

Medical and dental hidden treasures and secrets of 2700-year-old Egyptian mummy: Osirmose - the doorkeeper of the Temple of Re.

	Authors:
Ols	szewski R DDS, MD, PhD, DrSc, Prof ^{1,2*} ,
	Hastir JP Binf ³
	Tilleux C MS ^{4,5}
	Delvaux L MS, PhD ⁴
	Danse E MD, PhD, Prof ³

12 Affiliations:

1

2

3 4 5

6

7

8

9

13	¹ Department of Oral and maxillofacial surgery, Cliniques universitaires saint Luc,
14	UCLouvain, Brussels, Belgium
15	² Oral and maxillofacial surgery research Lab, NMSK, IREC, SSS, UCLouvain,
16	Brussels, Belgium
17	³ Department of Medical Imaging, Cliniques universitaires saint Luc, UCLouvain,
18	Brussels, Belgium
19	⁴ Museums of Art and History, Parc du Cinquantenaire 10, Brussels, Belgium
20	⁵ Université catholique de Louvain, Pl. Blaise Pascal 1, Louvain-la-Neuve, Belgium
21	*Corresponding author: Pr R. Olszewski, Department of Oral and maxillofacial
22	surgery, Cliniques universitaires saint Luc, UCLouvain, Brussels, Begium,

2	[Nemesis]	Titre de l'article	(PUL-En-tête paire)	
---	-----------	--------------------	---------------------	--

- phone+3227645718; fax: +3227645876; ORCID iD:orcid.org/0000-0002-2211-7731
 Disclaimer: the views expressed in the submitted article are our own and not an
 official position of the institution or funder.
- 26

Abstract 28 Objective: To perform a 'virtual autopsy' on the Egyptian mummy and to study, understand, and interpret three-dimensional (3D) high-resolution computed tomography (CT) scan images of Osirmose's mummy with a multidisciplinary team composed of radiologists, archaeologists, and oral and maxillofacial surgeon. 33 Material and methods: We studied the Osirmose's mummy, the doorkeeper of the Temple of Re, who lived during the XXVth dynasty. His mummy belongs to the 35 Royal Museum of Art and History (Inv. E.5889). We performed a high resolution 36 CT scanning of Osirmose's mummy. We also 3D printed the upper maxilla of the mummy and a tooth found in the oesophagus with a clinically validated low-cost 3D 38 39 printer. **Results**: We confirmed the male sex of the mummy. We found the heart, aorta, 42 and kidneys inside the mummy's body. Brain excerebration was performed through the right ethmoid bone pathway. A wood stick embedded in the dura mater tissue was found inside the skull. The orbicularis oculi muscle, internal canthus, optical 45 nerves, and calcified eye were still present. Artificial eyes were added above the stuffing of eye globes. The skull and face were embalmed with multiple layers of inner bandages in a sophisticated manner. The wear of maxillary teeth was asymmetrical and more pronounced on the maxilla. We discovered three anomalies

48 49 of the upper maxilla: 1) a rectangular hole on the palatine side of tooth $n^{\circ}26$ (the 50 palatine root of tooth n°26 was missing), 2) an indentation at a right angle palatine to 51 tooth n°27, and 3) a semilunar shape of edges around the osteolytic lesion distal and 52 palatine to tooth n°28.

Conclusions: The present study provides the first evidence of a tooth removal site, and of oral surgery procedures previously conducted in a 2700-year-old Egyptian embalmed mummy. We found traces of dental root removal, and the opening of a tooth-related osteolytic lesion before the person's death. The multidisciplinary team, the use of a high resolution 3D CT scan and a 3D-printed model of the upper maxilla helped in this discovery.

59 60 61

Keywords: Egyptian mummy, embalming, computer tomography, head, oral surgery, 3D printing

62 63

27

29

30

31

32

34

37

40 41

43

44

46

47

53 54

55

56

57

Introduction

66 Currently, the existence of tooth removal and oral surgery in Ancient Egyptian civilization is not scientifically recognized in the medical literature [1, 2]. Research 67 68 on this subject usually refers to early work of major pioneers in Egyptology, such as Ruffer and Eliott Smith, who performed numerous destructive autopsies of 69 mummies at the beginning of the 20th century [3, 4]. However, none of the early 70 Egyptologists were dentists or oral surgeons, which could have influenced their 71 ability to correctly interpret any potential findings in the mummies' oral cavities. In 72 73 1917, Hooton described a potential round apectomy site in one ancient Egyptian Old 74 Kingdom Giza mandible (Peabody Museum, Harvard University, Boston, USA) [5]. 75 Hooton's discovery was later disapproved as a round hole in the mandible was found to be natural cortical bone destruction caused by a bone cyst associated with 76 77 an accessory foramen mentale (trigeminal nerve) that was present on the mandible 78 near the same anatomical area [1]. Between the sixties and the seventies of the XXth 79 century, a British oral surgeon, Dr. Francis Leek was part of the next generation of 80 scientists who strongly denied the existence of oral surgery during the 4000 years of Egyptian civilization [6, 7]. However, the research performed by Dr. Leek did not 81 include any convincing modern methodology (i.e., statistics, access to primary data 82 or multidisciplinary team expertise). Dr. Leek claimed that there was no evidence of 83 84 tooth removal among the 3000 skulls that he studied [6, 7]. The collection of ancient 85 Egyptian skulls may not represent the ideal target group for finding evidence of 86 tooth removal, as skulls alone cannot give information about social status 87 (commoners or elites); or the historical time period. We hypothesized that only well-88 preserved ancient Egyptian mummies in their original coffins would provide any evidence of human involvement in tooth removal or in oral surgery. Previous 89 medical literature is lacking in evidence of tooth removal in Ancient Egypt, and 90 authors who are more modern avoid any interpretation of data even when teeth were 91 92 clearly missing before the person's death [8]. The absence of proof of oral surgery 93 became a common conviction over time in Egyptology [8, 9]. However, the absence 94 of proof does not equate to the proof of absence. Additionally, new discoveries may 95 occur by chance, and may require an open mind. Our multidisciplinary research team began work on the mummy of Osirmose, the doorkeeper of the Temple of Re, 96 who lived during the XXVth dynasty (747-656 BC). His two coffins and his mummy 97 have belonged to the Egyptian collections of the Royal Museum of Art and History, 98 in Brussels, Belgium since 1874 (Inv. E.5889). Three-dimensional (3D) computed 99 tomography (CT) scanning of Osirmose's mummy was part of a greater project of 100 digitalization of Ancient Egyptian human collections of the Royal Museums of Art 101 and History (ongoing PhD thesis in Archaeology of Mrs C. Tilleux, UCLouvain, 102 103 Belgium), performed in collaboration with the Department of Medical Imaging; 104 Cliniques universitaires saint Luc, Brussels, Belgium. After some initial

64

4

observations of 3D CT high-resolution images of Osirmose, we found a tooth in the
oesophagus of the mummy. After 3D printing of the upper maxilla and of the tooth,
and after finding the potential empty alveolar socket that corresponded to that tooth,
we discovered that Osirmose's maxilla was holding the key to another important
secret treasure of medical history.

