
Acta Informatica
https://doi.org/10.1007/s00236-021-00395-w

ORIG INAL ART ICLE

Session-based concurrency, declaratively

Mauricio Cano1 · Hugo A. López2 · Jorge A. Pérez1,3 · Camilo Rueda4

Received: 20 January 2020 / Accepted: 13 January 2021
© The Author(s) 2021

Abstract
Session-based concurrency is a type-based approach to the analysis of message-passing
programs. These programsmay be specified in an operational or declarative style: the former
defines how interactions are properly structured; the latter defines governing conditions for
correct interactions. In this paper, we study rigorous relationships between operational and
declarative models of session-based concurrency. We develop a correct encoding of session
π-calculus processes into the linear concurrent constraint calculus (lcc), a declarativemodel
of concurrency based on partial information (constraints). We exploit session types to ensure
that our encoding satisfies precise correctness properties and that it offers a sound basis on
which operational and declarative requirements can be jointly specified and reasoned about.
We demonstrate the applicability of our results by using our encoding in the specification of
realistic communication patterns with time and contextual information.

1 Introduction

This paper addresses the problem of relating two distinct models of concurrent processes:
one of them, the session π -calculus [45] (π , in the following), is operational; the other one,

Cano and Pérez have been partially supported by the Netherlands Organization for Scientific Research
(NWO) under the VIDI Project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).
López is partially supported by the Innovation Fund Denmark project Ecoknow.org (705000034A) and the
European Union Marie Sklodowska Curie grant agreement BehAPI No. 778233. Rueda is partially
supported by Colciencias, ECOS-NORD project FACTS (C19M03).

B Mauricio Cano
m.a.cano.grijalba@gmail.com

B Jorge A. Pérez
j.a.perez@rug.nl

Hugo A. López
lopez@di.ku.dk

Camilo Rueda
crueda@javerianacali.edu.co

1 University of Groningen, Groningen, The Netherlands

2 University of Copenhagen and DCR Solutions A/S, Copenhagen, Denmark

3 CWI, Amsterdam, The Netherlands

4 Pontificia Universidad Javeriana-Cali, Valle del Cauca, Colombia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-021-00395-w&domain=pdf
http://orcid.org/0000-0001-5162-7936
http://orcid.org/0000-0002-1452-6180
http://orcid.org/0000-0001-8387-9644

M. Cano et al.

the linear concurrent constraint calculus [22,27] (lcc, in the following), is declarative. Our
interest in these two models stems from the analysis of message-passing software systems,
which are best specified by combining operational features (present in models such as π)
and declarative features (present in models such as lcc). In this work, we aim at results of
relative expressiveness, which explain how to faithfully encode programs in one model into
programs in some other model [39,40]. Concretely, we are interested in translations in which
π and lcc are, respectively, source and target languages; a key common trait supporting
expressiveness results between π and lcc is linearity, in the sense of Girard’s linear logic,
the logic of consumable resources [24].

The process language π falls within session-based concurrency, a type-based approach to
the analysis ofmessage-passing programs. In this approach, protocols are organized into basic
units called sessions; interaction patterns are abstracted as session types [29], against which
specifications may be checked. A session connects exactly two partners; session types ensure
that interactions always occur in matching pairs: when one partner sends, the other receives;
when one partner offers a selection, the other chooses; when a partner closes the session,
the other acknowledges. When specifications are given in the π-calculus [33,34], we obtain
processes interacting along channels to implement session protocols. Sessions thus involve
concurrency, mobility, and resource awareness: a session is a sequence of deterministic
interactions on linear channels, to be used exactly once.

In specifying message-passing programs, operational and declarative features are com-
plementary: while the former describe how a message-passing program is implemented,
the latter describe what are the (least) conditions that govern a program’s correct behavior.
Although languages based on the π -calculus can conveniently specify mobile, point-to-point
communications, they do not satisfactorily express other kinds of requirements that influence
protocol interactions and/or communicating partners—in particular, partial and contextual
information can be unnatural or difficult to express in them.

To address this shortcoming, extensions of name-passing calculi such as, e.g., [5,11,14,
20,21] have been developed: they typically add declarative features based on constraints (or
assertions), i.e., logical conditions that specify and influence process behavior. Interestingly,
several of these extensions are inspired by concurrent constraint programming [43] (ccp, in
the following), a model of concurrency in which constraints (but also other forms of partial
information) are a primitive concept. Process languages based on ccp are appealing because
they are simple, rest upon solid foundations, and are very expressive. Indeed, ccp languages
such as lcc and utcc [37] can represent mobility as in the π-calculus; such representations,
however, tend to be unpractical for reasoning about message-passing programs.

In our view, this current state of affairs begs for a unifying account of operational and
declarative approaches to session-based concurrency. We envision a declarative basis for
session-based concurrency in which constructs from operational models (such as π) are
given correct, low-level implementations in declarative models (such as lcc). Such imple-
mentations can then be freely used as “macros” in larger declarative specifications, in which
requirements related to partial and contextual information can be cleanly expressed. In this
way, existing operational and declarative languages (and their analysis techniques) can be
articulated at appropriate abstraction levels. An indispensable step towards this vision is
developing rigorous ways of compiling operational languages into declarative ones. This is
the main technical challenge in this paper.

In line with this challenge, our previous work [31] formally related the session π-
calculus in [29] and utcc using an encoding, i.e., a language translation that satisfies
certain encodability criteria [26]. Although this encoding already enables us to reason about
message-passing specifications from a declarative standpoint, it presents some important

123

Session-based concurrency, declaratively

limitations. First, the key rôle of linearity and type-based correctness in session-based con-
currency is not explicit when encoding session π -calculus processes in utcc. Also, because
utcc is a deterministic language, the encoding in [31] can only translate deterministic ses-
sion processes, and so it rules out useful forms of non-determinism that naturally arise in
session-based concurrency.

To address these limitations within a unified account for session-based concurrency, here
we develop an encoding of π into lcc. Unlike utcc, lcc treats constraints as linear
resources that can be used exactly once. Our main discovery is that lcc with its explicit
treatment of linearity is a much better match for interactions in session-based concurrency
than utcc. This is made formal by the tight correspondences between source processes in
π and target processes in lcc. Unlike utcc, lcc is a non-deterministic language. Hence,
by using lcc as target language, our encoding can translate π processes that cannot be
translated by the encoding in [31], such as, e.g., a process specifying a session protocol in
which a client can non-deterministically interact with multiple servers (cf. Ex. 3).

Summarizing, this paper develops the following contributions:

• A translation from π into lcc (Sect. 4). By using lcc as target language, our translation
supports linearity and non-determinism, as essential in session-based concurrency.

• A study of the conditions under which the session types by Vasconcelos [45] enable us
to correctly translate π processes into lcc (Sect. 3.1). We use these conditions to prove
that our translation is a valid encoding: it satisfies Gorla’s encodability criteria [26], in
particular operational correspondence.

• Extended examples that showcase howprocesses resulting fromour encoding can be used
asmacros in declarative specifications (Sect. 5). By exploiting a general strategy that uses
encoded processes as code snippets,we specify inlcc two of the communication patterns
with time in [36].

The rest of this paper is structured as follows. Section 2 describes session-based concur-
rency and introduces the key ideas in our approach. Section 3 presents required background
on relative expressiveness, π , and lcc. In particular, Sect. 3.1 presents a variant of the
session types in [45] that is crucial to establish correctness for our translation. Section 4
presents the translation of π into lcc and establishes its correctness. Section 5 develops the
extended examples.We close by discussing relatedwork (Sect. 6) and giving some concluding
remarks (Sect. 7). “Appendices” contain additional examples and omitted proofs.

This paper builds upon results first reported in the conference paper [17]. Such results
include (i) an encoding of π into lcc, as well as (ii) an encoding of an extension of π with
session establishment into a variant of lcc. Here, we offer a revised, extended presentation
of the results on (i), for which we present stronger correspondences, full technical details, and
additional examples. This focus allows us to keep presentation compact; a detailed description
of the results related to (ii) can be found in Cano’s PhD thesis [15].

2 Overview of key ideas

We informally illustrate our approach and main results. We use π and lcc processes, whose
precise syntax and semantics will be introduced in the following section.
Session-Based Concurrency. Consider a simple protocol between a client and a shop:

1. The client sends a description of an item that she wishes to buy to the shop.
2. The shop replies with the price of the item and offers two options to the client: to buy the

item or to close the transaction.

123

M. Cano et al.

3. Depending on the price, the client may choose to purchase the item or to end the transac-
tion.

Here is a session type that specifies this protocol from the client’s perspective:

S = !item. ?price. ⊕ {buy : !ccard. ?invoice.end , quit : !bye.end}
Type S says that the output of a value of type item (denoted !item) should be followed by the
input of a value of typeprice (denoted ?price). These two actions should precede the selection
(internal choice, denoted⊕) between two different behaviors distinguished by labels buy and
quit: in the first behavior, the client sends a value of type ccard, then receives a value of type
invoice, and then closes the protocol (end denotes the concluded protocol); in the second
behavior, the client emits a value of type bye and closes the session.

From the shop’s perspective, we would expect a protocol that is complementary to S:

T = ? item. !price.&{buy : ?ccard. !invoice.end , quit : ?bye.end}
After receiving a value of type item, the shop sends a value of type price back to the client.
Using external choice (denoted &), the shop then offers two behaviors to the client, identified
by labels buy and quit. The complementarity between types such as S and T is formalized by
session-type duality (see, e.g., [23]). The intent is that implementations derived from dual ses-
sion types will respect their (complementary) protocols at run-time, avoiding communication
mismatches and other insidious errors.

We illustrate the way in which session types relate to π processes. We write x〈v〉.P and
x(y).P to denote output and input along name x , with continuation P . Also, given a finite
set I , we write x � {labi : Pi }i∈I to denote the offer of labeled processes P1, P2, . . . along
name x ; dually, x � lab. P denotes the selection of a label lab along x . Moreover, process
b? P :Q denotes a conditional expression which executes P or Q depending on Boolean b.
Process Px below is a possible implementation of type S along x :

Px = x〈book〉. x(z). (z ≤ 20)? x � buy. x〈5406〉. x(inv).0 : x � quit. x〈end〉. 0 (1)

Py = y(w).y〈price(w)〉.y � {buy : y(w′).y〈invoice〉.0, quit : y(w′′).0} (2)

Process Px uses a conditional to implement the decision of which option offered by the
shop is chosen: the purchase will take place only if the item (a book) is within a $20 budget.
We assume that end is a value of type bye. Similarly, Py is a process that implements the
shop’s intended protocol along y: it first expects a petition for an item (w), and after that
returns the item’s current price. Then, it offers the buyer a (labeled) choice: either to buy the
item or to quit the transaction.

Sessions with Declarative Conditions. The session-based calculus π is a language with
point-to-point, synchronous communication. Hence, π processes can appropriately describe
protocol actions, but can be less adequate to express contextual conditions on partners and
their interactions, which are usually hard to know and predict. Consider a variation of the
above protocol, in which the last step is specified as follows:

3’. Depending on the item’s price and whether the purchase occurs in a given time interval
(say, a discount period), the client may either purchase the item or end the transaction.

This kind of time constraints has been studied in [36], where a number of timed patterns
in communication protocols are identified and analyzed. These patterns add flexibility to
specifications by describing the protocol’s behavior with respect to external sources (e.g.,
non-interacting components like clocks and the communication infrastructure). For example,

123

Session-based concurrency, declaratively

a protocol step such as 3’ dictates that communication actions will be executed only within
a given time interval. Hence, even though timed requirements do not necessarily enact a
communicating action, they may influence interactions between partners.

Timed patterns are instances of declarative requirements, which are difficult to express in
the (session) π-calculus. Formalizing Step 3’ in π is not trivial, because one must necessarily
represent time units by using synchronizations—a far-fetched relationship. The (session) π-
calculus does not naturally lend itself to specify the combination of operational descriptions of
structured interactions (typical of sessions) and declarative requirements (as in, e.g., protocol
and workflow specifications). Given this, our aim is to use lcc as a unified basis for both
operational and declarative requirements in session-based concurrency.

ccp and lcc. lcc is based on concurrent constraint programming (ccp) [43]. In ccp,
processes interact via a constraint store (store, in the sequel) by means of tell and ask
operations. Processes may add constraints (pieces of partial information) to the store via tell
operations; using ask operations processes may query the store about some constraint and,
depending on the result of the query, execute a process or suspend. These queries are governed
by a constraint system, a parametric structure that specifies the entailment relation between
constraints. The constraint store thus defines an asynchronous synchronization mechanism;
both communication-based and external events can be modeled as constraints in the store.

In lcc, tell and ask operations work as follows. Let c and d denote constraints, and let x̃
denote a (possibly empty) vector of variables.While the tell process c can be seen as the output
of c to the store, the parametric ask operator ∀x̃(d→ P) may be read as: if d can be inferred
from the store, then P will be executed; hence, P depends on the guard d . These parametric
ask operators are called abstractions. Resource awareness in lcc is crucial: not only the
inference consumes the abstraction (i.e., it is linear), it may also involve the consumption of
constraints in the store as well as substitution of parameters x̃ in P .

In lcc, parametric asks can express name mobility as in the π-calculus [27,44]. That is,
the key operational mechanisms of the (session) π -calculus (name communication, scope
extrusion) admit (low-level) declarative representations as lcc processes.

Our Encoding To illustrate our encoding, let us consider the most elementary computation
step in π , which is given by the following reduction rule:

(νxy)(x〈v〉.P | y(z).Q) −→ (νxy)(P | Q{v/z})
where v is a value or a variable. This rule specifies the synchronous communication between
two complementary (session) endpoints, represented by the output process x〈v〉.P and the
input process y(z).Q. In session-based concurrency, no races in communications between
endpoints can occur. We write (νxy)P to denote that (bound) variables x and y are reciprocal
endpoints for the same session protocol in P .

Our encoding �·� translatesπ processes intolcc processes (cf. Fig. 8). The essence of this
declarative interpretation is already manifest in the translation of output- and input-prefixed
processes:

�x〈v〉.P� = snd(x, v) ‖ ∀z(rcv(z, v)⊗ {x :z} → �P�
)

�x(y).Q� = ∀y, w(

snd(w, y)⊗ {w:x} → rcv(x, y) ‖ �Q�
)

where⊗ denotes multiplicative conjunction in linear logic. We use predicates snd(x, v) and
rcv(x, y) to represent synchronous communication in π using the asynchronous commu-
nication model of lcc; also, we use the constraint {x :z} to indicate that x and z are dual
endpoints. These pieces of information are treated as linear resources by lcc; this is key to

123

M. Cano et al.

ensure operational correspondence (cf. Theorems 11 and 12). As we will see, �x〈v〉.P� and
�x(y).Q� synchronize in two steps. First, constraint snd(x, v) is consumed by the abstraction
in �x(y).Q�, thus enabling �Q� and adding rcv(x, y) to the store. Then, constraint rcv(x, y)
is consumed by the abstraction ∀z(rcv(z, v)⊗ {x :z} → �P�

)

, thus enabling �P�.

Encoding Correctness using Session Types. To contrast the rôle of linearity in π and in lcc,
we focus on π processes which are well-typed in the type system by Vasconcelos [45]. Type
soundness in [45] ensures that well-typed processes never reduce to ill-formed processes that
do not respect their intended session protocols.

The type system in [45] offers flexible support for processes with infinite behavior, in the
form of recursive session types that can be shared among multiple threads. Using recursive
session types, the type system in [45] admits π processes with output races, i.e., processes in
which two or more sub-processes in parallel have output actions on the same variable. Here
is a simple example of a process with an output race (on x), which is typable in [45]:

R1 = (νxy)(x〈v1〉.Q1 | x〈v2〉.Q2 | ∗ y(z).Q3) (3)

Even though our translation �·� works fine for the set of well-typed π processes as defined
in [45], the class of typed processes with output races represents a challenge for proving
that the translation �·� is correct. We aim at correctness in the sense of Gorla’s encodability
criteria [26], which define a general and widely used framework for studying relative expres-
siveness. Roughly speaking, π processes with output races induce ambiguities in the lcc
processes that are obtained via �·�. To illustrate this, consider the translation of R1:

�R1� = C[snd(x, v1) ‖ ∀w1
(

rcv(w1, v1)⊗ {x :w1} → �Q1�
) ‖

snd(x, v2) ‖ ∀w2
(

rcv(w2, v2)⊗ {x :w2} → �Q2�
) ‖

! ∀z, w3
(

snd(w3, z)⊗ {w3:y} → rcv(y, z) ‖ �Q3�
)]

where contextC[−] includes the constraints needed for interaction (i.e., {x :y}) and ‘!’ denotes
replication. The ambiguities concern the values involved as objects in the output races. If
we assume v1 �= v2, then there are no ambiguities and translation correctness as in [26] can
be established. Now, if v1 = v2 then snd(x, v1) = snd(x, v2), which is problematic for
translation correctness (in particular, for proving operational correspondence): once process
! ∀z, w3

(

snd(w3, z) ⊗ {w3:y} → rcv(y, z) ‖ �Q3�
)

consumes either constraint, we cannot
precisely determine which continuation should be enabled with constraint rcv(x, vi)—both
�Q1� and �Q2� could be spawned at that point.

To establish translation correctness following the criteria in [26], we narrow down the
class of typable π processes in [45] by disallowing processes with output races. To this end,
we introduce a type system inwhich a recursive type involving an output behavior (a potential
output race) can be associated to at most one thread. This is a conservative solution, which
allows us to retain useful forms of infinite behavior. Although process R1 in (3) is not typable
in our type system, it allows processes such as

(νxy)(x〈v1〉.x〈v2〉.Q1 | ∗ y(z).Q2)

in which the parallel server invocations exhibited by R1 have been sequentialized.

123

Session-based concurrency, declaratively

3 Preliminaries

We start by introducing the source and target languages (Sects. 3.1 and 3.2) and the encod-
ability criteria we shall use as reference for establishing translation correctness (Sect. 3.3).

3.1 A session�-calculus without output races (�)

We present the session π -calculus (π) and its associated type system, a specialization of that
by Vasconcelos [45] that disallows output races.

3.1.1 Syntax and semantics

We assume a countably infinite set of variables Vπ , ranged over by x, y, Channels are
represented as pairs of variables, called covariables. Messages are represented by values,
ranged over by v, v′, u, u′, . . . and whose base set is called Uπ . Values can be both variables
and the Boolean constants tt,ff. We also use l, l ′, . . . to range over a countably infinite set
of labels, denoted Bπ . We write x̃ to denote a finite sequence of variables x1, . . . , xn with
n ≥ 0 (and similarly for other elements).

Definition 1 (π) The set of π processes is defined by grammar below:

P, Q:: = x〈v〉.P ∣

∣ x(y).P
∣

∣ x � l.P ∣

∣ x � {li : Pi }i∈I
∣

∣ b? P :Q ∣

∣ ∗ x(y).P
∣

∣ (νxy)P
∣

∣ P | Q ∣

∣ 0

Process x〈v〉.P sends value v over x and then continues as P; dually, process x(y).Q expects
a value v on x that will replace all free occurrences of y in Q. Processes x � l j .P and x � {li :
Qi }i∈I define a labeled choicemechanism,with labels indexed by the finite set I : given j ∈ I ,
the selection process x�l j .P uses x to select l j from the branchingprocess x�{li : Qi }i∈I , thus
triggering process Q j . We assume pairwise distinct labels. The conditional process v? P :Q
behaves as P if v evaluates to tt; otherwise it behaves as Q. Process ∗ x(y).P denotes a
replicated input process, which allows us to specify persistent servers. The restriction (νxy)P
binds together x and y in P , thus indicating that they are two endpoints of the same channel
(i.e., the same session). Processes for parallel composition P | Q and inaction 0 are standard.

We write (ν x̃ ỹ)P to stand for (νx1, . . . , xn y1, . . . , yn)P , for some n ≥ 1. We often write
∏n

i=1 Pi to stand for P1 | · · · | Pn , and refer to the parallel sub-processes of P1, . . . , Pn as
threads.

In x(y).P and ∗ x(y).P (resp. (νyz)P) occurrences of y (resp. y, z) are bound with
scope P . The set of free variables of P , denoted fvπ (P), is standardly defined.

Remark 1 (Barendregt’s variable convention) Throughout the paper, in both π and lcc,
we shall work up to α-equivalence, as usual; in definitions and proofs we assume that all
bound variables are distinct from each other and from all free variables.

The operational semantics for π is given as a reduction relation−→, the smallest relation
generated by the rules in Fig. 1. Reduction expresses the computation steps that a process
performs on its own. It relies on a structural congruence on processes, given below.

Definition 2 (Structural Congruence) The structural congruence relation for π processes
is the smallest congruence relation ≡π that satisfies the following axioms and identifies

123

M. Cano et al.

Fig. 1 Reduction relation for π processes

processes up to renaming of bound variables (i.e., α-conversion, denoted ≡α).

P | 0 ≡π P P | Q ≡π Q | P (P | Q) | R ≡π P | (Q | R)

(νxy)(νwz)P ≡π (νwz)(νxy)P (νyx)P ≡π (νxy)P (νxy)0 ≡π 0

P ≡α Q �⇒ P ≡π Q x, y /∈ fvπ (Q) �⇒ (νxy)P | Q ≡π (νxy)(P | Q)

Intuitions on the rules in Fig. 1 follow. Reduction requires an enclosing restriction
(νxy)(· · ·); this represents that a session connecting endpoints x and y has been already
established. Hence, communication cannot occur on free variables, as there is no way to tell
what is the pair of interacting covariables. In Rules �Com�, �Sel�, and �Rep�, the restriction
is persistent after each reduction, to allow further synchronizations on x and y. In the same
rules, process R stands for all the threads that may share x and y.

Rule �Com� represents the synchronous communication of value v through endpoint x
to endpoint y. Furthermore, Rule �Sel� formalizes a labeled choice mechanism, in which
communication of a label l j is used to choose which of the Qi will be executed, Rule �Rep�
is similar to Rule �Com�, and used to spawn a new copy of Q, available as a replicated
server. Rules �IfT� and �IfF� are self-explanatory. Rules for reduction within parallel and
restriction contexts, together with reduction up to ≡π , are standard.

To reason compositionally about the syntactic structure of processes, we introduce (eval-
uation) contexts. A context represents a process with a “hole”, denoted ‘−’, which may be
filled by another process.

Definition 3 (Contexts for π) The syntax of (evaluation) contexts in π is given by the fol-
lowing grammar:

E :: = − ∣

∣ E | P ∣

∣ P | E ∣

∣ (νxy)(E)

where P is a π process. We write C[−] to range over contexts of the form (ν x̃ ỹ)(−). Also,
we write E[P] (resp. C[P]) to denote the process obtained by filling ‘−’ with P .

123

Session-based concurrency, declaratively

Fig. 2 Session types: qualifiers, pre-types, types, and typing contexts

3.1.2 Type system

We now present the type system for π , a variant of the system in [45]. Rem. 2 discusses the
differences of our type system with respect to the one in [45].

We use q, q ′, . . . , to range over qualifiers; p, p′, . . . , to range over pre-types; T ,U , . . . to
range over types, and Γ , Γ ′, . . . to range over the typing contexts which gather assignments
of the form x : T , where x is a variable and T is a type. As usual, we treat contexts up to the
exchange of entries; the variables that appear in a context are required to be pairwise distinct.
The concatenation of typing contexts Γ1 and Γ2 is written Γ1, Γ2.

Definition 4 (Syntax of Types) The syntax of types and typing contexts is in Fig. 2.

Intuitively, pre-types represent pure communication behavior (e.g., send, receive, selec-
tion, and branching). Pre-type !T1.T2 represents a protocol that sends a value of type T1
and then continues according to type T2. Dually, pre-type ?T1.T2 represents a protocol that
receives a value of type T1 and then proceeds according to type T2. Pre-types ⊕{li : Ti }i∈I
and &{li : Ti }i∈I denote labeled selection (internal choice) and branching (external choice),
respectively.

Pre-types are given a qualifier q to indicate whether the communication behavior is unre-
stricted or linear. Linearly qualified pre-types can only be assigned to variables that do not
appear shared among threads, whereas unrestricted pre-types may be assigned to variables
shared among different threads.

Types can be one of the following: (1) bool, used for constants and variables; (2) end,
which indicates a terminated behavior; (3) qualified pre-types; or (4) recursive types for
disciplining potentially infinite communication patterns. Recursive types are considered equi-
recursive (i.e., a recursive type and its unfolding are considered equal because they represent
the same regular infinite tree) and contractive (i.e., containing no sub-expression of the form
μa1. · · · .μan .a1) [42]. The qualifier of a recursive type T = μa.T ′ is obtained via unfolding
and by assigning the qualifier of the body T ′ to type T .

As in [45], we omit end at the end of types whenever it is not needed; we also write
recursive types μa.un!T .a and μa.un?T .a as ∗ !T and ∗ ?T , respectively.

123

M. Cano et al.

We use predicates over types to control which types can be shared among variables. While
in [45] all unrestricted types can be shared, we proceed differently: to rule out output races,
we enforce that only unrestricted input-like types can be shared. We start by presenting an
auxiliary predicate that allows us to distinguish output-like types—even when the output
behavior in the type is not immediate:

Definition 5 (Output-Like Unrestricted Types) We define the predicate out(p) on pre-types
inductively:

out(!T .U)
def= tt out(?T .U)

def= out(U)

out(⊕{li : Ti }i∈I) def= tt out(&{li : Ti }i∈I) def=
∨

i∈I
out(Ti)

The predicate is lifted to types as follows:

out(bool)
def= ff out(end)

def= ff out(a)
def= ff

out(qp)
def= out(p) out(μa.T)

def= out(T)

Using this predicate, we have the following definition, which specializes the one in [45]:

Definition 6 (Predicates for Types and Contexts) Let T be a session type (cf. Fig. 2). We
define un�(T) as follows:

– un�(T) if and only if (T = bool) ∨ (T = end) ∨ (T = un p ∧ ¬out(p)).

Also, we define un�(Γ) if and only if x : T ∈ Γ implies un�(T).

Above, predicate un�(T) modifies the un(T) predicate in [45] to rule out the sharing of
output-like types: it requires that pre-types qualified with ‘un’ do not satisfy out(·).

Session-type systems use duality to relate types with complementary (or opposite) behav-
iors: e.g., the dual of input is output (and vice versa); branching is the dual of selection (and
vice versa). We define duality by induction on the structure of types.

Definition 7 (Duality of Session Types) For every type T except bool, we define its dual T
inductively:

end
def= end a

def= a !T .U
def= ?T .U ?T .U

def= !T .U

⊕{li : Ti }i∈I def= &{li : Ti }i∈I &{li : Ti }i∈I def= ⊕{li : Ti }i∈I μa.T
def= μa.T

Duality in the presence of recursive types is delicate [7]. While intuitive, the inductive defi-
nition above is correct only for tail recursive types, in which all message types are closed. To
account also for non-tail-recursive types (e.g., μa.?a.a) a more involved coinductive defini-
tion is required, cf. Definition 37 in “Appendix”. The reader is referred to [23] for a detailed
treatment of duality, where Definition 7 is called “naive duality”. Notice that using naive
duality does not undermine the correctness of our results.

We shall use a splitting operator on typing contexts, denoted ‘◦’, to maintain the linear-
ity invariant for variables on typing derivations. Because of predicate un�(·) the splitting
operation will not allow to share unrestricted output-like types.

Definition 8 (Typing Context Splitting) Let Γ1 and Γ2 be two typing contexts. The (typing)
context splitting of Γ1 and Γ2, written Γ1 ◦ Γ2, is defined as follows:

123

Session-based concurrency, declaratively

Fig. 3 Session types: typing rules for π processes

∅ ◦ ∅ = ∅ Γ1 ◦ Γ2 = Γ un�(T)

(Γ1, x : T) ◦ (Γ2, x : T) = Γ , x : T
Γ1 ◦ Γ2 = Γ

(Γ1, x : T) ◦ Γ2 = Γ , x : T
Γ1 ◦ Γ2 = Γ

Γ1 ◦ (Γ2, x : T) = Γ , x : T

We also define a ‘+’ operation to correctly update typing contexts during derivations:

x : T /∈ Γ

Γ + x : T = Γ , x : T
un�(T)

(Γ , x : T)+ x : T = Γ , x : T
There are two typing judgments. We write Γ � v : T to denote that value v has type T

under Γ . Also, we write Γ � P to denote that process P is well-typed under Γ .
Figure 3 gives the typing rules for constants, variables, and processes; some intuitions

follow. Rules (T:Bool) and (T:Var) are for variables; in both cases, we require un�(Γ) to
ensure that all variables assigned to types that do not satisfy predicate un�(·) are consumed.
Rule (T:In) types an input process: it checks whether x has the right type and checks the
continuation; it also adds variable y with type T and updates x in Γ with type U . To type-
check a process x〈v〉.P , Rule (T:Out) splits the typing context in three parts: the first checks
the type of the subject x ; the second checks the type of the object v; the third checks the
continuation P . Rules (T:Sel) and (T:Bra) type-check selection and branching processes,
and work similarly to Rules (T:Out) and (T:In), respectively.

Rule (T:Rin) types a replicated input ∗ x(y).P under the context Γ ; it presents several
differences with respect to the rule in [45]. Our rule requires Γ to satisfy predicate un�(·).

123

M. Cano et al.

Also, the type T of y must either satisfy un�(·) or be linear. The rule also requires that Γ

assigns x an input type qualified with un , and that the continuation P is typed with a context
that contains y : T and x : U .

Rule (T:Par) types parallel composition using the (context) splitting operation to divide
resources among the two threads. Rule (T:Res) types the restriction operator by performing
a duality check on the types of the covariables. Rule (T:If) type-checks the conditional
process. Given the inactive process 0, Rule (T:Nil) checks that the context satisfies un�(·)
and Rule (T:WkNil) ensures that unrestricted types that are output-like (cf. Definition 5)
can be weakened when needed. The following example illustrates the need for this rule:

Example 1 (RecursiveTypes andRule (T:WkNil))We show the kind of recursive processes
typable in our system, and the most glaring differences with respect to [45]. Process P1 =
x〈tt〉.x〈ff〉.0 is typable both in our system and in the one in [45] under a context in which
x is assigned the recursive type T = μa.un!bool.a. Let us consider the typing derivation
for P1 in our system:

(T:Out)

(T:Bool)
un�(∅)
∅ � tt

(T:Var)
un�(∅)

x : T � x : q!bool.U
(T:Out)

D

∅ + x : U � x〈ff〉.0
∅ ◦ x : μa.un!bool.a ◦ ∅ � x〈tt〉.x〈ff〉.0

Notice that, by Definition 6, un�(T) does not hold because out(T) holds. This in turn
influences the context splitting (Definition 8) required by Rule (T:Out): the assignment
x : T can only appear in one of the branches of the split (the middle one). Let us consider U
and D, which appear unspecified above. Because we use equi-recursive types (as in [45]), T
is equivalent toU = !bool.μa.un!bool.a, which means that the judgment in the rightmost
branch becomes x : T � x〈ff〉.0. To determine its derivation D, we use Rule (T:WkNil):

D = (T:Out)

(T:Bool)
un�(∅)
∅ � ff

(T:Var)
un�(∅)

x : T � x : q!bool.T

(T:WkNil)

(T:Nil)
un�(∅)
∅ � 0

∅ + x : T � 0

∅ ◦ x : μa.un!bool.a ◦ ∅ � x〈ff〉.0

Indeed, before concluding the derivation for the rightmost branch, we are left with the judg-
ment x : T � 0. Because un�(T) does not hold, we cannot apply Rule (T:Nil): to complete
the derivation, we first apply Rule (T:WkNil) and then apply Rule (T:Nil). This way,
Rule (T:WkNil) enforces a limited weakening principle, required in the specific case of
process 0 and an unrestricted type that is output-like.

Consider now process P2 = x〈tt〉.0 ∣

∣ x〈ff〉.0, which is typable in [45] under the context
x : T . This process is not typable in our system because it has an output race on x :

(T:Par)
Γ1 � x〈tt〉.0 Γ2 � x〈ff〉.0

x : μa.un!bool.a � x〈tt〉.0 ∣

∣ x〈ff〉.0

Because un�(T) does not hold, context splitting allows x : T to appear in Γ1 or Γ2 but not
in both of them. As a result, either Γ1 or Γ2 should be empty, which in turn implies that the
typing derivation will not be completed.

123

Session-based concurrency, declaratively

3.1.3 Type safety

Our type system enjoys type safety, which ensures that well-typed processes do not have
communication errors. Type safety depends on the subject reduction property, stated next,
which ensures that typing is preserved by the reduction relation given in Fig. 1. The proof
follows by induction on the derivation of the reduction (cf. App. B.2).

Theorem 1 (Subject Reduction) If Γ � P and P −→ Q, then Γ � Q.

To establish type safety, we require auxiliary notions for pre-redexes and redexes, given
below. We use the following notation:

Notation 2 We write P = � y(z).P ′ to stand for either P = y(z).P ′ or P = ∗ y(z).P ′.
We now have:

Definition 9 (Pre-redexes and Redexes) We shall use the following terminology:

– We say x〈v〉.P , x(y).P , x �l.P , x �{li : Pi }i∈I , and ∗ x(y).P are pre-redexes (at variable
x).

– A redex is a process R such that (νxy)R −→ and:

1. R = v? P :Q with v ∈ {tt,ff} (or)
2. R = x〈v〉.P | � y(z).Q (or)
3. R = x � l j .P | y � {li : Qi }i∈I , with j ∈ I .

– A redex R is either conditional (if R = v? P :Q) or communicating (otherwise).

We follow [45] in formalizing safety using awell-formednessproperty,which characterizes
the set of processes that should be considered correct.

Definition 10 (Well-Formed Process) A process P0 is well-formed if for each of its struc-
tural congruent processes P0 ≡π (νx1y1) . . . (νxn yn)(P

∣

∣ Q
∣

∣ R), with n ≥ 0, the following
conditions hold:

1. If P ≡π v? P ′ : P ′′, then v = tt or v = ff.
2. If P and Q are prefixed at the same variable, then they are of the same input-like nature

(inputs, replicated inputs, or branchings).
3. If P is prefixed at xi and Q is prefixed at yi , 1 ≤ i ≤ n, then P

∣

∣ Q is a redex.

Unlike the definition in [45], Definition 10(2) excludes processes with output races, i.e.,
parallel processes can only be prefixed on the same variable if they are input-like. This is
how we exclude processes with output races. We now introduce a notation for programs:

Notation 3 ((Typable) Programs) A process P such that fvπ (P) = ∅ is called a program.
Therefore, program P is typable if it is well-typed under the empty context (� P).

