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Abstract

The Global Yield Gap Atlas (GYGA) is an international project that addresses global food
production capacity in the form of yield gaps (Yg). The GYGA project is unique in employing
its original Climate Zonation Scheme (CZS) composed of three indexed factors, i.e. Growing
Degree Days (GDD) related to temperature, Aridity Index (AI) related to available water and
Temperature Seasonality (TS) related to annual temperature range, creating 300 Climate
Zones (CZs) theoretically across the globe. In the present study, the GYGA CZs were identi-
fied for Japan on a municipality basis and analysis of variance (ANOVA) was performed on
irrigated rice yield data sets, equating to actual yields (Ya) in the GYGA context, from long-
term government statistics. The ANOVA was conducted for the data sets over two decades
between 1994 and 2016 by assigning the GDD score of 6 levels and the TS score of 2 levels
as fixed factors. Significant interactions with respect to Ya were observed between GDD score
and TS score for 13 years out of 21 years implying the existence of favourable combinations of
the GDD score and the TS score for rice cultivation. The implication was also supported by
the observation with Yg. The lower values of coefficient of variance obtained from the CZs
characterized by medium GDD scores indicated the stability over time of rice yields in
these areas. These findings suggest a possibility that the GYGA-CZS can be recognized as a
tool suitable to identify favourable CZs for growing crops.

Introduction

The year 2020 was experienced as an unprecedented year all over the globe. As a response to
the Covid-19 pandemic declared by the World Health Organization on 11th March, food
export restrictions were imposed by several nations (Hepburn et al., 2020). In addition, reports
of flooding along the Yangtze river (Myers, 2020) and locust attacks in various parts of the
world (FAO, 2020) led to concerns about food supply and attention was focused on food
security in particular in nations like Japan that are heavily dependent on food imports. An
international project named Global Yield Gap Atlas (GYGA) initiated by Van Ittersum
et al. (2013) has been helping to provide the international community with the basic knowl-
edge to address the issue of food security by adopting the simulation approach using crop
models. In the GYGA project, the possibility for achieving the world’s food production cap-
acity is expressed in the form of yield gaps (Yg), i.e. the difference between potential (Yp)
and actual yields (Ya). The visualization has been aiding the next step to follow, i.e. closing
and narrowing Yg (Hochman et al., 2016). What makes GYGA different from other yield
gap studies (Sentelhas et al., 2015) is that its original Climate Zonation Scheme (CZS) was
developed in the project (Van Wart et al., 2013) allowing it to be used on a global basis.
The climate here is used in a conservative context in accordance with the definition ‘the wea-
ther conditions prevailing in an area in general or over a long period’ (Lexico Dictionaries,
2019).

The Köppen climate classification system (Köppen, 1936; Peel et al., 2007) developed by the
Russian-German botanist-climatologist Wladimir Köppen (Arnfield, 2021) is a means to cat-
egorize climate zones over the world. Something special about the Köppen climate classifica-
tion is that it depicted world climate defined by temperature and precipitation in relation to
terrestrial vegetative biomes. In the Köppen’s system, most of the areas in Japan fall into
four classes, i.e. Dfa, Dfb and Dwb (humid continental climate) and Cfa (humid subtropical
climate). These four climate categories are, however, too coarse to accommodate the climatic
heterogeneity that is relevant to agriculture across a mountainous island landscape as found in
Japan. The GYGA-CZS is composed of three factors, i.e. Growing Degree Days (GDD: an
index to address temperature), Aridity Index (AI: an index to address precipitation and evapo-
transpiration) and Temperature Seasonality (TS: an index to address annual temperature
range) (Van Wart et al., 2013; GYGA, 2021). The number of combinations of the three factors
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theoretically amounts to 300, approximately 20 of which have been
observed in Japan. This would suggest that the CZS may be more
suitable than the Köppen climate classification in explaining yield
differences of crops between regions. A growing number of papers
have been published using CZS (Edreira et al., 2018; Deng et al.,
2019), although its validity especially in terms of TS, the index
that is considered to differentiate temperate and tropical climates
(Edreira et al., 2018), has not been tested explicitly.