110 Materials and methods

111An Egyptian mummy attributed to Osirmose, the "doorkeeper of the Temple of112Ra", is presently kept in the Royal Museums of Art and History (RMAH) (Brussels),113Inv. E.5889. It was bequeathed at the RMAH with its two coffins (middle and inner)114in 1874 by the Belgian diplomat and collector É. De Meester de Ravestein (1813-1151889) [10] (Figure 1).

117 118 119

Fig. 1. Three coffins of Osirmose. 1. Inner coffin and the mummy (RMAH, Brussels). 2. Middle coffin (RMAH, Brussels). 3. Outer coffin (Grand Curtius Museum, Liège).

120 121

122 123 The outer coffin belongs to the Grand Curtius Museum (Liège), Inv. I/628A = Eg. 83A [10]. The three coffins of Osirmose were initially part of the private collection

124	of Giovanni Anastasi (1780-1860), a merchant of antiquities from Alexandria, who
125	was also appointed Consul-General in Egypt for the Kingdom of Sweden and
126	Norway in 1828 [10, 11]. After his death, a part of his collection was auctioned in
127	Paris in 1857 [10, 11]. The three coffins and the mummy were purchased by Antoine
128	Schayes (1808-1859), the first curator of RMAH [10]. Schayes's archaeological
129	collection was sold in 1859 after his unexpected death at the age of 51 [10]. At the
130	time of this second sale, the outer coffin belonging to Osirmose and another coffin
131	attributed to a certain Horsiesi were inverted [10]. The middle and inner coffins of
132	Osirmose, his mummy and the coffin of Horsiesi were then purchased by É. de
133	Meester de Ravestein, while Osirmose's outer coffin was bought by Baron Albert
134	d'Otreppe de Bouvette (1787-1871), the first director of the Archaeological Institute
135	in Liège, Belgium [10]. Further, É. De Meester de Ravestein donated his three
136	coffins and the mummy to the RMAH in 1874, and Baron d'Otreppe offered
137	Osirmose's outer coffin to the Grand Curtius Museum in Liège in 1865 [10, 12]. The
138	funerary assemblage of Osirmose dates from the XXV th dynasty and probably comes
139	from the Theban necropolis [10]. These chronological and geographical estimations
140	are based on stylistic and typological criteria [10].
141	
142	Another chronological indicator is the presence of the mummy's artificial eyes [10].
143	False eyes are one of the major innovations of the XXI st dynasty (approximately
144	1069-945 BC) [10]. If this mode of embalmment was widespread during this period,
145	it seems that the use of artificial eyes was occasionally maintained until the XXV th
146	and XXVI th dynasties [10, 13].
147	
148	Osirmose was a member of an important family of Theban priests whose collective
149	tomb was probably discovered by the merchant and collector Giovanni Anastasi
150	during his excavations in the 1820s [10]. The coffin, cartonnage and mummy of
151	Osirmose's father, Padiamenet, "Chief Doorkeeper of the Domain of Ra, Chief
152	Attendant of Ra and Chief Barber of the Domain of Ra and of the temple of Amun"
153	[14], were in the collection of the collector and diplomat Henry Salt (1780-1827)
154	and were sold in 1839 to the British Museum (Inv. EA.6682-6683) [10]. The mum-
155	my together with the coffins of Dismutenibtes, Osirmose's mother and Padiamenet's
156	wife, were donated to the Oslo Museum of Cultural History by Giovanni Anastasi
157	himself in 1826 (Inv. C.47705, C.47708) [15].
158	
159	A two-dimensional radiological study was attempted on the mummy of Osirmose in
160	1999 [10, 16]. Based on the radiographic information on the pelvic bones Francot's
161	study concluded that the mummy inside Osirmose's coffins was indeed a female
162	[10, 16]. This information was again reproduced in Taylor and Antoine's book on
163	Egyptian mummies of the British Museum in 2014 [10, 14].
164	After obtaining permission from the curator of the Egyptian section at the RMAH,
165	Brussels, Belgium, a mummy was transported to our university clinic, and a 3D CT
166	scan was performed in the Department of Medical Imaging with a multi-slice CT
167	scanner, Brilliance ICT 256 (Philips Healthcare, Eindhoven, Netherlands) [10]. All
168	necessary permits were obtained for the described study, which complied with all

169	relevant regulations. 3D CT scanning was performed in two separate sections: 1)
170	from the skull vertex to the tibia, and 2) from the tibia to the toes. We applied the
171	following radiological protocol: 80 keV and 140 keV, 140 mAs, slice thickness of
172	0.9 mm, slice increment of 0.45 mm, pitch of 0.38, field of view of 400 mm, C filter,
173	collimation 128 x 0.625, matrix of 512 x 512, and total scan length of 1860 mm.
174	
175	To better understand anatomical structures, we performed 3D printing of the upper
176	maxilla and of the tooth found in the mummy oesophagus. The 3D CT
177	reconstruction of the upper maxilla and of the tooth was saved in an STL file. Then,
178	the STL file was prepared with Netfabb software (Netfabb, Lupburg, Germany), and
179	with the 3D printer software. We used a low-cost 3D printer (Up plus 2, TierTime,
180	Beijing) that uses fusion deposition modelling technology.
181	Accuracy tests and clinical validation have already been performed for this specific
182	type of low-cost 3D printer [17]. A filament of plastic (ABS) is extruded from the
183	head of the 3D printer and deposited layer by layer on a heated support. The head
184	moves along the x- and y- axes, and the heat support moves along the z-axis. The
185	cost of the 3D printer is approximately 1300 euros and the cost of 700 grams of
186	plastic filament is approximately 35 euros. We chose the lowest slice thickness of
187	150 microns. The time for 3D printing of the upper maxilla (21.4 grams) was set at 3
188	hours and 3 minutes for 157 layers, and for the single tooth (0.3 grams) the time was
189	4 minutes for 76 layers. The postprocessing for this type of 3D printed model was
190	very easy and fast (a few minutes). There were only a few layers of support material
191	to detach from the final 3D printed model. All the 3D printed models were then
192	painted with acrylic paint typically used by modelling hobbyists to improve the
193	visual comprehension of anatomical structures.