We can now state type safety, which ensures that every well-typed program is well-
formed—hence, well-typed processes have no output races. The proof follows by contradic-
tion (cf. App. B.2).

Theorem 4 (Type Safety) If � P, then P is well-formed.

Observe that because of Theorem 1, well-formedness is preserved by reduction. Hence:

123

M. Cano et al.

Fig. 4 Syntax of lcc

Corollary 1 If � P and P −→∗ Q, then Q is well-formed with respect to Definition 10.

Remark 2 (Differences with respect to [45]) There are three differences between our type
system and the one in [45]. First, the modified predicates in Definition 6 enable us to rule out
processes with output races, which are typable in [45]. This required adding Rule (T:WkNil)
(cf. Ex. 1). Second, our notion of well-formed processes (Definition 10) excludes processes
with output races, which are admitted as well-formed in [45]. Finally, as already discussed,
our typing rule for replicated inputs (Rule (T:RIn)) is less permissive than in [45], also for
the purpose of ruling out output races.

3.2 Linear concurrent constraint programming (lcc)

We now introduce lcc, following Haemmerlé [27].

3.2.1 Syntax and semantics

Variables, ranged over by x, y, . . ., belong to the countably infinite set Vl . We assume that
Σc and Σ f correspond to sets of predicate and function symbols, respectively. First-order
terms, built from Vl and Σ f , will be denoted by t, t ′, An arbitrary predicate in Σc is
denoted ϕ(˜t).

Definition 11 (Syntax) The syntax for lcc is given by the grammar in Fig. 4.

Constraints represent the pieces of information that can be posted to and asked from the
store. Constant tt, the multiplicative identity, denotes truth; constant ff denotes falsehood.
Logic connectives used as constructors include the multiplicative conjunction (⊗), bang (!),
and the existential quantifier (∃x̃). Notation c{˜t/x̃} denotes the constraint obtained by the
(capture-avoiding) substitution of the free occurrences of xi for ti in c, with |˜t | = |̃x | and
pairwise distinct xi ’s. Process substitution P{˜t/x̃} is defined analogously.

The syntax for guards includes non-deterministic choices, denoted G1 + G2, and para-
metric asks (also called abstractions). A parametric ask ∀x̃(c→ P) spawns process P{˜t/x̃}

123

Session-based concurrency, declaratively

Fig. 5 Intuitionistic sequent calculus for lcc (cf. Definition 12)

if the current store entails constraint c{˜t/x̃}; the exact operational semantics for these ask
operators (and its interplay with linear constraints) is detailed below. When x̃ is empty (a
parameterless ask), ∀x̃(c→ P) is written ∀ε(c→ P).

The syntax of processes includes guards and the tell operator c, which adds constraint c
to the current store; hiding ∃x̃ . P , which declares x as being local to P; parallel composition
P ‖ Q, which has the expected reading; and replication ! P , which provides infinitely many
copies of P . Notation

∏

1≤i≤n Pi (with n ≥ 1) stands for process P1 ‖ · · · ‖ Pn . Universal
quantifiers in parametric ask operators and existential quantifiers in hiding operators bind
their respective variables. Given this, the set of free variables in constraints and processes is
defined as expected, and denoted fv(·).

The semantics of processes is defined as a labeled transition system (LTS), which relies
on a structural congruence on processes. The semantics is parametric in a constraint system,
as defined next.

Definition 12 (Constraint System) A constraint system is a triplet (C,Σ,�), where Σ con-
tains Σc (i.e., the set of predicates) and Σ f (i.e., the set of functions and constants). C is the
set of constraints obtained by using the grammar in Definition 11 and Σ . Relation � is a
subset of C × C that defines the non-logical axioms of the constraint system. Relation � is
the least subset of C∗ × C containing � and closed by the deduction rules of intuitionistic
linear logic (see Fig. 5). We write c �� d whenever both c � d and d � c hold.

Definition 13 (Structural Congruence) The structural congruence relation is the smallest
equivalence relation≡ that satisfies α-renaming of bound variables, commutativity and asso-
ciativity for parallel composition and summation, together with the following identities:

(SC	:1)

P ‖ tt ≡ P
(SC	:2)

∃z.tt ≡ tt
(SC	:3)

∃x . ∃y. P ≡ ∃y. ∃x . P
(SC	:4)

! P ≡ P ‖ ! P
(SC	:5)

c ⊗ d �� e

c ‖ d ≡ e

(SC	:6)

P ≡ P ′

P ‖ Q ≡ P ′ ‖ Q

(SC	:7)

z /∈ fv(P)

P ‖ ∃z. Q ≡ ∃z. (P ‖ Q)

(SC	:8)

P ≡ P ′

∃x . P ≡ ∃x . P ′

As customary, a (strong) transition P
α−→	 P ′ denotes the evolution of process P to P ′

by performing the action denoted by the transition label α:

α:: = τ | c | (̃x)c
Label τ denotes a silent (internal) action. Label c ∈ C denotes a constraint “received” as an
input action (but see below) and (̃x)c denotes an output (tell) action in which x̃ are extruded
variables and c ∈ C. We write ev(α) to refer to these extruded variables.

Before discussing the transition rules (cf. Fig. 6), we introduce a key notion: the most
general choice predicate:

123

M. Cano et al.

Fig. 6 Labeled transition system (LTS) for lcc processes

Definition 14 (MostGeneralChoice (mgc) [27]) Let c, d , and e be constraints, x̃, ỹ be vectors
of variables, and˜t be a vector of terms. We write

mgc
(

c, ∃ỹ.(d{˜t/x̃} ⊗ e)
)

whenever for any constraint e′, all terms˜t ′ and all variables ˜y′, if c � ∃˜y′.(d{˜t ′/x̃} ⊗ e′) and
∃˜y′.e′ � ∃ỹ.e hold, then ∃ỹ.(d{˜t/x̃}) � ∃˜y′.(d{˜t ′/x̃}) and ∃ỹ.e � ∃˜y′.e′.

Intuitively, themgc predicate allows us to refer formally to decompositions of a constraint
c (seen as a linear resource) that do not “lose” or “forget” information in c. This is essential
in the presence of linear constraints. For example, assuming that c � d ⊗ e holds, we can
see that mgc(c, d ⊗ e) holds too, because c is the precise amount of information necessary
to obtain d ⊗ e. However,mgc(c⊗ f , d ⊗ e) does not hold, assuming f �= tt, since c⊗ f
produces more information than the necessary to obtain d ⊗ e.

We briefly discuss the transition rules of Fig. 6. Rule �C:In� asynchronously receives a
constraint; it represents the separation between observing an output and its (asynchronous)
reception, which is not directly observable.

Rule �C:Out� formalizes asynchronous tells: using the mgc predicate, the emitted con-
straint is decomposed in two parts: the first one is actually sent (as recorded in the label); the
second part is kept as a continuation. (In the rule, these two parts are denoted as d ′ and e,
respectively.) Rule �C:Sync� formalizes the synchronization between a tell (i.e., an output)
and a parametric ask. The constraint mentioned in the tell is decomposed using the mgc
predicate: in this case, the first part is used (consumed) to “trigger” the processes guarded by
the ask, while the second part is the remaining continuation.

Rule �C:Comp� enables the parallel composition of two processes P and Q, provided
that the variables extruded in an action by P are disjoint from the free variables of Q.
Rule �C:Sum� enables non-deterministic choices at the level of guards.

Rules �C:Ext� and �C:Res� formalize hiding: the former rule makes local variables
explicit in the transition label; the latter rule avoids the hiding of free variables in the label.

Finally, Rule �C:Cong� closes transitions under structural congruence (cf. Definition 13).
Notation 5 (τ -transitions) Some terminology and notation for τ -transitions in lcc:

123

Session-based concurrency, declaratively

– We shall write
τ−→∗

	 to denote a sequence of zero or more τ -labeled transitions. Whenever
the number k ≥ 1 of τ -transitions is fixed, we write

τ−→k
	 .

– When τ -labels are unimportant (or clear from the context) we shall write −→	, −→∗
	 ,

and −→k
	 to stand for

τ−→	,
τ−→∗

	 , and
τ−→k

	 , respectively.

– Weak transitions are standardly defined: we write P
τ�⇒ Q if and only if (P

τ−→∗
	 Q);

similarly, we write P
α��⇒ Q if and only if (P

τ−→∗
	 P ′ α−→	 P ′′ τ−→∗

	 Q).

3.2.2 Observational equivalences

We require the following auxiliary definition from [27]:

Definition 15 (D-Accessible Constraints) Let D ⊂ C, where C is the set of all constraints.
The observables of a process P are the set of allD-accessible constraints defined as follows:

OD(P)
def= {(∃x̃ .c) ∈ D | there exists P ′. P τ�⇒ ∃x̃ .(P ′ ‖ c)}

Next, we introduce a notion of equivalence for lcc processes: weak barbed congruence, as
in [27]. We first need a notation that parameterizes processes in terms of the constraints they
can tell and ask (see below). Then, we introduce (evaluation) contexts for lcc.

Notation 6 (DE-Processes) LetD ⊆ C andE ⊆ C. Also, let P be a process (cf. Definition11).

– P is D-ask restricted if for every sub-process ∀x̃(c→ P ′) in P, we have ∃̃z.c ∈ D.
– P is E-tell restricted if for every sub-process c in P, we have ∃̃z.c ∈ E .
– If P is both D-ask restricted and E-tell restricted, then we call P a DE-process.

Definition 16 (Contexts in lcc) Let E be the evaluation contexts for lcc as given by the
following grammar, where ‘−’ represents a hole and P is a process:

E :: = − | P ‖ E | E ‖ P | ∃x̃ .E
Given an evaluation context E[−], we write E[P] to denote the process that results from
filling in the occurrences of the hole with process P .

GivenD ⊆ C and E ⊆ C, wewill say that a context is aDE-context, ranged overC,C ′, . . .,
if it is formed only by DE-processes.

We may now define weak barbed bisimulation and weak barbed congruence:

Definition 17 (Weak DE-Barbed Bisimulation) Let D ⊆ C and E ⊆ C. A symmetric relation
R is a DE-barbed bisimulation if, for DE-processes P and Q, (P, Q) ∈ R implies:

(1) OD(P) = OD(Q) (and),
(2) whenever P

τ−→	 P ′ there exists Q′ such that Q
τ�⇒ Q′ and P ′RQ′.

The largest weak barbed DE-bisimulation is called DE-bisimilarity and is denoted by ≈DE .

Definition 18 (Weak DE-Barbed Congruence) We say that two processes P, Q are weakly
barbed DE-congruent, denoted by P ∼=DE Q, if for every DE-context E[−] it holds that
E[P] ≈DE E[Q]. We define the weak barbed DE-congruence ∼=DE as the largest DE-
congruence that is a weak barbed DE-bisimilarity.

123

M. Cano et al.

3.3 Relative expressiveness

We shall work with (valid) encodings, i.e., language translations that satisfy some correctness
(or encodability) criteria. We follow the encodability criteria defined by Gorla [26], which
define a general and widely used framework for studying relative expressiveness.

3.3.1 Languages and translations

Definition 19 (Languages and Translations) We define:

– A languageL is a triplet 〈P,−→,≈〉, where P is a set of terms (i.e., expressions, processes),
−→ is a relation on P defining its operational semantics, and≈ is an equivalence on P. We
use �⇒ to denote the reflexive-transitive closure of −→.

– A translation from Ls = 〈Ps,−→s,≈s〉 into Lt = 〈Pt ,−→t ,≈t 〉 (each with countably
infinite sets of variables Vs and Vt , respectively) is a pair 〈�·�, ψ�·�〉, where �·� : Ps → Pt
is defined as a mapping from source terms to target terms, and ψ�·� : Vs → Vt is a
renaming policy for �·�, which maps source variables to target variables.

In a language L, the set P of terms is defined as a formal grammar that gives the formation
rules. The operational semantics −→ is given as a relation on terms, finitely denoted by sets
of rules. We write P −→ P ′ to represent a pair (P, P ′) that is included in the relation; we call
each one of these pairs a step. Each step represents the fact that term P reduces to term P ′.
For the rest of this section, we will refer to P −→ P ′ as a reduction step. Moreover, we use
P �⇒ P ′ to say that P reduces to P ′ in zero or more steps (i.e., a “multi-step” reduction).
Finally, ≈ denotes an equivalence on terms of the language.

In 〈�·�, ψ�·�〉, the mapping �·� assigns each source term a corresponding target term. It
is usually defined inductively over the structure of source terms. The renaming policy ψ�·�
translates variables. In our translation, a variable is simply translated into itself; the general
formulation of a renaming policy given in [26] is not needed. When referring to translations,
we often use �·� instead of 〈�·�, ψ�·�〉.

We now introduce some terminology regarding translations.

Notation 7 Let 〈�·�, ψ�·�〉 be a translation from Ls = 〈Ps,−→s,≈s〉 into Lt = 〈Pt ,−→t ,≈t 〉.
– We will refer to Ls and Lt as source and target languages of the translation, respec-

tively. Whenever it does not create any confusion, we will only refer to source and target
languages as source and target.

– We say that any process S ∈ Ps is a source term. Similarly, given a source term S, any
process T ∈ Pt that is reachable from �S� using �⇒t is called a target term.

3.3.2 Correctness criteria

To focus on meaningful translations, we define correctness criteria: a set of properties
that determine whether a translation is a valid encoding or not. Following [26], we shall
be interested in name invariance, compositionality, operational completeness, operational
soundness, and success sensitiveness.

Definition 20 (ValidEncoding) LetLs = 〈Ps,−→s,≈s〉 andLt = 〈Pt ,−→t ,≈t 〉 be languages.
Also, let 〈�·�, ψ�·�〉 be a translation between them (cf. Definition 19). Such a translation is a
valid encoding if it satisfies the following criteria:

123

Session-based concurrency, declaratively

1. Name invariance: For all S ∈ Ps and substitution σ , there exists σ ′ such that �Sσ � =
�S�σ ′, with ψ�·�(σ (x)) = σ ′(ψ�·�(x)), for any x ∈ Vs .

2. Compositionality: For every k-ary operator op of Ps there exists a k-ary context Cop in
Pt such that for all S1, . . . , Sk ∈ Ps , it holds that

�op(S1, . . . , Sk)� = Cop(�S1�, . . . , �Sk�).

3. Operational Completeness: For every S, S′ ∈ Ps such that S �⇒s S′, it holds that
�S� �⇒t T and T ≈t �S′�, for some T ∈ Pt .

4. Operational Soundness: For every S ∈ Ps and T ∈ Pt such that �S� �⇒t T , there exist
S′, T ′ such that S �⇒s S′ and T �⇒t T ′ and T ′ ≈t �S′�.

5. Success Sensitiveness: Given ⇓s (resp. ⇓t) the unary success predicate for Ps (resp. Pt),
for every S ∈ Ps it holds that S⇓s if and only if �S�⇓t .

Name invariance ensures that substitutions are well-behaved in translated terms. Condition
ψ�·�(σ (x)) = σ ′(ψ�·�(x)) ensures that for every variable substituted in the source term (i.e.,
σ(x)), there exists a substitutionσ ′ such that the translation of x (i.e.,ψ�·�(x)) is substituted by
the translation of σ(x). The renaming policy ψ�·�(x) is particularly important in translations
that fix some variables to play a specific role or that translate a single variable into a vector of
variables. This is not the case here: as already mentioned, we shall require a simple renaming
policy that translates a variable into itself.

Compositionality ensures that the translation of a composite term depends on the trans-
lation of its sub-terms. These sub-terms should be combined in a unique target context that
ensures that their interactions are preserved. Unlike Gorla’s definition of compositionality,
we do not need the target context to be parametric on a set of free names.

Together, operational completeness and soundness form the operational correspondence
criterion, which deals with preservation and reflection of process behavior. Intuitively, opera-
tional completeness is about preserving the behavior of the source semantics: it requires that
for every multi-step reduction in the source language there exists a corresponding multi-step
reduction in the target language. The equivalence ≈t then ensures that the target term thus
obtained is behaviorally equivalent to the translation of the reduced source term. Operational
soundness, on the other hand, ensures that the target semantics does not introduce extraneous
steps that do not correspond to any source behaviors: it requires that every reduction in the
target language corresponds to a reduction in the source language, using ≈t to ensure that
the reduced target term is behaviorally equivalent to the reduced source term.

Success sensitiveness assumes a “success” predicate, definable on source processes
(denoted S⇓) and on target processes (denoted T ⇓). In the name-passing calculi consid-
ered in [26], this predicate naturally corresponds to the notion of observable (or barb). In
our setting, we will define a success predicate based on the potential that a process has of
reducing to a process with an unguarded occurrence of the success process, denoted �.

Having introduced the two languages and a framework for comparing their relative expres-
siveness, we now present our translation of π into lcc and establish its correctness.

4 Encoding � into lcc

We present the encoding from π into lcc, the main contribution of our work. This section
is structured as follows. In Sect. 4.1, we define the translation from π into lcc and illustrate
it by means of examples. We prove that the translation is a valid encoding: first, in Sect. 4.2

123

M. Cano et al.

Fig. 7 Session constraint system: Predicates (cf. Definition 21)

we prove name invariance, compositionality, and operational completeness properties; then,
operational soundness and success sensitiveness are proven in Sects. 4.3 and 4.4, respectively.

4.1 The translation

Our translation relies on the constraint system defined next.

Definition 21 (Session Constraint System) A session constraint system is represented by the
tuple 〈C,Σ,�S〉, where:
– Σ is the set of predicates given in Fig. 7;
– C is the set of constraints obtained by using linear logic operators !, ⊗ and ∃ over the

predicates of Σ ;
– �S is given by the rules in Fig. 5 (cf. Definition 12), extended with the syntactic equality

‘=’.
The first four predicates in Fig. 7 serve as acknowledgments of actions in the source π

process: predicate rcv(x, y) signals an input action on x of a value denoted by y; conversely,
predicate snd(x, y) signals an output action on x of a value denoted by y. Predicates sel(x, l)
and bra(x, l) signal selection and branching actions on x involving label l, respectively.
Finally, predicate {x :y} indicates that x and y denote dual endpoints, as required to translate
restriction in π . To ensure alignment with the properties of restricted covariables in π (cf.
Definition 2), we assume {x :y} ��S {y:x} for every pair of variables x, y.

Defining lcc as a language in the sense of Definition 24 requires setting up observational
equivalences (cf. Definitions 17 and 18). To this end, we first define two sets of observ-
ables: the output and complete observables of lcc processes under the constraint system in
Definition 21.

Definition 22 (Output and Complete Observables) Let C be the constraint system in Defini-
tion 21. We define Dπ , the set of output observables of lcc, as follows:

Dπ
def= {∃̃z.snd(x, v) | x ∈ Vπ ∧ x ∈ z̃ ∧ (v ∈ z̃ ∨ v /∈ Vπ)}

∪ {∃̃z.sel(x, l) | x ∈ Vπ ∧ l ∈ Bπ ∧ x ∈ z̃}
We define D�

π , the set of complete observables of lcc, as the following extension of Dπ :

D�
π
def= Dπ ∪ {tt} ∪ {∃̃z.rcv(x, y) | x, y ∈ Vπ ∧ x �= y ∧ x ∈ z̃}

∪ {∃̃z.bra(x, l) | x ∈ Vπ ∧ l ∈ Bπ ∧ x ∈ z̃}
Notice that constraints such as {x :y} are not part of the observables. Aswewill see, covariable
predicates will be persistent, and so the information on covariables can be derived by using
other constraints. In particular, aswewill show later, if∃x, y.snd(x, v) and∃x, y.rcv(y, v) are
in the complete observables of a process, then constraint !{x :y}must be in the corresponding

123

Session-based concurrency, declaratively

Fig. 8 Translation from π to lcc (cf. Definition 25)

store too. This will become clear when analyzing the shape of translated processes (cf.
Lemma 1).

We are now ready to instantiate setsD and E for the barbed bisimilarity (cf. Definition 17)
and the barbed congruence for lcc (cf. Definition 18). To this end, we let D = Dπ , and
E = C (cf. Definition 21).

Definition 23 (Weak o-barbed bisimilarity and congruence)We defineweak o-barbed bisim-
ilarity and weak o-barbed congruence as follows:

1. Weak o-barbed bisimilarity, denoted ≈π
	 , arises from Definition 17 as the weak DπC-

barbed bisimilarity.
2. Weak o-barbed congruence, denoted ∼=π

	 , arises from Definition 18 as the weak DπC-
barbed congruence.

We define π and lcc as the source and target languages for our translation, respectively:

Definition 24 (Source and Target Language)

(1) The languageLπ is defined by the triplet 〈π,−→,≡π 〉, where π is as in Definition 3.1.1,
−→ is as in Fig. 1, and ≡π is as in Definition 2.

(2) The language Llcc is given by the triplet 〈lcc,−→	,∼=π
	 〉, where lcc is as in Def-

inition 11, −→	 is the relation given only by τ -transitions (cf. Fig. 6), and ∼=π
	 is the

behavioral equivalence in Definition 23.

The translation of Lπ into Llcc is defined as follows:

Definition 25 (Translation of π into lcc) The translation from Lπ into Llcc (cf. Defi-
nition 24) is the pair 〈�·�, ϕ�·�〉, where �·� is the process mapping defined in Fig. 8 and
ϕ�·�(x) = x .

Let us discuss some of the cases of the definition in Fig. 8:

123

M. Cano et al.

– The output process x〈v〉.P is translated by using both tell and abstraction constructs:

snd(x, v) ‖ ∀z(rcv(z, v)⊗ {x :z} → �P�
)

The translation posts predicate snd(x, v) in the store, signaling that an output has taken
place, and can be received by the translation of an input process. The translation of the
continuation is activated once predicate rcv(y, v) has been received: this signals that the
message has been correctly received by a translated process that contains its covariable
(e.g., predicate {x :y}). Therefore, input-output interactions are represented in �·� as a
two-step synchronization. As we stick to the variable convention in Rem. 1, a proviso
such as “z /∈ fvπ (P)” is redundant here (and in the cases below).

– Accordingly, the translation of an input process x(y).P is defined as follows:

∀y, w(

snd(w, y)⊗ {w:x}→ rcv(x, y) ‖ �P�
)

Whenever a predicate snd(x, v) is detected by the abstraction, constraint snd(x, v) is
consumed to obtain both the subject x and the object y. Then, the covariable restriction
is checked: this enforces synchronization between intended endpoints. Subsequently, the
translation emits a message rcv(·, ·) and spawns its continuation.

– The translation of branching-selection synchronizations is similar, using bra(·, ·) and
sel(·, ·) as acknowledgmentmessages. In this case, the exchanged value is one of the pair-
wise distinct labels, say l j ; depending on the received label, the translation of branching
will spawn exactly one continuation. The continuations corresponding to labels different
from l j get blocked, as their equality guard can never be satisfied. Similarly, the transla-
tion of conditionals makes both branches available for execution; we use a parameterized
ask as guard to ensure that only one of them will be executed.

– The translation of process (νxy)P provides infinitely many copies of the covariable
constraint {x :y}, using hiding in lcc to appropriately regulate the scope of the involved
endpoints.

– The translation of replicated processes simply corresponds to the replication of the trans-
lation of the given input-guarded process. Finally, the translations of parallel composition
and inaction are self-explanatory.

The following examples illustrate our translation.

Example 2 (Translating Session Delegation) We show how our translation captures session
delegation. Consider the following π process:

P1 = (νwz)(νxy)(x〈z〉.w(u′).0
∣

∣ y(u).u〈tt〉.0)

Above, endpoint z is being sent over x , to be received by endpoint y, which then enables the
communication between w and z. The translated process �P1� is given below:

∃x,y, w, z.
(! {x :y} ‖ ! {w:z} ‖ snd(x, z) ‖

∀w1
(

rcv(w1, z)⊗ {x :w1} → ∀w2, u
′(snd(w2, u

′)⊗{w2:w} → rcv(w, u′) ‖ tt)) ‖
∀w3, u

(

snd(w3, u)⊗ {w3:y} → rcv(y, u) ‖ snd(u,tt) ‖
∀w4

(

rcv(w4,tt)⊗ {w4:u} → tt
)))

123

Session-based concurrency, declaratively

Fig. 9 One possible evolution of the lcc translation of the π program P2 in (4) (cf. Ex. 3)

where, using the semantics in Fig. 6, it can be shown that:

�P1� −→2
	 ∃x, y, w, z.

(! {x :y} ‖ ! {w:z} ‖
∀w2, u

′(snd(w2, u
′)⊗ {w2:w} → rcv(w, u′) ‖ tt)

︸ ︷︷ ︸

�w(u′).0�

snd(z,tt) ‖ ∀w4
(

rcv(w4,tt)⊗ {w4:z} → tt
)

︸ ︷︷ ︸

�z〈tt〉.0�

)

which can then reduce as expected.

We now show how our translation can handle non-determinism. In particular, the kind of
non-determinism induced by multiple replicated servers that can interact with a single client.

Example 3 (TranslatingNon-Determinism) Let us consider theπ program P2 below,which
is not encodable in [31]:

P2 = (νxy)(x〈v1〉.Q1 | ∗ y(z1).Q2 | ∗ y(z2).Q3) (4)

The translation for P2 follows:

�P2� = ∃x, y.
(! {x :y} ‖ snd(x, v1) ‖ ∀z(rcv(z, v1)⊗ {x :z} → �Q1�) ‖

! ∀z1, w1(snd(w1, z1)⊗ {w1:y} → rcv(y, z1) ‖ �Q2�) ‖
! ∀z2, w2(snd(w2, z2)⊗ {w2:y} → rcv(y, z2) ‖ �Q3�)

)

Note that P2 −→ (νxy)(Q1 | Q2{v1/z1} | ∗ y(z2).Q3 | ∗ y(z1).Q2) = P ′2. Figure 9 shows
how this reduction is mimicked in lcc: observe that we use structural congruence twice to
get a copy of process {x :y} (cf. Axiom (SC)	:4 in Definition 13). The other reduction from
P2 (involving ∗ y(z2).Q3) can be treated similarly.

123

M. Cano et al.

Our next example considers a π process that implements a selection protocol, and shows
how to obtain the observables of its translation. These observables can be used to showcase
the behavioral equivalences in Definition 23 on translated processes (see App. A for details).

Example 4 (Translations and their observables) Let us consider process P3, which models
a simple transaction between a client and a store.

P3=(νxy)(x � buy.x〈5406〉.x(inv).0 | y � {buy :y(w).y〈invoice〉.0, quit :y(w′).0}) (5)

P3 specifies a client sub-process (on the left) that wants to buy some item from a store sub-
process (on the right). Intuitively, the client selects to buy, and sends its credit card number,
before receiving an invoice. Dually, the store is waiting for a selection to be made. If the buy
label is picked, the store awaits for the credit card number, before emitting an invoice.

The translation of P3 is then given below:

�P3� = ∃x, y.
(! {x :y} ‖ sel(x, buy) ‖ ∀u1(bra(u1, buy)⊗ {x :u1} →

snd(x, 5406) ‖ ∀u2(rcv(u2, 5406)⊗ {x :u2} → �x(inv).0�))‖
∀l, w(sel(w, l)⊗{w:y} → bra(y, l) ‖ ∀ε(l = buy→

∀w1, w(snd(w1, w)⊗{w1:y} → rcv(y, w) ‖ �y〈invoice〉.0�))‖
∀ε(l = quit→ ∀w2, u(snd(w2, u)⊗{w2:y} → rcv(y, u)‖�y(w′).0�)))

)

Combining Definitions 15 and 22, we have the following observables:

OD�
π (�P3�) ={(∃x, y.sel(x, buy)), (∃x, y.bra(y, buy)), (∃x, y.snd(x, 5406)), (∃x, y.tt)

(∃x, y.rcv(y, 5406)), (∃x, y.snd(y, invoice)), (∃x, y.rcv(x, invoice))}
ODπ (�P3�) ={(∃x, y.sel(x, buy)), (∃x, y.snd(x, 5406)), (∃x, y.snd(y, invoice))}
Having introduced and illustrated our translation, we nowmove to establish its correctness

in the sense of Definition 20.

4.2 Name invariance, compositionality, and operational completeness

First, we prove that the translation is name invariant with respect to the renaming policy in
Definition 25. The proof follows by induction on the structure of process P .

Theorem 8 (Name Invariance for �·�) Let P be a well-typed π process. Also, let σ be a
substitution satisfying the renaming policy for �·� (Definition 25(b)), and x be a variable.
Then, �Pσ � = �P�σ ′, with ϕ�·�(σ (x)) = σ ′(ϕ�·�(x)) and σ = σ ′.

Next, we establish that �·� is compositional, in the sense ofDefinition 20(2). The proof follows
immediately from the translation definition in Fig. 8: each process in π is translated using a
context in lcc that depends on the translation of its sub-processes. In particular, notice that
parallel composition (denoted ‘

∣

∣ ’ in π) is translated homomorphically: the associated lcc
context in that case is C ∣

∣

(−1,−2) = [−1] ‖ [−2].
Theorem 9 (Compositionality for �·�) The encoding �·� is compositional.

Related to compositionality, we have the following result, which says that the translation
preserves the evaluation contexts of Definition 3, which involve restriction and parallel com-
position. Below, we use the extension of �·� to evaluation contexts, obtained by decreeing
�−� = −. The proof is by induction on the structure of P and a case analysis on E[−].

123

Session-based concurrency, declaratively

Theorem 10 (Evaluation Contexts and �·�) Let P and E[−] be a well-typed π process and
a π evaluation context as in Definition 3, respectively. Then, we have: �E[P]� = �E�

[

�P�
]

.

We close this section by stating operational completeness, which holds up to barbed
congruence (cf. Definition 23):

Theorem 11 (Completeness for �·�) Let �·� be the translation in Definition 25. Also, let P be
a well-typed π program. Then, if P −→∗ Q then �P�

τ�⇒∼=π
	 �Q�.

Proof By induction on the length of the reduction −→∗, with a case analysis on the last
applied rule, relying on auxiliary results to be given in Sect. 4.3.2. For details see App. C.2.

%&

4.3 Operational soundness

Themost challenging part of our technical development is proving that our translation satisfies
the operational soundness criterion (cf. Definition 20):

Theorem 12 (Soundness for �·�) Let �·� be the translation in Definition 25. Also, let P be a
well-typed π program. For every S such that �P�

τ�⇒ S there are Q, S′ such that P −→∗ Q
and S

τ�⇒ S′ ∼=π
	 �Q�.

Our goal is to precisely identify which well-typed π program is being mimicked at any
givenpoint by a target term inlcc,while ensuring that such target termdoes not addundesired
behaviors. This is a non-trivial task: programs may contain multiple redexes running at the
same time, and redexes in π are mimicked in lcc using two-step synchronizations. Our
proof draws inspiration from [41], where translated process is characterized semantically,
by defining pre-processing and post-processing reduction steps, according to the effect they
have over target terms and the simulation of the behavior of the source language.

We first define target terms for �·� to set our focus on well-typed π programs:

Definition 26 (Target Terms) We define target terms as the set of lcc processes that are
induced by the translation of well-typed π programs and is closed under τ -transitions:
{S | �P�

τ�⇒ S and � P}. We shall use S, S′, . . . to range over target terms.

We start by giving a roadmap to the proof of Theorem 12 and its different ingredients.
Then, these ingredients are spelled out in detail in Sect. 4.3.2. The full proof is given in
Sect. 4.3.3.

4.3.1 Proof roadmap

We characterize target terms using complete and output observables (Definition 22). We will
first define sets of immediate observables (cf. Definition 29), which only contain barbs up to
structural congruence, rather than to τ -transitions. We then distinguish translated processes
and their so-called intermediate redexes (cf. Definition 30), which represent “half-steps” in
the simulation of a source π synchronization.

Before detailing a proof sketch, we describe the three main ingredients in the proof.

1. Junk processes (Definition 28) do not add behavior in target terms (up to barbed con-
gruence, cf. Definition 23). Recognizing junk processes simplifies the characterization of
target terms, aswe show that every target term that contains junk is in the same equivalence
class as a target term without it (cf. Corollary 4).

123

M. Cano et al.

2. Invariants of target terms: In the proof, Lemmas 11 and 12 are crucial: they show how the
shape of π processes can be inferred from their corresponding lcc translation by using
immediate observables. These lemmas require us to first isolate the shape of translated
programs (cf. Lemma 1), which in turn enables us to analyze the shape of target terms in
Lemma 9. Once this shape has been established, Lemma 10 allows us to analyze the store
of a target term after a τ -transition. By looking at the store we can identify an originating
lcc process, which can be used to infer a corresponding π source process.

3. A diamond property for target terms: The last step involves analyzing the interactions
between intermediate redexes and translated processes, to ensure that they do not interfere
with each other. This is the content of the diamond lemma given as Lemma 14. Finally,
Lemma 15 shows that intermediate redexes always reach the translation of a π process.

Proof Sketch for Theorem 12 By induction on n, the length of the reduction �P�
τ�⇒ S1.

The base case (n = 0) is immediate; for the inductive step (n > 0) we proceed as follows.
Given a redex R, we write �R�kx̃ ỹ to denote the elements in its set of intermediate redexes (cf.
Definition 30).

1. Since n ≥ 1, there exists a target term S0 such that �P�
τ�⇒ S0 −→	 S1.

2. By IH, there exist Q0 and S′0 such that P −→∗ Q0 and S0
τ�⇒ S′0, with S′0 ∼=π

	 �Q0�.

Observe that byLemma15,we have that the sequence of transitions S0
τ�⇒ S′0 is executing

actions that correspond to closing labels in the labeled semantics defined in Fig. 13.
3. By Lemma 9, we have that S0 = Cx̃ ỹ[S′1 ‖ · · · ‖ S′n ‖ J], where S′i = �Ri � or S′i = �Ri �

k
x̃ ỹ

for some Ri , k ∈ {1, 2, 3}.
4. We analyze the transition S0 −→	 S1 in Item (1). By Item (3), S0 has a specific shape and

so will S1. There are then two possible shapes for the transition, depending on whether
one or two components evolve (we ignore junk processes using Lemma 5):

(a) Cx̃ ỹ[S′1 ‖ · · · ‖ S′h ‖ · · · ‖ S′n] −→	

Cx̃ ỹ[S′1 ‖ · · · ‖ S′′h ‖ · · · ‖ S′n]
(b) Cx̃ ỹ[S′1 ‖ · · · ‖ S′h1 ‖ · · · ‖ S′h2 ‖ · · · ‖ S′n] −→	

Cx̃ ỹ[S′1 ‖ · · · ‖ S′′h1 ‖ · · · ‖ S′′h2 ‖ · · · ‖ S′n].
5. In both cases, Lemmas 11 and 12 will allow us to identify which source reduction (in

Q0) is being partially simulated by S0 −→	 S1. (It is ‘partial’ because a π reduction is
mimicked by at least two transitions in lcc.) Hence, we can characterize the π process
Q for which Q0 −→ Q.