Hochman et al. (2016) raised the point that information con-
tained within smaller climate zones can be missed out under the
current GYGA protocols where a 100 km buffer zone around the
selected Reference Weather Station (RWS) defines the smallest
scale. They compared GYGA with a data-rich approach in a
study performed on wheat in Australia. Actual annual wheat
grain yields were obtained from the national agricultural data col-
lated by the Australian Bureau of Statistics at the level of statistical
division annually, and at the finer scale of statistical local area
every 5 years when a census was performed. As Hochman et al.
(2016) have shown, there is the potential to lose information
under the current GYGA protocols; this would be a concern for
a small and long-shaped country like Japan. The width of the
main island is very often below 100 km, the size of buffer zones
defined in the GYGA protocol. In addition, a chain of mountains
runs through the main island as if it were its spine creating cli-
mate gradation caused by diverse altitudes. This is where an alter-
native approach needs to be explored so that Japan and other
countries in similar positions could also participate in the
GYGA project and seek a way to contribute to the problem of
future global food security. Apart from the difficulties associated
with its geography, rice production in Japan might provide a per-
fect test case to explore the potential of the CZS as a tool to
explain yield differences for three reasons: (1) Rice cultivars of
similar backgrounds have been produced from north to south
(Yamamoto et al., 2010). (2) Statistical records of rice yield over
the last 30 years on a municipality scale are easily accessible. (3)
Most rice in Japan is irrigated, removing the necessity to include
AI, an index related to available water to crops. Removal of AI
makes the CZS a simplified scheme composed of only two factors,
i.e. GDD and TS.

The prime objective of the present study was to find out using
actual rice yield (Ya) if the GDD and TS scores defined in the
GYGA-CZS could be utilized to identify rice production areas
of favourable characteristics, especially those that are high-
yielding and stable-yielding. To do this, we developed an alterna-
tive approach to deal with CZS in order to overcome the relatively
small geographical scale and mountainous topography of Japan as
well as to utilize statistical information stored, mostly, on a muni-
cipality basis. This allowed the evaluation of the GYGA-CZS
using estimated Yg, i.e. the gaps between simulated Yp by a
crop growth model and Ya.

Materials and methods

Identification of climate zones on a municipality basis

The original map of GYGA-CZS (GYGA, 2021) is composed of
approximately 10 km × 10 km grid-cells of various Climate
Zones (CZs) expressed as four or five-digit-integers. The integers
are defined by the combination of three factors, i.e. GDD score
(1000, 2000, 3000 … 10 000, where smaller numbers coincide
with colder climate), AI score (000, 1000, 2000 … 900, with smal-
ler numbers coinciding with drier climate) and TS score, in other

words, annual temperature range (1, 2 or 3: smaller numbers
coincide with smaller annual temperature range) (Fig. 1). So,
for example, a CZ score of 4903 has a GDD score of 4000, an
AI score of 900 and a TS score of 3, indicating a cool, wet climate
with large variation in temperature over the course of the year.
The actual ranges for each factor are listed in Supplementary
information. However, it is on a municipality basis, not on a grid-
cell basis, where statistical information such as crop yields is accu-
mulated and policies are implemented. In the present study, the
CZs in the framework of GYGA-CZS were identified on a muni-
cipality scale to enable an analysis of rice yields recorded in gov-
ernmental statistics in the framework of GYGA-CZS. CZs of 1718
municipalities that were present in 2016 were identified by visual
observation using QGIS Desktop (v2.18.13). Municipalities cov-
ered by only a single CZ and those covered by more than two
CZs where one of them covers the largest area were subjected to
the analysis (Fig. 2). The same identification was conducted on
the municipalities that were present in 1993, as many municipal-
ities were merged around 2004 reflecting partly the falling and
ageing population. The number of municipalities was 3232 and
1727 on 31 March in 1999 and on 31 March in 2010, respectively
(e-Stat, 2021). In total, 23 CZs (comprising eight GDDs and two
TSs) were identified in Japan in the original GYGA map (Fig. 3
(a)). The CZs of 1803, 3802 and 4703 were omitted from the
maps as well as the analysis due to their small shares (<0.1%).
Similarly, the CZs of 1902, 7901, 7902, 8901 and 8902 were omit-
ted as well due to the lack of significant rice production (MAFF,
2021). As a result, 15 CZs (comprising six GDDs and two TSs)
were considered in the map as well as the analysis between
1993 and 2002 (Fig. 3(b)) and between 2005 and 2016 (Fig. 3
(c)). In Fig. 3(d), the regions of Japan referred to in the present
study are presented to facilitate reading.