Results

195 General description

197 The body represents an adult of unknown age. However, further restorations added 198 anterior and posterior wood plates, and a wood stick inside the thoracic cage, whose 199 edge reached under the skull and face (Figure 2). There were also multiple circles of metallic wire around the head and around the upper body of the mummy (Figures 3-200 5, 7, 14, 16). Arms were arranged along the body, and hands rested on the thighs 201 202 (Figures 3, 4). All cervical vertebrae were present (Figure 15). Thoracic vertebrae 203 were in a poor state of preservation (Figures 2, 5, 14). The mummy itself is covered 204 by two layers of bandages [10]. From the initial visual examination, the deepest 205 (inner) layer was the original bandaging, blackened with embalmer balms [10] (Figures 2, 5-11, 14-16). The outer layer was made of large bandages that seems to 206 207 have been applied after a restoration [10] (Figures 2, 4, 6, 10, 15, 16). 208

209

194

196

Fig. 2. General view of the 3D CT scan of the mummy from the left lateral side. 1. Outer layer of bandages at the level of the abdominal wall. 2a. Inner layer of bandages at the posterior of the skull and of the neck. 2b. Inner layer of bandages on the back of the mummy. 2c. Skin on the front of the thoracic cage. 2d. Skin in the anterior pelvic area. 2e. Skin in the perineal area and around the penis. 2f. Package of linen on the back of the left knee. 2g. Middle layer of bandages on the clavicle area. 4a. Anterior wood plate. 4b. Posterior wood plate. 5a. Abdominal aorta. 5b. Material of undetermined origin in the thoracic cage and in the upper abdomen. 5c. Material of undetermined origin same as 5b in the lower abdomen. 6. Layers of bandages stuffed between the thighs.

Fig. 3. 3D CT reconstruction of the mummy, anterior view. 1. Circles of metallic wire around the face and around the skull. 2. Metallic wire around the upper torso and around the upper part of both arms. 3. Dislocation of the mummy at the level of the sternoclavicular junction. 4. Wood stick oriented slightly to the right. 5. Embalmed penis.

Fig. 4. 3D CT reconstruction of the mummy, anterior view. 1. Skin on the lateral side of the left arm. 2. Material of undetermined origin coated with resin on the lateral side of the left leg. 3. Skin on the lateral side of the right leg. 4. Skin on the abdominal wall. 5. Skin on the pelvic area. 6. Outer layer of bandages on the back of the legs.

239 Sex identification

253 254

255

240 The pelvic bones were broken in many places, so it was impossible to obtain sex 241 242 identification from the pelvis [10]. However, the sex of the mummy was identified 243 as male, as we found a well-preserved and embalmed penis on 3D CT scan [10] 244 (Figures 2-4). 245 Internal organs preservation 246 247 The mummified heart, cross of the aorta, and abdominal aorta were preserved in 248 the body [10] (Figures 2, 5, 6). There was a disruption of the body at the level of the 249 sternum and of the clavicle bones. A wood stick was found under the sternum, and it 250 was close to the thoracic vertebral body. The remnants of the pericardium were 251 dislodged to the right. The thoracic cavity was partially filled with radiopaque 252

kidneys were still present in the body (Figure 5).

substance of undetermined origin (Figures 2 (5b and 5c), 5, 6). The right and left

Fig. 5. 2D CT reconstruction of the neck, upper and lower thoracic cage and of the posterior abdominal area. Superimposition of the 3D reconstructed pericardium and aorta. 1. Inner layers of bandages around the right side of the face. 2. Inner layers of bandages around the right side of the neck. 3a. skin around the right side of the thoracic cage. 3b. Inner layers of the bandages around the right side of the thoracic cage. 3c. Inner layers of bandages around the left side of the thoracic cage. 4. Metallic wires from the restoration of the upper torso of the mummy. 5. Right scapula in rotation. 6. Pericardium. 7. Cross of the aorta. 8. Abdominal aorta. 9. Right kidney. 10. Left kidney. 11. Material of undetermined origin inside the thoracic cage and in the abdomen.

Fig. 6. 2D CT coronal view through the thoracic cage. 1. Sternum. S. Skin.
IB. Inner layers of bandages. BTC. The thoracic cage was broken up and allowed with the entry of outer layers of bandages into the thoracic cage.
WS. Wooden stick. P. Pericardium. A. The cross of the aorta. VB. Thoracic vertebral body. * Material of undetermined origin inside the thoracic cage. R.
Rib. OB. Outer layers of bandages. WP. Main wood posterior plate.

The material of undetermined origin covers the lateral side of the pericardium (Figure 6 (*)). This means that this material was placed after the heart and aorta were replaced in the thoracic cage. The breaking of the anterior upper thoracic cage, the presence of wood stick, and the presence of outer layers of bandages inside the thoracic cage occurred after the primary embalming process, as part of a further restoration process.

284 Skull and face description

285 286

287

288

For the skull and face description we used a methodology already presented in our previous study on computed tomography of skulls of Ancient Egyptian mummies [18].

289 Brain excerebration was performed through the right ethmoid bone pathway 290 (Figures 8, 10, 11). The nasal septum was slightly deviated to the right in the 291 posterior area (Figures 8, 10, 11) Dura mater was found in the occipital area of the 292 skull (Figures 13, 15, 16). A wood stick was also embedded in the dura mater tissue 293 inside the skull [18] (Figure 13), and resin was present close to the occipital bone 294 (Figure 13). There were no ethmoid bone fragments found on 3D CT images of the 295 skull (Figures 13, 16). There was also a dura cervical found in the cervical spine 296 (Figure 15). At the level of the orbits we could still recognize the orbicularis oculi 297 muscle and internal canthus (Figure 7). Eye globes were stuffed with the material of 298 undetermined origin (Figures 2, 8-10, 13, 14, 16). The eye remnants are present as phthisis bulbi in the posterior area of the stuffed eye globes (Figures 11, 13, 16). 299 300 There were some remnants of eve muscles on the upper and on the medial sides of 301 the stuffed eye globes (Figures 8, 10, 11). Artificial eyes in cartonage were added 302 above the stuffed eye globes (Figures 7, 12, 13, 16). The tongue was present on the floor of the mouth which was packed with multiple pieces of linen (Figures 8, 10, 303 304 11, 15). The mouth was closed (Figures 12, 15). Pieces of linen were present over 305 the upper and the lower lip (Figure 15 (5a), (5b)). The submandibular area was packed with a piece of linen (Figure 15, (5c)). The skull and face were embalmed 306 307 with multiple layers of inner bandages in sophisticated manner (Figures 7-11, 14-308 16). The nasal plugs were absent. Ears were also embalmed (Figure 16). 309

Fig. 7. 2D CT frontal and anterior view of the face and of the skull of the mummy. FS. Left frontal sinus. FE: False eye, right and left. IC. Internal canthus of the right orbit. OOM. Eylid and orbicularis oculi muscle, right and left. MW. Metallic wires. 1. Inner layer of bandages around the right frontal bone. 2. Inner layer of bandages around the right eye globe. 3. Inner layer of bandages around the right upper lips. 4. Skin. 5. Linen around the right upper lip. 6. Upper lip. 7. Lower lip. 8. Inner layer of bandages around the right mandible.

