younger 

adults when monitoring for PM cues. However, there currently only exists of handful 

of studies, which have only used a limited number of PM cue types. To date, no studies 

have explored PM ERP activity in older adults with MCI. It is expected that older adults 

with MCI will have reduced parietal positivity amplitudes and will be impaired in the 

early processing of stimulus features.  

Finally, this chapter has described a new methodology for analysing and 

understanding STBD. SNNs can perform classification of EEG data and, unlike other ML 

methods, enables improved interpretability of the learnt patterns of activity because 

it explicitly incorporates time and space into the model allowing for interpretation of 

temporal patterns within the model.  
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Chapter Four: Thesis aims and hypotheses 

 

4.1 Introduction 

The preceding chapters have evaluated the different cognitive aspects of PM, the 

neurophysiological understanding of PM, ageing and MCI, and has detailed a novel 

methodology for understanding STBD. Considering the literature covered in the 

previous chapters, some methodological issues regarding approaches to ERP research 

in PM must be first be addressed. Additionally, a possibly important factor of the 

neurophysiology of PM has thus far been overlooked. Namely, the RON, which has been 

demonstrated in a variety of other dual-task paradigms and has proved a useful 

biomarker for cognitive disorders (Justo-Guillen et al., 2019). Moreover, a 

considerable amount of further research is needed to improve the neurophysiological 

understanding of PM in healthy older adults and older adults experiencing MCI. As it 

currently stands, the electrophysiological research is inconclusive in explaining the 

reported age-related declines in PM. The previous chapters have suggested that older 

adults with MCI have impaired PM functioning, however, to date no studies have 

sought to understand these differences neurophysiologically.   

To address these issues, the current thesis proposes a series of experiments involving 

two different forms of PM, which vary in their cognitive demands. Three different 

population groups will be used: young adults, healthy older adults, and older adults 

with MCI. Additionally, the current thesis will be the first to apply SNNs to ERPs in 

response to working memory and PM in attempt to evaluate its efficacy as a tool for 

discerning cognitive decline.  

The first experiment (Chapter 5) is designed to address the following in questions in 

healthy young adults: 1) Is an ERP average that combines responses to different types 

of ongoing stimuli appropriate as a comparison measure for PM-related ERPs? 2) Are 

there behavioural and ERP differences between a highly salient and less salient event-

based PM task? 3) Is there an RON ERP response following a PM stimulus, similar to 

ERP studies of distraction?   

The results from Chapter 5 will inform how subsequent analyses should be performed. 

The ERP components most likely to aid in understanding the neurophysiology of PM 
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in healthy older adults and older adults with MCI will be used. Chapter 6 aims to 

answer the following questions: 1) How do young adults, older adults and older adults 

with MCI differ behaviourally on PM tasks as a function of stimulus saliency? 2) How 

does typical ageing affect ERP components during PM tasks? 3) Are there 

neurophysiological differences between typical ageing adults and older adults with 

MCI in PM related ERPs? 

Chapter 7 aims to further the understanding of neurophysiological and behavioural 

differences between young adults, older adults, and older adults with MCI in PM tasks. 

The experiment aims to assess whether the maintenance of a PM intention could 

explain differences between the group’s PM performance through the following 

questions: 1) Are there behavioural working-memory differences between young 

adults, older adults and older adults with MCI when a PM intention is maintained? 2) 

Are there differences between young adults, older adults and older adults with MCI in 

intention maintenance related ERPs? 

The most common method for exploring the neurophysiology of PM is through ERPs, 

whereby conclusions are primarily derived from changes in amplitudes. Chapter 8 

addresses some limitations of ERP research by applying novel SNNs to understand the 

spatiotemporal relationships within the entire brain during PM and working memory 

in young adults, older adults and older adults MCI. The experiments of Chapter 8 aim 

to address the following questions: 1) can SNNs accurately classify different patterns 

of brain activity using working memory and PM? 2) Does PM provide better 

classification accuracy than working memory? 3) Can new knowledge of the 

spatiotemporal connectivity at a local and global level be extracted to gain new insights 

into ageing and cognitive decline? 

 

4.2 Summary of Thesis Aims 

1) To address the methodological problem of averaging ERPs in response to different 

ongoing working memory stimuli.  

2) To explore the differences between salient (perceptual/feature-based) and less 

salient (conceptual) PM ERPs; and to explore whether a RON response following a PM 

stimulus can be detected.  
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4) To determine the effects that typical ageing and MCI have on the behavioural 

performance and ERPs in response to perceptual and conceptual PM tasks.  

5) To determine the effects that typical ageing and cognitive decline have on the 

behavioural performance and ERPs in response to the ongoing working memory 

stimuli when maintaining a PM intention.  

6) To determine whether SNNs can model neurophysiological connectivity differences 

between younger adults, older adults and older adults experiencing MCI. Additionally, 

to determine whether brain activity in response to PM is better than working memory 

for classification between young adults, older adults and older adults with MCI.  
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Chapter Five: Differences in perceptual and 

conceptual prospective memory and 

reorientation negativity ERPs in young adults 

 

5.0 Overview 

The previous chapters reviewed the PM literature from a behavioural, neurobiological, 

and electrophysiological perspective to formulate a series of research questions. The 

following chapter explores the behavioural differences between perceptual and 

conceptual PM stimuli. Additionally, this chapter explores the differences in ERPs 

related to PM. Specifically, the N300 and frontal positivity are examined as markers of 

cue detection, and the subcomponents of the parietal positivity (P3b, old-new effect 

and prospective positivity) are investigated as markers of PM intention retrieval. 

Additionally, a methodological issue concerning the appropriateness of averaging 

ERPs in response to different ongoing stimulus types is addressed. This was performed 

by examining amplitude differences between the ongoing stimuli in the N2, P2 and 

N400. Finally, the study explores whether a RON ERP is produced following successful 

response to perceptual and conceptual PM stimuli.  

 

5.1 Introduction 

As mentioned in Chapter 1, PM is the ability to remember to perform an encoded 

intention at a defined period in the future. It is a fundamental personal resource, which 

underpins many day-to-day tasks, such as remembering to buy dog food on the way 

home from work (Hering, Kliegel, Rendell, et al., 2018; Kliegel, Jäger, et al., 2008).  PM 

cues prompted by the occurrence of an event are known as an event-based PM cue. An 

example of an event-based cue would be seeing your colleague and remembering to 

pass on a message. There are various stages that are required for the successful 

execution of a delayed intention. Firstly, provided a PM cue has been correctly 

encoded, the cue must then be recognised within the environment or, in an 



90 

 
experiment, within the ongoing task. Secondly, following cue detection, one must recall 

what the intention was, for it to be enacted upon.  

Past studies have demonstrated performance differences when the PM cue type is 

varied, for example in their salience, focality and colour (McDaniel & Einstein, 1993; 

Scullin, McDaniel, Shelton, et al., 2010). PM cue type differences are particularly 

evident when the perceptual salience of the cue is varied compared to PM cues that are 

considered conceptually salient (Cohen et al., 2003; McBride & Abney, 2012). 

However, there is limited research into the neurophysiological effect of varied cue 

salience and PM cue types.  For the most part, neurophysiological studies have 

primarily varied the perceptual features of the PM task, i.e., those features that make 

the PM cue distinct from the ongoing task. Therefore, it remains unclear whether the 

components and activities described within studies reflect common responses to PM 

cues or whether they are specific to perceptual task features (Cruz San Martin, 2014).  

In EEG studies, each of the stages of PM can be attributed to different ERP components. 

The detection of a PM cue, when embedded within an ongoing task, is linked to an 

increase in an N300 and frontal positivity component relative to the ongoing task 

(West, 2011). The realisation of a PM intention is related to the relative increase of the 

parietal positivity complex compared to the ongoing task. The parietal positivity 

complex is comprised of the P3b, the old-new effect (referred to throughout this 

chapter as the intention-retrieval response, IRR) and the prospective positivity. Each 

of these ERP components is reportedly sensitive to PM cue features (West, 2011).  

Perceptual PM cues have reliably demonstrated an increase in N300 amplitudes 

relative to ongoing stimuli in different PM cue types and ongoing task designs (e.g., 

Cruz et al., 2016; West, Wymbs, et al., 2003; West & Krompinger, 2005; West & Wymbs, 

2004). Findings for N300 in response to non-perceptual PM cues are less consistent 

however, with some researchers showing no effect (Cousens et al., 2015; J. Wilson et 

al., 2013) and others showing a delayed onset (Cruz et al., 2016). Understanding 

differences between these stimulus types, would shed light on these inconsistencies, 

and may provide further insight on the functional significance of the N300 component 

in the context of PM. 

As highlighted in Chapter 3, one reason for differences between the findings in PM 

studies may be due to how the comparisons are made between the ongoing task and 
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the PM stimuli. Some studies choose to average the ERP waveforms of different 

ongoing stimuli. For example, Cousens et al. (2015) averaged the ERPs of semantically 

related and semantically unrelated ongoing responses. However, Cruz et al. (2016) 

treated the semantically related and unrelated stimuli as separate. Even though 

averaging two stimulus types together will increase the number of trials and improve 

the stability of the ERP waveform (Luck, 2005), evidence has reliably demonstrated an 

N400 congruency effect between semantically related and unrelated words (Cruz San 

Martin, 2014; review: Kutas & Federmeier, 2011). Therefore, if ERPs produced by 

semantically related and unrelated stimuli are averaged to form one waveform, then 

comparisons between ERP responses to ongoing stimuli and PM stimuli may be 

affected, at least for those components occurring at approximately 400ms and beyond.  

The evidence is less clear for earlier ERP components, however, Kramer and Donchin 

(1987) found increased amplitudes for the N2 when a presented pair of words were 

unrelated. Kutas and Van Petten (1994) similarly looked at P2 ERP modulations in 

response to word pairs but failed to find amplitude modulations when the words were 

unrelated. Thus, it is unclear whether averaging ERPs related to different ongoing task 

stimuli will affect the earlier ERP components and whether ongoing stimuli should be 

treated as separate when used as a neurophysiological baseline for ERP analyses. The 

current study seeks to address this issue prior to performing further statistical 

analyses with the PM ERPs.  

An integral part of PM, which may explain why certain populations perform better than 

others has, for the most part, been overlooked. The ability to reorient attentional 

processes back towards the ongoing task following response to a PM cue is an 

important part of successfully performing an experimental PM paradigm (Bisiacchi et 

al., 2009; West et al., 2011). Studies by Bisiacchi et al. (2009) and West et al. (2011) 

have highlighted the cost of switching between the ongoing task and PM task, but have 

not accounted for possible neurophysiological effects that may explain switching 

attention from the PM task to the ongoing task. A growing body of literature has begun 

to point towards a RON ERP response in dual-task paradigms (review: Justo-Guillén et 

al., 2019), which are conceptually similar to paradigms applied in PM research.  

Schröger et al. (2000) suggest that the RON represents two distinct functional 

processes of attention reorientation following a distraction. These two distinct 

processes are the re-focusing of working memory toward task-relevant information, 
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and preparation for the next stimulus or a general reorientation. Given the similarities 

of the paradigms applied in the studies of distraction literature (e.g., Wester, Böcker, 

Volkerts, Verster & Kenemans, 2008; Scheer, Bülthoff & Chuang, 2016; Rämä et al., 

2018) and PM, it would be expected that a RON would be apparent in PM paradigms 

and may explain differences in PM performance between individuals and groups. 

The results of the current study will help to further our methodological understanding 

for appropriately analysing PM related ERPs. Firstly, by evaluating possible early and 

late neurophysiological differences in the ongoing working memory task ERPs, the 

appropriateness of combing the ERPs related to ongoing stimuli can be considered 

before evaluating the differences between PM related ERPs. Considering the recent 

research detailing a RON response after a distraction stimulus, the current study will 

determine whether a RON exists in PM tasks and whether it is equally apparent for 

feature-based/perceptual and conceptual PM paradigms.  

The current study used two forms of PM (perceptual and conceptual) to explore the 

neurophysiology of PM. Participants first completed a semantic ongoing working 

memory task. Then the PM cues were incorporated into the ongoing task to form the 

PM task conditions. The perceptual PM task was defined as words presented all in 

capital letters. The conceptual PM task was presented as the word of a four-footed 

animal. All participants completed the ongoing task and then the two PM task 

conditions. While the ongoing task was always completed first, the two PM conditions 

were randomly presented. PM cues comprised no more than 10% of the total stimuli 

presented. The ongoing task was used as a baseline for comparisons for PM stimuli for 

behavioural and neurophysiological responses. Due to the variability in the RON and 

scalp region, the RON was defined after inspection of the PM ERPs relative the ongoing-

only response.  

 

5.1.2 Aims and hypothesises 

The current study aimed to further understand the behavioural and 

neurophysiological responses to perceptual and conceptual PM stimuli. Additionally, 

the current study sought to determine whether a RON ERP could be found following 

the presentation of a PM stimulus. However, prior to evaluating the neurophysiological 
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differences of the PM stimuli, the current study had to firstly address the 

appropriateness of averaging ERPs in response to ongoing working memory stimuli 

by comparing early and later ERP components between the ongoing stimulus types. To 

this end, the current study was performed as three separate analyses. Firstly, the 

behavioural differences between the ongoing task and the perceptual and conceptual 

PM tasks were analysed. Next, the electrophysiological analyses were performed as 

two separate experiments. The first experiment evaluated possible differences in early 

(P2 & N2) and later (N400) ERP components between the two types of ongoing 

working memory (semantically related and unrelated) stimuli. Conclusions of the first 

electrophysiological experiment would be used to inform the subsequent analyses of 

Experiment 2. Experiment 2 compared PM related ERPs with the ongoing task ERPs 

and evaluated whether there was a RON response.  

Regarding the behavioural analysis, the current study hypothesises that: 1) There will 

be no differences in the reaction time and number of correct responses between the 

ongoing task and the perceptual PM stimuli, but the behavioural performance will be 

worse in response to conceptual PM stimuli. Regarding ERP Experiment 1, the current 

study hypothesises that: 1) There will be a congruency effect for non-repeated stimuli 

indicated by a higher N400 response relative to repeated stimuli in the ongoing-only 

task. 2) There will be differences in posterior N2 amplitudes, but not in the anterior P2 

amplitudes. In Experiment 2, the current study hypothesises that: 1) both PM cue types 

will cause significantly larger N300 and frontal positivity amplitudes relative to the 

ongoing-only task. 2) Both PM stimuli will cause significantly larger P3b, IRR and 

prospective positivity amplitudes compared to the ongoing-only task. 3) PM stimuli 

will produce a RON response significantly larger than in the ongoing-only task.  

 

5.2 Methods 

5.2.1 Materials  

All experiments were programmed in PsychoPy v1.82.01 (Peirce, 2009). Participants 

were seated 57cm away from the computer monitor. During the interstimulus 

intervals, there was a fixation cross in the centre of the screen with a size of 0.75 
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degrees for each of the vertices. Words were presented at 1.5 degrees in height in 

white on a grey background.  

 

5.2.2 Participants 

Thirty right‐handed adults (17 males, mean age = 24.7 years, SD = 3.43) were recruited 

from the Nottinghamshire area, UK. Inclusion criteria required participants to have: 

normal or corrected to normal vision, be 18–35 years of age, no history of dyslexia, no 

history of drug abuse, no history or current diagnosis of psychiatric or neurological 

disorder or medication that may impact the EEG recordings. Additionally, participants 

were required to abstain from alcohol for 24 hours and from caffeine and nicotine 3 

hours prior to the study. Participants received £20 in Amazon vouchers for their 

participation. The study approval was issued by the Health Research Authority, UK 

(REC reference: 17/EM/1010). 

 

5.2.3 Procedure 

Data were recorded in a quiet room with a stable temperature (~20°C). After the study 

procedure was explained, the participants provided informed consent. Participants 

were then sat approximately 57cm away from a 19” (48.26cm) – diagonal colour LCD 

monitor (1,600 x 900 resolution: 60Hz refresh rate). EEG equipment was then attached 

to the participant before offsets checks were made.  

Participants were required to complete two PM tasks. These differed in their salience 

but maintained the same cognitive demands on working memory and intention 

retrieval. Stimuli were the kept the same between the ongoing-only task and PM tasks. 

Different instructions were given for each PM task, thereby altering the nature of the 

encoded PM intention. As with similar studies (Chen et al., 2009; Cona et al., 2012b), 

the ongoing-only working memory task was completed first to minimise potential 

long-lasting interference effects of the PM instructions. This has been considered due 

to the noted effect of strategic monitoring engagement even when PM intentions were 

no longer required (Marsh et al., 2006; West, 2007). The two PM tasks built upon the 

ongoing task with the PM cues embedded within the stream of stimuli comprising the 
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ongoing task (see Figure 5.1). For both PM tasks, therefore, participants completed the 

PM task and the ongoing task simultaneously. The PM instructions were given at the 

start of the PM tasks followed by a delay, where participants were presented with at 

least 12 stimuli of the ongoing task before the first PM cue appeared (Figure 5.1b). In 

line with past research (Cruz et al., 2016; West et al., 2005), only 10% of all stimuli 

presented were PM stimuli. This allows participants to re-engage with the ongoing 

task and better simulate real-life PM events (i.e., remembering to perform an action 

after a delay). A mandatory break of five to ten minutes was given to all participants 

after each condition. 

 

5.2.4 Ongoing task 

A 1-back word categorisation task was used as the ongoing task. Participants made 

continuous semantic judgements of whether the word presented on the computer 

screen is of the same semantic category as the preceding word. Participants were 

shown a list of 10 categories and told that within each of these categories there are 10 

words. Participants were instructed to press a button on a response box with their 

right index finger if the word was semantically related to the previous word (i.e., the 

category repeated from the previous word) and to refrain from responding if the word 

was unrelated to the previous word (i.e., the category is not repeated from the 

previous word). The instructions included examples and a short practice block which 

provided feedback on whether the participant was correct or incorrect. 

Categories were created from the updated and expanded version of the Battig and 

Montague (1969) Category Norms (Van Overschelde et al., 2004) using the top 10 

words from each category. The ongoing task was comprised of 300 stimuli with a 25% 

chance of a word belonging to the same semantic category as the previous category. 

Each word was presented for 500ms with a 2 second stimulus onset asynchrony 

between words. In order to minimise fatigue, short optional break-blocks were offered 

after every 30 stimuli, which varied in duration from 20 seconds and up to 3 minutes. 

All words were presented in lowercase. 

The 1-back targets (stimuli requiring a response during the ongoing task) will be 

referred to as a 1-backtarget. No feedback was given to the participant during the 

ongoing task. The 1-back non-targets (stimuli that do not require a response during 
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the ongoing task) will be referred to as 1-backnontargets. ‘Ongoing’ encompasses both 1-

backtargets and 1-backnontargets.  

 

5.2.5 Prospective memory task 

Most PM studies to date use a relatively small number of trials (approximately 20) to 

form a grand average waveform (e.g., West & Craik, 2001; West & Krompinger, 2005). 

Using a small number of trials to form an ERP is problematic because of reduced signal-

noise ratio, which can cause type I and type II errors (Button et al., 2013). A minimum 

of 60–80 events have been recommended to establish reliable waveforms for later 

memory related components (Luck, 2005; Thigpen, Kappenman & Keil, 2017), 

particularly if within-participant designs are being used to evaluate cognitive 

differences between task types (Boudewyn et al., 2018). Collecting data for a higher 

number of PM events is a difficult problem to solve in PM research, as PM events are 

intrinsically rare. However, it is important to include an appropriate number of PM 

cues, particularly when attempting to make comparisons between groups (Fischer et 

al., 2017). It was, therefore, imperative for the current study to ensure an appropriate 

number of PM stimuli were included within the PM conditions following suggestions 

proposed by Luck (2005) and Thigpen et al. (2017). It should be noted, however, that 

no direct evaluation for the number of required trials for determining statistical power 

for within- and between-group effects in PM stimuli has been performed.  

The PM task is an adapted version of Cruz’s (2016) PM paradigm incorporating two 

PM conditions: feature-based (referred to as perceptual within the literature and 

throughout the rest of the current study) and conceptual PM (illustrated in Figure 

5.1b). Participants were first presented with a list of 10 categories. Words (10 words 

from each category; 100 in total) were quasi-randomly presented. To mitigate practice 

effects, the experiments were programmed to not repeat a previously presented set of 

categories.  Participants were instructed to press a labelled button on the response box 

with their right index finger if the word on the screen was from the same semantic 

category as the word before it. Participants were then instructed on the secondary PM 

task, which was based on either 1) stimulus features (perceptual PM) or 2) semantics 

(conceptual PM). 
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For the perceptual PM condition (PMpercept), participants were told to remember to 

press the labelled button on the response box with their left index finger if they noticed 

the word appearing in capital letters, for example, the word 'SWORD'. For the 

conceptual PM condition (PMconcept), participants were told to remember to press the 

labelled button on the response box with their left index finger if they read the word 

of a four-footed animal, for example, the word 'lion'. The instructions included 

examples and a short practice block, which provided feedback informed the 

participants whether their response was correct or incorrect. The order of 

presentation of the PM tasks was counterbalanced to mitigate fatigue effects (tasks 

2/3 Figure 5.1b). Each PM task contained 600 stimuli, with breaks offered every 30 

stimuli. PM cues occurred no more than 10% of the time and were presented pseudo-

randomly to allow participants to re-engage with the ongoing task and to remove the 

chance of a PM cue repeating. 
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Figure 5.1. Experimental paradigm. (a) The ongoing working memory task.  The dashed arrows denote the response required to be made to the previous 

stimulus. Related words were those stimuli that were from the same semantic category as the word previously presented word. Unrelated words are those 

words that are not from the same semantic category. (b)  The prospective memory stimuli were embedded within the ongoing task. The light grey box indicates 

PM intention encoding and the retrieval after a delay. Examples of the perceptual PM cue and conceptual PM cues are marked with a small dashed arrow. 
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5.2.6 Electrophysiological data acquisition 

Electroencephalographic activity was measured on the surface of the scalp using an 

active-electrode, 128 channel Active Two Acquisition system (BioSemi, Amsterdam, 

Netherlands) sampling at 2048Hz and digitised at 24-bits. Referencing was performed 

online using CMS/DRL feedback loop with a low pass filter (5th order since response 

with a -3dB at 1/5th sampling rate). During the electrode application, offsets were 

examined to ensure they were <20μV. Seven additional Ag/AgCl electrodes were 

placed around the face to help with artifact detection. Data were collected using 

ActiView V6.05 (National Instruments, TX, USA) on a Windows PC. A response box was 

used to record the participant’s responses. Digital response and event markers were 

inserted into the recording data via a parallel port. 

 

5.2.7 Behavioural data analysis 

To evaluate the differences between perceptual and conceptual PM performance, the 

accuracy and reaction times of the PM tasks were compared using the ongoing working 

memory task performance as a baseline. Two three-way ANOVAs (Stimuli: 1-backtarget, 

PMpercept, PMconcept) were conducted for reaction time and percentage of correct 

responses. Only data from successful responses to stimuli were analysed for reaction 

time.  

 

5.2.8 Electrophysiological data analysis 

EEG data analysis and preprocessing were performed in MATLAB R2015a (The 

Mathwords, Inc) using custom-written scripts and the EEGlab plugin (Delorme & 

Makeig, 2004). Data was imported referenced to linked mastoids and downsampled to 

256Hz. Following recommendations by Tanner et al. (2015) a high-pass finite impulse 

(FIR) filter was applied at 0.01Hz and a low pass FIR filter at 35Hz. Line noise was 

removed using the CleanLine plug-in before a visual inspection was performed to 

reject bad channels. Following an ICA (runica) decomposition, independent 

components were visually inspected, and ocular and muscular artifacts were rejected 

from the data based on their scalp topographies and activity spectra. Next, the stimulus 
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triggers were recoded to incorrect and correct responses before epochs were 

extracted with 200ms pre-stimulus baseline.  

A virtual electrode method (Baker et al., 2018; Gilmore et al., 2005; Krusemark et al., 

2008; Rousselet et al., 2010) was employed to generate maximal value ERPs from a 

defined cluster of electrodes. This method enables individual differences to be 

considered and minimises multiple comparisons from an area of interest. Clusters 

were informed through the consideration of previous EEG research (Scolaro et al., 

2014; West, 2011; Zöllig et al., 2012) for the 1-backtarget, PMpercept and PMconcept task 

conditions. The 128 channels were clustered into 18 clusters (Figure 5.2; Appendix B 

for a table of the clusters). 1-backnontarget stimuli ERP amplitudes from the ongoing task 

were also extracted and analysed to evaluate differences between the two ongoing 

stimuli and to explore passive working memory processes.  

Figure 5.2. Illustration of the PM related ERP cluster definitions for the virtual electrode method. 

Green = P2 and Frontal Positivity. Red = P3b, Old-New Effect and Prospective Positivity. Blue = N300. 

Orange = RON.   
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Peak detection was performed using custom-written scripts in Matlab 2015a using the 

EEGLAB toolbox on each waveform (Delormne & Makeig, 2004). P2 was defined as the 

maximum positive peak at midline frontal and central clusters and bilateral 

frontocentral and central clusters between 160–220ms. N2 was defined as the most 

negative peak at midline parietal and occipital, and at bilateral parietal, inferior 

parietal and occipital clusters between 160–220ms.  The N300 was defined as the most 

negative peak at midline parietal and occipital clusters, and bilateral inferior parietal 

and occipital clusters between 300–500ms. Frontal positivity was defined as the most 

positive peak at midline frontal and central, and bilateral frontal, central and 

frontocentral clusters between 300–500ms. The N400 was defined as the most 

negative peak between 350–550ms over its maximal distribution at midline and 

bilateral central and parietal clusters (Kutas & Federmeier, 2011; 1-backtarget and 1-

backnontarget stimuli only). The P3b and the IRR were defined as the most positive peaks 

at midline and bilateral central and parietal clusters occurring between 300–400ms 

and 400–600ms, respectively. The prospective positivity was defined as being the 

largest sustained amplitude at midline and bilateral central and parietal clusters 

between 600–1000ms. The spatial location of the RON ERP was identified by visual 

inspection of the ERP waveforms across clusters and were defined as the most 

negative peak amplitude between 400–750ms. Amplitudes were measured as baseline 

to peak. All statistical analyses were performed using JASP (0.10.2). 

The following analyses were used for ERP Experiment 1 to address possible 

differences between the 1-backtarget and 1-backnontarget stimuli in N2, P2 and N400 

components.  Each ERP component was independently analysed and was further 

subdivided between midline and bilateral analyses in a series of mixed measures 

ANOVAs. The ANOVA variables were Stimuli (1-backtarget, 1-backnontarget), Cluster for 

midline and the bilateral clusters included Hemisphere (left, right). The level in Cluster 

varied depending on the component: P2 (frontal, frontocentral, central), N2 (parietal, 

inferior parietal, occipital) and N400 (central, parietal).  

To analyse differences in PM-related components in Experiment 2, the following 

components were analysed: N300, frontal positivity, P3b, IRR, prospective positivity, 

and RON. Each component was analysed independently and was further divided 

between midline and bilateral analyses in the following within measures ANOVAs. The 

ANOVAs included Stimuli (1-backtarget, 1-backnontarget, PMpercept, PMconcept) x Cluster at 
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midline clusters with the addition of Hemisphere (left, right) variable for bilateral 

clusters. Level in the Cluster variable varied depending on the component: P2 and 

frontal positivity (frontal, frontocentral, central), N2 (parietal, inferior parietal, 

occipital), N300 (parietal, occipital), P3b, IRR and prospective positivity (central, 

parietal), RON (frontotemporal). Lower-order ANOVAs were used to explore 

significant interactions and post-hoc analyses were used to determine differences. 

Bonferroni corrections were applied to account for multiple comparisons (Cabin & 

Mitchell, 2000). Greenhouse-Geisser was used to correct for violations of sphericity 

and are reported. Partial eta squared (ηp2), which was selected based on its 

generalisability to different experiment designs (Richardson, 2011), was reported for 

each main and interaction effect as an indicator of effect size (Bakeman, 2005). 

 

5.3 Results 

5.3.1 Behavioural results  

Behavioural results are illustrated in Figure 5.3.  

 

5.3.1.1 Reaction time 

There was a significant effect of Stimuli (F2,29 = 63.63, p < 0.001, ηp2 = 0.69), such that 

it took a significantly greater amount of time to correctly respond to PMconcept stimuli 

(938ms, SD = 0.13) relative to both 1-backtarget stimuli (763ms, SD = 0.12) and PMpercept 

stimuli (711ms, SD = 0.09). In addition, reaction times to PMpercept stimuli were 

significantly faster than 1-backtarget stimuli (p = 0.017).  

 

5.3.1.2 Correct responses 

There was a significant effect of Stimuli (F2,29 = 25.75, p < 0.001, ηp2 = 0.47), which was 

due to a significantly greater number of correct responses for PMpercept stimuli 

(97.26%, SD = 6.29) relative to 1-backtarget stimuli (80.67%, SD = 10.63, p < 0.001) and 

PMconcept stimuli (86.39%, p < 0.001). Whilst the number of correct responses for 
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PMconcept stimuli was higher than 1-backtarget stimuli, this effect fell short of the 

significance threshold (p = 0.051).  

 

 

Figure 5.3. Descriptive plots for the reaction time (a) and the percentage of correct responses (b). 1-

backtarget = repeated ongoing stimuli, PMpercept = perceptual PM stimuli, PMconcept = conceptual PM 

stimuli. Error bars show standard error. 
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5.3.2 Electrophysiological Analysis: Experiment 1, 1-backtarget 

versus 1-backnontargets 

One participant was removed due to poor EEG data. Thus, n = 29 participants were 

included in the final analysis.  

 

5.3.2.1 ERPs to ongoing 1-backtarget versus 1-backnontarget stimuli. 

All statistically significant main effects and post hoc-tests are presented in Table 5.1. 

Means and standard deviations for the N2, P2 and N400 amplitudes for 1-backtarget and 

1-backnontarget stimuli can be found in Appendix C, Table C.1.  

 

5.3.2.2 Midline anterior P2 amplitudes. 

There was a significant main effect of Cluster (F1,28 = 12.75, p < 0.001, ηp2 = 0.32), such 

that the frontal cluster had significantly greater amplitudes relative to the central 

cluster (p = 0.001). There were no other significant effects.  

 

5.3.2.3 Lateral anterior P2 amplitudes. 

There was a significant main effect of Stimuli (F1,28 = 30.00, p < 0.001, ηp2 = 0.56), such 

that 1-backtarget stimuli produced significantly greater P2 amplitudes relative to the 1-

backnontarget stimuli. Additionally, there was a significant main effect of Cluster (F2.31,55.45 

= 12.80, p < 0.001, ηp2 = 0.35), where frontocentral P2 amplitudes were significantly 

greater than all other clusters (ps < 0.001). There were no other significant effects.  

 

5.3.2.4 Midline posterior N2 amplitudes. 

There was a significant main effect of Cluster (F1,28 = 50.28, p < 0.001, ηp2 = 0.65), such 

that N2 amplitudes were significantly greater at the midline occipital cluster relative 

to the midline parietal cluster. There were no other significant effects.  
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5.3.2.5 Lateral Posterior N2 Amplitudes 

There was a significant main effect of Stimuli (F1,28 = 4.77, p = 0.038, ηp2 = 0.16), which 

was due to greater negativity of the N2 amplitude ERP in response to 1-backtarget 

stimuli relative to 1-backnontarget stimuli. There was also a significant effect of Cluster 

(F1.52,39.49 = 37.07, p < 0.001, ηp2 = 0.59), such that occipital N2 amplitudes were 

significantly greater (more negative) than parietal (p < 0.001) and inferior parietal (p 

= 0.008) clusters. Additionally, inferior parietal clusters evoked significantly greater 

N2 responses than parietal clusters (p < 0.001). There were no other significant effects.  
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Table 5.1 

Summary of Significant Effects for the P2, N2 and N400 ERP Amplitudes (1-backtarget versus 1-
backnontarget) 

Midline P2 ERP 
Amplitude 

Lower F-
Value 

DF p-value ηp2 

 

Post-Hoc Tests 

Cluster  12.75 1,28 < 0.001 0.32 F > C 

Lateral Anterior 
P2 Amplitudes 

      

Stimuli  30.00 1,28 < 0.001 0.56 1-backtarget > 1-
backnontarget 

Cluster  12.80 2.31,55.45 < 0.001 0.35 FC > F & C 

Midline Posterior 
N2 Amplitudes 

      

Cluster  50.28 1,28 < 0.001 0.65 OC < P 

Lateral posterior 
N2 amplitudes 

      

Stimuli  4.77 1,28 0.038 0.16 1-backnontarget < 1-
backtarget 

Cluster  37.07 1.52,39.49 < 0.001 0.59 OC < IP < P 

Midline N400 
Amplitudes 

      

Stimuli  6.63 1,28 0.016 0.20 1-backnontarget < 1-
backtarget 

Cluster  107.30 1,28 < 0.001 0.80 C < P 

Lateral N400 
Amplitudes 

      

Stimuli  17.20 1,28 < 0.001 0.34  

Cluster  147.28 1,28 < 0.001 0.85  

Stimuli*Hemisphere  10.77 1,28 0.003 0.29  

 R 29.55 1,28 <0.001 0.52 1-backnontarget < 1-
backtarget 

Stimuli*Cluster  4.84 1,28 0.037 0.15  

 1-backtarget 122.89 1,28 < 0.001 0.82 C < P 

 1-
backnontarget 

138.55 1,28 < 0.001 0.84 C < P  

 P 19.99 1,28 < 0.001 0.43 1-backnontarget < 1-
backtarget 
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1-backtarget = repeated ongoing stimuli, 1-backnontarget = non-repeated ongoing stimuli. Clusters: FC = 

frontocentral, F = frontal, C = central, OC = occipital, IP = inferior parietal, P = parietal. R = right 

hemisphere. N.B ‘>’ means amplitudes are more positive for the P2 amplitudes and ‘<’ means that 

amplitudes were more negative for N2 and N400 amplitudes.  

 

5.3.2.6 Midline N400 amplitudes. 

Midline N400 amplitudes are illustrated in Figure 5.4. There was a significant main 

effect of Stimuli (F1,28 = 6.63, p = 0.016, ηp2 = 0.20), where 1-backnontarget stimuli 

produced greater N400 amplitude response relative to 1-backtarget stimuli. There was 

also a significant main effect of Cluster (F1,28 = 107.30, p < 0.001, ηp2 = 0.80), where 

central clusters exhibited a greater N400 response than at parietal clusters. There 

were no other significant effects.  

 

Figure 5.4. ERP waveforms for repeated ongoing stimuli (1-backtarget) and non-repeat ongoing stimuli 

(1-backnontarget). (a) Left frontal cluster and (b) right frontal cluster showing a P2 amplitude increase 

for 1-backtarget stimuli. (c) Midline central cluster (d) midline parietal cluster illustrates the increased 

N400 for 1-backnontarget stimuli. 

 

5.3.2.7 Lateral N400 amplitudes. 

There was a significant main effect of Stimuli (F1,28 = 17.20, p < 0.001, ηp2 = 0.34) and 

a significant main effect of Cluster (F1,28 = 147.28, p < 0.001, ηp2 = 0.85). There was 

also a significant interaction effect of Stimuli x Hemisphere (F1,28 = 10.77, p = 0.003, 
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ηp2 = 0.29), which was due to a significant effect of Stimuli in the right hemisphere, 

where 1-backnontarget stimuli produced a significantly greater N400 ERP 

(incongruence effect) than 1-backtarget stimuli (F1,28 = 29.55, p < 0.001, ηp2 = 0.52), but 

was not found over the left hemisphere. 

There was also a significant Stimuli x Cluster interaction effect (F1,28 = 4.84, p = 0.037, 

ηp2 = 0.15). This interaction was in part due to a significant effect of Cluster for 1-

backtarget (F1,28 = 122.89, p < 0.001, ηp2 = 0.82) and 1-backnontarget stimuli (F1,28 = 

138.55, p < 0.001, ηp2 = 0.84), where central clusters evoked the greater N400 

amplitude responses relative to the parietal clusters and also due to a significant 

effect of Stimuli at parietal clusters (F1,28 = 19.99, p < 0.001, ηp2 = 0.43), where 1-

backnontarget evoked a greater N400 ERP than 1-backtarget stimuli.  

 

5.3.3 Summary and interim discussion for Experiment 1: 

repeated versus non-repeated ongoing stimuli 

Experiment 1 was performed with 1-backtarget and 1-backnontarget stimuli in the 

ongoing-only task condition to determine whether there are neurophysiological 

response differences between the two stimuli. These comparisons were made to 

assess whether ongoing stimuli can be averaged together before being compared 

against PM stimuli. The P2 and N2 were used as earlier cognitive measures of attention 

and executive function in the semantic working memory task (Folstein & Van Petten, 

2008; Schmitt et al., 2000). The N400 ERP was measured to assess the possible 

differences in semantic processing and differences at the later stage of the ERP.  The 

results revealed there is indeed a semantic congruency effect, as indicated by the N400, 

and amplitude differences at the earlier N2 and P2 components.  

As expected, the ongoing stimuli exhibited a clear congruency effect where 1-

backnontarget stimuli produced a greater N400 response at midline and bilateral 

centroparietal clusters (Kutas & Federmeier, 2011). This finding is in line with past 

research demonstrating that 1-backtarget stimuli produce significantly smaller (less 

negative) N400 amplitudes relative to unrelated stimuli (Cruz San Martin, 2014; Kutas 

& Federmeier, 2011). Interestingly, a greater N400 was found in the right hemisphere 

for 1-backnontarget relative to 1-backtarget stimuli, but this was not found in the left 



109 

 
hemisphere. It is possible that this hemispheric asymmetry reflects word-meaning 

comprehension as demonstrated in numerous other studies (reviews: Federmeier, 

2007; Federmeier et al., 2008). For example, an ERP study conducted by Coulson et al. 

(2005), compared N400 congruency effects in sentence and world level 

comprehension. Both hemispheres demonstrated a greater N400 ERP in response to 

incongruent stimuli, but analyses of word level comprehension revealed that the right 

hemisphere is more sensitive to word-word relationships than the left hemisphere, 

which was primarily associated with sentence meaning.  

It was expected that there would be ERP amplitude differences in the N2 but not the 

P2 in response two ongoing task stimuli. However, the results here demonstrated 

greater N2 and P2 ERP amplitudes in response to related words relative to unrelated 

words. It could be argued that experimental design follows a go/no-go format, 

however, it would be expected that there would be increases in the N2 amplitudes in 

response to the unrelated stimuli relative to the related stimuli (Heil et al., 2000; 

Pfefferbaum et al., 1985). Given that the opposite amplitude effect is found here, and 

the related words are rarer relative to the unrelated words (i.e., related words had a 

25% chance of occurring), it is more likely that the current study follows a design more 

similar to an oddball or n-back task. As such, given that the processing of semantic 

information can be processed as early as 160ms (Amsel et al., 2013; Hauk et al., 2012) 

the increase in the N2 might reflect visual awareness for the related stimuli (Koivisto 

et al., 2018) while the increase in the P2 likely reflects processes associated with 

stimulus classification, evaluation (Z. G. Doborjeh, Kasabov, et al., 2018; Potts, 2004) 

and the shifting of attention (Wongupparaj et al., 2018). 

From these results, it can be concluded that for comparisons of ERPs between ongoing 

working memory and PM, careful consideration should be taken with respect to 

averaging ERPs in response to ongoing task stimuli. The differences between the 

amplitudes of the two different stimuli here show that incorrect conclusions may have 

been made by Cousens et al. (2015), where ERPs related to related and unrelated 

words were treated as the same and were averaged together. The current results 

support Cruz et al.’s (2016) assertion to treat related and unrelated ongoing task 

stimuli as separate and compare PM with each of the ongoing task stimuli. Throughout 

the rest of this thesis, the 1-backtarget and 1-backnontarget stimuli will be treated 

separately.  
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5.3.4 Electrophysiological Analysis: Experiment 2, 

prospective memory ERPs 

Experiment Two aimed to explore the differences in the ERP components related to 

perceptual and conceptual PM stimuli and whether a RON response is produced 

following a PM stimulus. All grand-averaged waveforms across all clusters for the 1-

backtarget, 1-backnontarget, PMpercept and PMconcept can be found in Figure 5.4.  

 

5.3.4.1 Prospective Memory Cue Detection  

Descriptions of the N300 and frontal positivity amplitudes are presented in Appendix 

D, Table D.1 and Table D.2, respectively.   

 

5.3.4.2 N300 ERP amplitudes 

A summary of all significant effects is presented in Table 5.2. 

 

5.3.4.3 Midline N300 ERP amplitudes 

There was a significant main effect of Stimuli (F1.89,51.12 = 4.62, p = 0.016, ηp2 = 0.15) and 

a significant main effect of Cluster (F1,28 = 32.40, p < 0.001, ηp2 = 0.55).  

There was a significant Stimuli x Cluster interaction (F1.83,49.52 = 12.85, p < 0.001, ηp2 = 

0.32). The interaction was due to an effect of Stimuli in the parietal cluster (F1.89,51.06 = 

6.97, p = 0.002, ηp2 = 0.21), where N300 amplitudes in response to PMconcept were 

greater than PMpercept (p < 0.001). The interaction was also due to a significant effect of 

Stimuli in the occipital cluster (F1.80,48.67 = 7.97, p = 0.001, ηp2 = 0.23), where both 

PMpercept and PMconcept stimuli caused significantly greater N300 amplitudes than 1-

backnontarget stimuli (p = 0.016 and p = 0.004, respectively). However, only the N300 in 

response to PMconcept was greater than 1-backtarget stimuli, as the PMpercept was only 

considered trending towards significance (p = 0.05). Furthermore, the interaction is 

explained by a significant effect of Cluster across all stimuli, where the occipital cluster 
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had greater N300 amplitudes than the parietal cluster (1-backnontarget, p = 0.003, all 

other ps < 0.001).  

 

5.3.4.4 Lateral N300 ERP amplitudes 

Similar to midline clusters, there was a significant main effect of Stimuli (F1.99,51.72 = 

15.56, p < 0.001, ηp2 = 0.37) and a significant main effect of Cluster (F1,28 = 14.66, p < 

0.001, ηp2 = 0.36).  

Additionally, there was a significant interaction effect of Stimuli x Cluster (F2.24,58.35 = 

7.06, p = 0.001, ηp2 = 0.21). This can be explained by a significant effect of Stimuli in the 

inferior parietal clusters (F2.23,60.09 = 20.03, p < 0.001, ηp2 = 0.43), where PMpercept 

stimuli caused significantly greater N300 responses than 1-backtarget (p < 0.001), 1-

backnontarget (p = 0.001) and PMconcept stimuli (p = 0.002). Moreover, amplitudes in 

response to 1-backtarget was found to be more negative than in response to 1-

backnontarget stimuli (p = 0.001). The Stimuli x Cluster interaction was also due to a 

significant effect of Stimuli in the occipital cluster (F1.89,49.23 = 6.91, p = 0.003, ηp2 = 

0.21), where PMconcept stimuli produced significantly greater N300 responses than 1-

backnontarget (p < 0.001) and 1-backtarget (p = 0.035), but was not found for PMpercept (ps 

> 0.05).  

The Stimuli x Cluster interaction was also explained by a significant effect of Cluster, 

such that inferior parietal clusters generated significantly greater N300 amplitude 

responses than occipital clusters for 1-backtarget (p < 0.001), 1-backnontarget (p = 0.004) 

and PMpercept (p < 0.001) stimuli. However, the effect of Cluster for PMconcept stimuli fell 

just short of significance (p = 0.053).  

 

 

 

 

 

 



112 

 

Table 5.2 

Summary of Significant Effects for the N300 ERP Amplitudes  

Midline N300 ERP 
Amplitude 

Lower F-Value DF p-value ηp2 Post-Hoc Tests 

Stimuli  4.62 1.89,51.12 0.016 0.15  

Cluster  32.40 1,27 < 0.001 0.55  

Stimuli*Cluster  12.85 1.83,49.52 < 0.001 0.32  

 P 6.97 1.89,51.06 0.002 0.21 PMconcept > PMpercept  

 OC 7.97 1.80,48.67 0.001 0.23 PM > 1-backnontarget | PMconcept > 1-backtarget | PMpercept > 1-
backtarget† 

 1-backtarget 19.72 1,28 < 0.001 0.42 P > OC 

 1-backnontarget 11.04 1,28 0.003 0.29 P > OC 

 PMpercept 32.74 1,28 < 0.001 0.54 P > OC 

 PMconcept 22.78 1,28 < 0.001 0.45 P > OC 

Lateral N300 ERP 
Amplitudes 

Lower F-Value DF p-value ηp2 Post-Hoc Tests 

Stimuli  15.56 1.99,51.72 < 0.001 0.37  

Cluster  14.66 1,28 < 0.001 0.36  

Stimuli*Cluster  7.06 2.24,58.35 0.001 0.21  

 IP 20.03 2.23,60.09 < 0.001 0.43 PMpercept > PMconcept & 1-backtarget > 1-backnontarget  

 OC 6.91 1.89,49.23 0.003 0.21 PMconcept > 1-backnontarget & 1-backtaget 



113 

 

Lateral N300 ERP 
Amplitudes 

Lower F-Value DF p-value ηp2 Post-Hoc Tests 

 1-backtarget 20.87 1,28 < 0.001 0.45 IP > OC 

 1-backnontarget 9.91 1,28 0.004 0.28 IP > OC 

 PMpercept 15.12 1,28 < 0.001 0.36 IP > OC 

 PMconcept 4.08 1,28 0.053† 0.28  

Stimuli: 1-backtarget = repeated ongoing stimuli, 1-backnontarget = non-repeated ongoing stimuli, PMpercept = perceptual prospective memory stimuli, PMconcept = conceptual 

prospective memory stimuli. Clusters: P = parietal, OC = occipital, IP = inferior parietal. † = trending effect. PM = both PMpercept & PMconcept. N.B. ‘>’ indicates amplitudes being 

more negative in this table.  
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5.3.4.5 Frontal positivity ERPs 

A summary of all significant effects is presented in Table 5.3.   

 

5.3.4.6 Midline frontal positivity ERP amplitudes 

There was a significant main effect of Stimuli (F2.39,64.56 = 66.65, p < 0.001, ηp2 = 0.71) 

and a significant main effect of Cluster (F1,28 = 24.73, p < 0.001, ηp2 = 0.48).  

There was a significant interaction of Stimuli x Cluster (F1.85,62.98 = 8.92, p < 0.001, ηp2 = 

0.25). This, in part, was due to a significant effect of Stimuli at the frontal cluster where 

PMpercept produced a significantly greater ERP response than all other stimuli (ps < 

0.001) and PMconcept was greater than 1-backnontarget stimuli (p < 0.001). At the frontal 

cluster, 1-backtarget stimuli was significantly greater than 1-backnontarget stimuli (p = 

0.002).  Similarly, a significant effect of Stimuli was found at the central cluster 

(F2.39,64.56 = 66.65, p < 0.001, ηp2 = 0.71), where PMpercept amplitudes were more positive 

than 1-backtarget, 1-backnontarget and PMconcept (ps < 0.001), but no differences were found 

between any other stimuli (ps > 0.05). The Stimuli x Cluster interaction is also 

explained by significantly more positive amplitudes for all stimuli at the central 

relative to the frontal cluster (ps < 0.05). 

 

5.3.4.7 Lateral frontal positivity ERP amplitudes  

There was a significant main effect of Stimuli (F3,84 = 22.02, p < 0.001, ηp2 = 0.46). There 

was also a significant interaction of Stimuli x Hemisphere (F3,84 = 5.00, p = 0.003, ηp2 = 

0.16) and Stimuli x Cluster (F3.52,91.59 = 7.18, p < 0.001, ηp2 = 0.22).  