Data collection

Rice yields recorded in each municipality between 1993 and 2016
were collected from the Statistical Survey on Crops of the Ministry

Fig. 1. A diagram of GYGA-Climate Zonation Scheme.
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of Agriculture, Forestry and Fisheries (MAFF, 2021) and are used
as Ya. Rice yields presented in this database are for brown rice
with the moisture content <15.0%, defined by the Agricultural
Products Standards Rule (MAFF, 2013). Rice yields in 2004
were omitted from any analysis in the present study, as no
rice yield was recorded in many municipalities possibly due to
the merger of municipalities that occurred in that year.
Weather data recorded at selected weather stations and loca-
tions by the Automated Meteorological Data Acquisition
System (AMeDAS) were obtained from MeteoCrop DB
(2021), the website run by the National Institute for
Agro-Environmental Sciences (NIAES), currently known as
the Institute for Agro-Environmental Sciences, National
Agriculture and Food Research Organization (NARO) and the
website of Japan Meteorological Agency (JMA, 2021). The tar-
get crop being the irrigated rice, collection of soil data was not
conducted due to the GYGA protocols (GYGA, 2021).

Estimation of yield gaps

Yg was calculated by subtracting actual yield (Ya) from potential
yield (Yp). Unlike Ya that was taken from the real world, Yp
needed to be simulated by means of a crop growth model such
as ORYZA v3 in the case of irrigated rice. Possible issues of
using ORYZA to estimate rice yields in a temperate climate
have been pointed out by Espe et al. (2016b). Therefore, we tested
crop models developed in Japan, including SIMRIW (Horie,
1987; Horie et al., 1992) and CYGMA (Iizumi et al., 2017,
2018) for their suitability to this study. SIMRIW is specifically
designed for irrigated rice in Japan, while CYGMA is a generic
crop model currently applicable to six major crops, including
rice. The Yp values simulated by SIMRIW and those simulated
by CYGMA were comparable in most of the areas employed for
the test runs. In the present study, CYGMA was employed to cal-
culate Yp for all locations of AMeDAS. CYGMA originated from
a model that was designed to calculate agro-climatic indices to
simulate potential crop growth under optimal conditions
(Iizumi and Ramankutty, 2016). The model operates at a daily

time step to resolve major eco-physiological processes to simulate
growth and yields under rainfed and irrigated conditions separ-
ately at a given location. In the model, crop development is com-
puted as a fraction of the accumulated GDD (with the base
temperature of 10°C for rice) relative to the crop thermal require-
ments. Leaf growth and senescence are calculated according to the
fraction of the growing season using the prescribed shape of the
leaf area index curve. Maximum leaf area index usually reached
around the time of heading was set from 4 to 7 m2/m2

(Yoshida, 1972). The details of the CYGMA model can be
found elsewhere (Iizumi et al., 2017). Phenology data, i.e. dates
of transplanting, heading and maturity of major cultivars, i.e.
the cultivars planted in the largest area in each prefecture, were
taken from the governmental crop progress reports’ characteristics
tables of recommended cultivars of irrigated rice (MAFF, 1993,
1995, 1997, 1999, 2002, 2003, 2005, 2008, 2009, 2011, 1993). All
cultivars relevant to the present study were japonica type. The
crop thermal requirements were computed year by year and
used for the simulation. Daily mean 2 m air temperature and glo-
bal solar radiation data obtained from AMeDAS were used as the
weather input.