320 321 Fig. 8. 2D CT coronal view of the skull and face. EG. Eye globe stuffed with 322 the material of undertermined origin. m. Remnants of eye muscles. ER. 323 Excerebration road through the right ethmoid bone. S. Nasal septum slightly deviated to the right. MS. Maxillary sinus right and left, without alveolar 324 maxillary bone pneumatisation. LOC. Linen inside the oral cavity. T. Tongue. 325 1. Skin of the right frontozygomatic area. 2. Skin of the right 326 zygomaticomaxillary area. 3. Inner layer of bandages in the right 327 328 zygomaticomaxillary area. 4. Linen at the level of the right cheek. 5. Inner 329 layer of bandage around the mandible. 6. Skin of the floor of the mouth. 330 *: double layer in the inner layer of bandages on the right and left side of the 331 oral cavity, and at the level of the occlusal plane. 332

333	PHILIPS F
334	Fig. 9. 2D CT sagittal view of the left side of the face. EG. Left eye globe
335	stuffed with the material of undertermined origin. 1. Outer layer of bandages.
336	2. Inner layer of bandages. 3a. Deeper inner layer of bandages around the
337	anterior maxilla and the anterior mandible. 3b. Deeper inner layer of
338	bandages under the anterior mandible. 3c. Double layer of the deeper inner
339	layer of bandages under the posterior mandible. 4a. Skin of the upper lip. 4b.
340	Skin over the anterior maxilla. 5a. Skin of the lower lip. 5b. Skin of the
341	anterior mandible area. 6. Skin of the horizontal body of the mandible.
342	Tooth 25: empty alveolar socket of tooth n°25 containing initially two roots.
343	Tooth 26: mesiovestibular and distovestibular roots of tooth n°26. Tooth
344	n°27: osteolytic chronic lesion around the mesiovestibular and
345	distovestibular roots of tooth n°27. Tooth n°28: osteolytic lesion distal to
346	tooth n°28, and opened to the oral cavity. Tooth n°37: osteolytic lesion
347	around the mesial root of tooth n°37. Periodontal disease around the distal
348	root of tooth n°37. Tooth n°38: terminal periodontal disease around the
349	mesial and distal roots of tooth n°38.

350 Fig. 10. 2D CT frontal view of the mummy's face. EG. eye globes stuffed 351 with the material of undertermined origin. m. Remnants of eye muscles. ER. 352 Excerebration road. T. Tongue. Arrow: empty alveolar cavity for palatine root 353 354 of tooth n°26. Dashed arrow: a piece of linen inside the oral cavity. 1. Skin of 355 the right zygomaticomaxillary area. 2. Linen between the skin and the inner 356 layer of bandages at the level of the right and left cheek. 3a. Inner layer of bandages at the level of the right frontozygomatic area. 3b. Inner layer of 357 bandages at the level of the cheeks. 3c. Inner layer of bandages at the level 358 of the mandible. 4. Skin at the level of the floor of the mouth. 5. Outer layer 359 of bandages under the oral cavity. *: double layer in the inner layer of the 360 bandage on the right and left side of the oral cavity, and at the level of the 362 oclusal plane on the left side.

363 364

365 Fig. 11. 2D CT frontal view of the mummy's face. Phb. Phthisis bulbi in the 366 367 posterior area of the stuffed eye globes. ER: Excerebration road through the 368 right ethmoid bone. 1. Skin of the right frontozygomatic area. 2. Skin of the 369 zygomaticomaxillary area. 3. Linen between the skin and the inner layer of 370 bandages at the level of the right cheek. 4a. Inner layer of bandages at the level of the cheeks. 4b. Inner layer of bandages at the level of the mandible. 371 *: double layer in the inner layer of the bandage on the right and left side of 372 the oral cavity, and at the level of the oclusal plane on the right and left side. 373 T. Tongue. IAN. Well corticalized canal of the right and left inferior alveolar 374 375 nerve. 376

- 377
- 378

Fig. 12. 3D CT reconstruction of the head and skull of the mummy. Frontal view. Bone reconstruction. FE. False eye (cartonage). The skull and face have no fractures. 1. Osteolytic lesion around the root of tooth n°31 with perforation of the vestibular and of the lingual cortical bone.

380

381 382

Fig. 13. 3D CT reconstruction of the head and neck of the mummy, and showing the inside of the skull. Lateral view. 1a. Stuffing of the eye globe. 1b. Phthisis bulbi. 2. False eye (cartonage). 3. Intact optic nerve. 4. Stick embedded in dura mater inside the skull. 5. Layers of dura mater. 6. Resin layer in the back of the skull against the occipital bone.

Fig. 14. 2D CT general view of the mummy. Lateral view. MWP. Main wood plate. WS. Wood stick. AWP. Anterior wood plate. PWP. Posterior wood plate. MW. Metallic wire node under the AWP. EG. Stuffed eye globe. 1. Inner layer of bandages around the face. 2. Skin under the body of the mandible up to the occipital bone. 3. Skin along the vertical ramus of the mandible. 4. Inner layer of bandages around the back of the skull and the back of the neck area.

398

399	
400	Fig. 15. 3D CT midsagittal view of the face and the neck. 1. Dura mater
401	inside the skull. 2a. Posterior cervical dura. 2b. Anterior cervical dura.
402	3. Empty nasal cavity. 4a. The anterior oral cavity was filled with a piece of
403	linen; the mouth was closed, and the linen was disposed between the front
404	teeth. 4b. Posterior oral cavity filled with a piece of linen. 4c. Piece of linen in
405	oesophagus. 5a. A piece of linen filling the subnasale area. 5b. A piece of
406	linen filling the supramentale area. 5c. A piece of linen filling the
407	submandibular area. 6. The tongue. 7. Trachea. 8. Discontinuity in the skin
408	in the upper cervical area under the mandible. 9. A piece of linen filling the
409	upper cervical area. 10. A piece of linen filling the anterior and lower cervical
410	area. 11. A piece of linen filling the posterior and lower cervical area. 12.
411	Additional piece of wood. 13. Wood stick. 14a. Inner layers of bandages in
412	the posterior neck area. 14b. Outer layers of bandages in the posterior neck
413	area.
414	

418	
419	Fig. 16. 2D CT axial view of the mummy's face and skull. FEr. False eye left.
420	FEr. False eye right. OL. Outer layers of bandages. EG. Stuffing of eye
421	globes. Phb. Phthisis bulbi. DM. Dura mater inside the skull. MW. Metallic
422	wires around the head. Er. Ear right. El. Ear left. 1a. Skin in the right
423	temporal area. 1b. Skin in the left temporal area. 2a. Inner layer of bandages
424	around the right orbit. 2b. Inner layer of bandages around the left orbit. 3a.
425	Inner layer of bandages in the right temporal area. 4a. Inner layers of
426	bandages around the right ear. 4b. Inner layers of bandages around the left
427	ear. * A piece of linen around the left ear. 5a. Inner layer of bandages in the
428	right parietal and occipital area. 5b. Inner layer of bandages in the left
429	parietal and occipital area.

430 Dental status

The right and left sides of the maxillary dental arch were easily recognizable as the incisive canal opening was clearly present on the palatine midline of the upper maxilla in the 3D printed model (black arrow) (Figure 17).