The Stimuli x Hemisphere interaction is explained by a significant effect of Stimuli in 

the left hemisphere (F3,84 = 11.35, p < 0.001, ηp2 = 0.30), where PMpercept and PMconcept 

had significantly more positive amplitudes than 1-backnontarget stimuli (p < 0.001 & p = 

0.018, respectively) and PMpercept was larger than 1-backtarget stimuli (p = 0.001). In the 

right hemisphere (F3,84 = 24.46, p < 0.001, ηp2 = 0.48), PMpercept stimuli amplitudes were 

significantly more positive than 1-backnontarget (p < 0.001), 1-backtarget (p = 0.001) and 

PMconcept stimuli (p = 0.006); PMconcept stimuli was significantly more positive than 1-
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backnontarget stimuli (p < 0.001) but not 1-backtarget stimuli (p > 0.05); 1-backtarget was 

significantly greater than 1-backnontarget (p < 0.001). Additionally, the interaction is also 

due to an effect of Hemisphere, where the right had greater amplitudes than the left for 

1-backtarget stimuli (F3.52,91.59 = 7.18, p < 0.001, ηp2 = 0.22). 

The Stimuli x Cluster interaction is explained by a significant effect of Stimuli at frontal 

clusters (F3,84 = 2.91, p = 0.040, ηp2 = 0.10), where PMconcept stimuli was significantly 

larger than 1-backnontarget stimuli (p = 0.035); at frontocentral clusters (F2.28,61.46 = 

35.09, p < 0.001, ηp2 = 0.57), where PMpercept was significantly larger than 1-backtarget, 

1-backnontarget and PMconcept (ps < 0.001) and PMconcept was larger than 1-backnontarget (p < 

0.001) but not 1-backtarget (p > 0.05) and 1-backnontarget was larger than 1-backtarget (p = 

0.004); at central clusters (F2.14,61.77 = 33.16, p < 0.001, ηp2 = 0.55), where PMpercept 

stimuli was significantly larger than all other stimuli (ps < 0.001) and PMconcept was 

significantly larger than 1-backnontarget (p = 0.015) but not 1-backtarget (p > 0.05). 

Additionally, this interaction can be explained by a significant effect of Cluster for 

PMpercept stimuli (F1.56,43.54 = 9.22, p = 0.002, ηp2 = 0.26), such that frontocentral and 

central clusters evoked significantly larger amplitudes compared to frontal clusters 

(ps = 0.001). There were no other significant effects. 
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Figure 5.4. Grand-averaged ERP waveforms across the 18 clusters for repeated ongoing-only stimuli 

(1-backtarget), non-repeated ongoing-only stimuli (1-backnontarget), conceptual prospective memory 

stimuli (PMconcept) and perceptual prospective memory stimuli (PMpercept). The y-axis of for each of the 

ERP waveforms is from -3μV to 7μV. The x-axis for each ERP waveform is from -200 to 1000ms.  
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Table 5.3 

Summary of Significant Effects for Frontal Positivity ERP Amplitudes  

Midline Frontal 
Positivity 

Lower F-Value DF p-value ηp2 Post-Hoc Tests 

Stimuli  66.65 2.39,64.56 < 0.001 0.25  

Cluster  24.73 1,28 < 0.001 0.48  

Stimuli*Cluster  8.92 1.85,62.98 < 0.001 0.25  

 F 31.78 2.39,64.56 < 0.001 0.54 PMpercept > 
PMconcept & 1-
backtarget > 1-
backnontarget  

 C 58.95 2.21,59.65 < 0.001 0.69 PMpercept > 
PMconcept & 1-
backtarget & 1-
backnontarget  

 1-backtarget 11.80 1,28 0.002 0.30 C > F 

 1-backnontarget 29.68 1,28 < 0.001 0.52 C > F 

 PMpercept 28.11 1,28 < 0.001 0.50 C > F 

 PMconcept 4.24 1,28 0.049 0.13 C > F 

Lateral Frontal 
Positivity 

      

Stimuli  22.02 2,84 < 0.001 0.46  

Stimuli*Hemisphere  5.00 3,84 0.003 0.16  

 L 11.35 3,84 < 0.001 0.30 PM > 1-
backnontarget | 
PMpercept > 1-
backtarget 

 R 24.46 3,84 < 0.001 0.48 PMpercept > 
PMconcept > 1-
backnontarget 
|PMpercept > 1-
backtarget 

 1-backtarget 7.18 3.52,91.59 < 0.001 0.22 R > L 

Stimuli*Cluster       

 F 2.91 3,84 0.040 0.10 PMconcept > 1-
backnontarget 

 FC 35.09 2.28,61.46 < 0.001 0.57 PMpercept > 
PMconcept > 1-
backnontarget | 
PMpercept > 1-
backtarget 
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Lateral Frontal 
Positivity 

Lower F-Value DF p-value ηp2 Post-Hoc Tests 

 C 33.16 2.14,61.77 < 0.001 0.55 PMpercept > 
PMconcept > 1-
backtarget | 
PMpercept > 1-
backtarget 

 PMpercept 9.22 1.56,43.54 0.002 0.26 FC & C > F 

Stimuli: 1-backtarget = repeated ongoing stimuli, 1-backnontarget = non-repeated ongoing stimuli, PMpercept = 

perceptual prospective memory stimuli, PMconcept = conceptual prospective memory stimuli. Clusters: F 

= frontal, FC = frontocentral, C = central. L = left hemisphere, R = right hemisphere. PM = both PMpercept 

& PMconcept. N.B. ‘>’ indicates amplitudes are more positive in this table. | = separator between post-hoc 

tests.  

 

5.3.5 Realisation of Intentions: Parietal Positivity   

5.3.5.1 P3b ERPs 

A summary of significant effects is presented in Table 5.4. Means and standard 

deviations for the P3b amplitudes can be found in Appendix D, Table D.3 

 

5.3.5.2 Midline P3b ERP amplitudes 

There was a significant main effect of Stimuli (F3,84 = 11.46, p < 0.001, ηp2 = 0.23), which 

was due to a significantly greater P3b response for PMpercept stimuli relative to 1-

backtaget stimuli (p = 0.001) and PMconcept stimuli (p < 0.001). There was also a 

significant main effect of Cluster (F1,28 = 22.27, p < 0.001, ηp2 = 0.45) whereby across all 

stimuli, P3b responses were significantly greater at parietal clusters.  

 

5.3.5.2 Lateral P3b ERP amplitudes 

There was a significant main effect of Stimuli (F2.29,61.78 = 9.85, p < 0.001, ηp2 = 0.27) and 

Cluster (F1,28 = 21.12, p < 0.001, ηp2 = 0.44), which was due to significantly greater 

amplitudes across all stimuli in the parietal cluster.  
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Furthermore, there was a significant interaction of Stimuli x Hemisphere (F3,84 = 4.02, 

p = 0.010, ηp2 = 0.13).  This was due to a significant effect of Hemisphere (F1,28 = 4.88, p 

= 0.036, ηp2 = 0.15) for 1-backtarget stimuli, where the right hemisphere had greater 

amplitudes than the left. This hemispheric asymmetry was not found for other stimuli 

(ps > 0.05). Additionally, the Stimuli x Hemisphere interaction is explained by a 

significant effect of Stimuli in the left hemisphere (F3,84 = 8.38, p < 0.001, ηp2 = 0.24), 

such that PMpercept stimuli produced significantly greater P3b ERP amplitudes than 1-

backtarget (p = 0.042) and PMconcept stimuli (p = 0.011); 1-backnontarget stimuli produced 

significantly greater P3b amplitudes than 1-backtarget (p = 0.003) and PMconcept Stimuli 

(p = 0.002). In the right hemisphere, there was also a significant effect of Stimuli (F3,84 

= 6.06, p < 0.001, ηp2 = 0.18) due to significantly greater amplitudes in response to 

PMpercept stimuli relative to 1-backnontarget (p = 0.043) and PMconcept stimuli (p = 0.004). 

There were no other significant effects. 
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Table 5.4  

Summary of Significant Effects for the P3b ERP Amplitudes  

Midline P3b 
Amplitudes 

Lower F-
Value 

DF p-value η2p Post-Hoc 
Tests 

Stimuli  11.46 3,84 < 0.001 0.23 PMpercept > 1-
backtarget & 
PMconcept 

Cluster  22.27 1,28 < 0.001 0.45 P > C 

Lateral P3b ERP 
Amplitudes 

      

Stimuli  9.85 2.29,61.78 < 0.001 0.27  

Cluster  21.12 1,28 < 0.001 0.44 P > C 

Stimuli*Hemisphere  4.02 3,84 0.010 0.13  

 1-backtarget 4.88 1,28 0.036 0.15 R > L 

 L 8.38 3,84 < 0.001 0.24 PMpercept > 1-
backtarget & 
PMconcept | 1-
backnontarget > 1-
backtarget & 
PMconcept 

 R 6.06 3,84 < 0.001 0.18 PMpercept > 1-
backnontarget & 
PMconcept  

Stimuli: 1-backtarget = repeated ongoing stimuli, 1-backnontarget = non-repeated ongoing stimuli, PMpercept = 

perceptual prospective memory stimuli, PMconcept = conceptual prospective memory stimuli. Clusters: P 

= parietal, C = Central. L = left hemisphere, R = right hemisphere. | = separator between post-hoc tests. 

N.B. ‘>’ indicates amplitudes being more positive in this table.  

 

5.3.5.3 Intention retrieval ERPs 

A summary of all significant effects is presented in Table 5.5. Means and standard 

deviations for the IRR ERP can be found in Appendix D, Table D.4 

 

5.3.5.4 Midline intention retrieval ERP amplitudes 

There was a significant main effect of Stimuli (F2.18,58.81 = 45.54, p < 0.001, ηp2 = 0.63), 

such that PMpercept stimuli caused significantly greater amplitudes than all other stimuli 

(ps < 0.001) and PMconcept stimuli evoked significantly greater positive amplitudes 
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relative to 1-backnontarget stimuli (p = 0.026). There was also a significant main effect of 

Cluster (F1,28 = 13.54, p = 0.001, ηp2 = 0.33), such that parietal clusters produced greater 

positive amplitudes relative to the central cluster.  

 

5.3.5.5 Lateral intention retrieval ERP amplitudes 

There was a significant main effect of Stimuli (F2.33,62.78 = 61.78, p < 0.001, ηp2 = 0.70) 

and a significant effect of Cluster (F1,28 = 33.84, p < 0.001, ηp2 = 0.56). Additionally, there 

was a significant interaction of Stimuli x Hemisphere (F1,28 = 5.44, p = 0.005, ηp2 = 0.17) 

and Stimuli x Cluster (F2.27,28 = 4.40, p = 0.013, ηp2 = 0.14).  

Furthermore, there was a three-way interaction of Condition x Hemisphere x Cluster 

(F2.32,62.63 = 6.59, p = 0.002, ηp2 = 0.20). Further analysis revealed that this interaction 

effect was due to a significant a Stimuli x Hemisphere interaction over central clusters 

(F2.39,64.34 = 5.82, p = 0.003, ηp2 = 0.12), where the right hemisphere evoked significantly 

larger amplitudes relative to the left for 1-backtarget stimuli (F1,28 = 4.77, p = 0.038, ηp2 

= 0.15). Over the left central cluster PMpercept produced greater positive amplitudes 

compared to PMconcept stimuli (p = 0.013) but both PMpercept and PMconcept stimuli 

produced significantly greater amplitudes relative to 1-backtarget stimuli (p < 0.001 & p 

= 0.037, respectively) and 1-backnontarget stimuli (p < 0.001 & p = 0.045, respectively).  

A significant Stimuli x Hemisphere interaction was also found at parietal clusters 

(F2.22,65.52 = 5.73, p = 0.004, ηp2 = 0.18). This can be explained by a significant 

Hemisphere effect for PMpercept stimuli (F1,28 = 8.52, p = 0.007, ηp2 = 0.23), where the 

right hemisphere had significantly more positive amplitudes than the left hemisphere. 

Additionally, this can be explained by a significant effect of Stimuli over the left 

hemisphere (F2.14,57.81 = 22.40, p < 0.001, ηp2 = 0.45), such that PMpercept amplitudes 

were significantly greater than all other stimuli (ps < 0.001). The significant Stimuli x 

Hemisphere interaction was also due to a significant effect of Stimuli in the right 

Hemisphere (F2.22,59.95 = 53.62, p < 0.001, ηp2 = 0.67), which was due to significantly 

larger amplitudes for the PMpercept stimuli relative to all other stimuli (ps < 0.001) and 

due to significantly larger PMconcept amplitudes relative to 1-backtarget stimuli (p = 

0.027); 1-backtarget was significantly larger relative to 1-backnontarget (p = 0.001).  



122 

 
The three-way interaction was also explained by a significant Stimuli x Cluster 

interaction in the left hemisphere (F2.43,65.66 = 3.28, p = 0.035, ηp2 = 0.11), such that 

parietal clusters had significantly greater amplitudes than central clusters (1-backtarget, 

1-backnontarget & PMpercept, ps < 0.001; PMconcept p = 0.040); significantly greater 

amplitudes for PMpercept relative to 1-backtarget and 1-backnontarget (ps < 0.001) and 

PMconcept (p = 0.031), while PMconcept had significantly larger amplitudes than 1-

backtarget and 1-backnontarget (ps < 0.05).  

Moreover, a significant Stimuli x Cluster interaction was found in the right hemisphere 

(F2.47,66.72 = 7.93, p < 0.001, ηp2 = 0.23), such that for all stimuli the parietal clusters 

evoked larger amplitudes relative to the central cluster (ps < 0.001); PMpercept evoked 

significantly larger amplitudes than all other stimuli (ps < 0.001); PMconcept evoked 

significantly greater amplitudes than 1-backnontarget (p = 0.027) and 1-backtarget 

amplitudes were significantly greater than 1-backnontarget amplitudes (p = 0.001).  
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Stimuli: 1-backtarget = repeated ongoing stimuli, 1-backnontarget = non-repeated ongoing stimuli, PMpercept = perceptual prospective memory stimuli, PMconcept = conceptual 

prospective memory stimuli. Clusters: P = parietal, C = central. L = left hemisphere, R = right hemisphere. PM = both PMpercept & PMconcept, ongoing = 1-backtarget & 1-

backnontarget. | = separator between post-hoc tests. N.B. ‘>’ indicates amplitudes being more positive in this table.  

Table 5.5 

Summary of Significant Effects for the Intention Retrieval Response (IRR) ERP Amplitudes  

Midline IRR amplitudes Lower F-Value DF p-value η2p Post-Hoc Tests 

Stimuli  45.54 2.18,58.81 < 0.001 0.63 PMpercept > PMconcept > 1-backnontarget | PMpercept > 1-
backtarget 

Cluster  1.54 1,28 0.001 0.33 P > C 

Lateral IRR amplitudes       

Stimuli  61.78 2.33,62.78 < 0.001 0.70  

Cluster  33.84 1,28 < 0.001 0.56  

Stimuli*Hemisphere*Cluster  6.59 2.32,62.63 0.002 0.20  

Stimuli*Hemisphere C 5.82 2.39,64.34 0.003 0.12 1-backtarget: R > L | L: PM > ongoing 

 P 5.73 2.22,65.52 0.004 0.18 PMpercept: R > L | L: PMpercept > PMconcept & ongoing | 
R: PMpercept > PMconcept > 1-backtarget > 1-backnontarget 

Stimuli*Cluster  L 3.28 2.43,65.66 0.035 0.11 All stimuli: P > C | PMpercept > PMconcept > ongoing 

 R 7.93 2.47,66.72 < 0.001 0.23 All stimuli: P > C | PMpercept > PMconcept > 1-
backnontarget < 1-backtarget 
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5.3.5.6 Prospective positivity ERPs 

A summary of all significant effects is presented in Table 5.6. Means and standard 

deviations of the Prospective Positivity amplitudes can be found in Appendix D, Table 

D.5.   

 

5.3.5.7 Midline prospective positivity ERP amplitudes 

There was a significant main effect of Stimuli (F2.11,62.07 = 25.45, p < 0.001, ηp2 = 0.49) 

due to PMpercept generating a larger positive amplitude than 1-backtaret (p < 0.001), 1-

backnontarget (p = 0.001) and PMconcept stimuli (p = 0.005). PMconcept stimuli caused larger 

positive amplitude than 1-backtarget (p = 0.037) and 1-backnontarget stimuli (p = 0.001). 

There was also a significant main effect of Cluster (F1,28 = 8.81, p = 0.006, ηp2 = 0.25), 

whereby amplitudes were more positive over parietal clusters than central clusters.  

 

5.3.5.8 Lateral Prospective Positivity ERP Amplitudes 

There was a significant main effect of Stimuli (F2.30,68.23 = 27.77, p < 0.001, ηp2 = 0.51) 

and Cluster (F1,28 = 21.95, p < 0.001, ηp2 = 0.45). Additionally, there was a significant 

interaction of Stimuli x Hemisphere (F2.26,61.03 = 6.11, p = 0.003, ηp2 = 0.19) and Stimuli 

x Cluster (F3,84 = 3.82, p = 0.013, ηp2 = 0.12).  

Moreover, there was a significant three-way Stimuli x Hemisphere x Cluster interaction 

(F3,84 = 5.48, p = 0.002, ηp2 = 0.17). This three-way interaction is due to a significant 

Stimuli x Hemisphere interaction at central clusters (F3,84 = 9.13, p < 0.001, ηp2 = 0.25). 

At the left central cluster, the prospective positivity was significantly greater for 

PMpercept stimuli relative to 1-backtarget (p = 0.001) and 1-backnontarget (p < 0.001), along 

with greater amplitudes for PMconcept stimuli relative to 1-backnontarget stimuli (p = 

0.003). For right central clusters, the prospective positivity was significantly greater 

for PMpercept relative to 1-backnontarget (p = 0.002), but not 1-backtarget (p > 0.05). 

PMconcept, however, was significantly greater than 1-backtarget (p = 0.044) and 1-

backtarget was significantly greater than 1-backnontarget stimuli (p < 0.001). At central 
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clusters, 1-backtarget stimuli produced a significantly larger amplitude over the right 

hemisphere relative to the left (p < 0.001).  

The Stimuli x Hemisphere x Cluster interaction was also explained by a significant 

Stimuli x Cluster interaction in the right hemisphere (F2.16,61.23 = 18.23, p < 0.001, ηp2 = 

0.40). In right central clusters, PMpercept and 1-backtarget stimuli were significantly 

greater than 1-backnontarget stimuli (p = 0.002 & p < 0.001, respectively) and 1-backtarget 

was significantly greater than PMconcept stimuli (p = 0.044). In the right parietal clusters, 

PMpercept and PMconcept produced significantly greater amplitudes than 1-backnontarget 

stimuli (ps < 0.001); PMpercept caused significantly larger amplitudes than 1-backtarget (p 

< 0.001) and PMconcept (p = 0.014). Additionally, right parietal clusters evoked 

significantly more positive amplitudes than central clusters for 1-backnontarget (p = 

0.001), PMpercept and PMconcept (ps < 0.001), but not for 1-backtarget (p > 0.05).  

The Stimuli x Hemisphere x Cluster interaction was also due to a significant Hemisphere 

x Cluster interaction for 1-backtarget stimuli (F1,28 = 8.25, p = 0.008, ηp2 = 0.23). In the 

left hemisphere, there was greater amplitudes in response to 1-backtarget for the 

parietal cluster relative to the central cluster (p = 0.007), which was not found in the 

right hemisphere (p > 0.05); in the central cluster there was larger positive amplitudes 

over the right hemisphere relative to the left (p < 0.001), which was not found in the 

parietal clusters (p > 0.05). There were no other significant effects.  
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Table 5.6 

Summary of Significant Effects for the Prospective Positivity ERP Amplitudes  

Midline prospective 
positivity amplitudes 

Lower F-Value DF p-value η2p Post-Hoc Tests 

Stimuli  25.45 2.11,62.07 < 0.001 0.49 PM > ongoing 

Cluster  8.81 1,28 0.006 0.25 P > C 

Lateral prospective 
positivity amplitudes 

      

Stimuli  27.7 2.30,68.23 < 0.001 0.51  

Cluster  1,28 21.95 < 0.001 0.45  

Stimuli*Hemisphere 

*Cluster 

 5.48 3,84 0.002 0.17  

Stimuli*Hemisphere C 9.13 3,84 < 0.001 0.25 L: PM > 1-
backnontarget | 
PMpercept > 1-
backtarget | R: 
PMpercept > 1-
backtarget| 
PMconcept > 1-
backtarget > 1-
backnontarget 

Stimuli*Cluster R 18.23 2.16,61.23 < 0.001 0.40 C: PMpercept > 
ongoing | 1-
backtarget > 
PMconcept | P: PM 
> 1-backnontarget | 
PMpercept > 1-
backtarget & 
PMconcept  

Hemisphere*Cluster 1-
backtarget 

8.25 1,28 0.008 0.23 L: P > C | C: R > L 

Stimuli: 1-backtarget = repeated ongoing stimuli, 1-backnontarget = non-repeated ongoing stimuli, PMpercept = 

perceptual prospective memory stimuli, PMconcept = conceptual prospective memory stimuli. Clusters: P 

= parietal, C = central. L = left hemisphere, R = right hemisphere. PM = both PMpercept & PMconcept, ongoing 

= 1-backtarget & 1-backnontarget. | = separator between post-hoc tests. N.B. ‘>’ indicates amplitudes being 

more positive in this table.  

 

5.3.6 Task reorientation  

From visual inspection of ERP waveforms across all clusters, the RON component was 

identified as occurring bilaterally in the frontotemporal clusters between 400–750ms, 
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with a mean peak RON response = 611.02ms. Means and standard deviations for the 

RON can be found in Appendix D, Table D.6.  

 

5.3.6.1 Lateral Reorientation Negativity ERP amplitudes 

There was a significant main effect of Stimuli (F3,84 = 16.77, p < 0.001, ηp2 = 0.41), which 

was due to significantly more negative amplitudes for PMpercept stimuli relative to 1-

backtarget and 1-backnontarget stimuli (ps < 0.001) and significantly more negative 

amplitudes for PMconcept relative 1-backtarget and 1-backnontarget stimuli (p = 0.026 & p = 

0.024, respectively). The greater negative amplitudes in response to PM stimuli were 

taken to reflect the RON. PMpercept stimuli generated a significantly more negative RON 

ERP than PMconcept (p = 0.036). No differences were found between 1-backtarget and 1-

backnontarget (p > 0.05).  

 

5.4 Discussion 

The current study had three primary aims: 1) to evaluate performance differences 

between perceptual and conceptual PM cues; 2) to examine the neurophysiological 

differences in response to perceptual and conceptual PM; 3) to determine whether a 

RON ERP response was detectable in a PM paradigm.   

Behavioural performance was better (indicated by reaction times and percentage of 

correct responses) for perceptual PM stimuli relative to ongoing and conceptual PM 

stimuli. The results show poorer performance for the conceptual PM stimuli relative 

to the ongoing task, as hypothesised. Comparisons between the ERPs produced by the 

different ongoing stimuli (1-backtarget & 1-backnontarget) revealed differences at the 

N400 and the earlier N2 and P2 components. All subsequent analyses are, therefore, 

compared against both activate and passive forms of ongoing stimuli (i.e., 1-backtarget 

& 1-backnontarget). 

In general, both PM stimuli exhibited ERPs reflecting cue detection, indicated by 

greater N300 and frontal positivity responses relative to the ongoing stimuli. However, 

perceptual PM stimuli caused a stronger response over frontal clusters compared to 

the conceptual stimuli. Both PM stimuli evoked IRRs relative to the ongoing stimuli. 
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The prospective positivity was prevalent at midline parietal clusters in response to PM 

stimuli. The prospective positivity response was diminished over bilateral clusters, 

only being retained over the left central cluster and right parietal cluster. Interestingly, 

across almost all ERPs, repeated ongoing stimuli demonstrated a right-hemispheric 

bias, which was not seen in the other stimuli. Both IRR and prospective positivity ERPs 

were stronger for perceptual PM stimuli relative to the conceptual stimuli. A RON was 

identified at frontotemporal clusters with a peak amplitude occurring between 400–

800ms (mean at approximately 610ms).  

 

5.4.1 Behavioural performance 

The current results partially support the hypothesis that conceptual PM stimuli 

performance will be significantly worse compared to perceptual PM stimuli. This is 

evidenced by fewer correct PM responses and a reaction time increase relative to 

perceptual PM stimuli. It was also expected that there would be no performance 

differences between the ongoing-only task and perceptual PM stimuli. However, 

results failed to support this hypothesis. Indeed, perceptual PM stimuli were 

responded to more quickly and with more correct responses than the ongoing-only 

stimuli. From this, two conclusions can be drawn: 1) ongoing stimuli were sufficiently 

engaging working memory processes as the results were not close to ceiling and were 

similar to other performance results for lexical working memory (Cappell et al., 2010) 

and 2) the perceptual PM stimuli were extremely salient for participants.  

The results here are comparable to other studies evaluating perceptual and conceptual 

PM. For example, Cousens et al. (2015) similarly found faster reaction times for 

perceptual PM stimuli relative to the conceptual PM stimuli. However, they did not find 

a performance difference between the ongoing and perceptual PM stimuli. The lack of 

performance difference in their study is potentially due to the difference in the task 

design. While both use a similar lexical decision task, Cousens and colleagues’ task 

required a decision between two stimuli presented simultaneously, which almost 

always resulted in correct responses. The current study, on the other hand, required 

participants to remember the category of the previously presented stimulus. 

Therefore, the additional processes required to remember the previous category will 
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have likely taxed working memory and executive functions to a greater extent than the 

task used by Cousens et al. (2015). 

The current study’s results contrast Cousens et al.’s (2015) regarding the number of 

correct responses to conceptual relative to perceptual PM stimuli. In Cousens et al.’s 

study, a greater percentage of correct responses were made to the conceptual relative 

to perceptual PM stimuli. These differences are possibly explained by the differences 

in the focality and saliency of the PM cues used. In Cousens’ study the conceptual cue 

(two animal words) is considered focal because its features are processed as part of 

the ongoing task. Their perceptual stimuli (two words in red) can be considered non-

focal as they were not processed as part of the ongoing lexical decision task. Cousens 

and colleagues’ (2015) results are similar to other studies of focality (Altgassen et al., 

2009; Brewer et al., 2010), where better performance is found for focal relative to non-

focal cues due to the fewer attentional processes required for stimulus detection 

(Scullin, McDaniel, Shelton, et al., 2010). The conceptual PM stimuli in the current 

study can also be considered focal, given that they are processed as part of the ongoing 

task, however, the results here demonstrate a greater percentage of correct responses 

for perceptual relative to conceptual stimuli. The results here more closely align with 

studies demonstrating better performance for highly salient cues (Brandimonte & 

Passolunghi, 1994; Kliegel et al., 2013; Thompsons et al., 2017). Better perceptual PM 

cue performance, therefore, suggests that saliency is a better contributor to the 

successful completion of PM tasks than focality. 

 

5.4.2 Right hemispheric bias for repeated ongoing working 

memory 

Within the frontal positivity, P3b, IRR and prospective positivity (central only) the 

repeated ongoing stimuli (1-backtarget) ERPs produced greater amplitudes over the 

right hemisphere relative to the left. This was not found for the non-repeated ongoing 

stimuli (1-backnontarget) or either PM stimuli. Possibly, the right hemisphere bias 

reflects increased activation of the right hemisphere during ortholinguistic evaluation 

of the ongoing stimulus. Previous research has highlighted the role of the right 

hemisphere in paralinguistic processes, including contextual integration of meaning, 

intent and emotion processing (Eldridge et al., 2000; Lindell, 2006). Lindell’s (2006) 
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review concluded that the right hemisphere had an important function in word 

recognition, but also plays a vital role in syntax extraction and mediating prosodic and 

paralinguistic aspects of language. On the other hand, a meta-analysis examining the 

contribution of the right hemisphere during ortholinguistic tasks has provided 

evidence to suggest that the right hemisphere is not specific to language components 

but reflects the recruitment of additional executive processes, such as the 

manipulation of working memory and selective attention of verbal information 

(Vigneau et al., 2011). This suggestion is compatible with other research reporting the 

inhibition of the left hemisphere during the processing of meaning as evidenced in 

studies of aphasia recovery (Price & Crinion, 2005). Therefore, the increase of the right 

hemisphere during repeated ongoing stimuli may suggest recruitment of cognitive 

networks responsible for supporting the manipulation of the semantic features for 

repeated ongoing stimuli.  

 

5.4.3 Prospective memory cue detection ERPs 

The results here confirm the findings of previous research demonstrating cue 

detection related ERP responses for PM stimuli relative to an ongoing task (Cona et al., 

2014; Cruz et al., 2016; West, 2011; West & Covell, 2001). In general, the current study 

shows that perceptual PM stimuli caused the largest cue detection ERP responses (i.e., 

more negative N300 and more positive frontal positivity amplitudes) compared to the 

conceptual PM task. This may suggest that highly perceptually salient stimuli easily 

stimulate PM cue detection responses compared to conceptual PM stimuli.  

Previous research on PM cue detection has demonstrated that when the PM cue is 

defined by some perceptually salient feature an N300 response is clear relative to the 

ERPs from ongoing stimuli (Cousens et al., 2015; Cruz et al., 2016; West, 2011; Wilson 

et al., 2013). The results here and from previous studies (Cousens et al., 2015; Cruz et 

al., 2016; West, 2011; Wilson et al., 2013) suggest that regardless of whether the 

ongoing stimuli ERPs are treated as separate or averaged, perceptual PM stimuli will 

likely cause a strong enough response for a cue detection response to be detected. 

Therefore, it is suggested that perceptually salient PM stimuli will reliably elicit cue 

detection ERPs.  
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Cue detection response for conceptual PM stimuli did produce greater amplitude 

responses compared to the ongoing stimuli although the results were less clear than 

responses to perceptual PM stimuli. At the parietal cluster, the N300 in response to 

conceptual PM stimuli was only greater than the repeated ongoing stimuli, similar to 

Cruz et al.’s (2016) results. At bilateral occipital clusters, however, the conceptual PM 

N300 was greater than both ongoing stimuli. Over the anterior clusters, the conceptual 

PM frontal positivity response was only greater than the non-repeated stimuli. As the 

frontal positivity was only apparent when contrasted with the non-repeated ongoing 

stimuli, it may explain why other studies that averaged ongoing stimuli ERPs may not 

have found an effect for cue detection responses (e.g., Cousens et al. 2015).  It may also 

suggest that similar levels of frontal neural processes are being recruited for the 

repeated ongoing and the conceptual stimuli, therefore, masking possible differences 

between the two stimuli. Alternatively, different neuronal sources may be responsible 

for successful conceptual PM cue detection. The results from the current study may 

suggest that conceptual PM cue detection may rely less on anterior neural sources than 

cue detection for perceptual PM cues.  

In sum, the N300 and frontal positivity are reliably generated for perceptual PM 

stimuli. However, differences between studies (i.e., Cousens et al., 2015 & Cruz et al., 

2016) may be due to how comparisons were made between PM and the ongoing 

stimuli ERPs. If the ongoing stimuli ERPs are treated as separate, it seems conceptual 

stimuli does cause cue detection responses, but may be lost if the ERPs are averaged 

across the stimulus types. The current study’s results support the conclusions of Cruz 

et al. (2016) finding differences in the cue detection responses for different PM cue 

types.  

 

5.4.4 Intention retrieval ERPs 

In concordance with the previous literature (Cousens et al., 2015; Cruz et al., 2016; J. 

Wilson et al., 2013), both perceptual and conceptual PM stimuli generated a parietal 

positivity response over central and parietal clusters. Similar to the PM cue detection 

ERPs, perceptual PM stimuli caused a greater parietal positivity response compared to 

the conceptual PM stimuli. The perceptual PM stimuli generated greater P3b responses 

compared to the ongoing stimuli. However, greater P3b amplitudes for perceptual 
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stimuli were mainly found in relation to the repeated ongoing stimuli. It was 

hypothesised that both PM stimuli would generate larger P3b amplitudes compared to 

the ongoing stimuli due to rarity of the PM events relative to the ongoing-only task 

(Polich et al., 1996). However, no P3b amplitude increase was found for the conceptual 

PM stimuli compared to the ongoing stimuli. It is possible that the semantic features 

that constitute the conceptual PM stimuli may have been processed at a later point in 

time or over a different region of the brain. Indeed, Cruz et al. (2016) noted neural 

sources were detected at centroparietal and frontocentral scalp sites and the detection 

response was at 400ms instead of 300ms. Additionally, it is worth noting that 

amplitudes of the P3b are affected through the choice of EEG reference (Luck, 2005). 

Researchers have demonstrated greater peak P3b amplitudes when linked mastoids 

or a nose reference is used compared to an averaged reference (Schröder et al., 2016). 

Thus, the P3b amplitude is likely to have been less prominent due to the use of average 

referencing. However, it was important to use an average reference to enable 

comparisons between other studies and mitigate biasing towards any specific scalp 

location (Luck, 2014). Furthermore, averaging is deemed appropriate when a high 

density of electrodes (i.e., 128 channels) are used (Nunez & Srinivasan, 2006).    

Both PM stimuli were found to generate significant IRR and prospective positivity 

responses relative to the ongoing stimuli, similar to the other ERP studies exploring 

perceptual and conceptual PM (Cousens et al., 2015; Cruz et al., 2016; J. Wilson et al., 

2013). However, perceptual stimuli had a significantly greater IRR amplitude response 

compared to the conceptual stimuli, which contradicts Cousens et al. (2015) who did 

not find any differences between the two stimulus types. While most other studies only 

looked at the parietal positivity as one component, the current study explored all three 

subcomponents. Through the examination of the individual components, the results 

show that the sustained amplitudes of the prospective positivity were not retained to 

the same degree for conceptual PM as was found in the perceptual PM stimuli. 

Sustained prospective positivity amplitudes relative to ongoing stimuli, were only 

found at mid parietal, left central and right parietal clusters in response to conceptual 

PM stimuli. The current results suggest that compared to conceptual PM, perceptually 

salient PM stimuli enables more efficient recall of the PM intention and engagement of 

neural systems that support intention retrieval (West & Ross-Munroe, 2002). 

Moreover, these results suggest that the prospective positivity is indeed affected by 

PM saliency, contrasting previous research (West, Wymbs, et al., 2003).  
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One could argue that the more pronounced P3b of the perceptually salient PM cue may 

have affected the increased amplitude of the IRR. However, previous research has 

demonstrated that the P3b can be dissociated from the prospective positivity (West et 

al., 2006b; West & Wymbs, 2004). Thus, it is more likely that the increased amplitude 

of the IRR and the sustained prospective positivity for perceptual PM stimuli are 

related to the better recall performance of the perceptual PM stimuli. Perhaps this is 

mainly driven by the increased saliency of the perceptual PM cue. However, further 

research would be required to confirm this conclusion. 

 

5.4.5 Reorientation negativity in PM 

This study is the first to explore the possibility of a RON response during PM tasks. 

Indeed, the results here find evidence that following a PM response, a RON component 

is demonstrated over bilateral frontotemporal scalp clusters at approximately 600ms. 

The timing of the RON here is similar to previous studies (Getzmann et al., 2015; 

Munka & Berti, 2006). The similarity between past literature and the current results 

support the current study’s hypothesis that there will be a RON response following PM 

stimuli.  This finding further contributes to the neurophysiological understanding of 

PM and adds further evidence to the RON during dual-task designs (Allard & 

Isaacowitz, 2008; Parmentier & Hebrero, 2013; Rämä et al., 2018; Scheer et al., 2016; 

Wester et al., 2008).  

The RON response following stimuli presentation was found for both perceptual and 

conceptual stimuli relative to both ongoing stimuli. The detection of a RON within a 

PM task suggests that attentional processes must be refocused from the PM stimulus 

back towards the ongoing task in PM task designs (Munka & Berti, 2006). Considering 

the previous research into the RON (Berti, 2008; Escera et al., 2001), it is unlikely that 

this response is unique to PM, but rather reflects the reorientation of attention towards 

the primary task (SanMiguel et al., 2008). Therefore, it would be expected that data 

from most other PM studies employing a dual-task design will contain such a 

component. It is possible that the RON has been overlooked in the past because of 

electrode location choice. The majority of studies have examined more centrally 

located electrodes (e.g., Chen et al., 2007, 2009; Scolaro et al., 2014; West & Bowry, 

2005; Zöllig et al., 2012).  



134 

 
The current study’s results also demonstrated a greater RON amplitude for perceptual 

PM compared to conceptual PM stimuli. A possible explanation for this difference may 

be due to focality of the PM task. As the conceptual PM stimuli is processed as part of 

the ongoing task it may take less cognitive processes to reorient attention back to the 

ongoing task, which manifests as a smaller RON response. Previous research has 

shown that the strength of the RON amplitude is influenced by the features of the 

distracting stimulus, where greater deviance from the main task caused a greater RON 

response (Berti et al., 2004; Yago et al., 2001). It should be noted however, that most 

RON studies have only documented the RON primarily at frontal clusters (Correa-

Jaraba et al., 2016; Escera et al., 2001). The current study instead found the RON over 

frontotemporal scalp regions. In their scalp density analysis, Schröger et al. (2000) 

found evidence that the RON has multiple neuronal sources. It is possible then that the 

topographical location of the RON will be different for each PM task configuration. It is 

important, therefore, for future PM studies to further explore RON components across 

the scalp and across a range of times to define its scalp and neuronal source and 

whether differences exist between PM experimental designs.  

 

5.4.6 Limitations 

Due to the conductivity of the skull and the relatively low spatial resolution of the EEG, 

it is possible that frontal positivity amplitudes overlapped with the start of the parietal 

positivity. The start of the parietal positivity often occurs before the end of the frontal 

positivity. Given that both were measured at central scalp regions, the increased 

amplitudes of the parietal positivity may have influenced the detected amplitudes at 

frontal scalp regions and contributed to the frontal positivity. There is a possibility that 

the increased amplitudes in response to the perceptual PM stimuli also contributed to 

the increased frontal cue detection responses. However, it is difficult to determine 

whether the spread of activation will have contributed within the current study.  

Given that all participants completed all conditions (i.e., ongoing-only, perceptual PM 

and conceptual PM) of the study, participants may have experienced a decline in their 

PM performance due to the sustained attention required from the ongoing task. 

Evidence has demonstrated that the longer attention is applied to a task, the poorer 

the performance becomes (Warm et al., 2008). Moreover, research has shown 
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performance decrements can occur after five minutes if task demands are high (Helton 

et al., 1999). Therefore, there is the potential that participants became mentally 

fatigued throughout the duration of the study. Research has demonstrated that mental 

fatigue can decrease ERP amplitudes and increase ERP latencies (Guo et al., 2016). 

However, it was deemed necessary for longer durations for each of the experiments to 

allow sufficient re-engagement to the ongoing task and to better simulate a real-world 

PM event. Moreover, break blocks were offered to participants within the study and 

mandatory breaks were given in between each of the experimental conditions helping 

to offset mental fatigue.   

 

5.4.7 Future research 

An increasing amount of evidence is demonstrating the RON component as a reliable 

feature of task-switching and working memory performance (Berti & Schröger, 2003; 

SanMiguel et al., 2008). The current study demonstrates that following the 

presentation of a PM stimulus, there is a clear RON response. This presumably reflects 

an attentional shift back toward the ongoing stimuli. However, further work is 

required to confirm if this response can explain working memory and PM task 

performance during experimental PM tasks. Further research should examine this 

effect across a range of different PM stimuli to determine whether a RON is found 

across all PM stimuli or whether it is only found in those PM tasks requiring semantic 

evaluation. Moreover, research should explore whether the RON is expressed to a 

greater degree for those PM stimuli that are more non-focal and more dissimilar to the 

ongoing task. For example, an ongoing lexical decision task and a time-based PM 

stimuli task. Additionally, this component should be evaluated in older adult 

populations and in older adults with MCI. The RON component may explain the 

reported differences between younger and older adults and between those older 

adults with and without cognitive decline. 

As highlighted in the limitations, gaining an accurate understanding of ERP 

components of prospective memory is challenging. Future research should seek to gain 

greater insights into the cognitive domains associated with PM using computational 

approaches. Recent work into functional connectivity in working memory has begun 

to reveal dynamic changes of cortical network activity during working memory tasks 



136 

 
providing unique insights to understanding memory processes (review: Dagenbach, 

2019). It is possible that novel insights may also be gained through applying 

connectivity methodologies to the study of PM. 

 

5.4.8 Summary 

In conclusion, the results from the current study were able to improve ERP 

methodology by confirming that it is inappropriate to average ERPs of different 

ongoing task stimuli. The results show that at early and later ERP components, 

averaging ongoing stimuli has the potential to modulate the ERP waveform and these 

modulations may lead to the masking of ERP effects when comparisons are made 

between the ongoing task ERPs and PM ERPs. Therefore, the current study proposes 

that all future ERP studies should not average the ongoing task stimuli but compare all 

stimulus types separately.  

The current study confirms the presence of previously reported ERPs for both 

perceptual and conceptual PM cue types. In general, however, the perceptual PM 

stimuli caused greater ERP amplitudes than the conceptual PM stimuli. In conjunction 

with the high behavioural performance of the perceptual PM stimuli, one may conclude 

that easier PM tasks result in greater ERP responses.  

Finally, the current study is the first to document a RON response following PM stimuli 

presentation. Future studies should further explore whether these can explain 

performance differences between groups and whether this effect can be replicated in 

other PM cue types e.g., time-based PM.  
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Chapter Six: Neurophysiological markers of 

prospective- and working-memory in typical 

ageing and mild cognitive impairment 

 

6.0 Overview  

In Chapter 5, behavioural and neurophysiological differences between an ongoing 

memory task, perceptual PM task and conceptual PM task were evaluated. The Chapter 

provided evidence of a RON in response to PM stimuli. The following chapter extends 

the previous chapter by exploring the differences between young adults, older adults 

and older adults with MCI during a perceptual and conceptual PM task. Specifically, 

this chapter will explore amplitude and latency group differences in PM cue detection 

ERPs (N300 and frontal positivity) along with the IRR. The RON was examined to 

determine whether ageing and cognitive decline affects the RON following PM stimuli. 

Additionally, the early N2 and P2 ERP components, often linked to cognitive decline, is 

examined to determine whether ageing and cognitive decline affect these components 

while completing PM tasks.  

 

6.1 Introduction 

Mild cognitive impairment is an intermediary state between that of typical ageing and 

dementia (Petersen et al., 1999). Older adults who meet diagnostic criteria for MCI are 

ten times more likely to develop dementia-related diseases (approximately 10–15% 

risk), such as AD, than those without MCI (approximately 1–2% risk; Petersen et al., 

2009). Given that the individual, family, societal and economic costs ($817bn/year 

globally) of dementia are immense and expected to double within 25 years, it is critical 

to understand underpinning neurocognitive mechanisms, to work towards solutions 

for the anticipated epidemic. Cognitive domains such as episodic memory, executive 

function, attention, language and working memory have been intensively investigated 

(Brandt et al., 2009; Dubois et al., 2009; Klekociuk et al., 2014; Saunders & Summers, 
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2011). Blanco-Campal et al. (2009) suggest PM as a sensitive early indicator of 

memory failure in MCI of suspected AD aetiology, and subsequent work has begun to 

identify associated cognitive mechanisms (Costa et al., 2010). 

Prospective memory refers to the self-initiated execution of a planned action, 

contingent on contextual recognition of a retrieval cue at an appropriate period in time 

(McDaniel & Einstein, 2007). PM constitutes a large part of everyday memory (Kliegel 

et al., 2008; Boelen et al., 2011; e.g., remembering to take prescribed medications at 

the correct time) and everyday memory failures (Kliegel & Martin, 2003; e.g., 

forgetting to turn off the stove). The ubiquity of these actions underlies basic personal 

day-to-day functioning and is, therefore, an essential precursor for independent living. 

Impairment in PM can therefore be more distressing than that of retrospective 

memory (Smith et al., 2000), and is often the first patient-reported complaint to family 

members and health professionals (Brandimonte et al., 2014). Thus, PM has clinical 

relevance, particularly regarding atypical ageing (Kliegel et al., 2011). 

Experimentally assessed PM has good ecological validity, predicting everyday function 

and independence (Woods et al., 2012). A meta-analysis supports significant PM 

deficits across a variety of tasks in older adults with MCI (van den Berg et al., 2012). 

This may be due to deficits in 1) the intention encoding, 2) the strategic and/or 

effortful monitoring for PM cues or 3) retrieval of PM intentions (McDaniel & Einstein, 

2000, 2007). Typically, dual-task designs have been used to test PM. These usually 

involve a commonly occurring ongoing working memory task designed to keep the 

participant engaged and prevent rehearsal of a secondary part of the experiment (the 

PM task), which could be time-based PM or event-based PM. Time-based PM almost 

exclusively relies on self-initiation to successfully perform the PM task, and 

consequently appears more difficult to perform. 

In event-based PM tasks, performance is usually facilitated by the visual appearance 

of the retrieval cue, prompting the intended response (McDaniel & Einstein, 2000; 

2007). For example, while completing a revised version of the virtual-week task, 

alongside PM and retrospective tasks, significantly poorer performance was found for 

the PM tasks in the MCI group compared to healthy controls (Thompson et al., 2010). 

In another study (Blanco-Campal et al., 2009), participants said aloud the word 

‘animal’ whenever they saw the word of a predefined animal word (e.g., ‘lion’, or, 

specific condition) or responded when they saw any animal word (non-specific 
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condition) while completing an ongoing task. Moreover, the researchers manipulated 

the saliency of the event-based PM cue by presenting the cue in either italic (salient 

condition) or the same font as the ongoing task (non-salient condition). PM assessed 

this way had greater sensitivity and specificity in discriminating between typically 

ageing adults and those with MCI compared to ‘traditional’ declarative memory tests 

(84% and 95%, respectively). The literature consistently demonstrates poorer PM 

performance in MCI participants compared to healthy older adults, but performance 

varies depending on the type of PM cue used. Blanco-Campal et al. (2009) found 

greater differences between healthy older adults and those with MCI in non-salient 

cues, but Thompson et al. (2017) failed to find this disproportional impairment and 

instead found similar impairments regardless of the saliency of the cue.  

The neurocognitive mechanisms of PM impairment in atypical cognitive ageing remain 

largely unknown. Nevertheless, emerging structural and functional neuroimaging 

studies in healthy adults implicate the aPFC (BA10; Beck et al., 2014; Burgess et al., 

2007; Gilbert et al., 2010) and to a lesser degree the ACC and PCC, temporal cortex and 

insula in PM processing (review: Burgess et al., 2011; Cona, Scarpazza, et al., 2015). To 

date, only one study using TMS has tested these areas in PM (Debarnot et al., 2015). 

Debarnot et al.’s (2015) results demonstrated that theta-burst stimulation of the left 

PFC can improve PM performance in older adults. 