Yg was estimated by subtracting Ya from Yp. It should be
noted here that Ya and Yp come from different sources: Ya was
taken from statistical records on a municipality scale, while Yp
was simulated using weather data taken from AMeDAS locations.
As a way of combining the two, all municipalities that have
records of rice yields in the statistical information database were
manually related to one of the nearest locations of AMeDAS con-
sidering primarily the CZs and secondarily topography of both
the target municipality and candidate locations of AMeDAS.
The simplest combination occurred when a given municipality
belonging to a certain CZ could be related to an AMeDAS loca-
tion situated in the same CZ as the target municipality. It hap-
pened, however, that the CZ of some municipalities differed
from that of any relatable location of AMeDAS. Yg values were
estimated in such cases in order to draw a map of Yg; however,
they were not subjected to the statistical analysis described in
the next section. As the number of locations of AMeDAS was

Fig. 2. A diagram to show the method of allocation of GYGA Climate Zones (CZs) to each municipality.
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smaller than that of municipalities, all combinations of Yp and Ya
involving the same location of AMeDAS were averaged to gener-
ate a single value (Fig. 4). Some Yg values were observed to be
negative and considered to be partly due to the mountainous top-
ography of Japan. The percentage of negative values was lower
than 1% of the total number of Yg calculations in any year and
the negative values were treated as missing values. Yg was not esti-
mated in 1993 and 2003 due to severe cold damage that occurred
especially in the Hokkaido and the Tohoku regions, while the lack
of yield data, probably as a consequence of the merger of muni-
cipalities, did not allow the estimation of Yg in 2004.

Statistical analysis and presentation of maps

Statistical yields collected as Ya between 1994 and 2002, those
between 2005 and 2016 and coefficient of variance (CV) of stat-
istical yields between 1994 and 2016 excluding 2003 and 2004
were subjected to statistical analysis. ANOVA and multiple

comparisons by Scheffé were performed setting GDD score and
TS score of CZs as fixed factors using SPSS Ver. 24 (IBM). The
numbers of data sets subjected to ANOVA are presented in
Table 1. Statistical yields were analysed, while CV was calculated
by summing the observations over 21 years to increase the num-
ber of observations as much as possible by selecting municipalities
that were existent both before and after the merger. Estimated Yg
values were subjected to ANOVA and multiple comparisons by
Scheffé following the method presented in Fig. 4. Yg data sets
for the 9 years of data sets between 1994 and 2002 and the 12
years between 2005 and 2016 were each bulked and then sub-
jected to ANOVA with GDD and TS scores as fixed factors and
the year as a random factor, respectively. QGIS Desktop 2. 18.
13 was used for the presentation of maps. Shapefiles of blank
maps of Japan in 1993 and 2016 were sourced from date-specific
administrative boundary data (Tokyo Map Research Inc., Tokyo)
and were used to draw administrative boundary maps of Japan in
Figs 3(a)–(d), 7(a), (b) and 9.

Fig. 3. (a) The original map of GYGA Climate Zones of Japan. *The CZs in red letters are omitted from the analysis due to their small shares or the lack of significant
rice production. (b) GYGA Climate Zones assigned to municipalities of Japan between 1993 and 2002. (c) GYGA Climate Zones assigned to municipalities of Japan
between 2005 and 2016. (d ) The regions of Japan.
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Results

Identification of climate zones on a municipality basis

The original map of GYGA CZs expressed on a grid-cell basis is
shown in Fig. 3(a). Maps where the GYGA CZs are expressed on a
municipality scale between the years 1993–2002 and 2005–2016
are shown in Figs 3(b) and (c), respectively. Identification of
CZs went well, especially for the map from 1993 to 2002 where
the coverage by the identified municipalities was more complete
(Fig. 3(b)) compared to the map of 2005–2016 (Fig. 3(c)).
Summarising Figs 3(b) and (c), the CZs of either 1903 or 2903
were observed to prevail in the Hokkaido region. The Tohoku,
the Hokuriku and the Koshin regions were characterized by the
CZs of 3903, 4902 and 4903. The Kanto region, the Tokai region
and the western part of Japan had large areas of the CZs of 4902

and 5902. The CZ of 6902 was common in the Kyushu region but
occupied relatively small areas in other regions. Some coastal
areas facing the Pacific Ocean coincided with the CZ of 6902 indi-
cating a warm (GDD score of 6000), wet (AI score of 900) climate
with medium variation in temperature over the course of the year
(TS score of 2). Details of CZ scores are given in Supplementary
information.

Rice yields

Following ANOVA and the multiple comparison analysis, signifi-
cant interactions between GDD score and TS score for rice yield
(Ya) were observed for 8 years out of 9 between 1994 and 2002
(Table 2 and Fig. 5). Overall rice yields (Ya) excelled in the
CZs characterized by the TS score 3 (P < 0.001), which

Fig. 4. A diagram to show the method of preparation of yield gaps (Yg) data set prior to ANOVA.