Fig. 17. Three-dimensional printed model of the upper maxilla. Superior view of the dental arch and of the hard palate. The remaining teeth were painted white, whereas the bone was painted yellow. The black arrow indicates the incisive canal on the midline. White arrows indicate teeth that are still present, and dashed arrows indicate empty alveolar sockets. The numbering of teeth follows the International Dental Federation's system. A. Artificial hole on the palatine side of tooth n°26. B. Artificial bone indentation on the palatine side of tooth n°27. C. Artificial opening of bone osteolytic lesion on the palatine and distal side of tooth n°28.

The upper maxilla and the mandible presented with multiple dental lesions (Figures 18, 19).

Fig. 18. 2D CT pseudo-panoramic view of the dentition. Tooth n°12: osteolytic lesion around the root of tooth n°12. Tooth n°13: osteolytic lesion around the root of tooth n°13. Tooth n°17: periodontal disease around roots of tooth n°17. Tooth n°22: osteolytic lesion around the root of tooth n°27. Tooth n°27: osteolytic lesion around the mesial root of tooth n°27. Tooth n°28: osteolytic lesion distal to tooth n°28. Tooth n°31: osteolytic lesion around the root of tooth n°31. Tooth n°35: osteolytic lesion around the root of tooth n°31. Tooth n°35: osteolytic lesion around the root of tooth n°38: periodontal disease around mesial and distal roots of tooth n°38. Tooth n°46: rarefying osteitis around apices of mesial and distal roots of tooth n°46.

Fig. 19. 2D CT pseudo-panoramic view of the dentition. Tooth n°12: osteolytic lesion around the root of tooth n°12. Tooth n°13: osteolytic lesion around the root of tooth n°13. Tooth n°17: periodontal disease around roots of tooth n°17. Tooth n°22: osteolytic lesion around the root of tooth n°22. Tooth n°25: tooth socket with imprint of two roots at the level of absent tooth n°25. Tooth n°27: osteolytic lesion around the mesial and distal roots of tooth n°27. Dotted arrow: expansion of the lesion inside the left maxillary sinus floor.

472	On the upper maxilla, some teeth were still present, including the right lateral
473	incisor ($n^{\circ}12$), the right canine ($n^{\circ}13$), the right second molar ($n^{\circ}17$), the left lateral
474	incisor ($n^{\circ}22$), the left first premolar ($n^{\circ}24$), and the first ($n^{\circ}26$), second ($n^{\circ}27$), and
475	third left molars (n°28) (Figure 17). All of these teeth presented with major abrasion
476	of their crowns, which is a common finding in Ancient Egyptian mummies [9].
477	Three open alveolar sockets existed at the level of the first right incisor (n°11), the
478	left canine (n°23), and the left second premolar (n°25) (Figure 17). The left central
479	incisor (n°21), the first (n°14) and second right premolar (n°15), and the third right
480	molar $(n^{\circ}18)$ were absent from the upper maxilla. Only the left first molar $(n^{\circ}36)$
481	was absent from the mandible (Figure 18).

482 We also found a tooth left in the oesophagus with an abrased crown, and two roots 483 (one longer and one shorter) (Figure 20).

Fig. 20. Tooth found in the oesophagus. A. Two-dimensional image of the tooth and of the surrounding area. B. Three-dimensional reconstruction of the tooth with an abrased crown and broken roots. C. Three-dimensional printed tooth and 3D model of the upper maxilla. D. The second left premolar (n°25) in place again.

491	The 3D printed the tooth was found in the oesophagus. We checked its anatomical
492	position in relation to the existing open alveolar sockets. There were no empty
493	alveolar sockets in the mandible. We concluded that the tooth was a second left
494	premolar (n°25). There were also resorbed alveolar sockets at the level of the first
495	right molar (n°16), and first left premolar (n°24). Multiple teeth presented with
496	apical lesions (Figures 18, 19). The creation of apical osteolytic lesions is related to
497	the opening of dental pulp by abrasion phenomena, pulp necrosis, and bacterial
498	migration from an abrased crown pulp chamber, through the root canal to the tooth
499	apex, and to the bone. The shape of bony osteolytic lesions can be spherical, oval, or
500	multilobular [19]. Figure 19 shows the apical lesion on the maxilla at the level of the
501	lateral right incisor (n°12), the right canine (n°13), the left lateral incisor (n°22), and
502	the first left molar (n°26). The developing osteolytic lesion may have slowly eroded
503	the surrounding bone; and may have created an opening through the cortical bone on
504	either the vestibular and/or the palatine side. The vestibular side was eroded in the
505	first place (Figure 21) as it is less thick than the palatine cortical bone (Figure 23).
506	Larger openings in cortical bones (OCs) indicate a longer period during which a
507	lesion progressed in the living patients. Smaller openings in cortical bones (RCs)

508 indicate a shorter period during which a lesion progressed in the living patients 509 (Figure 21). 510 Such lesions are present on the 3D upper maxilla model at the level of the second 511 right molar (n°17), and on the first (n°26), second (n°27) and third left molars (n°28) 512 (Figure 21). We can also see the apical lesion perforating the vestibular bone at the 513 level of the third right molar (n°18) which is missing from the dental arch (Figure 514 21).

Fig. 21. Three-dimensional printed model of the upper maxilla. Apical lesions perforating the vestibular and palatine sides of the upper maxilla. A. Vestibular side lesions related to teeth n°28, n°27, and n°26. OC: Older cavity. RC: Recent cavity. B. Vestibular lesions related to teeth n°17 and to missing tooth, n°18. C. Palatine lesion related to tooth n°17. OC: Older cavity. RC: Recent cavity.

The second right molar (n°17) presented with egression, which is a slow downward movement of a tooth, bone, and surrounding mucosa that occurs during a patient's life to reach specific occlusal contact with the lower second right molar $(n^{\circ}47)$ (Figure 22). The tooth $n^{\circ}17$ is therefore misaligned with the bony lesions it had created.

529

515

516 517

518

519 520

521

522 523

524

525

526

527

528

Fig. 22. Superior second right molar (n°17) in egression, with specific occlusal contact with the inferior second right molar (n°47). Arrows show bone lesions around the apex of tooth n°17. The dashed arrow shows the linen packed inside the mouth as part of the embalming process.

- 530

531

532

The growing bone osteolytic lesions that are close together may present more complex 3D shapes as they can fuse together over time. Here, we can see in the 3D printed model that bone lesion cavities are all fused together between the remaining two vestibular roots of the first left molar ($n^{\circ}26$), the three roots of the second left molar ($n^{\circ}27$), and the third left molar ($n^{\circ}28$), which has only one main root (Figure 23).

Fig. 23. Three-dimensional printed model of the upper maxilla. View from the palatine side of the second left premolar (n°25), the first (n°26), the second (n°27), and the third left molars (n°28). MV: mesiovestibular root. DV: distovestibular root. P: palatine root. At the level of the missing palatine root of tooth n°26 there is a missing bone box with straight angles (white arrows). The old osteolytic lesion opens at the level of the palatine root apex of the left second molar (n°27) (black arrow). The presence of bone indentation with straight angles on the palatine side of the palatine root of the second left molar (n°27) (white dashed arrow). Anteroposterior and oblique bone loss at the level of the palatine side of the third left molar (n°28) (black dashed line).