Compared to other neuroimaging methods, EEG techniques, such as ERPs offer 

superior temporal resolution and have identified several components associated with 

PM performance (West, 2011). The N300, a negative deflection with a maximum 

amplitude parietooccipitally between 300–500ms post-onset, is thought to reflect cue 

identification (West, 2011). It is coupled with a midline frontal positive component, 

implicated in task switching (i.e., from the ongoing to the PM task; West et al., 2006; 

West, 2011). The recognition of a delayed intention is reflected in a late positivity 

complex, with a centroparietal maxima extending across 400–1200ms post-stimulus-

onset (West et al., 2001; West & Krompinger, 2005). The parietal positivity is 

comprised of three subcomponents; the P3b (300–400ms, related to subjective 

expectancy of stimuli), the IRR (400–600ms, reflecting intention retrieval) and the 

prospective positivity (600–1000ms, associated with task switching and support of 

intention retrieval;  Bisiacchi et al., 2009; West, 2011; West & Krompinger, 2005; West 

& Wymbs, 2004). 
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The majority of ERP studies in PM have manipulated the visual features of event-based 

PM cues (e.g., target salience, word/non-word, colour, emotional valence; Cona, 

Kliegel, et al., 2015; Knight et al., 2010b; Scolaro et al., 2014). However, some studies 

have begun to explore conceptually-relevant PM cues, such as different semantic 

categories of words (Cousens et al., 2015; J. Wilson et al., 2013), and a few studies 

compare semantically-based and feature-based PM cues (Cousens et al., 2015; Cruz et 

al., 2016). Cousens et al. (2015) found that perceptual features strongly elicited the 

N300 and prospective positivity responses in young adults. However, for semantic PM 

stimuli, the N300 was absent but the prospective positivity was still distinct relative 

to ongoing stimuli. Using EEG source estimate methods, Cruz et al. (2016) investigated 

this further. Their results identified occipital and parietal sources for the N300 in 

response to feature-based PM stimuli. For conceptual PM stimuli, a cue detection 

response was found but it was delayed to approximately 400ms and originated from 

the ACC. Cruz et al. (2016) found similar prospective positivity ERP responses for 

feature-based and conceptual-based PM to the Cousens et al. (2015) study. These 

studies highlight a common post-retrieval response for the realisation and recall of a 

PM intention but the N300 may depend on the nature of the PM task.  

Two other components that are of theoretical relevance to PM and MCI, but remain 

under investigated, are the P2 and RON. Currently the P2 component (150–275ms) is 

not fully understood. Some researchers suggest that the P2 reflects processes involved 

in selective attention (Hackley et al., 1990; Lijffijt et al., 2009; Wongupparaj et al., 

2018). Others propose the P2 to be an index of feature detection processes (Dunn et 

al., 1998; Luck & Hillyard, 1994; Potts, 2004), working memory (Lefebvre et al., 2005) 

or the retrieval of semantic information from long term memory (Preston et al., 1977; 

Raney, 1993; Stelmack et al., 1988). However, studies also suggest that the P2 is related 

to familiarity (Doyle, Rugg, & Wells, 1996; Rugg & Nieto-Vegas, 1999) and the feeling 

of knowing in episodic memory tasks (Irak et al., 2014; Irak, Soylu, & Turan, 2019; Irak, 

Soylu, Turan, et al., 2019b), where larger amplitudes are related to increased 

familiarity (K. M. Evans & Federmeier, 2007). While it is not clear precisely what the 

P2 reflects, the research does allude toward representing top-down mechanisms for 

rapid semantic stimulus evaluation (Irak et al., 2019; Paynter et al., 2009) and a peri-

perceptual sense of familiarity (Z. G. Doborjeh, Kasabov, et al., 2018). Recent evidence 

demonstrates that P2 amplitudes may be preserved in older adults during semantic 

working memory (Kuo et al., 2014) but amplitude reductions and latency delays are 
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found in older adults with MCI (Fix et al., 2015; Li et al., 2016; Li et al., 2010; Yamasaki 

& Tobimatsu, 2012; Zunini et al., 2016). Given the documented early impairments of 

semantic memory in older adults with MCI (Pineault et al., 2018) and semantic 

encoding (Olichney et al., 2011), one would expect that a conceptual event-based PM 

paradigm would be particularly sensitive to functional changes in P2 due to MCI.   

The RON reflects two distinct functional processes of attentional reorientation after 

distraction: the re-focusing toward task-relevant information within working 

memory, and a general attentional reorientation/preparation for the next stimulus 

(Schröger et al., 2000). The RON remains uninvestigated in MCI, but has been found to 

be impaired in schizophrenia, Parkinson’s disease and traumatic brain injury (review: 

Justo-Guillén et al., 2019). Moreover, reduced amplitude and prolonged latency have 

also been observed in older adults during an inhibitory control task, which was 

interpreted as a general slowing of cognitive processes (Cona et al., 2013). This 

indicates that reorientation capabilities may be susceptible to age-related cognitive 

decline. Given that behavioural studies demonstrate impaired task-switching in MCI 

(Belleville et al., 2008; Schmitter-Edgecombe & Sanders, 2009), RON should be 

investigated as an underpinning mechanism. The requirement to switch between the 

PM task and the ongoing working memory task in experimental PM studies, would be 

expected to elicit an RON ERP. Indeed, the results in Chapter 5 have demonstrated a 

RON after a successful PM response in response to perceptual and conceptual PM cues. 

The importance of examining this component in the current study is to determine the 

effect of typical and atypical ageing on the RON. 

Very few ERP studies have investigated PM as a function of typical ageing (Hering et 

al., 2016, 2018, 2020; Mattli et al., 2014; West, Herndon, et al., 2003; West & Covell, 

2001; Zöllig et al., 2007, 2010, 2012) and no research has explored PM ERPs in atypical 

ageing. West & Covell (2001) report reduced N300 amplitudes in older adults relative 

to younger adults when a perceptually based PM cue, in the form of capital letters, was 

used. Additionally, when the perceptually PM cue was a colour, similar N300 

amplitude reductions for older adults compared to the younger adults were found but 

only over the right hemisphere (West et al., 2003). This would suggest that age-related 

PM differences may be due to the affected ability to detect PM cues. However, this 

effect is not consistently found throughout the literature. A study employing a similar 

task design failed to replicate the same N300 differences between younger and older 
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adults (Zöllig et al., 2007). This discrepancy creates difficulties in concluding whether 

the neural underpinnings of cue detection contribute to the reported age-related PM 

differences and, therefore, warrants further study.  

The majority of studies examining age-related differences in PM ERPs find attenuated 

parietal positivity amplitudes in older adults compared to younger adults (Mattli et al., 

2011; West & Covell, 2001; Zöllig et al., 2007). Parietal positivity attenuation may 

imply a decrease in the ability to recruit the neural mechanisms required to 

successfully recall the encoded PM intention. However, these results are not 

consistently reported. West, Herndon, et al. (2003), failed to find age-related 

differences of the parietal positivity, suggesting that intention retrieval may be spared 

by age-related declines. The inconsistency between these studies may be in part be 

due to differences in the PM cues used, or differences in the neural mechanisms used 

by the different groups to complete the task (Kliegel et al., 2011). Further clarity would 

be gained from investigating the parietal positivity components of PM in older adults 

through variations in PM task type. By using similar task designs that have varied the 

characteristics of the PM cue, different facets of PM can be tested (Cousens et al., 2015; 

Cruz et al., 2016; Wang et al., 2013; Wilson et al., 2013). It is likely that not all real-

world PM cues will be predominately perceptual in nature and may vary in their 

salience and relation to the encoded intention (Cousens et al., 2015). Therefore, by 

examining both perceptual and conceptual based PM cues, PM differences can be 

better understood between ageing populations and their younger counterparts as well 

as those experiencing cognitive impairments.  

 

6.1.2 Aims and hypothesises  

The current study aims to investigate behavioural and neurophysiological differences 

in PM in healthy older adults (OA) and in older adults with MCI (MCI). A semantic 

working memory task (the n-back task) acted as the ongoing task, with two types of 

embedded PM cue: perceptual and conceptual. The perceptual PM task was to 

remember to press a certain button if a word was presented in uppercase. This 

condition was intended to involve perceptually salient PM cues (i.e., words in very 

visible uppercase lettering). The conceptual PM task was to remember to press a 

certain button if a word referred to a four-legged animal, thus measuring semantic PM. 
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Given the known behavioural impairments across PM cue types in OA and participants 

with MCI, examining performance in, and neurophysiological correlates of different 

PM tasks will further our understanding of PM in typical ageing and MCI.  

To this end we hypothesise that: 1) Both older adult groups will perform significantly 

worse on both PM tasks relative to younger adults. 2) MCI participants will perform 

significantly worse on both PM tasks and will have disproportional deficits in the 

conceptually based PM task. 3) Both older adult groups will show attenuated PM-

related ERPs along with delayed latencies, which will be further pronounced in MCI 

participants. 4) There will be an anterior P2 amplitude reduction in MCI participants. 

5) RON amplitudes will be significantly attenuated and delayed in MCI participants 

relative to older and younger adults. 

 

6.2 Methods 

 

6.2.1 Participants 

The thirty young adults used in the previous chapter were included as a baseline to 

evaluate age-related PM differences (see Chapter 5, Section 5.2.2). In addition to the 

young adults, thirty-nine right-handed typically ageing older adults (OA; 24 females, 

mean age = 72.87, SD = 4.18) were recruited through the Trent Ageing Panel, an 

internal database of older adult study volunteers. Inclusion criteria for participation: 

fluent in English; ≥ 65 years of age; no paranoid of paraphrenic illness; no expression 

of memory impairments. Seventy-three individuals with MCI were referred to the 

study through Memory Assessment Clinics in the Nottinghamshire area or through the 

study matching service: Join Dementia Research (JDR). Of the 73 referred, 27 

individuals with a confirmed diagnosis of MCI (MCI; 12 females, mean age = 77.54, SD 

= 6.49) were eligible to take part in the study. Participants referred by JDR or the 

memory assessment clinics had been diagnosed with MCI based on scores between 

15–25 on the Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005), 60–94 

on the Addenbrookes Cognitive Examination III (ACEIII; Hsieh et al., 2013) or the 18ؘ–

26 on the Mini Mental State Examination (MMSE; Vertesi et al., 2001), depending on 

which measures each clinic used. Figure 7.1 illustrates a flow diagram showing the 
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recruitment process of older adults with and without MCI. Participants’ exclusion for 

both older adult groups included: definite or probably AD; definite or probable 

dementia/dementia-related disease; previous history of epilepsy/stroke; any 

evidence of clouding of consciousness; history of drug abuse or dependence (including 

alcohol). All participants were required to abstain from alcohol for 24 hours, and from 

caffeine and nicotine for 3 hours prior to study. Participants provided written 

informed consent. The study approval was issued by the Health Research Authority, 

UK (REC reference: 17/EM/1010).  

 

6.2.2 Dementia screening 

Prior to participation in the study, all participants completed the Hopkins Verbal 

Learning Test-Revised (HVLT-R; Benedict et al., 1998). This was employed to ensure 

that older adults with MCI were not likely to have AD and to ensure the healthy older 

adults were not likely to be experiencing MCI. This was possible with the HVLT-R due 

to higher sensitivity and specificity of differentiating between MCI and healthy 

controls compared to other cognitive tests such as the Mini-Mental State Examination 

(MMSE; de Jager et al., 2003). Particularly, evidence demonstrates that the HVLT-R 

total recall has the highest sensitivity and specificity compared to all other cognitive 

screenings tests for differentiating between MCI and dementia (de Jager et al., 2009). 

The optimal cut-off for MCI and dementia classification were based on the Xu et al.'s 

(2014) HVLT literature review, where <15.5 was considered as probable dementia and 

<21.5 was considered as being reflective of MCI.   
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Figure 6.1. Flow diagram of participant recruitment for healthy older adults and older adults with 

mild cognitive impairment (MCI). 

 

6.2.3 Procedure 

Core methodology has been documented in Chapter 5, Section 5.2.3. 

 

6.2.4 Electrophysiological data acquisition 

Data acquisition has been documented in Chapter 5, Section 5.2.6 

 

6.2.5 Behavioural performance analysis 

To assess the behavioural differences between YA, OA and MCI in response to PM 

stimuli, two mixed measures ANOVAs were conducted. Reaction time and percentage 
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of correct responses were analysed using a 3 (Stimuli: 1-backtarget, PMpercept, PMconcept) 

x 3 (Group: YA, OA, MCI) mixed measures ANOVA. Only data from successful responses 

to stimuli were analysed for reaction time. 

 

6.2.6 Electrophysiological data analysis 

The core methods used for data preprocessing can be found in Chapter 5, Section 5.2.8. 

Peak detection was performed using custom-written scripts in Matlab 2015a on each 

waveform using the EEGLAB toolbox (Delorme & Makeig, 2004). P2 was defined as the 

maximum positive peak at midline frontal and central clusters and bilateral frontal, 

frontocentral and central clusters between 160–220ms. N300 was defined as the most 

negative peak at midline parietal and occipital clusters and bilateral inferior parietal 

and occipital clusters between 300–500ms. Frontal positivity was defined as the most 

positive peak at midline frontal and central, and bilateral frontal and frontocentral 

clusters between 300–500ms. The most reliably elicited component of the parietal 

positivity in Chapter 5 was the IRR. Therefore, the current study used the IRR to 

evaluate group differences in PM intention retrieval. The IRR was defined as the 

largest positive amplitude between 400–600ms at midline and bilateral central and 

parietal clusters. RON was defined as being the most negative peak between 400–

750ms over bilateral frontotemporal clusters. Latencies were measured at maximum 

peak and amplitude was measured as baseline–peak.  

Statistical analyses were performed using JASP (0.10.2). The following analyses were 

used to test for group differences in P2, N300, frontal positivity, IRR and RON. Each 

component was analysed independently and was further divided between midline and 

bilateral analyses in the following mixed measures ANOVAs. For all components, 

ANOVAs included Stimuli (1-backtarget, 1-backnontarget, PMpercept, PMconcept) x Group (YA, 

OA, MCI) as variables. In addition, ANOVAs of bilateral measures included Hemisphere 

(left, right) and Cluster. Level in the Cluster variable varied depending on the 

component: P2 and frontal positivity (frontal, frontocentral, central), N300 (parietal, 

occipital), IRR (central, parietal), RON (frontotemporal). Separate ANOVAs were 

performed for amplitudes and latencies. Lower-order ANOVAs were used to explore 

significant interactions. Post-hoc analysis of Group and controls for multiple 

comparisons was performed with Bonferroni corrections (Cabin & Mitchell, 2000). 
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Greenhouse-Geisser was used to correct for violations of sphericity and are reported. 

Only ERP data from correct responses were analysed. 

 

6.3 Results 

Three MCI participants were removed due to indications of probable dementia as 

indicated by the HVLT-R. One YA participant was removed due to poor EEG data. One 

participant from the OA and one from the MCI group were removed as they did not 

complete all conditions. Thus, the number of participants used in the final analysis 

were: YA = 29; OA = 36; MCI = 23. 

 

6.3.1 Behavioural results 

Means and standard deviations of the reaction times and percentage of correct 

responses are presented in Table 6.1. The behavioural results are illustrated as an 

interaction plot in Figure 6.1. 

 

6.3.1.1 Reaction time 

There was a significant effect of Stimuli (F2,180 = 72.97, p < 0.001, ηp2 = 0.46), such that 

it required a significantly greater amount of time to correctly respond to PMconcept 

stimuli relative to PMpercept stimuli (p < 0.001) and correct 1-backtarget stimuli (p < 

0.001) for all participants. There were no other significant effects.  
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Table 6.1 

Means and Standard Deviations of Behavioural Responses for Reaction Time and Correct Response.  

Group Reaction time (ms) Correct responses (%) 

1-backtarget PMpercept PMconcept 1-backtarget PMpercept PMconcept 

YA 0.76 (0.17) 0.71 (0.09) 0.94 (0.13) 80.67 (10.63) 97.26 (6.29) 86.39 (10.64) 

OA 0.77 (0.11) 0.76 (0.17) 0.96 (0.15) 78.38 (10.11) 96.40 (7.59) 90.12 (9.91) 

MCI 0.89 (0.23) 0.77 (0.14) 1.01 (0.19) 64.98 (16.42) 97.34 (6.40) 80.15 (21.55) 

Standard deviations are given in parentheses.  

 

6.3.1.2 Correct responses 

There was a significant effect of Stimuli (F1.85,166.38 = 82.76, p < 0.001, ηp2 = 0.50). For 

all groups, PMconcept performance was significantly worse relative to PMpercept (all ps < 

0.05).  

Additionally, there was a significant main effect of Group (F2,89 = 8.90, p < 0.001, ηp2 = 

0.18) and a Stimuli x Group interaction (F3.70,166.38 = 4.82, p < 0.002, ηp2 = 0.11). The 

interaction was due to significant effects of Group for ongoing (F2,89 = 12.172, p < 0.001, 

ηp2 = 0.22) and PMconcept (F2,89 = 3.522, p = 0.034, ηp2 = 0.08), but not PMpercept stimuli. 

MCI performed worse for ongoing (MCI < OA & YA, ps < 0.001) and for PMconcept (MCI 

< OA, p = 0.026). 
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Figure 6.2. The interaction plots of reaction time and percentage of correct responses. (a) Reaction 

times for correct response to the ongoing-only (1-backtarget), perceptual prospective memory task 

(PMpercept) and the conceptual prospective memory task (PMconcept) for young adults (YA), healthy 

older adults (OA) and older adults with mild cognitive impairment (MCI). (b) Percentage of correct 

responses to the ongoing-only task, perceptual prospective memory task and conceptual prospective 

memory task for each group. Error bars represent standard error. 
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6.3.2 Electrophysiology results 

Descriptions of amplitudes and latencies can be found in Appendix E. 

 

6.3.2.1 Effects of atypical ageing: MCI-specific deficits 

6.3.2.1.1 Frontocentral P2 

A summary of all significant P2 Group effects and interactions can be found in Table 

6.2.  

There was a significant Cluster x Group interaction over bilateral P2 amplitudes (F2,87 

= 3.28, p = 0.033, ηp2 = 0.09; visualised in Figure 6.3). The MCI groups showed 

significantly lower amplitudes at frontocentral clusters, relative to the OA and YA 

across all conditions (all ps < 0.05).  

There was a significant Stimuli x Group interaction at the midline frontocentral clusters 

for P2 amplitudes (F5.14,221.04 = 5.37, p < 0.001, ηp2 = 0.14). This was due to a Stimuli 

effect for YA (F3,54 = 5.34, p = 0.003, ηp2 = 0.23; 1-backtarget > 1-backnontarget | PMpercept > 

1-backnontarget, ps < 0.05) and for OA (F3,75 = 4.27, p = 0.008, ηp2 = 0.15; 1-backtarget > 1-

backnontarget & PMpercept, ps < 0.05), which was not found for MCI (p > 0.05).  

There was a significant Hemisphere x Group interaction for lateral P2 latencies (F2,87 = 

3.55, p = 0.034, ηp2 = 0.10). The MCI group showed significantly delayed right 

hemisphere responses relative to the left hemisphere (F1,22 = 7.39, p = 0.019, ηp2 = 

0.38).  
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Table 6.2 

Summary of Significant Group Effects for P2 ERP Amplitudes and P2 ERP Latencies 

Midline P2 ERP 
amplitude 

Lower F-
value 

DF p-value ηp2 Post-Hoc Tests 

Stimuli*Group  5.37 5.14,221.04 <0.001 0.14  

YA 5.34 3,54 0.003 0.23 1-backtarget > 1-
backnontarget | 
PMpercept > 1-
backnontarget & 
PMconcept 

OA 4.27 3,75 0.008 0.15 1-backtarget > 1-
backnontarget & 
PMpercept 

Lateral P2 ERP 
amplitude 

      

Cluster*Group  4.79 2.83,113.26 0.005 0.14  

 FC 3.28 2,87 0.033 0.09 OA & YA > MCI 

Lateral P2 latencies       

Hemisphere*Group  3.55 2,87 0.034 0.10  

 MCI 7.39 1,22 0.019 0.38 R > L 

YA = young adults. OA = healthy older adults. MCI = older adults with MCI. x = did not survive Bonferroni 

corrections. 1-backtarget = repeated ongoing stimuli. 1-backnontarget = non-repeat ongoing stimuli. FC = 

Frontocentral. F = Frontal. C = Central. R = Right hemisphere. L = Left hemisphere. N.B. ‘>’ indicates 

amplitudes being more positive in this table. For latencies, ‘>’ indicates the component occurring later 

in time. 
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Figure 6.3. Grand-averaged ERP amplitudes for the P2 at bilateral frontocentral cluster for 1-backtarget, 

1-backnontarget, PMpercept and PMconcept. (a) Left hemisphere; (b) right hemisphere for young adults (YA), 

healthy older adults (OA) and older adults with MCI (MCI).  

 

6.3.2.1.2 RON latency 

Results of the significant Group analyses for the lateral reorientation negativity can be 

found in Table 6.3 and are visualised in Figure 6.4. Descriptions of the means and 

amplitudes of the RON latencies can be found in Appendix E, Table E.3.  

A Stimuli x Group interaction was due to a significant effect of Group in response to 

PMpercept stimuli (F2,87 = 12.78, p < 0.001, ηp2 = 0.24; YA < OA, p = 0.008; YA < MCI, p < 

0.001; OA < MCI, p = 0.019). Furthermore, there was a significant effect of Stimuli in YA 

(F3,84 = 16.77, p < 0.001, ηp2 = 0.41; PMconcept > PMpercept, p < 0.001; PMconcept > 1-

backnontarget stimuli, p = 0.022) and in OA (F3,111 = 3.31, p = 0.024, ηp2 = 0.11; PMconcept < 

1-backnontarget, p = 0.022), which was not found in the MCI group.  
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Table 6.3 

Summary of Significant Group Effects for Reorientation Negativity (RON) ERP Amplitudes and RON ERP 
Latencies 

Lateral RON ERP 
amplitude 

Lower F-value DF p-value ηp2 Post-Hoc Tests 

Group  4.06 2,87 0.022 0.12  

Stimuli*Group  6.93 4.72,205.20 0.001 0.17  

 PMpercept 12.78 2,87 <0.001 0.24 YA > OA & MCI 

 PMconcept 10.49 2,87 <0.001 0.21 YA > OA & MCI 

 YA 16.77 3,84 <0.001 0.41 PMpercept & PMconcept > 
1-backtarget & 1-
backnontarget 

 OA 3.31 3,111 0.024 0.11 PMconcept > 1-backtarget 

Hemisphere*Group  6.72 2,87 0.002 0.17  

 R 9.70 2,87 <0.001 0.22 YA > OA & MCI 

 OA 22.51 1,37 <0.001 0.45 L > R 

 MCI 13.85 1,22 0.002 0.50 L > R 

Lateral RON latencies     

Group  9.89 2,87 <0.001 0.23  

Stimuli*Group  3.90 6,261 0.001 0.11  

 1-backnontarget 9.13 1,87 <0.001 0.18 YA < OA & MCI 

 PMpercept 14.75 2,87 <0.001 0.27 YA < OA < MCI 

 YA 7.07 3,84 <0.001 0.23 PMpercept & 1-
backnontarget < 
PMconcept 

 OA 3.87 3,111 0.012 0.12 PMconcept < 1-
backnontarget 

YA = young adults. OA = healthy older adults. MCI = Older adults with MCI. 1-backtarget = repeated 

ongoing stimuli. 1-backnontarget = non-repeat ongoing stimuli. L = left hemisphere. R = right hemisphere. 

N.B. ‘>’ indicates amplitudes being more negative in this table and ‘<’ indicates component latencies 

occurring earlier in time. 
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Figure 6.4. ERP amplitudes and latencies for the reorientation negativity (RON) at bilateral 

frontotemporal clusters. Left and right denote the hemisphere of the frontotemporal clusters. (a) 

Grand-averaged ERP waveforms for repeated ongoing (1-backtarget), non-repeated ongoing (1-

backnontarget), perceptual PM (PMpercept) and conceptual PM (PMconcept) stimuli for young adults (YA), 

healthy older adults (OA) and older adults with mild cognitive impairment (MCI). (b) A bar chart of 

the latency of the RON across the YA, OA and MCI groups. (c) Bar charts of amplitudes of the RON 

across the YA, OA and MCI groups. Significant effects are highlighted with curly braces. * = p < 0.05; 

** p < 0.01; *** = p < 0.001. Error bars represent standard error. 

 

6.3.2.1.3 Intention retrieval amplitude 

There was a significant Stimuli x Hemisphere x Group interaction (F5.15,224.18 = 4.12, p = 

0.001, ηp2 = 0.10), due to a significant Stimuli x Group interaction in the right 

hemisphere (F4.83,209.89 = 3.68, p = 0.004, ηp2 = 0.09) for PMpercept stimuli (YA > MCI, p = 

0.005), which was not seen in the left. Additionally, there was a Stimuli x Hemisphere 
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interaction for PMpercept in YA (right > left) and 1-backtarget in OA (right > left), which 

was not found in the MCI group.  

 

6.3.2.2 Effects of typical ageing: how do MCI and OA differ from YA? 

All significant ANOVA Group effects for amplitude and latencies of the IRR can be found 

in Table 6.4. Figure 6.5 shows averaged ERPs at the midline parietal cluster for each 

Stimulus as a function of Group. 

 

6.3.2.2.1 Intention retrieval amplitude 

At midline clusters there was a significant Stimuli x Group interaction (F4.87,211.97 = 4.87, 

p < 0.001, ηp2 = 0.12). Further analysis showed that YA showed significantly greater 

IRR amplitudes for PMpercept relative to both OA and MCI groups (ps < 0.001). 

Additionally, YA displayed significantly greater amplitudes for 1-backtarget and 1-

backnontarget stimuli relative to individuals with MCI (ps < 0.05). There was also a 

significant Cluster x Group interaction (F2,87 = 4.21, p = 0.019, ηp2 = 0.11), that was due 

to a significant effect of Group at the parietal cluster (YA > OA and MCI groups, ps < 

0.001) and at central clusters (YA > MCI, p = 0.041). 

 

6.3.2.2.2 Intention retrieval latency 

There was a significant effect of Stimuli at midline clusters (F2.70,218.63 = 16.74, p < 0.001, 

ηp2 = 0.19), where PMconcept was significantly delayed relative to PMpercept (p < 0.001) 

and both ongoing stimuli (ps < 0.01). PMpercept, however occurred significantly earlier 

than both ongoing stimuli (ps < 0.01). Similarly, an effect of Stimuli at bilateral clusters 

(F2.78,227.87 = 12.70, p < 0.001, ηp2 = 0.15) was due an earlier PMpercept response relative 

to PMconcept and 1-backtarget stimuli (ps < 0.001).  

There was a significant Cluster x Group interaction at midline clusters (F2,87 = 4.81, p = 

0.011, ηp2 = 0.12), which was due to a significant effect of Group at the parietal cluster 

(YA < OA, p = 0.035; YA < MCI, p < 0.001; OA < MCI, p = 0.064 (trend)). There was also 

a Stimuli x Group interaction (F2.68,181.98 = 3.31, p = 0.006, ηp2 = 0.09), due to an effect of 
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Stimuli for 1-backtarget (YA < OA, p = 0.039) and 1-backnontarget (YA < OA, p = 0.036). This 

was not found for the PM stimuli (ps > 0.05).  

The significant Stimuli x Group interaction at bilateral clusters (F5.40,186.26 = 2.66, p = 

0.07, ηp2 = 0.07), was due to an effect of Group for PMpercept stimuli (F2,87 = 10.01, p < 

0.001, ηp2 = 0.20; YA < OA, p = 0.025). A significant effect of Group was found for 

PMconcept stimuli (F2,87 = 3.24, p = 0.044, ηp2 = 0.14) but did not remain significant after 

Bonferroni corrections were applied.  
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Table 6.4 

Summary of Significant Group Effects for IRR ERP Amplitudes and IRR ERP Latencies 

Midline IRR ERP 
amplitude 

lower F-value DF p-value ηp2 Post-Hoc 
Tests 

Group  8.82 2,87 <0.001 0.20  

Stimuli*Group  4.87 4.87,211.97 <0.001 0.12  

 1-backtarget 3.44 2,87 0.037 0.08 YA > MCI 

 1-backnontarget 4.82 2,87 0.011 0.11 YA > MCI 

 PMpercept 12.46 2,87 <0.001 0.23 YA > OA & 
MCI 

Cluster*Group  4.21 2,87 0.019 0.11  

 C 3.27 2,87 0.044 0.43 YA > MCI 

 P 10.42 2,87 <0.001 0.22 YA > OA & 
MCI 

Lateral IRR ERP amplitude      

Stimuli*Hemisphere
*Group 

 4.12 5.15,224.18 0.001 0.10  

Stimuli*Group R 3.68 4.83,209.89 0.004 0.09 PMpercept: 
YA > MCI 

Stimuli*Hemisphere YA 5.49 3,84 0.005 0.17 PMpercept: R 
> L 

 OA 15.75 2.54,93.73 <0.001 0.33 1-
backtarget: 
R > L 

Midline IRR latencies      

Group  3.56 2,87 0.034 0.10  

Stimuli*Group  3.31 2.68,181.98 0.006 0.09  

 1-backtarget 3.75 2,87 0.028 0.09 YA < OA 

 1-backnontarget 3.48 2,87 0.036 0.08 YA < OA 

Cluster*Group  4.81 2,87 0.011 0.12  

 P 7.59 2,87 0.001 0.09 YA < OA & 
MCI† 

Lateral parietal positivity latencies      

Stimuli*Group  2.66 5.40,186.26 0.021 0.07  

 PMpercept 10.01 2,87 <0.001 0.20 YA < OA & 
MCI 

 PMconcept 3.24 2,87 0.044 0.07 x 



158 

 
† = Trending (p = 0.064) after corrections. x = no significant effects after DF corrections. YA = young 

adults. OA = healthy older adults. MCI = Older adults with MCI. 1-backtarget = repeated ongoing stimuli. 

1-backnontarget = non-repeated ongoing stimuli. P = parietal. C = central. R = right hemisphere. L = left 

hemisphere. N.B. ‘>’ indicates amplitudes being more positive in this table. For latencies ‘<’ indicates 

the component occurring earlier in time.  

 

 

Figure 6.5. ERP amplitudes and latencies for the parietal positivity (IRR) at the midline parietal 

cluster. (a) Grand-averaged ERP waveforms for repeated ongoing (1-backtarget), non-repeated 

ongoing (1-backnontarget), perceptual PM (PMpercept) and conceptual PM (PMconcept) stimuli for young 

adults (YA), healthy older adults (OA) and older adults with mild cognitive impairment (MCI). (b) Bar 

charts of the latency of the IRR across the YA, OA and MCI groups. (c) Bar charts of amplitudes of the 

IRR across the YA, OA and MCI groups. Significant effects are highlighted with curly braces. * = p < 

0.05; *** = p < 0.001. Error bars represent standard error. 

 

6.3.2.3 Compensatory effects of ageing: how do OA differ from MCI and YA? 

A summary of all N300 significant Group effects for ERPs and latencies can be found in 

Table 6.5. 

 

6.3.2.3.1 N300 amplitude 

At midline clusters the N300 amplitudes demonstrated a significant main effect of 

Group (F2,87 = 4.95, p = 0.010, ηp2 = 0.12; YA < OA, p = 0.010).  
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There was a significant three-way interaction of Stimuli x Cluster x Group at lateral 

posterior clusters (F5.01,215.24 = 3.05, p = 0.011, ηp2 = 0.08). Further analysis revealed 

that over bilateral inferior parietal clusters (F4.86,211.37 = 4.28, p = 0.001, ηp2 = 0.11), the 

OA evoked significantly greater amplitudes compared to the YA for 1-backnontarget (p < 

0.001) and PMconcept stimuli (p = 0.017). Descriptively, MCI evoked more negative 

amplitudes for both the 1-backnontarget and PMconcept stimuli relative to YA but were not 

significantly different to YA or OA (ps > 0.05).  

 

6.3.2.3.2 N300 latency  

The midline analysis of N300 latencies demonstrated a significant Stimuli x Group 

interaction (F6,261 = 3.58, p = 0.002, ηp2 = 0.09), which was due to a significant Group 

effect for 1-backnontarget stimuli (F2,87 = 6.17, p = 0.003, ηp2 = 0.13), where YA evoked an 

N300 response earlier than OA (p = 0.002). Additionally, a Group effect for PMpercept 

stimuli was found (F2,87 = 10.01, p < 0.001, ηp2 = 0.20), where YA evoked an N300 

responses earlier than OA (p < 0.001) and MCI (p = 0.004). There was also a significant 

effect of Stimuli (F2.12,57.09 = 6.75, p = 0.002, ηp2= 0.20) for YA, where PMconcept was 

significantly delayed relative to 1-backtarget (p = 0.013) and PMpercept (p = 0.019).  

Over bilateral clusters a significant Cluster x Group interaction (F2,87 = 7.05, p = 0.002, 

ηp2 = 0.16) was due to a significant effect of Group at occipital clusters (F2,87 = 3.87, p = 

0.025, ηp2 = 0.10; YA < OA, p = 0.026).  

Moreover, there was a significant three-way Stimuli x Hemisphere x Group interaction 

(F6,261 = 9.21, p = 0.012, ηp2 = 0.07). This interaction effect was due to a significant 

Stimuli x Hemisphere interaction for YA (F3,84 = 6.41, p < 0.001, ηp2 = 0.32). For YA, left 

N300 latency was significantly earlier for 1-backtarget than 1-backnontarget (p = 0.032) 

and PMpercept (p = 0.009); right N300 latency was earlier for PMpercept than 1-backtarget 

(p < 0.001), 1-backnontarget (p = 0.025) and PMconcept (p = 0.002). Additionally, there was 

a significant Stimuli x Hemisphere interaction in OA (F3,99 = 3.20, p = 0.027, ηp2 = 0.09), 

such that left N300 latency in response to 1-backnontarget was later than 1-backtarget (p = 

0.006), whilst right N300 latency in response to 1-backnontarget was delayed, relative to 

both 1-backtarget (p < 0.001) and PMpercept (p = 0.010). Furthermore, there was a 

significant Hemisphere x Group interaction (F2,87 = 7.05, p = 0.002, ηp2 = 0.15), which 
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was due to an earlier left relative to the right hemisphere N300 latency for 1-backtarget 

in YA (F1,28 = 20.57, p < 0.001, ηp2 = 0.15). 

 

 

Table 6.5 

Summary of Significant Group Effects for N300 ERP Amplitudes and N300 ERP Latencies 

Midline N300 ERP 
amplitude 

Lower F-value DF p-value ηp2 Post-Hoc Tests 

Group  4.95 2,87 0.010 0.12 YA < OA 

Lateral N300 ERP amplitude     

Stimuli*Group  2.94 4.70,202.25 0.015 0.08  

 1-backtarget 5.16 2,87 0.008 0.11 YA < OA & MCI 

 1-
backnontarget 

11.79 2,87 <0.001 0.23 YA < OA & MCI 

 PMconcept 4.99 2,87 0.009 0.11 YA < OA 

Stimuli*Cluster* 

Group 

 3.05 5.01,215.24 0.011 0.08  

Stimuli*Group IP 4.28 4.86,211.37 0.001 0.11 1-backnontarget: YA < OA | 
PMconcept: YA < OA 

Stimuli*Cluster Young 7.06 2.23,60.96 <0.001 0.21 IP < OC & P | IP: PMpercept > 1-
backnontarget & 1-backtarget & 
PMconcept | OC: PMconcept > 1-
backtarget & 1-backnontarget 

Cluster*Group PMpercept 3.64 2,87 0.031 0.08 x 

       

Midline N300 
latencies 

      

Group  7.59 2,87 0.001 0.17  

Stimuli*Group  3.58 6,261 0.002 0.09 1-backnontarget: YA < OA | 
PMpercept: YA < OA & MCI 

Lateral N300 
latencies 

      

Cluster*Group  7.05 2,87 0.002 0.16  

 OC 3.87 2,87 0.025 0.10 YA < OA 

Stimuli*Hemisphere*
Group 

 9.21 6,261 0.012 0.07  
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Lateral N300 
latencies 

Lower F-value DF p-value ηp2 Post-Hoc Tests 

Stimuli*Hemisphere YA 6.41 3,84 <0.001 0.32 L: 1-backtarget < 1-
backnontarget & PMpercept | R: 
PMpercept < 1-backtarget & 1-
backnontarget & PMconcept 

 OA 3.20 3,99 0.027 0.09 L: 1-backnontarget > 1-
backtarget | R: 1-backnontarget > 
1-backtarget & PMpercept 
|PMconcept > PMpercept 

Hemisphere*Group 1-backtarget 7.05 2,87 0.002 0.15 YA: L < R 

YA = young adults. OA = healthy older adults. MCI = Older adults with MCI. 1-backtarget = repeated 

ongoing stimuli. 1-backnontarget = non-repeat ongoing stimuli. OC = occipital. IP = inferior parietal. P = 

parietal. R = right hemisphere. L = Left hemisphere. | = separator between post-hoc tests. N.B. ‘<’ 

indicates amplitudes being less negative in this table. For latencies ‘<’ indicates the component occurred 

earlier in time. 

 

6.3.2.3.3 Frontal positivity amplitude  

All significant Group effects for the frontal positivity can be found in Table 6.6. 

Midline frontal positivity showed a significant Stimuli x Group interaction (F5.07,217.04 = 

2.59, p = 0.027, ηp2 = 0.07), due to significantly greater amplitudes in OA and MCI, 

compared to YA, for 1-backtarget (F2,87 = 7.20, p = 0.001, ηp2 = 0.15), 1-backnontarget (F2,87 

= 16.22, p < 0.001, ηp2 = 0.29) and PMconcept (F2,87 = 9.12, p < 0.002, ηp2 = 0.18) stimuli 

(all ps < 0.001 for OA and ps < 0.02 for MCI), but not for PMpercept (p > 0.05). Similarly, 

for bilateral frontal positivity, a significant Group effect was found (F2,87 = 10.76, p < 

0.001, ηp2 = 0.23; OA > YA, p < 0.001; MCI > YA, p = 0.025). 

 

 

 

 

 



162 

 
Table 6.6 

Summary of Significant Group Effects for Frontal Positivity ERP Amplitudes and Frontal Positivity ERP 
Latencies 

Midline frontal 
positivity amplitude 

Lower F-value DF p-value ηp2 Post-Hoc Tests 

Group  10.76 2,87 <0.001 0.23  

Stimuli*Group  2.59 5.07,217.04 0.027 0.07  

 1-backtarget 7.20 2,87 0.001 0.15 OA & MCI > YA 

 1-backnontarget 16.22 2,87 <0.001 0.29 OA & MCI > YA 

 PMconcept 9.12 2,87 <0.001 0.18 OA & MCI > YA 

Lateral frontal positivity amplitude      

Group  12.48 2,87 <0.001 0.27 OA & MCI > YA 

YA = young adults. OA = healthy older adults. MCI = older adults with MCI. F = frontal. FC = frontocentral. 

L = left hemisphere. R = right hemisphere. 1-backnontarget = non-repeat ongoing. 1-backtarget = repeated 

ongoing. | = separator between post-hoc tests. N.B. ‘>’ indicates amplitudes being more positive in this 

table. 

 

6.4 Discussion 

The current study is the first, to the authors’ knowledge, to use ERPs to examine 

neurophysiological mechanisms underpinning atypical age-associated decline in PM. 

A comparison is made between perceptual and conceptual event-based PM, as well as 

the ongoing working memory task in which these tasks were embedded. Participants, 

particularly the MCI group, performed worse in the conceptual PM task than other 

tasks. MCI participants had poorer performance (for the ongoing working memory 

task and conceptual PM), lower bilateral frontocentral P2 amplitudes, delayed RON 

than both other groups and lower IRR amplitudes (relative to young adults only). 

Extending the results from Chapter 5, healthy older adults also elicit greater RON 

amplitudes following PM stimuli relative to the ongoing task (conceptual PM only). 

However, this effect was absent in MCI. RON latency in older adults was earlier than 

for those with MCI and delayed compared to young adults for non-repeat ongoing 

stimuli and perceptual PM stimuli. 

Regarding typical ageing, compared to young adults, both healthy older adults and MCI 

participants had lower amplitudes and delayed latencies for the IRR, and higher 
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amplitudes for the N300 and frontal positivity. Lower RON amplitudes and a left 

hemisphere bias (i.e., greater RON amplitudes relative to ongoing stimuli were only 

found over the left hemisphere) were seen in both older (compared to younger) adult 

groups. For perceptual PM stimuli, both older adult groups had reduced IRR 

amplitudes at midline clusters and a longer latency at midline and bilateral regions. 

However, the hypothesised reduction in N300 amplitude in older groups was not 

supported. 

 

6.4.1 Mild cognitive impairment specific deficits  

The current study reveals poorer performance in terms of accuracy but not reaction 

time in those with MCI compared to other groups for the ongoing working memory 

task, suggesting an impairment in semantic based working memory. This could reflect 

a speed-accuracy trade-off for those with MCI (Larner, 2015; Lassen-Greene et al., 

2017). That is, participants with MCI were prioritising speed over accuracy in the 

ongoing task. However, without evaluating differences between correct and incorrect 

responses, a speed-accuracy trade-off remains speculative. The absence of group 

differences in salient perceptual-based PM, which is thought to rely more on 

spontaneous retrieval (Knight et al., 2011), may reflect intact spontaneous recall of PM 

in MCI. However, the impairment for those with MCI in the conceptual PM task 

suggests that active monitoring for PM stimuli may be affected in MCI. This is in line 

with studies showing that response to PM tasks that required strategic monitoring are 

affected in MCI (Blanco-Campal et al., 2009; Karantzoulis et al., 2009; Niedźwieńska et 

al., 2017; Troyer & Murphy, 2007).  

The current results demonstrate attenuated frontocentral P2 amplitudes in older 

adults with MCI compared to healthy older and younger adults. This is in line with 

recent studies examining the P2 component in older adults with MCI (B.-Y. Li et al., 

2016; Waninger et al., 2018). The precise function of the P2 remains unclear, however, 

considering the recent work relating the P2 to rapid semantic processing (Irak, Soylu, 

& Turan, 2019; Paynter et al., 2009) and a peri-perceptual sense of familiarity 

(Doborjeh et al., 2018), then this may suggest that older adults with MCI possess an 

impaired ability to process semantic information or impaired semantic working 

memory (Kuo et al., 2014). Alternatively, studies have linked the P2 to familiarity 
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(Evans & Federmeier, 2007) and the feeling of knowing in episodic memory tasks (Irak 

et al., 2014; Irak, Soylu, & Turan, 2019; Irak, Soylu, Turan, et al., 2019). Given the 

similarity between episodic and PM tasks (Brewer et al., 2010), the P2 here may also 

reflect cognitive processes related to familiarity and a feeling of knowing. With this 

interpretation, one might assume that a P2 amplitude reduction is indicative of a 

decrease in familiarity and a feeling of knowing of the presented stimulus. Indeed, 

evidence implicates deficits of familiarity as a marker of early cognitive impairment 

(Embree et al., 2012; Pitarque et al., 2016; Wolk et al., 2008), although this is contested. 

Other researchers find familiarity to be spared in cognitive decline (Koen & Yonelinas, 

2014; Lombardi et al., 2018; Serra et al., 2010) and may only become apparent with 

the development of AD (Koen & Yonelinas, 2014). It would seem then, that the P2 is an 

important marker of cognitive decline in relation to early semantic memory 

processing, but further research is needed to understand its functionality. Future 

research should explore different aspects of the P2 in working and PM through task 

manipulation, analysis methods (e.g., ICA; source localisation) and over the different 

stages of PM (i.e., encoding, retention and intention retrieval; Brandimonte et al., 

1996). 

The current findings implicate altered task reorientation in PM and suggest that typical 

age-associated changes in RON amplitudes are accelerated in MCI. Age-related 

differences in lateralisation are in line with the right-hemi-ageing model (RHAM) that 

predicts greater age-related decline over the right hemisphere (Albert & Moss, 1988; 

Brown & Jaffe, 1975). Prior evidence for this theory has been predominately based on 

behavioural performance (Dolcos et al., 2002), and has recently been superseded by a 

neuroimaging-based hypothesis of ageing known as the Hemispheric Asymmetry 

Reduction in Older Adults (HAROLD; Cabeza, 2002). HAROLD proposes that prefrontal 

activity during cognitive performance tends to be less lateralised in older relative to 

younger adults (Cabeza, 2002; Hommet et al., 2008). The results here do not support 

the HAROLD hypothesis and provides neurophysiological evidence in support of the 

RHAM. However, the results here may suggest that hemispheric asymmetry may be 

function-specific (i.e., affect mechanisms underpinning reorientation of attention) as 

the HAROLD model is based on other cognitive features but not specifically attention.  

The lateralisation of RON with age, seen in the current study, concurs with findings 

from a visual inhibitory control task (Cona et al., 2013), showing greater RON 
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amplitudes for younger adults compared to older adults over the right (but not left) 

frontotemporal scalp regions during detect trials. Together, the results from Cona et 

al. (2013) and the current study suggest lateralisation of reorienting networks. Source 

localisation of high-density electrode data implicate frontotemporal scalp regions in 

RON (Schröger et al., 2000). Thus, whilst symmetry may decline anteriorly with age, 

exaggerated lateralisation in frontotemporal networks underpinning orientation of 

attention may occur. 

 

6.4.2 Neurophysiological age-related deficits 

Cona et al. (2013) attribute an age-related latency delay in the RON to a specific deficit 

in attentional shifting and not to a general slowing of processes with advancing age. 

This is in line with the only other study of RON in older adults during an auditory 

distraction task (Horváth et al., 2009). The current results further support and extend 

these findings, suggesting age-related RON delays exist in older adults following 

responses to PM cues. In MCI, this decline was particularly exaggerated for perceptual 

PM cues. Thus, reorienting back to an ongoing task following a perceptual PM cue may 

be particularly sensitive to atypical ageing. Such results are the first to highlight the 

potential of the RON during PM as an early biomarker of cognitive decline. Moreover, 

the results here support fMRI evidence implicating attention networks and the right 

inferior frontal cortex during task-switching as a preclinical marker of AD (Gordon et 

al., 2015; Oh et al., 2016). Further research should draw a comparison between MCI 

and dementia-related diseases on RON in response to PM cues.  

As hypothesised, both healthy older adult groups and MCI participants evoked an 

attenuated IRR ERP relative to the younger adults, providing further support for 

reduced PM intention recall in older adults (West & Bowry, 2005; West & Covell, 

2001). However, it should be noted that the aforementioned studies also reported 

behavioural impairments of PM response, which was not found in the current study. 

However, IRR attenuation with absent behavioural differences relative to younger 

adults have been found before. Sebastián et al. (2011) found that that older adults did 

not exhibit poorer behavioural performance but did show parietal positivity 

attenuation during a recognition memory task. One explanation may be the fine-tuning 

of networks responsible for memory retrieval (Filippini et al., 2012) or may reflect the 
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dedifferentiation of neuronal source distinctiveness, where the specialisation and 

tight localisation of activity may become more dispersed through the cortex (Goh, 

2011). Importantly, we did not find any further attenuation of the IRR for the MCI 

group, suggesting that intention retrieval may remain unaffected in older adults 

experiencing cognitive decline. 

Furthermore, the present study reveals temporal differences for IRR onset. The results 

indicate an earlier response for the younger adults compared to the healthy older 

adults and MCI groups. The results show a trending effect for a slower IRR response in 

those with MCI relative to older adults. This may not have reached statistical 

significance due to the heterogeneity of the MCI group and the possible inclusion of 

different MCI subtypes. The earlier IRR response by younger adults may reflect an 

ability to rapidly recall the PM intention. Yet, this ability does not seem to improve 

behavioural performance. Earlier IRR latency without an increase in reaction time in 

younger adults may suggest differences in the neural strategies recruited between 

younger and older adults. Evidence has previously demonstrated in other ERP studies 

requiring task-switching that latency delays can occur without behavioural deficits 

(Gaál & Czigler, 2015).  

 

6.4.3 Neurophysiological age-related compensation 

Consistent with some previous studies (Hering et al., 2016), the N300 and frontal 

positivity did not show age-related amplitude attenuation. While these studies found 

no group differences, the current results in fact show the opposite. Greater negativity 

was evoked for N300 and greater positive amplitudes were evoked for the frontal 

positivity for both older adult groups relative to younger adults. Past studies have 

found increased N300 amplitudes in childhood (Sumich, Sarkar, Hermens, Kelesidi, et 

al., 2012) and in some development disorders such as subclinical depression and 

schizophrenia (Sumich et al., 2006, 2013; Sumich, Sarkar, Hermens, Ibrahimovic, et al., 

2012). No differences were seen between the healthy older adults and participants 

with MCI, implying that cue detection aspects of PM are retained with MCI and are 

likely not contributing to the reported PM deficits in MCI.  