Table 1. Number of observations in actual yield (Ya), its coefficient of variance (CV) and yield gap (Yg) for Growing Degree Days (GDD) score and Temperature
Seasonality (TS) score in GYGA-Climate Zonation Scheme (CZS)

GYGA-CZS

Actual yield (Ya)
CV (Ya)

Yield gap (Yg)

1994–2002 2005–2016 1994–2016a 1994–2002b 2005–2016b

GDD score 1 33–34 22 21 135 120

2 126–127 81–82 75 573 596

3 278–282 118–125 110 854 787

4 743–744 271–281 191 1569 1578

5 1491–1509 750–772 630 2412 2853

6 123 53–54 41 297 324

TS score 2 2076–2094 995–1026 808 3723 4281

3 721–724 301–310 260 2117 1977

Total 2799–2818 1296–1336 1068 5840 6258

aData sets in 2003 and 2004 are excluded.
bNumber of data sets summed over the period.
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characterizes a greater annual temperature range, compared to
those CZs characterized by the TS score 2. The combination of
TS score 3 and GDD score 3 tended to give higher rice yields
(P < 0.001). Similar trends were observed for the data sets
between 2005 and 2016, although interactions between GDD
score and TS score were observed less frequently (Table 3
and Fig. 5). Interactions between GDD score and TS score
were observed for CV (P = 0.009). The CZs characterized by
the GDD score 3 had a lower CV when they were characterized
by the TS score 3 than when they were by the TS score 2
(Fig. 6). Overall, the CZs characterized by the GDD score 3,
4 and 5 had a lower CV compared to those characterized by
the GDD score 1, 2 or 6 (P < 0.001) (Fig. 6). The areas covered
by the CZs characterized by the TS score 3 appeared to have
coincided with mountainous areas in the eastern part of
Japan. The Kanto plain and the western part of Japan were

mostly covered by the CZs characterized by the TS score 2
(Figs 3(a)–(c)).

Yield gaps

Yg estimated by subtracting Ya from Yp on a municipality scale
between 1994 and 2002 and between 2005 and 2016 are presented
in Figs 7(a) and (b), respectively. Significant interactions were
observed in Yg between GDD score and TS score (P = 0.042
between 1994 and 2002 and P < 0.001 between 2005 and 2016)
(Fig. 8). Between 1994 and 2002, Yg observed for the CZs charac-
terized by the GDD score 3 and 4 were small implying that Yp
was exploited better in these CZs than in other CZs. A similar
observation was made for the data sets between 2005 and 2016
(Fig. 8). Overall and similarly for both between 1994 and 2002
and between 2005 and 2016, Yg was greater for CZs with a TS

Table 2. ANOVA results of actual yield (Ya) of irrigated rice between 1994 and 2002 (t/ha)

GYGA-CZS Year

TS score GDD score 1994 1995 1996 1997 1998 1999 2000 2001 2002

2 1

2 4.97 4.28 4.36 4.53 4.30 4.79 4.77 4.30 4.75

3 5.05 4.54 4.52 4.78 4.18 4.95 5.00 4.53 4.74

4 5.00 4.73 4.82 4.70 4.53 4.75 4.96 4.95 4.96

5 5.02 4.83 4.86 4.69 4.60 4.64 4.97 4.94 4.93

6 5.02 4.79 4.67 4.55 4.57 4.20 4.79 4.82 4.74

3 1 5.13 4.68 4.54 4.68 4.44 5.04 5.10 4.62 3.89

2 5.31 4.86 4.82 4.97 4.90 5.15 5.25 5.01 4.72

3 5.78 5.17 5.48 5.47 5.18 5.58 5.67 5.57 5.54

4 5.32 4.94 5.24 5.14 4.94 5.26 5.35 5.37 5.33

5 5.43 5.00 5.33 5.09 4.93 5.31 5.36 5.49 5.41

6

P value GDD×TS =0.001 <0.001 <0.001 =0.023 <0.001 =0.199 =0.007 <0.001 <0.001

P value GDD <0.001 =0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

P value TS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

D.F. 2805 2804 2808 2808 2808 2805 2801 2792 2789

CZS, climate zonation scheme.