6. We are left to show the existence of S′1, given that S0 −→	 S1 and S0
τ�⇒ S′0 (Items

(1) and (2), respectively). This follows from Lemma 14, which is a diamond property
for lcc processes induced by so-called closing and opening labeled the transitions (cf.
Definition 32) and the shape of S0 identified in Item (3), which is preserved in S1 by
Item (4). These facts combined ensure that the same transition from S0 to S1 can take
place from S′0. Therefore, there is an S′1 such that S′0 −→	 S′1 and that the same transitions

from S0 to S′0 can be made by S1. Therefore, S1
τ�⇒ S′1.

7. Finally, since S′0 ∼=π
	 �Q0� (IH, Item (2)) and by the reduction and transition identified in

Items (5) and (6), respectively, we can infer that S′1 ∼=π
	 �Q�.

Using this proof sketch as a guide, we now introduce in detail all the ingredients of the proof.

123

Session-based concurrency, declaratively

4.3.2 Proof ingredients

The Shape of Translated Programs The enablers of a process intuitively represent all the
necessary endpoint connections required for reduction:

Definition 27 (Enablers for π Processes) Let P be a π process. We say that the vectors of
variables x̃, ỹ enable P if there is some P ′ such that (ν x̃ ỹ)P −→ (ν x̃ ỹ)P ′.

The enablers of a process lead to an evaluation context E[−] = (ν x̃ ỹ)(−) (cf. Defini-
tion 3). Translating the context E[−] is so common that we introduce the following notation
for it:

Notation 13 Let E[−] = (ν x̃ ỹ)(−) be a π evaluation context, as in Definition 3. We will
write Cx̃ ỹ[−] to denote the translation of E:

�E[−]� def= ∃x̃, ỹ.(!
⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ −
)

We restrict our attention to well-typed programs (Notation 3). Programs encompass “com-
plete” protocol implementations, i.e., processes that contain all parties and sessions required
in the system.Considering programs is also convenient because their syntax facilitates reason-
ing about their behavior. The first invariant of our translation concerns the shape of translated
π programs; it follows directly from Definition 10 and Fig. 8.

Lemma 1 (Translated Form of a Program) Let P be a well-typed π program (Notation 3).
Then,

�P� ≡ Cx̃ ỹ[�R1� ‖ · · · ‖ �Rn�]
where n ≥ 1 and x1, . . . , xn ∈ x̃ , y1, . . . , yn ∈ ỹ. Note that each Ri (with 1 ≤ i ≤ n) is a
pre-redex (Definition 9) or a conditional process in P.

Junk Processes Translations typically induce junk processes that do not add any meaningful
(source) behavior to translated processes. In our setting, junk processes behave like tt,
modulo ∼=π

	 (i.e., they do not add any information). Junk can be characterized syntactically:
they are “leftovers” of the translation of conditional and branching constructs.

Definition 28 (Junk) Let P and J be lcc processes. Also, let b be a Boolean and li , l j be
two distinct labels. We say that J is junk, if it belongs to the following grammar:

J , J ′:: = tt | ∀ε((b = ¬b) → P) | ∀ε((li = l j) → P) | J ‖ J ′

The following statements say that junkprocesses cannot introduce anyobservable behavior
in translated processes. This entails showing J ∼=π

	 tt, for any J . The proof is divided in three
statements: (1) we show that no constraint in the session constraint system (Definition 21)
allows a junk process to reduce; (2) we show that junk processes cannot reduce and that
ODπ (J) = ODπ (tt); (3) we prove that J and tt are behaviorally equivalent under any
DπC-context (cf. Definitions 16 and 22). Their respective proofs can be found in App. C.1.

Lemma 2 Let J be junk. Then: (1) J
τ
� 	 (and) (2) there is no c ∈ C (cf. Definition 21) such

that J ‖ c τ−→	.

123

M. Cano et al.

Lemma 3 (Junk Observables) For every junk process J and every DπC-context C[−], we
have that: (1) ODπ (J) = ∅ (and) (2) ODπ (C[J]) = ODπ (C[tt]).
Lemma 4 (Junk Behavior) For every junk J , everyDπC-context C[−], and every process P,
we have C[P ‖ J] ≈π

	 C[P].
The following corollary follows directly from Lemma 4 and Definition 18:

Corollary 2 For every junk J (cf. Definition 28) and every lcc process P, we have P ‖
J ∼=π

	 P.

The following lemma says that non-trivial junk processes only appear as a byproduct of the
translation of branching/selection processes and conditionals; other forms of synchronization
do not generate junk.

Lemma 5 (Occurrences of Junk) Let R be a redex (Definition 9).

1. If R = x � l j .P | y � {li : Qi }i∈I , with j ∈ I then:
�(νxy)R�

τ−→3
	 ∃x, y.

(! {x :y} ‖ �P� ‖ �Q j � ‖ J
)

, where
J = ∏

i∈I ′
∀ε(l j = li → �Qi �), with I ′ = I \ { j}, and

∃x, y.(! {x :y} ‖ �P� ‖ �Q j � ‖ J
) ∼=π

	 ∃x, y.
(! {x :y} ‖ �P� ‖ �Q j �

)

.

2. If R = b? P1 : P2, b ∈ {tt,ff}, then:
�R�

τ−→	 �Pi � ‖ J , i ∈ {1, 2} with J = ∀ε(b = ¬b→ �Pj �), j �= i , and
�Pi � ‖ J ∼=π

	 �Pi �.
3. If R = x〈v〉.P | y(z).Q, then

�(νxy)R�
τ−→2

	
∼=π

	 ∃x, y.
(

�P� ‖ �Q{v/z}� ‖ J
)

with J = tt.
4. If R = x〈v〉.P | ∗ y(z).Q, then:

�(νxy)R�
τ−→2

	
∼=π

	 ∃x, y.
(

�P� ‖ �Q{v/z}� ‖ �∗ y(z).P� ‖ tt)

Proof Each item follows from the definition of �·� (cf. Definition 25 and Fig. 8). Items (1) and
(2) concern reductions that induce junk (no junk is generated in Items (3) and (4)); those cases
rely on the definition of ∼=π

	 (cf. Definition 23) and Corollary 2. For details see App. C.1. %&
Invariants for Translated Pre-Redexes and Redexes Intuitively, the set of immediate observ-
ables of an lcc process denotes the current store of a process (i.e., all the constraints that
can be consumed in a single transition).

Definition 29 (Immediate Observables of an lcc Process) Let P be an lcc process and C
be a set of constraints. The set of immediate observables of P up to C, denoted IC(P), is
defined in Fig. 10.

It suffices to define immediate observables over a subset of lcc processes. We leave
out processes that are not induced by the translation, such as !(P ‖ P) or !(P + P). The
definition is parametric in C, which we instantiate with the set D�

π of complete observables
(cf. Definition 22).

We now introduce so-called invariants for the translation, i.e., properties that hold for
every target term. Based on source π processes, we will define these invariants bottom-up,
starting from translations of pre-redexes (i.e., a prefixed process that does not contain parallel
composition at the top-level, cf. Definition 9), redexes, and translated programs.

The following invariant clarifies how the immediate observables of the translation of some
pre-redex P give information about the nature of P itself (cf. App. C.3).

123

Session-based concurrency, declaratively

Fig. 10 Immediate observables (cf. Definition 29)

Lemma 6 (Invariants of �·� for Pre-Redexes and the Inaction) Let P be a pre-redex or the
inactive process in π . Then, the following properties hold:

1. If ID⊥≈ (�P�) = {snd(x, v)}, then P = x〈v〉.P1, for some P1.

2. If ID⊥≈ (�P�) = {sel(x, l)}, then P = x � l.P1, for some P1.

3. If ID⊥≈ (�P�) = {tt}, then P = 0.
4. If ID⊥≈ (�P�) = ∅, then P = � y(z).P1 (cf. Notation 2) or P = x � {l1 : Pi }i∈I , for some

Pi . Moreover, �P�
τ
� 	.

When the immediate observables do not provide enough information on the shape of a
pre-redex (as in Lemma 6(4)), we can characterize the minimal parallel context that induces
immediate observables (cf. App. C.3).

Lemma 7 (Invariants of �·� for Input-Like Pre-Redexes) Let P be a pre-redex such that
ID�

π (�P�) = ∅. Then, one of the following holds:

1. If �P� ‖ sel(x, l j)⊗ {y:x} τ−→	 S, then
bra(y, l j) ∈ ID�

π (S) and P = y � {li : Pi }i∈I , with j ∈ I .
2. If �P� ‖ snd(x, v)⊗ {y:x} τ−→	 S, then rcv(y, v) ∈ ID�

π (S) and P = � y(z).P1.

The intermediate lcc redexes of a communicating redex (cf. Definition 9) are processes
obtained through the transitions of a target term:

Definition 30 (Intermediate Redexes) Let R be a communicating redex in π enabled by x̃, ỹ.
The set of intermediate lcc redexes of R, denoted {[R]}, is defined as follows:

{[x〈v〉.P | y(z).Q]}def= {rcv(y, v) ‖ ∀z(rcv(z, v)⊗ {z:x} → �P�) ‖ �Q{v/z}�}
{[x〈v〉.P | ∗ y(z).Q]}def= {rcv(y, v) ‖ ∀z(rcv(z, v)⊗ {z:x} → �P�) ‖ �Q{v/z}� ‖

�∗y(w).Q�}
{[x � l.P | y � {li : Qi }i∈I]}def= {bra(y, l j) ‖ ∀z(bra(z, l j)⊗ {z:x} → �P�) ‖

∀ε(l j = l j → �Q j �)‖ J , �P�‖∀ε(l j = l j → �Q j �)‖ J ,

bra(y, l j) ‖ ∀z(bra(z, l j)⊗ {z:x} → �P�) ‖
�Q j � ‖ J | J as in Def. 28}

Thus, the set of intermediate redexes is a singleton, except for the translation of selection
and branching. We introduce a convenient notation for these intermediate redexes:

123

M. Cano et al.

Fig. 11 Elements in the set of intermediate redexes (cf. Notation 14)

Fig. 12 Lemma 8(3)

Notation 14 We will denote the elements of {[R]} as �R�kx̃ ỹ , with k ∈ {1, 2, 3} as in Fig. 11.

This notation aims to clarify the behavior of intermediate redexes, particularly in the case
of the selection and branching. Their use will become much more apparent in the following
invariant, which describes how translated redexes interact (see App. C.3 for proof details).

Lemma 8 (Invariants for Redexes and Intermediate Redexes) Let R be a redex enabled by
x̃, ỹ, such that (ν x̃ ỹ)R −→ (ν x̃ ỹ)R′. Then, one of the following holds:

1. If R ≡π v? P1 : P2 and v ∈ {tt,ff}, then
�(ν x̃ ỹ)R�

τ−→	
∼=π

	 (ν x̃ ỹ)�Pi �, with i ∈ {1, 2}.
2. If R ≡π x〈v〉.P | � y(w).Q, then �(ν x̃ ỹ)R� −→	≡ Cx̃ ỹ[�R�1x̃ ỹ] −→	

∼=π
	 �(ν x̃ ỹ)R′�.

3. If R ≡π x � l j .P | y � {li : Qi }i∈I , with j ∈ I , then we have the reductions in Fig. 12.

A corollary of Lemma 8 and Definition 30 is that every intermediate redex reduces to
some target term:

Corollary 3 For every intermediate redex S ∈ {[R]} (cf. Definition 30), there exist some π

process R′ and some k ∈ {1, 2} such that S −→k
	 �R′� and (ν x̃ ỹ)R −→ (ν x̃ ỹ)R′.

We introduce some useful notation for the set of immediate observables of a target term:

Notation 15 We define the following conventions:

123

Session-based concurrency, declaratively

– IS will be a short-hand notation for the set ID�
π (S) (cf. Definition 29).

– By a slight abuse of notation, we will write c̃z ∈ IS instead of ∃̃z.c ∈ IS.

This notation conveniently captures the constraints that are consumed as a result of a
τ -transition. In turn, such consumed constraints will allow us to recognize which π process
is simulated by the translation. In particular, every τ -transition of a target term modifies the
store (and the immediate observables) either (i) by adding new constraints (if the transition
is induced by the translation of conditionals and labeled choices) or (ii) by consuming some
existing constraints (if the transition is induced by other kinds of source synchronizations).
Case (i) is formalized by Lemma 11 and case (ii) is covered by Lemma 12.

Invariants for Translated Well-Typed Programs Given a program P , we say that Rk is a
(pre)redex reachable from P if P −→∗ (ν x̃ ỹ)(Rk | R), for some R.

The following lemma will allow us to determine the structure of a given target term.
It states that any target term corresponds to the parallel composition of the translation of
processes, intermediate redexes and junk, all enclosed within a context that provides the
required covariable constraints. The proof is by induction on the length of the transition of
the encoded program (cf. App. C.4).

Lemma 9 Let P be a well-typed program. If �P�
τ�⇒ S then

S = Cx̃ ỹ[U1 ‖ · · · ‖ Un ‖ J]
where n ≥ 1, J is some junk, and for all i ∈ {1, . . . , n} we have Ui = tt or one of the
following:

1. Ui = �Rk�, where Rk is a conditional redex (cf. Definition 9) reachable from P;
2. Ui = �Rk�, where Rk is a pre-redex reachable from P;
3. Ui ∈ {[Rk | R j]} (cf. Definition 30), where redex Rk | R j is reachable from P.

Observe that this lemma is not enough to prove completeness because we have not yet
analyzed the interactions between intermediate processes and the translations of pre-redexes
in target terms.

The next lemma provides two insights: first, it gives a precise characterization of a target
termwhenever constraints are being added to the store and there is no constraint consumption.
Second, it captures the fact that τ -transitions consume one constraint at a time.

Lemma 10 Let P be a well-typed π program. Then, for every S, S′ such that �P�
τ�⇒ S

τ−→	

S′ one of the following holds:

(a) IS ⊆ IS′ (cf. Notation 15) and one of the following holds:

(1) S ≡ Cx̃ ỹ[�b? P1 : P2� ‖ U] and S′ = Cx̃ ỹ[�Pi � ‖ U], with i ∈ {1, 2};
(2) S ≡ Cx̃ ỹ[�y � l j .P ′ | x � {li : Qi }i∈I �1x̃ ỹ ‖ U] and

S′ = Cx̃ ỹ[�y � l j .P ′ | x � {li : Qi }i∈I �3x̃ ỹ ‖ U];
(3) S ≡ Cx̃ ỹ[�y � l j .P ′ | x � {li : Qi }i∈I �2x̃ ỹ ‖ U] and

S′ = Cx̃ ỹ[�P ′� ‖ �Q j � ‖ U].
(b) IS � IS′ and |IS \ IS′ | = 1.

Proof We first use Lemma 9 to characterize every parallel sub-process Ui of S; then, by a
case analysis on the shape of the Ui that originated the transition S

τ−→	 S′ we show how
each case falls under either (a) or (b). For details see App. C.4. %&

123

M. Cano et al.

Let γ ∈ {rcv, snd, sel,bra} denote a predicate in Fig. 7. The next lemma formalizes the
following fact: for any variable x , a target term S will never contain a sub-process such
as γ1(x, v) ‖ γ2(x, v′). That is, the constraints added to the store at any point during the
execution of a target term are unique with respect to x . This is where the absence of output
races in source processes, ensured by our type system, plays a key rôle.

Proposition 1 Suppose S is a target term (cf. Definition 26).

1. S ≡ Cx̃ ỹ[c1 ‖ · · · ‖ cn ‖ Q1 ‖ · · · ‖ Qk] with n, k ≥ 1, where every c j = γ j (x j ,m j)

(with 1 ≤ j ≤ n), for some value or label m j , and every Qi (with 1 ≤ i ≤ k) is an
abstraction (possibly replicated).

2. For every i, j ∈ {1, . . . , n}, i �= j implies ci = γi (xi ,mi), c j = γ j (x j ,m j), and
xi �= x j .

Proof Part (1) follows immediately by Definition 25 and Lemma 9. Part (2) is proven by con-
tradiction, exploiting that well-typed programs do not contain output races (cf. Theorem 4),
compositionality of �·�, and that by construction �·� ensures that target terms add input-like
constraints to the store only once a corresponding output-like constraint has been consumed;
see App. C.4 for details. %&

As already discussed, in mimicking the behavior of a π process, the store of its corre-
sponding target process in lcc may either add or consume constraints:

– Lemma 11, given below, covers the case where a transition adds information to the store:
by Lemma 10(a) the target term must then correspond to either (i) the translation of a
conditional redex or (ii) an intermediate redex of a branching/selection interaction.

– Lemma 12 covers the case where the transition consumes information in the store (cf. by
Lemma 10(b)).

As such, Lemmas 11 and 12 cover the complete spectrum of possibilities for target terms.
The first invariant is proven by induction on the length of the reduction (cf. App. C.4).

Lemma 11 (Invariants of Target Terms (I): Adding Information) Let P be a well-typed π

program. For any S, S′ such that �P�
τ�⇒ S

τ−→	 S′ and IS ⊆ IS′ (cf. Notation 15) one of
the following holds, for some U:

1. S ≡ Cz̃[�b? P1 : P2� ‖ U ‖ J1] and S′ = Cz̃[�Pi � ‖ ∀ε(b = ¬b → Pj) ‖ U ‖ J1] with
i, j ∈ {1, 2}, i �= j ;

2. �P�
τ�⇒ S0 ≡ Cx̃ ỹ[{x :y} ‖ �x � l j .P ′

∣

∣ y � {li Qi }i∈I � ‖ U ‖ J1] and either:
(a) All of the following hold:

(i) S0
τ−→	 Cx̃ ỹ[�x � l j .P ′ | y � {li : Qi }i∈I �1x̃ ỹ ‖ U ‖ J1] τ−→	 S,

(ii) S = Cx̃ ỹ[�x � l j .P ′ | y � {li : Qi }i∈I �2x̃ ỹ ‖ U ‖ J1] (and)
(iii) S′ = Cx̃ ỹ[�P ′� ‖ �Q j � ‖ U ‖ J1 ‖ J2].

(b) All of the following hold:
(i) S0

τ−→	 S = Cx̃ ỹ[�x � l j .P ′ | y � {li : Qi }i∈I �1x̃ ỹ ‖ U ‖ J1],
(ii) S′ = Cx̃ ỹ[�x � l j .P ′ | y � {li : Qi }i∈I �3x̃ ỹ ‖ U ‖ J1] (and)
(iii) S′ τ−→	 Cx̃ ỹ[�P ′� ‖ �Q j � ‖ U ‖ J1 ‖ J2].

where J2 = ∏

k∈I\{ j} ∀ε(l j = lk → �Pk�).

We state our next invariant. Notice that Lemma 10(b) clarifies the behavior of the imme-
diate observables (cf. Definition 29) in a single transition whenever a constraint has been
consumed. The proof is by induction on the length of the lcc transition (cf. App. C.4).

123

Session-based concurrency, declaratively

Lemma 12 (Invariants of Target Terms (II): Consuming Information) Let P be a well-typed
π program. For any S, S′ such that �P�

τ�⇒ S
τ−→	 S′ and IS � IS′ the following holds, for

some U:

(1) If IS \ IS′ = {snd(x1, v)}, then all of the following hold:

(a) S ≡ Cx̃ ỹ[{x1:y1} ‖ �x1〈v〉.P1 | � y1(z).P2� ‖ U];
(b) S′ = Cx̃ ỹ[�x1〈v〉.P1 | � y1(z).P2�1x̃ ỹ ‖ U];
(c) S′ τ−→	 Cx̃ ỹ[�P1 | P2{v/z}� ‖ S′′ ‖ U], where S′′ = ∗ �y(z).P2� or S′′ = tt.

(2) If IS \ IS′ = {rcv(x1, v)} then there exists S0 such that �P�
τ�⇒ S0

τ−→	 S and all of the
following hold:

(a) S0 ≡ Cx̃ ỹ[{x1:y1} ‖ �y1〈v〉.P1 | � x1(z).P2� ‖ U];
(b) S = Cx̃ ỹ[�y1〈v〉.P1 | � x1(z).P2�1x̃ ỹ ‖ U];
(c) S′ = Cx̃ ỹ[�P1 | P2{v/z}� ‖ S′1 ‖ U], where S′1 = ∗ �y(z).P2� or S′1 = tt.

(3) If IS \ IS′ = {sel(x1, l j)}, then all of the following hold:

(a) S ≡ Cx̃ ỹ[{x1:y1} ‖ �x1 � l.P1 | y1 � {li : Pi }i∈I �U];
(b) S′ = Cx̃ ỹ[�x1 � l.P1 | y1 � {li : Pi }i∈I �1x̃ ỹ ‖ U];
(c) S1

τ−→2
	
∼=π

	 Cx̃ ỹ[�P1 | Pj � ‖ U ′], with U ′ ≡ U ‖∏

h∈I ∀ε(lh = l j → �Qh�).

(4) If IS \ IS′ = {bra(x, l j)}, then there exists

S0 ≡ Cx̃ ỹ[{x :y} ‖ �y � l j .Q | x � {li Qi }i∈I � ‖ U] such that �P�
τ�⇒ S0 and either:

(a) All of the following hold:
(i) S0

τ−→	 Cx̃ ỹ[�y � l j .Q | x � {li : Qi }i∈I �1x̃ ỹ ‖ U]
τ−→	 S,

(ii) S = Cx̃ ỹ[�y � l j .Q | x � {li : Qi }i∈I �3x̃ ỹ ‖ U] (and)
(iii) S′ = Cx̃ ỹ[{x :y} ‖ �Q | Q j � ‖ U ′].

(b) All of the following hold:
(i) S0

τ−→	 Cx̃ ỹ[�y � l j .P | x � {li : Qi }i∈I �1x̃ ỹ ‖ U] ≡ S,

(ii) S′ = Cx̃ ỹ[�y � l j .P | x � {li : Qi }i∈I �2x̃ ỹ ‖ U] (and)
(iii) S′ τ−→	 Cx̃ ỹ[{x :y} ‖ �P | Q j � ‖ U ′].

with U ′ ≡ U ‖∏

h∈I ∀ε(lh = l j → �Qh�).

By combining previous results, we obtain the following corollary, which allows us to
remove junk processes from any target term.

Corollary 4 Let P be a well-typed π program. If �P�
τ�⇒ S, then there exist S′ and J such

that S = Cx̃ ỹ[S′ ‖ J] ∼=π
	 Cx̃ y[S′] .

Proof Since P is well-typed, by Lemma 1, �P� = Cx̃ ỹ[�P ′�]. By applying Lemmas 11 and

12, we know that for every S, such that �P�
τ�⇒ S it holds that S = Cx̃ ỹ[S′ ‖ J], where

S′ = U1 ‖ · · · ‖ Un , n ≥ 1, with Ui = �Ri � for some π pre-redex Ri or Ui = �Ri �
k
x̃ ỹ ,

for some π pre-redex Ri and k ∈ {1, 2, 3}. Finally, by Corollary 2, we can conclude that
Cx̃ ỹ[S′ ‖ J] ∼=π

	 Cx̃ y[S′]. %&
A Diamond Property for Target Terms We now move to establish a diamond property over
target terms. This property, given by Lemma 15, concerns τ -transitions originating from the
intermediate processes of the same target term (cf. Definition 26). Informally speaking, it

123

M. Cano et al.

says that τ -transitions originated from intermediate processes that reach the translation of
some π process do not preclude the execution of translated terms. First, we illustrate how
our translation captures the non-determinism allowed by typing in π .

Example 5 Let us recall process P2 from Ex. 3, which is well-typed:

P2 = (νxy)(x〈v1〉.Q1 | ∗ y(z1).Q2 | ∗ y(z2).Q3)

Process P2 is not confluent if Q2 �= Q3 since

P2 −→ (νxy)(Q1 | Q2{v1/z1} | ∗ y(z2).Q3 | ∗ y(z1).Q2)

but also P2 −→ (νxy)(Q1 | ∗ y(z1).Q2 | Q3{v1/z2} | ∗ y(z2).Q3). We have:

�P2� = Cxy[snd(x, v1) ‖ ∀z′
(

rcv(z′, v1)⊗ {x :z′} → �Q1�
) ‖

! ∀z1, w
(

snd(w, z1)⊗ {y:w} → rcv(y, z1) ‖ �Q2�
) ‖

! ∀z2, w′
(

snd(w′, z2)⊗ {y:w′} → rcv(y, z2) ‖ �Q3�
)]

and the following transitions are possible:

�P2� −→	 Cxy[∀z′
(

rcv(z′, v1)⊗ {x :z′} → �Q1�
) ‖

rcv(y, v1) ‖ �Q2�{v1/z1} ‖ ! ∀z2, w′
(

snd(w′, z2)⊗ {y:w′} → �Q3�
) ‖

! ∀z1, w
(

snd(w, z1)⊗ {y:w} → �Q2�
)]

�P2� −→	 Cxy[∀z′
(

rcv(z′, v1)⊗ {x :z′} → �Q1�
) ‖

rcv(y, v1) ‖ �Q3�{v1/z2} ‖ ! ∀z1, w
(

snd(w, z1)⊗ {y:w} → �Q2�
) ‖

! ∀z2, w′
(

snd(w′, z2)⊗ {y:w′} → �Q3�
)]

The resulting processes unequivocally correspond to the following intermediate processes,
respectively:

∃x, y.(! {x :y} ‖ �x〈v1〉.Q1 | ∗ y(z1).Q2�
1
xy ‖ �∗ y(z2).Q3�

) = S1

∃x, y.(! {x :y} ‖ �x〈v1〉.Q1 | ∗ y(z2).Q3�
1
xy ‖ �∗ y(z1).Q2�

) = S′1

S1 and S′1 specify a ‘committed’ state in which only one process can consume constraint
rcv(y, v1), which forces the translation to finish the synchronization in the translation of the
correct source process.

The diamond property exploits the following notation, which distinguishes τ -transitions
depending on the action that originates it. For example, a transition that simulates the first

part of a synchronization between endpoints x, y will be denoted
IO(x,y)−−−−−→	; the completion

of such synchronization is represented by transition
IO1(x,y)−−−−−→	. Formally, we have:

Definition 31 (Labeled τ -Transitions for Target Terms) Let S be a target term as in Defini-
tion 26). Also, let L = {IO,SL,RP,CD,IO1,RP1,SL1,SL2,SL3} be a set of labels ranged
over by α, α1, α2, α

′, . . . and let η ∈ {α(x, y) |α ∈ L \ {CD} ∧ x, y ∈ Vπ } ∪ {CD(−)}. We

define the labeled transition relation
η−→	 by using the rules in Fig. 13, where we assume that

U = U1 ‖ · · · ‖ Un with n ≥ 0.

The following lemma ensures that labeled transitions and τ -transitions coincide.

123

Session-based concurrency, declaratively

Fig. 13 Labeled Transitions for �·� (cf. Definition 31)

Lemma 13 Let S be a target term (cf. Definition 26) and x, y be endpoints. Then, S
τ−→	 S′

if and only if S
η−→	 S′ where η ∈ {α(x, y) |α ∈ {IO,SL,RP,IO1,RP1,SL1,SL2,SL3} ∧

x, y ∈ Vπ } ∪ {CD(−)}.
Proof The⇒ direction proceeds by a case analysis on the structure of target term S; the⇐
direction proceeds by a case analysis on the label η. For details see App. C.5. %&

We further categorize labels in Definition 31 as opening or closing:

Definition 32 (Opening and Closing Labels) Consider the set of labels defined in Defini-
tion 31. We will say that O = {IO,SL,RP,SL1} is the set of opening labels and write ω to
refer to its elements. Similarly, we will call C = {IO1,RP1,CD,SL2,SL3} the set of closing
labels and write κ to refer to its elements.

The idea is that a transition with an opening label always evolves into an intermediate
process, whereas one with a closing label leads to the translation of a π process. Label CD is
closing because it does not have intermediate processes, but goes directly into the translation
of the continuation. Also, label SL1 is opening because it reaches an intermediate process,
rather than the translation of a π process.

Now we introduce some notation for dealing with sequences of labels:

Notation 16 – We write γ (̃x ỹ) to denote finite sequences α1(x1, y1), . . . , αm(xn, yn), with
n,m ≥ 1.

– We shall write S
γ (̃x ỹ)�����⇒	 S′ only if there exist target terms S1, . . . , Sm such

that S
α1(x1,y1)−−−−−−→	 S1

α2(x2,y2)−−−−−−→	 · · · Sm−1 αm (xn ,yn)−−−−−−→	 Sm = S′ and γ (̃x ỹ) =
α1(x1, y2), . . . , αm(xn, yn).

123

M. Cano et al.

– Given γ (̃x ỹ), we write α(x, y) ∈ γ (̃x ỹ) to denote that α(x, y) is in the sequence γ (̃x ỹ).
Moreover, when x and y are unimportant, we write α ∈ γ (̃x ỹ).

– Given γ (̃x ỹ), we write γ (̃x ỹ) \ αi (x j , y j) to denote the sequence obtained from γ (̃x ỹ)
by removing αi (x j , y j).

– Given γ (̃x ỹ), we say that γ (̃x ỹ) is an opening (resp. closing) sequence if everyα ∈ γ (̃x ỹ)
is an opening (resp. closing) label (cf. Definition 32).

Opening and closing labels represent our two-step approach to simulate synchronizations in
π : an opening label signals the beginning of a synchronization (i.e., consuming a constraint
snd or sel), while a closing label signals its completion (i.e., consuming a constraint rcv
or bra). Whenever a synchronization opens and closes, it can be shown that the translation
reaches some π program. The following definition captures these complete synchronizations:

Definition 33 (Complete Synchronizations) Let S0 be a target term (cf. Definition 26) such

that S0
γ (̃x ỹ)����⇒ S1.

1. If there exist γ1(̃x ỹ) and γ2 (̃x ỹ) such that either:

– γ (̃x ỹ) = γ1(̃x ỹ) IO(x, y) γ2 (̃x ỹ) IO1(x, y) or
– γ (̃x ỹ) = γ1(̃x ỹ) IO(x, y) γ2 (̃x ỹ) RP1(x, y)

then we say that γ (̃x ỹ) is a complete synchronization with respect to IO(x, y).
2. If there exist γ1(̃x ỹ) and γ2 (̃x ỹ) such that either:

– γ (̃x ỹ) = γ1(̃x ỹ) RP(x, y) γ2 (̃x ỹ) RP1(x, y)
– γ (̃x ỹ) = γ1(̃x ỹ) RP(x, y) γ2 (̃x ỹ) IO1(x, y)

then we say that γ (̃x ỹ) is a complete synchronization with respect to RP(x, y).
3. If there exist γ1(̃x ỹ), γ2 (̃x ỹ) and γ3(̃x ỹ) such that either:

– γ (̃x ỹ) = γ1(̃x ỹ) SL(x, y) γ2 (̃x ỹ) SL1(x, y) γ3(̃x ỹ) SL2(x, y)
– γ (̃x ỹ) = γ1(̃x ỹ) SL(x, y) γ2 (̃x ỹ) SL1(x, y) γ3(̃x ỹ) SL3(x, y)

then we say that γ (̃x ỹ) is a complete synchronization with respect to SL(x, y).
4. If there exist γ1(̃x ỹ) and γ2 (̃x ỹ) such that either:

– γ (̃x ỹ) = γ1(̃x ỹ) SL1(x, y) γ2 (̃x ỹ) SL2(x, y) or
– γ (̃x ỹ) = γ1(̃x ỹ) SL1(x, y) γ2 (̃x ỹ) SL3(x, y)

then we say that γ (̃x ỹ) is a complete synchronization with respect to SL1(x, y).
5. If there exists γ1(̃x ỹ) such that γ (̃x ỹ) = γ1(̃x ỹ) CD(−), then we say that γ (̃x ỹ) is a

complete synchronization with respect to CD(−).

Case 5 is the only whose translation needs a single lcc step to reach the translation of its
continuation. Therefore, every conditional transition is a complete synchronization.

Example 6 (Complete Synchronizations) Consider the following target terms:

S1 = Cx̃ ỹ[�x1〈v〉.P1� ‖ �y1(z).y2 � {li : Qi }i∈I � ‖ �x2 � l.Q�]
S2 = Cx̃ ỹ[�x1〈v〉.P1� ‖ �y1(z).P2� ‖ �y1(z

′).P3�]
S3 = Cxy[�x � l j .P1 | y � {li : Pi }i∈I �1xy]

The following transitions are complete synchronizations with respect to the first label in the
sequence for processes S1, S2, and S3:

S1
IO(xy)−−−−→	 Cx̃ ỹ[�x1〈v〉.P1 | y1(z).x2 � {li : Qi }i∈I �1xy ‖ �x2 � l.Q�]

123

Session-based concurrency, declaratively

IO1(xy)−−−−−→	 Cx̃ ỹ[�P1� ‖ �x2 � {li : Qi }i∈I �{v/z} ‖ �x2 � l.Q�]
S2

IO(xy)−−−−→	 Cx̃ ỹ[�x1〈v〉.P1 | y1(z).P2�1xy ‖ �y1(z
′).P3�]

IO1(xy)−−−−−→	 Cx̃ ỹ[�P1� ‖ �P2�{v/z} ‖ �y1(z
′).P3�]

S3
SL1(xy)−−−−−→	 Cxy[�x � l j .P1 | y � {li : Pi }i∈I �3xy]
SL3(xy)−−−−−→	 Cxy[�P1� ‖ �Q j �]

Using complete synchronizations, we can describe the open labels of a sequence of transi-
tions:

Definition 34 (Open Labels of a Sequence of Transitions) Let P be a well-typed π program

such that �P� = S0
γ (̃x ỹ)�����⇒	 Sn , with n = |γ (̃x ỹ)|. We define the open labels of γ (̃x ỹ),

written open(γ (̃x ỹ)), as the longest sequence β1 . . . βm (with m ≤ n) that preserves the
order in γ (̃x ỹ) and such that for every βi (with 1 ≤ i ≤ m):

(1) βi = α j , for some opening label α j ∈ γ (̃x ỹ);
(2) there is not a subsequence γ (̃x ỹ) that is a complete synchronization with respect to βi

(cf. Definition 33).