552	
553	The palatine root of the first left molar (n°26) is missing on the 3D printed model
554	of the upper maxilla, as it is missing on the 3D CT scan (Figures 17, 23). However,
555	it was once present, as we can still see its massive alveolar shape as depicted in
556	Figure 10.
557	The 3D-printed model of the upper maxilla also shows numerous unusual elements
558	(Figures 17, 23):
559	1) rectangular box of missing cortical bone at the palatine side at the level of the
560	missing palatine root of the first left molar (n°26);
561	2) bone indentation on the palatine side of the palatine root of the second left molar
562	(n°27); and
563	3) anteroposterior, curved, semilunar, and oblique bone loss at the level of the distal
564	and palatine side of the third left molar ($n^{\circ}28$) (Figures 17, 23, 24).
565	The bone box space at the level of missing palatine root of the first left molar (n°26)
566	presents with straight angles, which never occurs in natural bone lesion evolution
567	[19] (Figures 17, 23). The box measures 9 mm and presents with an artificial shape.
568	The edges have smoothed as the bone had time to heal, which means that the lesion
569	appeared before the death of Osirmose.
570	The bone indentation at the level of the palatine side of the palatine root of the
571	second left molar (n°27) does not corresponds to any anatomical variation nor to any
572	pathological modification of the maxillary bone in this area (Figures 17, 23).
573	Bone loss at the palatine and distal side of the third left molar (n°28) corresponds to
574	the opening of the "floor" of the osteolytic lesion, which is present around tooth
575	n°28. The "ceiling" of the lesion is related to the apex of the tooth (Figures 17, 23,
576	24). The 3D printed model shows a tunnel which links older osteolytic lesions at the
577	apex of the third left molar (n°28) and the second left molars (n°27), and presents
578	with a cortical round palatine bone opening (black arrow) (Figure 23). The presence
579	of bone loss on the distal and palatine side of the third left molar (n°28) does not
580	correspond to the natural evolution of bone osteolytic lesion that perforate the
581	cortical bone at the level of the apical tooth area.
592	Discussion
JUZ	

583 The example of the history related to Osirmose's mummy shows us the complexity of studying, understanding, and interpreting traces and clues left by the 584 585 Egyptian civilization. Osirmose's mummy as well as the mummies of his father and 586 mother travelled to Europe as they were part of international trade related to 587 Egyptomania followed by Napoleon's Egyptian campaign [20]. Furthermore, 588 Osirmose's mummy went through the turmoil of the initial creation of Egyptian 589 collections in European museums with mistakes such as inversion of sarcophagi between mummies [10]. The body of Osirmose's mummy was also restored in 590 591 modern times, adding further complexity to the endeavour to understand its 592 anatomy. The sex of Osirmose was obscured for decades due to misinterpretation of

593	X-ray imaging performed in the 1990s [16], and due to further dissemination of this
594	error through a textbook by renowned Egyptologists [14]. With a help of
595	multidisciplinary team, we have reasserted the male sex of Osirmose's mummy
596	(Figures 2-4). Although the heart is the central organ in the ancient Egyptian
597	civilization body understanding, only 4 previous cases of heart preservation were
598	described in the literature [21, 22]. The heart was positioned by the embalmers on
599	the right side to the vertebral spine after the thoracic case was emptied of its organs
600	(Figures 5–6) The heart of Ramses II (XIX Dynasty) was also found to be
601	repositioned on the right side by embalmers [20]
602	Retroperitoneal organs were not extracted from the body [23] and we found 2
603	preserved kidneys in true anatomical places (Figure 5). A broken wood stick such as
604	the one that we found in Osirmose's skull has already been found in other mummies
605	skulls such as the hamboo stick described by Cavka et al [24] and wood fragments
606	described by Wade et al [21]: these sticks may be present due to an accident that
607	occurred during the use of an instrument of natural origin to remove the brain and
608	dura from the skull (Figure 13). False eves over the true eve globe were another
600	extrinsic element added to the mimmy (Figures 7, 12–14, 16) [13]
610	examise element added to the manning (Figures 7, 12-14, 10) [15].
611	Initial visual examination provided the impression that Osirmose's mummy was
612	covered by two layers of bandages: the outer layer placed during a modern
613	restoration and the inner layer blacked with embalming substances. However 3D
614	CT high resolution CT showed that the inner layer was the result of a sophisticated
615	ambalming proceedure with details such as the double lower in the inner lower of the
616	bandage on the right and left side of the oral cavity, and at the level of the calusal
617	plana on the right and left side (Figures 8, 10, 11)
619	There was also complex facial and certifical liner stuffing of different anatomical
610	areas such around the care (Figure 16) in subhasele, supromontale, submaxillary
620	ingel and in corriging (Figure 7.8, 10, 11, 15)
621	Jugar and in cervical regions (Figures 7, 6, 10, 11, 13) The mouth was alogad (Figures 12, 13, 15) with a pieze of linear between enterior
622	the mouth was closed (Figures 12, 15, 15) with a piece of finel between anterior teach (Figure 15). Therefore, the mouth eneming commonly as described by Public t
622	al [25] and occurring in the description of analyzes of other mumming, use not used
624	at [25] and occurring in the description of analyses of other multimes, was not used by Osirmoso's ambalmars. All these details were present and found on 2D CT.
625	images because the head of the nummy remained intert until our times (Figures 2.4
020	12.14) This also means that artificial balas we found in the maxilla were executed
627	hefere the death of Osirmose, and are not due to further nest mortom destruction of
027	the mummy (Figures 17, 22). The testh we found in the assenhagie (Figure 20) may
020	net he in this leastion due to an assident that assumed during embeloring but rather
629	due to a process performed with promoditation as teeth have already been found in
631	the shull of a mummu from the VVII th Durgety [25] in the low my [25] or between
031	law a first a mummy from the AAII Dynasty [25], in the farying [25] of between
632	layers of bandages in the back and leg areas [26]. Comparing the difference between
033	ine quality of embalming of the face and the traces of the accident during
034	exceredration one might think that embaimers worked in highly specialized teams,
635 636	and each specific part of the embalming process was in the hands of different
030	specialists [20].
637	Most advanced bone lesions and wear occurred in the maxilla (Table 1) when

638	compared to the mandible (Table 2). Egression occurred during the asymmetric wear
639	process (Figures 12, 18, 19, 22). Osteolytic bone lesions were reproduced at
640	successive levels starting from the upper side of the maxilla and continuing to the
641	level of the alveolar bone process (Figure 22). The majority of teeth in the maxilla
642	were lost. Bone lesions were much more aggressive in the maxilla than in the
643	mandible (Table 1, Figures 18, 19). Such asymmetric cases of tooth wear and tooth
644	loss in the upper jaw are present in modern patients with Pica (eating non-nutritive
645	substances) [27], and specifically with geophagia (deliberate eating of earth) [28]
646	when eating argile (kaolinite or clay) [27] or eating seashells [29]. Clay was also
647	reported to be eaten by Ancient Egyptian to treat the gut [28, 30]. The consumption
648	of clay induces iron deficiency, aggressive periodontitis, tooth wear, and
649	asymmetrical tooth loss which is more present in the maxilla than in the mandible
650	[27-29]. Pica or geophagia may be one of the possible explanations for the
651	asymmetric wear process found in Osirmose's mummy.