Previous evidence indicates that N300 amplitude attenuations are due to an inability 

to recruit preparatory attentional processes, which was supported by reported 
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behavioural deficits (R. E. Smith & Bayen, 2006). However, as behavioural deficits 

were not found in the current study, the N300 may not be reflecting an inability to 

recruit preparatory attentional processes. This may suggest differences in the 

recruitment of neural strategies and approaches to completing the task between 

younger and older adults (West & Bowry, 2005). This suggestion is supported by the 

increased frontal positivity amplitudes in the aged populations in the current study. 

Similar increase of the frontal positivity has been demonstrated before in older adults 

relative to younger adults during a simple working memory task (Tays et al., 2011). In 

Tays et al.’s (2011) study, younger participants reportedly relied on an earlier 

attentional mechanism (i.e., N100 for target discrimination). Additionally, lower 

frontal positivity amplitudes have been found previously in younger adults during PM 

tasks (West & Covell, 2001). It is possible that older adults are recruiting frontal 

networks to a greater extent to support the maintenance of intentions as proposed in 

a recent fMRI study (Peira et al., 2016) and should be further explored using ERPs. 

Furthermore, we found an earlier N300 response for younger adults compared to both 

older adult groups. However, this earlier cue detection response does not manifest in 

earlier response times, it further supports the notion that older adults are relying on a 

different neural mechanism for successful cue detection or that the N300 is not the 

only component which reflects PM cue detection (Hering et al., 2016; West & Bowry, 

2005).  

 

6.4.4 Limitations and future studies  

Despite motivation not being measured quantitatively, based on experimenter 

observation, older adults may have had greater motivation to perform well compared 

to younger adults. This is in line with previous work on attention and motivation as a 

function of age (Tomporowski & Tinsley, 1996) showing a more rapid reduction in 

attention and motivation in young (relative to older) adults over the course of an 

experiment. Future research should, therefore, monitor motivation during task 

performance. As this study is the first to document the RON in MCI, future research 

should further explore this effect in different PM task designs and replicate this effect 

in MCI and early AD. In addition, RON differences between conceptual and perceptual 

stimuli may be due to focality of the PM task. Despite being salient, the perceptual PM 
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stimuli may be considered non-focal. This is because the semantic features are not 

processed as part of the ongoing task, whereas the conceptual PM stimuli can be 

considered focal due to being evaluated with the semantic features of the ongoing task. 

Thus, reorienting attention might have been more efficient for participants for 

conceptual PM cues. Future research should vary the focality of PM cues when 

evaluating the RON in PM. Finally, it is to be noted that subtypes of MCI were not 

recorded, which due the heterogeneity of MCI (Panza et al., 2007) may have masked 

other potential neurophysiological differences between groups.  

 

6.4.5 Summary 

To conclude, participants with MCI were associated with poorer behavioural 

performance in the ongoing working memory and conceptual PM task. 

Neurophysiological evidence demonstrated reduced frontocentral P2 amplitudes for 

older adults with MCI, possibly reflecting deficits in networks associated with 

familiarity or semantic memory processing. Behavioural differences between young 

and healthy older adults were not found. Nevertheless, their neurophysiological 

responses suggest different neural mechanisms related to PM cue detection and 

intention retrieval. Finally, neurophysiological evidence indicates the presence of a 

RON in young and older adults but was markedly decreased in older adults over the 

right hemisphere. Furthermore, latency delays of the RON indicate attention shifting 

deficits in older adults and an increased delay may serve as an early biomarker of 

cognitive decline.  
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Chapter Seven: Prospective memory 

interference effect in typical and atypical 

ageing  

 

7.0 Overview 

The previous chapter explored the behavioural and neurophysiological differences 

between younger adults, older adults and older adults with MCI when responding to 

perceptual and conceptual PM stimuli. The following chapter explores the effect that 

maintaining a PM intention has on the ongoing task. Specifically, anterior scalp regions 

at 300–500ms and 600–1000ms are investigated to understand the 

neurophysiological differences in PM intention maintenance as a result of ageing and 

cognitive decline. Additionally, the amplitude and latencies of the P2 and N2 are 

investigated to explore early feature-based attention processes of PM monitoring.  

 

7.1 Introduction 

The ability to successfully remember to perform a future intention is a fundamental 

personal resource. Performance declines in ageing are well documented (Henry et al., 

2004; Kliegel, Jäger, et al., 2008; McDaniel et al., 2008; Phillips et al., 2008) and are 

reportedly one of the first complaints of older adults experiencing MCI (Brandimonte 

et al., 2014). Despite this, relatively little is known about the neurophysiological effects 

of typical and atypical ageing on PM performance. In Chapter 6, increased cue-related 

ERP responses (N300 and frontal positivity) and decreased intention retrieval related 

ERPs (parietal positivity) were found relative to young adults. Additionally, in older 

adults with MCI, ERPs related to semantic working memory (P2) were attenuated and 

the reorienting of attention (RON) was delayed. The Multiprocess framework of PM 

(Einstein et al., 2000; 2005; see Chapter 1, Section 1.3.1) suggests that under certain 

circumstances (i.e., non-focal or low salience cues) PM intention retrieval may only 

occur when attentional processes are applied to monitoring the environment for PM 
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cues. The PAM theory (Smith et al., 2007; Smith 2008; 2010; see Chapter 1, Section 

1.3.2) suggests that attentional processes are always required to monitor for PM cues 

within the environment. Once a cue is encountered the executive attentional system 

interrupts the ongoing activity for the intention to be performed. It is assumed that the 

application of attention processes to monitor for PM cues will interfere with any 

ongoing activities. The aim of the current chapter, therefore, is to examine the possible 

behavioural and neurophysiological impact on the ongoing working memory task 

when PM intentions are maintained in typical and atypical ageing. 

The dual-task nature of PM experiments requires an individual to stop performing the 

ongoing activity to complete the PM intention (Graf & Uttl, 2001). The PM task may 

interfere with the ongoing task incurring greater errors or slower reaction times 

(Smith, 2003). The performance cost to the ongoing task is known as the PM 

interference effect (Scullin, McDaniel, & Einstein, 2010). Investigations into the 

interference effect remain limited (Boywitt & Rummel, 2012; Hefer et al., 2017; Loft & 

Remington, 2010; Marsh et al., 2005) and have been predominately conducted on 

young adults (Chen et al., 2009; Hefer et al., 2017; Loft et al., 2008, 2014; Loft & 

Remington, 2010; Shelton & Christopher, 2016). Studies have generally found a PM 

interference effect for stimuli that require a greater amount of PM monitoring (e.g., 

low salience or non-focal PM cues; Loft et al., 2014; Loft & Remington, 2010; Scullin, 

McDaniel, Shelton, et al., 2010). The greater effort required for monitoring requires 

increased cognitive processes as proposed in the Multiprocess Framework (Einstein 

et al., 2000; Einstein et al., 2005) and PAM theory of PM (Smith et al., 2007; Smith 2008; 

2010). 

Only a few studies have explored the PM interference effect in healthy older adults (A. 

Cohen et al., 2005; Enrique et al., 2013; Kominsky & Reese-Melancon, 2017; Scullin et 

al., 2013; W. Wang et al., 2010). Generally, older adults show similar PM monitoring 

abilities relative to younger adults (Ball & Bugg, 2018; Enrique et al., 2013; Kliegel, 

2008; Kominsky & Reese-Melancon, 2017). However, some studies also show that with 

the addition of PM cues that require more attentional processes (e.g., low salience or 

non-focal), older adults often perform worse on the ongoing task (Ball et al., 2019; 

Kliegel, Jäger, et al., 2008; Scullin et al., 2013; Uttl, 2008, 2011). Studies of older adults 

with MCI show performance impairments in all types of PM but show particular 

impairment for those tasks requiring more effortful monitoring (Blanco-Campal et al., 
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2009; Karantzoulis et al., 2009; Tam & Schmitter-Edgecombe, 2013; Troyer & Murphy, 

2007). Some researchers propose that this is due to impairments in the PFC and the 

MTL (McFarland & Glisky, 2009), however, this is yet to be investigated directly. In 

contrast, other researchers report that older adults with MCI and very mild AD are 

more impaired in tasks relying on spontaneous retrieval (Chi et al., 2014; McDaniel et 

al., 2011; Niedźwieńska et al., 2017). Niedzwieńska et al. (2017) suggest that 

individuals with MCI and early AD may not be impaired in the non-focal tasks as the 

participants may recruit compensatory mechanisms of the prefrontal cortex, which 

are generally not compromised at the early stages of cognitive decline (Braak & Braak, 

1991). Neurophysiological experiments are yet to determine whether prefrontal 

cortices provide compensatory mechanisms for PM monitoring in older adults with 

MCI.  Considering the mixed behavioural evidence, further work is needed to delineate 

whether older adults with MCI have impaired PM monitoring abilities and under what 

conditions these potential impairments manifest. 

The neurophysiological evidence of PM monitoring, for the most part, has focused on 

response differences between ongoing stimuli when monitoring for a perceptual PM 

cue and the ongoing working memory task stimuli (Brewer et al., 2010; Burgess et al., 

2001, 2003; Cona et al., 2012b; Cona, Scarpazza, et al., 2015; Gilbert et al., 2009; 

Reynolds et al., 2009). Some evidence implicates the anterior prefrontal cortex in PM 

intention maintenance during the ongoing task (Cona et al., 2015). Neurophysiological 

studies evaluating ERPs in response to the ongoing stimuli, find significant amplitude 

modulations when monitoring for a PM intention compared to the ongoing task when 

the PM cue is absent (West, 2007; West & Bowry, 2005). The research suggests that 

during intention maintenance, frontal slow waves ranging from 400–900ms emerge 

(Cona et al., 2012b, 2014; Czernochowski et al., 2012). For example, Czernochowski et 

al. (2012), compared the ongoing task when no PM cues were present with stimuli 

from the ongoing task when PM cues were present. Their results demonstrated 

sustained frontocentral activity, which has been linked to PM monitoring 

(Czernochowski et al., 2012b; Hering et al., 2018). Moreover, this anterior activity is 

thought to reflect an active continued awareness for possible PM cues (Guynn, 2003) 

and being in a readiness state known as the PM ‘retrieval mode’ (West et al., 2011). 

Specifically, monitoring for a PM cue has been shown to increase positive amplitudes 

between 300–500ms (Bailey et al., 2016; Chen et al., 2007; Cona et al., 2012b; West et 

al., 2006b; West & Bowry, 2005) and also between 600–900ms compared to an 
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ongoing-only condition at anterior scalp regions (Czernochowski et al., 2012). This 

corroborates evidence from fMRI studies indicating sustained activity within the PFC 

when monitoring for PM cues relative to no-cue conditions (Burgess et al., 2007; Peira 

et al., 2016; Reynolds et al., 2009).  

Early ERP component differences in the posterior scalp and frontal regions have also 

been documented during PM monitoring tasks. The N2 and the P2 have been shown to 

demonstrate an amplitude increase when individuals were monitoring for PM cues as 

opposed to completing the ongoing tasks without PM cues (Chen et al., 2009; 

Czernochowski et al., 2012; J. B. Knight et al., 2010). This has been hypothesised to 

reflect feature-based attention (Knight et al., 2010), similar to attention task results 

finding a “selection negativity” and “selection positivity” ERP response over 

parietooccipital and frontocentral scalp regions (Harter & Aine, 1984; Hillyard & 

Anllo-Vento, 1998; Kopp et al., 2007; Schoenfeld et al., 2007). Preparatory attentional 

processes are likely required during PM monitoring to rapidly process the features of 

the incoming stimuli to determine if a stimulus is a PM cue or an ongoing stimulus.  

The ERP evidence regarding the effects of ageing during monitoring for PM cues is 

limited and mixed. On the one hand, research has shown sustained ERP modulations 

over frontal and parietal scalp sites to differ between younger and older adults (West 

& Bowry, 2005). In particular, younger adults appear to recruit more frontopolar and 

frontocentral sources compared to older adults who demonstrate greater activity over 

central scalp sites while monitoring for perceptual PM cues (Hering, Kliegel, Bisiacchi, 

et al., 2018; West & Bowry, 2005). Similar differences are also apparent between 

younger and older adults during time-based PM and emotion-based PM cues (Cona et 

al., 2012b; Hering, Kliegel, Bisiacchi, et al., 2018) suggesting that age-related 

monitoring differences are similar across PM cue types. Cona and colleagues (2012) 

report sustained slow-wave activity over frontal scalp sites in younger adults, which 

was not found in the older adult group. This was thought to reflect an age-related 

decrease in the efficiency of executive and frontal functions and a decrease in overall 

cognitive processes, although this was not directly tested. On the other hand, some 

research has indicated no age-related anterior activity differences during monitoring 

for PM cues (Mattli et al., 2011; Rose et al., 2015).  Mattli et al. (2011) found sustained 

neural activity over frontal and posterior scalp regions but contrary to their 
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hypothesis, activity did not differ across the lifespan. Further work is required to 

address these age-related neural discrepancies in PM monitoring.  

To date, no studies have examined the neurophysiology of PM monitoring in older 

adults with MCI. However, evidence does demonstrate ERP differences during 

working memory tasks. In n-back tasks, older adults with MCI have been found to have 

smaller positive amplitudes between 400–500ms and delayed P2 and N2 responses 

relative to healthy older adults (Fraga et al., 2018; Mamani et al., 2017; Zunini et al., 

2016). Additionally, tasks designed to evaluate sustained attention have shown global 

decreases in ERP amplitudes for individuals with MCI relative to healthy older adults 

(Waninger et al., 2018) suggesting difficulties with attention in MCI. It would be 

expected then that the ERPs of the older adults with MCI would have smaller 

amplitudes relative to healthy older adults. Further ERP attenuations would also be 

expected when monitoring for PM cues due the additional cognitive processes 

required to monitor for the PM cues.  

By examining working memory with the addition of a highly salient PM task 

(perceptual) and a less salient PM (conceptual) task, differences in the amount of 

attentional processes can be assessed. These differences can be evaluated because 

highly salient PM is thought to rely more on spontaneous intention recall whereas less 

salient cues require more cognitive processes to monitor for the PM cue (Einstein et 

al., 2005). Through the assessment of working memory when monitoring for different 

PM cues, the current chapter aims to better understand the neurophysiology of in 

individuals with MCI during PM intention maintenance.  

 

7.1.2 Aims and hypothesises  

The current study aims to investigate the behavioural and neurophysiological PM 

interference effect in older adults with and without MCI. The ongoing task, in the 

absence of PM cues, is compared against the ongoing task when monitoring for 

perceptual and conceptual PM stimuli. Considering the mixed evidence for older adults 

and the lack of neurophysiological evidence regarding PM maintenance in older adults 

with MCI, examining ongoing working memory performance during PM monitoring 

will further our understanding of the PM interference effect in typical and atypical 

ageing.  



174 

 
The current study hypothesises that: 1) Older adults (OA) will perform significantly 

worse relative to younger adults (YA) during the ongoing task when monitoring for 

conceptual PM cues but not perceptual PM cues. 2) Older adults with MCI (MCI) will 

perform significantly worse across all ongoing tasks and will have disproportional 

impairments when monitoring for conceptual PM cues relative to perceptual cues. 3) 

Both older adult groups will have attenuated ERP amplitudes at anterior scalp clusters 

between 300–500ms and 600–1000ms when monitoring for PM cues, which will be 

further pronounced in participants with MCI. 4) Older adults with MCI will have 

reduced N2 and P2 ERP amplitudes, which will also be delayed relative to young and 

older adults.  

 

7.2 Methods 

7.2.1 Participants 

Participants descriptions are detailed in Chapter 6, Section 6.2.1. 

 

7.2.2 Procedure 

Core methodology has been documented in Chapter 5, Section 5.2.3. 

 

7.2.3 Electrophysiological data acquisition 

Data acquisition has been documented in Chapter 5, Section 5.2.6 

 

7.2.4 Behavioural data analysis 

To examine the PM interference effect, differences in ongoing task performance were 

compared between YA, OA and MCI when monitoring for a perceptual PM cue (ongoing 

+ PMpercept), a conceptual PM cue (ongoing + PMconcept) and just the ongoing-only task 

(ongoing-only). Two mixed measures, 3 (Stimuli: ongoing-only, ongoing + PMpercept, 

ongoing + PMconcept) x 3 (Group: YA, OA, MCI) ANOVAs were used for the two dependent 
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variables: reaction time and percentage of correct ongoing task responses. Only 

reaction times from correct responses were included in the analysis. 

 

7.2.5 Electrophysiological data analysis 

The core methods used for data preprocessing can be found in Chapter 5, Section 5.2.8. 

Peak amplitude detection was performed using custom-written scripts in Matlab 

2015a using the EEGLAB toolbox for each waveform. The P2 was defined as the 

maximum positive peak at midline frontal and central clusters. The P2 amplitudes 

were also defined at bilateral frontal, frontocentral and central clusters. The N2 was 

defined as the most negative peak at midline parietal and occipital clusters. 

Additionally, the N2 was also defined as the most negative peak at bilateral inferior 

parietal, parietal and occipital clusters. Both the P2 and N2 were identified between 

160–220ms.  

Sustained PM monitoring amplitudes were defined as the maximum amplitudes at 

frontal and central clusters and bilateral frontal, frontocentral, central and 

frontotemporal clusters between 300–500ms, referred to throughout as the early 

frontal positivity (EFP) and between 600–1000ms referred to as the late frontal 

positivity (LFP). P2 and N2 ERP latencies were also extracted to assess group 

differences. Averaged ERP amplitudes for each condition were also used to create 

topographic brain maps to examine the distribution of activity between the groups.  

All statistical analyses were performed using JASP (0.10.2). The following analyses 

were used to test for stimulus and group differences in the P2, N2, EFP and LFP. Each 

component was analysed independently and was further divided between midline and 

bilateral analyses in the following mixed measures ANOVAs. For all ERP components, 

ANOVAs included Stimuli (ongoing-only, ongoing + PMpercept, ongoing + PMconcept) x 

Group (YA, OA, MCI) x Cluster as variables. Level in the Cluster variable varied 

depending on the component at midline clusters: P2 (frontal, central), N2 (parietal, 

occipital), EFP and LFP (frontal, central). At bilateral clusters the Cluster variable 

varied depending on the component: P2 (frontal, frontocentral, central), N2 (parietal, 

inferior parietal, occipital), EFP and LFP (frontal, frontocentral, central, 

frontotemporal). Separate ANOVAs were performed for the latencies and amplitudes 
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of the P2 and N2. Lower order ANOVAs were used to explore significant interactions. 

Post-hoc tests were used to determine significant differences and Bonferroni 

corrections were used to control for multiple comparisons (Cabin & Mitchel, 2000). 

Greenhouse-Geisser was used to correct for violations of sphericity.  

 

7.3 Results 

7.3.1 Behavioural results 

The behavioural results are illustrated as an interaction plot in Figure 7.1. Mean 

reaction times and mean percentage of correct responses for each group and stimulus 

type are presented in Table 7.1.   

 

7.3.1.1 Reaction time 

There was a significant main effect of Stimuli (F1.81,153.64 = 17.25, p < 0.001, ηp2 = 0.17), 

such that response to ongoing + PMpercept and ongoing + PMconcept were significantly 

slower relative to the ongoing-only responses (p = 0.033 & p < 0.001, respectively). 

The results also show that ongoing + PMconcept responses were significantly slower than 

the ongoing + PMpercept stimuli (p < 0.001). This suggests that participants experienced 

a reaction time PM interference effect, particularly for conceptual PM cues. There were 

no other significant effects for reaction time. 
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Table 7.1 

Means and Standard Deviations for Reaction Time and Correct Response 

 

Group 

Reaction time (ms) Correct responses (%) 

Ongoing-
only 

Ongoing+ 
PMpercept 

Ongoing+ 
PMconcept 

Ongoing-
only 

Ongoing+ 
PMpercept  

Ongoing+ 
PMconcept 

YA 0.76 (0.12) 0.81 (0.11) 0.84 (0.12) 80.67 (10.63) 80.74 (13.68) 66.51 (10.36) 

OA 0.77 (0.11) 0.78 (0.10) 0.80 (0.09) 78.38 (10.11) 76.34 (14.19) 67.85 (9.64) 

MCI 0.86 (0.23) 0.86 (0.13) 0.88 (0.11) 64.98 (16.42) 64.19 (17.69) 60.23 (11.79) 

Standard deviations are given in parentheses.  

 

7.3.1.2 Correct responses 

There was a significant effect of Stimuli (F1.83,155.63 = 36.41, p < 0.001, ηp2 = 0.30), where 

participants correctly responded to fewer correct ongoing + PMconcept stimuli relative 

to ongoing-only (p < 0.001) and ongoing + PMpercept (p < 0.001). No significant 

differences were found between ongoing-only and ongoing + PMpercept stimuli (p > 

0.05). This suggests that for correct responses there was a PM interference effect only 

for conceptual PM stimuli. There was also a significant effect of Group (F2,87 = 9.36, p < 

0.001, ηp2 = 0.18), which was due to MCI making significantly fewer correct responses 

across all ongoing stimuli relative to OA (p = 0.001) and YA (p < 0.001). There was no 

interaction effect of Stimuli x Group (p > 0.05).  
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Figure 7.1. Interaction plots of reaction time and percentage of correct responses. (a) Reaction times 

for correct responses to the ongoing-only, ongoing + PMpercept and the ongoing + PMconcept stimuli for 

young adults (YA), healthy older adults (OA) and older adults with mild cognitive impairment (MCI). 

(b) Percentage of correct responses to the ongoing-only task, ongoing + PMpercept and ongoing + 

PMconcept stimuli for each group. Error bars represent standard error. 
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7.3.2 Electrophysiological results 

7.3.2.1 P2 

Grand average bilateral frontocentral ERPs are illustrated in Figure 7.2 and 

topographic maps of activity at 200ms are illustrated in Figure 7.3. Means and 

standard deviations for the P2 amplitudes and latencies for ongoing-only, ongoing + 

PMpercept and ongoing + PMconcept can be found in Appendix F, Table F.1 and Table F.2, 

respectively. A summary of all statistically significant effects are presented in Table 

7.2. 

 

7.3.2.1.1 Midline P2 amplitudes 

There was a significant effect of Stimuli (F2,174 = 6.66, p = 0.002, ηp2 = 0.09), such that 

relative to ongoing-only stimuli, ongoing + PMpercept and ongoing + PMconcept had 

significantly lower amplitudes (p = 0.013 & p = 0.003, respectively). There was also a 

significant effect of Cluster (F1,87 = 8.14, p = 0.006, ηp2 = 0.10), where larger P2 

amplitudes were found at frontal clusters relative to the central clusters. There were 

no other significant effects. 

 

7.3.2.1.2 Lateral P2 amplitudes 

Similar to midline clusters, there was a significant effect of Stimuli (F2,174 = 8.66, p = 

0.010, ηp2 = 0.07), where P2 amplitudes were significantly larger for ongoing-only 

stimuli relative to ongoing + PMpercept (p = 0.034) and ongoing + PMconcept (p = 0.020). 

There was a significant effect of Cluster (F2.33,194.62 = 20.84, p < 0.001, ηp2 = 0.25), where 

frontocentral clusters had greater amplitudes relative to frontal (p = 0.010) and 

central (p < 0.001) clusters and frontal had greater amplitudes relative to central (p < 

0.001). 

Additionally, there was a significant interaction effect of Cluster x Group (F4.58,194.62 = 

3.44, p = 0.003, ηp2 = 0.10). The Cluster x Group interaction can be explained by a 

significant effect of Group at bilateral frontocentral clusters (F2,87 = 4.03, p = 0.022, ηp2 

= 0.11), such that MCI had significantly smaller amplitudes relative to OA (p = 0.019) 
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and were trending towards smaller amplitudes relative to YA (p = 0.069). This can also 

be explained by a significant effect of Cluster for YA (F2,52 = 30.44, p < 0.001, ηp2 = 0.55), 

such that frontocentral clusters had significantly larger P2 amplitudes relative to 

frontal and central clusters (ps < 0.001). A Cluster effect was also found in OA (F2,74 = 

5.34, p = 0.021, ηp2 = 0.17) and MCI (F2,44 = 4.03, p = 0.022, ηp2 = 0.11) where frontal 

clusters had significantly greater amplitudes than central clusters for OA (p = 0.006) 

and MCI participants (p = 0.002).  

 

Figure 7.2. Grand-averaged ERP amplitudes for the P2 at frontocentral cluster for ongoing-only, 

ongoing + PMpercept and ongoing + PMconcept. (a) Left hemisphere; (b) right hemisphere for young adults 

(YA), healthy older adults (OA) and older adults with MCI (MCI).  

 

7.3.2.1.3 Midline P2 Latencies 

There were no significant effects of P2 latency at midline frontal and central clusters. 

 

7.3.2.1.4 Lateral P2 Latencies 

There was a significant effect of Stimuli (F2,174 = 6.23, p = 0.030, ηp2 = 0.08), which was 

due to a significant P2 delay for ongoing + PMconcept relative to ongoing-only (p = 0.002). 
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There was also a significant effect of Hemisphere, where the right hemisphere was 

significantly delayed relative to the left (F1,87 = 4.24, p = 0.043, ηp2 = 0.06). 

 

Table 7.2 

Summary of Significant Group Effects for P2 ERP Amplitudes and P2 ERP Latencies 

Midline P2 ERP 
amplitude 

Lower F-value DF p-value ηp2 Post-Hoc Tests 

Stimuli  6.66 2,174 0.002 0.09 Ongoing-only > ongoing + 
PMpercept & ongoing + 
PMconcept 

Cluster  8.14 1,87 0.006 0.10 F > C 

Lateral P2 ERP amplitude     

Stimuli   8.66 

 

2,174 0.010 0.07 Ongoing-only > ongoing + 
PMpercept & ongoing + 
PMconcept  

Cluster  20.84 2.33,194.62 <0.001 0.25 FC > F > C 

Cluster*Group  3.44 4.58,194.62 0.003 0.010  

 FC 4.03 2,87 0.022 0.11 OA > MCI | YA > MCI† 

 YA 30.44 2,52 <0.001 0.55 FC > F & C 

 OA 5.34 2,74 <0.001 0.17 F > C 

 MCI 4.03 2,44 0.022 0.11 F > C 

Lateral P2 
latencies 

      

Stimuli  6.23 2,174 0.03 0.08 Ongoing-only < ongoing + 
PMconcept 

Hemisphere  4.24 1,87 0.043 0.06 L < R 

YA = young adults. OA = healthy older adults. MCI = Older adults with MCI. F = frontal, FC = frontocentral, 

C = central, R = right hemisphere. L = Left hemisphere. | = separator between post-hoc tests. N.B. ‘>’ 

indicates amplitudes being more positive in this table. For latencies ‘<’ indicates the component 

occurred earlier in time. † indicates a trending effect. 
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Figure 7.3. Topographic heatmaps of ERP activity at 200ms generated by ongoing-only, ongoing + 

PMpercept and ongoing + PMconcept in young adults (YA), older adults (OA) and older adults with mild 

cognitive impairment (MCI).   

 

7.3.2.2 N2 

All means and standard deviations for the N2 amplitudes for the ongoing-only, ongoing 

+ PMpercept and ongoing + PMconcept stimuli can be found in Appendix F, Table F.3 and 

the latencies are presented in Table F.4. A summary of all statistically significant effects 

are presented in Table 7.3.  

 

7.3.2.2.1 Midline N2 amplitudes 

There was a significant effect of Cluster (F1,87 = 122.86, p < 0.001, ηp2 = 0.63), such that 

there were more negative N2 amplitudes at occipital clusters relative to parietal (p < 

0.001). There were no other significant effects.  
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7.3.2.2.2 Lateral N2 amplitudes 

There was a significant effect of Cluster (F1.70,115.41 = 109.82, p < 0.001, ηp2 = 0.62), which 

was due to significantly more negative N2 amplitudes for occipital compared to both 

inferior parietal and parietal clusters (ps < 0.001) and parietal clusters were 

significantly more negative than inferior parietal clusters (p < 0.001). 

 

7.3.2.2.3 Midline N2 latencies 

There were no significant effects at midline parietal and occipital clusters. 

 

7.3.2.2.4 Lateral N2 latencies 

There was a significant effect of Stimuli (F2,174 = 18.32, p < 0.001, ηp2 = 0.21), where 

both PMpercept and PMconcept were significantly delayed relative to ongoing-only (both 

ps < 0.001). Additionally, there was a significant effect of Cluster (F1.82,158.28 = 9.93, p < 

0.001, ηp2 = 0.13), where bilateral inferior parietal and parietal clusters were delayed 

relative to occipital clusters (both ps < 0.001).  

There was also a significant interaction of Stimuli x Group (F4,174 = 3.59, p = 0.008, ηp2 

= 0.10). This interaction is in part explained by a significant effect of Group in ongoing 

+ PMpercept stimuli (F2,87 = 7.37, p = 0.001, ηp2 = 0.15), where YA generated an earlier N2 

response relative to OA (p < 0.001). The MCI group, however, did not significantly 

differ from OA or YA for the ongoing + PMpercept stimuli (ps > 0.05). The Stimuli x Group 

interaction can also be explained by a significant effect of Stimuli for OA (F2,74 = 15.47, 

p < 0.001,  ηp2  = 0.35), where ongoing + PMpercept and ongoing + PMconcept stimuli were 

significantly delayed relative to ongoing-only (p < 0.001 & p < 0.009, respectively) and 

can be explained by a significant effect of Stimuli for MCI (F2,44 = 7.44, p = 0.003,  ηp2  = 

0.36), where ongoing + PMconcept was significantly delayed relative to ongoing-only 

stimuli (p = 0.018). 

There was a and a significant interaction effect of Stimuli x Cluster (F3.21,279.43 = 4.51, p 

= 0.004, ηp2 = 0.06). This interaction was due to an effect of Stimuli at parietal (F2,178 = 

16.43, p < 0.001, ηp2 = 0.19) and inferior parietal clusters (F2,174 = 6.85, p = 0.001, ηp2 = 

0.09) where ongoing + PMpercept and ongoing + PMconcept stimuli were significantly 
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delayed relative to ongoing-only stimuli (parietal: ps < 0.001; inferior parietal: ps < 

0.05).   

 

Table 7.3 

Summary of Significant Group Effects for N2 ERP Amplitudes and N2 ERP Latencies 

Midline N2 ERP 
amplitude 

Lower F-value DF p-value ηp2 Post-Hoc Tests 

Cluster  112.86 1,87 <0.001 0.63 OC < P 

Lateral N2 ERP amplitude     

Cluster  109.82 1.70,115.41 <0.001 0.62 OC < P < IP 

Lateral N2 
latencies 

      

Stimuli  18.32 2,174 <0.001 0.21 Ongoing-only < ongoing + 
PMpercept & PMconcept 

Cluster  9.93 1.82,158.28 <0.001 0.13 OC < IP & P 

Stimuli*Group  3.59 4,174 0.008 0.10  

 ongoing + 
PMpercept  

7.37 2,87 0.001 0.15 YA < OA 

 OA 15.47 2,74 <0.001 0.35 Ongoing-only < ongoing + 
PMpercept & ongoing + 
PMconcept  

 MCI 7.44 2,44 0.003 0.36 Ongoing-only < ongoing + 
PMconcept 

Stimuli*Cluster  4.51 3.21,279.43 0.004 0.06  

 P 16.43 2,174 <0.001 0.19 Ongoing-only < ongoing + 
PMpercept & ongoing + 
PMconcept  

 IP 6.85 2,174 0.001 0.09 Ongoing-only < ongoing + 
PMpercept & ongoing + 
PMconcept 

YA = young adults. OA = healthy older adults. MCI = Older adults with MCI. OC = occipital. IP = inferior 

parietal. P = parietal. | = separator between post-hoc tests. N.B. ‘<’ indicates amplitudes being more 

negative in this table. For latencies ‘<’ indicates the component occurred earlier in time. 

 

7.3.2.3 Early frontal positivity (300–500ms) 

All means and standard deviations for the amplitudes of the EFP in response to 

ongoing-only, ongoing + PMpercept and ongoing + PMconcept stimuli can be found in 
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Appendix F Table F.5. Grand average ERPs at bilateral frontal clusters for the EFP and 

LFP are illustrated in Figure 7.4. The topographic distribution of the ERP activity 

across the scalp at 300ms is illustrated in Figure 7.5. A summary of all statistically 

significant effects can be found in Table 7.4.  

 

Figure 7.4. Grand average ERPs for the early frontal positivity (EFP) and late frontal positivity (LFP) 

for ongoing-only, ongoing + PMpercept and ongoing + PMconcept. (a) Left hemisphere; (b) right 

hemisphere for young adults (YA), healthy older adults (OA) and older adults with mild cognitive 

impairment (MCI).   

 

7.3.2.3.1 Midline EFP amplitudes 

There was a significant effect of Stimuli (F2,174 = 7.66, p < 0.001, ηp2 = 0.11) such that 

ongoing + PMpercept and ongoing + PMconcept had significantly lower amplitudes relative 

to the ongoing-only stimuli (p = 0.012 & p = 0.005, respectively). There was a 

significant effect of Cluster whereby amplitudes were larger at frontal compared to 

central clusters (F1,87 = 9.66, p = 0.003, ηp2 = 0.13). There were no other significant 

effects. 
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7.3.2.3.2 Lateral EFP amplitudes 

There was a significant effect of Stimuli (F2,174 = 7.11, p = 0.001, ηp2 = 0.11) where 

relative to ongoing-only stimuli, lower amplitudes were found for ongoing + PMpercept 

(p = 0.002) and ongoing + PMconcept (p = 0.018). A significant effect of Group (F2,87 = 5.22, 

p = 0.008, ηp2 = 0.15) was explained by significantly greater amplitudes in OA relative 

to YA (p = 0.008). A significant effect of Cluster (F2.18,191.82 = 16.27, p < 0.001, ηp2 = 0.21), 

was due to significantly greater amplitudes at frontocentral clusters relative to all 

other clusters (ps < 0.001). 

There was also a significant interaction of Cluster x Group (F4.36,191.82 = 16.28, p < 0.001, 

ηp2 = 0.35).  This interaction can in part be explained by a significant effect of Group at 

the frontal clusters (F2,87 = 22.05, p < 0.001, ηp2 = 0.42) where both OA and MCI had 

significantly larger amplitudes than YA (ps < 0.001). The interaction is also due to a 

significant effect of Cluster for YA (F1.84,54.12 = 52.88, p < 0.001, ηp2 = 0.68) where 

frontocentral clusters had the greatest amplitude relative to all other clusters (ps < 

0.001). There was no difference between central and frontotemporal clusters (p > 

0.05) but both were significantly larger than frontal clusters (ps < 0.001). A significant 

effect of Cluster was also found for OA (F2.31,87.77 = 8.67, p < 0.001, ηp2 = 0.27), such that 

frontocentral clusters were significantly larger than central (p = 0.030) and 

frontotemporal (p < 0.001) clusters and frontal clusters were significantly larger than 

frontotemporal clusters (p = 0.023). A significant effect of Cluster for MCI (F1.88,41.38 = 

6.01, p = 0.021, ηp2 = 0.33) was due to frontal clusters having larger amplitudes relative 

to central and frontotemporal clusters (ps = 0.005). There were no other significant 

effects. 
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Table 7.4 

Summary of Significant Group Effects for EFP ERP Amplitudes  

Midline EFP ERP 
amplitude 

Lower F-value DF p-value ηp2 Post-Hoc Tests 

Stimuli  7.66 2,174 <0.001 0.11 Ongoing-only > ongoing + 
PMpercept & ongoing + 
PMconcept 

Cluster  9.66 1,87 0.003 0.13 F > C 

Lateral EFP ERP amplitude     

Stimuli  7.11 2,174 0.001 0.11 ongoing > ongoing + 
PMpercept & PMconcept 

Group  5.22 2,87 0.008 0.15 OA > YA 

Cluster  16.27 2.18,191.82 <0.001 0.21 FC > F, FC, C & FT 

Cluster*Group  16.28 4.36,191.82 <0.001 0.35  

 F 22.05 2,87 <0.001 0.42 OA & MCI > YA 

 YA 52.88 1.84,54.12 <0.001 0.68 FT > C = FT > F 

 OA 8.67 2.31,87.77 <0.001 0.27 FC > C & FT | F > FT 

 MCI 6.01 1.88,41.38 0.021 0.33 F > C & FT 

YA = young adults. OA = healthy older adults. MCI = Older adults with MCI. F = frontal, FC = frontocentral, 

C = central, FT = frontotemporal. | = separator between post-hoc tests. N.B. ‘>’ indicates amplitudes 

being more positive in this table.  
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Figure 7.5. Topographic heatmaps of the early frontal positivity (EFP) ERP component generated by 

ongoing-only, ongoing + PMpercept and ongoing + PMconcept in young adults (YA), older adults (OA) and 

older adults with mild cognitive impairment (MCI).   

 

7.3.2.4 Late frontal positivity (600–1000ms)  

All means and standard deviations for LFP amplitudes and latencies can be found in 

Appendix F, Table F.6 for responses to ongoing-only, ongoing + PMpercept and ongoing 

+ PMconcept stimuli. The topographic distribution of ERP activity at 900ms is displayed 

in Figure 7.6. A summary of all statistically significant effects are presented in Table 

7.5. 

 

7.3.2.4.1 Midline late frontal positivity amplitude 

There was a significant effect of Group (F1,87 = 4.25, p = 0.018, ηp2 = 0.10), such that OA 

had significantly greater amplitudes relative to YA. There was also significant effect of 

Cluster (F1,87 = 10.05, p = 0.002, ηp2 = 0.09) where central clusters had greater 

amplitudes than frontal clusters.   
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There was also a significant interaction of Cluster x Group (F2,87 = 3.43, p = 0.038, ηp2 = 

0.09). This interaction was due to a significant effect of Group at the frontal cluster 

(F2,87 = 6.66, p = 0.002, ηp2 = 0.15) where OA demonstrated more positive amplitudes 

than YA (p = 0.001). Activity of MCI participants was intermediate of OA and YA, but 

amplitudes did not statistically differ from either group (ps > 0.05). Additionally, YA 

demonstrated larger amplitudes at central relative to frontal clusters (F1,27 = 23.32, p 

< 0.001, ηp2 = 0.46). 

 

7.3.2.3.2 Lateral late frontal positivity amplitude 

There was a significant effect of Hemisphere where the right was greater than the left 

in all groups (F1,87 = 25.16, p < 0.001, ηp2 = 0.26). There was a significant three-way 

Stimuli x Cluster x Group interaction (F12,522 = 2.05, p = 0.019, ηp2 = 0.06). The three-

way interaction in part can be explained a Stimuli x Cluster interaction for YA (F3.56,99.79 

= 3.78, p = 0.010, ηp2 = 0.12), such that in central clusters ongoing + PMpercept and 

ongoing + PMconcept had significantly lower amplitudes than the ongoing-only stimuli 

(p = 0.024 & p = 0.015, respectively). Additionally, the significant Stimuli x Cluster for 

YA can be explained by significantly larger positive amplitudes in frontal clusters for 

ongoing + PMpercept and ongoing + PMconcept relative to all other clusters (ps < 0.014). 

The three-way interaction can also be explained by a significant Cluster x Group 

interaction for ongoing + PMpercept stimuli (F4.33,188.37 = 2.72, p = 0.030, ηp2 = 0.06), 

where frontal clusters were significantly more positive than all other clusters in YA (ps 

< 0.01); In OA, frontal clusters were larger than central (p = 0.029) and frontotemporal 

clusters (p < 0.001), and frontocentral were larger than frontotemporal (p < 0.001). 

No amplitude differences were found in MCI (ps > 0.05). 
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Table 7.5 

Summary of Significant Group Effects for LFP ERP Amplitudes  

Midline LFP 
ERP amplitude 

Lower F-value DF p-value ηp2 Post-Hoc Tests 

Group  4.25 1,87 0.018 0.10 OA > YA 

Cluster  10.05 1,87 0.002 0.09 C > F 

Cluster*Group  3.43 2,87 0.038 0.09  

 F 6.66 2,87 0.002 0.15 OA > YA 

 YA 23.32 1,27 <0.001 0.46 C > F 

Lateral LFP ERP amplitude     

Hemisphere  25.16 1,87 <0.001 0.26 R > L  

Stimuli*Cluster*
Group 

 2.05 12,522 0.019 0.06  

Stimuli*Cluster YA 3.78 56,99.79 0.010 0.12 C: ongoing-only > ongoing + 
PMpercept & ongoing + PMconcept | 
ongoing + PMpercept: F > all other 
clusters | ongoing + PMconcept: F > 
all other clusters 

Cluster*Group Ongoing + 
PMpercept  

2.72 4.33,188.37 0.030 0.06 YA: F > all other clusters | OA: F > 
C & FT, FC > FT 

YA = young adults. OA = healthy older adults. MCI = Older adults with MCI. F = frontal, FC = frontocentral, 

C = central, FT = frontotemporal. | = separator between post-hoc tests. N.B. ‘>’ indicates amplitudes 

being more positive in this table.  
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Figure 7.6. Topographic heatmaps of the late frontal positivity (LFP) ERP component generated by 

ongoing-only, ongoing + PMpercept and ongoing + PMconcept in young adults (YA), older adults (OA) and 

older adults with mild cognitive impairment (MCI).   

 

7.4 Discussion 

The current study investigated the effect of PM monitoring on an ongoing working 

memory task in younger adults, older adults and older adults with MCI. The PM 

interference effect was evaluated through behavioural and electrophysiological data 

using two forms of PM, which varied in their salience and were embedded within an n-

back lexical decision task. A comparison between performance in the ongoing tasks 

when monitoring for the perceptual and conceptual PM cues was also made. In sum, 

the results demonstrate that across all ongoing working memory stimuli, participants 

with MCI made fewer correct responses. Additionally, reaction times to ongoing 

stimuli increased for all groups with the addition of a PM task and was even further 

increased when the cue was conceptual. Moreover, monitoring for conceptual PM cues 

resulted in fewer correct responses but perceptual cues did not reduce the number of 

correct ongoing responses. Frontocentral P2 amplitudes were reduced in older adults 
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with MCI relative to healthy older adults across all ongoing stimuli. Larger sustained 

frontal amplitudes were found for older adults with and without MCI compared to 

younger adults in the early frontal positivity (300–500ms) but the later frontal 

positivity (600–1000ms) was only greater for healthy older adults relative to younger 

adults. Healthy older adults demonstrated delayed N2 ERPs to ongoing stimuli when 

monitoring for both perceptual and conceptual PM cues relative to the ongoing-only 

stimuli. Older adults with MCI also demonstrated a delayed N2 ERP but only when 

monitoring for conceptual PM cues relative to ongoing-only stimuli. 

 

7.4.1 Behavioural performance 

The behavioural results of the current study confirm a PM interference effect on the 

ongoing task when monitoring for PM cues. Both perceptual and conceptual PM cues 

affected the reaction times of the ongoing task. Presumably, this is due to participants 

taking additional time to process the features of the target through the allocation of 

added attention processes towards the PM component (Marsh & Hicks, 1998). 

Moreover, across all participant groups, the monitoring for conceptual PM stimuli 

caused a significant decrease in the number of correct ongoing responses. The results 

here add further support to the preparatory attentional processes and memory 

processes theory (PAM) and the Multiprocess Framework, such that responses to PM 

cues indeed require preparatory attentional processes to successfully perform a PM 

intention (Guynn, 2003; McDaniel & Einstein, 2000). While ongoing task reaction 

times were affected when monitoring for both types of PM cues, the conceptual PM cue 

had a disproportional effect. The increased ongoing task reaction times when 

monitoring for conceptual PM cues partially supports the previous results of Cruz et 

al. (2016), who found that conceptual PM cues increased the reaction times to 

unrelated ongoing task responses. However, the reaction times to related items in Cruz 

and colleagues’ study, which are similar to the ongoing task stimuli in the current 

study, were unaffected. It is possible that a reaction time increase was only found for 

the unrelated stimuli in Cruz et al. (2016) because unrelated stimuli required slightly 

more processing than if the words were related, as evidenced through increased 

reaction times for unrelated stimuli across all conditions. Thus, unrelated items may 

have made the effect more apparent through the additional involvement of cognitive 

processes.  
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The results here are in contrast with those reported by Cousens et al. (2015), who 

found increased reaction times when participants were monitoring for perceptual 

relative to non-perceptual PM cues. The differences between Cousens and colleagues’ 

results and the current results might be explained by differences in the perceptual PM 

cue. Within the Cousens et al. study, the perceptual PM intention was to press a button 

if the two simultaneously presented words were the same colour. However, as their 

PM cue was not processed as part of the ongoing task (a lexical decision task between 

the two words), it is considered non-focal (i.e., the perceptual features of the PM cue 

are not processed as part of the lexical decision task). Scullin et al. (2010) investigated 

the impact of perceptual non-focal and conceptual semantic focal PM cues within an 

ongoing lexical decision task. Their results found the non-focal PM cues had a greater 

interference effect on the ongoing task reaction times. Within the current study, 

however, although the perceptual PM cue may be considered non-focal, the PM cue is 

highly salient. Thus, it is likely that the focality is less important than the saliency of 

the cue as indicated by the faster ongoing task reaction times when monitoring for the 

highly salient non-focal perceptual PM cues compared to the monitoring for the less 

salient focal PM cues.  

The behavioural results from the current study support the hypothesis that older 

adults with MCI will have poorer performance across all ongoing tasks. Despite all 

groups demonstrating a reduction in accuracy when monitoring for conceptual PM 

cues, older adults with MCI were not disproportionally impaired as expected. The lack 

of increased impairment when monitoring for conceptual PM cues contrasts with 

previous conclusions made by Costa et al. (2015) who reported that individuals with 

MCI were disproportionally more impaired in those tasks requiring a higher degree of 

effortful monitoring. However, Costa et al. (2015) assessed effortful monitoring with 

time-based PM, which may require a greater amount of monitoring compared to a 

conceptual PM cue that contains a large amount of perceptual information (Khan et al., 

2008). The results here suggest that monitoring for a conceptual event-based cue did 

not tax the cognitive processes sufficiently to further impact the ongoing working 

memory performance in older adults with MCI. Alternatively, the cognitive processes 

in participants with MCI may have already been considerably affected with the 

addition of PM cues and struggled with any PM task, which therefore did not further 

affect their performance. The reduction in the number of correct responses in older 

adults with MCI may reflect lexico-semantic processing deficits (Duong et al., 2006). 
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Semantic impairments are one of the earliest features of cognitive decline in 

neurodegenerative diseases such as AD (Joubert et al., 2010; Libon et al., 2013; R. S. 

Wilson et al., 2011). Although episodic memory impairments are the prevailing 

characteristic of MCI (Moscoso et al., 2019), deficits are also readily found in semantic 

memory (Adlam et al., 2006; Ally, 2012; Kirchberg et al., 2012; Verma & Howard, 

2012). Possibly the results here suggest a general reduction in the ability to rapidly 

access semantic information stored in memory when performing a lexical decision 

task in those with MCI.  