The complementary execution sequence of an opening label intuitively contains the tran-
sition labels required to complete a synchronization:

Definition 35 (Complementary Execution Sequence) Letω be any opening label.We say that
the complementary execution sequence of ω, written ω↓, is defined as follows:

IO(xy)↓ = IO1(xy) RP(xy)↓ = RP1(xy)

SL(xy)↓ = SL1(xy)SL2(xy) SL1(xy)↓ = SL2(xy)

Furthermore, let S1
γ (̃x ỹ)����⇒ S2 be transition sequence such that open(γ (̃x ỹ))= ω1 . . . ωn ,

with n ≥ 1. We define γ (̃x ỹ)↓ as ω1↓ . . . ωn↓.
The following lemma provides a diamond property for opening and closing transitions.

It states that closing actions do not interfere with opening transitions. The proof follows by
induction on the size of the sequence of labels (see App. C.5 for details).

Lemma 14 Let S be a target term such that S
ω−→	 S1 and S

γ (̃x ỹ)����⇒ S2, where γ (̃x ỹ)

is a closing sequence (cf. Notation 16). Then, there exists S3 such that S1
γ (̃x ỹ)����⇒ S3 and

S2
ω−→	 S3.

The next lemma shows that every target term can reach the translation of a π program by
closing all its remaining open synchronizations, if any.

Lemma 15 Suppose a well-typed π program P. For every sequence of labels γ (̃x ỹ) such

that �P�
γ (̃x ỹ)����⇒ S, there exist Q, S′, and γ ′(̃x ỹ) such that P −→∗ Q and S

γ ′ (̃x ỹ)�����⇒ S′,
with γ ′(̃x ỹ) = γ (̃x ỹ)↓ (cf. Definition 35). Moreover, �Q� ∼=π

	 S′.

Proof By induction on |γ (̃x ỹ)| and a case analysis on the last label of the sequence. The

base case is immediate since �P�
γ (̃x ỹ)����⇒ �P� and P −→∗ P . The proof for the inductive

hypothesis can be seen in Fig. 14. The dotted arrows are the reductions that must be proven
to exist. For details see App. C.5. %&

123

M. Cano et al.

Fig. 14 Diagram of the proof of Lemma 15. The dotted arrows represent the reductions and equivalences that
must be proven

4.3.3 Proof of operational soundness

Having detailed all the ingredients required in our proof, we restate Theorem 12 and develop
the sketch discussed in Sect. 4.3.1:

Theorem 12 (Soundness for �·�) Let �·� be the translation in Definition 25. Also, let P be a
well-typed π program. For every S such that �P�

τ�⇒ S there are Q, S′ such that P −→∗ Q
and S

τ�⇒ S′ ∼=π
	 �Q�.

Proof By induction on k, the length of the reduction �P�
τ�⇒ S, followed by a case analysis

on the constraints that may have been consumed in the very last reduction.

Base Case: Then, �P�
τ�⇒ �P�. The thesis follows from reflexivity of∼=π

	 : �P� ∼=π
	 �P�.

Inductive Step: Assume �P�
τ�⇒ S0 −→	 S (with k − 1 steps between �P� and S0).

By IH, there exist Q0 and S′0 such that P −→∗ Q0 and S0
τ�⇒ S′0 ∼=π

	 �Q0�. Observe

that by combining the IH and Lemma 15, we have that the sequence S0
τ�⇒ S′0 contains

only closing labels. We must prove that there exist Q and S′ such that P −→∗ Q and
S

τ�⇒ S′ ∼=π
	 �Q�. We analyze IS0 and IS (cf. Definition 29) according to two cases:

IS0 ⊆ IS and IS0 � IS , which use Lemmas 11 and 12, respectively:

Case IS0 ⊆ IS : By Lemma 11 there are two sub-cases depending on the shape of S0:
1. S0 ≡ Cx̃ ỹ[�b? Q1 : Q2� ‖ U], b ∈ {tt,ff}, for some U . By Lemma 11

and inspection on the translation definition (Fig. 8), it must be the case that
Q0 ≡π (ν x̃ ỹ)(b? Q1 : Q2 | R), for some R. We distinguish two sub-subcases,
depending on b:

1.1 b = tt: We proceed as follows:
(1) S0

τ�⇒ S′0 ≡ Cx̃ ỹ[�tt? Q1 :Q2� ‖ U ′], for some U ′ (IH).
(2) S′0 ∼=π

	 �Q0� = Cx̃ ỹ[�tt? Q1 :Q2� ‖ �R�] (IH).
(3) S0 −→	 Cx̃ ỹ[�Q1� ‖ ∀ε(tt = ff→ �Q2�) ‖ U] = S (Lemma 11).

(4) S0 −→	 S
τ�⇒ Cx̃ ỹ[�Q1� ‖ ∀ε(tt = ff → �Q2�) ‖ U ′] = S′

((3),(1)).
(5) S′0 −→	

∼=π
	 Cx̃ ỹ[�Q1� ‖ U ′] ∼=π

	 S′ (Fig. 6, Corollary 4, (4)).

123

Session-based concurrency, declaratively

(6) �Q0� −→	
∼=π

	 Cx̃ ỹ[�Q1� ‖ �R�] = W ((2), Fig. 6, Corollary 4).
(7) S′ ∼=π

	 W = Cx̃ ỹ[�Q1� ‖ �R�] ((2),(5), Lemma 14with S = S0, S1 = S,
S2 = �Q0�).

(8) Q0 −→ (ν x̃ ỹ)(Q1 | R) = Q (Fig. 1 - Rule �IfT�)
(9) �Q� = Cx̃ ỹ[�Q1� ‖ �R�] = W (Fig. 8, (8), (6)).

(10) S′ ∼=π
	 �Q� ((7),(9)).

1.2 b = ff: This case is analogous to the one above.
2. By Lemma 11, there is a W such that W −→h

	 S0 (with h ∈ {1, 2}) where
W = Cx̃ ỹ[�x � lk .Q′ | x � {lh : Qh}h∈I � ‖ U]

for some U . We distinguish cases according to h:
2.1 h = 2:

(1) S0 ≡ Cx̃ ỹ[�x � lk .Q′ | x � {lh : Qh}h∈I �2x̃ ỹ ‖ U] (Lemma 11).
(2) Q0 = (ν x̃ ỹ)(Q′ | Qk | R) ((1), IH).
(3) S0

τ�⇒∼=π
	 Cx̃ ỹ[�Q′ | Qk� ‖ U ′] = S′0 (IH, Fig. 8, Corollary 4).

(4) S′0 ∼=π
	 �Q0� = Cx̃ ỹ[�Q′� ‖ �Qk� ‖ �R�] (IH, (3), (2)).

(5) S0 −→	 Cx̃ ỹ[�Q′ | Qk� ‖ ∏

h∈I\{k}
∀ε(lk = lh → �Qh�) ‖ U] = S (Fig. 6,

(1)).
(6) S0 −→	 S

τ�⇒∼=π
	 S′0 = S′ ((5), (3), Lemma 14, with S = S0, S1 = S,

S2 = �Q0�).
(7) Q0 −→∗ Q0 = Q (Fig. 1).
(8) S′ ∼=π

	 �Q� ((6),(7),(4)).
2.2 h = 1:

(1) S0 ≡ Cx̃ ỹ[�x � lk .Q′ | x � {lh : Qh}h∈I �1x̃ ỹ ‖ U] (Lemma 11).
(2) Q0 = (ν x̃ ỹ)(Q′ | Qk | R) ((1), Assumption)
(3) S0

τ�⇒∼=π
	 Cx̃ ỹ[�Q′ | Qk� ‖ U ′] = S′0 (IH, Fig. 8, Corollary 4).

(4) S′0 ∼=π
	 �Q0� = Cx̃ ỹ[�Q′� ‖ �Qk� ‖ �R�] (IH,(3),(2)).

(5) S0 −→	 Cx̃ ỹ[�x � lk .Q′ | x � {lh : Qh}h∈I �3x̃ ỹ ‖ U] = S (Fig. 6).

(6) S −→	
∼=π

	 Cx̃ ỹ[�Q′ | Qk� ‖ U] τ�⇒ Cx̃ ỹ[�Q′ | Qk� ‖ U ′] = S′
(Fig. 6, Corollary 4, (3)).

(7) S0 −→	 S
τ�⇒∼=π

	 S′0 = S′ ((5),(6), Lemma 14, (3), with S = S0,
S1 = S, S2 = �Q0�).

(8) Q0 −→∗ Q0 = Q (Fig. 1).
(9) S′ ∼=π

	 �Q� ((7), (8), (4)).
Case IS0 � IS : By Lemma 12 we distinguish sub-cases depending on the constraints
in IS0 \IS . By Proposition 1, constraints are unique and therefore, IS0 \IS correctly
accounts for the specific consumed constraint. There are four cases, as indicated by
Lemma 12:

1. snd(x, v) ∈ IS0 \ IS : By Lemma 12 we have, for some U :
(a) S0 ≡ Cx̃ ỹ[{x :y} ‖ �x〈v〉.Q1 | � y(z).Q2� ‖ U].
(b) S ≡ Cx̃ ỹ[�x〈v〉.Q1 | � y(z).Q2�

1
x̃ ỹ ‖ U].

We distinguish cases depending on � y(z).Q2 (cf. Notation 2):
1.1 � y(z).Q2 = y(z).Q2: We proceed as follows:

(1) S0
τ�⇒ Cx̃ ỹ[{x :y} ‖ �x〈v〉.Q1 | y(z).Q2� ‖ U ′] = S′0 (IH).

(2) S′0 ∼=π
	 �(ν x̃ ỹ)(x〈v〉.Q1 | y(z).Q2 | R)� = �Q0� (IH).

(3) S0 −→	 S −→	 Cx̃ ỹ[�Q1 | Q2{v/z}� ‖ U] ((a),(b), Fig. 6).

(4) S
τ�⇒ Cx̃ ỹ[�Q1 | Q2{v/z}� ‖ U ′] = S′ ((3),(1)).

123

M. Cano et al.

(5) S′0 −→2
	 Cx̃ ỹ[�Q1 | Q2{v/z}� ‖ U ′] = S′ ((1), Fig. 6, (4)).

(6) �Q0� −→2
	 �(ν x̃ ỹ)(Q1 | Q2{v/z} | R)� = W ((2), Fig. 6).

(7) S′ ∼=π
	 W ((2), (5), Lemma 14 with S = S0, S1 = S, S2 = �Q0�).

(8) Q0 −→ (ν x̃ ỹ)(Q1 | Q2{v/z} | R) = Q (Fig. 1 - Rule �Com�).
(9) W = �Q� ((8), (6)).

(10) S′ ∼=π
	 �Q� ((7),(9)).

1.2 � y(z).Q2 = ∗ y(z).Q2: Similar to the case above, using Rule �Repl�
instead of Rule �Com�.

2. rcv(x, v) ∈ IS0 \ IS : By Lemma 12, there exists

W = Cx̃ ỹ[�x〈v〉.Q1 | � y(z).Q2� ‖ U]

such that W −→	 S0. We distinguish two cases for � y(z).Q2 (cf. Notation 2):
2.1 � y(z).Q2 = y(z).Q2: We proceed as follows:

(1) S0 ≡ Cx̃ ỹ[�x〈v〉.Q1 | � y(z).Q2�
1
x̃ ỹ ‖ U] (Lemma 12).

(2) Q0 = (ν x̃ ỹ)(Q1 | Q2{v/z} | R) ((1)).
(3) S0

τ�⇒ Cx̃ ỹ[�Q1 | Q2{v/z} | R� ‖ U ′] = S′0 ((1), Fig. 6, IH).
(4) S′0 ∼=π

	 �Q0� (IH).
(5) S0 −→	 Cx̃ ỹ[�Q1 | Q2{v/z} | R� ‖ U] = S (Fig. 6).

(6) S0 −→	 S
τ�⇒ S′0 = S′ ((5), (3), Lemma 14, with S = S0, S1 = S,

S2 = �Q0�).
(7) Q0 −→∗ Q0 = Q (Fig. 1).
(8) S′ ∼=π

	 �Q� ((6), (7), (4)).
� y(z).Q2 = ∗ y(z).Q2: Similar as above.

3. sel(x, l) ∈ IS0 \ IS : As above.
4. bra(x, l) ∈ IS0 \ IS : As above.

%&

Besides the criteria considered in our definition of valid encoding (Definition 20),
Gorla [26] advocates for divergence reflection, a correctness criterion that we informally
discuss here, as it is related to operational correspondence. Divergence reflection ensures that
every infinite sequence of reductions in a target term corresponds to some infinite sequence
of reductions in its associated source term. Let us write S −→ω

s (resp. T −→ω
t) whenever the

source term S (resp. target term T) has such an infinite sequence of reductions. A translation
�·� : Ls → Lt then reflects divergence if for every S such that �S� −→ω

t then S −→ω
s .

Our translation �·� (Fig. 8) reflects divergence. The only sources of infinite behavior it
induces concern the translation of restriction,which includes the persistent tell process ! {x :y},
and the translation of input-guarded replication in π . The persistent tell cannot reduce by
itself; by providing copies of constraint {x :y}, it partakes in target reductions (inferred using
Rule �C:Sync�). Importantly, such reductions occur only when an auxiliary predicate (such
as rcv(x, y), added by the translation of a source process) is also in the store. The translation
of input-guarded replication does not reduce on its own either: associated reductions depend
on synchronizations with (the translation of) corresponding outputs. Therefore, as �·� does
not induce other forms of infinite behavior, every infinite sequence of reductions emanating
from �P� corresponds exclusively to infinite reductions present in P .

123

Session-based concurrency, declaratively

4.4 Success sensitiveness

Here, we consider success sensitiveness, the last criterion in our definition of valid encoding
(Definition 20). For the purpose of proving that our translation satisfies this criterion, we
adopt some extensions, following [25,26]. First, we extend the syntax of π (cf. Definition 1)
and lcc (Definition 11) with a success process, denoted � in both languages. In π , the
operational semantics is kept unchanged, assuming that � is preserved by reduction. That
is, if P

∣

∣ � and P −→∗ Q, then Q = Q′
∣

∣ �, for some Q′. The new process � is assumed

to be well-typed. In lcc, we define � def= !check, where check denotes a constraint that
is fresh, i.e., it does not occur anywhere else. Thus, in lcc, the success process � defines
check as a persistent constraint; in particular, notice that �·� does not introduce abstractions
that consume check.

With process � in place, we define success predicates for π and lcc as the potential that
a process has of reducing to a process with a top-level unguarded occurrence of �:

P⇓π iff P −→∗ P ′ and P ′ ≡π P ′′
∣

∣ �
P⇓lcc iff P

τ�⇒ P ′ and P ′ ≡ P ′′ ‖ � = P ′′ ‖ !check
The equivalences in each language (cf. Definition 24) are sensitive to success. That is, it is
never the case that P ≡π Q if P ⇓π but Q �⇓π (cf. Definition 2). Similarly, by adding the
(fresh) constraint check to the set of output observables used as parameter to ∼=π

	 (Defini-
tion 22), it is never the case that P ∼=π

	 Q if P⇓lcc but Q �⇓lcc (cf. Definition 23).
Under these assumptions, success sensitiveness is a property of the translation �·� in

Fig. 8, trivially extended with the case ��� = !check. For this (extended) translation, the
proof of success sensitiveness, given next, relies on operational completeness and soundness
(Theorems 11 and 12), which we assume extended to the source and target languages with
success processes.

Theorem 17 (Success Sensitiveness for �·�) Let �·� be the translation in Definition 25. Also,
let P be a well-typed π program. Then, P⇓π if and only if �P�⇓lcc.

Proof We consider both directions. Recall that Fig. 8 defines �P
∣

∣ Q� = �P� ‖ �Q�.

1. If P⇓π , then P −→∗ P ′ and P ′ ≡π P ′′
∣

∣ �. By operational completeness (Theorem 11),

there exists an S such that �P�
τ�⇒ S ∼=π

	 �P ′′
∣

∣ �� = �P ′′� ‖ !check. Because ∼=π
	 is

sensitive to success, we have S⇓lcc. Therefore, �P�⇓lcc.
2. If �P� ⇓lcc, then �P�

τ�⇒ S and S ≡ S1 ‖ !check. By operational soundness (Theo-
rem 12), there exist Q, S′ such that P −→∗ Q and S1 ‖ !check τ�⇒ S′ ∼=π

	 �Q�. Now,
because process !check is persistent, we have that S′ = S′′ ‖ !check. Because success is
captured by ∼=π

	 , we infer that �Q� = �Q′� ‖ !check = �Q′�
∣

∣ �, for some Q′. Therefore,
P −→∗ Q′

∣

∣ � and we conclude that P⇓π .

%&
We have proven that the translation �·� is name invariant (Theorem 8), compositional (The-
orem 9), operationally complete (Theorem 11), operationally sound (Theorem 12), and also
success sensitive (Theorem 17). Therefore, we may now state that �·� is a valid encoding:

Corollary 5 The translation 〈�·�, ϕ�·�〉 (cf. Definition 25) is a valid encoding (cf. Defini-
tion 20).

123

M. Cano et al.

As an application of our encoding and its correctness properties, in the following section
we devise a methodology to use encoded terms as macros in lcc contexts; we show how it
can be used to enhance π specifications with time constraints.

5 The encoding at work

The correctness properties of �·� (in particular, compositionality and operational correspon-
dence) can be used to enhance operational specificationswritten inπ with declarative features
that can be expressed in lcc. We focus on expressing two of the patterns presented by
Neykova et al. in [36], where a series of realistic communication protocols with time were
analyzed using the Scribble specification language [46].

Next, we overview our approach. Then, in Sects. 5.2 and 5.3we develop two of the patterns
presented in [36] and show how our encoding can help in specifying them in lcc.

5.1 Overview: exploiting compositionality via decompositions

As shown before, �·� satisfies correctness properties that ensure that source specifications
in π can be represented in lcc and that their behavior is preserved (cf. Corollary 5). We
are interested in using �·� to represent requirements that may appear in message-passing
components but are not explicitly representable in π . An example of such requirements is:
“an acknowledgment message ACK should be sent (by the server) no later than three time
units after receiving the request message REQ”. As already mentioned, this kind of behavior
is not straightforwardly representable in π . In fact, using π we could only represent the
interaction in the previous requirement as a request–acknowledgment handshake. Consider
the process

Ph = (νxy)(x〈REQ〉.x(z).0 ∣

∣ y(z′).y〈ACK〉.0) (6)

where x represents the endpoint used by the client, while y represents the endpoint of the
server. The client sends REQ and then awaits for ACK, which is sent by the server.

To represent this kind of requirements, the key idea is to consider encoded terms asmacros
to be used inside a larger lcc specification. Then, because of the correctness properties we
have established for �·�, these snippets represent lcc processes that will execute correct
communication behavior. For example, using �Ph� we could specify the lcc process

Q = ∀ε(month(m) = january→ �Ph�
)

which checks that the current month (stored in variable m) is january; only when this con-
straint is true, the behavior in �Ph� is executed. Our encoding’s operational correspondence
property ensures that the behavior of Q corresponds to that of Ph , provided that the guard is
satisfied (cf. Theorems 11 and 12). This is useful to represent communication behavior that
depends on information that is contextual, i.e., external to the program.

In a way, Q defines a constraint over the whole process Ph . It can be desirable to constrain
only some of the actions of Ph . For the sake of illustration, let us imagine a variant of π in
which prefixes are annotated:

P ′h = (νxy)(x〈REQ〉.x3(z).0 ∣

∣ y(z′).y〈ACK〉.0) (7)

Above, prefix x3(z).0 says that the input action should take place within three time units after
the preceding action. This defines a timed requirement connecting two separate actions.

123

Session-based concurrency, declaratively

Fig. 15 Size of a process (resp. type) in the finite fragment of π

To specify processes such as P ′h using our encoding, we consider π processes that have
been decomposed in such a way that every prefix appears in an independent parallel process.
Such a decomposition should preserve the order in which actions are executed (as dictated by
session types). In thisway, the compositionality property of our encoding gives us control over
specific parts of the translated π process, allowing us to define constraints on the translations
of some specific prefixes (cf. Theorem 10).

Decompositions of (un)typed π -calculus processes have been studied as trios processes
and minimal session types [1,38]. The idea in [38] is to transform a process P into an
equivalent process formed only by trios, sequential processes with at most three prefixes.
Each trio emulates a specific prefix of P; trios interact in such a way that every sub-term is
executed at the right time, to ensure that the causal order of interactions in P is preserved.
Building upon this idea, the work of Arslanagic et al. on minimal session types [1] considers
decompositions of processes and of their associated session types.

We shall build upon the decomposition strategy in [1,38] and leave an in-depth study of
decompositions for π for follow up work. We generate π processes in which each prefix is
represented by a parallel sub-process, while preserving the causal order of the given process.
Then, using the compositionality of �·� (Theorem 9), we obtain an appropriate granularity
level for the analysis of code snippets (obtained from trios) in lcc specifications.

For the sake of illustration, we follow [1] and consider the decomposition of well-typed
programs from the finite fragment of π without selection and branching (i.e., output, input,
restriction, parallel composition, and inaction). Sincedecompositions basedon trios processes
require polyadic communication, we shall assume the following shorthand notations:

x 〈̃v〉.P = x〈v1〉.x〈vn〉.P (|̃v| = n ∧ n ≥ 1)

x(ỹ).P = x(y1).x(yn).P (|̃y| = n ∧ n ≥ 1)

We use size(·) and size(·) to denote the size of process P and type T , respectively (cf.
Fig. 15). With these auxiliary functions, we define the following decomposition function:

Definition 36 (Decomposition) Let P = (νx1y1) . . . (νxn yn)Q be a well-typed program in
the finite fragment of π and Γ = {x1 : T1, y1 : T1, . . . , xn : Tn, yn : Tn} be a context such
that Γ � Q. The decomposition of P , denotedD(P), is defined as

D(P) = (νc̃˜d)(νũ)(d1〈̃u〉.0
∣

∣B1
ũ(Q{˜w′/w̃}))

where:

(1) ũ = x̃1 ỹ1 . . . x̃n ỹn , w̃ = x1y1 . . . xn yn , and ˜w′ = x1,1y1,1 . . . xn,1yn,1.

123

M. Cano et al.

Fig. 16 Breakdown function for the processes in the finite fragment of π

Fig. 17 A process decomposition. We let ũx = x1,1x1,2, ũ y = y1,1y1,2, and ũ = ũx , ũ y

(2) x̃i = xi,1 . . . xi,m and ỹi = yi,1 . . . yi,m with m = size(Ti) for every i ∈ {1, . . . ,m}.
(3) c̃ = c1 . . . cr and ˜d = d1 . . . dr with r = size(P).
(4) Bk

ũ(P) is defined inductively over the finite fragment of π as in Fig. 16.

Remark 3 We decompose only well-typed programs (cf. Notation 3). Theorem 4 ensures that
for every program P to be decomposed, it holds that P = (νx1y1) . . . (νxn yn)Q, with n ≥ 0.
(For simplicity, we shall also assume no (νx ′y′) occurs in Q.) Moreover, typability ensures
there exists a context Γ = {x1 : T1, y1 : T1, . . . , xn : Tn, yn : Tn} such that Γ � Q.

Figure 17 illustratesD(Ph), the process decomposition of Ph obtained fromDefinition 36.
We shall use this decomposition to represent the timed behavior required by P ′h . Let us first
analyze how parallel sub-processes in D(Ph) implement individual prefixes of Ph :

– process c2(ũx).x1,1〈REQ〉.d3〈x1,2〉.0 implements prefix x〈REQ〉.
– process c3(x1,2).x1,2(z).d4〈z〉.0 implements prefix x(z).
– process c4(w).0 implements 0.

The sub-processes ofD(Ph) that do not correspond to a prefix in Ph are auxiliary processes
that trigger the prefix representations. Process D(Ph) is typable under the appropriate con-
texts. This is because, by definition, there are no shared variables and each pair of covariables
implement complementary behaviors. Also, the decomposition can be shown to preserve the
causal order of the source process [1,38]. In our example, the order implemented by Ph to
send messages REQ and ACK is preserved by D(Ph)—see App. A for the associated reduc-
tion steps. We may then argue that Ph and D(Ph) execute the same protocol, up to the
synchronizations added by the decomposition.

123

Session-based concurrency, declaratively

A B

REQ

ACK
tA tB

(a) Request-response timeout.

A B

MSG1
...

MSGk
t

MSG1
...

MSGk
t

MSGk+1�

t′

(b)Messages in a time-frame.

Fig. 18 Timed patterns for communicating systems

By using D(Ph) instead of Ph as the source process for �·�, we can modularly treat
translations for each prefix of Ph (i.e., its trios) as “black boxes” in lcc. Our operational
correspondence results (Theorems 11 and 12) ensure that these black boxes correctly mimick
the behavior of D(Ph). This allows us to safely “plug” these black boxes into a larger
lcc specification with additional declarative requirements, thus going beyond the merely
operational specification given by Ph . For example, we can define an lcc process that
specifies the timed conditions in P ′h in (7), which cannot be implemented easily in π .

We now use these ideas to develop lcc specifications of two of the communication
patterns presented in [36]—they are graphically represented in Fig. 18(a) and (b). These
patterns will allow us to use lcc to specify processes such as P ′h .

5.2 Request–response timeout

This pattern is used to enforce requirements on the timing of a response, ensuring quality of
service; it can be required both at server or client side (cf. Fig. 18a). Process P ′h can be seen
as a specific implementation of this pattern. In [36] three use cases are identified:

(1) In [19], a service is requested to respond timely: “an acknowledgment message ACK
should be sent (by the server) no later than one second after receiving the request
message REQ”.

(2) Similarly, also in [19], a Travel Agency web service specifies the pattern at the client
side: “A user should be given a response RESwithin one minute of a given request REQ”.

(3) Finally, extracted from the Simple Mail Transport Protocol specification [30], we have
a requirement that exhibits a composition of request–response timeout patterns: “a user
should have a five minutes timeout for the MAIL command and a three minutes timeout
for the DATABLOCK command”.

Requirement (1) above (i.e., the pattern at the server side) specifies that a reply should be
sent within a fixed amount of time after the request have been received. In Requirement (2),
which represents the client side, the server must be ready to receive the client’s response
within a fixed amount of time. In general, these patterns can be written as:

(a) Server side: After receiving a message REQ from A, B must send the acknowledgment
ACK within tA time units.

123

M. Cano et al.

(b) Client side: After sending a message REQ to B, A must be able to receive the acknowl-
edgment ACK from B within tB time units.

A possible π specification for this pattern is shown below. We use a more general version
of P ′h in (7), which is informally annotated to describe the intended timing requirements:

Pr = (νxy)(x〈REQ〉.x(z).Q1
∣

∣ y(z).y〈ACK〉
︸ ︷︷ ︸

t

.Q2) (8)

The intent is that the time elapsed between the reception of the request and the acknowledg-
ment must not exceed t time units.

We now present a decomposition for Pr , following Definition 36:

D(Pr) = (νũ)(D1
∣

∣D2
∣

∣D4
∣

∣D3
∣

∣ R) (9)

where we assume that R contains the decompositions for processes Q1 and Q2 (not needed
in this example), that ũ can be obtained from Definition 36, and that each of the parallel
sub-processes Di (i ∈ {1, 2, 3, 4}) represents a prefix in Pr :

D1 = c2(ũx).x1,1〈REQ〉.d3〈ũx \ x1,1〉.0
D2 = c3(ũx \ x1,1).x1,2(zz̃1).d4〈ũx zz̃1 \ x1,1x1,2〉.0
D3 = c5(ũ y).y1,1(z

′ z̃2).d6〈ũ y z
′ z̃2 \ y1,1〉.0

D4 = c6(ũ y z
′ z̃2 \ y1,1).y1,2〈ACK〉.d7〈ũ y z

′ z̃2 \ y1,1y1,2〉.0
By applying �·� and thanks to Theorem 9, we can use the translations of each Di (i ∈

{1, 2, 3, 4}) as part of an lcc process that represents the request–response timeout pattern:

S1 = Cũ[�D1� ‖ ∀ε(clock(x) ≤ t → �D2�) ‖ �D3� ‖ �D4� ‖ �R�]
where ũ can be obtained by following Definition 36. We can also exploit non-deterministic
choices in lcc to signal that the process fails after a time-out:

S2 = ∃x̃ ỹ.
(

�D1� ‖ (∀ε(clock(u) ≤ t → �D2�)+ ∀ε(clock(u) > t → Q f)) ‖
�D3� ‖ �D4� ‖ �R�

)

Whenever clock(u) > t , process S2 reduces to process Q f which represents the actions
that must be taken in case the timing constraint is not met. Interestingly, if Q f is taken to
represent an error process, then the behavior would be reminiscent of the input operators
with deadlines presented in [9], which evolve into a failure whenever a deadline is not met.

The operational correspondence property of �·� (cf. Theorems 11 and 12) ensures that S2
preserves the behavior of the source π processes, whenever the timing constraint is met.

5.3 Messages in a time-frame

This pattern enforces a limit on the number of messages exchangedwithin a given time-frame
(cf. Fig. 18b). In [36] two use cases from [19] were identified:

(1) Controlling denial of service attacks: “a user is allowed to send only three redirect
messages to a server with an interval between the messages of no less than two time
units”.

(2) Used in a Travel Agency web service: “a customer can change the date of his travel only
two times and this must happen between one and five days of the initial reservation”.

123

Session-based concurrency, declaratively

This pattern concerns message repetition, which can be specified in two ways. We can (a)
require the repetition to occur at a specified pace; i.e., requiring that messages can only be
sent in intervals of time, or (b) specify an overall time-frame for the messages to be sent.

We generalize these patterns next. Keeping consistency with Fig. 18b, we will use t for
the interval pattern and t ′, for the overall time-frame pattern. We use r and r ′ to denote the
upper bound of the time-frames, i.e., t ≤ i ≤ r (resp. t ′ ≤ i ≤ r ′), where i stands for the
“safe time” for sending messages.

(a) Interval: A is allowed to send B at most k messages, and at time intervals of at least t
and at most r time units.

(b) Overall time-frame: A is allowed to send B at most k messages in the overall time-frame
of at least t ′ and at most r ′ time units.

To represent these two variants of the pattern using �·�, we first present two π processes,
annotated to indicate the timing constraints:

Pti = (νxy)(x〈M1〉.x〈
︸ ︷︷ ︸

t1

M2〉.x〈
︸ ︷︷ ︸

t1

M3〉.x〈
︸ ︷︷ ︸

t1

M4〉.Px
∣

∣ Py)

Pto = (νxy)(x〈M1〉.x〈M2〉.x〈M3〉.x〈M4〉
︸ ︷︷ ︸

t2

.Px
∣

∣ Py)

Processes Pti and Pto differ only on their timing constraints (i.e., the annotations below). They
both send four messages that must be received by some Py (which we leave unspecified).
Process Pti represents the interval pattern, in which we must leave at least t1 time units
between each message. Process Pto represents the overall time-frame pattern in which all the
four messages must be sent in an overall time of t2 time units. Here, we use clock(u1) and
clock(u2) to represent the time elapsed in clocks u1 and u2, respectively.

We start by considering the decompositions ofD(Pti) andD(Pto):

D(Pto) = D(Pti) = (νũ)(D1
∣

∣D2
∣

∣D3
∣

∣D4
∣

∣ Rx
∣

∣ Ry) (10)

where we assume that Rx and Ry contain the decompositions of Px and Py , respectively. The
sequence ũ can be derived from Definition 36. ProcessesDi (i ∈ {1, 2, 3, 4}) correspond to:

D1 = c2(ũx).x1,1〈M1〉.d3〈ũx \ x1,1〉.0
D2 = c3(ũx \ x1,1).x1,2〈M2〉.d4〈ũx \ x1,1x1,2〉.0
D3 = c4(ũx \ x1,1x1,2).x1,3〈M3〉.d5〈ũx \ x1,1x1,2x1,3〉.0
D4 = c5(ũx \ x1,1x1,2x1,3).x1,4〈M4〉.d6〈ũx \ x1,1x1,2x1,3x1,4〉.0

By applying �·�, and thanks to Theorems 9 and 10, we have:

�D(Pti)� = �D(Pto)� = Cx̃ ỹ[�D1� ‖ �D2� ‖ �D3� ‖ �D4� ‖ �Rx � ‖ �Ry�]
We now represent the variants of the timed pattern above (i.e., (a) and (b)) using �·�:
(1) Interval: This variant requires that for every sent message, the next message is sent with

a delay of at least t1 time units. This means guarding the snippets obtained with the
decomposition so that the processes are suspended until the interval t1 has passed:

Q1 = Cx̃ ỹ[�D1� ‖ ∀ε
(

clock(u1) > t1 → �D2� ‖ rst(u1) ‖
∀ε(clock(u1) > t1 → �D3� ‖ rst(u1) ‖
∀ε(clock(u1) > t1 → �D4� ‖ rst(u1)

)) ‖
∀ε(clock(u1) > t1 → �Rx �

)) ‖ �Ry�]

123

M. Cano et al.

Above, constraint rst(u1) tells the store that clock u1 must be reset. Process Q1 consists
of nested abstractions. Each abstraction is used to make the next synchronization wait
until the delay is satisfied. To achieve this, we guard each abstraction with constraint
clock(u1) > t1. In this way, we ensure that the process representing each prefix is
delayed accordingly. We also ensure that whenever the timing constraint is met, the
clock is reset to allow for the time to count from the start once again.

(2) Overall Time-Frame: This variant can be represented by changing the timing constraint
in Q1 to clock(u2) ≤ t2 and by not resetting the clock inside every abstraction:

Q2 = Cx̃ ỹ[∀ε
(

clock(u2) ≤ t2 → �D1� ‖ ∀ε
(

clock(u2) ≤ t2 → �D2� ‖
∀ε(clock(u2) ≤ t2 → �D3� ‖ ∀ε

(

clock(u2) ≤ t2 → �D4� ‖ rst(u2)
)) ‖

∀ε(clock(u2) ≤ t2 → �Rx �
))) ‖ �Ry�]

The overall time of the communications can be checked because we only reset the clock
at the end of the complete interaction.

Both Q1 and Q2 preserve the behavior of their source process, assuming that all timing
constraints are satisfied. This is because of the operational correspondence property (cf.
Theorems 11 and 12). Similarly to the lcc specification of the request–response timeout, we
can use non-determinism in lcc to extend the behavior of the declarative implementations.

6 Related work

The most related work is [31], already discussed, which uses utcc as target language in a
translation of a session π -calculus different from π . By using lcc rather than utcc, we
can correctly encode processes that cannot be represented in [31] (cf. Ex. 3). Also, linearity
in lcc allows us to provide operational correspondence results (cf. Theorems 11 and 12)
stronger than those in [31].