Table 1. Dental status of maxillary teeth. We applied International Dental
 Federation teeth numbering.

Teeth present on the dental arch	12, 13, 17, 22, 24, 26 (MV, DV), 27, 28
Teeth missing from the dental arch	11, 14, 15, 16, 18, 21, 23, 25, 26 (P)
Teeth fractured	None
Wear	All present teeth (massive effect on maxillary teeth)
Periapical lesion	12, 13, 17, 18, 22, 26, 27, 28
Recent cavities	26 (vestibular), 27 (vestibular)
Older cavities	17 (vestibular), 17 (palatine), 18 (vestibular), 22 (vestibular), 27 (vestibular), 27 (palatine), 28 (vestibular)
Caries	None
Teeth displaced	25 (oesophagus)
Visible empty socket	16, 23, 25
Abnormal structures	Rectangular hole on the palatine side of tooth n°26 (palatine root of tooth n°26 missing), indentation at right angle palatine to tooth n°27, semi-lunar shape of grooves around the osteolytic lesion distal and palatal to tooth n°28

Bentai i ederation teetti nambering.	
Teeth present on the dental arch	31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48
Teeth missing from the dental arch	36
Teeth fractured	None
Wear	Yes (all teeth)
Periapical lesion	31, 35 (rarefying osteitis), 46 (rarefying osteitis), 37 (distal root, periodontal disease), 38 (periodontal disease)
Recent cavities	No
Older cavities	31 (vestibular)
Caries	None
Teeth displaced	None
Visible empty socket	None
Abnormal structures	None

Table 2. Dental status of mandibular teeth. We applied the International Dental Federation teeth numbering

Holes in the maxillary bone in a living person appear by progressive erosion of bone walls starting around the apices of teeth. When the osteolytic bone lesion opens 665 finally through the cortical bone, the tension inside the bone cavity decreases, and the pain for the patient is alleviated. The palatine cortical bone is much more

difficult to erode than the vestibular bone because of its thickness. If palatine bone 667 osteolysis occurs, it appears after vestibular bone erosion. For example, we can 668 compare the diameter of vestibular (larger) and palatine (smaller) round openings of 669 670 bone lesions at the level of the second left molar $(n^{\circ}27)$ (Figures 21A, 23).

671 Moreover, bone lesion opening initiates at the level of the apex of the root that was 672 infected, as it can be seen in the palatine lesion opening of an infected palatine root of the second left molar (n°27), and of the third left molar (n°28) on the vestibular 673 674 side (Figure 21A.).

675 The missing bone box that we discovered at the palatine side of the first left molar (n°26) (Figures 17, 23) is situated above a natural localization of the opening of an 676 osteolytic bone lesion, which opens through the bone at the level of the apex of the 677 tooth. Its shape does not correspond to any kind of osteolytic bone lesion described 678 in previous literature [19]. 679

680 Our interpretation is that removal of the palatine root of the first left molar ($n^{\circ}26$) 681 was performed in this case with an instrument (possibly metallic pliers), which

- 682 allowed the removal of the palatine root of the first left molar along with a piece of 683 the palatine cortical plate. The missing bone box therefore corresponds to a
- 684 "fingerprint" of the use of an oral surgery instrument. At that time, this type of
- 685 action allowed a large and immediate opening at the thick palatine side of the

⁶⁶² 663 664

686	infected bone lesion. Palatine root removal was minimally invasive, as two
687	vestibular roots were preserved to allow the patient to continue eating [31]. This
688	means that the notion of dental root anatomy was known, as upper molars have three
689	roots, two vestibular and one palatine. After tooth removal, even in current
690	procedures, a large bone lesion was opened, the inflammatory palatine mucosa was
691	taken out, the pain was gradually decreased, and a local healing process could start.
692	There was also another type of bone opening that was deliberately performed in the
693	same living patient (Figures 17, 23). This time, an operator used a kind of bone
694	curved raspator of approximately 5 mm large, which was long enough to reach the
695	palatine posterior maxilla (Figure 24).

Fig. 24. A. Possible general orientation of the raspator (R) to reach the osteolytic lesion on the palatine side of tooth n°28. B. Posterior view. The raspator (R) placed in the semilunar shaped lesion (arrow) at the palatine side of tooth n°28.

702 This instrument cut the bone under or through the palatine mucosa and cut the 703 underlying palatine bone corresponding to the floor of the major lesion around and 704 distal to the third left molar (n°28) (Figure 24). Again, the missing bone area 705 corresponds to a "fingerprint" of the instrument used that was left on the bone at the 706 time of oral surgery. This lesion opening was not at a normal level for natural bone lesion openings in this patient, compared to other existing bone lesion openings in 707 708 the same patient (Figure 21). This action served the same purpose of pain relief and speeding up the healing process of the complex bone osteolytic lesion around the 709 710 third left molar ($n^{\circ}28$). The third element we found was a small step at a right angle 711 in the bone at the level of the palatine side of the palatine root of the second left 712 molar (n°27) (Figures 17, 23). It either belonged to the same instrument and to the 713 same action that was taken to open up the floor of the lesion around the third left 714 molar (n°28), or it was linked to a previous oral surgery attempt in the same area.

- 696
- 697
- 698 699 700

715	Without local anaesthesia, this kind of surgery would be extremely painful therefore,
716	it should only be done as a last choice medical treatment, and as quickly as possible,
717	by a skilled person using adapted instruments.
718	
719	With this discovery, we hope that other expert teams may start searching for other
720	hidden osseous geometric box holes and semilunar indentations in the maxilla
721	and/or mandible and for "fingerprints" of potential instruments left for eternity in
722	Egyptian museums' mummy collections to further confirm our findings.
723	
724	• Acknowledgements: We would like to thank Mr R. Mazy, the CEO and
725	Professor J.P. Vanoverschelde, medical director of Cliniques universitaires saint
726	Luc, Brussels, Belgium, for allowing us to use the 3D multi-resolution CT scan
727	for non-medical purposes, outside working hours, and without any harm to
728	patients. We would like to thank Mrs Marie-Hélène Grégoire from Presses
729	Universitaires de Louvain for her art work (Figure 1, CC-BY-SA).
730	• Funding sources statement: This study did not receive any funding.
731	• Competing interests : Professor R. Olszewski is Editor-in-Chief of NEMESIS.
732	The all other authors declare no conflicts of interest.
733	• Ethical approval: there was no need for the ethical approval for this study.
734	• Informed consent : there was no need for the informed consent for this study.