 

7.4.2 P2 modulations in MCI and ageing 

The electrophysiological results of the current study demonstrate significant 

differences between younger adults, healthy older adults and older adults 

experiencing MCI. Most notably, across all ongoing stimuli, older adults with MCI had 

lower P2 amplitudes at frontocentral clusters relative to older adults. A frontocentral 

P2 amplitude reduction is in line with previous research MCI (B.-Y. Li et al., 2016; 

Waninger et al., 2018). However, the precise function of the P2 is yet to be understood, 

one line of reasoning proposes a relationship to rapid semantic processing (Irak, Soylu, 

& Turan, 2019; Paynter et al., 2009) and a peri-perceptual sense of familiarity and 

knowing (Z. G. Doborjeh, Kasabov, et al., 2018; Irak, Soylu, & Turan, 2019; Irak, Soylu, 

Turan, et al., 2019). The previous chapter similarly found reduced frontocentral P2 

amplitudes in older adults MCI when responding to PM stimuli. The current study 

further supports a feature recognition processing deficit conclusion as the amplitude 

reduction was consistent across stimuli and not impacted by the inclusion of PM 

monitoring. Evidence of recognition memory of faces in MCI (Schefter et al., 2013) 

similarly found P2 amplitude attenuations in older adults with MCI. Schefter and 

colleagues concluded that the P2 is reflective of impairments in early facial recognition 

systems, similar to other studies of the P2 amplitudes (Caharel et al., 2002; Halit et al., 

2000). However, the P2 may be more reflective of a general early recognition system 

which would conflate the findings of feelings of knowing, familiarity, early semantic 

processing, and recognition. This neurophysiological conclusion could potentially 

explain the psychometric evidence finding impaired recognition abilities in those with 
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MCI (Bennett et al., 2006), although further research is necessary to determine this 

relationship of the P2 as a general marker of early recognition. 

The differences in neural activity in the P2 provides some insights into the distribution 

of activity between the different groups. The topographic maps for younger adults 

appear to show very localised activity in frontocentral scalp regions. The older adults 

demonstrate more dispersed activity, which appears to be further distributed in older 

adults with MCI. Greater activation in older adults compared to younger adults is 

frequently attributed to compensatory processes (Grady, 2012), although cross-

section study designs do not usually enable an ability to answer whether the increased 

activation is compensatory (Grady, 2008). Following a compensatory mechanism line 

of reasoning, the dispersed topographic distribution at 200ms for the healthy older 

adults and older adults with MCI may be representative of neuronal dedifferentiation 

and the distributed activity of overlapping neuronal sources (Koen & Rugg, 2019). The 

greater distributed activity in older adults with MCI may also reflect compensatory 

mechanisms which are an attempt to compensate their working memory performance 

with the recruitment of additional areas. Previous studies have demonstrated that 

older adults who show dedifferentiation will outperform older adults who do not 

demonstrate this distribution of activity (Dennis & Cabeza, 2011; Rieckmann et al., 

2010). Indeed, the current study shows that young adults had maximal amplitudes at 

frontocentral clusters, yet the healthy older adults show similar levels of activation 

across frontal and frontocentral clusters coupled with the absence of behavioural 

performance declines. This perhaps offers support for neural dedifferentiation as the 

spatial localisation has blurred and incorporated frontal sources in the older adult 

groups. However, it may also be argued that the frontal processes are being recruited 

to facilitate supporting functions of early processes. Cabeza and Dennis (2012) explain 

that in the absence of decreased behavioural performance, additional recruitment of 

brain areas reflects the reorganisations of brain networks to facilitate compensatory 

processes as a result of age-related declines. It might be assumed then that without the 

over recruitment of brain sources as a compensatory mechanism the older adults 

would exhibit poorer performance in the ongoing working memory tasks (Zarahn et 

al., 2007). 
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7.4.3 Anterior PM monitoring modulations  

The current study supports the previous literature showing sustained modulations at 

anterior scalp clusters when monitoring for PM cues between 300–500ms (Cona et al., 

2012b; Czernochowski et al., 2012; Mattli et al., 2011). However, these past studies 

have shown increased positive modulations when monitoring for PM cues, yet the 

current study identifies more negative amplitudes at the anterior scalp clusters when 

monitoring for PM cues as opposed to no monitoring. A recent study by Hering and 

colleagues (2020) explored age-related differences in PM and also found negative 

anteriorly sustained amplitudes in the ongoing stimuli when monitoring for PM cues 

in the younger adults. The authors concluded that similar to previous studies, the 

amplitude modulation represented memory-specific sustained activity indicative of 

the PM readiness mode proposed by Guynn (2003). In contrast to other studies (Cona 

et al., 2014; Hering et al., 2020), the current results here did not find further amplitude 

modulations when monitoring for a PM intention that theoretically required a greater 

degree of monitoring (i.e., the conceptual PM cue). The lack of further amplitude 

modulation, therefore, suggests that high and low salient PM stimuli require 

comparable frontal resources to maintain the PM intention in mind. The comparable 

level of modulatory activity between the PM cues subsequently does not support 

theories of spontaneous PM retrieval (Scullin, Einstein & McDaniel, 2009), such that 

the high saliency PM cue required the same attentional maintenance processes to 

maintain the PM intention. 

The sustained activity at anterior scalp clusters differed between younger and older 

adults, such that older adults had more positive sustained amplitudes than the younger 

adults. Amplitude modulations during prospective monitoring have previously been 

reported within the literature (Hering et al., 2020; Schnitzspahn et al., 2016; Zöllig et 

al., 2007). Hering and colleagues (2020) found that older adults had more positive 

amplitudes between 400–900ms relative to younger adults. Here, the current study 

further differentiates this effect, showing that both healthy older and older adults with 

MCI had more positive amplitudes at bilateral frontal clusters relative to younger 

adults between 300–500ms and at the midline frontal cluster between 600–1000ms. 

This suggests possible neurophysiological dysregulation in the underlying cortical 

regions during intention maintenance. The Gateway Hypothesis of PM (Burgess et al., 

2007; 2011) proposes that the deactivation of the medial aPFC reflects the 
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disengagement from stimulus-orientated attending to the maintenance of an intention. 

Therefore, the results here suggest that older adults may have difficulty in modulating 

the attentional balance between external ongoing stimuli and the internal PM 

intention. Evidence from a recent fMRI study of PM in ageing (Gonneaud et al., 2017) 

has demonstrated that older adults are impaired in their ability to deactivate the aPFC 

during PM monitoring. However, caution should always be taken when concluding 

underlying cortical activity in EEG. The current study does however offer further 

temporal acuity to the neurophysiological differences of PM monitoring in ageing.  

 Alternatively, the neurophysiological differences in the anterior scalp clusters 

between the younger and older adults may reflect age-related changes in memory 

processes. A prevailing idea within the fMRI literature is the posterior-to-anterior shift 

in ageing (PASA; Davis et al., 2008; D. C. Park & Reuter-Lorenz, 2009). This theory 

states that the additional recruitment often shown in the PFC during cognitive 

performance contributes to the retention of the cognitive function due to deterioration 

of posterior brain regions. Within the framework of the PASA theory, the greater 

positive amplitudes found here in the older adult groups, shows general compensatory 

mechanisms to perform the ongoing working memory task. Studies using ERP analyses 

have similarly shown that the P3 also exhibits a shift towards anterior brain regions 

as individuals age, reportedly helping cognitive function (Kopp et al., 2014; Reuter et 

al., 2016; van Dinteren et al., 2014). However, fMRI and ERP studies have provided 

contrary evidence to the PASA theory (Morcom & Henson, 2018; Tays et al., 2011). 

Morcom and Henson (2018) performed two large fMRI experiments on long-term 

memory encoding and short-term memory maintenance in younger and older adults 

to test the PASA theory. Their results show that while older adults do indeed increase 

prefrontal activation, the results do not find that the increased PFC activity is related 

to better performance. The authors conclude that increased PFC activation reflects less 

specific or less efficient activity in older adults. Considering the mixed evidence for 

increased prefrontal activity in older adults, interpretation of the current study’s 

results remains open. Future neurophysiological studies should seek to address 

whether the increased activity reflects better performance in PM monitoring and the 

ongoing working memory tasks.    
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7.4.4 Age-related differences in N2 PM monitoring 

Age-related differences were found for N2 latencies when monitoring for PM cues. 

When monitoring for perceptual PM cues older adults generated an N2 response later 

than the younger adults. Additionally, when monitoring for both PM cue types older 

adults’ N2 responses were significantly delayed relative to the ongoing task. A similar 

effect was also found for older adults with MCI but only when monitoring for 

conceptual PM cues. A previous study of PM monitoring suggests that the N2 is related 

to the activity of feature-based attention (Czernochowski et al., 2012). Under this 

assumption, the current study’s results suggest that feature-based attention is slowed 

in the aged population. Furthermore previous research has linked the N2 to 

classification and stimulus identification (Patel & Azzam, 2005). Therefore, within the 

current study, the N2 may represent feature-based attention to match/mismatch 

processes between the stimulus and the PM intention currently held in memory 

(Folstein & Van Petten, 2008). The results here then, suggest that the evaluation of 

whether a stimulus is a PM cue or not may be affected in older adults and takes the 

brain a longer amount of time to complete, possibly due to slowed cognitive processing 

speeds (Gajewski et al., 2008; Polich & Criado, 2006). While older adults had delayed 

N2 responses when monitoring for PM stimuli, the older adults were only delayed 

relative to the young adults when monitoring for perceptual PM stimuli. Potentially, 

the semantic nature of the conceptual PM stimuli enabled faster access to memory. 

Müller and Hagoort (2006) demonstrated that words of living things (e.g., animal 

words) were responded to faster than non-living words. Moreover, Amsel et al. (2013) 

show that the N2 responses are produced earlier for living compared to non-living 

words. Therefore, the lack of an N2 delay in older adults may show that the ability to 

rapidly access information about animal words is unaffected and therefore enables the 

differentiation of the ongoing stimuli from PM stimuli at a similar speed found in the 

younger adult group. 
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7.4.5 PM monitoring and P2 uncertainty   

The latency and amplitude of the P2 ERP offer important insights into the 

neurophysiological impact of monitoring for PM cues on working memory. The current 

study shows that across all participants the ongoing-only stimuli produce a larger P2 

amplitude than ongoing stimuli when monitoring for PM cues. Considering the 

evidence linking P2 amplitude increases with a feeling of knowing (Irak, Soylu, & 

Turan, 2019; Irak, Soylu, Turan, et al., 2019b), a reduction in the P2 may reflect a 

feeling of not knowing or uncertainty. Indeed, evidence has shown that in conditions 

of uncertainty P2 amplitudes are reduced (Lin et al., 2017; Tanovic et al., 2018). 

Therefore, the results here may indicate an increased feeling of uncertainty during the 

early evaluation of the ongoing task when participants are monitoring for PM cues. 

The increased reaction time in response to ongoing stimuli when monitoring for 

conceptual PM cues along with the delayed latency of the P2 response compared to the 

ongoing-only stimuli may represent decreased certainty in the evaluation of the 

stimulus. However, this remains to be confirmed. Future studies could explore this by 

evaluating participant reports of certainty and feelings of knowing within an 

experimental PM framework. 

 

7.4.6 Limitations 

The behavioural and neurophysiological evidence of the current study suggests that 

perceptual and conceptual PM cues both rely on continued monitoring of PM stimuli 

within the ongoing task. However, the current study’s design may have limited the 

participant’s ability to disengage from maintaining the PM cue within working 

memory networks due to the frequency of which the PM cue was presented. 

Potentially, the PM cues may have been spontaneously recalled if there was a longer 

duration between cues or by greater engagement of the working task demands. The 

ERP modulations related to monitoring may not have been found. However, increased 

duration between PM cues would have increased the length of the study, which may 

have affected the ERP amplitudes due to participant fatigue (Boksem et al., 2005). 

Decreasing the number of PM ERP events would have negatively affected the signal-

to-noise ratio of ERPs (Luck, 2005; Thigpen et al., 2017). Potentially, the ongoing task 

difficulty could have been modified, although the study was designed to not cognitively 
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overload individuals with MCI, which would have reduced their performance in the PM 

task (Costa et al., 2011) and reduced the number of chances to record PM related brain 

activity. The balance between intention maintenance and engagement of working 

memory was not explored within this chapter, but future research should explore 

neurophysiological differences in older adults and those with MCI with different 

durations between PM cues.  

 

7.4.7 Future Research 

Research has shown that both healthy older adults and older adults with MCI 

demonstrate greater PM performance decrements in time-based memory compared 

to event-based memory (Costa et al., 2015; Einstein et al., 1995; D. C. Park et al., 1997). 

Jäger & Kliegel (2008) have shown that compared to younger adults, older adults have 

more pronounced ongoing task impairments in time-based than event-based PM. Cona 

and colleagues (2012) found that when monitoring for PM cues, prefrontal activity in 

older adults was reduced relative to the younger adults. To date, no other studies have 

explored the neurophysiology of PM monitoring in older adults with MCI. It would be 

expected, given the greater performance declines found in time-based PM in older 

adults with MCI, that greater modulations over anterior regions would be found 

compared to when monitoring for event-based PM cues. Therefore, future research 

should explore time-based PM interference within the ongoing stimuli in older adults 

with MCI.  

 While the current study has provided initial steps towards understanding PM 

monitoring differences in older adults with MCI in the frontal cortices, a deeper 

understanding is still required. In tasks requiring effortful monitoring, it is speculated 

that the MTL plays an important role in understanding the behavioural deficits in MCI 

(McFarland & Glisky, 2009). Therefore, neuroimaging methods such as fMRI stand to 

uncover considerable amounts of knowledge about the neurophysiology of PM 

monitoring in older adults with MCI. Moreover, the author encourages the use of 

functional connectivity analyses to discover the relationships of patterns of activity 

across the cortex to understanding typical and atypical ageing in PM. 
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7.4.8 Summary 

The current chapter is the first to examine the neurophysiological effects of monitoring 

for PM cues on the ongoing working memory task in older adults with MCI. The results 

support the presence of a PM interference effect in the ongoing task when monitoring 

for a highly salient perceptual cue and a less salient conceptual cue. The results 

support the PAM and Multiprocess Framework theories of PM, such that both PM cues 

required additional attentional processes for monitoring. The study also shows that 

monitoring for conceptual PM cues required greater attentional processes compared 

to the perceptual cue as indicated by poorer ongoing task performance when 

monitoring for conceptual PM stimuli. 

The results here show that participants with MCI made fewer correct responses and 

had reduced frontocentral P2 amplitudes across all stimulus types relative to younger 

and older adults. Taken together, the results suggest that older adults with MCI have 

impairments in feature recognition processing networks and in feelings of knowing 

and familiarity, as indicated by P2 amplitude reductions. However, this remains to be 

confirmed as the neurophysiological underpinning of the P2 are yet to be determined.  

Finally, the current study shows significant frontal activity differences between 

younger and older adults in responses to the ongoing stimuli. Sustained positive 

amplitudes exhibited by the older adults were believed to reflect difficulties of 

balancing attention between internally held PM intentions and the ongoing task. 

However, the increased frontal amplitudes may reflect compensatory mechanisms 

employed by the older adults to successfully perform the ongoing task. Additionally, 

the older adults demonstrated delayed posterior N2 latencies, potentially indicating a 

slowing of feature-based attention mechanisms of stimulus identification between 

ongoing and PM stimuli.   
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Chapter Eight: Spatiotemporal ERP dynamics of 

prospective memory in ageing and mild 

cognitive impairment  

 

8.0  Overview 

The previous chapters have explored the neurophysiological differences in PM 

intention maintenance (Chapter 7) and intention retrieval (Chapter 6) between young 

adults, older adults and older adults experiencing MCI. The current chapter attempts 

to address some of the limitations of ERP analyses by using a SNN architecture to 

model the spatiotemporal dynamics across the entire scalp. Using the classification 

functionality of SNNs, this chapter explores whether brain activity in response to a PM 

task provides better classification accuracy than the ongoing working memory task. 

The current chapter applies a network analysis to the learnt patterns of activity from 

the SNN to understand connectivity differences between each of the groups.  

 

8.1 Introduction 

Little is known about the neurophysiology of PM in healthy older adults and older 

adults experiencing MCI. In Chapter 6, the neurophysiology of PM was explored in 

older adults (in typically ageing and MCI samples). In Chapter 7, the 

neurophysiological basis of PM monitoring was examined in typically ageing and 

participants with MCI. In both chapters, older adults with MCI were found to have 

smaller frontocentral P2 amplitudes relative to healthy older adults. Additionally, both 

older adult groups demonstrated reduced amplitudes of components related to PM 

intention retrieval (IRR) and had aberrant sustained frontal amplitudes when 

monitoring for PM cues. While these studies have provided important insights into the 

neurophysiology of PM in relation to typical and atypical ageing, much of the spatial 

and temporal information is not examined. The current study, therefore, aims to use a 

novel AI approach (outlined in Chapter 3, section 3.8) to model the spatiotemporal 
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dynamics of working memory and PM in young adults, healthy older adults and older 

adults with MCI.  

Neurocognitive research has particularly implicated the aPFC in PM functioning. 

Evidence from both fMRI (McDaniel & Einstein, 2011; Peira et al., 2016) and ERP 

studies (Cona et al., 2012b; Mattli et al., 2011; West et al., 2005) have demonstrated 

the importance of the aPFC in PM encoding, maintenance and retrieval. Concerning PM 

intention retrieval, cortical areas such as the insula, PCC and MTL are of particular 

importance (Cona et al., 2015; see Chapter 2, section 2.3.4). Moreover, these areas, and 

connections between them, are found to be impaired in older adults with MCI (Mak et 

al., 2014; Mufson et al., 2012; Stephan et al., 2012). PM tasks, therefore, may present a 

potential sensitive indicator of early cognitive decline in older adults (Blanco-Campal 

et al., 2009).  

Studies analysing ERPs have demonstrated reduced amplitudes in older adults relative 

to younger adults during PM tasks (Hering et al., 2020; West, Herndon, et al., 2003; 

Zöllig et al., 2007, 2010). The N300 ERP, related to cue detection and the allocation of 

attention processes and the parietal positivity, related to the retrieval and processing 

of PM cues, have both been shown to be reduced in older adult populations (Mattli et 

al., 2011; West, Herndon, et al., 2003; West & Covell, 2001; Zöllig et al., 2007). However, 

these amplitude reductions are not consistently demonstrated. Some studies report no 

amplitude differences between younger and healthy older adults (West et al., 2003). 

Chapter 6 shows that older adults demonstrated increased PM cue detection related 

ERPs. While an absence of amplitude differences may suggest that systems involved 

with PM remain unaffected by ageing, the increased amplitudes may reflect different 

neural mechanisms used by young and older adults when completing PM tasks (Zöllig 

et al., 2010). Chapter 6 of the current thesis revealed that poorer PM performance in 

older adults experiencing MCI may be due to deficits in early frontocentral processing 

and the ability to reorient attention processes in frontotemporal networks.  

Studies of the neurophysiology of PM in ageing and MCI have provided important 

initial insights into the nature of cognitive decline, however, a great deal of spatial and 

temporal information is not explicitly captured when individual electrodes are 

compared between groups. It is understood that there are co-occurrences of the N300 

over the posterior regions and the frontal positivity in anterior cortices (West, 2011), 

yet we do not understand the spatiotemporal functional connectivity across the 
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cortex. Furthermore, we do not understand how the functional connectivity changes 

as we age or alter from cognitive decline in PM. To date, no research has explored the 

spatiotemporal networks of neural systems underlying PM in ageing and MCI. Most 

extant analytical techniques create models by separately processing the spatial and 

temporal information. Considering this knowledge, the current study proposes a novel 

computational framework to build models and extract new knowledge of PM and 

working memory in ageing and MCI.  

The computational models of the PM data proposed in this research are based on one 

of the most promising trends of ANN, called SNN (see Chapter 3, Section 3.8). SNN 

models have been developed as neurobiologically-inspired computational 

architecture that incorporates both spatial and temporal characteristics of data into 

the computation. They are considered a suitable tool for the analysis of the 

spatiotemporal data, where both space and time components are crucial to the 

development of the model (Kasabov et al., 2013).  

The application of SNNs to dimensionally high, spatiotemporal data has proved to be 

an effective way of modelling and extracting knowledge from a variety of data sets 

which possess time and space qualities (Kasabov, 2019). Previous studies have proven 

the efficacy of SNN modelling in fMRI (M. G. Doborjeh et al., 2014; Kasabov, Zhou, et 

al., 2016), EEG resting-state (Capecci et al., 2016) and ERP data (Doborjeh, Kasabov, 

Doborjeh & Sumich, 2018).  

 

8.1.2 Aims and hypotheses 

This current study aims to build on the SNN methodologies for modelling the 

spatiotemporal dynamics of ERP data. The study proposes new approaches for 

modelling, learning, visualising and extracting knowledge from ERP data relating to 

working memory, PM and cognitive decline. The study aims to explore and further 

understand the spatiotemporal and functional differences between younger adults, 

older adults and older adults experiencing MCI. Through the ML functionality of SNNs, 

the current study also aims to evaluate the efficacy of using PM as an earlier indicator 

of cognitive decline in older adults. For the most part, classification studies of MCI have 

used resting-state EEG data (review: Yang et al., 2019). However, little research has 

evaluated the ability to classify brain activity of individuals with and without MCI 
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when performing those tasks most relevant to their diagnosis, namely, memory. It has 

been proposed that evaluating cognitive aspects of memory may be more effective 

than using resting-state or structural MRI data for classification of individuals with 

MCI (Farina et al., 2020). Therefore, by comparing the neurocognitive functioning of 

individuals performing working memory and PM tasks the current study will 

determine which of these aspects of cognition is more effective in differentiating 

between the groups. It would be expected that given PM is one of the first cognitive 

complaints of those who go on to develop MCI, one would expect to find greater 

classification accuracy for PM stimuli. The current study is broken down into two 

experiments: firstly, working memory and responses to PM stimuli will be modelled 

and classification accuracy will be evaluated; secondly, using statistical methods new 

knowledge will be extracted from the SNN models. 

To this end, the current study hypothesises that: 1) there will be differences in 

visualised SNNs between young adults, older adults and older adults with MCI. 2) SNNs 

will provide better classification accuracy between the groups when modelling 

responses to PM stimuli relative to working memory stimuli and 3) SNNs will have 

superior classification accuracy compared to traditional ML methods. 4) There will be 

differences in local and global connectivity between young and older adults, and older 

adults with MCI will have decreased levels of connectivity at the local and global level. 

 

8.2 General Methods 

8.2.1 Participants 

Participants descriptions are detailed in Chapter 6, Section 6.2.1 for older adults and 

in Chapter 5, Section 5.2.2 for younger adults. 

 

8.2.2 Procedure 

Core methodology has been documented in Chapter 5, Section 5.2.3. 
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8.2.3 Electrophysiological data acquisition 

Data acquisition has been documented in Chapter 5, Section 5.2.6. 

 

8.2.4 Electrophysiological data analysis 

The core methods used for data preprocessing can be found in Chapter 5, Section 5.2.8.  

The current study will use the ERPs related to the correct responses to the ongoing 

working memory stimuli (1-backtarget), perceptual PM stimuli (PMpercept) and 

conceptual PM stimuli (PMconcept). The methods for Experiment 1 and 2 are detailed in 

Section 8.2.5 and 8.3.1, respectively.  

 

8.2.5 Experiment 1 Methods: Spiking Neural Networks 

8.2.5.1 SNN computational architecture for modelling and visualising 

working memory and prospective memory activity between groups  

The proposed SNN architecture is an evolving spatiotemporal data machine (eSTDM) 

modelled on neuromorphic, brain-inspired SNN processing concepts (Kasabov, Scott, 

et al., 2016). It is designed to map brain data into a 3D brain space of spiking ANs while 

preserving the topological information of the recorded brain activity. Principally, this 

architecture draws its inspiration from the biological rules (e.g., SW connectivity and 

LIFM), which govern memory and learning dynamics of neurons exhibited within the 

brain.  

Each AN within the SNN behaves as an information-processing unit. It learns from the 

temporal data that is propagated through it, adapting and memorising the patterns of 

activity by influencing the interconnected neurons within the network. Akin to the 

brain, SNNs incorporate time into their computation and thus are superior in biological 

plausibility compared to previous NNs that do not account for temporal dynamics. The 

architecture to be employed possesses several different modules based on the 

evolving SNN framework (Kasabov, 2014). As illustrated in Figure 8.1, the modules 

consist of: an input-encoder module (Figure 8.1d), where data is encoded into spike-

trains and the spatiotemporal variables are mapped into input neurons that transfer 
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the spike-trains to the SNN model; a 3D SNN module (Figure 8.1e), where the 

characteristics of space and time are recorded and learnt in an unsupervised mode; a 

visualisation module (Figure 8.1f), where captured spatiotemporal connectivity of the 

brain can be visualised; a SNN classification module, where the spatiotemporal 

patterns from the 3D SNN module are classified or used to predict an output (Figure 

8.1g); an optimisation module (Figure 8.1h), to fine-tune the parameters of the system; 

a pruner module (Figure 8.1i) where inactive ANs are removed and only functional 

ANs (ANs that emitted spikes during the unsupervised learning) and neural 

connections are retained for further analysis. The following steps detail the methods 

applied in this study:  

1. The temporal data are encoded into sequences of spikes using the threshold-

based representation algorithm (Petro et al., 2019).  

2. A 3D SNN model of LIFM ANs is created, where the spatial mapping of the ANs 

is defined using the Talairach brain template (Talairach & Tournoux, 1988).  

3. The EEG channels are mapped as input ANs to their corresponding location in 

the Talairach template. 

4. The mapped SNN model is initialised, where ANs are connected using the SW 

connectivity proposed in Braitenberg and Schüz, (2013), and Bullmore and 

Sporns (2009), which is inspired by the neural connectivity in the brain. 

5. The initialised SNN model is trained with the encoded spike sequences from 

ERP data, entering via the input ANs. The learning rule is the unsupervised STDP 

(S. Song et al., 2000) that changes the weight of the connection between every 

pair of connected ANs. During this process, the SNN model learns from the 

temporal information and forms pathways that can be interpreted, which the 

SNN will use to classify new information. 

6. The spike sequences of the EEG data are again propagated through the SNN for 

supervised learning related to the classification tasks. Output ANs are created for 

each sample (i.e., one output AN for each participant). Each output AN is 

connected to all ANs of the 3D SNN model.  

7. The deSNN algorithm is applied for supervised learning (Kasabov et al., 2013) 

and adapts the connections between the 3D SNN model and the output ANs. 
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8. For the classification of a new temporal data, steps 6 and 7 are repeated. Then, 

the data are classified by applying the K-nearest neighbours algorithm using the 

K nearest (similar) output ANs created during step 6 to the new output neuron. 

 

Figure 8.1. Proposed Spiking Neural Network Architecture for prospective memory ERP analysis. ERP 

data collection across the three participants groups: (a) younger, healthy older and older adults with 

mild cognitive impairment. (b) recording of the data during the experimental working and 

prospective memory tasks. (c) ERP data is extracted and cleaned. (d) cleaned ERP data is transformed 

into spike-trains. (e) spike-trains for each EEG channel are propagated into a 3D space of artificial 

neurons. (f) trained SNN can visualised. (g) output neurons are created and represent the final 

classification of the data. (h) a grid search method is used to find optimal parameter settings for 

classifying between the participant groups (i) pruner module removes all connections which did not 

change for each group to create sparse models for each participant group and are visualised.   

 

8.2.5.2 Input ERP data encoding in the SNN model 

The pre-processed and baseline corrected ERP data were firstly ordered into a 

temporal sequence of real-value vectors. These vectors were then encoded into a 

series of discrete spike-trains using a threshold-based representation method (TBR), 

demonstrated to be able to construct large scale networks with arbitrary, configurable 

synaptic connectivity (Indiveri et al., 2015). This algorithm is employed to identify 

relevant changes in the ERP signal thus reducing noise. If the value of change in the 

signal surpasses a predefined threshold value, then a spike is encoded. Upward and 
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downward changes in the ERP data are interpreted as positive or negative (1 or -1) 

spikes. Bi-directional algorithms like this are well suited to EEG data due to their 

sensitivity to significant changes within gradient signal changes. 

 

8.2.5.3 SNN initialisation, mapping, learning, classification and 

visualisation 

Following the encoding of the ERP signal to spike-trains, a 3D SNN structure was 

created that can map the functional and structural characteristics of the data from 

which it is recorded. To this end, Talairach coordinates (Talairach, 1988) were used to 

map the 128 EEG channels to the 3D SNN model (visualised as the green ANs in Figure 

8.1(e)). These coordinates define the position of the spiking ANs in a brain-like SNN 

model and the position of the EEG electrodes (Giacometti et al., 2014) as the input ANs. 

Each neuron in the network then represents one cm3 of the human brain and the entire 

network consists of 1471 neurons (Koessler et al., 2009).  

A LIF architecture was used to model the ANs (Knight, 1972). The SNN was initialised 

according to a biologically plausible model of SW connectivity (Liao et al., 2017), 

where neurons that are topographically closer possess stronger interconnectedness 

and therefore capture patterns of interest from the model. Following completion of 

the unsupervised learning, a deSNN algorithm (Kasabov et al., 2013) was used to train 

an output classifier in a supervised learning method. A RO learning rule (Thorpe & 

Gautrais, 1998) was applied to initialise the connection weights and then the STDP 

rule (S. Song et al., 2000) was used to adjust these weights according to the spikes that 

follow the initial spikes to the postsynaptic AN. The STDP accounts for the timing of 

pre and postsynaptic action potentials causing automatic adjustments to be made to 

the synaptic strengths and sensitivity of the postsynaptic ANs and consequently 

captures the spatiotemporal dynamics of the input data. Two other important 

variables for the classifier module are mod and drift. Each training sample provided to 

the model is associated with an output AN, which is connected to all the other ANs in 

the 3D SNN and the connection weights are initially set to zero. The weights of these 

output ANs change as a function of the RO learning rule, which itself is calculated by 

the order of incoming spikes (mod) from different connections. The earlier a spike 

arrives in the output AN from 3D SNN, the greater its importance in increasing the 
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corresponding connection weights. In terms of ERP data, it is useful to think of this as 

where the greatest amount of emphasis is placed within the ERP (i.e., toward to start 

or the end of the ERP). These newly formed connection weights will then increase or 

decrease according to the following number of spikes (drift) when the next spikes 

arrive at the AN over time.  

 

8.2.5.4 Experimental framework 

To extract the learnt patterns of activity of the SNN models, computational 

experiments are performed for each of the memory tasks and their class (i.e., 

participant group). Each class contains n samples which are used to train the SNN 

model and is validated through a 10-fold cross-validation to assess the accuracy of the 

model. This procedure randomly shuffles the data before splitting into 10 groups. One 

of these groups is held-out while the remaining nine groups are used to train the data. 

The fitted model of the training data is then tested on the held-out group and the 

accuracy of the model is retrained. The model is then discarded and the training and 

testing procedure is performed on all other groups. The final accuracy of the model is 

then averaged to give an overall accuracy score. Once the best model was found then 

it is possible to extract the individual contributions of each of the network classes over 

different periods of time. After training, those ANs that did not emit a spike were 

identified and removed (pruned) along with their connections.  

 

8.2.6 Experiment 1 Results 

8.2.6.1 ERP data modelling using the SNN Architecture 

To explore the differences in cognition between YA, OA and MCI, an SNN architecture 

used for modelling, learning, classification and visualisation of EEG data related to 

different memory tasks (1-backtarget, PMpercept and PMconcept). A SW connectivity radius 

of 2.5 units (distance between two consecutive neurons) was used for the SNN model, 

which has previously demonstrated its effectiveness for ERP modelling using SNN 

(Doborjeh, et al., 2018). The SW connectivity rule allows the network the potential to 

form neuronal connections two ANs away in each of the x, y, z directions of the 

coordinate space. Small random weights are applied to each neuron (-0.1, +0.1).  
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In previous studies modelling EEG data with SNNs, an 80/20 positive–negative initial 

connection weight ratio has been applied (Capecci et al. 2016; Doborjeh et al., 2018). 

This ratio of inhibitory neurons is reflective of the 20–30% of inhibitory, GABAergic 

neurons found in the mammalian brain and is demonstrated as an optimal percentage 

for maximising the learning of a NN (Capano et al., 2015; Sultan & Shi, 2018). However, 

initial results demonstrated that this ratio was not optimal for modelling the current 

data. Figure 8.1 illustrates the trained network for the 80/20 positive–negative ratio 

(a) and the 50/50 positive–negative ratio (b). The results show a greater amount of 

model learning for the 50/50 ratio as evidenced by the greater amount of connection 

changes from the initial connections. Therefore, a model containing 50% inhibitory 

connections demonstrated a better level of discrimination between the classes and 

was subsequently used for modelling the ERP data. 

 

Figure 8.2. The number of connections and the connection weights in the SNN models for the 80/20 

positive to negative neuron ratio model (a) and the 50/50 positive to negative neuron ratio model 

(b).  

 

Similar to a biological neuron, when the simulated LIF AN receives spikes over time, 

its membrane potential increases until it reaches a pre-defined threshold. When the 

AN fires and emits an output spike, it cannot produce a new spike within a refractory 

period and its membrane potential is said to leak. The membrane potential can have 

certain leakage between spikes, which is defined by a leak parameter. The training of 

the SNN model requires EEG signals to be transformed into a spike-train of binary 

positive and negative spikes (-1 or 1; Figure 8.3). These spikes reflect the changes in 

amplitude of the EEG signal and are created based on an encoding algorithm. A bi-

directional TBR (Petro, Kasabov & Kiss, 2019), was applied to all the EEG channel 

signal’s gradient relative to the time series. The neural connections in the initialised 
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SNN model were later modified during an unsupervised learning process with the 

input spikes streaming to the SNN model via the input ANs.   

Figure 8.3. Example of how an event-related potential encoded into a spike-train. (a) Event-related 

potential taken from one participant (electrode Cz) in response to a conceptual prospective memory 

stimulus. (b) Event-related potential encoded into a binary spike-train using the TBR algorithm.   

 

The model was then trained using these spikes-trains in an unsupervised mode 

employing a STDP learning rule (S. Song et al., 2000). The application of this algorithm 

allows spiking ANs to learn successive temporal relationships between data points 

from the data across and within EEG channels. These connections in the model 

architecture can be analysed and used to draw new understanding of the data. Figure 

8.4 shows the final SNN following the creation of neuronal connections created during 

STDP learning, which reflect the dynamic patterns of connectivity.  

When the supervised learning process is completed, the connection weights between 

the output ANs and the 3D SNN model are established. Then in the validation phase, 

the new ERP samples which were excluded from the learning phases are used to test 

the model. For every new testing ERP sample, an output testing AN is evolved and 

connected to the already trained SNN model and its connections are modified while 

the ERP sample is passed to the SNN model. Then for classification of this testing AN a 

K-nearest neighbour (KNN) algorithm was used, where the newly formed testing AN 

connection vector is compared with the existing output ANs’ connections and the top 
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k similar output ANs (referring to the top similar ERP samples) identify the class label 

of this testing AN (ERP sample). This procedure is repeated for all the testing samples, 

one by one, through creating different output testing samples and classifying them. 

A grid search method was used in the current study for fine-tuning a combination of 

parameters and reducing the classification error. Each parameter was searched within 

a range, specified by a minimum and maximum, through 5 iterations. A 10–fold cross-

validation was used to validate the results. Therefore, for every model creation, 78,125 

iterations of training (using 9 folds of samples except the holdout fold) and testing 

(using the holdout fold) were performed with different combinations of these 

parameters. The parameters that resulted in the best accuracy have been reported as 

the optimal parameters:  

• The threshold for firing was set to 0.5, the refractory times was set to 5 

and the LIF neuron model was set to 0.005.  

• The STDP rate of the unsupervised learning algorithm was set to 0.002 

for positive synaptic modifications and 0.003 for negative connections. 

• The mod parameter was set to 0.4 and the positive and negative drift 

was set to 0.002, 0.004, respectively.  

• The KNN was set to 13 nearest neighbours.  
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Table 8.1 

Classification Results of the ERP Samples Across the Three Class Groups. 

SNN-based methodology (1-backtarget) 

ERP data classes YA OA MCI Accuracy    

 (%) 

Total 

Accuracy 

(%) 

YA 8 0 0 100  

73.94 OA    2    9   0 81.82 

MCI    0    3   2 40 

Traditional Machine Learning Methods 

Methods 

Accuracy (%) 

MLP 

49.94 

SVM 

50.29 

MLR 

46.98 

 

SNN-based methodology (PMpercept) 

ERP data classes YA OA MCI Accuracy 

(%) 

Total 

accuracy 

(%) 

YA    8    0   0 100  

83.33 OA    0    9   1 90 

MCI    0    2   3 60 

Traditional Machine Learning Methods 

Methods 

Accuracy (%) 

MLP 

62.07 

SVM 

47.28 

 

MLR 

50.29 

SNN-based methodology (PMconcept) 

ERP data classes YA OA MCI Accuracy 

(%) 

Total 

accuracy 

(%) 

YA 8 0 0 100  

80 OA 1 8 1 80 

MCI 0 2 3 60 

Traditional Machine Learning Methods 

Methods 

Accuracy (%) 

MLP 

50.8 

 

SVM 

44.52 

MLR 

51.08 
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Younger adults (YA), healthy older adults (OA) and older adults with MCI (MCI) for each of the stimulus 

types: working memory (1-backtarget), perceptual prospective memory (PMpercept) and conceptual 

prospective memory (PMconcept). The classification method was a 10–fold cross validation. The number 

of correctly classified samples in each class are located in the diagonal of the confusion table and 

highlighted in bold. The classification accuracy of the SNN-based models was compared against 

traditional methods: support vector machine (SVM), multilayer perceptron (MLP) and multilinear 

regression (MLR). 

 

The optimisation procedure finds the best performing model for each of the SNN 

models. Table 8.1 presents the final test-fold of the best performing model (i.e., the 

held-out fold). Each of the SNN models was compared against other machine learning 

methods. At each memory stimulus type, the SNN model outperformed the other 

methods. Additionally, the results show that the PMpercept and PMconcept SNN models 

were better at classifying brain activity of the groups (83.33% and 80%, respectively) 

compared to the 1-backtarget models (73.94%). It is also seen that with the use of ERP 

data, YA are well discriminated from the other two groups, while the ERPs of OA and 

MCI overlap to a certain degree.  

From the trained 3D SNN networks we can begin to see the patterns of connectivity 

emerge. All three of the models appear to share similar characteristics, where 

inhibitory connections (shown in red in Figure 8.4) are strongest over mid 

frontocentral and parietooccipital regions. However, over these areas the SNN trained 

using PMpercept stimuli, appears to be generating a greater amount of these inhibitory 

connections. 
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Figure 8.4. The learnt patterns of activity from the initialised SNN models. The top SNN models show 

the initialisation of random connections. The bottom SNN models show the learnt patterns of 

spatiotemporal activity for each of the different stimuli.  

 

To understand within-group differences, the training samples were separated by 

propagating only the information for that class (i.e., YA, OA or MCI) through newly 

created networks that kept the same initialised network and parameter settings 

attained during the supervised learning stage. By using the same initialised 

connections and only allowing the EEG data from one group to make changes to the 

network, different patterns of connectivity for each group can be learnt. Thus, three 

separated SNN models were trained with each of the classes. The initialised SNN 

models were modified during the STDP learning that adapted the spatiotemporal 

connections. After the training, those neural connections that had not changed for each 

model were considered inactive and were pruned from the network.  

The removal of inactive ANs enables the creation of a fine-tuned, sparser networks 

(LeCun et al., 1990) showing only the most important connections for the pre-trained 

class, enabling better visualisation of the differences between the groups. This step 

was performed across three different time periods to reveal the neural connections 

across time. The first time period was selected as 200–400ms to capture the early 

Initialisation 

Training 

Trained 3D model 

1-back
target

 PM
percept

 PM
concept
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cognitive processes associated with cue detection and monitoring (West & Wymbs, 

2004). The second time epoch was 400–800ms, which encapsulates the later 

processing of stimuli and is related to deeper contextual and memory processes (West, 

2011). Finally, the full epoch was propagated through the network for each class to 

understand the learnt connections across the entire data range. The pruned networks 

can be visualised for each stimulus type in Figure 8.5 for the 1-backtarget, Figure 8.6 for 

PMpercept and Figure 8.7 for PMconcept. 
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Figure 8.5. 1-backtarget SNN following pruning at 200–400ms, 400–800ms and 0–1000ms for each of the three classes: younger adults (YA), healthy older adults (OA) and older 

adults with MCI (MCI). Positive connections are displayed in blue, and inhibitory connections are displayed in red. The amount of positive-negative connections is shown under 

each pruned model. 

4404 | 3711 

4309 | 3691 

4038 | 3667 

YA 

OA 

MCI 

Trained SNN 4754 | 16188 

5106 | 16519 

4935 | 16308 

5203 | 16114 

5394 | 16241 

5247 | 16218 

200 – 400ms 400 – 800ms 0 – 1000ms 
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Figure 8.6. PMpercept SNN following pruning at 200–400ms, 400–800ms and 0–1000ms for each of the three classes: younger adults (YA), healthy older adults (OA) and older 

adults with MCI (MCI). Positive connections are displayed in blue, and inhibitory connections are displayed in red. The amount of positive-negative connections is shown under 

each pruned model. 

4560 | 16586 

4335 | 16262 

4097 | 15807 

YA 

OA 

MCI 

Trained SNN 6224 | 14564 

6913 | 14948 

6463 | 14719 

4942 | 15989 

5353 | 16331 

5301 | 16306 

200 – 400ms 400 – 800ms 0 – 1000ms 
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Figure 8.7. PMconcept SNN following pruning at 200–400ms, 400–800ms and 0–1000ms for each of the three classes: younger adults (YA), healthy older adults (OA) and older 

adults with MCI (MCI). Positive connections are displayed in blue, and inhibitory connections are displayed in red. The amount of positive-negative connections is shown under 

each pruned model. 

4521 | 16129 

4825 | 16423 

3993 | 15085 

YA 

OA 

MCI 

Trained SNN 5941 | 14209 

6992 | 14891 

6719 | 14738 

4463 | 15442 

5611 | 16456 

5012 | 15999 

200 – 400ms 400 – 800ms 0 – 1000ms 
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From Figure 8.5, it is apparent there are similar patterns of activity occurring for each 

of the defined time periods across the groups. However, it is difficult to see how the 

network is differentiating between the classes at both the 200–400ms and 400–800ms 

time range. Differences appear to be more prominent when the whole 0–1000ms 

epoch is pruned for each of the classes. This may suggest that information outside of 

the 200–800ms epoch is important in understanding ageing and cognitive decline. In 

particular, differences between OA and MCI appears to be substantial in the 0–1000ms 

PMconcept model. There are fewer positive and negative connections for the MCI group. 

Interestingly, the pruning method appears to have removed many ANs in the left 

frontotemporal region for the 0–1000ms model in the MCI group in each of the models, 

implying relatively little spatiotemporal activity for the 1-backtarget during the ongoing 

working memory task. 

Additionally, for PM stimuli across the wider epoch (0–1000ms), MCI demonstrated 

fewer positive and inhibitory connections relative to OA and YA. In the PMpercept 

stimuli, these inhibitory connections are spread more globally across the 3D SNN for 

healthy groups (YA, OA), but within the MCI group the inhibitory connections are 

restricted to occipitoparietal, frontocentral and frontal regions. It appears inhibitory 

connections are spread in a similar manner across the network, albeit fewer overall 

inhibitory connections for the MCI group. However, there appeared to be more 

positive connections for the healthy groups relative to MCI.  

While the above figures provide a visual representation of the learnt patterns of 

activity, statistical analyses will need to be performed to understand the connection 

weights changes for each group. Through the application of network analyses, graphs 

of interactions can be derived to uncover the dynamics of information exchange within 

brain areas in difference subject groups.  

To validate the visualised changes from the pruned SNN models, histograms were 

plotted showing the pruned SNN connections weights (Figure 8.8). Compared to the 

initialised weights of each SNN, each model placed more emphasis on negative 

connection weights through training. Moreover, it is apparent that the weights now 

follow a somewhat Laplacian distribution, characterised by the heavy tails as 

demonstrated in the QQ-plots (Figure 8.8b) and the high Kurtosis values (Table 8.2), 

with the addition of the failure to reject the distribution being from a normal 

distribution (Table 8.2). This distribution type has been shown to respond well to 
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variable selection features, such as different applied methods of the adaLASSO (Wahid 

et al., 2017).  

 

Table 8.2 

Skewness and Kurtosis and Normality Test P-Value from a Kolmogorov-Smirnov Test of the SNNs 
Following Pruning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-backtarget normality test 

Group Skewness Kurtosis p-value 

YA -0.70 4.80 < 0.001 

OA -0.70 4.79 < 0.001 

MCI -0.67 4.71 < 0.001 

PMpercept normality test 

Group Skewness Kurtosis p-value 

YA -0.81 4.50 < 0.001 

OA -0.78 4.44 < 0.001 

MCI -0.75 4.35 < 0.001 

PMconcept normality test 

Group Skewness Kurtosis p-value 

YA -0.80 5.03 < 0.001 

OA -0.84 5.10 < 0.001 

MCI -0.78 4.93 < 0.001 
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Figure 8.8. Validation of changes in SNN models. (a) Connection weights of each of the SNN models 

following pruning. Left to right: 1-backtarget, PMpercept, PMconcept. (b) QQ-plots of distributions.  

 

8.2.7 Experiment 1: Discussion 

Experiment 1 aimed to improve the modelling and understanding of the 

neurocognitive dynamics that underpin PM across young adults, older adults and older 

adults experiencing MCI using a brain-inspired computational framework. Through 

the classification functionality of the SNN architecture, the current experiment sought 

to determine whether PM stimuli would enable better classification accuracy of brain 

activity between the groups compared to working memory stimuli.  Two conclusions 

can be drawn from the results: firstly, greater accuracy was achieved by using a SNN 

methodology relative to the traditional ML methods (SVM, MLP, MLR); secondly, 

greater SNN classification accuracy was achieved with brain responses to PM stimuli 

compared to the ongoing working memory task at classifying brain activity between 

the groups. The greater accuracy for the SNN method compared to the traditional 

machine learning methods may be because of the following advantages: 1) it preserves 

the spatial and temporal information together in one model and can be interpreted in 

terms of neurophysiology as this model is spatially structured according to a brain 

template; 2) it learns spatiotemporal patterns from data through biologically plausible 

learning rules. The ability to retain the spatiotemporal patterns learnt from the ERP 

data, therefore, is advantageous as it can better model activity across cortex in a 

biologically plausible way. Whereas, in other ML methodologies, one of the spatial or 
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temporal dimensions must be collapsed, thus reducing the amount of preserved 

information the classification is performed with.  

Regarding the differences in SNNs classification accuracy between the different types 

of memory, accuracy was superior for PM compared to working memory. SNNs are 

possibly better able to differentiate between groups due to PM requiring recruitment 

of multiple cognitive domains such as executive function, attention and working 

memory (Kliegel et al., 2002) and is, therefore, more cognitively involved than just 

working memory and will involve more cognitive processes. However, under this 

assumption it would be expected that the conceptual PM task would produce greater 

classification accuracy due to the increased cognitive processes needed to complete 

the task, yet this was not found. Future studies might be able to answer this by 

investigating PM versus other more cognitively demanding tasks to test whether it is 

PM specifically or simply cognitive demand that increases SNN classification accuracy.  

It is reliably demonstrated that coping with additional cognitive demand is 

problematic for older adults with MCI (Missonnier et al., 2007; Vijayakumari et al., 

2019; Yeung et al., 2016). The neural deficits experienced under increased cognitive 

load is more likely to be detected by the SNN allowing for more accurate classifications 

to be made. Thus, the current study proposes that earlier detection of dementia-

related diseases may be achieved through the application of ML methods in cognitively 

demanding memory tasks as opposed to simple cognitive tasks, although this would 

need to be confirmed, for example, within a longitudinal design. The results here 

suggest that PM tasks may be suitable for discerning neurocognitive differences in 

those with MCI, particularly as PM is one of the first reported cognitive complaints of 

older adults who go on to develop MCI and dementia (Bischkopf et al., 2002).  