Fig. 5. Actual yield (Ya) of irrigated rice averaged over the period between 1994 and 2002 (left) and between 2005 and 2016 (right) presented for Growing Degree
Days (GDD) score and Temperature Seasonality (TS) score in GYGA-Climate Zonation Scheme.
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Table 3. ANOVA results of actual yield (Ya) of irrigated rice between 2005 and 2016 (t/ha)

GYGA-CZS Year

TS score GDD score 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

2 1

2 4.56 4.15 4.06 4.38 3.86 4.19 4.39 4.41 4.26 4.53 4.22 4.20

3 5.08 4.93 4.70 4.96 4.77 5.06 5.08 5.17 4.97 5.10 5.08 4.99

4 4.96 4.74 4.90 5.03 4.90 4.96 5.01 5.00 5.03 4.93 4.94 5.04

5 4.91 4.63 4.83 5.05 4.91 4.81 4.96 4.96 4.96 4.89 4.86 5.02

6 4.72 4.12 4.16 4.93 4.86 4.65 4.77 4.68 4.77 4.69 4.52 4.77

3 1 5.35 5.23 4.84 5.12 4.24 5.13 5.43 5.51 5.28 5.51 5.29 5.26

2 5.51 5.27 4.86 5.37 4.72 5.21 5.40 5.46 5.39 5.47 5.32 5.30

3 5.78 5.57 5.59 5.84 5.54 5.62 5.66 5.75 5.80 5.79 5.76 5.76

4 5.40 5.30 5.35 5.47 5.30 5.23 5.37 5.45 5.49 5.44 5.39 5.54

5 5.33 5.30 5.28 5.40 5.20 5.15 5.27 5.39 5.37 5.26 5.19 5.55

6

P value GDD×TS =0.071 =0.631 =0.022 =0.001 =0.004 =0.048 =0.077 =0.374 =0.008 =0.172 =0.068 =0.061

P value GDD <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

P value TS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

D.F. 1286 1322 1324 1325 1326 1326 1323 1322 1326 1325 1324 1323

CZS, climate zonation scheme.
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score of 2 irrespective of GDD score. The difference, however, in
Yg between CZs with a TS score of 2 or 3 was reduced when the
CZ had a GDD score of 4 implying that Yp was exploited better in
these CZs. The lowest Yg were found from the CZs with a GDD
score of 3 and a TS score of 3.

Discussion

Identification of climate zones on a municipality basis

Identification of CZs in each municipality was, without doubt, a
time-consuming task. Doing so, however, made it possible to util-
ize a larger number of statistical data sets prepared by MAFF
(2021). Considering that research and the release of cultivars
have been performed by each prefecture, it seems meaningful to
identify the GYGA CZs on a municipality basis. Identification
of the GYGA CZs on a municipality basis allowed representative
rice-growing environments in Japan to be identified without
missing any major producing area. The method presented in
the present study would be applicable to countries and areas
where taking 100 km buffer zones of homogenous CZ around
selected RWS as in the current GYGA protocols is found to be
difficult for mostly two reasons, i.e. small size and heterogeneous
topography. The concern with the current GYGA protocols was
also addressed by Hochman et al. (2016) who studied wheat in
Australia. They found the major difference between the original
GYGA protocol and a data-rich approach was in the coverage
of the target crop area rather than in explanatory power, and
they commented that the GYGA protocols were successful in an
unbiased sampling of the target crop areas.

Rice yields and yield gaps under GYGA climate zonation
scheme

High rice yields were obtained in the CZs characterized by the TS
score 3 (Fig. 5). Akita prefecture (the Tohoku region), Yamagata
prefecture (the Tohoku region) and Nagano prefecture (the
Koshin region) known for high rice yields had large areas of
the CZs of 3903 and 4903. The CZ of 5903 happened to coincide
with the Niigata city, the rice production area of the largest share

