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 In this paper, length biased Weibull distribution is considered for Bayesian 
analysis. The expressions for Bayes estimators of the parameter have been 
derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss 
functions by using quasi and gamma priors. 
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A. INTRODUCTION  
The length biased Weibull distribution has been proposed by Pandya et al (Pandya, 2013). 

They obtained the Bayes estimators of the parameters under linex loss function. The 
probability density function of length biased Weibull distribution is given by 
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The joint density function or likelihood function of (1) is given by 
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The log likelihood function is given by 
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Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood 
estimator of θ which is given as 
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B. METHODS 

The Bayesian inference procedures have been developed generally under squared error 
loss function 
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The Bayes estimator under the above loss function, say, s


 is the posterior mean, i.e, 
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Zellner (Zellner, 1986), Basu and Ebrahimi (Basu & Ebrahimi, 1991) have recognized that the 
inappropriateness of using symmetric loss function. Norstrom (Norström, 1996) introduced 
precautionary loss function is given as 
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The Bayes estimator under this loss function is denoted by P


 and is obtained as

  
1

22
P E 



 
 

.                (8) 

Calabria and Pulcini (Calabria & Pulcini, 1996) points out that a useful asymmetric loss 
function is the entropy loss 
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eL p log        

where  ,







  and whose minimum occurs at . 



 
Also, the loss function  L   has been 

used in Dey et al. (Dey, Ghosh, & Srinivasan, 1986) and Dey and Liu (Dey & Pei-San Liao Liu, 
1992), in the original form having 1p .  Thus  L   can written be as 

    1eL b log ; b>0.                      (9) 

The Bayes estimator under entropy loss function is denoted by E


 and is obtained by solving 
the following equation 
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Wasan (Melin, 1994) proposed the K-loss function which is given as 
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Under K-loss function the Bayes estimator of θ is denoted by K


 and is obtained as 
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Al-Bayyati (Al-Bayyati, 2002) introduced a new loss function which is given as 
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Under Al-Bayyati’s loss function the Bayes estimator of θ is denoted by Al


 and is obtained as 
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Several models have been investigated in last few years and a number of symmetric and 
asymmetric loss functions have been shown to be functional; we refer readers to (Nassir & 
Ibrahim, 2020), (Ramos, Louzada, Ramos, & Dey, 2019), (Reshi, Ahmad, & Ahmad, 2019), (Dar, 
Ahmed, & Reshi, 2018), (Ajami & Jahanshahi, 2017), (Oluwafemi, 2017), (Mudasir Sofi, 
Ahamad, S.P., Ahamad, A., 2016), (Ahmad, Ahmad, & Ahmed, 2016), (Tahir, 2015), (Reshi, J.A., 
Ahmad, A. and Mir, K.A., 2014), (Alzaatreh, Famoye, & Lee, 2013). 
Let us consider two prior distributions of θ to obtain the Bayes estimators. 
(i) Quasi-prior: For the situation where we have no prior information about the parameter θ, 
we may use the quasi density as given by 
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where d = 0 leads to a diffuse prior and d = 1, a non-informative prior. 
(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter 
θ given by 
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C. RESULT AND DISCUSSION 

1. Posterior Density Under  1g   

The posterior density of θ under  1g  , on using (2), is given by 
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Theorem 1. On using (17), we have 
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Proof.  By definition, 
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From equation (18), for 1c  , we have 
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From equation (18), for 2c  , we have 
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From equation (18), for 1c   , we have 
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From equation (18), for 1c c  , we have 
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2. Bayes Estimators Under  1g    

From equation (6), on using (19), the Bayes estimator of θ under squared error loss 
function is given by 
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From equation (8), on using (20), the Bayes estimator of θ under precautionary loss 
function is obtained as 
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From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is 
given by 
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From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function 
is given by 
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From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s 
loss function comes out to be 
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3. Posterior Density Under  2g     

Under  2g  , the posterior density of θ, using equation (2), is obtained as 
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Theorem 2. On using (28), we have 
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Proof.  By definition, 
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From equation (29), for 1c  , we have 
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From equation (29), for 2c  , we have 
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From equation (29), for 1c   , we have 
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From equation (29), for 1c c  , we have 

  
 1

1

1

1 c
n

c

i

i

n
n c

E x
n

n






 




 





 
          

      
 

 .          (33) 

 
 



34  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 5, No. 1, April 2021, pp. 28-35  

 

 

4. Bayes Estimators Under  2g    

From equation (6), on using (30), the Bayes estimator of θ under squared error loss 
function is given by 
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From equation (8), on using (31), the Bayes estimator of θ under precautionary loss 
function is obtained as 
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From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is 
given by 
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From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function 
is given by 
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From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s 
loss function comes out to be 

 

1

1

n

Al i

i

n
n c x  








  
      
  

 .             (38) 

 
 

D. CONCLUSION AND SUGGESTIONS 
In this paper, we have obtained a number of estimators of parameter of length biased 

Weibull distribution. In equation (4) we have obtained the maximum likelihood estimator of 
the parameter. In equation (23), (24), (25), (26) and (27) we have obtained the Bayes 
estimators under different loss functions using quasi prior. In equation (34), (35), (36), (37) 
and (38) we have obtained the Bayes estimators under different loss functions using gamma 
prior. In the above equation, it is clear that the Bayes estimators depend upon the parameters 
of the prior distribution. We therefore recommend that the estimator’s choice lies according 
to the value of the prior distribution which in turn depends on the situation at hand. 
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