Haemmerlé [27] develops an encoding of an asynchronousπ-calculus intolcc, and estab-
lishes operational correspondence for it. Since his encoding concerns two asynchronous
models, this operational correspondence is more direct than in our case. Monjaraz and
Mariño [35] encode the asynchronous π -calculus into Flat Guarded Horn Clauses. They
consider compositionality and operational correspondence criteria, as we do here. In contrast
to [27,35], here we consider a session π -calculus with synchronous communication, which
adds challenges in the translation and its associated correctness proofs. The developments
in [27,35] are not concerned with the analysis of message-passing programs in general, nor
with session-based concurrency in particular.

Loosely related to our work are [8,18]. Bocchi et al. [8] integrate declarative requirements
into multiparty session types by enriching (type-based) protocol descriptions with logical
assertionswhich are globally specified within multiparty protocols and potentially projected
onto specifications for local participants. Rather than a declarative process model based on
constraints, the target process language in [8] is a π -calculus with predicates for checking
(outgoing and incoming) communications. It should be interesting to see if such an extended
session π-calculus can be encoded into lcc by adapting our encoding. Also in the context of
choreographies, although in a different vein, Carbone et al. [18] explore declarative reasoning
via a variant of Hennessy–Milner logic for global specifications.

Prior works on Web service contracts have integrated operational descriptions (akin to
CCS specifications) and constraints, where constraint entailment represents the possibility

123

Session-based concurrency, declaratively

for a service to comply with the requirements of a requester. Buscemi and Montanari’s CC-
pi [12,14] combines the message-passing communication model from the π-calculus with
operations over a store as in ccp languages. Analysis techniques for CC-pi processes exploit
behavioral equivalences [13]; logical characterizations of process behavior have not been
studied. A challenge for obtaining such characterizations is CC-pi’s retract construct, which
breaks the monotonicity requirements imposed for stores in the ccpmodel. We do not know
of any attempts on applying session-type analysis for specifications in CC-pi.

Coppo and Dezani-Ciancaglini [20] extend the session π-calculus in [29] with constraint
handling operators, such as tells, asks and constraint checks. Session initiation is then bound to
the satisfaction of constraint in the store. The merge of constraints and a session-type system
guarantees bilinearity, i.e., channels in use remain private, and that the communications
proceed according to the prescribed session types. It is worth noticing that the underlying
store in [20] is not linear, which can create potential races among different service providers.

The interplay of constraints and contracts has been also studied by Buscemi et al. [10]. In
their model, service interactions follow three phases: negotiation, commitment, and execu-
tion. In the negotiation phase, processes agree in fulfilling certain desired behaviors, without
guarantee of success. Once committed, it is guaranteed that process execution will honor
promised behaviors. The model in [10] uses two languages: a variant of CCS is used as a
source language, where the behavior of services and clients is specified; these specifications
are then compiled to a language based on CC-pi with no retraction operator, where con-
straints ensure that interactions between clients and services do not deadlock. It would be
insightful to enrich this two-level model by using linear constraints as in lcc, so as to refine
the consumption of resources in the environment.

Bartoletti et al. [2,4] promote contract-oriented computing as a novel vision for enforcing
service behaviors at runtime. The premise is that in scenarios where third-party components
can be used but not inspected, verification based on (session) types becomes a challenge.
Contracts exhibit promises about the expected runtime behavior of each component; they
can be used to establish new sessions (contract negotiation) and to enforce that components
abide to their promised behavior (honesty). The calculus for contracting processes is based
on PCL, a propositional contract logic with a contractual form of implication [4]; this enables
to express multiparty assume-guarantee specifications where services only engage in a com-
munication once there are enough guarantees that their requirements will be fulfilled. PCL
is used as the underlying constraint system for the contract language used in [4], a variant
of ccp with name-passing primitives. In [3], the expressive power of the contract calculus
is analyzed with respect to the synchronous π -calculus; name-invariance, compositionality,
and operational correspondence are established, as we do here. In [2] the authors introduce
CO2, a generic framework for contract-oriented computing. A characterization of contracts
as processes and as formulas in PCL has been developed.

More applications of the encoding herein presented can be found inCano’s PhD thesis [15].
They include an extension ofπ with session establishment,which is encoded into an extension
of lcc with private information, following [28]. Moreover, the thesis [15] also includes an
extended account of the work in [16], in which different variants of the session π-calculus
in [45] are encoded into the reactive language ReactiveML [32].

123

M. Cano et al.

7 Concluding remarks

We have presented an encoding of the session π -calculus π into lcc, a process language
based on the ccp model. Our encoding is insightful because lcc and π are very differ-
ent: lcc is declarative, whereas π is operational; communication in lcc is asynchronous,
based on a shared memory, whereas communication in π is point-to-point, based on message
passing. Our encoding reconciles these differences and explains precisely how to simulate
the operational behavior of π using declarative features in lcc. In a nutshell, our encod-
ing “decouples” point-to-point communication in π by exploiting synchronization on two
constraints. Remarkably, because lcc treats constraints as linear, consumable resources
we can correctly represent well-typed π processes that should feature linear behavior—
communication actions governed by session types must occur exactly once. Thus, linearity
sharply arises as the common trait in our expressiveness results.

The strong correctness properties that we establish for our encoding demonstrate that lcc
can provide a unified account of operational and declarative requirements inmessage-passing
programs.We have followed the encodability criteria byGorla [26], namely name invariance,
compositionality, operational correspondence, and success sensitiveness. In particular, our
encoding enjoys the exact same formulation of operational correspondence defined in [26].
These correctness properties guarantee that the behavior of source terms is preserved and
reflected appropriately by target terms.

The correctness properties of our encoding hold for π processes that are well-typed.
Types not only allow us to concentrate on a meaningful class of source processes; they
also allow us to address the differences between π and lcc, already mentioned. In fact,
well-typed π processes have a syntactic structure that can be precisely characterized and is
stable under reductions. Moreover, the compositional nature of our encoding ensures that this
structure is retained by translated lcc processes (target terms) and turns out to be essential in
analyzing their behavior. In this analysis, we reconstructed the behavior of source processes
via the constraints that their corresponding target terms consume or add to the store during
reductions. As such, this reconstruction is enabled by observables induced by the semantics
of lcc. By combining information about the syntactic structure and the observable behavior
of target terms, we were able to establish several invariant properties which are in turn central
to prove operational correspondence, in particular soundness.

Well-typed session π -calculi processes can contain rather liberal forms of non-determin-
istic behavior, which are enabled by the unrestricted types in π (cf. [45]). The soundness
property for our translation (Theorem 12) holds for a sub-class of the well-typed processes
in [45], namely those without output races. We identified this sub-class in a relatively simple
way, via a specialization of the predicates that govern typing in [45]. We conjecture that the
machinery we have developed for proving soundness can be extended to the whole class of
typable processes in [45], provided some additional mechanism that circumvents the value
ambiguities mentioned in Sect. 2.We leave this interesting open question for follow-up work.

As application of our results and approach, we have shown how to use our encoding
to represent relevant timed patterns in communication protocols, as identified by Neykova
et al. [36]. Such timed patterns are commonly found in practice (see, e.g., [19]). Hence,
they serve as a valuable validation for our approach. Indeed, thanks to the operational corre-
spondence and compositionality properties, translations of π processes can be used as “black
boxes” whose behavior correctlymimics the source terms. These boxes can be plugged inside
lcc contexts to obtain specifications that exhibit features not easily representable in π . This

123

Session-based concurrency, declaratively

way, we can analyze message-passing programs in the presence of partial and contextual
information.

Acknowledgements We are most grateful to the anonymous reviewers, whose precise, insightful remarks and
suggestions helped us to substantially improve the paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Additional examples

In this appendix we further develop the examples presented in the main text.

Example 7 (Observables in the translation (cf. Definition 22)) We recall the processes,
translations, and observables in Ex. 4:

P3 = (νxy)(x �buy. x〈5406〉. x(inv).0 | y�{buy :y(w).y〈invoice〉.0, quit :y(w′).0}) (11)

The translation of P3 is then given below:

�P3� = ∃x, y.
(! {x :y} ‖ sel(x, buy) ‖ ∀u1(bra(u1, buy)⊗ {x :u1} →

snd(x, 5406) ‖ ∀u2(rcv(u2, 5406)⊗ {x :u2} → �x(inv).0�)) ‖
∀l, w(sel(w, l)⊗ {w:y} → bra(y, l) ‖
∀ε(l = buy→ ∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖ �y〈invoice〉.0�)) ‖

∀ε(l = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ �y(w′).0�)))
)

with observables:

OD�
π (�P3�) = {(∃x, y.sel(x, buy)), (∃x, y.bra(y, buy)), (∃x, y.snd(x, 5406)),

(∃x, y.rcv(y, 5406)), (∃x, y.snd(y, invoice)), (∃x, y.rcv(x, invoice)), (∃x, y.tt)}
ODπ (�P3�) = {(∃x, y.sel(x, buy)), (∃x, y.snd(x, 5406)), (∃x, y.snd(y, invoice))}

Below, we analyze the single τ -transition for the translation of P3 (i.e., �P3� −→	 S1):

S1 = ∃x, y.
(! {x :y} ‖ bra(y, buy) ‖ ∀u1(bra(u1, buy)⊗ {x :u1} → snd(x, 5406) ‖
∀u2(rcv(u2, 5406)⊗ {x :u2} → �x(inv).0�)) ‖

∀ε(buy = buy→ ∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖ �y〈invoice〉.0�)) ‖
∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ �y(w′).0�))

)

Let us now consider the output observables of S1:

ODπ (S1) = {∃x, y.snd(x, 5406), ∃x, y.snd(y, invoice)}
For the sake of comparison, consider the reduction of P3, using Rule �Sel�, which discards
the second labeled branch:

P3 −→ (νxy)(x〈5406〉. x(inv).0 | y(w).y〈invoice〉.0) = P ′3

123

http://creativecommons.org/licenses/by/4.0/

M. Cano et al.

The translation of P ′3 is as follows (we also show its reduction):

�P ′3� = ∃x, y.
(! {x :y} ‖ snd(x, 5406) ‖ ∀u2(rcv(u2, 5406)⊗ {x :u2} → �x(inv).0�) ‖
∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖ �y〈invoice〉.0�))

−→	 ∃x, y.
(! {x :y} ‖ ∀u2(rcv(u2, 5406)⊗ {x :u2} → �x(inv).0�) ‖ rcv(y, 5406) ‖

�y〈invoice〉.0�) = S′

and it is easy to see that ODπ (S1) = ODπ (�P ′3�) = {∃x, y.snd(x, 5406), ∃x, y.snd(y,
invoice)}. We will now show that S1 −→2

	 S2 andODπ (S1) = ODπ (S2). This step illustrates
the fact that intermediate steps reduce to processes that are o-barbed congruent to their
respective translations:

S1 −→	 ∃x, y.
(! {x :y} ‖ snd(x, 5406) ‖ ∀u2(rcv(u2, 5406)⊗ {x :u2} → �x(inv).0�) ‖

∀ε(buy=buy→ ∀w1, w(snd(w1, w)⊗{w1:y} → rcv(y, w)‖�y〈invoice〉.0�))‖
∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ �y(w′).0�))

)

−→	 ∃x, y.
(! {x :y} ‖ snd(x, 5406) ‖ ∀u2(rcv(u2, 5406)⊗ {x :u2} → �x(inv).0�) ‖

∀w1, w(snd(w1, w)⊗ {w1:y} → rcv(y, w) ‖ �y〈invoice〉.0�) ‖
∀ε(buy=quit→ ∀w2, u(snd(w2, u)⊗{w2:y} → rcv(y, u) ‖ �y(w′).0�))

)= S2

whereODπ (S1) = ODπ (S2) = ODπ (�P ′3�) = {∃x, y.snd(x, 5406), ∃x, y.snd(y, invoice)}.
We now informally argue that S2 ∼=π

	 �P ′3�. First, we show that S2 ≈π
	 �P ′3� and then argue

that for every DπC-context C[−], C[S2] ≈π
	 C[�P ′3�]. To justify the former claim, consider

the relation R = {(S2, �P ′3�), (S3, S′), (S4, S′1), (S5, S′2), (S6, S′3)}, where:
S2 −→	 ∃x, y.

(! {x :y}‖∀u2(rcv(u2, 5406)⊗{x :u2} → �x(inv).0�)‖ rcv(y, 5406)
‖�y〈invoice〉.0�‖

∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u)�y(w′).0�))
) = S3

−→	 ∃x, y.
(! {x :y} ‖ �x(inv).0� ‖ �y〈invoice〉.0� ‖

∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ �y(w′).0�))
) = S4

−→	 S5

−→	 ∃x, y.
(! {x :y} ‖ tt ‖ tt ‖

∀ε(buy = quit→ ∀w2, u(snd(w2, u)⊗ {w2:y} → rcv(y, u) ‖ �y(w).0�))
) = S6

T ′ −→	 ∃x, y.
(! {x :y} ‖ �x(inv).0� ‖ �y〈invoice〉.0�) = S′1

−→	 S′2
−→	 ∃x, y.

(! {x :y} ‖ tt ‖ tt) = S′3
Notice that we have left out the expansion of the term �x(inv).0� ‖ �y〈invoice〉.0� in both
S′1 and S4. Indeed, for simplicity, we have omitted the shapes of S5 and S′2.

We can see that R is a weak o-barbed bisimulation. Now, to prove S ∼=π
	 �P ′3� we need

to show that for each DπC-context there exists a weak o-barbed bisimulation that makes
the processes equivalent. Definition 16 ensures that contexts can only be formed with DπC-
processes. Hence, we need to only check processes that add/consume constraints that may
in turn trigger new process reductions. To see this point, consider process S6: a context that
adds the (inconsistent) constraint l1 = l2 would wrongly trigger a behavior excluded by the

123

Session-based concurrency, declaratively

source reduction of Q into Q′. One key point in our formal development concerns excluding
this possibility (see Definition 22).

Example 8 (Labeled reductions for lcc (cf. Fig. 13)) This example further clarifies the rôle
of uniqueness of constraints in our translation. Consider the following target term:

S4 = Cx̃ ỹ[�x1〈v〉.P1� ‖ �∗ y1(z).P2�]
Process S4 allows us to discuss the labeled semantics introduced for our translation.We have:

S4 ≡ Cx̃ ỹ[�x1〈v〉.P1� ‖ �y1(z).P2� ‖ �∗ y1(z).P2�]
which means that there are two possible labeled transitions for S4:

S4
RP(x,y)−−−−−→	 Cx̃ ỹ[�x1〈v〉.P1 | ∗ y1(z).P2�1xy] = S′4

S4
IO(x,y)−−−−−→	 Cx̃ ỹ[�x1〈v〉.P1 | y1(z).P2�1xy ‖ �∗ y1(z).P2�] = S′′4

Then, it is possible to show that S′4 ≡ S′′4 and that each process can complete the syn-
chronization by taking either an IO1(x, y) label or an RP1(x, y) label, reaching the same
process:

S′4
IO1(x,y)−−−−−→	 Cx̃ ỹ[�P1� ‖ �P2�{v/z} ‖ �∗ y1(z).P2�]

S′4
RP1(x,y)−−−−−→	 Cx̃ ỹ[�P1� ‖ �P2�{v/z} ‖ �∗ y1(z).P2�]

S′′4
IO1(x,y)−−−−−→	 Cx̃ ỹ[�P1� ‖ �P2�{v/z} ‖ �∗ y1(z).P2�]

S′′4
RP1(x,y)−−−−−→	 Cx̃ ỹ[�P1� ‖ �P2�{v/z} ‖ �∗ y1(z).P2�]

Example 9 (Process decompositions) Let us consider the behavior of D(Ph), as given in
Fig. 17:

D(Ph) −→ (νc1d1)(νc2d2)(νc3d3)(νc4d4)(νc5d5)(νc6d6)(νc7d7)(νx1,1y1,1)(νx1,2y1,2)

(c2(ũx).x1,1〈REQ〉.d3〈x1,2〉.0
∣

∣ c3(x1,2).x1,2(z).d4〈z〉.0
∣

∣ c4(w).0
∣

∣

c5(ũ y).y1,1(z
′).d6〈z′y1,2〉.0

∣

∣ c6(z
′y1,2).y1,2〈ACK〉.d7〈z′〉.0

∣

∣ c7(w).0
∣

∣

d2〈ũx 〉.d5〈ũ y〉.0)
−→2 (νc1d1)(νc2d2)(νc3d3)(νc4d4)(νc5d5)(νc6d6)(νc7d7)(νx1,1y1,1)(νx1,2y1,2)

(x1,1〈REQ〉.d3〈x1,2〉.0
∣

∣ c3(x1,2).x1,2(z).d4〈z〉.0
∣

∣ c4(w).0
∣

∣

y1,1(z
′).d6〈z′y1,2〉.0

∣

∣ c6(z
′y1,2).y1,2〈ACK〉.d7〈z′〉.0

∣

∣ c7(w).0)

−→3 (νc1d1)(νc2d2)(νc3d3)(νc4d4)(νc5d5)(νc6d6)(νc7d7)(νx1,1y1,1)(νx1,2y1,2)

(x1,2(z).d4〈z〉.0
∣

∣ c4(w).0
∣

∣ y1,2〈ACK〉.d7〈z′〉.0
∣

∣ c7(w).0) −→3 0

Thus,D(Ph) preserves the causal order of the synchronizations in Ph .

B Appendix for Sect. 3.1

B.1 Additional definitions and examples

Definition 7 in the main text gives an inductive definition of duality, which suffices for our
purposes. For the sake of completeness, and following Bernardi et al. [6], here we give the
more general coinductive definition of duality:

123

M. Cano et al.

Definition 37 (Coinductive TypeDuality) Let T be the closed set of contractive session types.
We say that types T1 and T2 are dual if the pair (T1, T2) is in the largest fixed point of the
monotone function D : P(T × T)→ P(T × T) defined by:

D(R)
def= {(end,end)} ∪ {(!U1.T2, ?U

′
1.T

′
2) |U1 ∼ U ′1 ∧ (T2, T

′
2) ∈ R}

∪ {(?U1.T2, !U ′1.T ′2) |U1 ∼ U ′1 ∧ (T2, T
′
2) ∈ R}

∪ {(⊕{li : Ti }i∈I ,&{li : T ′i }i∈I) | ∀i ∈ I .(Ti , T
′
i) ∈ R}

∪ {(&{li : Ti }i∈I ,⊕{li : T ′i }i∈I) | ∀i ∈ I .(Ti , T
′
i) ∈ R}

∪ {(μa.T , T ′) | (T {μa.T/a}, T ′) ∈ R} ∪ {(T , μa.T ′) | (T , T ′{μa.T ′/a}) ∈ R}
where ∼ denotes equivalence up-to equality of trees (see [42,45]).

We illustrate the type system for π with one further example. For simplicity, we shall omit
the application of the rules for Boolean values and variables, focusing only on processes:

Example 10 (Typing delegation (cf. Fig. 3)) Consider process P4 below:

P4 = (νwz)(νxy)(x〈z〉.w(u′).0
∣

∣ ∗ y(u).u〈tt〉.0)
The typing derivation tree for P4 is given below:

(T:Res)×2
(T:Par)

D
(T:RIn)

(T:Out)

(T:Nil)
un�(y : ∗ ?(!bool), u : end)

y : ∗ ?(!bool), u : end � 0

y : ∗ ?(!bool), u :!bool � u〈tt〉.0
y : ∗ ?(!bool) � ∗ y(u).u〈tt〉.0

x :∗!(!bool), y:∗?(!bool), w:?bool, z:!bool� x〈z〉.w(u′).0
∣

∣ ∗y(u).u〈tt〉.0
� (νwz)(νxy)(x〈z〉.w(u′).0

∣

∣ ∗ y(u).u〈tt〉.0)
where the derivation sub-tree D corresponds to:

(T:Out)

(T:In)

(T:WkNil)

(T:Nil)
un�(y : ∗ ?(!bool), u′ : bool, w : end)

y : ∗ ?(!bool), u′ : bool, w : end � 0

x : ∗ !(!bool), y : ∗ ?(!bool), u′ : bool, w : end � 0

y : ∗ ?(!bool), w :?bool+ x : ∗ !(!bool) � w(u′).0
x : ∗ !(!bool), y : ∗ ?(!bool), w :?T , z :!bool � x〈z〉.w(u′).0

B.2 Proofs for the type system

Here, we introduce auxiliary lemmas to prove Theorem 1 (subject reduction). First, we show
some basic properties of the typing predicates. The most salient one is that un�(T) does
not necessarily imply un�(T). This occurs because although an input-like type can satisfy
un�(·), its dual necessarily satisfies out(·), and therefore, un�(T) does not hold. Below,
the requirement “T is defined” allows us to rule out unnecessary types such as bool or
μ.bool, whose duality is undefined. For this result, following [45], we shall introduce a
predicate lin(·), which is defined as:

– lin(T) if and only if true.

This predicatewill be useful to characterizewell-formed types and it will be useful to simplify
some of our proofs.

123

Session-based concurrency, declaratively

Lemma 16 (Basic Properties for Types) Let T be a type such that T is defined. Then, all of
the following holds:

(1) If un�(T), then one of the following holds:

(a) If T = end or T = a then ¬out(T) holds.
(b) If T = μa.T or T = qp then out(T) holds.

(2) If lin(T), then lin(T) holds.

Proof The proof of (2) proceeds by induction on the structure of T . All cases are immediate
by Definition 7.

We consider (1). By assumption, un�(T) and¬out(T) are true.We proceed by induction
on the structure of T . The base cases are T = end and T = a: they are immediate and fall
on Item (a) (i.e., ¬out(a) and ¬out(end) hold). For the inductive step, we consider two
cases: (1) whenever T = μa.T , and (2) whenever T = qp. Case (1) is immediate by applying
the IH. We detail Case (2): by the definition of un�(·) (cf. Definition 6), it must be the case
that ¬out(T) holds and q = un. This implies that T =?T1.T2 with ¬out(T2) holds or
T = &{li : Ti }i∈I with ¬out(Ti) true, for every i ∈ I . For each of these cases, we have that
out(T) is true by Definition 7. %&

We show some properties of typing contexts. Let dom(Γ) denote the set of variables x
such that x : T is in Γ . Let U(·) be a function defined over typing contexts, such that U(Γ)

returns a context Γ ′ that only contains the entries x : T ∈ Γ where un�(T) holds. Note that
Property (2) below takes into account the predicate defined in Definition 6.

Lemma 17 (Properties of Typing Contexts) Let Γ = Γ1 ◦Γ2. Then, all of the following hold:

(1) U(Γ) = U(Γ1) = U(Γ2).
(2) Suppose that x : qp ∈ Γ ∧ (q = lin ∨ (q = un ∧ out(p) = tt)). Then, either

x : qp ∈ Γ1 and x /∈ dom(Γ2) or x : qp ∈ Γ2 and x /∈ dom(Γ1).
(3) Γ = Γ2 ◦ Γ1.
(4) If Γ1 = Δ1 ◦Δ2, then Δ = Δ2 ◦ Γ2 and Γ = Δ1 ◦Δ.

Proof We prove each item by induction on the structure of Γ , using splitting and predicates
un�(·) and lin(·) appropriately:
(1) The base case is Γ = ∅. Then, Γ1 = ∅ and Γ2 = ∅. Moreover, U(Γ) = U(Γ1) =

U(Γ2) = ∅. For the inductive step, consider Γ = Γ ′, x : T . We distinguish two possi-
bilities. If lin(T) holds but un�(T) does not, then the thesis follows immediately since
x : T /∈ U(Γ). Otherwise, ifun�(T) holds, we have thatΓ ′, x : T = Γ1◦Γ2, and byDef-
inition 8, x : T ∈ Γ1 and x : T ∈ Γ2. By IH,Γ ′ = Γ ′1◦Γ ′2 andU(Γ ′) = U(Γ ′1) = U(Γ ′2).
Since un�(T), then x : T ∈ U(Γ ′, x : T), x : T ∈ U(Γ1), and x : T ∈ U(Γ2). Thus,
U(Γ) = U(Γ1) = U(Γ2).

(2) The base case is Γ = ∅, and is immediate as the empty context does not contain
any elements. For the inductive step, assume Γ = Γ , x : qp. There are two cases:
if q = lin, then the proof is immediate by Definition 8; if q = un then, by assumption,
out(p) = tt. This implies that un�(qp) = ff; therefore, since lin(qp) holds, we
can conclude the proof by Definition 8.

(3) Immediate by commutativity of the ‘,’ for contexts.
(4) Immediate by associativity of the ‘◦’ operation (cf. Definition 8).

%&

123

M. Cano et al.

Lemma 18 (Unrestricted Weakening) If Γ � P and un�(T), then Γ , x : T � P.

Proof By induction on the derivation Γ � P . There are ten cases. The base case is given
by Rule (T:Nil), which follows from inversion on the rule, the definition of un�(·) (cf.
Definition 6), and by applying Lemma 17(5). For the inductive step, it is first necessary to
prove a similar result for the two rules dealing with variables (Rules (T:Bool) and (T:Var)).
This follows by a simple case analysis and inversion on the corresponding rule (while applying
Lemma 17(5)). Using the result for variables, the inductive step for the statement above
follows by inversion, applying the IH to the hypotheses obtained, and by reapplying the
necessary rule. %&
Lemma 19 (Strengthening) Let Γ � P and x /∈ fvπ (P). Then, the following holds:

(1) If x : qp ∧ (q = lin ∨ (q = un ∧ out(p) = tt)) then x : qp /∈ Γ .
(2) If Γ = Γ ′, x : T and un�(T), then Γ ′ � P.

Proof Each item proceeds by induction on the typing derivation Γ � P and there are ten
cases. First, we must establish a similar result for values, which follows by a case analysis
on the applied rule. For Item 1 notice that the Rule (T:Nil) follows immediately, because
predicate un�(·) rules out the possibility of x : qp ∈ Γ ; the inductive cases proceed by
applying the IH. In Item 2, the base case proceeds by considering that x /∈ fvπ (0), and
un�(Γ ′) still holds. All the inductive cases proceed by applying the IH. %&

We now state the subject congruence property and the substitution lemma for our type
system.

Lemma 20 (Subject Congruence) If Γ � P and P ≡π Q, then Γ � Q.

Proof By a case analysis on the typing derivation for each member of each axiom for ≡π .
The most interesting ones are: (1) P

∣

∣ 0 ≡π P , and (2) (νxy)(P
∣

∣ Q) if x, y /∈ fvπ (Q).

Case P
∣

∣ 0 ≡π P:

⇒) (1) Γ � P
∣

∣ 0 (Assumption)
(2) Γ = Γ1 ◦ Γ2 (Inv. on Rule (T:Par), (1))
(3) Γ1 � P (Inv. on Rule (T:Par), (2))
(4) Γ2 � 0 (Inv. on Rule (T:Par), (2))
(5) un�(Γ2) (Inv. on Rule (T:Nil) to (4))
(6) Γ1 ◦ Γ2 � P (Lem. 18 to (3), (5))

⇐) (1) Γ � P (Assumption)
(2) ∅ � 0 (Rule (T:Nil) to ∅ - un�(∅) is true)
(3) Γ � P

∣

∣ 0 (Rule (T:Par) to (1), (2))

Case (νxy)P
∣

∣ Q ≡π (νxy)(P
∣

∣ Q) with x, y /∈ fvπ (Q):

⇒) (1) Γ � (νxy)P
∣

∣ Q (Assumption)
(2) x, y /∈ fvπ (Q) (Assumption)
(3) Γ = Γ1 ◦ Γ2 (Inv. on Rule (T:Par), (1))
(4) Γ1 � (νxy)P (Inv. on Rule (T:Par), (3))
(5) Γ2 � Q (Inv. on Rule (T:Par), (3))
(6) Γ1, x : T , y : T � P (Inv. on Rule (T:Res) on (4))
We now distinguish two cases. The first (and most interesting) one is when un�(T)

is true. The second one corresponds to when un�(T) is false (i.e., which groups the
remaining possibilities):

123

Session-based concurrency, declaratively

un�(T) is true: We distinguish two further sub-cases depending on whether un�(T)

holds or not:
un�(T) is true: We apply Lemma 18 twice in (6) to obtain (7) Γ2, x : T , y :

T � Q and conclude by applying (T:Par) and (T:Res) on
(5) and (7).

un�(T) is false: We only apply weakening once (cf. Lemma 18) in (6) to
obtain (7) Γ2, x : T � Q and conclude by applying (T:Par)
and (T:Res) to (5) and (7).

un�(T) is false: Then, lin(T) holds; by Lemma 16(2), lin(T) also holds. Thus, we
distinguish two cases, depending on whether un�(T) also holds or not.
Each case proceeds similarly as above.

⇐) (1) Γ � (νxy)(P
∣

∣ Q) (Assumption)
(2) x, y /∈ fvπ (Q) (Assumption)
(3) Γ , x : T , y : T � P

∣

∣ Q (Inv. on Rule (T:Res), (1))

We distinguish two further cases depending on whether un�(T) is true or false:

un�(T) is true: We distinguish two further sub-cases depending on whether the un�(T)

holds or not:
un�(T) is true: Then, by inversion on (T:Par) on (3), we have (4)Γ , x : T , y : T � P

and (5) Γ2, x : T , y : T � Q. Then, we apply Rule (T:Res) on (4) to
obtain (6) Γ1 � (νxy)P and we apply Lemma 19(2) to (5), obtaining
(7) Γ2 � Q. We conclude by applying Rule (T:Par) to (6) and (7).

un�(T) is false: Then, by inversion on (T:Par) on (3), we have (4)Γ , x : T , y : T � P
and (5) Γ2 � Q. Moreover, by Lemma 19(1) applied to (2) and (5), it
must be the case that y : T /∈ Γ2. Therefore, we apply Lemma 19(2)
once to remove x : T from Γ2. Then, we apply Rule (T:Res) in (4) to
obtain (6) Γ � (νxy)P and conclude by applying Rule (T:Par).

un�(T) is false: As previously described, from Lemma 16(2), we distinguish two cases
depending on un�(T). Each case proceeds similarly as above.

%&
Lemma 21 (Substitution) If Γ1 � v : T and Γ2, x : T � P then Γ � P{v/x}, with Γ =
Γ1 ◦ Γ2.

Proof By induction on the structure of P . There are nine cases: one base case and eight
inductive cases.

Base Case: P = 0. By inversion,un�(Γ2, x : T), which impliesun�(T). By inversion
on the rules for values, we also have that un�(Γ1). Thus, un�(Γ), with
Γ = Γ1 ◦ Γ2 holds. Since 0{v/x} = 0, the proof concludes by applying
Rule (T:Nil).

Inductive Step: The proofs for P = Q1
∣

∣ Q2, P = (νyz)Q, and P = u? Q1 : Q2 follow
by applying the IH. The other five cases proceed similarly. We only detail
the case for P = y〈u〉.Q.

P = y〈u〉.Q: We distinguish four sub-cases: (1) y = x and ¬un�(T), (2) y = x
and un�(T), (3) u = x and¬un�(T), (4) u = x and un�(T). We only
detail sub-cases (1), (2) and (4) since sub-case (3) proceeds similarly
to (1) and (4).

1. By assumption, P = x〈u〉.Q and ¬un�(T). Moreover, since judgment Γ2 � P
can only be obtained with Rule (T:Out), it must be the case that T = q!U .U ′.

123

M. Cano et al.

Thus, by inversion on Rule (T:Out), (1) Γ2 = Δ1 ◦ Δ2 ◦ Δ3, (2) Δ1 � x :
q!U .U ′, (3) Δ2 � u : U , and (4) Δ3 + x : U ′ � Q. We distinguish two
further cases depending on whether q = lin or q = un. We only show the
case q = un, as the other proceeds similarly. By (2), it must be the case that
x : T ∈ Δ1. Moreover, by inversion on (2) and (3), we have that un�(Δ′1)
holds with (5) Δ′1 = Δ1 \ x : T , and that (6) un�(Δ2) holds. By Lemma 19(1),
we also have that x : T /∈ Δ2 and x : T /∈ Δ3. Moreover, by Lemma 17(1),
Δ3 = Γ2, which implies that Δ3 + x : U ′ = Γ2, x : U ′. By applying the IH,
Γ1 ◦ (Γ2, v : U ′) � Q{v/x}. We then distinguish two further cases depending on
whether un�(U) or ¬un�(U). In both cases we proceed similarly: we add all
the missing hypothesis applying Lemma 18 and conclude by reapplying Rule
(T:Out).

2. This sub-case is not possible: by assumption, Γ , x : T � x〈u〉.P , which
means that the judgment proceeds with Rule (T:Out). Thus, by inversion
T = un!U .U ′. Now, by Definition 6, un�(T) cannot hold, which contradicts
the assumptions of this case (i.e., y = x and un�(T)).

4. By assumption, P = y〈x〉.Q and un�(T). Moreover, since judgment Γ2 � P
can only be obtained with Rule (T:Out), it must be the case that T = q!U .U ′.
We distinguish cases depending on whether un�(U) or¬un�(U) are true. Both
cases proceed similarly, so we only detail the latter. If un�(U) holds, we have
that (1) Γ2 = Δ1 ◦ Δ2 ◦ Δ3, (2) Δ1 � x : q!U .U ′, (3) Δ2 � x : U , and
(4) Δ3 + y : U ′ � P , and x : U ∈ Δ1, x : U ∈ Δ2, and x : U ∈ Δ3. Following
a similar line of reasoning as the one above, we conclude that Δ3 = Γ2 and that
Δ1 = Δ2. Moreover, by assumption Γ1 � v : U and by IH Γ1 ◦ (Γ2, v : U , y :
U ′) � P ′{v/x}. We then distinguish two further cases depending on whether
un�(U ′) or ¬un�(U ′). In both cases we conclude similarly as above. %&

Theorem 1 (Subject Reduction) If Γ � P and P −→ Q, then Γ � Q.

Proof By induction on the derivation of the reduction P −→ Q. The interesting cases are
when the derivation stops with Rules �Com� and �Rep�. The other cases proceed similarly;
the case of Rule �Str� follows by the IH and Lemma 20.