among all municipalities producing rice in the country. The CZ of
5903 is limited to Niigata prefecture (the Hokuriku region) and
small areas in Ishikawa (the Hokuriku region), Fukui (the
Hokuriku region), Gifu (the Tokai region) and Okayama (the
Chugoku region) prefectures. TS scores in the GYGA-CZS were
defined as the standard deviation of the mean temperature of
12 months reflecting the annual temperature range (GYGA,
2021). It was speculated, however, that rice yield was possibly
influenced by the diurnal temperature range considering that
annual temperature range is often related to diurnal temperature
range (Scheitlin, 2013), both of which are associated with the
degree of maritime influence, in other words, the distance to
the sea (Scheitlin, 2013). Fields located in and behind mountains,
however, are less likely to be influenced by the sea. Experienced
Japanese rice growers know that rice yields well in a climate of
cool night-time temperatures, which is an observation made over-
seas as well (Espe et al., 2016a). In a report published in the 1950s,
rice grown in a basin in Fukushima prefecture (the Tohoku
region) was found to give a greater number of panicles, a greater
percentage of effective tillers and greater weights of both grains
and straws per hill compared to the crop grown along the coastal
area (Yamamoto, 1953). From more recent experiments con-
ducted in growth cabinets, a rise in night temperature was
reported to have reduced grain weight of rice, while day tempera-
ture did not have such an effect (Morita et al., 2002).

The CV of Ya tended to be high in the CZ of 2903, the coldest
area among rice-cultivating areas in Japan indicating that cold
weather is one of the important factors influencing the stability
of rice yields, a situation well recognized by rice researchers
around the globe (Da Cruz et al., 2013; Shimono, 2018). It should
be noted that rice cultivars achieving both cold tolerance and
good taste became the target of breeding, especially in the
Hokkaido and the Tohoku regions during the last quarter of
the 20th century (Motoki, 1999), and with some success (Sasaki
et al., 1990; Yoshimura et al., 2002; Mikami et al., 2007). The
high CVs observed with CZs characterized by the GDD score 6
indicate that the current japonica rice cultivars are not necessarily
suited to these areas of warm environment, a situation well-
recognized among rice-research communities (Morita, 2008;
Kim et al., 2011; Samol et al., 2015; Yang et al., 2017). Partly to
address the issue, a rice cultivar named ‘Nikomaru’ that shows
resistance to high temperature during the ripening period
(Maeda and Watanabe, 2013) has been bred and released by
NARO (2021).

Both GDD score and TS score were found to be useful in giv-
ing an idea before planting of the level of rice yields likely in a
given CZ. It is probable, however, that CZs will need to be reap-
praised regularly to account for changes caused by, for example,
global warming, a concern previously raised for and worked on
in relation to the Köppen climate classification (Peel et al.,
2007; Beck et al., 2018). ANOVA and multiple comparisons
performed on Yg suggested that the potential yielding ability of
rice is well exploited in the CZs characterized by the GDD
score 3 and 4 for japonica rice cultivars planted in Japan over
the last two decades. Potential yielding ability appears to be uti-
lized better in the CZs characterized by TS score 3 than those
characterized by TS score 2. The interaction observed between
GDD score and TS score with respect to Yg implied that CZs
characterized by TS score 3, related to ‘continentality’, were well
suited to exploit rice’s yield potential as was the CZ characterized
by the GDD score 4 and TS score 2. It might be, therefore, worth-
while taking the effects of TS score, in other words, the effects of

Fig. 6. Coefficient of variance (CV) of actual yield (Ya) of irrigated rice between 1994
and 2016 (21 years excluding 2003 and 2004) presented for Growing Degree Days
(GDD) score and Temperature Seasonality (TS) score in GYGA-Climate Zonation
Scheme.
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annual temperature range and/or diurnal temperature range, into
consideration when estimating Yp.

Possibility for future rice production

In general, Yg tends to be associated with insufficient inputs such
as fertilizers and agrochemicals, although the situation with
Japanese rice could be different. Nishio (2002) pointed out that
between 1980 and 1999, the reduction in the rate of fertilizer
applied to rice was accompanied by the fall in the government
purchase price and that rice yields during the same period, how-
ever, stayed the same. His speculation as to the cause of this phe-
nomena included the increased use of controlled-release fertilizer
and expansion of paddy areas planted with Koshihikari, the sym-
bol cultivar of good taste. It might be surprising for some readers
that Koshihikari, the most commonly grown rice cultivar in Japan
today has been cultivated for more than 60 years: it was bred in
1956 in Fukui prefectural agricultural experimental station (the
Hokuriku region). Most of the cultivars grown in large areas
often share similar genetic backgrounds with Koshihikari (Saito
et al., 1989; Sasaki et al., 1990; Yagi et al., 1990). Japanese consu-
mers appreciate the taste of rice and therefore tend to choose