Author	Contributor role
Olszewski Raphael	Conceptualization, Data curation, Investigation, Methodology, Resources, Validation, Writing original draft preparation, Supervision, Writing review and editing
Hastir Jean-Philippe	Data curation, Resources, Writing original draft preparation, Writing review and editing
Tilleux Caroline	Writing original draft preparation, Writing review and editing
Delvaux Luc	Writing original draft preparation, Writing review and editing

Authors contribution:

Danse Etienne	Writing original draft preparation, Writing review and editing

737	References
738	1. Blomstedt P. Dental surgery in Ancient Egypt. J Hist Dent 2013;61:129-142.
739	
740	2. Forshaw RJ. The practice of dentistry in ancient Egypt. Br Dent J 2009;206:481-
741	486.
742	
743	3. Ruffer A. Studies of abnormalities and pathology of ancient Egyptian teeth. Am J
744	Phys Anthropol 1920;3:335-382.
745	4 Smith CE Insidence of dental dissesses in ansight Equat. Dr. Mod I 1022:2:760
740	4. Siniti OE. Incluence of dental diseases in ancient Egypt. Bi Med J 1952,2.700.
748	5. Hooton EA. Oral surgery in Egypt during the Old Empire. Harvard African
749	Studies 1917;1:29-32.
750	
751	6. Leek FF. Observations of the dental pathology seen in ancient Egyptian skulls. J
752	Egypt Archaeol 1966;52:59-64.
753	
754	7. Leek FF. Did a dental profession exist in ancient Egypt during the 3 rd millennium
755	B.C.? Med Hist 1972;16:404-406.
756	
757	8. Melcher AH, Holowka S, Pharoah M, Lewin PK. Non-invasive computed
758	tomography and three-dimensional reconstruction of the dentition of a 2,800-year-
759	old Egyptian mummy exhibiting extensive dental disease. Am J Physical Anthropol
760	1997;103:329-340.
761	
762	9. Cesarani F, Martina MC, Ferraris A, Grilletto R, Boano R, Marochetti EF,
763	Donadoni AM, Gandini G. Whole-body three-dimensional multidetector C1 of 13
764	Egyptian humanmummies. Am J Roentgenol 2003;180:597-606.
765	
766	10. Olszewski R, Tilleux C, Hastir JP, Delvaux L, Danse E. Holding Eternity in One's
/6/	Hand: First Three-Dimensional Reconstruction and Printing of the Heart from 2700
768	Years-Old Egyptian Mummy. Anat Rec 2019;302:912-916.
769	11 Demonstration Calling and Hamis and their groups in the CE of
//U	11. Dawson w.K. Anastasi, Sallier, and Harris and their papyri. Journal of Egyptian
770	Archaeology 1949,55:158-100.
112	

773 774	12. Delvaux L, Therasse I. Sarcophages. Sous les étoiles de Nout. Cercueils et
775	aditors Sarconhages Sous les étailes de Nout Carqueils et sarconhages des Musées
776	rouguy d'Art et d'Histoire, let ed Drussels: Decine, 2015
770	Toyaux u Ait et u filsione. Ist eu. Blussels. Racine, 2015.
770	12 Cross DIW Artificial area in momentian Journal of Fermion Archaeolage
778	15 Gray PHK. Artificial eyes in mummles. Journal of Egyptian Archaeology
779	19/1;57:125-126.
780	
781	14. Taylor JH, Antoine D. Ancient Lives new discoveries. Eight mummies, eight
782	stories. 1st ed. London: British Museum, 2014.
783	
784	15. Bettum A. Dismutenibles and Aaiu. Two 25th Dynasty Coffins in Oslo. Studien
785	zur Altägyptischen Kultur 2010;39:51-65.
786	
787	16. Francot C, Limme L, Van Elst F, Vanlathem MP, Van Rinsveld B. Les Momies
788	égyptiennes des Musées royaux d'Art et d'Histoire à Bruxelles et leur étude
789	radiographique. 1st ed. Turnhout: Brepols, 1999.
790	
791	17. Maschio F, Pandya M, Olszewski R. Experimental validation of plastic mandible
792	models produced by a "low-cost" 3-Dimensional fused deposition modeling printer.
793	Med Sci Monit 2016; 22:943-957.
794	
795	18. Olszewski R, Hastir JP, Tilleux C, Delvaux L, Danse E. Computed tomography
796	of the heads of ancient Egyptian mummies: a systematic review of the medical
797	literature. Nemesis 2020;9:1-49.
798	
799	19. Peluso A. Patologia orale in una antica popolazione egiziana. Dental Cadmos
800	1980;12:9-28.
801	,
802	20. Brier B. Egyptian Mummies. Unraveling the secrets of an ancient art. Quill
803	Willam Morrow New York, pp 352.
804	
805	21. Wade AD, Garvin GJ, Hurnanen JH, Williams LL, Lawson B, Nelson AJ,
806	Tampieri D. Scenes from the past: multidetector CT of Egyptian mummies of the
807	Redpath Museum, Radiographics 2012:32:1235-1250.
808	
809	22 Conlogue G. Considered limitations and possible applications of computed
810	tomography in mummy research Anat Rec (Hoboken) 2015:298:1088-1098
811	
812	23. Salem ME, Eknovan G. The kidney in ancient Egyptian medicine: where does it
813	stand? Am I Nephrol 1999:19:140-147
814	owner, and a replace 1777,177,110 117.
815	24 Cavka M Petaros A Ivanac G Aganović I. Janković I Reiter G Speier P
816	Nielles-Vallespin S, Brkljacić B. A probable case of Hand-Schueller-Christian's

38	[Nemesis] Titre de l'article (PUL-En-tête paire)

817 818	disease in an Egyptian mummy revealed by CT and MR investigation of a dry mummy. Coll Antropol 2012;36:281-286.
819	
820	25. Seiler R, Rühli F. "The opening of the mouth"a new perspective for an ancient
821	827Egyptian mummification procedure. Anat Rec 2015;298:1208-1216.
822	
823	26. Scott JW, Horne PD, Hart GD, Savage H. Autopsy of an Egyptian mummy. 3.
824	Gross anatomic and miscellaneous studies. Can Med Assoc J 1977;117:464-469.
825	
826	27. Toker H, Ozdemir H, Ozan F, Turgut M, Goze F, Sivas M, Kantarci A. Dramatic
827	oral findings belonging to a pica patient: A case report. International Dental Journal
828	2009;59:26-30.
829	
830	28. Macheka LR, Olowoyo JO, Matsela L, Khine AA. Prevalence of geophagia and
831	its contributing factors among pregnant women at Dr. George Mukhari Academic
832	Hospital, Pretoria. Afr Health Sci 2016;16:972–978.
833	
834	29. Lavin-Nino de Zepeda S. Pica, a little-known condition in dentistry. Case report.
835	Int J Odontostomat 2019;13:195-197.
836	
837	30. Starks PT, Slabach BL. The scoop on eating dirt. Sci Am 2012;306:30-32.
838	
839	31 Leek FF Teeth and bread in ancient Egypt I Egypt Archaeol 1972.58.126-132
840	
0.0	
841	