The proposed SNN architecture of the current study offers a new method for extracting 

meaningful knowledge from ERPs in response to memory tasks. The current study 

demonstrates that once the optimal parameters are found for classification, the 

information can be used to further understand the spatiotemporal differences 

between groups from high-density EEG recordings. The learnt parameters of the SNN 

model can be used to create new models of each group by propagating the ERP data 

(as spike-trains) from a group. For example, when modelling the neurophysiological 

responses to the working memory stimuli in the MCI group, a 3D SNN model is created 

with the same initialised connection weights used during classification; the optimal 
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parameters are used to train the model using only the ERP data from the MCI group in 

response to working memory stimuli generating a network modelling the learnt 

neural activity of the participants with MCI.  

The current study further demonstrates that interpretability of these models can be 

enhanced through “pruning” the network. Pruning involves the removal of all network 

connections that did not change when the information for an individual group was 

propagated to form the group model. The removal of these connections produced 

sparse SNN models which demonstrate only interactions that reflect patterns of learnt 

activity in that model. Therefore, these sparse networks offer a novel method to 

interpret models of task-based neurophysiological activity. Additionally, the method 

proposed here also offers the ability to pass through data from specific times or 

different cortical regions. ERP data from each group was modelled over different time 

periods to gain a deeper understanding of the patterns of connectivity through spatial 

and temporal dimensions related to the cognitive mechanisms modelled. Finally, 

pruning the non-important connections for each model enabled the connection 

weights to follow distributions that allow for statistical analyses to performed on the 

models.  

 

8.3 Experiment 2: Knowledge extraction from SNN models   

The current experiment aims to further extract knowledge from the SNN models from 

Experiment 1. Knowledge extraction was performed in two ways:  

1) ANOVA was applied to test for differences in local connection weights in each of 

the SNN models as a function of group and topography (scalp region). 

2) Network analysis was applied to uncover the global neurocognitive interactions 

between the different topographical areas for each of the SNN models.  

 

8.3.1 Experiment 2: Method  

The weights of the input ANs (i.e., EEG electrodes) were averaged according to the 

outlined topographical clusters depicted in Figure 8.9 (appendix B), which were 

informed through previous PM ERP research (Cruz et al., 2016; Scolaro et al., 2014; 
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West, 2011; Zöllig et al., 2012). Averaging the connection weights of the input neurons 

offers a way of understanding differences in local connection weight changes between 

the groups within a specific area. Average clusters were created as a means of 

controlling the number of comparisons (Rousselet et al., 2010; Baker, Castro, Dunn & 

Mitra, 2018). Analyses were performed in JASP 0.10.2. A series of mixed measures 

ANOVAs were performed for each of the created SNN models. Therefore, each stimulus 

type at each time point (i.e., 200–400, 400–800 & 0–1000) was analysed separately 

using a 4 (Cluster: frontal, central, parietal, occipital) x 3 (Group: YA, OA, MCI) ANOVA 

to analyse group differences at midline clusters. For lateral clusters, a 7 (Cluster: 

frontal, frontocentral, central, frontotemporal, parietal, inferior parietal, occipital) x 2 

(Hemisphere: left, right) x 3 (Group: YA, OA, MCI) ANOVA was used to analyse group 

differences in the networks. Post-hoc tests were used to further explore group 

differences and Bonferroni corrections were applied to account for multiple 

comparisons. Partial eta squared was reported for each Group effect as an indicator of 

effect size (Bakeman, 2006).  

 

 

Figure 8.9. Topographical clusters used for ANOVAs and network analyses. Purple = frontal; green = 

frontocentral; yellow = central; red = frontotemporal; blue = parietal; pink = occipital; grey = inferior 

parietal. 

 



227 

 
The averaged connection weights were then used for the network analysis to 

understand global connectivity between areas across the cortex at each time frame 

(i.e., 200–400ms, 400–800ms, 0–1000ms). The network used describes a graphical 

representation (as seen in Figure 8.10) of the correlations between each of the 

clustered weights. In these networks, clusters are represented as nodes and the 

correlations as edges connecting nodes together. This is the same terminology used in 

graph theory, where the edges represent connections between two nodes. The line 

thickness and transparency of the network graph represents the strength of the 

correlation, where thicker edges represent stronger correlations. The generated 

network displays are fixed in line with the cluster layout of the scalp map in Figure 8.9 

for ease of comparison between groups. 

A network model that analyses all possible correlations within the network requires 

the estimation of many parameters, including n threshold parameters for the nodes 

and n*(n-1)/2 for pairwise correlations between nodes. Estimations in the current 

study are equal to 153 parameters. One available solution to this problem is to apply 

the ‘least absolute shrinkage and selection operator’ (LASSO) technique (Tibshirani, 

1996). This method enables some edges to shrink to zero and be omitted from the 

model. This is achieved by LASSO through the continuous shrinking of coefficients 

towards 0 as λ increases. A benefit of applying LASSO is the ability to handle more 

variables than observations (Meinshausen & Yu, 2009; Zhao & Yu, 2006). However, 

given the high expected correlations between topographically close variables, i.e., 

averaged cortical clusters, the irrepresentable condition assumption would be 

violated (Zhao & Yu, 2006). This assumption requires that variables relevant to the 

model may not be highly correlated with irrelevant variables. An alternative method 

proposed by (Zou, 2006), known as ‘adaptive least absolute shrinkage and selection 

operator’ (adaLASSO), can be employed to adjust for this violation. While variables are 

all equally penalised with the LASSO method, variables are assigned different weights 

in adaLASSO and can subvert the irrepresentable condition assumption. 

The adaLASSO produces a sparse, more conservative network model with only a small 

number of edges enabling a more interpretable model of the relationship between 

node weights for each participant group. Prior to analysis, a tuning parameter is 

required to control the level to which the omission of small correlations is applied. 

This tuning parameter was selected through bootstrapping and was validated using 
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cross-validation. The importance of each node in the network was then evaluated 

through betweenness and degree indices. Betweenness provides a measure of the 

number of shortest paths passing through a specific node. A node with higher 

betweenness is said to have more network control as more information is passing 

through that node (Barthelemy, 2004). Degree is the total amount of connections each 

node has, therefore indicating the strength of links to other areas (reported as ‘node 

strength’). A node with a higher degree can be thought of as having a greater influence 

on connecting nodes (Borgatti, 2005).  

Graphical models of brain data have proven their efficacy in a variety of imaging 

modalities, such as fMRI (Rosa et al., 2015), EEG (Kemmer et al., 2015; Micheloyannis 

et al., 2006), magnetoencephalography (MEG; Stam, 2004), DTI (Gong et al., 2009). Of 

these, sparse graphical models are distinctly efficient at determining connectivity 

between in highly interconnected brain data and at offering a robust and interpretable 

model of the most significant interactions between cortical areas (Dauwels et al., 

2012). 

 

8.3.2 Experiment 2: Results 

Due to the non-normal distribution of the SNN weights, data connection weights were 

firstly transformed using a natural logarithm. The adaLASSO regularisation was 

performed to discover the most important connections for each pruned epoch for the 

early (200–400ms) and later (400–800ms) pruned SNN epochs, along with the 

complete (0–1000ms) epoch. A 10-fold cross-validation was performed for each of the 

variables. To increase the robustness of the results, each process was repeated 1000 

times. Network plots were mapped to a scalp array dependent on their topographical 

features. For example, Figure 8.10 graphically illustrates the most important edges 

within the working memory (1-backtarget) network as a result of non-essential 

connections being forced to zero. The thickness and colour intensity of the lines is 

proportional to the connection strength given as edge weight (EW). Positive 

connections are displayed in blue and negative connections are displayed in red. From 

these networks, the differences and similarities between groups are revealed. 
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8.3.2.1 Ongoing working memory (1-backtarget)  

A summary of all significant local connectivity Group effects and interactions for the 1-

backtarget stimuli are presented in Table 8.3. No Group differences were found at 

midline clusters or in the 0–1000ms SNN model. Graphical networks are presented in 

Figure 8.10. 

 

8.3.2.1.1 Ongoing: 200–400ms ANOVA connection weights 

At bilateral clusters, there was a significant Cluster x Group interaction (F10.27,446.07 = 

2.06, p = 0.025, ηp2 = 0.05) due to greater connection weights for YA relative to OA 

(frontal, p = 0.019; frontocentral, p = 0.009; central, p < 0.001; frontotemporal, p = 

0.005; inferior parietal, p = 0.029) and YA relative to MCI (parietal, p = 0.011). OA had 

greater connection weights at bilateral central clusters relative to MCI (p = 0.008). The 

interaction was also explained by an effect of Cluster for all participants, where 

bilateral central clusters had larger connection weights than all other clusters (ps < 

0.001). In YA, bilateral inferior parietal cluster connection weights were larger than in 

parietal clusters (p < 0.001).  

 

8.3.2.1.2 Ongoing: 400–800ms ANOVA connection weights 

At lateral clusters there was a significant effect of Group (F2,87 = 12.67, p < 0.001, ηp2 = 

0.24), where YA had significantly greater connection weights across all bilateral 

clusters than OA (p < 0.001) and MCI (p < 0.001). No differences were found between 

the OA and MCI groups (p > 0.05). There were no other significant Group effects for 1-

backtarget stimuli.  
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Table 8.3  

Summary of Significant Effects 1-backtarget SNN Model 

200–400ms 
lateral SNN 
weights  

Lower F-Value DF p-value ηp2 

 

Post-Hoc Tests 

Group  9.57 2,87 < 0.001 0.19  

Cluster*Group  2.06 10.27,446.07 0.025 0.05  

 F 5.71 2,87 0.005 0.12 YA > OA = MCI 

 FC 4.79 2,87 0.011 0.11 YA > OA 

 C 9.81 2,87 < 0.001 0.20 YA > OA > MCI 

 FT 5.69 2,87 0.005 0.12 YA > OA = MCI 

 P 3.48 2,87 0.035 0.08 YA > MCI 

 IP 4.47 2,87 0.014 0.10 YA > OA = MCI  

 YA 15.93 6,162 < 0.001 0.37 C > FC = F = FT = IP > P = OC 

 OA 18.58 5.36,198.39 < 0.001 0.33 C > FC = F = FT = IP = OC > P 

 MCI 8.31 6,75 < 0.001 0.33 C > FC = F = FT = IP = OC > P 

400–800ms 
lateral SNN 
weights 

      

Group  12.67 2,87 < 0.001 0.24 YA > OA = MCI 

YA = young adults. OA = healthy older adults. MCI = older adults with mild cognitive impairment. 

Clusters: F = frontal; FC = frontocentral; C = central; FT = frontotemporal; P = parietal; IP = inferior 

parietal. N.B. ‘>’ represents greater connections weights in this table.  
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Figure 8.10.  Working memory features extracted from the trained SNN using adaLASSO network 

analysis across the 200–400ms, 400–800ms and across the entire 0–1000ms trained epoch. YA = 

young adults; OA = healthy older adults; MCI = older adults with mild cognitive impairment.  

 

8.3.2.1.3 Ongoing task: network analysis 200–400ms  

For the 200–400ms network analysis of SNN models of the working memory ongoing 

task, the number of edges reduced to zero were approximately 95%, 97% and 98% for 

YA, OA, and MCI, respectively. The centrality indices reveal a common area of 

importance across all participants groups over the right parietal cluster (YA node 

strength = 1.49; OA node strength = 1.73; MCI node strength = 1.18). The cluster 

interactions that are formed with the right parietal are: the right inferior parietal (EW 

= 0.64) for the YA; the left inferior parietal in the OA (EW = 0.53) and the right 

frontocentral in the MCI group (EW = 0.61). For both the YA and OA networks, there 

are connections from the frontal clusters to the frontocentral clusters (YA EW = 0.70; 

OA EW = 0.32), albeit on the opposite hemispheres. The hemispheric symmetry 

between OA and YA is also found over frontocentral clusters, whereby the mid central 

cluster shares connections with left frontocentral clusters in the YA (EW = 0.51), but 
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is instead shared with the right frontocentral cluster for OA (EW = 0.17). The same 

patterns of activity are not found within the MCI group. 

 

8.3.2.1.4 Network analysis 400–800ms   

Edges were reduced by approximately 92% for young adults, 98% for OA and MCI 

networks over the 400–800ms epoch. In the OA and MCI networks at 400–800ms, 

importance is placed occipitally such that most connections are retained within the 

occipital clusters relative to the rest of the cortex. In the OA group, the mid occipital 

cluster was connected to right occipital (EW = 0.46), which in turn was connected to 

the right central (EW = 0.46) and the left occipital cluster (EW = 0.26). In the MCI group, 

the mid occipital cluster had a positive connection with the left occipital cluster (EW = 

0.63) and a negative connection with the right frontocentral cluster (EW = -0.43). 

Furthermore, both the OA and MCI groups retain network relevance for the left 

occipital cluster (OA node strength = 0.46; MCI node strength = 2.64), but the right 

occipital cluster is also important in the OA group (node strength = 3.45). A different 

connection pattern is found for the YA group, where connectivity is localised over the 

right frontotemporal clusters with connections to: right inferior parietal; right parietal; 

right temporal; right central (average EW = 0.32) with the right inferior parietal cluster 

demonstrating the greatest network control (betweenness = 2.62). 

 

8.3.2.1.5 Network Analysis 0–1000ms 

For the entire epoch edges were reduced to approximately 95% for YA, 98% for OA 

and MCI groups. Across all groups the mid central cluster demonstrates the largest 

node strength (YA = 0.89; OA = 2.03; MCI = 2.40) along with connections being 

retained between mid central – mid parietal clusters (YA EW = 0.55; OA EW = 0.73; 

MCI EW = 0.78). Additionally, the network analysis shows significant node strength 

for the left frontocentral cluster for all groups; the YA demonstrate the lowest left 

frontocentral node strength (0.04) compared to the older adult groups who exhibit 

comparable strength indices (OA = 1.25; MCI = 1.03). However, connectivity 

differences are apparent between the older adult groups. From the left frontocentral 

cluster OA had positive connections with the mid parietal (EW = 0.17) and mid frontal 
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(EW = 0.15) clusters. The MCI group demonstrated a negative connection from the left 

frontocentral cluster with the right inferior parietal cluster (EW = -0.42).  Moreover, 

positive connections were found in anterior scalp regions in the YA. In the YA group, 

the right frontocentral cluster had the largest node strength (2.15). The right 

frontocentral was connected to the left frontotemporal cluster (EW = 0.47) and the left 

frontal cluster (EW = 0.62), which in turn shared connection with the left frontocentral 

cluster (EW = 0.31).  

 

8.3.2.2 Perceptual prospective memory statistical analysis  

A summary of all statistically significant Group effects from the ANOVAs are presented 

in Table 8.4. No significant Group differences were found over midline clusters. 

Graphical networks are presented Figure 8.11.  

 

8.3.2.2.1 Perceptual PM 200–400ms ANOVA connection weights 

At lateral clusters there was a significant interaction effect of Cluster x Group (F12,510 = 

1.87, p = 0.036, ηp2 = 0.05). This interaction effect can be explained by a significant 

effect of Group at frontal clusters (F2,87 = 5.30, p = 0.007, ηp2 = 0.12; OA > MCI, p = 0.030; 

OA > YA, p = 0.018). Additionally, the interaction can be explained by an effect of Cluster 

for YA (F6,168 = 10.74, p < 0.001, ηp2 = 0.29; inferior parietal < all other clusters, ps < 

0.05), OA (F6,198 = 16.40, p < 0.001, ηp2 = 0.33; inferior parietal < all other clusters, ps < 

0.001; frontal > all other clusters, ps < 0.001 but not including central, p > 0.05) and 

MCI (F6,132 = 6.76, p < 0.001, ηp2 = 0.26; inferior parietal < central, frontal, occipital, 

parietal, ps < 0.05; central > frontocentral, p = 0.020; frontocentral > parietal, p = 

0.028).  

 

8.3.2.2.2 Perceptual PM 400–800ms ANOVA connection weights 

At lateral clusters there was a significant Cluster x Hemisphere x Group interaction 

(F12,510 = 1.90, p = 0.046, ηp2 = 0.05). This in part can be explained by a Cluster x Group 

interaction in the right hemisphere (F12,510 = 1.90, p = 0.043, ηp2 = 0.05; central: YA > 

OA, p = 0.031; YA > MCI, p = 0.032). Additionally, it can be explained by a Hemisphere x 
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Group interaction at frontal clusters (F2,87 = 5.54, p = 0.006, ηp2 = 0.12; all groups: right 

> left, ps < 0.05; right hemisphere: OA > YA, p = 0.027) and in parietal clusters (F2,87 = 

5.56, p = 0.005, ηp2 = 0.12; YA: left > right, p = 0.032; left: YA > MCI, p = 0.034). The 

three-way interaction can also be explained by a Cluster x Hemisphere for YA (F6,168 = 

15.21, p < 0.001, ηp2 = 0.36; left > right in frontal, frontocentral, frontotemporal 

occipital, inferior parietal, ps < 0.05; right > left in parietal, p < 0.001; left hemisphere: 

frontotemporal, central > frontocentral, ps < 0.05; parietal > occipital, p = 0.007; right 

hemisphere: central, frontotemporal, parietal > all other clusters, ps < 0.01; 

frontocentral, inferior parietal, occipital > frontal, ps < 0.01), OA (F6,198= 14.41, p < 

0.001, ηp2 = 0.30; left > right in frontal, frontotemporal, occipital; left hemisphere: 

central, frontotemporal, parietal > frontocentral, ps < 0.05; right hemisphere: 

frontotemporal > central, frontal, frontocentral, occipital, ps < 0.01; parietal > frontal, 

frontocentral, occipital, ps < 0.05) and MCI (F6,132= 13.31, p < 0.001, ηp2 = 0.45; left > 

right in frontal, frontocentral, central, frontotemporal, occipital, inferior parietal; right 

> left in parietal; left hemisphere: frontotemporal > all other clusters except central, ps 

< 0.05; right hemisphere: frontotemporal > all other clusters, ps < 0.05).  

 

8.3.2.2.3 Perceptual PM 0–1000ms ANOVA connection weights 

At lateral clusters, there was a significant interaction of Cluster x Group (F3.07,130.50 = 

3.29, p = 0.022, ηp2 = 0.08), due to a Group effect at frontotemporal clusters (F2,87 = 4.12, 

p = 0.020, ηp2 = 0.09; YA > MCI, p = 0.029; YA > OA¸ p = 0.062 (trend)). Additionally, the 

interaction is explained by a significant effect of Cluster for YA (F,.62,45.37 = 116.09, p < 

0.001, ηp2 = 0.81; frontotemporal < all other clusters, p < 0.001; frontal > inferior, 

parietal, occipital, ps < 0.05; central > frontocentral, p = 0.003) OA (F1.54,91 = 89.17, p < 

0.001, ηp2 = 0.73; frontotemporal < all other clusters, p < 0.001; frontal > inferior, 

parietal, occipital, ps < 0.05; central > inferior parietal, p = 0.045; inferior parietal > 

occipital, p = 0.006) and MCI (F1.43,31.45 = 33.60, p < 0.001, ηp2 = 0.65; frontotemporal < 

all other clusters, ps < 0.001; inferior parietal < all clusters except frontotemporal, ps 

< 0.05).  
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Table 8.4  

Summary of Significant Group Effects and Interactions for the Perceptual PM SNN Models 

Lateral 200–400 SNN weights Lower F-Value DF p-value ηp2 

 

Post-Hoc Tests 

Cluster*Group  1.87 12,510 0.036 0.05  

 F 5.30 1,87 0.007 0.12 OA > MCI = YA 

 YA 10.74 6,168 < 0.001 0.29 F = FC = C = P = OC > FT = IP  

 OA 16.40 6,198 < 0.001 0.33 F = C | F > FC = C = FT = P = OC | F, FC, C, P, OC > IP 

 MCI 6.76 6,132 < 0.001 0.26 C, F, OC, P > IP | C > FC > P 

Lateral 400–800ms SNN weights       

Cluster*Hemisphere*Group  1.90 12,510 0.046 0.05  

Cluster*Hemisphere YA 15.21 6,168 < 0.001 0.36 F, FC, FT, P, IP, OC: L > R | L: FT & C > FC | P > OC | R: 
FT = C = IP > FC = IP = OC > F 

 OA 14.41 6,198 < 0.001 0.30 F, FT, OC: L > R | L: FT = C = P = C = IP = OC > FC | R: 
FT > C, F, FC, OC | P > F, FC, OC 

 MCI 13.31 6,132 < 0.001 0.45 F, FC, C, FT, IP, OC: L >R | P: R > L | L: FT > P = IP = OC 
= FC = F | R: FT > all clusters | C = IP > P = OC = FC = 
F | IP > F  
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Lateral 400–800ms SNN weights Lower F-Value DF p-value ηp2 

 

Post-Hoc Tests 

Cluster*Group R 1.90 12,510 0.033 0.05 C: YA > OA = MCI 

Hemisphere*Group F 5.54 2,87 0.006 0.12 R: OA > YA | YA, OA, MCI: L > R 

 P 5.56 2,87 0.005 0.12 L: YA > MCI | YA: L > R 

Lateral 0–1000ms SNN weights       

Cluster*Group  3.29 3.07,130.50 0.022 0.08  

 FT 4.12 2,87 0.020 0.09 YA > MCI | YA > OA† 

 YA 116.09 1.62,45.37 < 0.001 0.81 F > FC, IP, P, OC | C > FC | all clusters > FT 

 OA 89.17 1.54,56.91 < 0.001 0.73 F > IP, P, OC | C > IP | IP > OC | all clusters > FT 

 MCI 33.60 1.43,31.45 < 0.001 0.65 F, FC, P, OC > IP | all clusters > FT 

YA = young adults. OA = healthy older adults. MCI = older adults with mild cognitive impairment. Clusters: F = frontal; FC = frontocentral; C = central; FT = frontotemporal; P = 

parietal; IP = inferior parietal; OC = occipital. L = left hemisphere. R = right hemisphere. | = separator between post hoc-tests. † = trending toward significance. N.B. > in this table 

represents greater connection weights. 
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Figure 8.11.  Perceptual prospective memory (PMpercept) features extracted from the trained SNN 

using network analysis (adaLASSO) across the 200–400ms, 400–800ms and across the entire 0–

1000ms trained epoch. YA = young adults; OA = healthy older adults; MCI = older adults with mild 

cognitive impairment.  

 

8.3.2.2.4 Perceptual PM network Analysis: 200–400ms   

Network models for 200–400ms induced a sparsity level of 97% for OA and 98% for 

YA and MCI groups. As seen in Figure 8.11 the right frontal cluster has strong 

associations with neighbouring clusters across all participant groups. In the YA, the 

network reveals a strong positive connection between the right frontal and the right 

frontocentral cluster (EW = 0.33), which also exhibits significant network control 

(betweenness = 4.01) through a strong positive relationship with the right parietal 

cluster (EW = 0.27). A similar level of betweenness is exhibited in the OA group, 

however network control is instead demonstrated by the right frontal cluster with 

connections to the left frontal cluster (EW = 0.38) and right frontotemporal cluster 

(EW = 0.49), which is not apparent for the MCI group. Additionally, for both the OA 

and MCI groups, positive connections and increased strength were found in the left 

central cluster (OA node strength = 0.80; MCI node strength = 1.58). The OA group 
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demonstrates a positive left central to left frontocentral regions (EW = 0.43), whereas 

MCI shows a left central to mid occipital cluster relationship (EW = 0.35). 

 

8.3.2.2.5 Perceptual PM network Analysis: 400–800ms 

For the network models of 400–800ms, approximately 91%, 96% and 98% of all edges 

were set to zero for the YA, OA and MCI groups, respectively. The models demonstrate 

the importance of the right frontocentral cluster over this epoch as all participant 

groups show similar levels of degree strength (YA node strength = 1.55; OA node 

strength = 1.91; MCI node strength = 1.08), although only significant levels of 

betweenness for YA (2.70) and OA (3.56) were found implying a possible loss of 

network control in MCI. Similarly, the mid frontal cluster also shows strong network 

strength and network control but only for YA (node strength = 1.62; betweenness = 

1.79) and OA (node strength = 2.10; betweenness = 1.62) but not in the MCI group. A 

comparable pattern is also seen in the left frontocentral cluster, where network 

strength is found for both YA (node strength = 1.50) and OA (node strength = 1.09), 

but not for MCI groups. The MCI groups instead show strong betweenness and 

network strength for the right inferior parietal (node strength = 2.43; betweenness = 

4.01) cluster and node strength in the left parietal cluster (2.31). 

 

8.3.2.2.6 Perceptual PM network Analysis: 0–1000ms 

The approximate percentage of edges set to zero for the entire epoch are 94%, 97% 

and 99% for the YA, OA and MCI groups, respectively. The node strength indices 

highlight two areas of particular importance for PMpercept stimuli for all groups: the 

right frontocentral cluster (YA = 1.24; OA = 1.63; MCI = 1.36) and the left frontal cluster 

(YA = 2.60; OA = 1.85; MCI = 2.20). These clusters exhibit the greatest strength within 

the network, although differences were found in the measures of betweenness. The 

left frontal cluster exhibits significant network control in the YA (2.82) and OA groups 

(1.08) but not in the MCI group. In the YA, there were strong positive connections from 

the left frontal cluster with the right frontal (EW = 0.38), right frontocentral (EW = 

0.49) and with the left frontocentral cluster (EW = 0.42). A similar pattern is observed 

between the left frontal cluster in OA with the right frontal (EW = 0.41) and the left 
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frontocentral cluster (EW = 0.29). This connectivity pattern is not found in the MCI 

group. The YA group exhibits positive bilateral frontocentral connections with the mid 

occipital cluster (left frontocentral EW = 0.25; right frontocentral EW = 0.16) and a 

negative right frontal – left occipital connection (EW = -0.31). The OA group exhibits a 

local network feature over the right frontotemporal scalp region, characterised by the 

strong positive right central – right temporal (EW = 0.30), right temporal – right 

frontocentral (EW = 0.36) and mid central – right frontocentral (EW = 0.25) 

connections, where network control is ascribed to the right frontocentral cluster 

(betweenness = 2.57). The same local network is not found in the MCI group, but a 

negative connection is found for right frontocentral – left parietal clusters (EW = -

0.38). 

 

8.3.2.3 Conceptual prospective memory statistical analysis 

All significant Group effects ANOVA results are presented in in Table 8.5. There were 

no significant Group effects over midline clusters. Graphical networks are presented 

Figure 8.12. 

 

8.3.2.3.1 Conceptual PM 200–400ms connection weights ANOVA  

At lateral clusters there was a significant Cluster x Group interaction (F8.65,376.22 = 2.73, 

p = 0.005, ηp2 = 0.06), due to an effect of Group at occipital (F2,87 = 4.14, p = 0.019, ηp2 = 

0.09; YA > OA, p = 0.025), inferior parietal (F2,87 = 3.53, p = 0.034, ηp2 = 0.06; YA > OA, p 

= 0.056 (trend)) and central clusters (F2,87 = 9.59, p < 0.001, ηp2 = 0.19; YA > OA, p < 

0.001; YA > MCI, p = 0.006). The interaction effect was also due to an effect of Cluster 

in YA (F3.82,106.92 = 16.12, p < 0.001, ηp2 = 0.37; occipital > all other clusters, ps < 0.001; 

inferior parietal > frontocentral, p < 0.001; inferior parietal > frontotemporal, p = 

0.045; parietal > frontocentral, p = 0.001), OA (F3.62,133.82 = 30.17, p < 0.001, ηp2 = 0.45; 

occipital > all other clusters, ps < 0.001; central < all other clusters, ps < 0.05; inferior 

parietal > frontal, p = 0.023; inferior parietal > frontotemporal, p = 0.005) and MCI 

(F3.72,81.88 = 25.58, p < 0.001, ηp2 = 0.59; occipital > all other clusters, ps < 0.001; central 

< frontal, p = 0.002; central < parietal, inferior parietal, ps < 0.001; frontotemporal > 

inferior parietal, parietal, ps < 0.05).  
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8.3.2.3.2 Conceptual PM 400–800ms connection weights ANOVA 

At lateral clusters there was a significant three-way Cluster x Hemisphere x Group 

interaction (F10.30,448.12 = 1.96, p = 0.035, ηp2 = 0.05). This can be explained by a 

significant Cluster x Group in the left hemisphere (F8.29,360.50 = 2.33, p = 0.018, ηp2 = 

0.05), such that YA had significantly larger connection weights than OA in frontal (p = 

0.005), frontocentral (p = 0.004), central (p = 0.002) and parietal clusters (p = 0.021) 

and larger connections weight than MCI in frontocentral (p = 0.015) and central 

clusters (p = 0.003). The three-way interaction can also be explained by a Hemisphere 

x Group effect at frontotemporal clusters (F2,87 = 3.51, p = 0.035, ηp2 = 0.08), whereby 

in the right hemisphere OA had larger connection weights than in YA (p = 0.015). The 

three-way interaction can also be explained by a Cluster x Hemisphere for YA (F4.01,112.39 

= 16.44, p < 0.001, ηp2 = 0.37; left > right in frontal, frontotemporal, parietal, inferior 

parietal, ps < 0.05; right hemisphere: frontal, central, parietal > frontotemporal, 

occipital, ps < 0.005; inferior parietal > occipital, p = 0.001; left hemisphere: 

frontotemporal < all other clusters, ps < 0.001; central > frontal, inferior parietal, ps < 

0.01), OA (F4.54,167.95 = 14.58, p < 0.001, ηp2 = 0.28; left > right in frontal, frontotemporal, 

parietal, inferior parietal, ps < 0.05; right hemisphere: frontal, frontocentral, central, 

occipital > frontotemporal, parietal, ps < 0.005; central, occipital > inferior parietal, ps 

< 0.001; left hemisphere: frontal, parietal, inferior parietal > frontotemporal, ps < 0.05; 

parietal > frontocentral, occipital, ps < 0.01) and MCI (F4.65,102.27 = 15.57, p < 0.001, ηp2 

= 0.46; left > right in frontal, frontotemporal, parietal, inferior parietal, ps < 0.05; right 

hemisphere: central, occipital > frontotemporal, parietal, ps < 0.05; central > frontal, p 

= 0.008; frontal > frontotemporal, p = 0.002; left hemisphere: inferior parietal > 

frontotemporal, p = 0.033; parietal > central, occipital, ps < 0.05). All groups 

demonstrated greater connection weights in the right relative to the left hemisphere 

in occipital clusters (ps < 0.05).  

 

8.3.2.3.3 Conceptual PM 0–1000ms ANOVA connection weights 

At lateral clusters a significant Hemisphere x Group interaction Group (F2,87 = 3.89, p = 

0.025, ηp2 = 0.09) is explained by a significant effect of Group in the right hemisphere 

(F2,87 = 4.23, p = 0.015, ηp2 = 0.10; MCI > YA, p = 0.024) and a significant effect of 
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Hemisphere in OA (F1,37 = 25.18, p < 0.001, ηp2 = 0.41) and MCI (F1,22 = 9.46, p = 0.007, 

ηp2 = 0.35), such that the right hemisphere connection weights were significantly 

greater than the left hemisphere (OA: p < 0.001; MCI: p = 0.007).  
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Table 8.5 

Summary of Significant Effects for 200–400 Conceptual PM SNN Models 

Lateral 200–400 SNN weights Lower F-
Value 

DF p-value ηp2 

 

Post-Hoc Tests 

Cluster*Groups  2.73 8.65,376.22 0.005 0.06  

 C 9.59 2,87 < 0.001 0.19 YA > OA, MCI 

 IP 3.53 2,87 0.034 0.08 YA > OA† 

 OC 4.14 2,87 0.019 0.09 YA > OA 

 YA 16.19 3.82,106.92 < 0.001 0.37 OC > F, FC, C, FT, P | IP > FC, FT |P > FC 

 OA 30.17 3.62,133.82 < 0.001 0.45 C < all clusters | OC > all clusters | IP > F, FT 

 MCI 25.58 3.72,81.88 < 0.001 0.59 OC > all clusters | F, IP, P > C | IP, P > FT 

Lateral 400–800ms SNN 
weights 

      

Cluster*Hemisphere*Group  1.96 10.30,448.12 0.035 0.05  

Cluster*Hemisphere YA 16.44 4.01,112.39 < 0.001 0.37 F, FT, P, IP, OC: L > R | R: F, C, P > FT = OC | IP > OC | L: FT < all 
clusters | C > F = IP | OC: R > L  
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Lateral 400–800ms SNN 
weights 

Lower F-
Value 

DF p-value ηp2 

 

Post-Hoc Tests 

 OA 14.58 4.54,167.95 < 0.001 0.28 F, FT, IP, P: L > R | | R: F, FC, C, OC > FT = P | OC, C > IP| L: F = P = IP 
> FT | P > FC = OC | OC: R > L 

 MCI 15.57 4.65,102.27 < 0.001 0.46 F, FT, IP, P: L > R | OC: L > R | L: IP > FC | P > OC = C| R: C = OC > FT 
= P | C > F > FT 

Cluster*Group Left 2.33 8.29,360.50 0.018 0.05 F: YA > OA | FC: YA > OA = MCI | C: YA > MCI = OA| P: YA > OA 

 Right 3.50 10.66,463.87 < 0.001 0.08 F: YA > MCI | C: YA > OA = MCI | FT: OA > YA | P: YA > MCI 

Hemisphere*Group FT 3.51 2,87 0.035 0.08 R: OA > YA 

Lateral 0–1000ms SNN 
weights 

      

Hemisphere*Group  3.89 2,87 0.025 0.09  

 R 4.23 2,87 0.015 0.10 MCI > YA 

 OA 25.18 1,37 < 0.001 0.41 R > L 

 MCI 9.46 1,22 0.007 0.35 R > L 

YA = young adults. OA = healthy older adults. MCI = older adults with mild cognitive impairment. Clusters: F = frontal; FC = frontocentral; C = central; FT = frontotemporal; 

P = parietal; IP = inferior parietal; OC = occipital. L = left hemisphere. R = right hemisphere. | = separator between post hoc-tests. † = trending toward significance.   N.B.  > 

represents greater connections weights in this table. 



244 

 

 

 

Figure 8.12. Conceptual prospective memory (PMconcept) features extracted from the trained SNN 

using network analyses (adaLASSO) from the 200–400ms, 400–800ms and across the entire 0–

1000ms trained epoch. YA = young adults; OA = healthy older adults; MCI = older adults with mild 

cognitive impairment.  

 

8.3.2.3.4 Conceptual PM network analysis: 200–400ms  

Over 200–400ms, approximately 97% of edges for YA and OA and 95% of edges for 

the MCI group were set to zero. A common cluster across all groups for this earlier 

epoch is the right occipital cluster, where the MCI group exhibits the greatest node 

strength (1.66), relative to YA (0.60) and OA (0.25). From the right occipital cluster 

connections to mid parietal clusters were found for both the OA (EW = 0.33) and MCI 

groups (EW = 0.34), along with a right parietal – right central relationship (OA EW = 

0.49; MCI EW = 0.23). Additionally, the MCI group shares similar network strength in 

the left frontal cluster (node strength = 1.78) as the YA group (node strength = 1.25). 

Both the MCI and YA groups demonstrate the greatest amount of network control 

originating from the left frontal cluster (YA betweenness = 3.36, MCI betweenness = 

1.31). However, while the YA group demonstrates connections from the left frontal 
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cluster to the right frontal (EW = 0.32), left temporal (EW = -0.31) and left frontocentral 

(EW = 0.44), the model shows longer connections toward posterior regions for the MCI 

group with the left frontal cluster connecting to left occipital (EW = 0.70), right 

occipital (EW = 0.20) and the left central clusters (EW = 0.42). 

 

8.3.2.3.5 Conceptual PM network analysis: 400–800ms  

Model sparsity was approximately 90% for YA, 96% for OA and 94% for MCI. There 

are several network similarities between the groups at this period. All groups 

demonstrate considerable degree strength at left frontal clusters (YA = 0.12; OA = 0.93; 

MCI = 1.43). The network highlights the importance, as indicated by a measure of 

betweenness, of mid parietal and left parietal for YA (mid parietal = 0.05; left parietal 

= 0.48), OA (mid parietal = 1.20; left parietal = 1.53) and MCI (mid parietal = 1.76; left 

parietal = 0.27) groups. Differences are apparent in the connections between groups. 

In the frontal clusters the YA demonstrate a left frontal – left parietal connection (EW 

= 0.46); OA demonstrate a similar left frontal – mid parietal connection (EW = 0.25), 

but MCI exhibits a shorter left frontal – left frontocentral connection (EW = 0.58). The 

MCI group displays a strong interhemispheric connection between left temporal – 

right temporal clusters (EW = 0.56). 

 

8.3.2.3.6 Conceptual PM network analysis: 0–1000ms  

The approximate number of edges reduced to zero for the entire PMconcept epoch was 

95% for YA and OA, and 92% for MCI. The left frontocentral cluster contains the most 

amount of network control (YA betweenness = 1.66; OA betweenness = 4.01; MCI 

betweenness = 2.98). Additionally, YA and OA both show left frontocentral connections 

with the left central cluster (YA EW = 0.32; OA EW = -0.44). Conversely, where a 

connection for the YA is found between the left frontocentral cluster and right 

frontocentral cluster (EW = 0.32) a negative connection is found between the two 

clusters for the MCI group (EW = -0.60). Figure 8.12 shows network connections 

between left frontal – right frontal (EW = 0.19) and left frontocentral – right 

frontocentral (EW = 0.18) in YA. MCI show a negative connection from the right 

frontocentral cluster to the left frontocentral cluster (EW = -0.18). The YA model 
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favours a left frontocentral connectivity pattern, whereas the older adult groups 

incorporate more temporal-posterior regions. 

 

8.3.4 Experiment 2: Discussion 

Experiment 2 aimed to uncover insights into differences in spatiotemporal relations in 

terms of connectivity between young adults, older adults, and older adults with MCI. 

The current experiment performed a series of ANOVAs and network analyses on each 

of the SNN models over 200–400ms, 400–800ms and 0–1000ms. Performing ANOVAs 

provided insight into the local cluster connectivity differences between the groups 

within the SNN models created in experiment 1. The network analyses enabled further 

understanding of the global spatiotemporal relations between scalp clusters.   

The results of the current experiment reveal that all groups had strong midline central 

parietal connectivity in the 0–1000ms model of working memory. However, younger 

adults also had strong frontal and frontocentral connectivity patterns, which were less 

prominent in older adults and were negatively related to one another in the MCI group. 

Similarly, in the 200–400ms models, all groups demonstrated strong network activity 

in the frontocentral and parietal clusters, but the cluster connectivity was greatest in 

anterior regions. Both the younger and healthy older adults had strong patterns of 

connectivity from the frontocentral cluster to other cortical areas. In the MCI group, 

frontocentral connectivity was diminished along with lower local cluster connectivity 

weights relative to their healthy counterparts. Previous research has linked verbal 

working memory to the left PFC (Jonides et al., 1997; E. E. Smith & Jonides, 1999) and 

the left lateral PFC to the cognitive control of memories (Badre & Wagner, 2007). 

Indeed, fMRI evidence demonstrates reduced left inferior PFC activation in older 

adults during a semantic memory task despite no behavioural impairments relative to 

younger adults (Lacombe et al., 2015). In individuals with AD or MCI, prefrontal 

activation is further reduced when performing semantic memory tasks relative to 

healthy controls (Joubert et al., 2010) and is related to poorer semantic working 

memory performance. It is possible, therefore, that connectivity in the PFC declines as 

a function of age and is further affected by MCI when performing semantic working 

memory tasks. The results support the role of the PFC in semantic working memory 
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and suggest that frontal network connectivity to other cortical areas declines with age 

but may be more rapidly deteriorating in those with MCI.  

The results highlight the importance of the anterior clusters for all participant groups 

in responding to perceptual PM stimuli. Both younger and older adults had 

significantly greater levels of connectivity throughout the cortex relative to the older 

adults with MCI, particularly in frontal and frontocentral clusters across all time 

epochs. It is understood that the aPFC plays an important role in the balance of 

attention between performing the ongoing task and the internal presentation of the 

PM stimuli (Burgess et al., 2007). Recent fMRI evidence has also implicated functional 

deterioration in attention networks (dorsal and ventral networks) in older adults with 

amnestic MCI and AD (Franzmeier et al., 2017; Yamashita et al., 2019; Z. Zhang et al., 

2015). The decrease of frontocortical connectivity in older adults with MCI possibly 

represents a deterioration in the functional networks responsible for performing the 

attentional balance between the working memory and PM intention maintenance. 

However, the mentioned studies were not recorded when performing an attention-

based task but instead correlated resting-state activity with behavioural performance.  

Across the models of perceptual PM, both younger and healthy older adults had strong 

patterns of connectivity across the hemispheres, but this connectivity was markedly 

reduced within the MCI group. Functional connectivity studies have similarly 

demonstrated abnormal patterns of interregional connectivity in those with MCI (Bai 

et al., 2011). Bai et al. (2011) explored whole-brain connectivity of those at risk of AD 

development compared to healthy controls. Their results show reduced interregional 

correlations primarily in the frontal cortex and subcortical structures suggesting a loss 

of coordinated cortical activity. While the current results support the suggestion of 

reduced cortical coordination in the frontal cortices of those with MCI, inferences 

about subcortical networks cannot be made.  

Similar to perceptual PM, the analyses show that the frontal cortices are important in 

successfully responding to conceptual PM stimuli (Cona et al., 2015). In general, 

younger adults displayed greater local cluster connectivity compared to the older 

adults in left anterior clusters, bilateral central and occipital clusters (200–400ms 

only). Unlike the perceptual PM models, however, older adults with MCI showed a 

greater amount of cluster–to–cluster connectivity across the cortex than younger and 

older adults. Moreover, older adults with MCI had greater local connection weights in 
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the right hemisphere compared to younger adults (0–1000ms only). Potentially, the 

increased connectivity in the older adults with MCI reflects the recruitment of 

additional processes to complete the more cognitively challenging task. Compared to 

perceptual PM stimuli, conceptual PM cues are less salient making detection harder 

and subsequently requiring more cognitive processes (Cousens et al., 2015; Cruz et al., 

2016; Wilson et al., 2013). In tasks that are more cognitively demanding, researchers 

have found enhanced cortical activity in older adults with MCI relative to controls 

(Bajo et al., 2010; Z. Jiang & Zheng, 2006; Y. Zhang et al., 2016). For example, Zhang et 

al. (2016) evaluated the functional connectivity during an episodic memory task in 

older adults with AD and MCI. They found greater connectivity in the cognitively 

impaired relative to healthy controls in the middle frontal gyrus, parahippocampus 

and the parietal cortex. Given the close relationship of episodic memory and PM 

(Martin et al., 2007), the results here may support previous studies linking 

hyperconnectivity to faster memory decline (Salami et al., 2014) and poorer episodic 

memory performance (Pasquini et al., 2015) but only in conceptually based PM tasks. 

In response to all stimuli, older adults with MCI had a greater amount of inhibitory 

connectivity patterns. The current results suggest that these inhibitory connections 

are representative of functional impairments of those with MCI. This conclusion is 

based on the absence of such patterns of activity within the healthy older adults and 

young adults. The greater inhibitory connectivity was particularly pronounced in 

frontal clusters in the entire epoch for conceptual PM stimuli. Similar frontal patterns 

in MCI were found by Bai et al., (2010) and were related to episodic memory, attention, 

and other cognitive functions in the MCI participants. Further, researchers have 

demonstrated similar increased inhibitory connectivity in resting-state and task-

based EEG studies in patients with AD (Bokde et al., 2006; K. Wang et al., 2007), such 

that increased inhibitory frontal connectivity was a predominate feature in 

differentiating AD relative to healthy controls. Therefore, the current study further 

highlights the potential utility of inhibitory frontal connectivity as a biomarker in the 

detection of dementia-related diseases. 
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8.4 General Discussion 

The current chapter presents a study that is, to the author’s knowledge, the first to 

apply a SNN architecture model to electrocortical activity during PM tasks. It is also 

the first study to apply adaLASSO as a measure of network connectivity within SNN 

models. Moreover, the study has applied these methods to typical and atypical ageing 

groups. The results show that 1) SNNs are more sensitive to traditional ML methods in 

providing classification between young adults, healthy older adults and older adults 

with MCI during working memory and PM tasks; 2) greater discriminatory capacity is 

achieved through modelling PM in SNNs compared to working memory; and 3) in 

general, younger adults had greater local cluster connectivity compared to healthy 

older adults and older adults with MCI as indicated by greater local cluster connection 

weights across the scalp. Furthermore, the network analyses largely show that older 

adults with MCI had decreased connectivity across the cortex in response to working 

memory and perceptual PM tasks. However, network activity in response to 

conceptual PM revealed greater cortical connectivity in those with MCI relative to 

young and healthy older adults and a greater number of inhibitory connections in 

response to all memory stimuli.  

 

8.4.1 Hypo- and hyper- global connectivity in mild cognitive 

impairment  

Within the functional EEG connectivity literature, there are differences in the reported 

patterns of activity in MCI and early AD. Some researchers report decreased functional 

connectivity in those with MCI and early AD (König et al., 2005; López-Sanz et al., 

2017; Tóth et al., 2014; Vecchio et al., 2016), while others have reported increases in 

cortical connectivity (Bajo et al., 2010; M. D. Sullivan et al., 2019; Van Deursen et al., 

2009; Zhiqun Wang et al., 2012; Y. Zhang et al., 2016). Most connectivity studies 

primarily examine the differences in resting-state neurophysiological activity. 

Resting-state activity is more susceptible to inter-individual differences and spurious 

activity such that there is a large amount of individual variability when a participant 

is at rest (Fox & Raichle, 2007; Nolte et al., 2004). However, differences in studies of 

connectivity during memory tasks are also found (e.g., Ahmadlou et al., 2014; 

Pijnenburg et al., 2004). In a comparison of resting and task-based connectivity, Jiang 
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& Zheng (2006) demonstrated that while functional connectivity in an MCI group 

decreased relative to healthy controls while at rest, in the working memory task, the 

MCI group exhibited greater inter- and intra-hemispheric connectivity. Jian and Zheng 

suggest that due to atrophy in cortical regions such as the temporal, parietal lobes and 

the hippocampus, the levels of cortical connectivity increase as a means of supporting 

cognitive functioning during memory tasks. Although the current study did not 

compare the results with resting-state activity, the current findings may suggest that 

similar compensatory mechanisms are being utilised throughout the cortex in the MCI 

group during the more difficult conceptual PM tasks relative to the highly salient 

perceptual PM task and the relatively simple working memory task. Indeed, evidence 

has shown greater inter-hemispheric EEG connectivity in those with MCI when the 

demands of the memory task increase (Zheng et al., 2007), which was not found in the 

healthy controls. Furthermore, increased functional connectivity between the 

parahippocampus and the middle frontal gyrus has also been shown with MRI to be 

associated with decreased episodic memory performance in those with MCI (Zhang et 

al., 2016). Taken together with the current findings, it is possible that decreases in 

connectivity are apparent in resting-state and simple memory tasks in those with MCI. 

Potentially, however, as the difficulty of the task increases, so might the connectivity 

for individuals with MCI possibly reflecting compensatory mechanisms.  

 

8.4.2 Local cluster connectivity differences in mild cognitive 

impairment 

The results of the current study show that in general, the SNN models of older adults 

with MCI form fewer positive and negative neural connections during working 

memory and PM tasks relative to the younger adults and older adults with MCI. 