brand cultivars and the brand place where the particular rice
was grown. In this type of environment, growers are not necessar-
ily likely to focus on obtaining very high yields and minimising
Yg over brand acceptability. Identifying prefectures where either
Koshihikari or an apparently related cultivar has ever shared
the largest area of rice cultivation between 1993 and 2016 revealed
that the only potential exception appeared to be Gifu prefecture
(the Tokai region) confirming the broad and deep involvement
of Koshihikari in Japan’s rice cultivation (Fig. 9). Even Gifu is
not the exception, however, as Hatsushimo, the major rice cultivar
grown there also shares the same ancestors such as Asahi and
Ginbozu with Koshihikari (Institute of Crop Science, 2021).
Yoshida (2001) argued that the genetic backgrounds of rice culti-
vars in Japan had been rather narrow even before the advent of
Koshihikari. Similar issues with a genetic base of irrigated rice
can be found in other countries as well (De Oliveira Rabelo
et al., 2015).

From the viewpoint of both genetic diversity and possible
expansion of potential rice production capacity, the comparison
of rice yields in terms of the GYGA-CZS with other countries
such as China and the USA would potentially be useful for policy-
makers in Japan. As rice yields as high as 6–10 t/ha have been

Fig. 7. (a) Mean yield gap (Yg) calculated on a municipality scale between 1994 and 2002 (t/ha). (b) Mean yield gap (Yg) calculated on a municipality scale between
2005 and 2016 (t/ha).

Fig. 8. Yield gap (Yg) of irrigated rice averaged over the period between 1994 and 2002 (left) and between 2005 and 2016 (right) presented for Growing Degree Days
(GDD) score and Temperature Seasonality (TS) score in GYGA-Climate Zonation Scheme.
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obtained from areas of comparable CZs in China and the USA
(GYGA, 2021), it can be deduced that higher rice yields could
be achieved in Japan by adopting updated cultivars with greater
yielding ability. This has already been confirmed by rice cultivars
newly bred for usages other than human consumption such as
livestock feed (Hirabayashi et al., 2010; Fukushima et al., 2018).
With a change in social environment, e.g. market acceptability
of new varieties, one might be able to harvest a greater quantity
of rice in Japan in the future, a piece of information useful for pol-
icymakers concerned with food supply.

Areas characterized by the TS score 3, a greater annual tem-
perature range, tended to give higher rice yields. These areas are
often associated with higher altitudes compared to the areas char-
acterized by the TS score 2. Mountainous areas in Japan have
often been accused of lower efficiency in terms of mechanized
farming, namely, scattered small patches of fields and unpopular
slopes that require skilled operators, compared to the fields
located in plains. In addition, the continental nature of the area
characterized by the TS score 3 in the present study has some-
times been perceived as a negative element for rice production,
especially in cold seasons, though this could at least partly be alle-
viated by cultivation techniques such as deep-water management
(Watanabe et al., 2006). Admitting that we avoided using data sets
from years of severe cold damage (1993 and 2003) in the present
study, the analysis of Ya under the GYGA-CZS casts doubt on the
view that these fields are inherently less suitable for rice produc-
tion. Focusing rice production in fields on the plains that often
happen to coincide with the CZs characterized by the TS score
2 may not necessarily be an optimal policy decision.

With the predicted expansion in global population and the
increased need for food, decision-making that pursues ‘apparent
efficiency’ when there might be ‘hidden efficiency’ that we are
unaware of at present would not be advantageous. Quantifying
the benefit of TS score 3 would be possible by multiplying the
average rice yield of TS score 3 to its area, which will be addressed

in a future study. The GYGA-CZS, when performed on a muni-
cipality scale and if properly updated in accordance with ongoing
climate change, could serve as a strong tool to evaluate crop pro-
duction in the climates in Japan and possibly in other parts of the
world, especially the Korean Peninsula and China where
japonica-type rice is produced in CZs with the TS score of 3.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859621000186
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