Case �Com�:
(1) P = (νxy)(x〈v〉.Q1

∣

∣ y(z).Q2
∣

∣ Q3) (Assumption)
(2) P −→ (νxy)(Q1

∣

∣ Q2{v/z}
∣

∣ Q3) (Assumption)
(3) Γ � P (Assumption)
(4) Γ , x : T , y : T � x〈v〉.Q1

∣

∣ y(z).Q2
∣

∣ Q3 (Inv. on Rule (T:Res), (1))
(5) Γ = Γ1 ◦ Γ2 ◦ Γ3 (Inv. on Rule (T:Par), (3))
(6) Γ1, x : T � x〈v〉.Q1 (Inv. on Rule (T:Par), (3))
(7) Γ2, y : T � y(z).Q2 (Inv. on Rule (T:Par), (3))
(8) Γ3 � Q3 (Inv. on Rule (T:Par), (3))
(9) Γ1 = Γ ′1 ◦ Γ ′′1 ◦ Γ ′′′1 (Inv. on Rule (T:Out), (6))
(10) Γ ′1, x : T � x : un!U .U ′ (Inv. on Rule (T:Out), (6))
(11) Γ ′′1 � v : U (Inv. on Rule (T:Out), (6))
(12) Γ ′′′1 + x : U ′ � Q1 (Inv. on Rule (T:Out), (6))
(13) un�(Γ ′1) ∧ un�(Γ ′′1) hold (Inv. on Rule Val. Rules, (10), (11))
(14) Γ ′′′1 = Γ1 (Lem. 17 to (13), (12))
(15) Γ1 + x : U ′ � Q1 ((14), (12))
(16) (Γ2, z : U ′)+ y : U ′ � Q2 (Derived similarly to (15))

123

Session-based concurrency, declaratively

By Lemma 16(2), lin(T) implies lin(T). Thus, it is enough to distinguish cases
depending on T and T . We consider these combinations:

Case ¬un�(T) ∧ ¬un�(T): We have that (a) Γ1, x : U ′ � Q1, by (15) and the
definition of +; (b) Γ2, z : U , y : U ′ � Q2, by (16) and the definition of +;
(c) Γ3 � Q3, by (8), and (d) Γ ′′1 � v : U , by (11). By Lemma 21 (substitution)
applied to (d) and (b), we have (e) Γ2, y : U ′ � Q2, and we can finish the proof by
applying rules (T:Par), (T:Par), (T:Res).
Case¬un�(T)∧un�(T):We have that (a)Γ1, x : U ′ � Q1, by (15) and the definition
of +; (Γ2, z : U ′) + y : U ′ � Q2 and y : un?U .U ′ ∈ Γ2, by (16) and Definition
of un�(·). Thus, U ′ = un?U .U ′ and thus, (b) Γ2, z : U ′, y : T � Q2. Similarly as
above, we also have (c) Γ3 � Q3, by (8); and (d) Γ ′′1 � v : U , by (11). By Lemma 18
on (a), we have (e) Γ1, x : U ′, y : T � Q1, and we can conclude by applying
Lemma 21 and rules (T:Par), (T:Par), (T:Res) as above.
Other Cases: Notice that cases (i) un�(T)∧un�(T) and (ii) un�(T)∧¬un�(T) are
not possible, because T = un!U .U ′. Therefore, out(T) = tt and the definition of
un�(T) (cf. Definition 6) would not hold.

Case �Rep�: Assuming P = (νxy)(x〈v〉.Q1
∣

∣ ∗ y(z).Q2
∣

∣ Q3), we proceed similarly as
above. By inversion on Rule (T:Res), Γ , x : T , y : T � x〈v〉.Q1

∣

∣ ∗ y(z).Q2
∣

∣ Q3, with
Γ = Γ1◦Γ2◦Γ3. Following a similar derivation as above, we conclude that T = q!U .U ′,
and T = q?U .U ′. Then, we deduce:

(a) Γ1 = Γ ′1 ◦ Γ ′′1 ◦ Γ ′′′1 ;
(b) Γ ′′′1 + x : U ′ � Q1, by inversion Rule (T:Out);
(c) Γ ′′1 , x : T � x : q!U .U ′, by inversion Rule (T:Out);
(d) un�(Γ ′′1), by inversion Rule (T:Var);
(e) Γ ′ � v : U , by inversion Rule (T:Out);
(f) un�(Γ ′1), by inversion Rule (T:Var) (or (T:Bool));
(g) (Γ2, y : T , z : U ′′)+ y : U ′ � Q2, by inversion Rule (T:Rin);
(h) un�(Γ2, y : T) ∧ (un�(U ′′) ∨U ′′ = lin p), by inversion Rule (T:Rin);
(i) Γ3 � Q3, by inversion Rule (T:Par).

By (h), we have two possible cases:

Case un�(Γ2, y : T) ∧ un�(U ′′): we have that un�(T) holds, which implies:
¬out(T) and T = U ′ and U ′′ = U ; hence T is a recursive type. Moreover,
by Lemma 16(1b), we have that un�(T) does not hold. Hence, we have that:
x : T /∈ Γ ′′′1 , x : T /∈ Γ ′1. Then, by Lemma 17(1) to (a), (d), and (f), we have
that Γ ′′′1 = Γ1. Then, by applying Lemma 21 and 18 to (e) and (c), we have
that Γ2, y : T ◦ Γ ′1 ◦ Γ ′′1 � Q2{v/z}. We then apply Lemma 18 to (i) to obtain
(Γ3, y : T) ◦ Γ ′1 ◦ Γ ′′1 � Q3. Notice that we also know, by Lemma 18, that
Γ ′1, Γ ′′1 ◦ (Γ2, y : T) � ∗ y(z).Q2. We then apply Rule (T:Par) (which is appli-
cable, since un�(T) holds) to the previous hypotheses to obtain:

Γ , x : T , y : T � Q1
∣

∣ Q2
∣

∣ ∗ y(z).Q2
∣

∣ Q3

We then conclude by applying Rule (T:Res).
Case un�(Γ2, y : T) ∧ U ′′ = lin p: This case proceeds as above. The only dif-
ference is that the assumption implies that v : lin p. This in turn means that

123

M. Cano et al.

v : lin p /∈ Γ ′′′1 and v : lin p /∈ Γ ′1, which allows us to conclude with the same
argument as above.

%&
Theorem 4 (Type Safety) If � P, then P is well-formed.

Proof For the sake of contradiction, assume that � P and P is not well-formed, i.e., it does
not satisfy any of the three items in Definition 10. If � P , then there exists a derivation

� (νx1 . . . xn y1 . . . yn)(Q1
∣

∣ Q2
∣

∣ R) (with n ≥ 1)

Therefore, by applying inversion n times, there exists a context x1 : Tn, . . . , xn : Tn, y1 :
T 1, . . . , yn : T n = Γ1 ◦ Γ2 ◦ Γ3 that types Q1

∣

∣ Q2
∣

∣ R. We now show that if Q1
∣

∣ Q2
∣

∣ R
does not satisfy any item in Definition 10, then we reach a contradiction:

1. If Q1 = v? Q1 : Q2 then v ∈ {tt,ff}: Assume that does not satisfy this condition.
Then, the derivation Γ1 ◦ Γ2 ◦ Γ3 � Q1

∣

∣ Q2
∣

∣ R is not possible as Rule (T:If) requires
v : bool.

2. There are not Q1 and Q2 such that they are both prefixed with the same variable:Assume
there exist Q1 and Q2 that are prefixed in the same variable. Then, there are two cases:
(i) if the prefixes are of different nature, then we reach a contradiction: it is not possible
for x : T and x : T ′ with T �= T ′ to appear in a typing derivation in the same context; (ii)
if the prefixes are of the same nature, we just need to notice that splitting does not allow
for session types that satisfy out(·) to be shared among contexts (cf. Definition 8). Thus,
only unrestricted input and branching types can be shared.

3. If Q1 is prefixed on x1 ∈ x̃ and Q2 is prefixed on y1 ∈ ỹ then Q1
∣

∣ Q2 is a redex:
Suppose that this does not hold (i.e., Q1

∣

∣ Q2 is not a redex). Then, the typing derivation
is not possible, since Rule (T:Res) requires the types of two covariables to be dual, thus
reaching a contradiction.

%&

C Appendix for Sect. 4

C.1 Junk processes

Lemma 2 Let J be junk. Then: (1) J
τ
� 	 (and) (2) there is no c ∈ C (cf. Definition 21) such

that J ‖ c τ−→	.

Proof We prove each item individually.

(1) By induction on the structure of J . We show two cases:

Case J = ∀ε((b = ¬b) → P): This case is immediate by inspecting the rules in
Fig. 6; in particular, since Rule (C:Sync) cannot be applied J

τ
� 	.

Case J = J1 ‖ J2: By IH, J1
τ
� 	 and J2

τ
� 	. We prove that a reduction J1 ‖

J2
τ−→	 J ′1 ‖ J ′2 cannot occur. By Definition 28, junk processes are either ask-

guarded processes or tt. To reduce, one of J1 and J2 must add a constraint to the
store; two parametric ask processes in parallel cannot reduce (cf. Fig. 6). Now, since
tt does not add any information to the store, we have that J1 ‖ J2

τ
� 	.

123

Session-based concurrency, declaratively

(2) By induction on the structure of J . We detail three cases:

Case J = tt: This case is immediate, as tt ‖ c τ
� 	, for any constraint c ∈ C.

Case J = ∀ε((b = ¬b) → P): Suppose, for the sake of contradiction, that there
is a c ∈ C (cf. Definition 21) such that J ‖ c

τ−→	 S, for some S. Then, by Defi-
nition 21, c must be composed of the predicates snd, rcv, sel, bra, {·:·} (cf. Fig. 7),
the multiplicative conjunction ⊗, replication, and the existential quantifier. We now
apply induction on the structure of c: there are five base cases (one for each predi-
cate) and three inductive cases (one for each logical connective). We show only two
representative cases:

Sub-case c = snd(x, v):This base case is immediate, as snd(x, v) �� (b = ¬b)
using the Rules in Fig. 5. Thus, Rule (C:Sync) is not applicable, therefore
contradicting our assumption.
Sub-case c = c1 ⊗ c2: By IH, ci �� (b = ¬b). Then, by the rules in Fig. 5,
c1 ⊗ c2 �� (b = ¬b), leading to a contradiction as in the previous sub-case.

Case J = J1 ‖ J2: Then, J ‖ c τ
� 	 follows immediately from the IH (which ensures

J1 ‖ c τ
� 	 and J2 ‖ c τ

�) and Item (1).

%&
Lemma 3 (Junk Observables) For every junk process J and every DπC-context C[−], we
have that: (1) ODπ (J) = ∅ (and) (2) ODπ (C[J]) = ODπ (C[tt]).
Proof We prove each item separately:

1. By induction on the structure of J . We show the most representative 3 cases:

Case J = ∀ε((b = ¬b) → P): By Lemma 2(1), J
τ
� 	. Therefore, by Definition 15

ODπ (J) = ∅.
Case J = tt: By Lemma 2(1), J

τ
� 	. Moreover, since tt /∈ Dπ , by Definition 15,

ODπ (J) = ∅.
Case J = J1 ‖ J2: By IH, ODπ (Ji) = ∅, i ∈ {1, 2}. By Lemma 2(1), J

τ
� 	 and

therefore, ODπ (J) = ODπ (J1) ∪ODπ (J2) = ∅.
2. The proof is by induction on the structure of J , followed in each case by a case analysis on

C[−] (cf.Definition 16).All cases follow from the definitions;we detail two representative
cases:

Case J = ∀ε((b = ¬b) → P1): We apply a case analysis on context C[−]. We will
show only two sub-cases, as the third one is symmetrical:

Sub-case C[−] = ∃x̃ .−: This case follows immediately from Lemma 2(1,2).
Sub-case C[−] = − ‖ P2: Then C[J] = ∀ε((b = ¬b) → P1) ‖ P2. By
Lemma 2(1,2), ∀ε((b = ¬b)→ P1)

τ
� 	 and there is no c ∈ C (cf. Definition 21)

such that J ‖ c
τ−→	. As such, a reduction C[J] τ�⇒ C ′[J ′] is not possible

(i.e., J cannot reduce in the context). Therefore, by Definition 15 and Item (1),
ODπ (C[J]) = ODπ (J) ∪ ODπ (P2) = ODπ (P2). Following a similar analysis,
and using Lemma 2(1,2), Item(1) andDefinition 15,we have thatODπ (C[tt]) =
ODπ (tt) ∪ODπ (P2) = ODπ (P2). We conclude ODπ (C[tt]) = ODπ (C[J]),
as wanted.

Case J = J1 ‖ J2: We apply a case analysis on context C[−]. We will show only two
sub-cases, as the third one is symmetrical:

Sub-case C[−] = ∃x̃ .(−)

: This case follows immediately from Lemma 2(1,2).

123

M. Cano et al.

Sub-case C[−] = − ‖ P2: By IH, we have ODπ (C[J1]) = ODπ (C[tt])
and ODπ (C[J2]) = ODπ (C[tt]). Also, by Lemma 2(1), J1 ‖ J2

τ
� 	 and by

Lemma 2(2), there is no c ∈ C (cf. Definition 21) such that J ‖ c
τ−→	. Hence,

by Definition 15 and Item (1), ODπ (C[J1 ‖ J2]) = ODπ (tt), as wanted.

%&
Lemma 4 (Junk Behavior) For every junk J , everyDπC-context C[−], and every process P,
we have C[P ‖ J] ≈π

	 C[P].
Proof By coinduction, i.e., by exhibiting a weak o-barbed bisimulation containing the pair
(C[P ‖ J],C[P]). To build the needed bisimulation, we recall Definition 17. That is, we
must define a symmetric relation R such that (R, Q) ∈ R implies:

1. ODπ (R) = ODπ (Q) (and),
2. whenever R

τ−→	 R′ there exists Q′ such that Q
τ�⇒ Q′ and R′RQ′.

Then, let us consider:

R = {(R, Q) |C[P ‖ J] τ−→n
	 R ∧ C[P] τ−→n

	 Q, n ≥ 0} (1)

∪ {(Q, R) |C[P ‖ J] τ−→n
	 R ∧ C[P] τ−→n

	 Q, n ≥ 0}
Observe thatR is symmetric by definition. Moreover, it immediately satisfies Item (1) thanks
to Lemma 3(2).

As for Item (2), first notice that (R, Q) ∈ R: we have R = C[P ‖ J] and Q = C[P]
(with n = 0). Now suppose that R

τ−→	 R′; we show a matching transition Q
τ�⇒ Q′ such

that R′RQ′. To this end, we use a case analysis on the reduction(s) possible from C[P ‖ J].
There are six possibilities:

(a) C[P ‖ J] τ−→	 C[P ‖ J ′] (i.e., an autonomous reduction from J);
(b) C[P ‖ J] τ−→	 C ′[P ‖ J ′] (i.e., a reduction from the interplay of C and J);
(c) C[P ‖ J] τ−→	 C[P ′ ‖ J ′] (i.e., a reduction from the interplay of P and J);
(d) C[P ‖ J] τ−→	 C ′[P ‖ J] (i.e., an autonomous reduction from C);
(e) C[P ‖ J] τ−→	 C ′[P ′ ‖ J] (i.e., an interaction between C and P);
(f) C[P ‖ J] τ−→	 C[P ′ ‖ J] (i.e., an autonomous reduction from P).

Notice that Lemma 2(1,2) and Lemma 3(1,2) exclude cases (a)–(c). Thus, reductions for
C[J] will only be of the form (d)–(f). Clearly, this transition from R can be matched by Q
as follows:

– Q = C[P] τ−→	 C ′[P] = Q′, with (C ′[P ‖ J],C ′[P]) ∈ R (or)
– Q = C[P] τ−→	 C ′[P ′] = Q′, with (C ′[P ′ ‖ J],C ′[P ′]) ∈ R (or)
– Q = C[P] τ−→	 C[P ′] = Q′, with (C[P ′ ‖ J],C[P ′]) ∈ R.

With these reductions, we conclude the proof for this case. The case when Q
τ−→	 Q′ is

similar. %&
Lemma 5 (Occurrences of Junk) Let R be a redex (Definition 9).

1. If R = x � l j .P | y � {li : Qi }i∈I , with j ∈ I then:
�(νxy)R�

τ−→3
	 ∃x, y.

(! {x :y} ‖ �P� ‖ �Q j � ‖ J
)

, where
J = ∏

i∈I ′
∀ε(l j = li → �Qi �), with I ′ = I \ { j}, and

∃x, y.(! {x :y} ‖ �P� ‖ �Q j � ‖ J
) ∼=π

	 ∃x, y.
(! {x :y} ‖ �P� ‖ �Q j �

)

.

123

Session-based concurrency, declaratively

2. If R = b? P1 : P2, b ∈ {tt,ff}, then:
�R�

τ−→	 �Pi � ‖ J , i ∈ {1, 2} with J = ∀ε(b = ¬b→ �Pj �), j �= i , and
�Pi � ‖ J ∼=π

	 �Pi �.
3. If R = x〈v〉.P | y(z).Q, then

�(νxy)R�
τ−→2

	
∼=π

	 ∃x, y.
(

�P� ‖ �Q{v/z}� ‖ J
)

with J = tt.
4. If R = x〈v〉.P | ∗ y(z).Q then:

�(νxy)R�
τ−→2

	
∼=π

	 ∃x, y.
(

�P� ‖ �Q{v/z}� ‖ �∗ y(z).P� ‖ tt)

Proof Each item follows from the definition of �·� (cf. Definition 25 and Fig. 8). Items (1)
and (2) refer to reductions that induce junk (no junk is generated in Items (3) and (4)); those
cases rely on the definition of weak o-barbed congruence (cf. Definition 23) and Corollary 2.

1. Given R = x � l j .P | y � {li : Qi }i∈I (with j ∈ I), by Definition 25, Fig. 8, and the
operational semantics of lcc in Definition 6:

�(νxy)R� = ∃x, y.(!{x :y} ‖ sel(x, l j) ‖ ∀z
(

bra(z, l j)⊗ {x :z} → �P�
)

∀l, w(

sel(w, l)⊗ {w:x} → bra(x, l) ‖
∏

i∈I
∀ε(l = li → �Qi �)

))

τ−→	 ∃x, y.
(!{x :y} ‖ ∀z(bra(z, l j)⊗ {x :z} → �P�

)

bra(x, l j) ‖
∏

i∈I
∀ε(l j = li → �Qi �)

)

τ−→	 ∃x, y.
(!{x :y} ‖ �P� ‖

∏

i∈I
∀ε(l j = li → �Qi �)

)

τ−→	 ∃x, y.
(!{x :y} ‖ �P� ‖ �Pj � ‖

∏

i∈I\{ j}
∀ε(l j = li → �Qi �)

︸ ︷︷ ︸

J

)

∼=π
	 ∃x, y.

(!{x :y} ‖ �P� ‖ �Pj �
)

where the last step is justified by Corollary 2.
2. Given that R = b? P1 : P2, we distinguish two cases: b = tt and b = ff. We only detail

the analysis when R = tt? P1 : P2, as the other case is analogous. By the translation
definition (cf. Definition 25 and Fig. 8), �R� = ∀ε(tt = tt→ �P1�) ‖ ∀ε(tt = ff→
�P2�). Then, by the rules in Fig. 6, �R�

τ−→	 �P1� ‖ J , with J = ∀ε(tt = ff→ �P2�).
By Corollary 2, we may conclude as follows:

�R�
τ−→	 �P� ‖ ∀ε(tt = ff→�Q�) ∼=π

	 �P�

3. Given R = x〈v〉.P | y(z).Q, by the translation definition (cf. Fig. 8), and the semantics
in Fig. 6:

�(νxy)R� ≡ ∃x, y.(!{x :y} ⊗ snd(x, v) ‖ ∀z(rcv(z, v)⊗ {x :z} → �P�) ‖
∀z, w(snd(w, z)⊗ {w:y} → rcv(y, z) ‖ �Q�)

)

τ−→	 ∃x, y.
(!{x :y} ‖ ∀z(rcv(z, v)⊗ {x :z} → �P�) ‖ rcv(y, v) ‖ �Q{v, x/z, w}�)

≡ ∃x, y.(!{x :y} ⊗ rcv(y, v) ‖ ∀z(rcv(z, v)⊗ {x :z} → �P�) ‖ �Q{v, x/z, w}�)
τ−→	 ∃x, y.

(!{x :y} ‖ �P{y/z}� ‖ �Q{v, x/z, w}�)
∼=π

	 ∃x, y.
(!{x :y} ‖ �P{y/z}� ‖ �Q{v, x/z, w}� ‖ tt)

123

M. Cano et al.

Let J = tt. Finally, we conclude by Corollary 2.

4. When R = x〈v〉.Q | ∗ y(z).P , the proof follows the same reasoning as above.

%&

C.2 Operational completeness

Theorem 11 (Completeness for �·�) Let �·� be the translation in Definition 25. Also, let P be
a well-typed π program. Then, if P −→∗ Q, then �P�

τ�⇒∼=π
	 �Q�.

Proof By induction on the length of the reduction −→∗, with a case analysis on the last
applied rule. The base case is when P −→0 P: it is trivially true since �P�

τ�⇒ �P�. For the
inductive step, assume by IH that P −→∗ P0 −→ Q and �P�

τ�⇒∼=π
	 �P0�. We then have

to prove that �P0�
τ�⇒∼=π

	 �Q�. There are nine cases, since cases for Rules (Res), (Par) and
(Str) are immediate by IH.

Rule �IfT�:
(i) P0 = tt? P ′ : P ′′.
(ii) By (i), P0 −→ P ′ = Q.
(iii) By Definition 25, �P0� = ∀ε(tt = tt→ �P ′�) ‖ ∀ε(tt = ff→ �P ′′�).
(iv) By Rule (C:Sync) (cf. Fig. 6), with c = ttwe have the following (note that� tt =

tt):
�P0�

τ−→	 �P ′� ‖ ∀ε(tt = ff→ �P ′′�) = R

(v) By (iv) note that the process ∀ε(tt = ff→ �P ′′�) is junk (cf. Definition 28). Then,
by Corollary 2 R ∼=π

	 �Q�, which is what we wanted to prove.

Rule �IfF�: Analogous to the previous case.
Rule �Com�:
(i) P0 = (νxy)(x〈v〉.P ′ | y(z).P ′′ | T), with T corresponding to a parallel composition

of processes thatmay contain y. Notice that by typing, T can only contain (replicated)
input processes on y and not any processes containing x .

(ii) By (i) P0 −→ (νxy)(P ′ | P ′′{v/z} | T) = Q .
(iii) By Fig. 8:

�P0� = ∃x, y.
(!{x :y} ‖ (snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x :z1})→ �P ′�) ‖
∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ �P ′′�) ‖ �T �

)

(iv) By Fig. 6, Definition 13:

�P0� ≡ ∃x, y. ((!{x :y} ⊗ snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x :z1})→ �P ′�) ‖
∀z2, w(snd(w, z2)⊗ {w:y}) → (rcv(y, z2) ‖ �P ′′�) ‖ �T �)

−→	 ∃x, y. ((!{x :y} ‖ ∀z1((rcv(z1, v)⊗ {x :z1})→ �P ′�) ‖ rcv(y, v) ‖
�P ′′{v, x/z2, w}� ‖ �T �)

≡ ∃x, y.(!{x :y} ⊗ rcv(y, v) ‖ ∀z1((rcv(z1, v)⊗ {x :z1} → �P ′�) ‖
�P ′′{v, x/z2, w}� ‖ �T �

)

−→	 ∃x, y.
(!{x :y} ‖ �P ′{y/z1}� ‖ �P ′′{v, x/z2, w}� ‖ �T �

)

123

Session-based concurrency, declaratively

(v) By Fig. 8 we have that w /∈ fvπ (P ′′) and z1 /∈ fvπ (P ′). Therefore:

∃x, y.(!{x :y} ‖ �P ′{y/z}�‖�P ′′{v, x/z, w}�‖�T �
)

= ∃x, y.(!{x :y}‖�P ′�‖�P ′′{v/z}�‖�T �
) = �Q�

(vi) Finally, by reflexivity of ∼=π
	 (Definition 23), �Q� ∼=π

	 �Q�.

Rule �Repl�:
(i) Assume P0 = (νxy)(x〈v〉.P ′ | ∗ y(z).P ′′ | T), with T collecting all the processes

that may contain x and y. Notice that by typing, T can only contain (replicated) input
processes on y.

(ii) By (i) P0 −→ (νxy)(P ′ | P ′′{v/z} | ∗ y(z).P ′′ | T) = Q using Rule �Rep�.
(iii) By definition of �·�:

�P0� = ∃x, y.
(!{x :y} ‖ (snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x :z1}) → �P ′�) ‖
!∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ �P ′′�) ‖ �T �

)

≡ ∃x, y.(!{x :y} ‖ (snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x :z1}) → �P ′�) ‖
∀z2, w(snd(w, z2)⊗ {w:y}) → (rcv(y, z2) ‖ �P ′′�)) ‖
!∀z2, w(snd(w, z2)⊗ {w:y})→ (rcv(y, z2) ‖ �P ′′�) ‖ �T �

)

(iv) Let R = !∀z2, w(snd(w, z2)⊗{w:y})→ (rcv(y, z2) ‖ �P ′′�)). By using the rules of
structural congruence and reduction of lcc, the following transitions can be shown:

�P0� ≡ ∃x, y.
(!{x :y} ⊗ snd(x, v) ‖ ∀z1((rcv(z1, v)⊗ {x :z1})→ �P ′�) ‖
∀z2, w(snd(w, z2)⊗ {w:y}) → (rcv(y, z2) ‖ �P ′′�)) ‖ R ‖ �T �

)

τ−→	 ∃x, y.
(!{x :y} ‖ ∀z1((rcv(z1, v)⊗ {x :z1}) → �P ′�) ‖ rcv(y, v) ‖
�P ′′{v, x/z2, w}�) ‖ R ‖ �T �

)

≡ ∃x, y.(!{x :y} ⊗ rcv(y, v) ‖ ∀z1((rcv(z1, v)⊗ {x :z1}) → �P ′�) ‖
�P ′′{v, x/z2, w}� ‖ R ‖ �T �

)

τ−→	 ∃x, y.
(!{x :y} ‖ �P ′{y/z1}� ‖ �P ′′{v, x/z2, w}� ‖ R ‖ �T �

)

(v) As in Case �Com�, we have that
∃x, y.(!{x :y} ‖ �P ′{y/z1}� ‖ �P ′′{v, x/z2, w}� ‖ R ‖ �T �

)

= ∃x, y.(!{x :y} ‖ �P ′� ‖ �P ′′{v/z2}� ‖ R ‖ �T �
)

since w /∈ fvπ (P ′′) and z1 /∈ fvπ (P ′′), by Fig. 8.
(vi) Finally, observe that:

�Q� = �(νxy)(P ′ | P ′′{v/z} | ∗y(z).P ′′ | T)�

= ∃x, y.((!{x :y}‖�P ′�‖�P ′′{v/z2}�‖ R ‖ �T �)
)

Rule �Sel�:
(i) Assume P0 = (νxy)(x � l j .P ′ | y � {li : Pi }i∈I | T). Notice that since P0 is a well-

formed program, typing implies that process T ≡ 0, since x , y cannot be shared.
Thus, we do not consider T below.

(ii) By (i) P0 −→ (νxy)(P ′ | Pj) = Q using Rule �Sel�.

123

M. Cano et al.

(iii) By definition of �·� (cf. Fig. 8):
�P0� = ∃x, y.

(!{x :y} ‖ sel(x, l j) ‖ ∀z
(

bra(z, l j)⊗ {x :z} → �P ′�
)

∀l, w(

sel(w, l)⊗ {w:x} → bra(x, l) ‖
∏

i∈I
∀ε(l = li → �Pi �)

))

(iv) By using the semantics of lcc (cf. Definition 6) and Corollary 2, we obtain the
following derivation

�P0�
τ−→	 ∃x, y.

(!{x :y} ‖ ∀z(bra(z, l j)⊗ {x :z} → �P ′�
)

bra(x, l j) ‖
∏

i∈I
∀ε(l j = li → �Pi �)

)

τ−→	 ∃x, y.
(!{x :y} ‖ �P ′� ‖

∏

i∈I
∀ε(l j = li → �Pi �)

)

τ−→	 ∃x, y.
(!{x :y} ‖ �P ′� ‖ �Pj � ‖

∏

i∈I\{ j}
∀ε(l j = li → �Pi �)

︸ ︷︷ ︸

J

)

∼=π
	 ∃x, y.

(!{x :y} ‖ �P ′� ‖ �Pj �
)

(v) By definition of �·� (cf. Fig. 8), �Q� = �(νxy)(P ′ | Pj)� = ∃x, y.
(!{x :y} ‖ �P ′� ‖

�Pj �
)

.
(vi) By (iv) and (v) we conclude the proof.

%&

C.3 Invariants for pre-redexes and redexes

Lemma 6 (Invariants of �·� for Pre-Redexes and the Inaction) Let P be a pre-redex or the
inactive process in π . Then, the following properties hold:

1. If ID⊥≈ (�P�) = {snd(x, v)}, then P = x〈v〉.P1, for some P1.

2. If ID⊥≈ (�P�) = {sel(x, l)}, then P = x � l.P1, for some P1.

3. If ID⊥≈ (�P�) = {tt}, then P = 0.
4. If ID⊥≈ (�P�) = ∅, then P = � y(z).P1 (cf. Notation 2) or P = x � {l1 : Pi }i∈I , for some

Pi . Moreover, �P�
τ
� 	.

Proof By assumption P = 0 or P is a pre-redex (Definition 9): P = x〈v〉.P1, P = x � l.P1,
P = y(z).P1, P = ∗y(z).P1 or P = x � {l1 : Pi }i∈I . Given these six possible forms for P ,
we then check the immediate observables (cf. Definition 29) of their lcc translations (cf.
Fig. 8):

ID⊥≈ (�x〈v〉.P1�) = {snd(x, v)} ID⊥≈ (�x(y).P1�) = ∅
ID⊥≈ (�x � l.P1�) = {sel(x, l)} ID⊥≈ (�∗ x(y).P1�) = ∅

ID⊥≈ (�0�) = {tt} ID⊥≈ (�x � {l1 : Pi }i∈I �) = ∅
This way, the thesis holds. %&
Lemma 7 (Invariants of �·� for Input-Like Pre-Redexes) Let P be a pre-redex such that
ID�

π (�P�) = ∅. Then, one of the following holds:

123

Session-based concurrency, declaratively

1. If �P� ‖ sel(x, l j)⊗ {y:x} τ−→	 S, then
bra(y, l j) ∈ ID�

π (S) and P = y � {li : Pi }i∈I , with j ∈ I .
2. If �P� ‖ snd(x, v)⊗ {y:x} τ−→	 S, then rcv(y, v) ∈ ID�

π (S) and P = � y(z).P1.

Proof By assumption, P is a pre-redex and ID⊥≈ (P) = ∅. By Lemma 6(4), we have that
�P�

τ
� 	 and that P = y(z).P1, P = ∗ y(z).P1 or P = y � {l1 : Pi }i∈I . We now apply a case

analysis on each numeral in the statement:

Case �P� ‖ sel(w, l)⊗ {y:x} τ−→	 S: We observe the behavior of each possibilities for
P in the presence of constraint sel(w, l j)⊗{y:x} for some l j , following Fig. 8. First, we
observe:

�y(z).P1� ‖ sel(w, l)⊗ {y:x} =∀z, w(

snd(w, z)⊗ {w:y}→ rcv(y, z) ‖ �P1�
) ‖

sel(x, l j)⊗ {y:x} τ
� 	

�∗ y(z).P1� ‖ sel(w, l)⊗ {y:x} =!(∀z, w(

snd(w, z)⊗ {w:y}→ rcv(y, z) ‖ �P1�
)

) ‖
sel(x, l j)⊗ {y:x} τ

� 	

In contrast, process �y � {l1 : Pi }i∈I � ‖ sel(w, l)⊗ {y:x} can reduce: from the semantics
of lcc (cf. Fig. 6) and under the assumption that j ∈ I for l j , we have:

∀l, w(

sel(w, l)⊗ {w:y} → bra(y, l) ‖
∏

1≤i≤n
∀ε(l = li → �Pi �)

) ‖ sel(x, l j)⊗ {y:x}
τ−→	 bra(y, l j) ‖

∏

1≤i≤n
∀ε(l = li → �Pi �) = S

Finally, by Definition 29: ID⊥≈ (S) = {bra(y, l j)} ∪ ID⊥≈ (
∏

1≤i≤n
∀ε(l j = li → �Pi �)),

thus concluding the proof.
Case �P� ‖ snd(x, v)⊗ {y:x} τ−→	 S: This case proceeds as above by noticing that a
reduction into S is enabled only when P = y(z).P1 or P = ∗ y(z).P1.

%&
Lemma 8 (Invariants for Redexes and Intermediate Redexes) Let R be a redex enabled by
x̃, ỹ, such that (ν x̃ ỹ)R −→ (ν x̃ ỹ)R′. Then, one of the following holds:

1. If R ≡π v? P1 : P2 and v ∈ {tt,ff}, then
�(ν x̃ ỹ)R�

τ−→	
∼=π

	 (ν x̃ ỹ)�Pi �, with i ∈ {1, 2}.
2. If R ≡π x〈v〉.P | � y(w).Q, then �(ν x̃ ỹ)R� −→	≡ Cx̃ ỹ[�R�1x̃ ỹ] −→	

∼=π
	 �(ν x̃ ỹ)R′�.

3. If R ≡π x � l j .P | y � {li : Qi }i∈I , with j ∈ I , then we have the reductions in Fig. 12.

Proof This proof proceeds by using the translation (cf. Fig. 8) the lcc semantics (cf. Fig. 6).
All items are shown in the same way; we detail only Item (3), which is arguably the most
interesting case:

3 By assumption, R ≡π x � l j .P | y � {li : Qi }i∈I , with j ∈ I and (ν x̃ ỹ)R −→ (ν x̃ ỹ)R′.
By Fig. 1, (νxy)(x � l j .P | y � {li :Qi }i∈I)−→ (νxy)(P | Q j), with j ∈ I . Finally, by
Fig. 8, Fig. 6 and expanding Notation 13:

�(ν x̃ ỹ)R� = ∃x̃, ỹ.(!
⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ sel(x, l j) ‖ ∀z
(

bra(z, l j)⊗ {x :z} → �P�
) ‖

123

M. Cano et al.

∀l, w(

sel(w, l)⊗ {w:y} → bra(y, l) ‖
∏

1≤i≤n
∀ε(l = li → �Pi �)

))

τ−→	 ∃x̃, ỹ.
(!

⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ ∀z
(

bra(z, l j)⊗ {x :z} → �P�
)

‖ bra(y, l j) ‖
∏

1≤i≤n
∀ε(l j = li → �Pi �)

)

≡ ∃x̃, ỹ.(!
⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ ∀z
(

bra(z, l j)⊗ {x :z} → �P�
) ‖

bra(y, l j) ‖ ∀ε(l j = l j → �Pj �) ‖
∏

i∈I\{ j}
∀ε(l j = li → �Pi �)

)

≡ ∃x̃, ỹ.(!
⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ �x � l j .P | y � {li :Qi }i∈I �1x̃ ỹ
) = T

Up to this point, we have shown that �(ν x̃ ỹ)R�
τ−→	≡ ∃x̃, ỹ.

(! ⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ �R�1x̃ ỹ
)

. We

now distinguish cases for the next reduction, as there are two possibilities:

(a) From Fig. 6 and Corollary 2:

T
τ−→	 ∃x̃, ỹ.

(!
⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ �P�‖ ∀ε(l j = l j → �Pj �) ‖
∏

i∈I\{ j}
∀ε(l j = li → �Pi �)

)

≡ ∃x̃, ỹ.(!
⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ �x � l j .P | y � {li :Qi }i∈I �2x̃ ỹ
)

τ−→	
∼=π

	 ∃x̃, ỹ.
(!

⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ �P� ‖ �Pj �
)

(b) From Fig. 6 and Corollary 2:

T
τ−→	 ∃x̃, ỹ.

(!
⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ ∀z
(

bra(z, l j)⊗ {x :z} → �P�
) ‖ bra(y, l j) ‖ �Pj � ‖

∏

i∈I\{ j}
∀ε(l j = li → �Pi �)

)

≡ ∃x̃, ỹ.(!
⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ �x � l j .P | y � {li :Qi }i∈I �3x̃ ỹ
)

τ−→	
∼=π

	 ∃x̃, ỹ.
(!

⊗

xi∈x̃,
yi∈ỹ

{xi :yi } ‖ �P� ‖ �Pj �
)

%&

123

Session-based concurrency, declaratively

C.4 Invariants for well-typed translated programs

Lemma 9 Let P be a well-typed program. If �P�
τ�⇒ S then

S = Cx̃ ỹ[U1 ‖ · · · ‖ Un ‖ J]
where n ≥ 1, J is some junk, and for all i ∈ {1, . . . , n} we have Ui = tt or one of the
following:

1. Ui = �Rk�, where Rk is a conditional redex (cf. Definition 9) reachable from P;
2. Ui = �Rk�, where Rk is a pre-redex reachable from P;
3. Ui ∈ {[Rk | R j]} (cf. Definition 30), where redex Rk | R j is reachable from P.

Proof By induction on the length k of the reduction
τ�⇒. The base case (k = 0) is immediate:

since �P�
τ�⇒ �P�, by Lemma 1 we have S = �P� = Cx̃ ỹ[�R1� ‖ · · · ‖ �Rn�], and the

property holds because every �Ri � is captured by Cases (1) and (2).
The inductive step (k > 0) proceeds by a case analysis of the transition S0

τ−→	 S. We
state the IH:

IH1: If �P�
τ�⇒ S0

τ−→	 S, then S0 = Cx̃ ỹ[W1 ‖ · · · ‖ Wm ‖ J0] where m ≥ 1, for some
junk J0, and every Wi is either tt or satisfies one of the three cases.

The transition S0
τ−→	 S can only originate in some Wi �= tt. There are then three cases to

consider: Wi is a conditional redex, a pre-redex, or an intermediate process. We have:

Case Wi = �b? P1 : P2� with b ∈ {tt,ff}: There are two sub-cases, depending on
whether b = tt or b = ff. We only detail the case b = tt, as the case b = ff
proceeds similarly. We have:

(1) Wi = ∀ε(tt = tt→ �P1�) ‖ ∀ε(tt = ff→ �P2�) (Fig. 8).
(2) ∃P ′.(P −→∗ P ′ = (ν x̃ ỹ)(tt? P1 : P2 | Q)) (IH1).
(3) P ′ −→ P ′′ = (ν x̃ ỹ)(P1 | Q) (Fig. 1, (2)).
(4) S0

τ−→	 S = Cx̃ ỹ[W1 ‖ · · · ‖ �P1� · · · ‖ Wm ‖ J], with J = ∀ε(tt = ff →
�P2�) ‖ J0 (Fig. 6, (1)).
To conclude this case, we proceed by induction on the structure of P1:

Case P1 = 0: By (4) and Fig. 8, S = Cx̃ ỹ[W1 ‖ · · · ‖ tt ‖ · · · ‖ Wm ‖ J], and
so the thesis follows.
Case P1 = b? Q1 : Q2: By (4) and Fig. 8, S = Cx̃ ỹ[W1 ‖ · · · ‖ �P1� ‖ · · · ‖
Wm ‖ J]. Hence, the thesis follows under Case (1).
Cases P1 = x〈v〉.P , P1 = x(y).Q, P1 = x � l j .Q, P1 = ∗ x(y).Q, and P1 =
x � {li : Qi }i∈I :
From the rules in Fig. 8 and (4), S = Cx̃ ỹ[W1 ‖ · · · ‖ �P1� ‖ · · · ‖ Wm ‖ J].
Hence, the thesis follows under Case (2).
Case P1 = Q1 | Q2:By IH, the thesis holds for �Q1� and �Q2�, and the reduction
from S0 to S generates one additional parallel process inside Cx̃ ỹ[·].
Case P1 = (νxy)Q: By IH, the thesis holds for �Q�. By noticing that

Cx̃ ỹ[W1 ‖ . . .

‖ �(νxy)Q� ‖ · · · ‖ Wm ‖ J] = Cx̃x ỹy[W1 ‖ · · · ‖ �Q� ‖ · · · ‖ Wm ‖ J]
the thesis follows.

CaseWi = �Rk�, for some pre-redex R j : Then, the transition from S0 to S can only occur
if there exists a Wj = �R j �, such that Rk | R j is a redex reachable from P . There are

123

M. Cano et al.

multiple sub-cases, depending on the shape of Rk and R j . We only detail a representative
sub-case; the rest are similar:

Sub-case Rk = x〈v〉.P: We then have that Rk = y(z).Q and so

S0 = Cx̃ ỹ[W1 ‖ · · · ‖ Wi ‖ · · · ‖ Wj ‖ · · · ‖ Wm]
= Cx̃ ỹ[W1 ‖ · · · ‖ �x〈v〉.P� ‖ · · · ‖ �y(z).Q� ‖ · · · ‖ Wm]
τ−→	 Cx̃ ỹ[W1 ‖ · · · ‖ �x〈v〉.P | y(z).Q�1x̃ ỹ ‖ · · · ‖ Wm] = S

where the transition to S follows Lemma 8(2). The thesis then follows Case (3).

CaseWi ∈ {[Rk | R j]}, for some redex Rk | R j : Then, depending on the shape of Rk and
R j (and relying on Notation 14), the transition from S0 to S corresponds to one of the
following five sub-cases:

(a) Wi = �x〈v〉.P | y(z).Q�1x̃ ỹ
(b) Wi = �x〈v〉.P | ∗ y(z).Q�1x̃ ỹ
(c) Wi = �x � l.P | y � {li : Qi }i∈I �1x̃ ỹ
(d) Wi = �x � l.P | y � {li : Qi }i∈I �2x̃ ỹ
(e) Wi = �x � l.P | y � {li : Qi }i∈I �3x̃ ỹ
We only detail sub-cases (a), (c) and (e); the rest are similar:

Sub-case Wi = �x〈v〉.P | y(z).Q�1x̃ ỹ : Then, we have:

S0 = Cx̃ ỹ[W1 ‖ · · · ‖ �x〈v〉.P | y(z).Q�1x̃ ỹ ‖ · · · ‖ Wm]
τ−→	 Cx̃ ỹ[W1 ‖ · · · ‖ �P� ‖ �Q�{v/z} ‖ · · · ‖ Wm] = S

and the proof proceeds by a simultaneous induction on the structure of both P and
Q, as shown for the case of the conditional redex above.
Sub-case Wi = �x � l.P | y � {li : Qi }i∈I �1x̃ ỹ : Then, we have:

S0 = Cx̃ ỹ[W1 ‖ · · · ‖ �x � l.P | y � {li : Qi }i∈I �1x̃ ỹ ‖ · · · ‖ Wm]
τ−→	 Cx̃ ỹ[W1 ‖ · · · ‖ �x � l.P | y � {li : Qi }i∈I �kx̃ ỹ ‖ · · · ‖ Wm] = S

Sub-case Wi = �x � l.P | y � {li : Qi }i∈I �3x̃ ỹ : Assuming l = l j for some j ∈ I , then
we have:

S0 = Cx̃ ỹ[W1 ‖ · · · ‖ �x � l.P | y � {li : Qi }i∈I �3x̃ ỹ ‖ · · · ‖ Wm]
τ−→	 Cx̃ ỹ[W1 ‖ · · · ‖ �P� ‖ �Q j � ‖ · · · ‖ Wm] = S

and the proof proceeds by a simultaneous induction on the structure of both P and
Q, as shown for the case of the conditional redex above.

%&
Lemma 10 Let P be a well-typed π program. Then, for every S, S′ such that �P�

τ�⇒ S
τ−→	

S′ one of the following holds:

(a) IS ⊆ IS′ (cf. Notation 15) and one of the following holds:

(1) S ≡ Cx̃ ỹ[�b? P1 : P2� ‖ U] and S′ = Cx̃ ỹ[�Pi � ‖ U], with i ∈ {1, 2};
(2) S ≡ Cx̃ ỹ[�y � l j .P ′ | x � {li : Qi }i∈I �1x̃ ỹ ‖ U] and

S′ = Cx̃ ỹ[�y � l j .P ′ | x � {li : Qi }i∈I �3x̃ ỹ ‖ U];

123

Session-based concurrency, declaratively

(3) S ≡ Cx̃ ỹ[�y � l j .P ′ | x � {li : Qi }i∈I �2x̃ ỹ ‖ U] and
S′ = Cx̃ ỹ[�P ′� ‖ �Q j � ‖ U].

(b) IS � IS′ and |IS \ IS′ | = 1.

Proof We first use Lemma 9 to characterize every parallel sub-process Ui of S; then, by a
case analysis on the shape of the Ui that originated the transition S

τ−→	 S′ we show that
each case falls under either (a) or (b). More in detail, by Lemma 9 we have:

S = Cx̃ ỹ[U1 ‖ · · · ‖ Un]
where for every Ui either Ui = tt or

(i) Ui = �Rk�, where Rk is a conditional redex reachable from P;
(ii) Ui = �Rk�, where Rk is a pre-redex reachable from P;
(iii) Ui ∈ {[Rk | R j]}, where redex Rk | R j is reachable from P .

Hence, transition S
τ−→	 S′ must originate from someUi . There are 12 different possibilities

for this transition:

A. Ui = �tt? Q1 :Q2�;
B. Ui = �ff? Q1 :Q2�;
C. Ui = �x〈v〉.Q1�;
D. Ui = �x(z).Q1�;
E. Ui = �x � l.Q1�;
F. Ui = �x � {li : Qi }i∈I �;

G. Ui = �∗ x(z).Q1�.
H. Ui = �x〈v〉.Q1 | y(z).Q2�

1
x̃ ỹ ;

I. Ui = �x〈v〉.Q1 | ∗ y(z).Q2�
1
x̃ ỹ ;

J. Ui = �x � l j .Q | y � {li : Qi }i∈I �1x̃ ỹ ;
K. Ui = �x � l j .Q | y � {li : Qi }i∈I �2x̃ ỹ ;
L. Ui = �x � l j .Q | y � {li : Qi }i∈I �3x̃ ỹ ;

Notice that in sub-cases A-B and H-L, the Ui can transition by itself; in sub-cases C-G,
the Ui needs to interact with some other Uj (with i �= j) to produce the transition. Also,
notice that in sub-case J, two more sub-cases are generated, which depend on the transition
induced by Ui = �x � l j .Q | y � {li : Qi }i∈I �1x̃ ỹ :

J(1). S
τ−→	 S′ = Cx̃ ỹ[U1 ‖ · · · ‖ �x � l j .Q | y � {li : Qi }i∈I �2x̃ ỹ ‖ · · · ‖ Un]

J(2). S
τ−→	 S′ = Cx̃ ỹ[U1 ‖ · · · ‖ �x � l j .Q | y � {li : Qi }i∈I �3x̃ ỹ ‖ · · · ‖ Un]

These two additional sub-cases are distinguished according to Lemma 8(3). All sub-cases are
proven in the same way: first, identify the exact shape of S involved, and use the appropriate
rule(s) in Fig. 6 to obtain S′. Next, compare the stores IS and IS′ . If IS ⊆ IS′ , then the
sub-case falls under (a). Otherwise, the sub-case falls under (b). We detail two representative
sub-cases:

Sub-case A: Since the Ui that originates the transition is a conditional redex, then S =
Cx̃ y[U1 ‖ · · · ‖ �tt? Q1 : Q2� ‖ · · · ‖ Un]. By Fig. 6, and eliminating the junk with
Corollary 2, we have:

S
τ−→	
∼=π

	 S′ = Cx̃ y[U1 ‖ · · · ‖ �Q1� ‖ · · · ‖ Un]
Then, we are left to prove that IS ⊆ IS′ . This follows straightforwardly by considering
that:

∀e ∈ IS .(e ∈ IS′)

because the transition of a conditional redex does not consume any constraint and that:

∀e ∈ I�Q1�.(e ∈ IS′)

123

M. Cano et al.

Table 1 Proof of Lemma 10: Case analysis. Recall that S = Cx̃ y [U1 ‖ · · · ‖ Ui ‖ · · · ‖ Un]
Sub-case S′ (a) (b)

A Cx̃ y [U1 ‖ · · · ‖ �P1� ‖ · · · ‖ Un] �
B Cx̃ y [U1 ‖ · · · ‖ �P1� ‖ · · · ‖ Un] �
C Cx̃ ỹ [U1 ‖ · · · ‖ �x〈v〉.Q1 | y(z).Q2�

1
x̃ ỹ ‖ · · · ‖ Un] �

D Cx̃ ỹ [U1 ‖ · · · ‖ �x(z).Q1 | y〈v〉.Q2�
1
x̃ ỹ ‖ · · · ‖ Un] �

E Cx̃ ỹ [U1 ‖ · · · ‖ �x � l j .Q | y � {li : Qi }i∈I �1x̃ ỹ ‖ · · · ‖ Un] �

F Cx̃ ỹ [U1 ‖ · · · ‖ �x � l j .Q | y � {li : Qi }i∈I �1x̃ ỹ ‖ · · · ‖ Un] �

G Cx̃ ỹ [U1 ‖ · · · ‖ �y〈v〉.Q1 | ∗ x(z).Q2�
1
x̃ ỹ ‖ · · · ‖ Un] �

H Cx̃ ỹ [U1 ‖ · · · ‖ �Q1� ‖ �Q2�{v/z} ‖ · · · ‖ Un] �
I Cx̃ ỹ [U1 ‖ · · · ‖ �Q1� ‖ �Q2�{v/z} ‖ �∗ y(z).Q2� ‖ · · · ‖ Un] �
J(1) Cx̃ ỹ [U1 ‖ · · · ‖ �x � l j .Q | y � {li : Qi }i∈I �2x̃ ỹ ‖ · · · ‖ Un] �

J(2) Cx̃ ỹ [U1 ‖ · · · ‖ �x � l j .Q | y � {li : Qi }i∈I �3x̃ ỹ ‖ · · · ‖ Un] �
K Cx̃ ỹ [U1 ‖ · · · ‖ �Q� ‖ �Q j � ‖ · · · ‖ Un] �
L Cx̃ ỹ [U1 ‖ · · · ‖ �Q� ‖ �Q j � ‖ · · · ‖ Un] �

because new constraints are added by �Q1�. Hence, this sub-case falls under (a).
Sub-case H: Notice that well-typedness, via Lemma 1, ensures that there will never be
two processes in parallel prefixed with the same variable, unless they are input processes.
Furthermore, it is not possible for more than a single input process to interact with its
corresponding partner, ensuring the uniqueness of the constraint. Using this, we can detail
the case:

1. Ui = �x〈.〉R′ | y(z).R′′�1x̃ ỹ = rcv(y, v) ‖ ∀z(rcv(z, v)⊗{z:x} → �R′�) ‖ �R′′{v/x}�
(Notation 14).

2. ID⊥≈ (Cx̃ ỹ[U1 ‖ · · · ‖ Ui ‖ · · · ‖ Un]) = {∃x̃, ỹ.rcv(y, v)} ∪ ID⊥≈ (Cx̃ ỹ[U1 ‖ · · · ‖
Un]) (Definition 29,(1)).

3. S
τ−→	 Cx̃ ỹ[U1 ‖ · · · ‖ �R′� ‖ �R′′{v/x}� ‖ · · · ‖ Un] (Fig. 6 - Rule (C:Sync), (1)).

4. ID⊥≈ (Cx̃ ỹ[U1 ‖ · · · ‖ �R′� ‖ �R′′{v/x}� ‖ · · · ‖ Un]) = {∃x̃ ỹ.c | c ∈ ID⊥≈ (�R′� ‖
�R′′{v/x}�)} ∪ ID⊥≈ (Cx̃ ỹ[U1 ‖ · · · ‖ Un]) (Definition 29, (3)).

5. ID⊥≈ (Cx̃ ỹ[U1 ‖ · · · ‖ Ui ‖ · · · ‖ Un]) \ ID⊥≈ (Cx̃ ỹ[U1 ‖ · · · ‖ �R′� ‖ �R′′{v/x}� ‖
· · · ‖ Un]) = {∃x̃, ỹ.rcv(y, v)} (Set difference, (2),(4)).

We can then conclude by observing that:

IS = ID⊥≈ (Cx̃ ỹ[U1 ‖ · · · ‖ Ui ‖ · · · ‖ Un]);
IS′ = ID⊥≈ (Cx̃ ỹ[U1 ‖ · · · ‖ �R′� ‖ �R′′{v/x}� ‖ · · · ‖ Un])
and considering that:
|IS \ IS′ | = |{∃x̃, ỹ.rcv(y, v)}| = 1. Hence, this sub-case falls under (b).

Table 1 summarizes the results for all sub-cases.
%&

Lemma 11 (Invariants of Target Terms (I): Adding Information) Let P be a well-typed π

program. For any S, S′ such that �P�
τ�⇒ S

τ−→	 S′ and IS ⊆ IS′ (cf. Notation 15) one of
the following holds, for some U:

123

Session-based concurrency, declaratively

1. S ≡ Cz̃[�b? P1 : P2� ‖ U ‖ J1] and S′ = Cz̃[�Pi � ‖ ∀ε(b = ¬b → Pj) ‖ U ‖ J1] with
i, j ∈ {1, 2}, i �= j ;

2. �P�
τ�⇒ S0 ≡ Cx̃ ỹ[{x :y} ‖ �x � l j .P ′

∣

∣ y � {li Qi }i∈I � ‖ U ‖ J1] and either:
(a) All of the following hold:

(i) S0
τ−→	 Cx̃ ỹ[�x � l j .P ′ | y � {li : Qi }i∈I �1x̃ ỹ ‖ U ‖ J1] τ−→	 S,

(ii) S = Cx̃ ỹ[�x � l j .P ′ | y � {li : Qi }i∈I �2x̃ ỹ ‖ U ‖ J1] (and)
(iii) S′ = Cx̃ ỹ[�P ′� ‖ �Q j � ‖ U ‖ J1 ‖ J2].

(b) All of the following hold:
(i) S0

τ−→	 S = Cx̃ ỹ[�x � l j .P ′ | y � {li : Qi }i∈I �1x̃ ỹ ‖ U ‖ J1],
(ii) S′ = Cx̃ ỹ[�x � l j .P ′ | y � {li : Qi }i∈I �3x̃ ỹ ‖ U ‖ J1] (and)
(iii) S′ τ−→	 Cx̃ ỹ[�P ′� ‖ �Q j � ‖ U ‖ J1 ‖ J2].

where J2 = ∏

k∈I\{ j} ∀ε(l j = lk → �Pk�).

Proof By induction on the length of the transition
τ�⇒ τ−→	. First, by Lemma 1:

�P� ≡ Cx̃ ỹ[�R1� ‖ · · · ‖ �Rn�] (1)

where every Ri is either a pre-redex or a conditional process. We apply induction on the
length of transition

τ�⇒:

Base Case: We analyze whenever �P�
τ�⇒ �P�

τ−→	 S′. Thus, let S = �P�. Since
IS ⊆ IS′ , then by Lemma 10(a), we have:

S ≡ Cx̃ ỹ[�R j � ‖
∏

i∈{1...n}\ j
�Ri �]

S′ ≡ Cx̃ ỹ[S j ‖
∏

i∈{1...n}\{ j}
�Ri �]

where �R j � = �b? Q1 : Q2�. Notice that only Item (1) of the statement is possible:
Item (2) requires S to contain intermediate redexes, which is not possible since S is the
translation of a process without any preceding transition. By assumption, P is a well-
typed program, therefore, by Definition 10, b ∈ {tt,ff}. We distinguish cases for each
b = tt and b = ff. We only show the case b = tt, as the other is similar.

Case b = tt: By Fig. 8:

S ≡ Cx̃ ỹ[∀ε(tt = tt→ �Q1�) ‖ ∀ε(tt = ff→ �Q2�) ‖
∏

i∈{1...n}\{ j}
�Ri �]

By applying the rules in Fig. 6:

S
τ−→	 Cx̃ ỹ[�Q1� ‖ ∀ε(tt = ff→ �Q2�) ‖

∏

i∈{1...n}\ j
�Ri �] ≡ S′

By Definition 28, let J = tt and J ′ = J ‖ ∀ε(tt = ff→ �Q2�). Therefore, by
Definition 13:

U ≡ Cx̃ ỹ[
∏

i∈{1...n}\ j
�Ri � ‖ J]

U ′ ≡ Cx̃ ỹ[‖
∏

i∈{1...n}\{ j}
�Ri � ‖ J ′]

123

M. Cano et al.

Finally, let �Ri � = Ui for every i ∈ i ∈ {1 . . . n} \ { j}, finishing the proof.

Inductive Step: By IH, �P�
τ�⇒ S0

τ−→	 S satisfies the property for m steps (i.e.,
�P�

τ−→m−1
	 S0

τ−→	 S). We must prove for k = m + 1:

�P�
τ−→m

	 S
τ−→	 S′

by Lemma 9:
S ≡ Cx̃ ỹ[U1 ‖ · · · ‖ Un ‖ J]

for some junk J and for all i ∈ {1, . . . , n} either:
1. Ui = �Rk�, where Rk is a conditional redex reachable from P;
2. Ui = �Rk�, where Rk is a pre-redex reachable from P;
3. Ui ∈ {[Rk | R j]}, where redex Rk | R j is reachable from P .

Then, by Lemma 10(a), there exists �R j � such that:

S ≡ Cx̃ ỹ[Uj ‖
∏

i∈{1...n}\ j
Ui ‖ J]

S′ ≡ Cx̃ ỹ[U ′j ‖
∏

i∈{1...n}\ j
Ui ‖ J ′]

and only cases (1) and (3) are considered:

Case Uj = �R j � with R j a conditional redex: Since IS ⊆ IS′ , by inspection on
Fig. 8, we have R j = b? P1 : P2, with b ∈ {tt,ff} and the thesis follows as in the
base case.
Case Uj ∈ {[R j | Rk]}: By inspection on Definition 30, combined with Corollary 2,
Uj ∈ {[x � l j .Q | y � {li : Qi }i∈I]}, for some Q, Qi , l j , and either
(i) Uj ∼=π

	 bra(y, l j) ‖ ∀z(bra(z, l j)⊗ {z:x} → �Q�) ‖ ∀ε(l j = l j → �Q j �), or
(ii) Uj ∼=π

	 �Q� ‖ ∀ε(l j = l j → �Q j �).
We analyze each case:

Case (i): If Uj = bra(y, l j) ‖ ∀z(bra(z, l j) ⊗ {z:x} → �Q�) ‖ ∀ε(l j = l j →
�Q j �) then, by Corollary 3, there exists S0 such that:

S0 ≡ Cx̃ ỹ[{x :y} ‖ �x � l j .Q | y � {li Qi }i∈I � ‖ U1 ‖ · · · ‖ Un ‖ J]
by the semantics in Fig. 6 and Corollary 2:

S0
τ−→	 Cx̃ ỹ[{x :y} ‖ Uj ‖ U1 ‖ · · · ‖ Un ‖ J] = S
τ−→	 Cx̃ ỹ[{x :y} ‖ bra(y, l j) ‖ ∀z(bra(z, l j)⊗ {z:x} → �Q�) ‖ �Q j �

‖ U1 ‖ · · · ‖ Un ‖ J ‖] = S′
τ−→	
∼=π

	 Cx̃ ỹ[
]{x :y} ‖ �Q� ‖ �Q j � ‖ U1 ‖ · · · ‖ Un ‖ J ‖

∏

h∈I
∀ε(lh = l j → �Qi �)

The proof finalizes by letting J ′ = J ‖ ∏

h∈I
∀ε(lh = l j → �Qi �).

Case (ii): If Uj = �Q� ‖ ∀ε(l j = l j → �Q j �) then, by Definition 30 and
Notation 14, there exists S0 such that:

S0 ≡ Cx̃ ỹ[{x :y} ‖ �x � l j .Q | y � {li Qi }i∈I �1x̃ ỹ ‖ U1 ‖ · · · ‖ Un ‖ J]

123

Session-based concurrency, declaratively

by the semantics in Fig. 6:

S0
τ−→	 Cx̃ ỹ[{x :y} ‖ bra(y, l j) ‖ ∀z(bra(z, l j)⊗ {z:x} → �Q�) ‖ �Q j �

‖ U1 ‖ · · · ‖ Un ‖ J] = S
τ−→	 Cx̃ ỹ[{x :y}
‖ �Q� ‖ �Q j � ‖ U1 ‖ · · · ‖ Un ‖ J ‖

∏

h∈I
∀ε(lh = l j → �Qi �)] = S′

The proof finishes by letting J ′ = J ‖ ∏

h∈I
∀ε(lh = l j → �Qi �).

%&
Proposition 1 Suppose S is a target term (cf. Definition 26).

1. S ≡ Cx̃ ỹ[c1 ‖ · · · ‖ cn ‖ Q1 ‖ · · · ‖ Qk] with n, k ≥ 1, where every c j = γ j (x j ,m j)

(with 1 ≤ j ≤ n), for some value or label m j , and every Qi (with 1 ≤ i ≤ k) is an
abstraction (possibly replicated).

2. For every i, j ∈ {1, . . . , n}, i �= j implies ci = γi (xi ,mi), c j = γ j (x j ,m j), and
xi �= x j .

Proof The first part of the statement follows immediately from the definition of �·� (cf.
Definition 25), Lemma 9, and by applying the structural congruence of lcc in S.

The second part of the statement is proven by contradiction.We assume that S ≡ Cx̃ ỹ[c1 ‖
· · · ‖ cn ‖ Q], where Q = Q1 ‖ · · · ‖ Qk where every Qr , r ∈ {1, . . . , k} is an abstraction
(possibly replicated) and that there exist i, j ∈ {1, . . . , n} such that i �= j , ci = γ (x1,m1),
c j = γ (x2,m2), and x1 = x2. We proceed by a case analysis on γ ; there are four cases, we
only show the cases γ = snd and γ = rcv.

1. Suppose that γ = snd. By assumption,

S ≡ Cx̃ ỹ[c1 ‖ · · · ‖ snd(x, v1) ‖ · · · ‖ snd(x, v2) ‖ · · · ‖ cn ‖ Q]
Moreover, by Definition 26, S must come from the translation of a well-typed term. By
Fig. 8, it must be the case that:

S ≡ Cx̃ ỹ[c1 ‖ · · · ‖ �x〈v1〉.P1� ‖ · · · ‖ �x〈v2〉.P2� ‖ · · · ‖ cn ‖ Q′]
for some Q′ that does not contain the abstractions used to build the translations �x〈vk〉.Pk�,
k ∈ {1, 2}. This implies, by Fig. 8, that S comes from aπ process that contains two outputs
on the same channel x in parallel. This contradicts the well-formedness assumption that
follows from Theorem 4, finishing the proof.

2. Suppose that γ = rcv. The proof has the same structure as the one above. The only differ-
ence is that rather than the translation of output processes, we must consider intermediate
redexes (cf. Fig. 11). Similarly as above, wewill find that the well-formedness assumption
induced by typing is violated, thus reaching a contradiction.

%&
Lemma 12 (Invariants of Target Terms (II): Consuming Information) Let P be a well-typed
π program. For any S, S′ such that �P�

τ�⇒ S
τ−→	 S′ and IS � IS′ the following holds, for

some U:

(1) If IS \ IS′ = {snd(x1, v)}, then all the following hold:

123

M. Cano et al.

(a) S ≡ Cx̃ ỹ[{x1:y1} ‖ �x1〈v〉.P1 | � y1(z).P2� ‖ U];
(b) S′ = Cx̃ ỹ[�x1〈v〉.P1 | � y1(z).P2�1x̃ ỹ ‖ U];
(c) S′ τ−→	 Cx̃ ỹ[�P1 | P2{v/z}� ‖ S′′ ‖ U], where S′′ = ∗ �y(z).P2� or S′′ = tt.

(2) If IS \ IS′ = {rcv(x1, v)}, then there exists S0 such that �P�
τ�⇒ S0

τ−→	 S and all of
the following hold:

(a) S0 ≡ Cx̃ ỹ[{x1:y1} ‖ �y1〈v〉.P1 | � x1(z).P2� ‖ U];
(b) S = Cx̃ ỹ[�y1〈v〉.P1 | � x1(z).P2�1x̃ ỹ ‖ U];
(c) S′ = Cx̃ ỹ[�P1 | P2{v/z}� ‖ S′1 ‖ U], where S′1 = ∗ �y(z).P2� or S′1 = tt.

(3) If IS \ IS′ = {sel(x1, l j)}, then all of the following hold:

(a) S ≡ Cx̃ ỹ[{x1:y1} ‖ �x1 � l.P1 | y1 � {li : Pi }i∈I �U];
(b) S′ = Cx̃ ỹ[�x1 � l.P1 | y1 � {li : Pi }i∈I �1x̃ ỹ ‖ U];
(c) S1

τ−→2
	
∼=π

	 Cx̃ ỹ[�P1 | Pj � ‖ U ′], with U ′ ≡ U ‖∏

h∈I ∀ε(lh = l j → �Qh�).

(4) If IS \ IS′ = {bra(x, l j)}, then there exists

S0 ≡ Cx̃ ỹ[{x :y} ‖ �y � l j .Q | x � {li Qi }i∈I � ‖ U] such that �P�
τ�⇒ S0 and either:

(a) All of the following hold:
(i) S0

τ−→	 Cx̃ ỹ[�y � l j .Q | x � {li : Qi }i∈I �1x̃ ỹ ‖ U]
τ−→	 S,

(ii) S = Cx̃ ỹ[�y � l j .Q | x � {li : Qi }i∈I �3x̃ ỹ ‖ U] (and)
(iii) S′ = Cx̃ ỹ[{x :y} ‖ �Q | Q j � ‖ U ′].

(b) All of the following hold:
(i) S0

τ−→	 Cx̃ ỹ[�y � l j .P | x � {li : Qi }i∈I �1x̃ ỹ ‖ U] ≡ S,

(ii) S′ = Cx̃ ỹ[�y � l j .P | x � {li : Qi }i∈I �2x̃ ỹ ‖ U] (and)
(iii) S′ τ−→	 Cx̃ ỹ[{x :y} ‖ �P | Q j � ‖ U ′].

with U ′ ≡ U ‖∏

h∈I ∀ε(lh = l j → �Qh�).

Proof By induction on the transition
τ�⇒ τ−→	. By Lemma 1:

�P� ≡ ∃x̃, ỹ.(�R1� ‖ · · · ‖ �Rn� ‖!
⊗

xi∈x̃,
yi∈ỹ

{xi :yi }) (1)

where each Ri is a pre-redex or a conditional process. Also, by Lemma 10(b), the difference of
observables between a process and the process obtained in a single τ -transition is a singleton.
Therefore, we apply a case analysis on each one of those singletons.

Base Case: Then, �P�
τ�⇒ �P�

τ−→	 S′. Let �P� = S. By assumption, S
τ−→	 S′ and

IS � IS′ . Thus, there is a c ∈ IS such that c /∈ IS′ . Considering Eq. (1) and by inspection
on Fig. 8 we only analyze from Case (2), as cases (1) and (3) do not apply: Case (1) does
not apply as it does not entail constraint consumption (cf. Lemma 10(a)) and Case (3)
does not apply as there are no intermediate redexes in S.

Case IS \ IS′ = {snd(x1, v)}: By Lemma 6, there exists j such that:

S ≡ Cx̃ ỹ[�R j � ‖
∏

i∈{1...n}\ j
�Ri �]

123

Session-based concurrency, declaratively

where �R j � ≡ �x j 〈v〉.Q�. Since IS � IS′ , and every c ∈ IS is unique, by inspection
on Fig. 8 and Lemma 7, there must exist an Rk such that:

S ≡ Cx̃ ỹ[�x j 〈v〉.Q� ‖ �Rk� ‖
∏

i∈{1...n}\{ j,k}
�Ri �]

where �Rk� ≡ �y j (z).Q′� or �Rk� ≡ �∗ y j (z).Q′�. Without loss of generality, we
only show the case for �Rk� ≡ �y j (z).Q′�:

S ≡ Cx̃ ỹ[�x j 〈v〉.Q� ‖ �y j (z).Q
′� ‖

∏

i∈{1...n}\{ j,k}
�Ri �]

By the semantics of lcc (cf. Fig. 6) and Lemma 8:

S
τ−→	 Cx̃ ỹ[�x j 〈v〉.Q | y j (z).Q′�1x̃ ỹ ‖

∏

i∈{1...n}\{ j,k}
�Ri �]

τ−→	 Cx̃ ỹ[�Q� ‖ �Q′{v/z}� ‖
∏

i∈{1...n}\{ j,k}
�Ri �] = S′

Case IS \ IS′ = {sel(x1, l j)}: By Lemma 6, there exists j such that:

S ≡ Cx̃ ỹ[�R j � ‖
∏

i∈{1...n}\ j
�Ri �]

where �R j � ≡ �x j � l j .Q�. Furthermore, by following the same analysis as in the
previous case, there must exist R j , such that:

S ≡ Cx̃ ỹ[�x j � l j .Q� ‖ �Rk� ‖
∏

i∈{1...n}\{ j,k}
�Ri �]

where �Rk� ≡ �y j � {li : Qi }i∈I �. Then, by the semantics of lcc (cf. Fig. 6):

S
τ−→	 Cx̃ ỹ[�y j � {li : Qi }i∈I �1x̃ ỹ ‖

∏

i∈{1...n}\{ j,k}
�Ri �] = S′

τ−→	 Cx̃ ỹ[�y j � {li : Qi }i∈I �2x̃ ỹ ‖
∏

i∈{1...n}\{ j,k}
�Ri �]

τ−→	 Cx̃ ỹ[�Q� ‖ �Q j � ‖
∏

i∈{1...n}\{ j,k}
�Ri � ‖

∏

h∈I
∀ε(lh = l j → �Qi �)]

∼=π
	 ∃x̃, ỹ.(�Q� ‖ �Q j � ‖

∏

i∈{1...n}\{ j,k}
�Ri � ‖

∏

h∈I
∀ε(lh = l j → �Qi �))

Inductive Case: By IH, �P�
τ�⇒ S

τ−→	 S′ satisfies the property for m steps (i.e.,
�P�

τ−→m−1
	 S

τ−→	 S′). Therefore:

S ≡ Cx̃ ỹ[U1 ‖ · · · ‖ Un ‖ J]
for some junk J and for all i ∈ {1, . . . , n} either:
1. Ui = �Rk�, where Rk is a conditional redex reachable from P;
2. Ui = �Rk�, where Rk is a pre-redex reachable from P;
3. Ui ∈ {[Rk | R j]}, where redex Rk | R j is reachable from P .