Possibly this reflects the reduction of global cortical power reported in EEG frequency 

analyses (Roh et al., 2011). To understand these connectivity changes between groups, 

the local cluster connectivity within each cluster was explored. Evaluating local 

clustering connectivity has been suggested as a superior method for studying cognitive 

disease networks relative to the longer-range cortical connections (Pereira et al., 

2016). The results here show that older adults with MCI had lower local connectivity 

relative to young and older adults in certain cortical areas and times. Most notably, 

over 200–400ms, older adults with MCI had decreased local connectivity in central 
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regions relative to healthy older adults and in parietal clusters relative to young adults 

during working memory. During PM tasks, older adults with MCI had decreased local 

cluster connection weights in the frontotemporal cluster (400–800ms) in response to 

perceptual PM stimuli and reduced connectivity in bilateral frontocentral and central 

clusters in response to conceptual PM stimuli (400–800ms) relative to young adults. 

Similar results have been shown before in older adults with MCI in a local cluster 

connectivity analysis by López-Sanz et al. (2017).  López and colleagues found that in 

a resting-state, participants with MCI had decreased local cluster activation across the 

cortex relative to healthy controls in theta and beta MEG frequency bands.  Previous 

research has demonstrated a reduction in cluster connectivity in AD (Morabito et al., 

2015; Sanz-Arigita et al., 2010) and MCI (Ahmadlou et al., 2014) reflecting a loss of SW 

connectivity. The SW networks, modelled in the current study as clusters, represent 

short-range connections within the local areas with small neural cost, while long-range 

connections represent efficient information transfer between distant brain regions 

(Salvador et al., 2005). Local cluster connectivity disruptions in resting-state 

recordings have been demonstrated previously in AD in other neuroimaging methods 

such as MRI (J. B. Pereira et al., 2016) and PET (Ortiz et al., 2016). The current study 

highlights a loss of local cluster connectivity in central regions in working memory, 

frontotemporal clusters in perceptual PM and bilateral frontocentral and central 

clusters as potential early biomarkers of cognitive decline in older adults. 

 

8.4.3 Spatiotemporal compensation in typical ageing 

For the most part, younger adults demonstrate greater local connectivity in response 

to working memory stimuli. However, in response to perceptual PM stimuli older 

adults demonstrated increased local cluster connectivity in bilateral frontal clusters 

relative younger adults (200–400 & 400–800ms) and MCI (200–400ms only). 

Potentially, this represents neural compensatory mechanisms during the completion 

of PM tasks, possibly reflecting the frontal activity during intention maintenance 

(Hering et al., 2020). However, an increase in frontal local cluster connectivity was not 

found for older adults in response to conceptual PM stimuli. This may suggest that 

similar neural strategies are being employed by the older adults and younger adults to 

complete the conceptual PM task (Zöllig et al., 2007). However, analysis of the 0–

1000ms SNN model in response to conceptual PM stimuli show that both older adult 
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groups have greater local cluster connectivity across the right hemisphere relative to 

the left. It is unclear why the right hemisphere had greater connectivity in the older 

adult groups relative to young adults, and this finding does not fit with the HAROLD 

theory of ageing (Cabeza, 2002). The HAROLD theory suggests that as we age, there is 

a reduction in hemispheric lateralisation. However, the current study suggests older 

adults have increased lateralisation relative to young adults, at least for some memory 

tasks. In older adults, language-area counterpart regions in the right hemisphere have 

been found to provide a supportive role in language-based tasks (Obler et al., 2010). 

Potentially, the right hemisphere lateralisation in the older adults may reflect a 

supportive role in more intensive semantic meaning search for the conceptual PM cue 

(Hagoort et al., 1996) although this remains speculative without further research.  

 

8.4.4 Spiking neural networks in prospective memory  

While the current study primarily aimed to determine differences in SNN models of 

working memory and PM, the current results offer insights into the functional 

spatiotemporal activity in PM. In both PM SNN models, network analyses demonstrate 

the importance of frontal systems during successful PM responses. In the model of the 

entire epoch for perceptual PM, considerable node strengths in left frontal and right 

frontocentral clusters were found. Similarly, across the entire epoch of the SNN 

modelling spatiotemporal activity in response to conceptual PM stimuli, the results 

show that, for all participants, the left frontocentral clusters had the largest network 

control. In contrast, the greatest network control in the working memory models was 

found in the centroparietal clusters potentially reflecting activity of the PCC during 

working memory (Hampson et al., 2006). However, it remains difficult to speculate on 

the precise underlying function of brain activity during successful PM responses, the 

functional connectivity of these regions reflects the importance of the network and the 

interconnected regions which support PM responses. In response to both PM stimulus 

types, the left frontocentral cluster plays an important function. Larger connection 

weights and network control was found for the frontocentral clusters relative to other 

clusters. Additionally, the results show co-occurring activity of regions of the posterior 

brain in PM with the frontal clusters. This adds further support to the AtoDI model 

(Cona et al., 2015) of PM which suggests that importance of frontal and parietal 

sources in attention control directed to external or internal sources.  
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The current study also demonstrates significant network activity at the 

frontotemporal clusters in response to PM stimuli. In response to perceptual PM, 

frontotemporal clusters had more negative local connectivity weights than all other 

clusters. Similarly, in response to conceptual PM stimuli over the 400–800ms model, 

the frontotemporal clusters had more negative connection weights than most other 

clusters. Potentially the negative connection weights reflect the RON reported over 

these time ranges in Chapter 6. Therefore, these results provide further support for 

the suggestion that reorientation networks become active when an individual is 

distracted from the ongoing task by a PM stimulus, subsequently engaging 

frontotemporal region.  

 

8.4.5 Limitations 

The current study used a 50/50 positive to negative connection ratio to initialise the 

SNN models. While this provided a better rate of learning within the current study 

than the more commonly used 80/20 ratio (Capecci et al. 2016; Doborjeh et al., 2018), 

other configurations were not tried. Potentially there may have been better positive 

to negative ratios for modelling ERP data that would enable better classification of 

brain activity between the groups. Therefore, future researchers are encouraged to 

incorporate the experimentation of different initial connection weight ratios during 

the optimisation stage in SNNs.  

 

While the clustering method used in the current study had the advantage of reducing 

the number of multiple comparisons made during the statistical analyses, more 

information could be gained from including all input features (i.e., EEG electrode 

locations) during the network analysis. This would have created more connections 

and enabled more nuanced interpretations of connectivity, especially given the ability 

of adaLASSO to deal with more variables than observations (Meinshausen & Yu, 2009; 

Zhao & Yu, 2006). The method used here may have overrepresented differences in 

cortical connectivity because of the induced sparsity of adaLASSO to select the most 

important connections of the networks. Better interpretations may be achieved 

through different network analysis techniques, such as weighted and group LASSO. 
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8.4.6 Future studies  

The current chapter proposes the utility of comparing cortical connectivity in those 

with MCI between simple cognitive tasks and more cognitively demanding tasks. 

Future research should explore other cognitive domains that can be varied in their 

difficulty to confirm the differences in hypo- and hyper-connectivity in MCI. It would 

be expected that as cognitive decline progresses, the more challenging cognitive tasks 

will also be associated with decreases of functional connectivity in line with the 

declines found in AD (Engels et al., 2015). 

 

A previous study exploring ERPs within a SNN framework (Z. G. Doborjeh, Doborjeh, 

et al., 2018) has developed a novel way of understanding the differences between 

cognitive task conditions. By subtracting the spatiotemporal connections of one 

condition from the other the differences between the cognitive conditions were better 

visualised. This was not feasible in the current study due to the different initialised 

connection weights between the task conditions, but future studies of working 

memory and PM should employ a similar method to clearly identify spatiotemporal 

differences between the memory domains.  

 

8.4.7 Summary 

To conclude, the current study shows that the spatiotemporal connectivity in working 

memory and PM tasks can be modelled and visualised using SNNs to gain an increased 

understanding of the effects of ageing and cognitive decline. The SNNs demonstrated 

that classification accuracy of brain activity related to working memory and PM is 

better than conventional ML methods. Moreover, STBD in response to PM stimuli 

provides better classification accuracy than working memory in SNNs. Visualisation of 

the task-based memory activity can be improved through pruning of inactive ANs and 

neural connections in the SNN models. Analyses of the SNN models revealed different 

spatiotemporal connectivity between the groups at a local and global level. In general, 

local cluster connectivity was greater for younger adults but older adults had 

increased connectivity in frontal clusters during the perceptual PM models. The older 

adults with MCI had decreased global connectivity relative to healthy older adults and 

younger adults in the working memory and perceptual PM, but in the conceptual PM 
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models, MCI patients had increased cortical connectivity potentially reflecting 

compensatory mechanisms during a more cognitively demanding PM task. 
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Chapter Nine: General Discussion 

 

9.1 Thesis Overview 

The current thesis seeks to understand the neurophysiology of PM in younger adults, 

typical ageing older adults and those with MCI. The first two chapters presented the 

previous understanding of the cognitive and neurobiological aspects of PM, in 

particular, how PM is affected by ageing and cognitive decline. This was followed in 

Chapter 3 by a detailed description of the neurophysiology of ERPs related to PM, 

ageing and MCI. From these discussions a series of questions were formulated and 

addressed throughout the thesis:  

1) Are there differences between behavioural and neurophysiological responses 

when responding to perceptual and conceptual PM stimuli?  

2) Following the response to a PM stimulus, is there a RON ERP?  

3) Are there behavioural and neurophysiological differences between younger 

and older adults when completing a perceptual and conceptual PM task?  

4) Are there behavioural and neurophysiological differences between younger, 

healthy older adults and older adults with MCI when maintaining a PM 

intention?  

5) Can SNNs be used to discriminate brain activity of aged individuals from those 

experiencing MCI and young adults?  

6) Do SNNs discriminate brain activity better between groups better when using 

brain activity in response to PM compared to working memory? Additionally, 

can SNNs classify brain activity of young adults, older adults and older adults 

with MCI better with PM than working memory stimuli.  

This thesis used ERPs to study PM because it offers a direct measure of the underlying 

cortical activity. Moreover, ERPs offer better temporal resolution closer to the speed 

of cortical processes than other neuroimaging methodologies. Prior to addressing the 

primary research questions, in Chapter 5, the question of whether it is appropriate to 

average the ERPs in response to different ongoing task stimuli was addressed in young 

adults. Findings from that chapter suggest that ERPs related to ongoing working 

memory tasks should be treated as separate. This conclusion was evidenced by 
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differences at the anterior P2 and posterior N2, along with a centroparietal congruency 

effect (N400) between the related and unrelated stimulus types. The findings suggest 

that in previous studies that combine ongoing task ERPs may have masked PM effects 

(e.g., Cousens et al., 2015) and instead supports the conclusions made in other studies 

(Cruz et al., 2016; Cruz San Martin, 2014). Addressing the main research aims, Chapter 

5 demonstrated that behaviourally, participants performed the perceptual PM task 

better than the conceptual PM task. Moreover, the study demonstrated 

neurophysiological differences between perceptual and conceptual PM tasks. Finally, 

Chapter 5 provided the first evidence of a RON in PM tasks. 

In Chapter 6, healthy older adults and older adults with MCI were recruited to 

understand the behavioural and neurophysiological differences between response to 

perceptual and conceptual PM stimuli. Older adults with MCI had poorer performance 

in the ongoing working memory task and the conceptual PM task relative to the young 

and older adults. Moreover, older adults with MCI had reduced frontocentral P2 

amplitudes across all stimulus types and delayed RON responses relative to younger 

and older adults. While no behavioural differences were found between the young and 

older adults, the older adults did have reduced and delayed IRR ERPs. However, both 

older adult groups demonstrated greater cue detection responses (i.e., greater N300 

and frontal positivity amplitudes) relative to young adults.  

Chapter 7 explored the effects of monitoring for a PM cue on the ongoing working 

memory task in young adults, older adults and older adults with MCI. Relative to young 

and older adults, older adults with MCI had poorer ongoing task performance 

regardless of whether they were monitoring for a PM cue. Furthermore, the MCI 

participants had reduced frontocentral P2 amplitudes in response to all ongoing 

stimuli regardless of PM monitoring relative to older adults. Both older adult groups 

demonstrated larger sustained frontal amplitudes between 300–500ms and 600–

1000ms relative to young adults. Moreover, older adults demonstrated delayed N2 

amplitudes in response to ongoing stimuli when monitoring for perceptual PM cues 

relative to the young adults.  

When measuring ERPs, much of the spatial and temporal information is not analysed 

as researchers often only examine specific electrodes and ERP subcomponents. To 

overcome these limitations, a brain-inspired SNN architecture was used in Chapter 8 

to incorporate a full range of the spatial and temporal dimensions of the recorded ERP 



258 

 
activity. SNNs were able to classify brain activity from each of the three groups better 

than traditional machine learning techniques. Additionally, the results demonstrated 

that SNNs were better at classifying patterns of brain activity in response to PM stimuli 

relative to the ongoing working memory stimuli. Chapter 8 also explored the 

application of network analyses to the SNN models to gain a deeper understanding of 

the connectivity differences between the groups across the cortex. 

The current chapter discusses these findings and how they improve our understanding 

of PM in typical and atypical ageing. Additionally, the application of SNNs and network 

analyses are discussed in relation to understanding STBD. Finally, the limitations are 

discussed alongside avenues for future research.  

 

9.2 The effect of prospective memory cue type 

9.2.1 Prospective memory cue detection 

The current thesis does not support some of the conclusions made by other ERP 

studies comparing perceptual and non-perceptual PM cue types (Cousens et al., 2015; 

Wilson et al., 2015). Cousens et al. (2015) and Wilson et al. (2013) suggest that non-

perceptual PM cues do not produce an N300 cue detection response. However, the 

results of Chapter 5 found that cue detection responses were indeed found for the non-

perceptual (conceptual) PM cues. The results here instead support those found by Cruz 

et al. (2016), which suggest that an N300 response is produced in response to 

conceptual PM stimuli, but it might be delayed by 100ms. The results of Chapter 6 

found that at midline parietal and occipital clusters the N300 in response to conceptual 

PM cues were indeed delayed relative to the ongoing and perceptual PM stimuli, 

although this was only for young adults. The current thesis, therefore, suggests that 

cue detection responses are a reliable feature of PM, but their temporal onset may 

depend on the characteristics of the PM cue. Potentially, the delayed N300 in both the 

current thesis and Cruz et al.’s (2016) study are delayed because of the semantic 

features of the conceptual PM stimuli, which occurs approximately at 400ms (review; 

Kutas & Federmeier, 2011). Therefore, cue detection is likely to have only taken place 

when the semantic features of conceptual PM stimuli have been processed.  
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Chapter 5 demonstrated that cue detection responses to perceptual PM stimuli were 

greater than those to conceptual PM stimuli (i.e., a more negative N300 and a more 

positive frontal positivity). It was suggested that the highly salient features of the 

perceptual PM cue triggered the greater response. This concurs with findings showing 

increased cue detection amplitudes of the P3 in response to highly salient stimuli  

(Honbolygó & Csépe, 2013). However, the larger amplitudes of the perceptual PM task 

might be due to decreased relative amplitudes to the conceptual stimuli as a result of 

additional attentional demands. Chapter 7 demonstrated a greater PM interference 

effect on the working memory task when monitoring for PM cues, suggesting that 

attention processes are being consumed when monitoring for conceptual PM cues. The 

additional attentional requirements applied when monitoring for conceptual PM 

stimuli may have reduced the amplitude of the cue detection responses. Indeed, West 

et al. (2006) demonstrated that PM-related cue detection components are sensitive to 

working memory demands. In their study, the amplitude of the N300 was found to be 

reduced when PM cues were embedded within a 3-back working memory task relative 

to a 1-back task. This suggests that the attentional processes of the working memory 

task and PM task are shared and underlie prospective remembering (Smith, 2003). The 

current thesis extends West et al.’s (2006) findings by suggesting that the level of 

attentional processes required to monitor for a PM cue may affect the amplitude of the 

N300 and frontal positivity cue detection responses.  

 

9.2.2 Prospective memory intention retrieval 

Previous studies have examined the neurophysiology of responses to perceptual and 

non-perceptual PM stimuli (Cousens et al., 2015; Cruz et al., 2016; Wilson et al., 2013). 

In line with the previous research, the current thesis demonstrates that both 

conceptual and perceptual PM stimuli reliably produce a parietal positivity response. 

The current thesis extends the previous research in three ways: 1) the different 

subcomponents of the parietal positivity were explored; 2) the latency of the IRR onset 

was explored; 3) the IRR ERP in response to perceptual and conceptual PM was 

examined in older adults.  

The results of Chapter 5 revealed a distinct P3b response to the perceptual PM stimuli. 

However, in response to conceptual PM stimuli, the P3b was found to be absent. This 
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may be due to the semantic nature of the conceptual PM cue and therefore may have 

been more apparent at a different scalp region or later in time (Cruz et al., 2016).  

Although the IRR was found in response to both PM stimuli and both young and older 

adult groups, there were differences between IRR responses for the different PM cue 

types. Both Cousens et al. (2015) and Wilson et al. (2013) suggest there are no 

differences in IRR responses to conceptual and perceptual PM responses. However, 

this thesis suggests that the IRR ERP has reduced amplitudes and a delayed onset 

relative to perceptual PM stimuli. This may suggest that due to the distinct features of 

the perceptual PM stimuli, more efficient and faster recall of an encoded intention was 

enabled. Considering the earlier N300 response to perceptual PM stimuli relative to 

the conceptual stimuli, it might be suggested that the earlier intention recall (IRR) is 

facilitated by the earlier cue detection response (N300). This likely explains why the 

perceptual PM stimuli were responded to faster and with greater accuracy. However, 

this was not explored directly in the current thesis and therefore the relationship 

between the N300, IRR and behavioural performance should be further investigated. 

Moreover, due to the greater reaction time variability in response to the conceptual 

PM stimuli relative to perceptual PM stimuli, there is the possibility that the 

amplitudes have been attenuated as a result of ERP blurring. When reaction times and 

the coupled neurophysiological responses have greater variability, then, as a result of 

ERP averaging, component amplitudes can be artificially reduced (Ouyang et al., 2016). 

Therefore, due to the higher variability in the reaction times to conceptual relative to 

perceptual stimuli, the ERP components in response to conceptual PM stimuli may 

have been attenuated.  

Additionally, recent research has suggested that the neurophysiological markers of 

intention retrieval may extend beyond the 1000ms post-stimulus onset examined in 

this thesis and previous studies. Recent evidence suggests that frontal and parietal 

slow waves up to 1800ms may also be related to intention retrieval (Hering et al., 

2020; Hering, Kliegel, Bisiacchi, et al., 2018). It would be useful, therefore, for future 

research to explore these later cognitive components with different PM cue types.   
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9.2.3 Prospective memory monitoring 

Behavioural research has demonstrated an interference effect of PM on the ongoing 

task (Boywitt & Rummel, 2012; Hefer et al., 2017; Hicks et al., 2005; Marsh et al., 2005), 

often finding increased reaction times and decreased accuracies when monitoring for 

PM cues. Concordantly, the current behavioural results (Chapter 7) demonstrate 

poorer ongoing task performance in the young and both older adults during PM cue 

monitoring, as indicated by slowed reactions times for the ongoing task. In line with 

previous research (Loft & Remington, 2010; Scullin, McDaniel, Shelton, et al., 2010; R. 

E. Smith & Loft, 2014), this was particularly the case for the less perceptually distinct, 

conceptual PM cues, which also showed a decrease in successful responses. Thus, 

current interference effect findings support the PAM theory of PM (Smith, 2010), in 

that attention is indeed required to perform both a perceptual and conceptual PM 

tasks.  

Neuroimaging evidence (presented in Chapter 2) suggests the importance of the 

frontal cortices in PM monitoring (review: Cona et al. 2015), the function of which was 

previously proposed to be reflected in the N2 and P2 components (Cona, Arcara, et al., 

2015; Czernochowski et al., 2012; J. B. Knight et al., 2010; West, 2007; West et al., 

2006a), and in later frontal ERP deflections (Cona et al., 2012b, 2014; Czernochowski 

et al., 2012; Hering et al., 2020).  This thesis provides further evidence of the effects of 

PM monitoring on the early ERP components and suggests that attentional processes 

are required during PM maintenance. However, unlike previous studies (Chen et al., 

2009; Czernochowski et al., 2012; J. B. Knight et al., 2010), the current findings do not 

support increased N2 and P2 amplitudes during PM maintenance. Nevertheless, the 

results do offer some support to a monitoring cost, as N2 components were found to 

be delayed when monitoring for PM cues compared to the ongoing-only task. To the 

author’s knowledge, this is the first evidence of delayed ERP component latencies 

during PM monitoring. Given the relationship between the posterior N2 and reaction 

times (Bahramali et al., 1998; Bostock & Jarvis, 1970), the N2 delays found here when 

monitoring for PM cues may suggest that the N2 is related to the increased reaction 

times in the ongoing task during PM monitoring. Therefore, when monitoring for PM 

cues, perceptual attentional processes may be slowed.  

In contrast to previous research (Czernochowski et al., 2012), P2 amplitudes were not 

found to increase but instead decreased when monitoring for PM cues relative to the 
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ongoing-only task. Additionally, when monitoring for conceptual PM cues, the P2 

latencies were found to be delayed relative to the ongoing-only task. Possibly, this is 

explained by the relationship of the anterior P2 to feelings of knowing (Irak et al., 2014; 

Irak, Soylu, Turan, et al., 2019). That is, P2 amplitudes were reduced due to uncertainty 

in the ongoing task whilst the stimulus is evaluated as being a PM cue or not (Lin et al., 

2017; Tanovic et al., 2018). The shared features of the conceptual PM stimuli to 

ongoing task stimuli may have increased the perceived uncertainty in evaluative 

processes and subsequently delayed the P2 response. Based on these findings, it is 

recommended that future studies should evaluate delays to the earlier ERP 

components during PM monitoring.  

It was expected that PM intention maintenance would cause significant frontal 

modulations relative to the ongoing-only task (Cona et al., 2012b, 2012a; 

Czernochowski et al., 2012; Mattli et al., 2011). Indeed, the results from Chapter 7 

demonstrate that PM cue monitoring affects sustained anterior amplitudes. The 

results, therefore, appear to support the Gateway hypothesis (Burgess et al., 2007; 

2011) and AtoDI models of PM (Cona et al., 2015), which highlight the importance of 

the frontal cortices in intention maintenance. In line with previous ERP research (West 

et al., 2011; Hering 2020), the ERP amplitude deflections found in response to PM cue 

monitoring may reflect a retrieval mode, where preparatory processes induce a 

‘readiness-state’ for the appearance of a PM cue (Guynn, 2003; West et al., 2011). 

During PM cue monitoring, participants will be maintaining the intention and 

monitoring the ongoing task for potential PM cues. Considering that cognitive 

resources are finite, the application of the frontal attentional resources may have 

contributed to the behavioural costs incurred to the ongoing task.  

Based on previous research (Burgess et al., 2005; 2007), it was proposed that the 

perceptual PM stimuli would rely more on spontaneous retrieval processes; and the 

that the frontal ERP amplitudes during conceptual PM cue monitoring would be 

greater than when monitoring for the perceptual PM cues. However, this hypothesis 

was not supported by the current findings (Chapter 7). It is suggested that the 

activation of frontal cortices (attentional processes) during PM may be independent of 

cue features in line with the PAM theory (R. E. Smith, 2003; R. E. Smith & Bayen, 2004).  

In sum, this thesis suggests that the additional feature-based processing that is 

required during PM cue monitoring may slow the reaction times in the ongoing task. 
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However, decreases to feelings of knowing and certainty from the shared features of 

the conceptual and ongoing task may cause delays to the anterior P2.  Furthermore, 

this thesis suggests frontal processes are required to maintain a PM intention, 

regardless of the cue type. However, it should be noted that the current study used 

laboratory-based PM tasks; and the continual maintenance of PM intentions with day-

to-day functioning may be context-dependent. Thus, future studies should seek to 

better simulate real-world PM events that better represent contextual information 

(e.g., virtual-reality).  

 

9.3 The reorientation negativity in prospective memory 

Studies by Bisiacchi et al. (2009) and West et al. (2011) demonstrated that attention 

allocation is required when switching from the ongoing task to the PM task. Bisiacchi 

and colleagues’ study (2009) found that when switching from the ongoing task to the 

PM task the amplitudes of the parietal positivity were more positive than they were in 

a dual-task PM condition. However, no studies had previously explored the RON ERP 

component in a PM task to evaluate the reorientation of attention from the PM cue 

back to the ongoing task.  

Chapter 5 provides the first evidence of a RON following the response to a highly 

salient perceptual PM stimulus and a less salient conceptual PM stimulus. Considering 

the previous evidence suggesting that the RON is related to processes of reorienting 

attention (Munka & Berti, 2006), the results from this thesis suggest that attentional 

reorientation following PM responses is measurable in the ERP. Given that both 

stimulus types show a RON following successful PM cue responses, this suggests that 

this may be a common feature in event-based PM tasks. However, as previously 

discussed, the RON in response to both PM stimulus types seems more likely to reflect 

a common neural response shared between distraction and attention reorientation 

rather than reflecting specific PM-related processes. Future research may confirm the 

presence of a RON in PM tasks by comparing successful PM ERPs with ERPs related to 

PM misses. This was not feasible in the current thesis due to the low number of PM 

misses. It would be expected that the RON would only be detectable in correct PM ERP 

responses and would be absent in events where participants forgot to respond to the 

PM cue.  
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It was expected the RON response would be found over the anterior regions of the 

scalp following a PM stimulus in line with studies of distraction (Correa-Jaraba et al., 

2016; Escera et al., 2001). Chapter 5 partially supports the previous literature 

identifying a RON at bilateral frontotemporal clusters occurring at approximately 

600ms after stimulus onset. The results suggest that the RON is also found at 

frontotemporal scalp regions in older adults, although predominately over the left 

hemisphere. However, Figure 5.4 also suggests that the RON following PM stimuli is 

observable at other locations. For example, in response to perceptual PM stimuli, a 

negative deflection between 400–600ms in the left inferior parietal cluster can also be 

seen. In response to conceptual PM stimuli, a negative deflection in the bilateral frontal 

clusters is evident between 400–800ms. The results here suggest then that there might 

be common neural generators of the RON following a PM stimulus, but may recruit 

additional cortical sources depending on the features of the cue.  

While both PM stimulus types produced greater frontotemporal RON amplitudes 

relative to ongoing stimuli, the perceptual PM stimuli produced greater RON 

amplitudes and were associated with faster ERP latencies than the conceptual PM 

stimuli. In Chapter 5, it was suggested that the non-focal features of the perceptual PM 

task caused the greater RON response due to increased processes required to reorient 

attention back to the ongoing task. This conclusion supports some research suggesting 

that the RON amplitude is related to the level of deviance from the ongoing task (Berti 

et al., 2004; Yago et al., 2001). However, similar to the attenuation of the cue detection 

responses in the conceptual PM task, the RON amplitude may have also been reduced 

due to increased involvement of cognitive processes. Indeed, Berti and Schröger’s 

(2003) study suggests that the RON amplitude decreases in line with increases in the 

working memory demands of the ongoing task. Additionally, considering the IRR 

latency delay in response to conceptual PM stimuli relative to perceptual stimuli, it 

would follow that the RON would also be delayed. This delay would be expected as the 

reorientation of attention from the PM task to the ongoing task cannot occur until the 

intention has been recalled.  

Therefore, the results in the current thesis suggest that the RON is apparent in younger 

and older adults during event-based PM tasks. However, it remains to be confirmed 

whether in response to different PM cues, different cortical sources are recruited to 

reorient attention back towards the ongoing task and the degree to which the latencies 

and amplitudes are affected by involvement of cognitive processes.  
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9.4 The impact of ageing on prospective memory  

Contrary to other laboratory-based PM studies (e.g., Henry et al., 2004; Kliegel et al., 

2016; Kliegel, Jäger, et al., 2008; McDaniel et al., 2008), the older adults in the current 

thesis showed no behavioural impairments in reaction times or accuracy when 

completing the PM and ongoing tasks compared to the young adults. Based on previous 

research (Cherry et al., 2001; Eusop et al., 2008), it was expected that the behavioural 

performance would not differ between young and older adults in the perceptual PM 

task due the high salience of the cue, however, performance decrements were expected 

for the conceptual PM stimuli. It is possible that the ongoing semantic judgement task 

was relatively simple for the older adults. The lack of difference between young and 

older adults in the lexical decision task appears to support the stability of vocabulary 

and crystallised intelligence in older adults (D. C. Park et al., 2002). Therefore, the 

comparable performance of the older adults to the younger adults may be explained 

by relatively low involvement of the attentional processes required to complete the 

working memory task, which could, therefore, be directed towards the completion of 

the PM task (Rendell et al., 2007). However, the current thesis kept the working 

memory demands the same across the experiments and, thus, this conclusion remains 

speculative.  

It might be proposed that the older adults were employing compensatory neural 

processes to complete the prospective memory tasks. Chapter 6 shows that both older 

adult groups had greater cue detection responses (more negative N300 and more 

positive frontal positivity) relative to young adults. This contrasts some previous PM 

ERP studies (R. E. Smith & Bayen, 2006; West & Covell, 2001) which suggest 

attenuations of the cue detection ERP components in older relative to younger adults. 

However, these are often accompanied by performance deficits in the working 

memory task, which was not found within the current thesis. Therefore, in line with 

the compensation-related utilisation of neural circuits hypothesis (CRUNCH) theory of 

ageing (Reuter-Lorenz & Cappell, 2008), cue detection related ERPs of greater 

amplitude likely support the completion of the tasks. That is, it is argued that the 

recruitment of frontal networks supports the maintenance of intentions (Peira et al., 

2016). Indeed, Chapter 7 provided evidence to support this interpretation. Relative to 

young adults, older adults had significantly more positive amplitudes at both the 300–
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500ms and 600–1000ms epochs suggesting that, in general, older adults were relying 

on frontal processes to a greater degree.  

Despite the results suggesting a compensatory neural mechanism in cue detection, the 

results also show that the N300 latencies were delayed in the older adults compared 

to the young adults. This may have contributed to delayed latencies found in IRR in the 

older adults relative to the young adults. Interestingly, the relative delays of the cue 

detection responses were not related to the PM performance. Moreover, consistent 

with previous research (West & Bowry, 2005; West & Covell, 2001; Zöllig et al., 2007), 

the IRR amplitudes were found to be reduced in the older adults relative to young 

adults. Given the absence of performance deficits in the older adults relative to young 

adults, it is suggested that IRR amplitude reductions are indicative of neural 

dedifferentiation, in line with previous research (Goh, 2011). This implies that cortical 

activity in older adults has become less efficient and the activity has become more 

distributed, potentially to compensate for the reduced cortical efficiency. The 

topographic maps presented in Chapter 7 (e.g., Figure 7.3) provide further support for 

the neural dedifferentiation hypothesis in older adults, showing that relative to 

younger adults, cortical activity appears more distributed. The current thesis, 

therefore, adds further support to studies linking better performance with reduced 

neural distinctiveness in working memory tasks (Iordan et al., 2018) and suggests that 

this may be apparent in PM as similarly reported in episodic memory (M. Y. Chan et al., 

2014).  

The neurophysiological evidence of the current thesis appears to suggest age-related 

disruptions to attentional networks. Sustained frontal activity during intention 

maintenance was found to differ between young and older adults in line with previous 

research (Hering et al., 2016, 2020; Zöllig et al., 2007). The older adults were found to 

have increased amplitudes during the early and late frontal ERP modulations. In line 

with recent fMRI evidence (Gonneaud et al., 2017), it is suggested that this represents 

an inability to deactivate that aPFC during PM monitoring and a difficulty in the 

efficient allocation of attentional processes between the ongoing stimuli and the PM 

intention.  

Moreover, the results also demonstrated delayed N2 ERP latencies in response to the 

perceptual cues for older adults relative to the young adults. This is thought to reflect 

a slowing of feature-based attention. Together, these results suggest that there may be 
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attentional network impairments in the older adults, but it may not be disrupted 

enough to affect working memory or PM performance.   

The results from Chapter 6 demonstrated age-related differences in the RON. 

Compared to young adults, older adults had reduced RON amplitudes for both 

conceptual and perceptual PM stimuli and delayed latencies for the perceptual PM 

stimuli. Furthermore, in older adults, the RON was found to be left lateralised. The 

findings by Cona et al. (2013) similarly found age-related latency delays for the RON. 

Cona and colleagues suggest that this was a result of deficits in the ability to shift 

attention between stimuli. Considering 1) the sustained frontal ERP deflections during 

intention maintenance, 2) the delays to N2 latencies, and 3) the amplitude reductions 

and delays of the RON, the current thesis suggests that the neurophysiological basis of 

attentional networks may be affected in ageing. However, in the current PM task 

design, this may not have caused behavioural impairments due to the stable 

vocabulary and crystallised intelligence of the older adults and the recruitment of 

compensatory neural mechanisms.  

 

9.5 The impact of mild cognitive impairment on 

prospective memory 

Based on behavioural evidence (Blanco-Campal et al., 2009; Kliegel, Jäger, et al., 2008; 

Thompson et al., 2017; van den Berg et al., 2012), it was expected that older adults 

with MCI would be impaired in PM. Indeed, the results from this thesis suggest that 

older adults with MCI are impaired in some PM tasks. More specifically, participants 

with MCI had poorer accuracy relative to typically ageing adults in the conceptual PM 

task but not in the perceptual PM task (Chapter 6). This partially supports the 

conclusions made by Blanco-Campal et al. (2009), suggesting that greater performance 

deficits are found in less perceptually salient PM stimuli. However, findings from their 

study also suggests that participants with MCI had poorer performance in the 

perceptually distinct PM task. Furthermore, the behavioural results from Chapter 6 

contrast with Thompson et al.’s (2017) study, which suggests that older adults with 

MCI have poorer PM performance relative to older adults regardless of the cue 

saliency. Instead, the current results suggest that older adults with MCI may not have 

impaired PM performance if the PM cue is highly salient. The high saliency of the PM 
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may enable older adults with MCI to easily detect the cue and recall it from memory. 

Indeed, the ERP results from Chapter 6 suggest that PM cue detection responses are 

spared in MCI to a similar level to the older adult group.  

Given evidence in MCI for atrophy in regions such as the insula (Caroli et al., 2010; 

Davatzikos et al., 2011; Fan et al., 2008; Spulber et al., 2012), PCC and MTL (Das et al., 

2016; L. Zhang et al., 2019), it was expected that participants with MCI would have 

reduced retrieval related ERPs (i.e., IRR).  Contrary to expectation, the ERP evidence 

showed no differences between older adults with and without MCI in IRR. This may 

suggest that the ability to recall a PM intention is spared in cognitive decline. However, 

the results did show a trending effect for delays in the IRR ERP in the participants with 

MCI relative to the older adults. It is possible that there may be delays in some 

individuals with MCI when recalling an intention, reflecting declines in the efficiency 

of retrieval networks in PM. This may potentially have not reached significance 

because of the heterogeneity of the MCI group, such that participants were not 

differentiated by MCI subtypes (e.g., aMCI, naMCI). Previous studies have shown that 

during certain PM task designs older adults with aMCI are more impaired than those 

with naMCI (e.g., Chi et al., 2014). Therefore, it is recommended that future research 

explore whether ERPs related to intention retrieval are spared in different forms of 

MCI.  

The results from Chapter 7 suggest that PM intention maintenance in those with MCI 

is comparable to typically ageing adults. The ERP evidence did not demonstrate any 

amplitude modulations for the older adults with MCI relative to the healthy older 

adults when monitoring for a PM cue. Considering the similar neurophysiological 

activity between the MCI participants and healthy older adults, alongside the lack of 

further performance declines in the ongoing task when monitoring for PM cues, it may 

be suggested that PM intention maintenance is spared in MCI. Potentially, this may 

indicate that activity of the anterior prefrontal cortex, that is responsible for PM 

intention maintenance (Cona et al., 2015), is unaffected in MCI. However, given the 

reported disruptions of connectivity between the hippocampus and the aPFC in AD (L. 

Wang et al., 2006), the ability to maintain a PM intention might provide a useful 

measure for monitoring cognitive decline. That is, as connectivity to the aPFC 

deteriorates, it would be expected frontal amplitudes during monitoring for PM cues 

would decline relative to typical ageing older adults.  
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Older adults with MCI had poorer ongoing task performance regardless of whether 

they were monitoring for a PM cue. It was expected that given the additional processes 

required for PM cue monitoring, ongoing task performance would be 

disproportionally affected in those with MCI. However, the results did not support this 

hypothesis. This may suggest that semantic working memory performance was 

already impaired to such a degree that the additional task of monitoring for a PM cue 

did not further disrupt working memory performance further. The poorer working 

memory performance may coincide with the attenuations found in the frontocentral 

P2 amplitudes in the participants with MCI relative to the healthy older adults. As it 

currently stands the functional relationship of the frontocentral P2 is yet to be fully 

understood. However, considering recent research suggesting that the anterior P2 is 

related to a peri-perceptual sense of familiarity (Doborjeh et al., 2018) and feelings of 

knowing (Irak et al., 2014; Irak, Soylu, & Turan, 2019; Irak, Soylu, Turan, et al., 2019), 

it may be suggested that older adults with MCI have reduced general familiarity during 

memory tasks. However, given that all the stimuli in this thesis were words, it is 

possible that a reduction in familiarity in those with MCI is limited to semantically-

based tasks. The P2, therefore, may be a potentially useful biomarker in understanding 

cognitive decline and future studies are required to understand its functionality and 

relationship to dementia-related diseases and PM. 

The current work is the first, to the author’s knowledge, to examine a RON response in 

older adults with MCI. Findings suggest delays in RON in those with MCI relative to 

young and typically ageing older adults. This suggests that older adults with MCI have 

neurophysiologically-reflected impairments in their ability to reorient their attention 

back to the ongoing stimuli following a perceptual PM stimulus. The lack of 

behavioural impairments in the perceptual PM task, or further impairments in the 

ongoing working memory task when monitoring for perceptual PM cues, may suggest 

that attentional networks are disrupted before noticeable behavioural impairments.  

Neuroimaging evidence suggests that attention networks during task-switching are a 

sensitive marker of AD (Gordon et al., 2015; Oh et al., 2016). Therefore, irrespective of 

identifiable behavioural impairments, the delayed RON might provide an effective 

early biomarker of cognitive decline. Future research should seek to confirm RON 

delays in both PM tasks and distraction tasks in older adults with MCI. Given that the 

delay was found following the perceptual PM stimuli and not the conceptual PM 
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stimuli, those stimuli which are more deviant (i.e., are less similar to the ongoing task) 

might elicit the clearest RON delays in the older adults with MCI.   

 

9.6 Spiking neural networks and network analyses for 

understanding spatiotemporal brain data 

Chapter 8 proposed using a novel SNN architecture for modelling, visualising and 

understanding spatiotemporal ERP activity between young adults, older adults and 

older adults with MCI. This chapter built on the proposed SNN architecture proposed 

by Doborjeh et al. (2018) for modelling ERP activity within a 3D brain-inspired space. 

This chapter demonstrated, for the first time, that ERPs in response to working 

memory and PM tasks can be modelled using SNNs from a high-density EEG recording. 

Additionally, the study highlighted the importance of using a 50/50 positive–to–

negative connection ratio for initialisation of the network when modelling ERP data.  

Using the classification functionality of SNNs, the study attempted to address whether 

PM-related brain activity would provide better classification accuracy than working 

memory-related activity. Indeed, the classification results of the perceptual PM stimuli 

(83.33%) and conceptual PM models (80%), provided better classification accuracy 

than the models of working memory (73.93%). This was suggested to be due to the 

additional attentional processes required to complete the PM tasks. Moreover, the 

classification results were compared against conventional ML methods of SVM, MLP 

and MLR. For the most part, the conventional ML methods achieved a classification 

accuracy of approximately 50%, except for the MLP for perceptual stimuli, which 

achieved 62.07%. This chapter demonstrates the efficacy of SNNs in discriminating 

brain activity between groups during ERP related to memory processes.  

As seen in Figure 8.4, the amount of information propagated into the 3D network by 

the 128 channels caused a large amount of changes to the neural connections in the 

SNN models. With the pruning module proposed within the SNN architecture, the non-

important connections (i.e., those connections and ANs that were not changed during 

learning stages) were removed. This reduced the number of connections within the 

model enabling easier visualisation of the spatiotemporal activity (e.g., Figure 8.7) and 

made the models more plausible and parsimonious. The application of this pruning 

method to a trained SNN model has the potential to enhance the visualisation across a 
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variety of neuroimaging data such as fMRI, functional near-infrared spectroscopy 

(fNIRS) or any other data containing spatial and temporal dimensions.  

Chapter 8 is the first study to apply an adaLASSO network analysis to understand the 

patterns of activity in SNN models. Previous SNN studies exploring EEG activity have 

used feature interaction networks to understand the learnt patterns of activity of the 

input EEG channels (Doborjeh et al., 2018a,b). However, the analysis methods 

presented in Chapter 8 can induce sparsity and retain only the most important 

connections that explain network connectivity. This method is particularly useful for 

spatially rich data due to its ability to handle more variables than observations 

(Meinshausen & Yu, 2009; Zhao & Yu, 2006). The methods used in Chapter 8 also used 

a clustering method to reduce the number of cortical features that were analysed 

within the ANOVAs, but the network analysis holds the potential to model all input 

features (EEG channels in this thesis) of the SNN model. Furthermore, the network 

analysis could be applied to any group of ANs or all the ANs modelled within the SNN 

models. This could facilitate nuanced interpretations of the modelled spatiotemporal 

brain activity at any defined space and time.  

The results from the network analyses revealed insights into MCI. The results 

demonstrated decreased global network connectivity in older adults with MCI in 

response to working memory and perceptual PM stimuli relative to young and older 

adults. However, global connectivity in the conceptual PM model demonstrated 

increased connectivity throughout the cortex for the MCI participants relative to the 

other groups. It is suggested that the increased global connectivity of the older adults 

with MCI served compensatory functions to complete the more challenging conceptual 

task. This supports previous research of functional connectivity demonstrating 

increased connectivity in MCI participants relative to controls as the demands of the 

memory task increase (Jiang & Zheng, 2006; Zheng et al., 2007). The current thesis, 

therefore, suggests that in MCI, the cortical connectivity is reduced relative to typically 

ageing adults during simple or resting-state tasks, but as task difficulty increases, the 

connectivity throughout the cortex will increase. However, it might also be further 

speculated that as task difficulty increases further to very high levels, the cortical 

connectivity of those with MCI would begin to decrease relative to controls for the 

most cognitively demanding tasks following an inverted-U shape of cortical 

connectivity. Future research should, therefore, continue to explore task-based 
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connectivity within MCI to understand the relationship between cognitive load and 

connectivity as a biomarker of cognitive decline.  

The results of Chapter 8 add further support to the ERP results from the other 

chapters. Specifically, the results highlight the importance of the frontal cortices in the 

PM tasks, such that for both PM cue types the frontocentral clusters demonstrated high 

network control and had larger local connectivity cluster weights relative to other 

areas. Moreover, the older adults demonstrated increased local cluster connectivity in 

the frontal clusters relative to both young adults and older adults with MCI when 

processing the perceptual PM stimuli. This may reflect the suggested neural 

compensatory mechanisms demonstrated in Chapters 6 and 7.  

Chapter 8 presents a novel method for understanding the spatiotemporal dynamics of 

memory processes. However, there are a few limitations that need to be considered. 

Firstly, creating SNNs with ERP data has intrinsic limitations due to the spatial 

resolution of the data. Due to the orientation of the cortical dipoles, it is difficult to 

determine whether the positive and negative changes in the SNN represent increases 

or decreased in connectivity. Additionally, as this is the first-time network analyses 

have been applied to SNNs, the accuracy of the networks compared to other methods 

of functional connectivity remains to be confirmed. Future research should compare 

the proposed methods of Chapter 8 relative to other neuroimaging methods and 

network analysis techniques.   

 

9.7 Limitations 

Some of the limitations of this thesis have been discussed in previous chapters relating 

specifically to those results. However, a few limitations that apply to each of the 

experimental chapters should also be acknowledged. Firstly, the conclusions of this 

thesis have been predominantly drawn with ANOVAs. While this conforms to methods 

used in much of the research conducted within the field of PM, understanding 

differences between variables can only provide a certain level of interpretation. As 

such, some of the conclusions regarding the functionality of PM and how it is impacted 

by ageing or cognitive decline remain speculative. Future studies could capture finer 

grained differences in the variables using regression analyses, which would enable the 
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statistical modelling of estimations of slopes or functions. For example, the influence 

of the N2 ERP latency on ongoing task reaction time could be examined.  

Similarly, although the connections of the adaLASSO network analyses in Chapter 8 

can be thought of as the most significant connections within each network, 

understanding the differences between networks remains largely qualitative and 

under the interpretation of the researcher. This is a pervasive problem in brain-

network science (Khambhati et al., 2018). However, recent developments have 

enabled comparisons between network structures (van Borkulo et al., 2017). Van 

Borkulo et al. (2017) have developed a network analysis t-test, which offers the ability 

to quantitatively test the differences between networks via invariant network 

structure, invariant edge strength and invariant global strength. These test statistics 

provide a measure of whether networks are identical between populations, and 

whether there are differences in the edges and the strength of the entire network.  

However, given that this is a t-test, it remains to be determined how this might be 

applied effectively to more than two groups.  

Potentially, there exist limitations here and within other PM experimental task designs 

that may have contributed to the differences found between the two forms of PM 

stimuli. Firstly, it is important to consider the potentially confounding factors of 

focality and salience of the PM stimuli. It is possible that the non-focal nature of the 

perceptual PM stimuli used here may have weakened the effects of the cue being 

salient. Evidence has demonstrated larger ERPs to be associated with focal PM cues 

relative to non-focal PM cues (Cona et al., 2014). Therefore, based on the Multiprocess 

framework of PM, it would be expected that the ERP amplitudes in response to the 

perceptual stimuli used here would have been attenuated in contrast to a perceptually 

salient, focal PM cue. Secondly, it is worth noting that there may be differences 

between the PM tasks that are not simply due to being either perceptual or conceptual. 

The perceptual PM task possessed one of two possible states that the stimulus could 

be in — uppercase or lowercase. In contrast, the conceptual PM task could be 

presented in 10 ways out of a possible 100 stimuli. The conceptual PM task may, 

therefore, have additionally taxed working memory resources and affected 

behavioural and neurophysiological responses.  Future studies should seek to control 

such potential confounds. For example, equivalent non-focal perceptual stimuli might 

be used, which only varies in their saliency. One might include a highly salient 
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perceptual PM stimulus similar to what has been used in the current thesis and a less 

salient stimulus which only capitalises the first letter of the PM stimulus word.  

Furthermore, a limitation that should be considered in the context of this thesis is that 

conclusions are drawn from designs of groups by membership and are, therefore, only 

quasi-experimental. In other words, the experimental design used here lacks the 

element of random assignment needed for a ‘true experiment’. This lack of 

randomisation of participants to the different groups makes it harder to account for 

confounding variables and may affect the internal validity of the study (Robson et al., 

2001). Therefore, we cannot know for certain to what extent the group differences 

found within the current thesis are caused by group membership or other 

uncontrolled variables. Longitudinal studies or TMS to simulate cognitive impairments 

might be used to improve the reliability of quasi-experimental designs of ageing and 

MCI.  

A considerable limitation that concerns many experiments with older adults 

experiencing MCI is the relatively small sample size. The small sample size of the MCI 

group provides less statistical power to observe differences between the groups. As 

mentioned previously, deriving conclusions from a heterogeneous group, such as 

those with MCI is problematic due to the different cognitive impairments, which has 

led to the diagnosis and the potential for different types of MCI and their propensity to 

convert to AD (Vos et al., 2013). The current thesis did not further differentiate 

individuals with MCI into subtypes to retain as much statistical power as possible. 

Ideally, the differences between the different subtypes should also be examined in PM 

by recruiting larger samples of older adults with MCI and testing participants 

longitudinally.  
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9.8 Future studies  

9.8.1 Prospective memory encoding in mild cognitive 

impairment 

The current thesis has attempted to provide further understanding of how PM 

functioning is neurophysiologically affected by MCI in older adults. In Chapter 2 

(Section 2.6) it was suggested that the individuals with MCI would most likely to be 

impaired in the retrieval stage of PM. However, an important task feature that was 

outside the scope of this thesis is the encoding stage of PM.  

The ability to recall an intention is routed in the initial ability to encode said intention. 

Recent evidence has demonstrated that PM performance deficits may be due to poor 

encoding strategies used by older adults with MCI (A. Pereira et al., 2015), which can 

be improved by employing different intention encoding strategies (A. Pereira et al., 

2018). The neurophysiological impairments that might explain this poor encoding 

ability in those with MCI is yet to be understood. However, a neuroimaging study 

evaluating connectivity during memory encoding and retrieval in older adults with 

MCI presents a potential explanation (Hampstead et al., 2016).  In an object location 

association task, which required participants to remember where objects were located 

within a visual scene, Hampstead and colleagues found that while healthy older adults 

activated regions of the frontoparietal networks, the MCI patients predominately 

relied on the right frontal eye field. The authors concluded that the MCI patients had a 

loss of top-down control during encoding and instead relied more on basic visual 

search functions. Therefore, deficits in attentional networks during encoding of PM 

intentions might potentially underpin poorer PM performance. Furthermore, this may 

explain why the reduction in familiarity indicated by frontocentral P2 amplitude 

reductions in those with MCI was found in Chapters 6 and 7. Indeed, evidence has 

shown that if top-down attentional mechanisms are impaired during encoding then 

familiarity is likely to be impaired in those with MCI (Ally et al., 2009).  

To further extend the results of the current thesis, future research should evaluate the 

neurophysiological differences in PM encoding in older adults with MCI. Recent studies 

have explored the effects of encoding in younger and older adults (Hering et al., 2020; 

Hering, Kliegel, Bisiacchi, et al., 2018; Zöllig et al., 2010). Hering and colleagues’ (2020) 

results show increased frontal slow waves for the older adult participants during 



276 

 
intention encoding between 400–700ms thought to be due to increased attention 

allocation (Walter & Meier, 2014). Perhaps, given the decreased attention allocation in 

older adults with MCI (Ally et al., 2009), there may be decreased frontal slow wave 

activity in the participants with MCI. However, as highlighted in this thesis, the frontal 

P2 amplitude should also be explored during encoding in older adults with MCI.  

 

9.8.2 Time-based prospective memory in mild cognitive 

impairment  

The current thesis has focused exclusively on event-based PM. Event-based PM cue 

types were used because it is the most well understood with regards to brain function 

and therefore provided the best reference to interpret the neurophysiological results 

of the studies documented here. However, several different PM cues types could also 

be used to understand PM deficits in MCI.  

Behavioural studies have used time-based PM cues to understand PM in MCI 

(Gonneaud et al., 2011; Troyer & Murphy, 2007). Some studies have reported 

increased capacity of time-based PM tasks to discriminate between healthy controls 

and participants with MCI (Costa et al., 2015). Some evidence suggests that older 

adults with MCI are disproportionally impaired on time-based task relative to healthy 

controls (Costa et al., 2010). This is likely due to the increased attentional demands 

required to maintain and remember to perform an action without explicit cues 

(Brandimonte & Passolunghi, 1994; Maylor et al., 2002; D. C. Park et al., 1997). It would 

be expected then that maintenance stages during time-based PM would be particularly 

impaired in older adults with MCI. Cona et al. (2012) explored the neural correlates of 

time-based PM in young and healthy older adults. Their results found that along with 

poorer time-based PM performance, older adults demonstrated an increased PM 

interference effect when monitoring for PM cues. Similar to the results of Chapters 6 

and 7, the neurophysiological results from Cona and colleagues’ (2012) study also 

found increased frontal ERPs from 300ms onwards. It would be expected that given 

the poorer performance reported in time-based PM tasks, further frontal amplitude 

modulations would be found in older adults with MCI.  

Future research should, therefore, explore whether the ERP components related to 

time-based PM intention retrieval and monitoring are affected in older adults with 
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MCI. To examine this, studies should employ a time-based PM design similar to Cruz et 

al. (2017). In Cruz and colleagues’ study, the participants were required to perform an 

ongoing task (similar to the one used in the current thesis) and to also reset a clock 

every four minutes by a button press. The participants could also press a button to 

check the clock. However, this method could also be extended by including a PM 

condition that relies entirely on participants’ time-estimation to perform the PM task 

and therefore would be cue-independent (Cruz San Martin, 2014). This would be 

feasible in older adults with MCI because generally, their perception of elapsed time 

does not seem to be impaired as a result of cognitive decline (Coelho et al., 2016; Rueda 

& Schmitter-Edgecombe, 2009), therefore, it would provide an appropriate measure 

of a cue free time-based PM.  

 

9.9 Thesis conclusion 

In summary, this thesis demonstrates that there are behavioural and 

neurophysiological differences between responses to a highly salient perceptual and a 

less salient conceptual PM cue. Specifically, the perceptual PM task is associated with 

better performance and produces greater PM-related ERPs relative to those for 

conceptual PM cues. Additionally, the conceptual PM cues are detected later, which 

cause delays to the intention retrieval related ERPs. The current thesis supports the 

PAM theory of PM, suggesting that both PM cue types require attentional processes to 

be detected and are not spontaneously recalled from memory. This is evidenced by an 

interference effect and neurophysiological ‘cost’ incurred in early and late ERP 

components relative to the ongoing-only task. The current thesis also demonstrates, 

for the first time, that RON ERPs are detectable following a PM stimulus. The RON was 

found in both young and older adults, and future studies should seek to determine 

whether a RON response is reliably found in other PM task designs (i.e., tasks that are 

not based on semantics).  

This thesis suggests that older adults may have comparable PM task performance to 

young adults, but that they may require the recruitment of compensatory neural 

mechanisms. Furthermore, this thesis provides the first evidence of 

neurophysiological processing in PM tasks in older adults with MCI. The results 

indicate that conceptual PM may be particularly challenging for older adults with MCI. 
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However, the neurophysiological evidence suggests that PM intentional retrieval and 

maintenance may be spared in MCI. Instead, the neurophysiological evidence suggests 

that feelings of knowing (i.e., indicated by reduced anterior P2 amplitudes) and the 

ability to reorient attention (indicated by RON latency delays) may underpin the 

performance impairments found for the working memory and PM tasks. Future 

studies should further explore the functionality of the P2 in relation to PM and MCI. 

Finally, the current thesis demonstrates for the first time that PM processes can be 

spatiotemporally modelled to gain a greater understanding of the differences between 

groups and provide insight into the nature of typical and atypical ageing processes. 

Moreover, the SNN architecture utilised in this thesis offers improved interpretability 

of the model’s learnt patterns of activity.  

In conclusion, this thesis applies novel SNN methods to provide important insights 

into the neurophysiology of PM, and age-related changes in brain mechanisms 

underpinning PM. It adds to an emerging body of literature using spatiotemporal brain 

dynamics to understand psychological and neurological conditions, supporting a 

classification advantage of SNN methods over traditional ML methods. This work 

offers improved understanding of the effects of typical and atypical ageing in PM and 

provides an important foundation for future research to understand the 

neurophysiology of PM in dementia-related diseases and the application of SNN 

techniques to understand memory-related processes.  
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Appendix A: Spike-time dependent plasticity rule 

 

 
𝐹(∆𝑡) = {

  𝐴+exp (∆𝑡/𝜏+)                  𝑖𝑓 ∆𝑡 < 0 
−𝐴−exp (−∆𝑡/𝜏− )             𝑖𝑓 ∆𝑡 ≥ 0

  

𝐹(∆𝑡) describes the adjustment of synaptic plasticity with respect to the pre-synaptic 

and post-synaptic spiking time in the interval of ∆𝑡 = 𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡. The parameters A+ 

and A- are the maximum amounts for synaptic adjustment, which apply if ∆𝑡 is close 

to zero. The parameters 𝜏+ and 𝜏− control the interval of pre- to post-synaptic spikes 

during which the weakening and the strengthening of the synaptic connection occur. 
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Appendix B: Table of the defined clusters 

 

Cluster Electrode locations 

Left frontal AF7 AFF5 AFF5h FP1 AF3 AFF3h   

Right frontal AFF4h AF4 FP2 AFF6h AFF6 AF8   

Mid frontal AFFz Fz FFCz FCz     

Left 

frontocentral 

FC5h FC3 FC3h FFC5h F3 FFC3h FC1 F1 

Right 

frontocentral 

FC4h FC4 FC6h FFC4h F4 FFC6h FC2 F2 

Left central  C3h C3 C5h C5 T7h    

Mid central  Cz CCPz CPz C2h CCP2h C1h CCP1h  

Right central C4h C4 C6h C6 T8h    

Left 

frontotemporal 

T7 FT7 F7      

Right 

frontotemporal 

F8 FT8 T8      

Left parietal CPP3h P3 CCP1 CP5 CP5h CP3 CPP5h  

Mid parietal CPPz Pz PPOz POz     

Right parietal CPP3h P4 CPP6h CP6 CP6h CP4 CCP2  

Left inferior 

parietal 

TP7 TP7h P5 P7 P9    

Right inferior 

parietal 

P10 P8 P6 TP8 TP8h    

Left occipital PPO5 PO7 PO9 PO11 O1 POO5 PO3h  

Mid occipital POOz Oz OIz Iz     

Right occipital O2 POO6 PO4h PPO6 PO8 PO10 PO12  

Electrodes locations are given in relation to the 10-5 system.   
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Appendix C: Chapter Five, Experiment 1.  

 

Table C.1 

Descriptions of P2, N2 and N400 Amplitudes across Stimuli, Cluster and Hemisphere. 

P2 1-backnontarget 1-backtarget 

Cluster Hemisphere M (µv) SD M (µv) SD 

Frontal Left 2.53 1.69 2.83 2.15 

 Midline 3.56 1.34 4.07 2.26 

 Right 2.57 1.50 3.02 1.72 

Frontocentral Left 3.81 1.19 4.07 1.53 

 Right 3.46 1.11 3.91 1.42 

Central Left 2.51 0.85 2.67 1.07 

 Midline 2.84 1.26 2.92 1.39 

 Right 2.42 1.13 2.71 1.36 

N2 1-backnontarget 1-backtarget 

Cluster Hemisphere M (µv) SD M (µv) SD 

Parietal Left -2.13 1.89 0.14 1.07 

 Midline 0.30 1.24 0.27 1.29 

 Right 0.49 1.00 0.46 1.12 

Inferior Parietal Left -1.09 1.13 -1.38 1.43 

 Right -1.55 1.33 -1.67 1.99 

Occipital Left -2.56 1.76 -2.67 1.85 

 Midline -2.86 1.91 -3.06 2.11 

 Right -2.13 1.89 -2.21 1.99 

N400 1-backnontarget 1-backtarget 

Cluster Hemisphere M (µv) SD M (µv) SD 

Central Left 0.41 1.45 0.15 1.59 

 Midline 0.58 1.31 1.19 1.25 

 Right -0.17 1.18 0.40 1.29 

Parietal Left 3.15 1.51 3.61 1.65 

 Midline 4.22 2.25 4.68 2.29 

 Right 3.10 1.56 3.85 1.69 
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Appendix D: Chapter Five, Experiment 2.  

 

Table D.1.  

Descriptions of ERP N300 Amplitudes across Stimuli, Hemisphere and Cluster  

Stimuli Cluster Hemisphere M 
(µv) 

SD 

1-backtarget Parietal Midline 1.62 1.77 

 Inferior parietal Left -0.47 1.61 

  Right 0.13 2.11 

 Occipital Left 1.21 2.15 

  Midline -0.01 2.43 

  Right 1.36 2.39 

1-backnontarget Parietal Midline 1.36 1.58 

 Inferior parietal Left 0.62 1.54 

  Right 0.38 2.10 

 Occipital Left 1.61 2.22 

  Midline 0.28 2.14 

  Right 1.53 2.20 

PMpercept Parietal Midline 2.20 2.73 

 Inferior parietal Left -1.53 2.23 

  Right -1.46 2.86 

 Occipital Left 0.73 3.03 

  Midline -1.16 3.03 

  Right 0.26 3.10 

PMconcept Parietal Midline 0.87 1.74 

 Inferior parietal Left 0.11 1.84 

  Right -0.26 2.19 

 Occipital Left 0.42 2.25 

  Midline -0.99 2.11 

  Right 0.57 2.42 

 

 

    



342 

 
Table D.2. 

Descriptions of Frontal Positivity ERP Amplitudes across Stimuli, Hemisphere, Cluster  

Stimuli Cluster Hemisphere M (µv) SD 

1-backtarget Frontal Left 1.23 2.32 

  Midline 1.76 2.14 

  Right 2.16 2.84 

 Frontocentral Left 1.56 2.12 

  Right 2.03 1.79 

 Central Left 1.64 1.44 

  Midline 2.92 1.41 

  Right 2.17 1.27 

1-backnontarget Frontal Left  1.24 3.40 

  Midline 0.55 1.67 

  Right 1.17 2.21 

 Frontocentral Left 1.26 1.53 

  Right 0.92 1.55 

 Central Left 1.85 1.42 

  Midline 2.27 1.48 

  Right 1.48 1.21 

PMpercept Frontal Left 1.62 2.78 

  Midline 3.57 2.26 

  Right 2.25 2.60 

 Frontocentral Left 3.54 2.15 

  Right 3.57 2.39 

 Central Left 3.25 2.00 

  Midline 6.30 2.59 

  Right 3.70 1.93 

PMconcept Frontal Left  2.44 2.48 

  Midline 1.79 1.66 

  Right 2.31 1.99 

 Frontocentral Left 2.42 1.70 

  Right 2.05 1.67 
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 Central Left 2.45 1.86 

  Midline 2.60 1.99 

  Right 2.07 1.45 

 

 

Table D.3 

Descriptions of P3b ERP Amplitudes across Stimuli, Hemisphere, Cluster  

Stimuli Cluster Hemisphere M (µv) SD 

1-backtarget Parietal Left 2.46 1.54 

  Midline 4.15 2.37 

  Right 3.37 1.78 

 Central Left 1.24 1.10 

  Midline 1.27 1.27 

  Right 1.82 1.16 

1-backnontarget Parietal Left 3.15 1.51 

  Midline 4.22 2.25 

  Right 3.10 1.56 

 Central Left 1.91 1.44 

  Midline 2.73 1.42 

  Right 1.65 1.24 

PMpercept Parietal Left 2.90 2.02 

  Midline 4.94 3.49 

  Right 3.72 2.00 

 Central Left 2.14 1.86 

  Midline 3.48 1.90 

  Right 2.31 1.67 

PMconcept Parietal Left 1.96 1.35 

  Midline 3.42 2.57 

  Right 2.88 1.75 

 Central Left 1.42 1.63 

  Midline 1.66 1.70 

  Right 1.68 1.42 
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Table D.4 

Descriptions of Intention Retrieval ERP Amplitudes across Stimuli, Hemisphere, Cluster  

Stimuli Cluster Hemisphere M (µv) SD 

1-backtarget Parietal Left 3.61 1.67 

  Midline 4.68 2.29 

  Right 3.85 1.69 

 Central Left 1.78 1.37 

  Midline 3.28 1.54 

  Right 2.58 1.41 

1-backnontarget Parietal Left 3.15 1.51 

  Midline 4.22 2.25 

  Right 3.10 1.56 

 Central Left 1.91 1.44 

  Midline 2.73 1.42 

  Right 1.65 1.24 

PMpercept Parietal Left 5.47 2.60 

  Midline 8.35 4.30 

  Right 6.67 2.44 

 Central Left 3.68 2.11 

  Midline 6.93 2.61 

  Right 4.16 1.80 

PMconcept Parietal Left 3.59 1.71 

  Midline 5.14 2.95 

  Right 4.02 1.95 

 Central Left 2.78 1.90 

  Midline 4.09 2.22 

  Right 2.28 1.43 
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Table D.5. 

Descriptions of Prospective Positivity ERP Amplitudes across Stimuli, Hemisphere, Cluster  

Stimuli Cluster Hemisphere M (µv) SD 

1-backtarget Parietal Left 4.10 2.09 

  Midline 5.02 3.00 

  Right 4.64 2.15 

 Central Left 2.78 2.20 

  Midline 2.86 2.60 

  Right 4.51 1.79 

1-backnontarget Parietal Left 3.28 1.78 

  Midline 4.35 2.30 

  Right 3.38 1.48 

 Central Left 2.28 1.68 

  Midline 3.02 1.86 

  Right 2.63 1.37 

PMpercept Parietal Left 6.13 2.14 

  Midline 7.99 4.28 

  Right 6.44 2.37 

 Central Left 4.93 2.54 

  Midline 6.44 2.47 

  Right 4.52 2.41 

PMconcept Parietal Left 5.43 2.04 

  Midline 6.16 3.12 

  Right 5.13 1.98 

 Central Left 4.13 2.39 

  Midline 5.33 2.56 

  Right 3.32 1.46 
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Table D.5 

Descriptions of Reorientation Negativity ERP Amplitudes across Stimuli and 
Hemisphere at Frontotemporal Clusters 

Stimuli Hemisphere M (µv) SD 

1-backtarget Left -1.95 2.69 

 Right -2.15 2.67 

1-backnontarget Left -1.64 1.60 

 Right -1.93 1.89 

PMpercept Left -4.02 3.14 

 Right -4.82 3.09 

PMconcept Left -3.18 2.73 

 Right -3.51 2.95 
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Appendix E: Chapter Six, ERP amplitude and latencies.  

 

Table E.1 

Means and Standard Deviations of P2 Amplitudes across Stimuli, Hemisphere, Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M (µv) SD M (µv) SD M (µv) SD 

1-backtarget Frontal Midline 4.08 2.33 4.31 1.54 3.12 1.34 

  Left 3.14 2.06 4.25 2.33 2.98 2.32 

  Right 3.15 1.71 4.43 2.32 3.23 2.25 

 Frontocentral Left 4.13 1.52 4.35 1.49 3.47 1.18 

  Right 3.90 1.41 4.30 1.58 3.13 1.29 

 Central Midline 3.97 1.27 3.85 1.77 3.11 0.99 

  Left 2.68 1.06 3.10 1.95 2.78 1.05 

  Right 2.75 1.38 2.81 1.41 2.65 1.16 

1-backnontarget Frontal Midline 3.58 1.32 3.70 1.73 2.91 1.40 

  Left 2.82 1.52 346 2.36 2.99 2.32 

  Right 2.58 1.53 3.65 2.13 3.11 1.57 

 Frontocentral Left 3.85 1.17 3.74 1.63 2.46 1.07 

  Right 3.54 1.67 3.87 1.80 2.80 0.93 

 Central Midline 2.55 1.21 3.04 

 

1.36 2.68 1.29 

  Left 2.54 0.84 2.80 1.56 2.15 1.05 

  Right 2.55 1.21 3.04 1.36 2.68 1.29 

Ongoing + 
PMpercept 

Frontal Midline 3.58 1.46 3.82 1.57 2.67 1.39 

  Left 2.56 1.47 3.14 1.59 3.66 3.83 
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  Right 2.60 1.47 3.25 1.27 3.40 3.65 

 Frontocentral Left 3.70 1.19 4.16 1.45 2.83 1.29 

  Right 3.52 1.31 4.06 1.45 2.83 1.08 

 Central Midline 3.07 1.26 3.88 1.81 2.71 1.08 

  Left 2.65 1.11 3.50 1.87 2.31 1.03 

  Right 2.54 1.25 3.50 2.01 2.58 1.09 

Ongoing + 
PMconcept 

Frontal Midline 3.58 1.37 3.74 1.81 2.56 0.88 

  Left 2.90 1.62 350 2.19 2.42 1.24 

  Right 2.69 1.52 3.41 2.37 2.66 1.37 

 Frontocentral Left 3.79 1.21 3.82 1.59 2.75 0.94 

  Right 3.57 1.22 3.95 1.61 2.90 0.79 

 Central Midline 2.98 1.22 3.54 1.55 3.04 1.90 

  Left 2.51 0.88 3.11 1.58 2.20 0.78 

  Right 2.59 1.03 3.20 1.22 2.59 0.76 

 

Table E.2 

Means and Standard Deviations of RON Amplitudes across Stimuli, Hemisphere, Cluster and Group  

  YA OA MCI 

Stimuli Hemisphere M (µv) SD M (µv) SD M (µv) SD 

1-backtarget Left 607.22 106.12 626.13 104.61 652.17 104.43 

 Right 560.61 111.01 616.78 110.28 619.91 117.46 

1-backnontarget Left 606.27 97.10 668.59 92.16 710.94 81.50 

 Right 586.34 128.76 657.48 125.86 676.80 112.55 

PMpercept Left 547.28 93.93 620.89 77.13 678.67 102.31 

 Right 558.32 108.00 603.21 106.20 670.18 106.00 

PMconcept Left 642.24 56.58 603.00 108.92 660.33 97.10 
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 Right 636.99 93.53 616.98 113.87 660.33 114.16 

 

 

Table E.3 

Means and Standard Deviations of RON Amplitudes across Stimuli, Hemisphere, Cluster and Group 

  YA OA MCI 

Stimuli Hemisphere M (ms) SD M (ms) SD M (ms) SD 

1-backtarget Left -1.95 2.69 -2.40 2.38 -2.68 2.96 

 Right -2.15 2.67 -0.63 2.73 -0.63 3.01 

1-backnontarget Left -1.64 1.30 -2.66 2.33 -2.34 3.87 

 Right -1.93 1.89 -1.95 2.28 -1.12 4.26 

PMpercept Left -4.02 3.14 -2.52 3.33 -2.51 1.49 

 Right -4.82 3.09 -0.59 2.66 -0.22 1.79 

PMconcept Left -3.18 2.73 -2.19 2.09 -4.47 1.71 

 Right -3.51 2.95 -0.57 2.10 -0.02 1.99 

 

Table E.4 

Means and Standard Deviations of IRR Amplitudes across Stimuli, Hemisphere, Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M (µv) SD M (µv) SD M (µv) SD 

1-backtarget Parietal Midline 4.68 2.29 3.77 2.63 2.59 6.64 

  Left 3.61 1.67 2.89 2.05 2.60 1.74 

  Right 3.85 1.69 3.99 1.90 3.54 2.13 

 Central Midline 3.28 1.54 2.85 1.96 2.48 2.22 

  Left 1.78 1.37 1.25 1.90 2.45 2.41 

  Right 2.58 1.41 3.22 1.66 2.92 1.57 
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1-backnontarget Parietal Midline 4.22 2.25 2.73 2.02 216 2.35 

  Left 3.15 1.51 2.81 1.91 2.10 1.04 

  Right 3.10 1.56 2.77 1.64 2.07 1.70 

 Central Midline 2.73 1.42 2.95 1.91 1.83 1.83 

  Left 1.91 1.44 2.33 1.56 2.41 2.72 

  Right 1.65 1.24 2.01 1.47 1.41 1.01 

PMpercept Parietal Midline 8.35 4.30 4.40 3.14 4.13 2.21 

  Left 5.47 2.60 5.01 2.72 4.27 1.99 

  Right 6.67 2.44 5.00 2.64 4.09 2.49 

 Central Midline 6.93 2.61 4.87 2.93 4.00 3.66 

  Left 3.68 2.11 3.69 2.23 3.57 2.40 

  Right 4.16 1.80 3.74 2.13 3.04 1.73 

PMconcept Parietal Midline 5.14 2.95 3.18 2.45 3.18 2.90 

  Left 3.59 1.71 3.87 2.79 3.35 1.84 

  Right 4.02 1.95 3.18 2.42 3.50 2.16 

 Central Midline 4.09 2.22 3.72 2.36 3.08 3.45 

  Left 2.78 1.90 3.46 2.60 2.85 1.57 

  Right 2.28 1.43 2.95 2.58 2.83 2.20 

 

Table E.5 

Means and Standard Deviations of IRR Latencies across Stimuli, Hemisphere, Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M 
(ms) 

SD M (ms) SD M 
(ms) 

SD 

1-backtarget Parietal Midline 552.46 82.38 593.75 72.32 606.99 81.70 

  Left 569.75 81.49 613.49 46.37 593.01 76.92 

  Right 564.04 79.34 598.07 59.91 597.87 71.80 
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 Central Midline 564.87 73.74 591.80 77.61 566.84 94.14 

  Left 560.97 86.18 545.74 76.08 525.61 83.33 

  Right 557.62 75.81 565.07 87.91 585.73 56.67 

1-
backnontarget 

Parietal Midline 555.80 78.98 606.63 73.36 615.67 75.75 

  Left 558.73 90.93 598.99 68.81 571.62 86.80 

  Right 565.99 79.19 604.34 69.92 594.62 61.96 

 Central Midline 718.61 124.34 740.45 100.16 777.34 103.17 

  Left 849.19 199.67 795.13 116.91 814.35 122.16 

  Right 808.45 117.63 790.09 115.44 797.29 128.62 

PMpercept Parietal Midline 646.82 40.31 699.44 96.19 708.40 96.90 

  Left 791.99 121.44 752.50 119.42 791.99 121.44 

  Right 643.32 63.02 725.69 127.32 768.56 134.66 

 Central Midline 653.42 75.88 715.93 113.34 768.56 127.39 

  Left 793.64 131.91 808.16 133.28 850.59 132.36 

  Right 753.23 136.39 785.05 137.74 832.03 132.35 

PMconcept Parietal Midline 712.28 104.32 776.32 112.14 780.66 104.57 

  Left 798.36 118.42 803.42 122.79 833.79 115.47 

  Right 765.89 134.62 814.76 129.10 857.42 95.61 

 Central Midline 753.64 138.93 771.22 112.34 834.38 125.25 

  Left 825.97 124.22 862.12 108.21 883.01 128.69 

  Right 837.15 145.70 802.94 143.84 864.45 133.24 

 

Table E.6 

Means and Standard Deviations of N300 Amplitudes across Stimuli, Hemisphere, Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M (µv) SD M (µv) SD M (µv) SD 
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1-backtarget Occipital Midline -0.01 2.43 -1.35 2.13 -1.30 2.44 

  Left 1.21 2.15 -0.14 2.02 -0.46 2.10 

  Right 1.36 2.39 0.13 2.02 -0.08 2.58 

 Inferior parietal Left -0.47 1.61 -1.39 2.41 -0.98 1.94 

  Right 0.11 2.11 -0.40 2.10 -0.68 1.30 

 Parietal Midline 1.62 1.77 0.83 1.98 0.003 1.98 

  Left 0.97 1.36 0.13 1.54 0.71 1.51 

  Right 1.53 1.46 1.20 1.34 0.80 1.17 

1-backnontarget Occipital Midline 0.28 2.14 -1.85 2.80 -1.36 2.42 

  Left 1.61 2.22 -0.33 1.93 0.08 1.87 

  Right 1.53 2.20 -0.56 2.11 0.07 1.77 

 Inferior 
parietal 

Left 0.62 1.54 -1.31 1.47 -0.53 1.50 

  Right 0.38 2.10 -0.81 2.40 -0.59 1.35 

 Parietal Midline 1.36 1.58 0.70 1.59 0.29 2.00 

  Left 0.97 1.28 0.76 1.40 0.72 0.99 

  Right 1.22 1.47 0.97 1.33 0.50 1.19 

Ongoing + 
PMpercept 

Occipital Midline -1.16 3.03 -2.95 2.93 -2.17 3.79 

  Left 0.73 3.03 -1.04 2.84 -0.33 2.95 

  Right 0.26 3.10 -0.83 2.56 -0.47 2.11 

 Inferior 
parietal 

Left -1.58 223 -1.82 2.02 -0.87 1.42 

  Right -1.46 2.86 -1.53 2.05 -0.48 1.65 

 Parietal Midline 2.20 2.73 0.36 1.91 0.62 2.01 

  Left 1.10 1.90 0.88 1.79 0.76 1.73 

  Right 1.80 1.60 1.26 1.74 0.68 2.12 
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Ongoing + 
PMconcept 

Occipital Midline -0.99 2.11 -2.76 3.21 -1.78 2.23 

  Left 0.42 2.45 -0.79 2.13 -0.06 1.70 

  Right 0.57 2.42 -0.70 2.52 0.05 1.75 

 Inferior 
parietal 

Left 0.11 1.84 -0.96 1.99 -1.10 1.83 

  Right -0.26 2.19 -1.21 2.12 -0.73 1.61 

 Parietal Midline 0.87 1.74 0.67 1.72 0.56 1.65 

  Left 0.53 1.20 0.74 1.35 0.66 1.62 

  Right 0.93 1.22 0.79 1.36 1.51 1.61 

 

 

 

Table E.7 

Means and Standard Deviations of N300 Latencies across Stimuli, Hemisphere, Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M 
(ms) 

SD M 
(ms) 

SD M 
(ms) 

SD 

1-backtarget Occipital Midline 353.93 66.12 380.76 68.88 371.71 73.15 

  Left 365.93 66.05 393.30 68.31 399.88 74.85 

  Right 416.38 63.70 390.73 71.89 396.38 78.14 

 Inferior parietal Left 354.91 52.08 390.83 63.31 390.63 78.58 

  Right 418.95 63.31 367.50 70.19 393.45 81.17 

 parietal Midline 352.40 66.02 366.37 60.44 395.56 74.76 

  Left 345.29 53.89 408.10 57.32 415.50 72.41 

  Right 389.79 63.12 378.08 61.92 401.52 69.95 

1-backnontarget Occipital Midline 365.37 77.21 428.15 69.82 400.29 83.80 

  Left 394.67 77.45 434.83 62.19 431.74 72.56 
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  Right 417.82 70.23 445.72 70.25 432.36 68.51 

 Inferior 
parietal 

Left 376.95 79.44 402.86 64.29 380.96 75.03 

  Right 429.83 69.53 411.80 74.81 412.76 78.27 

 parietal Midline 354.21 63.30 405.74 77.56 387.95 75.80 

  Left 351.28 57.20 376.75 58.43 409.95 68.18 

  Right 403.88 57.56 431.95 67.31 431.74 56.93 

Ongoing + 
PMpercept 

Occipital Midline 359.91 69.72 403.43 73.23 512.31 80.33 

  Left 375.14 73.77 405.49 65.32 396.83 77.92 

  Right 349.95 65.39 399.74 74.33 395.31 82.40 

 Inferior 
parietal 

Left 425.78 72.36 396.27 70.45 411.52 80.03 

  Right 100.86 73.23 372.72 56.13 385.74 66.44 

 parietal Midline 335.94 46.02 409.40 72.31 392.58 77.51 

  Left 350.49 44.07 376.74 56.05 384.18 68.97 

  Right 344.02 33.33 382.92 59.36 362.89 54.42 

Ongoing + 
PMconcept 

Occipital Midline 401.23 84.72 436.47 70.05 399.02 87.60 

  Left 390.63 77.38 422.08 74.02 412.11 79.75 

  Right 420.80 75.10 433.80 71.80 409.77 80.53 

 Inferior 
parietal 

Left 37136 67.10 379.83 61.60 353.91 60.45 

  Right 442.48 60.26 409.13 70.53 403.13 71.88 

 parietal Midline 401.27 84.72 436.47 70.05 399.02 87.60 

  Left 390.63 77.83 422.08 74.02 412.11 79.45 

  Right 420.80 75.10 433.80 71.80 409.77 80.53 
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Table E.8 

Means and Standard Deviations of Frontal Positivity Amplitudes across Stimuli, Hemisphere, Cluster 
and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M (µv) SD M (µv) SD M (µv) SD 

1-backtarget Frontal Midline 1.76 2.14 3.85 2.40 2.97 1.84 

  Left 1.23 3.32 3.74 3.15 3.42 2.45 

  Right 2.16 2.84 4.68 2.28 4.20 1.96 

 

 Frontocentral Left 1.56 2.12 3.49 1.81 3.18 2.03 

  Right 2.03 1.79 4.37 1.81 2.98 1.51 

 Central Midline 2.92 1.41 2.45 1.38 2.01 1.60 

  Left 1.64 1.44 1.80 1.45 2.81 2.07 

  Right 2.17 1.27 2.78 1.63 2.85 1.65 

1-backnontarget Frontal Midline 0.55 1.67 3.62 2.65 2.44 1.64 

  Left 1.24 2.40 3.73 3.75 3.61 2.01 

  Right 1.17 2.21 3.30 2.58 3.03 1.49 

 Frontocentral Left 1.26 1.53 3.68 2.42 2.78 1.80 

  Right 0.92 155 3.53 1.99 2.20 1.53 

 Central Midline 2.27 1.48 2.57 1.74 1.68 1.56 

  Left 1.85 1.42 2.17 1.37 2.56 2.39 

  Right 1.49 1.21 2.05 1.43 1.55 1.04 

Ongoing + 
PMpercept 

Frontal Midline 3.57 2.26 5.21 3.06 3.86 2.86 

  Left 1.62 2.78 4.33 2.27 3.91 3.05 

  Right 2.25 2.60 4.73 2.35 4.19 3.79 

 Frontocentral Left 3.54 2.15 5.39 2.79 4.56 2.89 



356 

 

  Right 3.57 2.39 5.62 3.11 3.77 1.98 

 Central Midline 6.30 2.59 4.03 2.38 2.84 2.25 

  Left 3.25 1.99 3.31 1.89 2.86 1.52 

  Right 3.70 1.93 3.64 1.88 2.76 1.84 

Ongoing + 
PMconcept 

Frontal Midline 1.79 1.66 4.11 2.64 3.23 1.94 

  Left 2.44 2.48 4.01 2.93 3.87 2.29 

  Right 2.31 1.99 4.47 2.71 4.24 4.33 

 Frontocentral Left 2.42 1.70 4.52 2.23 3.47 1.61 

  Right 2.05 1.67 4.65 2.84 2.96 1.92 

 Central Midline 2.60 1.90 3.16 2.02 2.92 2.78 

  Left 2.45 1.87 3.12 2.26 2.61 1.21 

  Right 2.07 1.45 3.01 2.26 2.90 2.05 

 

 

Appendix F: Chapter Seven, Prospective Memory 

Monitoring ERP Descriptions 

 

Table F.1 

Means and Standard Deviations of P2 Amplitudes across Stimuli, Hemisphere, Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M (µv) SD M (µv) SD M (µv) SD 

Ongoing-only Frontal Midline 4.08 2.33 4.31 1.54 3.12 1.34 

  Left 3.14 2.06 4.25 2.33 2.98 2.32 

  Right 3.15 1.71 4.43 2.32 3.23 2.25 

 Frontocentral Left 4.13 1.52 4.35 1.49 3.45 1.21 
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  Right 3.90 1.41 4.30 1.58 3.07 1.31 

 Central Midline 3.97 1.27 3.85 1.77 3.11 0.99 

  Left 2.68 1.06 3.10 1.95 2.78 1.05 

  Right 2.75 1.38 2.81 1.41 2.65 1.16 

Ongoing + 
PMpercept 

Frontal Midline 3.58 1.46 3.82 1.57 2.67 1.39 

  Left 2.56 1.78 3.14 1.59 6.67 3.83 

  Right 2.60 1.47 3.25 1.27 3.40 3.65 

 Frontocentral Left 3.70 1.19 4.16 1.50 2.85 1.32 

  Right 3.52 1.31 4.06 1.48 2.82 1.11 

 Central Midline 3.07 1.26 3.88 1.81 2.71 1.08 

  Left 2.65 1.11 3.50 1.87 2.31 1.03 

  Right 2.54 1.25 3.50 2.01 2.58 1.10 

Ongoing + 
PMconcept 

Frontal Midline 3.58 1.37 3.74 1.81 2.56 0.88 

  Left 2.90 1.62 3.50 2.19 2.42 1.24 

  Right 2.69 2.52 3.41 2.37 2.66 1.37 

 Frontocentral Left 3.79 1.21 3.82 1.59 2.83 0.90 

  Right 3.57 1.22 3.95 1.61 2.95 0.80 

 Central Midline 2.98 1.22 3.54 1.55 3.05 1.90 

  Left 2.51 0.88 3.11 1.57 2.20 0.78 

  Right 2.59 1.03 3.20 1.22 2.59 0.76 

 

Table F.2 

Means and Standard Deviations of P2 ERP Latencies across Stimuli, Hemisphere, Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M (ms) SD M (ms) SD M (ms) SD 
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Ongoing-only Frontal Midline 197.27 22.94 198.80 29.80 201.89 30.84 

  Left 193.22 36.07 196.85 33.68 196.83 31.02 

  Right 184.85 25.83 198.51 32.07 203.78 33.07 

 Frontocen
tral 

Left 195.87 23.36 204.67 32.74 203.56 30.23 

  Right 200.20 22.89 202.49 32.78 210.53 35.30 

 Central Midline 198.94 27.70 191.73 33.75 194.44 30.33 

  Left 205.50 21.22 196.24 34.02 212.79 33.23 

  Right 190.43 34.58 201.28 30.80 197.99 35.18 

Ongoing + 
PMpercept 

Frontal Midline 199.23 17.66 199.01 25.47 202.73 27.41 

  Left 20.37 24.32 204.64 30.20 203.91 27.02 

  Right 196.53 24.33 203.97 30.73 204.98 29.99 

 Frontocen
tral 

Left 201.37 16.19 207.03 31.97 195.70 22.42 

  Right 200.84 18.92 200.06 26.22 207.23 32.91 

 Central Midline 196.39 25.78 187.39 19.76 195.31 24.38 

  Left 201.78 20.73 197.74 27.50 209.77 25.67 

  Right 18.55 26.90 203.55 32.21 194.92 31.35 

Ongoing + 
PMconcept 

Frontal Midline 198.82 21.23 193.75 22.06 197.66 28.83 

  Left 194.64 24.24 203.91 33.91 212.70 30.43 

  Right 192.21 27.35 196.65 30.03 206.25 29.68 

 Frontocen
tral 

Left 199.49 21.19 202.67 31.76 197.85 27.83 

  Right 199.89 22.44 202.01 31.69 205.66 36.23 

 Central Midline 191.41 25.55 194.36 28.32 201.17 34.44 

  Left 204.20 25.23 202.55 30.24 197.66 36.57 
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  Right 195.99 31.63 203.78 33.07 204.49 37.54 

 

 

Table F.3 

Means and Standard Deviations of N2 ERP Amplitudes across Stimuli, Hemisphere, Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M (µv) SD M (µv) SD M (µv) SD 

Ongoing - only Parietal Midline -0.02 1.22 0.36 1.43 -0.60 1.57 

  Left -0.06 0.93 0.35 1.17 0.15 0.90 

  Right 0.10 1.06 0.74 1.16 0.49 1.29 

 Inferior parietal Left -1.67 1.29 -1.81 2.00 -1.97 1.55 

  Right -1.88 1.20 -2.06 1.46 -1.65 1.83 

 Occipital Midline -3.22 2.14 -3.39 2.30 -2.48 2.14 

  Left -2.85 2.08 -2.60 1.99 -2.46 1.29 

  Right -2.38 1.84 -2.41 2.24 -2.30 2.90 

Ongoing + PMpercept Parietal Midline 0.33 1.21 0.59 1.57 -0.23 1.16 

  Left 0.02 1.13 0.59 1.31 0.02 0.59 

  Right 0.25 0.95 0.95 1.15 0.53 0.92 

 Inferior parietal Left -1.56 1.34 -1.81 2.43 -1.89 1.18 

  Right -1.41 1.20 -2.04 1.32 -1.13 1.05 

 Occipital Midline -3.03 1.89 -3.20 2.64 -2.08 2.18 

  Left -2.89 1.67 -2.64 1.81 -2.57 2.06 

  Right -2.54 1.87 -2.28 2.47 -1.71 1.47 

Ongoing + PMconcept Parietal Midline 0.24 1.25 0.74 1.57 -0.24 1.25 

  Left 0.04 0.94 0.52 1.31 0.08 0.68 

  Right 0.34 0.90 0.73 1.11 0.45 0.83 
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 Inferior parietal Left -1.55 0.94 -1.85 1.29 -1.27 1.11 

  Right -1.68 1.12 -1.65 1.36 -1.11 1.31 

 Occipital Midline -3.16 2.18 -3.28 2.72 -2.63 1.98 

  Left -2.85 1.89 -2.31 1.58 -2.52 1.63 

  Right -2.36 2.14 -1.96 1.87 -1.86 1.56 

 

Table F.4 

Means and Standard Deviations of N2 ERP Latencies across Stimuli, Hemisphere, Cluster and Group. 

   YA OA MCI 

Stimuli Cluster Hemisphere M (ms) SD M (ms) SD M (ms) SD 

Ongoing-only Parietal Midline 201.03 33.22 180.72 36.74 206.00 41.91 

  Left 186.66 31.60 185.55 37.14 198.19 38.49 

  Right 191.41 35.10 180.20 35.40 183.18 34.37 

 Inferior parietal Left 189.87 32.50 200.25 34.03 193.26 32.12 

  Right 195.59 30.76 200.14 33.94 196.18 29.55 

 Occipital Midline 197.27 25.08 194.39 32.74 197.16 38.70 

  Left 187.50 22.10 189.56 24.02 195.72 31.49 

  Right 185.76 23.04 184.62 23.47 189.35 28.63 

Ongoing + 
PMpercept 

Parietal Midline 212.15 35.34 200.51 37.71 214.65 38.49 

  Left 184.94 30.06 212.42 36.63 207.03 39.96 

  Right 207.84 36.93 211.47 39.33 208.40 37.75 

 Inferior parietal Left 196.93 26.40 210.73 28.08 198.83 25.78 

  Right 191.95 26.92 215.48 37.08 206.64 30.62 

 Occipital Midline 202.32 19.85 194.63 26.24 194.34 29.06 

  Left 191.27 20.50 194.89 27.12 188.48 20.23 
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  Right 189.52 21.10 192.15 26.43 192.38 23.57 

Ongoing + 
PMconcept 

Parietal Midline 213.36 35.72 207.22 39.65 208.20 34.06 

  Left 192.21 31.47 207.72 38.00 205.47 30.32 

  Right 208.78 36.44 204.96 39.07 209.77 31.41 

 Inferior parietal Left 195.58 29.40 200.14 33.37 207.23 24.53 

  Right 199.62 26.54 208.59 33.26 207.23 36.08 

 Occipital Midline 200.30 21.29 194.98 30.74 197.85 37.56 

  Left 193.29 22.16 188.83 22.86 192.38 28.56 

  Right 288.98 21.41 289.96 24.92 190.82 26.38 

 

Table F.5 

Descriptions of Early Frontal Positive (EFP) Amplitudes across Stimuli, Hemisphere, Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M (µv) SD M (µv) SD M (µv) SD 

Ongoing-only Frontal Midline 4.16 2.21 4.34 1.53 3.62 1.55 

  Left 0.90 2.43 347 2.96 3.47 2.46 

  Right 1.53 2.69 4.53 2.28 3.80 2.54 

 Frontocentral Left 3.97 1.81 4.37 1.50 3.93 1.36 

  Right 3.93 1.43 4.31 1.59 3.63 1.82 

 Central Midline 3.10 1.25 3.87 1.75 3.35 1.09 

  Left 2.70 1.07 3.16 1.90 3.20 1.30 

  Right 2.75 1.40 2.82 1.41 3.21 1.61 

 Frontotemporal Left 3.29 1.32 3.22 2.61 2.48 2.19 

  Right 2.52 1.27 2.59 1.45 2.57 2.00 

Ongoing + 
PMpercept 

Frontal Midline 3.59 1.46 3.86 1.58 2.90 1.48 
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  Left 1.00 2.83 2.54 2.16 3.81 3.76 

  Right 0.85 1.81 3.32 1.24 3.50 3.59 

 Frontocentral Left 3.97 1.81 4.37 1.50 3.93 1.36 

  Right 3.93 1.43 4.31 1.59 3.63 1.82 

 Central Midline 3.07 1.26 3.90 1.83 2.84 1.06 

  Left 2.65 1.12 3.45 2.00 2.53 1.10 

  Right 2.54 1.24 3.54 2.03 2.78 1.26 

 Frontotemporal Left 2.25 1.43 2.14 1.78 1.93 1.57 

  Right 2.16 1.44 2.68 2.21 2.14 1.51 

Ongoing + 
PMconcept 

Frontal Midline 3.58 1.37 3.72 1.93 2.82 1.88 

  Left 1.03 2.17 3.28 2.00 2.79 1.90 

  Right 0.98 2.01 3.33 2.34 3.47 3.52 

 Frontocentral Left 3.80 1.21 3.84 1.69 3.10 1.79 

  Right 3.57 1.22 3.87 1.65 3.14 1.86 

 Central Midline 2.98 1.22 3.47 1.65 3.20 2.38 

  Left 2.52 0.88 3.09 1.65 2.43 1.61 

  Right 2.59 1.03 3.29 1.25 2.90 2.11 

 Frontotemporal Left 2.34 1.29 2.49 1.94 2.09 1.76 

  Right 2.10 1.41 2.34 1.56 2.52 1.36 

 

Table F.6 

Means and Standard Deviations of Late Frontal Positive (LFP) Amplitudes across Stimuli, Hemisphere, 

Cluster and Group 

   YA OA MCI 

Stimuli Cluster Hemisphere M (µv) SD M (µv) SD M (µv) SD 



363 

 

Ongoing-only Frontal Midline 1.52 3.14 3.06 2.46 3.45 3.63 

  Left 3.09 2.87 3.55 4.54 3.30 3.94 

  Right 4.43 5.83 5.90 4.64 4.37 3.55 

 Frontocentral Left 2.27 3.36 3.22 4.06 3.51 4.04 

  Right 3.76 1.53 4.98 2.20 4.02 2.44 

 Central Midline 3.53 2.70 3.37 1.86 3.65 2.60 

  Left 2.66 2.26 3.05 3.99 3.14 3.61 

  Right 4.50 1.80 4.78 2.70 3.80 2.31 

 Frontotemporal Left 1.84 3.53 2.82 5.30 1.10 2.88 

  Right 3.29 4.81 3.21 3.38 2.39 5.08 

Ongoing + 

PMpercept 

Frontal Midline 0.93 2.11 2.98 2.50 1.91 2.19 

  Left 5.32 5.04 3.94 3.88 2.80 4.31 

  Right 5.45 5.43 5.54 4.17 3.74 2.19 

 Frontocentral Left 2.84 3.25 2.97 2.50 19.69 3.13 

  Right 3.27 3.22 5.28 3.39 3.20 1.34 

 Central Midline 3.53 2.70 3.37 1.86 3.65 2.60 

  Left 2.66 2.57 3.05 3.99 3.14 3.61 

  Right 4.50 1.80 4.78 2.70 3.80 2.31 

  Left 3.32 3.68 1.85 4.76 1.14 2.25 

  Right 3.09 3.49 2.88 3.20 2.25 2.32 
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Ongoing + 

PMconcept 

Frontal Midline 0.88 2.07 3.70 3.16 2.85 3.33 

  Left 6.03 5.29 4.80 5.13 3.57 3.64 

  Right 4.74 4.91 6.34 5.04 4.90 5.33 

 Frontocentral Left 2.47 2.91 4.15 5.13 2.67 3.14 

  Right 2.76 1.54 5.33 3.04 3.31 2.87 

 Central Midline 2.53 1.75 3.61 3.47 3.92 3.96 

  Left 2.19 1.93 2.59 4.00 1.90 2.91 

  Right 2.87 1.47 4.09 3.07 3.48 2.72 

 Frontotemporal Left 3.46 4.51 1.79 3.64 -0.39 2.57 

  Right 3.35 3.98 3.04 2.96 2.38 3.73 

 

 

 