123

M. Cano et al.

We now have to prove for k = m + 1:

�P�
τ−→k

	 S
τ−→	 S′

Since S
τ−→	 S′, there exists �R j � such that:

S ≡ Cx̃ ỹ[Uj ‖
∏

i∈{1...n}\ j
Ui ‖ J]

S′ ≡ Cx̃ ỹ[U ′j ‖
∏

i∈{1...n}\ j
Ui ‖ J ′]

As above, we distinguish only cases for (2), (3). Notice that using Lemma 10(a) and
Lemma 11 we can discard case (1):

Case (2): Proceeds as the base case, by distinguishing cases between the consumed
constraints. The cases correspond to constraints snd, sel (cf. Fig. 7).
Case (3): By inspection on Definition 30 and Notation 14, we distinguish two cases
corresponding to predicates rcv,bra (cf. Fig. 7):

Case IS \ IS′ = {rcv(x1, v)}: By Lemmas 6 and 7, there exists j such that:

S ≡ Cx̃ ỹ[Uj ‖ U1 ‖ · · · ‖ Un ‖ J]
where Uj = rcv(x j , v) ‖ W , for some W . By inspection on Definition 30 and
Lemma 7, there exists Uk such that Uj ‖ Uk ∈ {[x j (z).Q | y j 〈v〉.Q′]} or Uj ‖
Uk ∈ {[∗ x j (z).Q | y j 〈v〉.Q′]}, for some x j , y j , v. Without loss of generality,
we will only analyze the case when Uj ‖ Uk ∈ {[x j (z).Q | y j 〈v〉.Q′]}. By
Definition 30 and Notation 14, Uj = �x j (y).Q | y j 〈v〉.Q′�1x̃ ỹ . By expanding
the previous definitions:

S ≡ Cx̃ ỹ[rcv(x j , v) ‖ ∀w(rcv(w, v)⊗ {w:y j } → �Q�) ‖ �Q′{v/z}� ‖
U1 ‖ · · · ‖ Un ‖ J]

and by the application of Rule (C:Sync) in Fig. 6 (i.e., the lcc semantics):

S
τ−→	 Cx̃ ỹ[�Q� ‖ �Q′{v/z}� ‖ U1 ‖ J]

Case IS \ IS′ = {bra(x, l j)}: This case proceeds as above. The conclusion is
reachedusing the sameanalysis as in the inductive case in the proof ofLemma11.

%&

C.5 A diamond property for target terms

Lemma 13 Let S be a target term (cf. Definition 26) and x, y be endpoints. Then, S
τ−→	 S′

if and only if S
η−→	 S′ where η ∈ {α(x, y) |α ∈ {IO,SL,RP,IO1,RP1,SL1,SL2,SL3} ∧

x, y ∈ Vπ } ∪ {CD(−)}.
Proof We prove both directions:

⇒) By Corollary 4, S = Cx̃ ỹ[U1 ‖ · · · ‖ Un], withUi = �Ri � for some pre-redex Ri (cf.
Definition 9). We take then an arbitrary Ui , i ∈ {1, . . . , n}. We apply a case analysis on
Ui . There are 11 cases corresponding to each possible shape of Ui . We only show three
cases; the rest are similar:

123

Session-based concurrency, declaratively

Case Ui = �x〈v〉.P1�: We distinguish two sub-cases, depending on whether there
exists Uj such that Uj = �y(z).P2� and x ∈ x̃, y ∈ ỹ or not. The latter case is
vacuously true, as there would not be any transition to check. We show the former
case:

Sub-case ∃Uj .(Uj = �y(z).P2� ∧ x ∈ x̃, y ∈ ỹ):
1. S ≡ Cx̃ ỹ[�x〈v〉.P1� ‖ �y(z).P2� ‖ U1 ‖ · · · ‖ Un] (Assumption).
2. S

τ−→	 Cx̃ ỹ[�x〈v〉.P1 | y(z).P2�1x̃ ỹ ‖ U1 ‖ · · · ‖ Un] = S′ (Rule
(C:Sync) - Fig. 6, (1), Assumption).

3. S
IO1(x,y)−−−−−→	 S′ (Definition 31, (1), (2)).

Case Ui = �x(y).P1�: Symmetric to the previous case, as Uj = �y〈v〉.P2�.
Case Ui = �x〈v〉.P1 | y(z).P2�1x̃ ỹ :
1. S ≡ Cx̃ ỹ[�x〈v〉.P1 | y(z).P2�1x̃ ỹ ‖ U1 ‖ · · · ‖ Un] (Assumption).
2. S

τ−→	 Cx̃ ỹ[�P1� ‖ �P2�{v/z} ‖ U1 ‖ · · · ‖ Un] = S′ (Rule (C:Sync) - Fig. 6,
(1), Assumption).

3. S
IO1(x,y)−−−−−→	 S′ (Definition 31, (1), (2)).

⇐) This direction proceeds by applying a case analysis on label η. Each case then will
proceed by applying Rule (C:Sync) in Fig. 6 and showing that the transition yields the
correct process.

%&
Lemma 14 Let S be a target term such that S

ω−→	 S1 and S
γ (̃x ỹ)����⇒ S2, where γ (̃x ỹ)

is a closing sequence (cf. Notation 16). Then, there exists S3 such that S1
γ (̃x ỹ)����⇒ S3 and

S2
ω−→	 S3.

Proof By induction on the length n of |γ (̃x ỹ)|.
Base Case: n = 0. Then:

1. S
ω−→	 S1 (Assumption).

2. S
γ (̃x ỹ)����⇒ S (Assumption)

3. S1
γ (̃x ỹ)����⇒ S1 (Fig. 6)

Conclude by letting S1 = S1, S2 = S and S3 = S1 and using (1),(3).
Inductive Step: n ≥ 1. We state the IH:

IH: If S
ω−→	 S1 and S

γ0 (̃x ỹ)�����⇒ S0
κ−→	 S2, then there exists S′0 such that S1

γ0 (̃x ỹ)�����⇒ S′0
and S0

ω−→	 S′0.

We distinguish cases for κ ∈ {IO1,RP1,CD,SL2,SL3}. There are five cases and each
one has four sub-cases, corresponding to the opening labels {IO,SL,RP,SL1}.
We detail three cases: κ = IO1, κ = RP1 and κ = CD, as the other are similar:

Case κ = IO1: Asmentioned above, there are four sub-cases depending onω.We enumerate
them below and only detail ω = IO, ω = RP:

Sub-case ω = IO: Suppose, without loss of generality, that the actions take
place on endpoints x, y and w, z. Furthermore, by typing and Corollary 1 and
Definition 10, it cannot be the case that x = w and y = z, because this would
imply that there are more than one output prefixed on x . Then, we we only
consider the case when x �= w and y �= z:

123

M. Cano et al.

Sub-case x �= w ∧ y �= z: We proceed as follows:
1. S = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(u1).Q2� ‖ · · · ‖ Un ‖ J] (Assumption,

Fig. 13, Lemma 9).
2. S1 = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1 | y(u1).Q2�

1
xy ‖ · · · ‖ Un ‖ J] (Fig. 6,(1)).

3. S0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(u1).Q2� ‖ �w〈v′〉.Q3 | z(u2).Q4�
1
wz ‖

· · · ‖ U ′m ‖ J ′], m ≥ 1 (IH, (1), Lemma 9).
4. S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′] ((3), Fig. 6).
5. S0

IO(x,y)−−−−−→	 S′0 (IH)
6. S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(u1).Q2�

1
xy ‖ �w〈v′〉.Q3 | z(u2).Q4�

1
wz ‖

· · · ‖ U ′m ‖ J ′] (Fig. 6, (5)).

7. S1
γ0 (̃x ỹ)�����⇒ S′0 (IH).
We can then reduce the proof to the existence of some S3 such that

– S2
IO(x,y)−−−−−→	 S3 and

– S′0
IO1(w,z)−−−−−→	 S3
We have:

(a) S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(u1).Q2�
1
xy ‖ �w〈v′〉.Q3 | z(u2).Q4�

1
xy ‖

· · · ‖ U ′m ‖ J ′].
(b) S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(u1).Q2� ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′].
then, let

S3 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(u1).Q2�
1
xy ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′]

and we can show by Fig. 6 that S′0
IO1(w,z)−−−−−→	 S3 and S2

IO(x,y)−−−−−→	 S3,
which concludes the proof.

Sub-case ω = RP: As above, assume the actions take place in variables x, y and
w, z. It is not possible for them to happen in the same variable, by Corollary 1.

1. S = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ · · · ‖ Un ‖ J] (Assumption,
Fig. 13, Lemma 9).

2. S1 = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ · · · ‖ Un ‖ J] (Fig. 6,(1)).

3. S0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �w〈v′〉.Q3 | z(u2).Q4�
1
wz ‖

· · · ‖ U ′m ‖ J ′], m ≥ 1 (IH, (1), Lemma 9).
4. S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′] ((3), Fig. 6).
5. S0

RP(x,y)−−−−−→	 S′0 (IH)
6. S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�

1
xy ‖ �w〈v′〉.Q3 | z(u2).Q4�

1
wz ‖

· · · ‖ U ′m ‖ J ′] (Fig. 6, (5)).

7. S1
γ0 (̃x ỹ)�����⇒ S′0 (IH).

We reduce the proof to show to the existence of some S3 such that
– S2

RP(x,y)−−−−−→	 S3 and
– S′0

IO1(w,z)−−−−−→	 S3
We have:

(a) S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ �w〈v′〉.Q3 | z(u2).Q4�

1
xy ‖

· · · ‖ U ′m ‖ J ′].
(b) S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′].

123

Session-based concurrency, declaratively

Then, let

S3 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′]
and we can show by Fig. 6 that S′0

IO1(w,z)−−−−−→	 S3 and S2
RP(x,y)−−−−−→	 S3, which

concludes the proof.
Sub-case ω = SL(): Similarly as above.
Sub-case ω = SL1(): Similarly as above.

Case κ = RP1: We proceed similarly as above. The most interesting case is whenever
ω = RP:

Sub-case ω = RP: As above, assume the actions take place in variables x, y and
w, z. It is not possible for them to happen in the same variable, by Corollary 1.

1. S = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ · · · ‖ Un ‖ J] (Assumption,
Fig. 13, Lemma 9).

2. S1 = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ · · · ‖ Un ‖ J] (Fig. 6,(1)).

3. S0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �w〈v′〉.Q3 | ∗ z(u2).Q4�
1
wz ‖

· · · ‖ U ′m ‖ J ′], m ≥ 1 (IH, (1), Lemma 9).
4. S2 = Cx̃ ỹ[U ′1 ‖ . . . ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �Q3� ‖ �Q4�{v′/u2} ‖

�∗ z(u2).Q4�‖ . . .‖U ′m ‖ J ′] ((3), Fig. 6).
5. S0

RP(x,y)−−−−−→	 S′0 (IH)
6. S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�

1
xy ‖ �w〈v′〉.Q3 | ∗ z(u2).Q4�

1
wz ‖

· · · ‖ U ′m ‖ J ′] (Fig. 6, (5)).

7. S1
γ0 (̃x ỹ)�����⇒ S′0 (IH).

We reduce the proof to show that there exists some S3 such that
– S2

RP(x,y)−−−−−→	 S3 and
– S′0

RP1(w,z)−−−−−→	 S3
We have:

(a) S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ �w〈v′〉.Q3 | ∗ z(u2).Q4�

1
xy ‖

· · · ‖ U ′m ‖ J ′]
(b)

S2 = Cx̃ ỹ[U ′1 ‖ . . .‖�x〈v〉.Q1�‖�∗ y(u1).Q2�‖�Q3� ‖
�Q4�{v′/u2}‖�∗ z(y2).Q4�‖ . . .‖U ′m ‖ J ′]

Then, let

S3 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ �Q3� ‖ �Q4�{v′/u2} ‖

�∗ z(y2).Q4� · · · ‖ U ′m ‖ J ′]
and we can show by Fig. 6 that S′0

RP1(w,z)−−−−−→	 S3 and S2
RP(x,y)−−−−−→	 S3, which

concludes the proof.
Sub-case ω = IO: Similarly as above.
Sub-case ω = SL: Similarly as above.
Sub-case ω = SL1: Similarly as above.

Case κ = CD: As above we distinguish four cases. We only show sub-case ω = IO, as the
other cases are similar:

Sub-case ω = IO: Assume that the IO transition happens on endpoints x, y.
Since CD does not occur on any channels, we do not need to assume more
endpoints:
1. S = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(z).Q2� ‖ · · · ‖ Un], n ≥ 1

(Assumption, Fig. 13, Lemma 9).

123

M. Cano et al.

2. S1 = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1 | y(z).Q2�
1
xy ‖ · · · ‖ Un], n ≥ 1 ((1),

Fig. 13).
3. S0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(z).Q2� ‖ �b? Q3 :Q4� ‖ · · · ‖ U ′m],

m ≥ 1, with b ∈ {tt,ff} (IH, Fig. 13).
4. S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(z).Q2� ‖ �Qi � ‖ · · · ‖ U ′m],

i ∈ {3, 4} ((3), Fig. 13).
5. S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(z).Q2�

1
xy ‖ �b? Q3 : Q4� ‖ · · · ‖ U ′m],

m ≥ 1, with b ∈ {tt,ff} (IH, Fig. 13).
Now, let S3 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(z).Q2�

1
xy ‖ �Qi � ‖ · · · ‖ U ′m],

m ≥ 1, with b ∈ {tt,ff}, i ∈ {3, 4}.
It can be shown, by Fig. 13 that S2

IO(x,y)−−−−−→	 S3 and S′0
CD(−)−−−−→	 S3 which by

IH imply that S1
γ0 (̃x ỹ)CD(−)��������⇒ S3, concluding the proof.

Sub-case ω = RP: Similarly as above.
Sub-case ω = SL: Similarly as above.
Sub-case ω = SL1: Similarly as above.

Case κ = SL2: Similarly as Case ω = IO1.
Case κ = SL3: Similarly as Case ω = IO1.

%&
Lemma 15 Suppose a well-typed π program P. For every sequence of labels γ (̃x ỹ) such

that �P�
γ (̃x ỹ)����⇒ S, there exist Q, S′, and γ ′(̃x ỹ) such that P −→∗ Q and S

γ ′ (̃x ỹ)�����⇒ S′,
with γ ′(̃x ỹ) = γ (̃x ỹ)↓ (cf. Definition 35). Moreover, �Q� ∼=π

	 S′.

Proof By induction on |γ (̃x ỹ)| and a case analysis on the last label of the sequence. The base
case is immediate since �P�

γ (̃x ỹ)����⇒ �P� and P −→∗ P .
For the inductive step, assume |γ (̃x ỹ)| = n ≥ 0. We state the IH:

IH: if �P�
γ (̃x ỹ)0�����⇒ S0

αn+1−−−→	 S, then there exists Q0, S′0 and γ ′0 (̃x ỹ) such that P −→∗ Q,

S0
γ ′ (̃x ỹ)�����⇒ S′0, γ ′0 (̃x ỹ) = γ (̃x ỹ)↓ and S′0 ∼=π

	 �Q�.

Using the IH, the proof can be summarized by the diagram in Fig. 14, where we must show
the existence of the dotted arrows. Details follow:

Base Case: n = 0. Then:

1. S
ω−→	 S1 (Assumption).

2. S
γ (̃x ỹ)����⇒ S (Assumption)

3. S1
γ (̃x ỹ)����⇒ S1 (Fig. 6)

Conclude by letting S1 = S1, S2 = S and S3 = S1 and using (1),(3).
Inductive Step: n ≥ 1. We state the IH:

IH: If S
ω−→	 S1 and S

γ0 (̃x ỹ)�����⇒ S0
κ−→	 S2, then there exists S′0 such that S1

γ0 (̃x ỹ)�����⇒ S′0
and S0

ω−→	 S′0.

We distinguish cases for κ ∈ {IO1,RP1,CD,SL2,SL3}. There are five cases and each
one has four sub-cases, corresponding to the opening labels {IO,SL,RP,SL1}.We detail
three cases: κ = IO1, κ = RP1 and κ = CD, as the other are similar:

Case κ = IO1: As mentioned above, there are four sub-cases depending on ω. We
enumerate them below and only detail ω = IO, ω = RP:

123

Session-based concurrency, declaratively

Sub-case ω = IO: Suppose, without loss of generality, that the actions take
place on endpoints x, y and w, z. Furthermore, by typing and Corollary 1 and
Definition 10, it cannot be the case that x = w and y = z, because this would
imply that there ismore than one output prefixed on x . Then,wewe only consider
the case when x �= w and y �= z:

Sub-case x �= w ∧ y �= z: We proceed as follows:
1. S = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(u1).Q2� ‖ · · · ‖ Un ‖ J] (Assumption,

Fig. 13, Lemma 9).
2. S1 = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1 | y(u1).Q2�

1
xy ‖ · · · ‖ Un ‖ J] (Fig. 6,(1)).

3. S0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(u1).Q2� ‖ �w〈v′〉.Q3 | z(u2).Q4�
1
wz ‖

· · · ‖ U ′m ‖ J ′], m ≥ 1 (IH, (1), Lemma 9).
4. S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′] ((3), Fig. 6).
5. S0

IO(x,y)−−−−−→	 S′0 (IH)
6. S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(u1).Q2�

1
xy ‖ �w〈v′〉.Q3 | z(u2).Q4�

1
wz ‖

· · · ‖ U ′m ‖ J ′] (Fig. 6, (5)).

7. S1
γ0 (̃x ỹ)�����⇒ S′0 (IH).
We can then reduce the proof to the existence of some S3 such that

– S2
IO(x,y)−−−−−→	 S3 and

– S′0
IO1(w,z)−−−−−→	 S3

We have:
(a) S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(u1).Q2�

1
xy ‖ �w〈v′〉.Q3 | z(u2).Q4�

1
xy ‖

· · · ‖ U ′m ‖ J ′].
(b) S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(u1).Q2� ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′].
Then, let

S3 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(u1).Q2�
1
xy ‖

�Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖ U ′m ‖ J ′]
and we can show by Fig. 6 that S′0

IO1(w,z)−−−−−→	 S3 and S2
IO(x,y)−−−−−→	 S3,

which concludes the proof.
Sub-case ω = RP: As above, assume the actions take place in variables x, y and
w, z. It is not possible for them to happen in the same variable, by Corollary 1.

1. S = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ · · · ‖ Un ‖ J] (Assumption,
Fig. 13, Lemma 9).

2. S1 = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ · · · ‖ Un ‖ J] (Fig. 6,(1)).

3. S0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �w〈v′〉.Q3 | z(u2).Q4�
1
wz ‖

· · · ‖ U ′m ‖ J ′], m ≥ 1 (IH, (1), Lemma 9).
4. S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′] ((3), Fig. 6).
5. S0

RP(x,y)−−−−−→	 S′0 (IH)
6. S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�

1
xy ‖ �w〈v′〉.Q3 | z(u2).Q4�

1
wz ‖

· · · ‖ U ′m ‖ J ′] (Fig. 6, (5)).

7. S1
γ0 (̃x ỹ)�����⇒ S′0 (IH).

We reduce the proof to the existence of some S3 such that
– S2

RP(x,y)−−−−−→	 S3
– S′0

IO1(w,z)−−−−−→	 S3

123

M. Cano et al.

We have:
(a) S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�

1
xy ‖ �w〈v′〉.Q3 | z(u2).Q4�

1
xy ‖

· · · ‖ U ′m ‖ J ′].
(b) S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′].
Then, let

S3 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ �Q3� ‖ �Q4�{v′/u2} ‖ · · · ‖

U ′m ‖ J ′]
and we can show by Fig. 6 that S′0

IO1(w,z)−−−−−→	 S3 and S2
RP(x,y)−−−−−→	 S3, which

concludes the proof.
Sub-cases ω = SL and ω = SL1: Similarly as above.

Case κ = RP1:We proceed similarly as above. Themost interesting case is whenever
ω = RP:

Sub-case ω = RP: As above, assume the actions take place in variables x, y and w, z.
It is not possible for them to happen in the same variable, by Corollary 1.
1. S = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ · · · ‖ Un ‖ J] (Assumption,

Fig. 13, Lemma 9).
2. S1 = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�

1
xy ‖ · · · ‖ Un ‖ J] (Fig. 6,(1)).

3. S0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �∗ y(u1).Q2� ‖ �w〈v′〉.Q3 | ∗ z(u2).Q4�
1
wz ‖

· · · ‖ U ′m ‖ J ′], m ≥ 1 (IH, (1), Lemma 9).

4.
S2 = Cx̃ ỹ[U ′1 ‖ . . .‖�x〈v〉.Q1�‖�∗ y(u1).Q2�‖�Q3�‖

�Q4�{v′/u2}‖�∗ z(u2).Q4� ‖ . . .‖U ′m ‖ J ′]
((3), Fig. 6).

5. S0
RP(x,y)−−−−−→	 S′0 (IH)

6. S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ �w〈v′〉.Q3 | ∗ z(u2).Q4�

1
wz ‖

· · · ‖ U ′m ‖ J ′] (Fig. 6, (5)).

7. S1
γ0 (̃x ỹ)�����⇒ S′0 (IH).

We reduce the proof to the existence of some S3 such that
– S2

RP(x,y)−−−−−→	 S3
– S′0

RP1(w,z)−−−−−→	 S3
We have:
(a) S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�

1
xy ‖ �w〈v′〉.Q3 | ∗ z(u2).Q4�

1
xy ‖

· · · ‖ U ′m ‖ J ′].
(b)

S2 = Cx̃ ỹ[U ′1 ‖ . . .‖�x〈v〉.Q1�‖�∗ y(u1).Q2�‖�Q3�‖
�Q4�{v′/u2}‖�∗ z(y2).Q4�‖ . . .‖U ′m ‖ J ′]

.

Then, let

S3 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | ∗ y(u1).Q2�
1
xy ‖ �Q3� ‖ �Q4�{v′/u2} ‖

�∗ z(y2).Q4� · · · ‖ U ′m ‖ J ′]
and we can show by Fig. 6 that S′0

RP1(w,z)−−−−−→	 S3 and S2
RP(x,y)−−−−−→	 S3, which concludes

the proof.
Sub-cases ω = IO, ω = SL, and ω = SL1: Similarly as above.
Case κ = CD: As above we distinguish four cases. We only show sub-case ω = IO,
as the other cases are similar:

Sub-case ω = IO: Assume that the IO transition happens on endpoints x, y.
Since CD does not occur on any channels, we do not need to assume more
endpoints:

123

Session-based concurrency, declaratively

1. S = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(z).Q2� ‖ · · · ‖ Un], n ≥ 1
(Assumption, Fig. 13, Lemma 9).

2. S1 = Cx̃ ỹ[U1 ‖ · · · ‖ �x〈v〉.Q1 | y(z).Q2�
1
xy ‖ · · · ‖ Un], n ≥ 1 ((1),

Fig. 13).
3. S0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1��y(z).Q2� ‖ �b? Q3 : Q4� ‖ · · · ‖ U ′m],

m ≥ 1, with b ∈ {tt,ff} (IH, Fig. 13).
4. S2 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1� ‖ �y(z).Q2� ‖ �Qi � ‖ · · · ‖ U ′m],

i ∈ {3, 4} ((3), Fig. 13).
5. S′0 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(z).Q2�

1
xy ‖ �b? Q3 : Q4� ‖ · · · ‖ U ′m],

m ≥ 1, with b ∈ {tt,ff} (IH, Fig. 13).
Now, let S3 = Cx̃ ỹ[U ′1 ‖ · · · ‖ �x〈v〉.Q1 | y(z).Q2�

1
xy ‖ �Qi � ‖ · · · ‖ U ′m],

m ≥ 1, with b ∈ {tt,ff}, i ∈ {3, 4}.
It can be shown, by Fig. 13 that S2

IO(x,y)−−−−−→	 S3 and S′0
CD(−)−−−−→	 S3 which by

IH imply that S1
γ0 (̃x ỹ)CD(−)��������⇒ S3, concluding the proof.

Sub-case ω = RP, ω = SL, and ω = SL1: Similarly as above.
Cases κ = SL2 and κ = SL3: Similarly as Case ω = IO1.

%&

References

1. Arslanagic, A., Pérez, J.A., Voogd, E.: Minimal session types (Pearl). In: 33rd European Conference on
Object-Oriented Programming, ECOOP 2019, July 15–19, 2019, London, United Kingdom, pp. 23:1–
23:28 (2019)

2. Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in CO2. Sci. Ann. Comp. Sci. 22(1),
5–60 (2012)

3. Bartoletti, M., Zunino, R.: A calculus of contracting processes. Technical Report DISI-09-056, University
of Trento (2009)

4. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: Proceedings of the 25th Annual IEEE
Symposium on Logic in Computer Science, LICS 2010, 11–14 July 2010, Edinburgh, United Kingdom,
pp. 332–341 (2010)

5. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for mobile processes with
nominal data and logic. Log. Methods Comput. Sci. 7(1), 1–44 (2011)

6. Bernardi, G., Dardha, O., Gay, S.J., Kouzapas, D.: On duality relations for session types. In: Trustworthy
Global Computing—9th International Symposium, TGC 2014, Rome, Italy, pp. 51–66 (2014)

7. Bernardi, G., Hennessy, M.: Using higher-order contracts to model session types. Log. Methods Comput.
Sci. 12(2), 1–43 (2016)

8. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for distributed multiparty
interactions. In: CONCUR 2010, volume 6269 of LNCS, pp. 162–176. Springer, Berlin (2010)

9. Bocchi, L., Murgia, M., Vasconcelos, V.T., Yoshida, N.: Asynchronous timed session types - from duality
to time-sensitive processes. In: Programming Languages and Systems—28th European Symposium on
Programming, ESOP 2019, Prague, Czech Republic, Proceedings, pp. 583–610 (2019)

10. Buscemi, M.G., Coppo, M., Dezani-Ciancaglini, M., Montanari, U.: Constraints for service contracts.
In: Trustworthy Global Computing - 6th International Symposium, TGC 2011, Aachen, Germany, June
9–10, 2011. Revised Selected Papers, pp. 104–120 (2011)

11. Buscemi, M.G., Melgratti, H.C.: Transactional service level agreement. In: Trustworthy Global Comput-
ing, Third Symposium, TGC 2007, Sophia-Antipolis, France, November 5–6, 2007, Revised Selected
Papers, pp. 124–139 (2007)

12. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying service level agree-
ments. In: ESOP 2007, volume 4421 of LNCS, pp. 18–32. Springer, Berlin (2007)

13. Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint pi-calculus. In: Program-
ming Languages and Systems, 17th European Symposium on Programming, ESOP 2008, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29–April 6, 2008. Proceedings, pp. 254–268 (2008)

123

M. Cano et al.

14. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint language for service negotiation and composition. In:
Results of the SENSORIA Project, volume 6582 of LNCS, pp. 262–281. Springer, Berlin (2011)

15. Cano, M.: Session-Based Concurrency: Between Operational and Declarative Views. Ph.D. thesis, Uni-
versity of Groningen (2020)

16. Cano, M., Arias, J., Pérez, J.A.: Session-based concurrency, reactively. In: Bouajjani, A., Silva, A. (eds.)
Formal Techniques for Distributed Objects, Components, and Systems—37th IFIP WG 6.1 International
Conference, FORTE 2017, Held as Part of the 12th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19–22, 2017, Proceedings, volume
10321 of Lecture Notes in Computer Science, pp. 74–91. Springer, Berlin (2017)

17. Cano, M., Rueda, C., López, H.A., Pérez, J.A.: Declarative interpretations of session-based concurrency.
In: Proceedings of the International Symposium on Principles and Practice of Declarative Programming
(PPDP) 2015, pp. 67–78. ACM (2015)

18. Carbone, M., Grohmann, D., Hildebrandt, T.T., López, H.A.: A logic for choreographies. Proc. Places
2010, 29–43 (2010)

19. Colombo, C., Pace, G.J., Schneider, G.: LARVA—safer monitoring of real-time java programs (tool
paper). In: Seventh IEEE International Conference on Software Engineering and Formal Methods, SEFM
2009, Hanoi, Vietnam, 23–27 November 2009, pp. 33–37 (2009)

20. Coppo, M., Dezani-Ciancaglini, M.: Structured communications with concurrent constraints. In: Pro-
ceedings of TGC 2008, volume 5474 of LNCS, pp. 104–125. Springer, Berlin (2009)

21. Díaz, J.F., Rueda, C., Valencia, F.D.: Pi+- calculus: a calculus for concurrent processes with constraints.
CLEI Electron. J. 1(2), 291 (1998)

22. Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: Operational and phase seman-
tics. Inf. Comput. 165(1), 14–41 (2001)

23. Gay, S.J., Thiemann, P., Vasconcelos, V.T.: Duality of session types: The final cut. In: Balzer, S., Padovani,
L. (eds.) Proceedings of the 12th International Workshop on Programming Language Approaches to
Concurrency- andCommunication-cEntric Software, PLACES@ETAPS2020,Dublin, Ireland, 26thApril
2020, volume 314 of EPTCS, pp. 23–33 (2020)

24. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
25. Gorla, D.: A taxonomy of process calculi for distribution and mobility. Distrib. Comput. 23(4), 273–299

(2010)
26. Gorla, D.: Towards a unified approach to encodability and separation results for process calculi. Inf.

Comput. 208(9), 1031–1053 (2010)
27. Haemmerlé, R.: Observational equivalences for linear logic concurrent constraint languages. TPLP 11(4–

5), 469–485 (2011)
28. Hildebrandt, T.T., López, H.A.: Types for secure pattern matching with local knowledge in universal

concurrent constraint programming. In: Logic Programming, 25th International Conference, ICLP 2009,
Pasadena, CA, USA, July 14-17, 2009. Proceedings, pp. 417–431 (2009)

29. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline for Structured
Communication-Based Programming. In: Proceedings of ESOP’98, vol. 1381, pp. 122–138. Springer,
Berlin (1998)

30. Klensin, J.: Simple mail transfer protocol. https://tools.ietf.org/html/rfc5321. Accessed July, 2019 (2008)
31. López, H.A., Olarte, C., Pérez, J.A.: Towards a unified framework for declarative structured communi-

cations. In: PLACES 2009, York, UK, 22nd March 2009, volume 17 of EPTCS, pp. 1–15 (2009)
32. Mandel, L., Pouzet, M.: ReactiveML: a reactive extension toML. In: Proceedings of PPDP’05, pp. 82–93.

ACM (2005)
33. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput. 100(1), 1–40 (1992)
34. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. II. Inf. Comput. 100(1), 41–77 (1992)
35. Monjaraz, R., Mariño, J.: From the π -calculus to flat GHC. In: Proceedings of PPDP’12, pp. 163–172.

ACM (2012)
36. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty conversations. Formal

Asp. Comput. 29(5), 877–910 (2017)
37. Olarte, C., Valencia, F.D.: Universal concurrent constraint programing: symbolic semantics and applica-

tions to security. In: Proceedings of the 2008 ACM Symposium on Applied Computing (SAC), Fortaleza,
Ceara, Brazil, March 16-20, 2008, pp. 145–150 (2008)

38. Parrow, J.: Trios in concert. In: Proof, Language, and Interaction, Essays in Honour of Robin Milner, pp.
623–638 (2000)

39. Parrow, J.: Expressiveness of process algebras. Electr. Notes Theor. Comput. Sci. 209, 173–186 (2008)
40. Peters, K.: Comparing process calculi using encodings. In: Pérez, J.A., Rot, J. (eds). Proceedings Com-

bined 26th International Workshop on Expressiveness in Concurrency and 16th Workshop on Structural

123

https://tools.ietf.org/html/rfc5321

Session-based concurrency, declaratively

Operational Semantics, EXPRESS/SOS 2019, Amsterdam, The Netherlands, 26th August 2019, volume
300 of EPTCS, pp. 19–38 (2019)

41. Peters, K., Nestmann, U.: Is it a “good” encoding of mixed choice? In: Foundations of Software Science
and Computational Structures—15th International Conference, FOSSACS 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24–April 1, 2012. Proceedings, pp. 210–224 (2012)

42. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
43. Saraswat, V.A.: Concurrent Constraint Programming. ACM Doctoral dissertation awards. MIT Press,

Cambridge (1993)
44. Soliman, S.: Pi-calcul et lcc, une odyssée de l’espace. In: Programmation en logique avec contraintes,

JFPLC 2004, June 21–23 2004, Angers, France (2004)
45. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)
46. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In: TGC 2013, Buenos Aires,

Argentina, August 30–31, 2013, Revised Selected Papers, pp. 22–41 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Session-based concurrency, declaratively
	Abstract
	1 Introduction
	2 Overview of key ideas
	3 Preliminaries
	3.1 A session
	3.1.1 Syntax and semantics
	3.1.2 Type system
	3.1.3 Type safety

	3.2 Linear concurrent constraint programming (lcc)
	3.2.1 Syntax and semantics
	3.2.2 Observational equivalences

	3.3 Relative expressiveness
	3.3.1 Languages and translations
	3.3.2 Correctness criteria

	4 Encoding the session pi-calculus Into lcc
	4.1 The translation
	4.2 Name invariance, compositionality, and operational completeness
	4.3 Operational soundness
	4.3.1 Proof roadmap
	4.3.2 Proof ingredients
	4.3.3 Proof of operational soundness

	4.4 Success sensitiveness

	5 The encoding at work
	5.1 Overview: exploiting compositionality via decompositions
	5.2 Request–response timeout
	5.3 Messages in a time-frame

	6 Related work
	7 Concluding remarks
	Acknowledgements

	A Additional examples

	B Appendix for Sect. 3.1
	B.1 Additional definitions and examples
	B.2 Proofs for the type system

	C Appendix for Sect. 4
	C.1 Junk processes
	C.2 Operational completeness
	C.3 Invariants for pre-redexes and redexes
	C.4 Invariants for well-typed translated programs
	C.5 A diamond property for target terms

	References

